Final Project

Rayne Milner
EBS 298k - Sensors and Actuators

December 31, 2019

1 Summary

Detailed in this report is a comprehensive solution to real world problem. The ultimate
goal is to traverse an orchard using simulated sensors, and with a LIDAR sensor, detect the
diameters of trees in this orchard. The project was successful in implementing a extended
kalman filter to traverse the orchard block, and imaging the trees. However, work needs to
be done on the computer vision algorithms to accurately detect the tree sizes.

2 Discussion of Code

The main script for this assignment was FinalProject.m this script called all sub-functions
and scripts. Robot odometery and LIDAR data was simulated using supplied functions
(further discussion in Section 2.3.1).

2.1 Computing Optimal Path

Once the way-points, representing the two ends and the midpoint of each row in the orchard,
were generated based on the dimensions of the field, a cost-matrix is produced that gives the
"cost” of travelling from point to point in the way-point array. The costs were produced with
trial and error, loosely relying on the distance between points and a few logical principles
(e.g. if the robot has started down a row, then there should be no cost associated with
completing that row). A genetic algorithm then solves the travelling salesman problem to
find a locally optimal path to traverse the orchard.

2.2 Creating Path

Once the optimal traversal through the way-points is computed. Then a path is created,
using only straight line and circular arc segments (circular and omega turns only). This path
is computed such that the vehicle with the given turning radius and dimensions may follow
it.

2.3 Pure Pursuit

A simple pure-pursuit algorithm was used to follow the produced path. The main parameter
of this function are the ”"look ahead distance” which determines haw far ahead in the path the
robot aims for. As expected, increasing the look-ahead distance makes the path smoother,
however, this also results in cutting-corners and other undesirable effects. A look-ahead
distance of 2m seemed to produce good results.

2.4 Odometery and Filtering

The first step to use an extended Kalman filter is to find the covariance of noise present in
the odometery and in the sensors. In a real situation this would be experimentally found by
comparing the true values (in this case, of position) to the estimated or sensed values.

In this simulation, the true and noisy values are supplied by simulated odometery and
sensor functions unknown to the user. In order to get the values of covariance, a Bayesian
approach is taken.

2.4.1 robotodo.p

The robot odometery was simulated using the hidden function robotodo.p. However, this
function produced bad data and had to be modified. The given function was modified to
give correct results: on line 48 the limits of the for loop was changed tot =0 :dT : DT —dT.
Line 77 was changed to dth = gk(3) — ¢0(3);. In order to successfully run the program, the
user must put robot_odo.m in the path and remove robot_odo.p

Path with RobotOdo.p Path with RobotOdo.m

50 45
45 7 40 + 4
40r 1 351 |
357+ 1

30r 1
30 1

25r 1
25t 7

20r 7
20} 1

15+ 1
151 1
10t | 10 r 7
5f 1 57 1
0 1 L O 1 1

15 20 25 30 35 15 20 25 30 35

Figure 1: Comparison of supplied function with modified function.

2.5 Tree Scanning

Once the navigational elements are simulated, the program performs its main function,
computing the diameter of tree sizes in the orchard. This is performed using a simulated
noisy LIDAR. By iterating through the path points previously calculated and performing
a 90 degree scan at each point, an occupancy grid is updated which contains the location
of each tree in the orchard. A built-in Matlab Function to find circles is applied to this
data and, finally, the data is processed to output a location of each tree and it’s estimated
diameter.

3 Covariance Matrices
The covariance matrices are as follows:

, 0.0025 0

Todo = 0 1.14%10°*

2
0aps =

8.8084 x 1074 0 0
0 9.5809 % 104 0
0 0 4.0491 * 1074

4 Analysis

4.1 Path planning

The high-level planning presented here involves creating a array of nodes based on the known
geography of the orchard, computing a optimal path through the nodes and then generating
a series of closely spaced path points for the robot to follow.

40

35

30

25

20

15

10

Path Points

0 10 20 30 40 50

Figure 2: Array of path points generated to navigate the block.

4.2 EKF and PurePursuit

The lower level navigation relies on an extended kalman filter and a purePursuit controller.
The loop that performs the kinematic calculations has several different sections that are
executed at different rates. The EKF portion of this loop is only performed every one
second, when GPS data becomes available. While the odometery and controller continues

4

to be executed at every control interval. We can see that the EKF and controller works very
well to follow the path, deviating from ground truth by only a few centimeters.

Estimation v. True State

Ground Truth
40 r EKF Estimation

35

Figure 3: Trace of true pose and estimated pose

The behavior of the Kalman Filter is shown below. The estimate of pose can be seen
updating every time the GPS updates, after which the odometery integrates without GPS
data. During the period without GPS data the odometery becomes more erroneous until the
EKF is updated again.

Estimation v. True State

Il
Ground Truth
EKF Estimation

205

20

19.5 1

19+

18.5

18

175

22 225 23 235 24 245 25 255 26 265

Figure 4: Enlarged image showing how estimate of pose updates

4.3 Tree Detection

The tree detection algorithm runs after the kinematic calculations are completed. The
LIDAR data is collected from a series of points saved during kinematic stage. The noisy
LIDAR data is filtered using a median filter with a range of three pixels (meaning this only
filters outliers that are one pixel in size). The median filter as not tested with simulated
spike-type noise.

The LIDAR iteratively creates the occupancy grid for the orchard. This occupancy grid
is then post processed to detect edges, and converted into a black and white image. finally
the function imfindcircles is run on the processed image to find the locations of the trees.
The output of the LIDAR data and image processing is shown below.

Raw Probability Grid

350
C
¢ 10.9
300 L
@ 410.8
250 “ 4 0.7
L
¥ 0.6
200 #
: 0.5
150 0.4
0.2
50
0.1
0

0 50 100 150 200 250 300 350

Figure 5: Probability of occupancy for each pixel, obtained from LIDAR detection on bitmap

Raw LIDAR data Processed Image

« B % v % +* x & A B s

-
L
*
-
&
L
’
&*
-

L I I B I T
If’li&.-rr

If’lt:tn:-.

[
-
L]
]
»
L]
.
-
]
L1 3

Figure 6: Comparison of raw LIDAR data to Processed image

Finally, below, we see how the circle algorithm detects the trees. The algorithm has
trouble detecting circles of small radius. This could possibly be improved by increasing the
density of the grid.

Circles

Figure 7: Circle detection plot

4.3.1 Output File

The script outputs as text file formatted according to problem specifications. This file shows
the estimated x and y coordinates of the trees in each row, as well as the estimated radius
of the tree. A sample image of the text file is shown below

1 22
2 23
3 24
4 25
5 26
& 27
7 28
29

= 30
10 31
L] 32
12 33
1 3 34
14 35
L5 36
16 37
17 38
18 39
1 G 410
20 41
21 42

Figure 8: Text file output

4.4 FError Analysis

Below we see histogram plots of the error in both radius and distance. The error statistics
for radius (shown on the image) show that the estimation is consistently under estimating
the radius of the tree by 0.11m meter on average. This is significant considering the radius
of the trees are somewhere between 0.2m and 0.5m. However, we can see that the standard
deviation of error is an order of magnitude lower, 0.03m, meaning that the algorithm is more
precise than it is accurate. We could conceivably subtract the offset from our estimation of
radius and thereby consistently estimate the radius of the tree.

10

Radius Error
I

18 T T T T T I |
Mean: -0.11m

16 - Max: -0.02m ||
Min: -0.17m

14 | STD: 0.03m
RMS: 0.11m
95th: -0.05m

12

10

-0.18 -0.16 -0.14 -0.12 -01 -0.08 -0.06 -0.04 -0.02 O

Figure 9: Error in radius

Looking at the histogram for distance error, we see that the algorithm is both precise
and accurate, both mean and STD are on the order of 0.05m.

11

Position(dist.) Error

Mean: 0.05m
Max: 0.09m
12 1 Min: 0.01m [
STD: 0.02m
RMS: 0.05m
10 95th: 0.08m
8
6
4
2
0

0 0.02 0.04 0.06 0.08 0.1

Figure 10: Error in distance

5 Appendix A: Matlab Code

12

Table of Contents

L= L o= ot Y o PP UPTPTRN 1
€1 0T g (N 4 0= o TP PP 1
VW ATADIE SEI-UPD ettt ettt et et e et et e et e e e e 1
[T [0 < (U] o PP UPTPPT 3
=10] [B ot (o G PP PPTTUPPPPPTI 3
Compute NOAE COOMTINGLESeeeeiet ettt e e e et et e et e e et e aeaeaennns 4
GENEIAE COSE MBEITX . evvieeeitie ettt et et e et e e ettt e et et e et e r b n e e e e e e e raa s 4
Compute OPtiMal Pathi e 5
Create route for oot 10 FOIIOWcoouuuiiiiii e e 6
Begin odometery and filteringoc.e oo e 8
FINA COVAIANCE ...ttt et e ettt e ettt e et e et e e e e nt e e e enbaeeeens 11
PLOE PN <. e 11
Begin Tree SCanNING SECHION.c..uiii it e e e et e e e et e e e e ean s 11
o [0 = U | o PP 11
(=SS g o= 001 o o PP 11
[MAOE PrOCESSING ... etneteteeet e et e e et et et e et e ettt et ta e e ea e e et e et ta e e eta et et e e et e e et e aean e eeneeennns 12
Group trees by row, calculate center and diameter of tree.oooeiiiiiiiiii 12
L0011 o 11| (o I 1= (A] [PP 15

FinalProject.m

This script performs the orchard navigation using an EKF for state esimation. This script produces a se-
ries of points that represent poses of the robot, which are later fed to another script that performs tree
localization

cl earvars;

%pecl are gl obal vari abl es.
gl obal bitmap points rangeMax occuGid probGid dT DT DIgps occuGid
rangeMax bitpos trees_percieved,

Generate nursery

replace the following line with some other script call for testing purposes.

generateNursery(); %reates a random nursery, saving tree locations to
bit map gl obal variable

bi t mapi nput = bitmap; % saves bitmap to a input variable for |aser
scanner

Variable Set-up

%i nmul ation paraneters

dT = 0.01; %uler integration tinestep
DT = 0.1; % ontroller sanpling tinmestep
DTgps = 1; Y%anpling tine of GPS

T = 230; %inulation tinme

steps = T/DT; % wunber of steps in simulation
gpssanpl erate = DTgps/DT; % atio of gps sanpling to controler interval

% Pre-conput ed vari ance val ues

varianceQdo = [0.0025 1.1420e-04]; %varaince in noise from odonetery
(di stance, theta)

varianceGPS = [8.8084e-04 9.5809e-04 4.0491e-04]; %ariance in noise
for x fromgps (x, y, theta)

%Space vari abl es

Xmax = 50; Ynmax = 50; %hysical dinmensions of space (m

Xmax_nurs 42; % xmax in the generateNursery script

Ymax_nurs Xmax_nurs; % xnmax in the generateNursery script

R = 350; C = 350; % ows and col umms; discretization of physical space
inagrid

g_true = zeros(5, steps); %state vectors over N tine steps

g = zeros(5, steps); %state vectors over Ntine steps for kinematic
nodel

u = zeros(2, steps); % input vectors over N tinme steps

e = zeros(1l, steps); %ross track error

odo = zeros(3, steps); % donetery val ues over N tine steps

occuGid = ones(R, C; %nitialize as odds of one for each pixel
probGid = 0.0* ones(R, C; %nitialize as enpty

%/ari ance conputation arrays

x_di ff_gps = zeros(1l, steps); %olds difference b/w gps data and q
true for x

y diff_gps = zeros(1, steps); %ol ds difference b/w gps data and q
true for vy

theta_diff_gps = zeros(1, steps); %olds difference b/w gps data and q
true for angle

d_diff = zeros(1l, steps); %olds difference b/w odonetery data and q
true for distance

theta_diff = zeros(1, steps); %ol ds difference b/w odonetery data and
g true for theta

% nput and state constraints
Vimax 4; %elocity max
gmax 55*(pi/180); % urning angle max

%vehicl e paraneters

| = 3; %n distance between axis

Rmn = |/tan(gmax); % ni mum turning radius
width = 2; % dth of vehicle

%-eild paraneters

rowNdth = 3; %paci ng between tree rows

Krows = 5; % nunber of rows

N = Krows+1l; %Kk plus 1 (so that robot encircles orchard)

len = N\rowW dth; % ransverse to rows

RL = 20; % ateral l|ength

nTrees = 11; %wunber of trees in the row

Treespacing = RL/(nTrees-1); Y%pacing between trees down the row
nStart = [17;20]; %ne half rowwidth to the left of the SWtree

trees_percieved = zeros((Krows*nTrees), 3); %arry that holds the val ues
of trees percieved for error calculation

%Pat h vari abl es

nd = zeros(2,3*N+2); %d for path

X = nd(1,:); % coordi nates of node points

y = nd(2,:); % coordinates of node points

spacing = 0.1; %n spacing between points on the path

% nitial pose of the robot
g_true(:,1) =1[25,0,pi/2,0,0];
g(:,1) =1[25,0,pi/2,0,0];
odo(:,1) =1[25,0,pi/2];

% aser scanner vari ables
points = [q_true(1,1), q_true(2,1), q_true(3,1)];
rangeMax = 50; angl eSpan = pi; angleStep = angl eSpan/ 720;

%\on- 1 deal effects

deltal = 0*pi/180; delta2 = 0*pi/180; s = 0.0; %lip and skid
tau_g 1, %ime-lag for turning angle

tau_v 2; %inme-lag for velocity

ce

%reate constraint vectors

Qmax(1l) = inf; Qrax(2)=inf; Qrax(3) = inf; Y%tate constraint
Qrax(4) = gmax; Qmax(5) = Vmax; %tate constraint

Qrin = -Qrax; % ni mum constraints.

Urax = [gmax Vmax]'; % nput constraint

Um n= - Umax; % nput constrai nt

%Pursuit paramneters
Ld = 2.0; % ookahead di stance

o%Cost Matrix
DVAT = zer os(2*N+1, 2*N+1) ;

%<al man Filter parameters
Ks = 1.1; %teering angle gain
tauFilter = 0.5; % ine constant of |ow pass filter

wIlr = eye(3,3); %x3 Matrix, transforantion to the origin

Figure Setup
close all;
figure(1l);hold on; axis equal; title('Path Points');

figure(2); hold on; axis equal; title('Estimation v. True State');

Build Tractor

Tractor = BuildTractor();

Tl = transl 2(q_true(l1,1),qg true(2,1))*trot2(g_true(3,1)); %nti al
position

figure (2)

pl ot Tractor(Tractor,T1,'r'); %l ots the tractor it the initia
position

Compute Node Coordinates

nd(:,1) = q_true(1:2,1); %tart node
nd(:,3*N+2) = qg_true(1l:2,1)+[1;0]; %nd node

for i = 2:N+1 Y%bpottomrow
nd(:,i) = [nStart(1l)+(i-2)*rowWdth nStart(2)+0];
end
for i = N#2:2*N+1 % ddl e row
nd(:,i) = [nStart(1)+(i-(N+2))*rowNdth nStart(2)+RL/2];
end
for i = 2*N+2: 3*N+1 % op row
nd(:,i) = [nStart(1)+(i-(2*N+2))*rowWdth nStart(2)+RL];
end
figure (1)

plot(nd(1,:),nd(2,:),"0"); %l ot nd

Generate Cost Matrix

%on headl and costs

for i = 2:N+1 %bottomrow
for j = N#2:2*N+1 %ni ddl e row
if (j-i) == N%f they belong to sane row

DMAT(i,j) = 0; %w make this negative in order to "reward"
the al gorithm
DVAT(j,i) = 0;
else % f they belong to different rows
DVAT(i,) 10712;
DVAT(j, i) 10712;

end
end

for j = 2*N+2: 3*N+1 % op row
DMVAT(i,j) = 10712; % we dont want to go frombottomto top
DVAT(j,i) = 10712;
end
end

for i = N#2:2*N+1 %ni ddl e row
for j = 2*N+2: 3*N+1 % op row
if (j-1) == % f they belong to same row
DMAT(i,j) = 0; %we make this negative in order to "reward"
the al gorithm
DVAT(j,i) = 0;
else % f they belong to different rows
DVAT(i,j) = 10712;

DMVAT(j,i) = 10712;
end
end
end

% Headl and Tur ni ng Costs
for i=2:N %ottomrow
for j=i+1: N+1 %ode to the right
d = abs(i-j); %listance between nodes

if 2*Rmin > d*width % an onega turn
%ost to do a turn is the length of the maneuver
DMVAT(i,j) = ((3*pi *Rm n-2*Rm n*acos(1- (2* Rm n+d*wi dt h) 2/
(8*RmM n"2)))); %ength of onmega turn
el se %i turn
DMAT(i,j) = ((d*width+(pi-2)*Rmin)); %ength of pi turn
end
%synmetry conditions for top row
DVAT(j, i)=DMAT(i,j);
DVAT(i +2*N, j+2*N) = DMAT(i,]j);
DMAT(j +2*N, i +2*N)= DMAT(i,]);
end
end

% Start and End nodes
for i=2:3*N+1

if (i>1 && i <N+1)
DVAT(1,i) = -100;

DVAT(3*N+2,i) = -100;
el se
DVAT(1,i) = abs(x(1)-x(i)) + abs(y(1)-y(i)); %mnhattan
di st ance

DVAT(3*N+2,i) = abs(x(2*N+2)-x(i)) + abs(y(2*N+2)-
y(i)); %mnhattan distance
end

DVAT(i,1) = DVMAT(1,i); %cost matrix symmetry
DVAT(i, 3*N+2) = DVAT(3*N+2,i); % cost matrix symmetry
end

%¢cost between start and end nd
DVAT(1, 3*N+2) = 10712;
DVAT(3*N+2, 1) = 10712; % cost matrix symetry

Compute Optimal Path

XY =[x" y']; t = cputine;

resultStruct = tspof_ga('xy', XY, 'DVAT,

DVAT, ' SHOARESULT', fal se, ' SHOMMI TBAR , fal se, ' SHONWPROG , fal se);
E = cputime - t; %ine required to compute it.

rt = [1 resultStruct.optRoute 3*N+2]; % extract node sequence
resultStruct.mnbi st %rint conputed m ni mum di stance

Create route for robot to follow

pat hroute = nd(:,rt(1)); %he path the pursuit controller will follow

for i = 1:length(rt)

pat hroutel(:,i) = nd(:,rt(i)); %his route is just the path
t hrought he nodes
end

% The followi ng | oop creates the actual path that follow the route
gi ven by

% the optimser. This |oop deternmnes if omega turns, pi turns or
stright lines are

%re to be nmade based on the index of the nodes and then creates the
pat h

%bet ween t hem

for i = 2:length(rt) % or every index in route

di stance = ((pathroute(l,end)-nd(1,rt(i)))"2+(pathroute(2, end)-
nd(2,rt(i)))"2)"(1/2); %uclid distance

c =nd(:,rt(i))-pathroute(:,end); %ector fromcurrent to next
node

angl edi fference = atan2(c(2),c(1)); %angle between the nodes

%series of booleans that return true if the current or |ast node
is on

% he top or the bottom

isBottom = and(rt(i)>1,rt(i)<N+2); %rue if current node is on

bot t om

lastlsBottom = and(rt(i-1)>1,rt(i-1)<N+2); %rue if last node is
on bottom

isTop = and(rt(i)>2*N+1, rt(i)<3*N+2); %rue if current node is on
t op

lastlsTop = and(rt(i-1)>2*N+1,rt(i-1)<3*N+2); %rue if |sat node
is on top

%eturns true if the current maneuver is a turn
turn = or(and(isBottom]l astlsBottom, and(isTop,|astlsTop));

if turn
if (distance > 2*Rmin) %i turn
if isTop %f the nodes are on the top of the feild
if c(1)>0 %f the turn is in positive direction
pat hadd = createPat h([pat hroute(:, end);
((pi/2))], circle',distance, pi, spacing);
else %(1)<0, turn is in negative direction
pat hadd = createPat h([pat hroute(:, end);
((pi/2))]," circleback',distance, pi, spaci ng);
end
el se % sBottom % f the nodes are on the bottom of the
feild
if c(1)>0 %f the turn is in positive direction

pat hadd = createPat h([pathroute(:,end); (-
(pi/2))], circleback',distance, pi, spaci ng);
else %(1)<0 %f the turn is in negative direction
pat hadd = createPat h([pathroute(:,end); (-
(pi/2))], circle',distance, pi, spaci ng);
end
end
pat hroute = [pathroute, pathadd.']; %adds the turn to the
pat h

el se Y%onega turn
gturn = acos(1l - (2*Rm n+di stance)”~2/(8*Rm n"2));
aturn = (pi-gturn)/?2;

if isTop %f the nodes are on the top of the feild
if c(1)>0 %f the turn is in positive direction
pat hadd = createPat h([pat hroute(:, end);
(pi/2)]," circleback', Rm n*2, at urn, spaci ng) ;
pat hroute = [pathroute, pathadd.'];
pat hadd = createPat h([pat hroute(:, end);
((aturn)+pi/2)]," circle',Rm n*2, 2*pi - gt urn, spaci ng) ;
pat hroute = [pathroute, pathadd.'];
pat hadd = createPat h([pathroute(:,end); (pi/2+aturn
+gturn)], ' circl eback', Rm n*2, aturn, spaci ng) ;
pat hroute = [pathroute, pathadd.'];

else %(1)<0, turn is in negative direction

pat hadd = createPat h([pat hroute(:, end);
(pi/2)]," circle',Rm n*2,aturn, spaci ng);

pat hroute = [pathroute, pathadd.'];

pat hadd = createPat h([pathroute(:,end); (-
(aturn)+pi/2)], "' circl eback', Rm n*2, 2*pi - gt ur n, spaci ng) ;

pat hroute = [pathroute, pathadd.'];

pat hadd = createPat h([pathroute(:, end); (pi/2-
aturn-gturn)],'circle',Rmn*2, aturn, spaci ng);

pat hroute = [pathroute, pathadd.'];

end
el se % sBottom % f the nodes are on the bottom of the
feild
if c(1)>0 %f the turn is in positive direction
pat hadd = createPat h([pathroute(:,end); (-
pi/2)], circle ,Rmn*2, aturn, spaci ng);
pat hroute = [pathroute, pathadd.'];
pat hadd = createPat h([pathroute(:, end); -
((aturn)+pi/2)]," circleback', Rm n*2, 2*pi -gturn, spaci ng) ;
pat hroute = [pathroute, pathadd.'];
pat hadd = createPat h([pathroute(:, end); -
(pi/2+aturn+gturn)], ' circle',Rmn*2, aturn, spaci ng);
pat hroute = [pathroute, pathadd.'];

else %(1)<0 %f the turn is in negative direction
pat hadd = createPat h([pathroute(:,end); (-
pi/2)], circleback',Rm n*2,aturn, spaci ng);

pat hroute = [pathroute, pathadd.'];

pat hadd = createPat h([pathroute(:,end); ((aturn)-
pi/2)], circle ,Rmn*2, 2*pi-gturn, spaci ng);

pat hroute = [pathroute, pathadd.'];

pat hadd = createPat h([pathroute(:,end); (-
pi / 2+aturn+gturn)], ' circl eback' , Rm n*2, at urn, spaci ng) ;

pat hroute = [pathroute, pathadd.'];

end
end

end

el se %ust creates a stright line to the next node

pat hadd =
createPat h([pat hroute(:, end); angl edi fference],'|ine',distance, 0, spaci ng);
pat hroute = [pathroute, pathadd.'];
end
end
figure(l)

pl ot (pat hroute(1,:),pathroute(2,:),"-x")

Begin odometery and filtering

V = di ag(vari anceQdo); %odonetery variance matrix, cal cul ated
previ ously

W = di ag(vari anceGPS); %3PS variance matrix, cal cul ated previously

Hx = eye(3); % acobian, here just idetiy matrix

Hv = eye(3); % acobian, here just idetiy matrix

P = zeros(3); %a priori assunption of covariance matrix (zero b/c we
know initial state perfectly)

k=1; %ounter for tine
%MNavi gati on Open Loop Controller
for t=0:DT: T-2*DT

%Jacobi ans for |inearization

Fx = [1 0 -1*odo(1, k) *sin(odo(3,k)); 0, 1, odo(1,k)*cos(odo(3,k));
0 0 1];

Fv = [cos(odo(3,k)) O; sin(odo(3,k)) 0; 0 1];

if (gq_true(2,k) <1 & wapTo2Pi (q_true(3,k)) > 1.2*pi) %mkes
sure the robot doesn't |eave 1st quadrant
u(2,k) = 0;
el se
u(2,k) =1; %lesired velocity
end

dist = ((pathroute(1,:)-q_true(l1l,k)).”2 + (pathroute(2,:)-
g_true(2,k)).”2).~(1/2); 9%al cul ates distance to each point in path
[Mc,Ic] = min(dist);

%urrent path is the set of path points that is passed to the
%urepursuit controller
currentpath = pathroute(:,fix(max((m n(u(2, k), Vmax) *t/
spaci ng- 1/ spacing), 1)) :fix(m n(mn(u(2, k), Vmax) *t/ spaci ng+1*Ld/
spaci ng, | engt h(pat hroute)))).";

%alls purePursuit controller using estinmate of position
[kappa, error] = purePursuitController(odo(:,k),!I,Ld,currentpath);

u(l, k) = kappa; %lesired steering angle

i f mod(k-1, gpssanmplerate) == 0 %very get GPS data and perform EKF
cal cul ati ons

[x_n, y_n, theta n] =
GPS_ConpassNoi sy(q_true(1,k),q_true(2,k),q_true(3,k)); %Wetrieves GPS
dat a

%alls kinematic nodel, which returns true state and noi sy
odonetry

[g_true_next, odo_next] = robot_odo(q_true(:,k), u(:,k), Umn,
Urex, Qmin, Qmx, |, tau_ g, tau_v);

% Performs cal culation to find covarai ance matricies
x_diff_qg = q_true_next(1)-q_true(l,k); %lifference in x
position since |ast step
y diff_gq = g_true_next(2)-q_true(2,k); %lifference iny
position since |ast step
di stance_diff_q = sqrt((qg_true_next(1)-
g_true(l,k))"2+(qg_true_next(2)-qg_true(2,k))"2); %ifference in
euclidian distance since |last step
angle diff_q = g_true_next(3) - q_true(3,k); %lifference in
poi nting angle since |ast step

% Fol l owi ng arrays store differnce between true and odo/ gps
dat a

d_diff(k) = distance_diff_qg - odo_next(1l); %ifference b/w
odonetery and q true for distance

theta diff(k) = angle _diff_q - odo_next(2); %lifference b/w
odonetery and q true for angle

x_diff_gps(k) = q_true(1,k) - x_n; %difference b/w gps and g
true for x val ue

y_di ff_gps(k)
true for y value

theta diff_gps(k) = g_true(3,k) - theta_n; %l ffernce b/w gps
and g true for theta

g_true(2,k) - y_n; %difference b/w gps and q

% EKF prediction step

Yupdate state estinmate
odo(:, k+1) = odo(:,k) +
[odo_next (1) *cos(odo(3, k) +todo_next (2));
odo_next (1) *si n(odo(3, k) +odo_next (2)); odo_next(2)];

P=F*P*Fx' + Fv*V*Fv'; %update estimate of state uncertainty
g_true(:, k+l) = q_true_next; %uipdate true position

% Conput e Kal man Gain
S = Ix*P*Hx' +HwW*WHW ; % nnovati on covari ance
K= PH'/S;, %onpute kal man gain

% Conput e i nnovati on

[x_n_next, y_n_next, theta_n_next] =
GPS_ComnpassNoi sy(q_true(1, k+1),qg_true(2,k+1),q_true(3,k+1)); %alls
GPS data for next step

v_innov = [x_n_next; y_n_next; theta n_next] - odo(:,k
+1); %al cul ates innovation

%Jpdate Step
odo(:, k+1) = odo(:,k+1)+ K*v_innov; %update state estinmation
P=P- KrHx*P; %update covariance matrix

el se %0 GPS data for this step, integrate odonetery and update P

i f mod(k-2,10) == %step after GPS data is taken, saves point
for tree |ocalization
gcurrent = [odo(1, k), odo(2,k), odo(3,k)]; %urrent true
position

if (odo(l,k) > 0 & odo(2,k) > 0) %f x and y values are
positive
poi nts = vertcat(points,gcurrent); %adds point to
points array (to pass to tree localization script)
end

end

[g_true_next, odo_next] = robot_odo(q_true(:,k), u(:,k), Umn,
Urex, Qmin, Qmx, |, tau g, tau_v); %alls kinematic node
odo(:, k+1) = odo(:,k) +
[odo_next (1) *cos(odo(3, k) +todo_next (2));
odo_next (1) *si n(odo(3, k) todo_next (2)); odo_next(2)]; %pdates state
estimation
P=F*P*Fx' + Fv*V*Fv'; %update estimate of state uncertainty
g_true(:, k+l) = g_true_next; %updates tue pose
end

if (t ==T-DI) || (t > T-DT)
Tl = transl 2(q_true(l,k), g true(2,k))*trot2(q_true(3,k));
figure(2)
pl ot Tractor (Tractor, T1, ' b');

end

k = k+1;

if (k == steps+l)
k = k-1;

10

end

end

Find Covariance

%rints variance for both odonmetery and gps data
var_d = var(d_diff);

var_theta = var(theta_diff);
var_x_gps = var(x_diff_gps);
var_y_gps = var(y_diff_gps);

var_theta_gps = var(theta_diff_gps);

Plot path

figure(2)

plot(g_true(l,:), g_true(2,:),'b");

pl ot (odo(1,:), odo(2,:),"'r");

l egend(' Ground Truth',' EKF Estination")

Begin Tree Scanning Section.

This section performs the laser scanning and image processesing to localize the trees in the orchard and
estimate thier diameters

ui wai t (nsgbox(' Begi n scanning, Paused until you press OK'));

Figure Set-up

close all;
figure(l); hold on; axis equal; title('Raw Probability Gid);
figure(2); hold on; axis equal; title('Processed Data');

figure(3); hold on; axis equal; title("Circles");

Laser Scanning

for k=1:length(points) %iterates through every point saved in EKF
script

TI = SE2([points(k,1) points(k,2) points(k,3)]);
p = |l aser Scanner Noi sy(angl eSpan, angl eStep, rangeMax, TI.T,
bi t mapi nput, Xmax, Ynmax);

% Medi an filter for |aser scanner data
pred(1) = p(1,2);
for i=2:1ength(p)-1
A=1[p(i-1,2),p(i,2),p(i+1,2)]; % hree point w ndow
prred(i) = nedian(A); % akes the nedian of points in w ndow

11

end

pred(i+1) = p(i+1,2);
pred = pned' ;

p(:,2) = pned,

for i=1:length(p) % or each point that the scanner passes through

angle = p(i,1); range = p(i,2);
% handl e infinite range
i f(isinf(range))
range = rangeiax+1,
end

%updat es occupancy grid for each point scanned by the | aser

n = updat eLaserBeantxi d(angl e, range, TI. T,

R, C, Xmax, Ynmax);

end
end
for i = 1:R % or each colum
for j = 1:C % or each row
%conputes probability fromodds for each point in grid
probGrid(i,j) = (occuGid(i,j)/(l+occuGid(i,j)));
end
end
figure(l)
i mgesc(probGid) %l ots the probability grid
col or bar;
Image processing
figure(2)
se = strel ('disk',1,0);
bi t pos = intl ose(occuGid, se);

BW = i mbi nari ze(bitpos);
subpl ot (1, 2,1)

i mshow(occuGrid);
title(' Raw LI DAR data')
subpl ot (1, 2, 2)

i mshow BW ;

title(' Processed | nmage')

figure(3)

[centers, radii, metric] = infindcircles(BW[1 20]);
i mshow(BW

hol d on

viscircles(centers, radii,' EdgeColor',"'b");

Group trees by row, calculate center and diam-

eter of tree.

this code has not been generalized to rows size K, this only works for nurseries of Krows=5

rowl = []; row2 = []; rowd =[]; rowd =[]; rows =

[1;

12

% his takes the tree positions fromgenerate nursery and ocmputes the
| ocations in the bitmp
for i = 1:Krows
[~ydi)] =
XYtol J(3*(i-1)+18.5,-2*(i-1)+18, Xmax_nurs, Ymax_nurs, R, O);
end

for i = 1:nTrees

[xC(i),~] =
XYtol J(3*(i-1)+18.5,-2*(i-1)+22, Xmax_nurs, Ymax_nurs, R, Q) ;
end

mnX = mn(xC; maxX = max(xC; mnY = mn(yQ; maxY = max(yQC;

searchrange_i = 6; % ange of pixels around the predeterm ned | ocations
wher e
searchrange_j = 20; % he al gorithm searches for centers

%rhis bl ock determ nes which row the tree belongs to in the nursery
and

%M |1 ignore any circles found in areas outside of the predeterm ned
rows

%and col ums

for i = 1:length(radii)

if centers(i,1l) < yC(1l) + searchrange_i && centers(i,1l) > yC(1)
sear chrange_i
if centers(i,2) < maxXt+searchrange_j && centers(i,2) > m nX-
sear chrange_j
rowl = [rowl i];
end
end
if centers(i,1l) < yC(2) + searchrange_i && centers(i,1l) > yC(2)
sear chrange_i
if centers(i,2) < maxXt+searchrange_ j && centers(i,2) > mnX-
sear chrange_j
row2 = [row2 i];
end

end
if centers(i,1l) < yC(3) + searchrange_i && centers(i,1l) > yC(3)
sear chrange_i
if centers(i,2) < maxXt+searchrange_ j && centers(i,2) > m nX-
sear chrange_j
rowd = [row3 i];
end

end
if centers(i,1l) < yC(4) + searchrange_i && centers(i,1l) > yC(4)
sear chrange_i
if centers(i,2) < maxXtsearchrange_ j && centers(i,2) > m nX-
sear chrange_j
rowvd = [rowd i];
end

end
if centers(i,1l) < yC(5) + searchrange_i && centers(i,1l) > yC(5)
sear chrange_i

13

if centers(i,2) < maxXtsearchrange_ j && centers(i,2) > mnX-
sear chrange_j
rows = [rows i];
end
end
end

i ndex_t = 1;

%-ol | owi ng bl ock conmputes the centers and radii of each tree

for i=1:1ength(rowl)
[x1(i),y1(i)] =

[Jt oXY(centers(rowl(i),2),centers(rowl(i), 1), Xmax_nurs, Ymax_nurs, R O);

cl(i) =radii(rowl(i))/10
y1(i) = Ymax_nurs-y1(i);
trees_percieved(index_t,:) = [x1(i) yl1(i) cl(i)];
i ndex_t = index_t+1;

end

for i=1:1ength(row2)

[x2(i),y2(i)] =
| Jt oXY(centers(row2(i), 2),centers(row2(i), 1), Xmax_nurs, Ymax_nurs, R O);

c2(i) =radii(row2(i))/10;
y2(i) = Ymax_nurs-y2(i);
trees_percieved(index_t,:) = [x2(i) y2(i) c2(i)];
i ndex_t = index_t+1;

end

for i=1:1ength(rowd)

[x3(i),y3(i)] =
[Jt oXY(centers(row3(i), 2),centers(row3(i), 1), Xmax_nurs, Ymax_nurs, R O);

c3(i) =radii(rowd(i))/10;
y3(i) = Ymax_nurs-y3(i);
trees_percieved(index_t,:) = [x3(i) y3(i) c3(i)];
i ndex_t = index_t+1;

end

for i=1:1ength(rowd)

[x4(i),y4(i)] =
[Jt oXY(centers(rowd(i), 2),centers(rowd(i), 1), Xmax_nurs, Ymax_nurs, R C);

c4(i) = radii(rowd(i))/10;
y4(i) = Ymax_nurs-y4(i);
trees_percieved(index_t,:) = [x4(i) y4(i) c4(i)];
i ndex_t = index_t+1;

end

for i=1:1ength(rows)

[x5(i),y5(i)] =
| Jt oXY(centers(rows(i), 2),centers(rows(i), 1), Xmax_nurs, Ymax_nurs, R O);

c5(i) = radii(rows(i))/10;
y5(i) = Ymax_nurs-y5(i);
trees_percieved(index_t,:) = [x5(i) y5(i) c5(i)];
i ndex_t = index_t+1;

end

14

Output to text file

filelD = fopen('finaloutput.txt', " w);

fprintf(filelD, "1 \n');
for i = 1:1ength(rowl)

fprintf(filelD, "%, %2f, %2f, %2f\n",i,x1(i),yl(i),cl(i));
end

fprintf(filelD,'2 \n');
for i = 1:1ength(row?2)

fprintf(filelD, "%, %2f, %2f, %2f\n",i,x2(i),y2(i),c2(i));
end

fprintf(filelD, '3 \n');
for i = 1:1ength(rowd)

fprintf(filelD "%, %2f, %2f, %2f\n",i,x3(i),y3(i),c3(i));
end

fprintf(filelD, "4 \n');
for i = 1:1ength(row4)

fprintf(filelD, "%, %2f, %2f, %2f\n",i,x4(i),y4(i),c4(i));
end

fprintf(filelD,'5 \n");
for i = 1:1ength(rowb)

fprintf(filelD "%, %2f, %2f, %2f\n",i,x5(i),y5(i),c5(i));
end

Published with MATLAB® R2019a

15

