Technical Note on Cruising Actions Flight Model of Page fm03

10/14/2023

By Peter Wenhan Hsu, NQstar.com, Seattle, WA 98101

By assuming the weight W varies as a linear function of distance x, W=Ax+B, where A and B are expressed in terms of α , β , W_F , W_0 , xc, and x_d , and by minimizing the thrust-to-velocity ratio, T_R/V_∞ , two approximate relations between V_c and V_d can be derived: one for very high-altitude flights (42000 ft–55000 ft), and one for medium-altitude flights (22000 ft–40000 ft).

To determine the corresponding maximum range and the equilibrium velocity during the flight, the following equation needs to be satisfied:

$$\int_{Wc}^{Wd} -dW = \int_{xc}^{xd} Ct \left\{ T_R / V_{\infty} \right\} dx$$

where Ct is the fuel consumption rate.

Refs: J. D. Anderson, Jr., Introduction to Flight 4th ed., McGraw-Hill Book Co.,2000.

J. J. Bertin/M. L. Smith, Aerodynamics for Engineers, Prentice-Hall, Inc.,1979

W.M. Kays, Convective Heat and Mass Transfer, McGraw-Hill Book Co.,1966