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We present an introduction to metamaterials, intended for undergraduate students who have taken
courses in waves and in electricity and magnetism. The paper was written to accompany a pre-
sentation given as part of such a course. We have focused on theoretical and historical aspects
of optical metamaterials which are relatively easy to understand, and provide references only to
suitably non-technical articles and reviews.

I. INTRODUCTION

Metamaterials are media artificially engineered at a
macrosopic scale to have specific, desired properties when
interacting with certain types of waves. In particular,
they should have properties not seen in natural materi-
als. Our focus in this paper will be metamaterials which
interact with the electromagnetic field.

Only very recently have nanofabrication, numerical
modeling, and characterization tools developed enough
to open the possibility of metamaterials. The technical
details quickly become complicated. We have not shied
away from including mathematics that should be acces-
sible to an undergraduate who has completed a course
in electricity and magnetism. However in the spirit of
an introduction, we have focused on the principles of the
field rather than the newest research. We feel that there
are three generic questions one might ask in motivation:
(i.) What kind of properties are allowed in theory, but
are apparently not present in any natural materials? (ii.)
Can one fashion a medium with those properties? (iii.)
What can one do with it?

We suggest the kinds of answers so far available by
tracing through the case of metamaterials with negative
indices of refraction. Section II explains what this prop-
erty is and why it may be of theoretical interest. Sec-
tion III describes the first experimental demonstration of
such a medium. Section IV discusses one of the suggested
practical applications.

To conclude, we discuss the theory of cloaking in sec-
tion V. Though it does not depend on a negative index of
refraction, cloaking is one of the most exciting potential
applications of metamaterials, and we could not resist
presenting a short description. This is the outstanding
example of what kinds of applications open up to us once
we consider a medium’s ε and µ as variable parameters
that can be engineered as needed.

II. THEORY OF THE NEGATIVE INDEX

Since we tend to think of the refractive index n as an
independent material parameter involved only in Snell’s
law, it is worth recalling briefly where it comes from.
Starting from Maxwell’s equations,

∇×E +
1

c
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∂t
= 0, (1a)

∇ ·B = 0, (1b)
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we can derive a wave equation for the vectors E and B.

In linear, isotropic media, where D = εE and H =
1

µ
B,

we can substitute for D and H in equations (1c) and (1d).
Then, assuming no free charges or currents, we take the
curl of equation (1d) and substitute the result into the
curl of equation (1a). We then have the wave equation
for E:

∇2E =
εµ

c2
∂2E

∂t2
. (2)

A similar procedure results in the same wave equation
for B.

Identifying v2 =
c2

εµ
as the square of the phase velocity,

we can define n =
√
εµ as the factor by which the phase

velocity in the medium is reduced when compared with
the speed of light in vacuum. Since n2 rather than n
enters the wave equations, one could have asked even in
Maxwell’s time, “Why not choose the negative square
root?”

The negative square root must be chosen in certain
situations1. In general, E, B, ε, and µ are all complex
quantities. Then the index of refraction is the complex
square root n = ±

√
(εr + iεi)(µr + iµi). Arguing that εi

and µi are on the order of the small positive quantity δ,
which corresponds to light damping2, we can then expand
the square root to first order in a Taylor series:

n = ±εrµr
(

1 + i
(εrµi + εiµr)

(εrµr)

)
+O(δ2) (3)

1 The argument we present here owes to [1], pp. 101-120. Vese-
lago’s argument in [9] is slightly more difficult.

2 Since they describe the dissipative effects of the medium, if a
wave is to propagate at all, the imaginary parts of ε and µ must
be small.
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FIG. 1. Refraction into a medium a.) with positive index of
refraction (left); b.) with negative index of refraction (right).
From [1].

Now individual plane wave solutions to equation (2) are
of the form:

E = E0e
i(kzz−ωt) = E0e

i(nrk
0
zz−ωt)e−nik

0
zz. (4)

If the positive square root were chosen in equation (3)
when εr and µr are negative, the imaginary part of n
would be negative, leading in turn to an exponentially
growing amplitude of the plane wave. This is unaccept-
able on physical grounds3. So negative values of εr and
µr are together sufficient conditions for n to be negative4.

There are a number of interesting consequences. The
most important, on which most of the applications rely,
is the effect on Snell’s law. When considering the trans-
mission of light across a boundary between two media
with refractive indices n1 and n2 respectively, Snell’s law
is the familiar5

n1 sin θi = n2 sin θr, (5)

where θi is the angle of incidence and θr is the angle of
refraction. The angles are measured as shown in figure
1a.

The form of Snell’s law is unchanged in the presence of
negative index media. So if n1 is positive, but n2 = −|n2|
is negative, θr must also be negative:

n1 sin θi = −|n2| sin θr = |n2| sin(−θr). (6)

3 Note that Cai and Shalaev claim in [1] that this choice would
violate causality. We were unable to determine what was meant
by this. Our argument would only really be true in the case of an
infinite negative-index material; the possibility of an exponential
growth does seem to enter into the applications. See the section
on Superlenses below.

4 Note that the more general condition for negative n is εrµi +
εiµr < 0. See [1] and [2] for further details.

5 We consider here only the case of real n, namely non-dissipative
media.

The left hand side of this equation is the product of two
positive quantities, and so is positive. The right hand
side then must also be positive, and since θr is physically
restricted to lie between −π2 and π

2 , this implies that θr
is negative. This is pictured in figure 1b. Light refracts
the “wrong” way in the negative index medium.

Another strange consequence is that the phase veloc-
ity of light in the medium will generally be opposed to
the group velocity. As Veselago shows in [9], the vectors
E, H, and k form a left-handed triple in a negative in-
dex medium, for which reason such media are sometimes
called left-handed. However, E, H, and S still form a
right-handed triple, since S = c

4πE × H. The flow of
energy is opposed to the phase velocity of the individual
plane waves6.

Finally, we point out that the Doppler effect will be
reversed in a negative index medium. The reasoning here
is similar to that in the case of Snell’s law. We consider
a stationary source emitting radiation at a frequency ω0.
An observer moving toward the source with a speed v
detects radiation with a frequency ω given by the familiar
Doppler formula:

ω = ω0

(
1 +

v

c/n

)
(7)

Just as before, switching the sign of n reverses the usual
effect.

III. EXPERIMENTAL DEMONSTRATION A
NEGATIVE INDEX META-MATERIAL

We now suggest how metamaterials are made in prac-
tice by discussing the first experiment to demonstrate
a medium with a negative index of refraction. The ex-
periment was performed by Shelby, Shultz, and Smith
in 2001 [7]. They imprinted a periodic lattice of copper
split-ring resonators, or SRRs, on one side of a fiberglass
plane, and a periodic lattice of single copper wires on
the other. They then put many such fiberglass planes
together in an interlocking array, as in figure 2. The
SRRs on the lattice had a typical length scale of roughly
3-5 mm. The periodic elements here, SRRs and copper
wires, could be considered the basic “atomic” units of the
metamaterial7.

6 This is discussed further in [5]. We were unaware that
this is possible even in principle, and find it fascinat-
ing. See William Schaich’s web-page for some example
video clips demonstrating one- and two-dimensional examples
of wave packets propagating into a negative index medium:
http://www.physics.indiana.edu/ schaich/ajp/ajp.html

7 It is worth emphasizing here that metamaterial media are merely
analogous to material media. Few authors resist the tempta-
tion to shorten “metamaterial” to “material,” but this is highly
misleading for the beginner. Metamaterial properties, as here,
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FIG. 2. The first negative index medium. Fiberglass was
used as the dielectric material. A periodic array of copper
split-ring resonators was placed on the front of each fiberglass
plane, and a periodic array of thin copper wires was placed
on the back. The height of the structure is about 1 cm. From
[7].

Individual SRRs can be modeled as LC circuits in the
presence of changing fields. In a periodic array however,
they can interact coherently, since the field of one SRR
can affect the field seen by its nearest neighbors. In [4],
Pendry et al. argued that suitable periodic arrays of
SRRs can display an effective µ that is negative8. Sim-
ilarly, a periodic array of copper wires can display an
effective ε that is negative. Combining the two in one
lattice, should create a medium with simultaneously neg-
ative values of ε and µ, and so a negative n as argued in
section II.

Shelby, Shultz, and Smith used a set-up as depicted in
figure 3. A triangular prism was made from the nega-
tive index metamaterial and placed at the end of a metal
waveguide with variable dimensions (to control the mi-
crowave frequencies used). A detector was mounted on a
swiveling disk, and was rotated through the full range of
angles to measure the intensity of the microwaves emerg-
ing from the prism. The angle theta was measured clock-
wise from the pictured surface normal. The diagram
shows a refracted ray as we would expect from a posi-
tive index material.

The results of this experiment are shown in figure 4.
The observed effect was a spectacular confirmation that
the medium exhibits a negative index of refraction. But
this was only so for a limited range of microwave fre-

result from coherent interactions of elements much larger than
any individual atoms. Metamaterial properties are not chem-
ical properties. Hence our generic use of the word “medium”
throughout.

8 There are natural materials with negative ε, such as gold and
silver at optical frequencies. However, there are no known nat-
ural materials with negative µ, so this revelation is really the
theoretical insight that opened current metamaterials research.

quencies. One of the remaining challenges is to design
media that display such an effect over a larger range of
frequencies, particularly at optical frequencies.

IV. SUPERLENSES

We now discus the exciting possibility of metamaterial
superlenses9. The German physicist Ernst Abbe dis-
covered in 1873 a limit to the size of structures one
can resolve with traditional optical lenses, the so-called
Abbe Diffraction Limit. One can only resolve structures
greater than roughly one half the wavelength of the light
used in imaging, which means about 200-300 nm for op-
tical imaging[10]. Using metamaterials with negative in-
dices of refraction, it is possible to overcome this limit,
possibly even by several orders of magnitude. This comes
from the familiar equation for a propagating wave:

E(x, y, z, t) = E0 e
i(kxx+kyy+kzz−ωt). (8)

Starting from the wave equation and using the above
value of the E-field, one can derive the value of kz to be

kz = −
√
εµω2

c2
− (k2x + k2y). (9)

Normally, the square root takes the positive value, since
with traditional materials the kz vector is parallel to the

direction of motion. For (k2x + k2y) >
ω2

c2
, we find an

evanescent wave which decays exponentially. This poses
a problem for imaging since it is the evanescent wave that
carries information about small scale structures in the ob-
ject. However, for a metamaterial with a negative index
of refraction, kz is antiparallel to the direction of propa-
gation and so instead of a decaying wave, there would be

FIG. 3. Shelby, Smith and Shultz’s experimental set-up.

9 Predicted in [3]. Most of the material in this section is drawn
from [1], pp. 137-9.
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FIG. 4. Peak intensity measured at roughly −60◦, as pre-
dicted in the case of a prism with negative n.

a growing wave within the medium. This means that the
evanescent wave will grow significantly before reaching
the object, allowing them to be used in imaging. This is
why there is no Abbe diffraction limit for metamaterials
with negative indices of refraction.

FIG. 5. Image a displays a standard lens while image c shows
a lens made of metamaterials. The difference between image b
and d, the growth of the evanescent wave in the metamaterial,
is the reason a superlens is possible. From [1].

In addition, superlenses do not need to be shaped like
ordinary lenses. They are generally completely flat but
have been designed so that light bends the same way it
would in a curved traditional lens. As a result, these
lenses can be made very thin which is helpful for man-
ufacturing. The hope is that these superlenses can be
used for medical imaging and biological research due to
their potential to resolve single molecules, DNA strands,
viruses, or even spot cancerous cells with visible light.

V. CLOAKING

We now discuss the theory of cloaking10. To design a
cloak, we will start by considering straight-line trajecto-
ries in an isotropic medium, then apply a pair of coordi-
nate transformations which will exclude these trajecto-
ries from the target region, and then finally deduce what
ε and µ would have to be to lead to such trajectories for
light waves. We will discuss this first with a cylindrical
region, and then will simply state the results in spherical
coordinates.

We can apply our basic Maxwell equations in Cartesian
coordinates to get our E and B fields, then transform our
coordinates. In the transformed coordinates,

ε′ =
GεGT

|G|
, µ′ =

GµGT

|G|
, (10)

E′ = (GT )−1E , H′ = (GT )−1H, (11)

where G is the Jacobian matrix. After transforming to
the primed cylindrical coordinates, we then map the ra-
dial component r to the new parameter r:

r = (1− a

b
)r′ + a (12)

This hollows out the cylinder by creating a volume into
which light cannot penetrate. In this new r transforma-
tion, a is the radius of the hollowed out inner cylinder
and b is the radius of the entire cylinder. It essentially
compresses the cylinder. This can be seen in figure 7.
Now we calculate the components of G. These are:

gij =
∑
l

(
∂xl
∂qi

)(
∂xl
∂qj

) (13)

The medium in old coordinates was isotropic and ho-
mogeneous, which implies that the Jacobian matrix is
diagonal. We now calculate the elements of the transfor-
mation matrix:

hr =
√
grr =

b

b− a
(14a)

hθ =
√
gθθ =

b

b− a
· r − a

r
(14b)

hz =
√
gzz = 1. (14c)

And from here, we can get the needed values for ε:

εr = µr =
r − a
r

(15a)

εθ = µθ =
r

r − a
(15b)

εz = µz = (
b

b− a
)2 · r − a

r
. (15c)

10 The material in this section draws mostly from [1], pp. 159-67.
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FIG. 6. εr decreases as r/a increases. From [1]

FIG. 7. Cylindrical coordinate transformation. From [1].

Now we can plot these values for the various ε versus r/a.
This is given in figure 6.

It is now possible to design a metamaterial that can
fit this requirement. The light would bend around the
cylinder as desired. This is perhaps more apparent in
spherical coordinates, as it is a more familiar coordinate
system. Here, if we went through the same process, but
with the conversion to spherical coordinates, we would
find ε to be:

εr = µr =
b

b− a
· (r − a

r
)2 (16a)

εθ = µθ =
b

b− a
(16b)

εφ = µφ =
b

b− a
. (16c)

Again, after going to spherical coordinates, the trans-
formation

r = (1− a

b
)r′ + a (17)

was used. Here, a is the radius of the hollowed out inner
sphere and b is the radius of the overall sphere [1]. That
is, light will not enter the sphere of radius a. Figure
7 is a plot of the trajectory of light through a medium
satisfying these constraints on ε. The light encircles the
ball, but never penetrates it, and comes out the other side
without interacting with the cloaked object. This effect
is independent of the direction of incident light since ε is
independent of θ and φ.

We now have a prescription for engineering a metama-
terial that will allow us to cloak a cylindrical or spherical
region. The challenges of doing this in practice are not
insignificant11. But this procedure can be generalized
for various shapes. Cloaking has many possible applica-
tions, ranging from stealth technology for military pur-
poses to some possibly surprising medical purposes: a
doctor could see past certain organs by placing a cloak
around them. The benefits of cloaking make it not only
an entertaining, but active and beneficial area of modern
research.

VI. CONCLUSION

This discussion of metamaterials was short, but we feel
we have covered the principles of the field enough to
give a good taste. Advanced nanofabrication and other
structural methods allow us to place elaborate spacial de-
pendence on material parameters, but many engineering
challenges remain12. But beyond the engineering diffi-
culties, the field is limited only by our creativity in re-
thinking our physical theories, and in finding potential
new applications.

FIG. 8. In 2D and 3D. Light wraps around the ball and comes
out on the other side without interacting with the inner ball.

11 See [1], pp. 168 and following
12 See [6] for a nice review of metamaterial plasmonics, which dis-

cusses many traditional and current engineering challenges.
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