

Technical Note on Cruising Actions 10/16/2023

By Peter Wenhan Hsu

By assuming the weight W varies as a linear function of distance x, W=Ax+B, where A and B are expressed in terms of α , β , W_{F_s} , W_{0_s} , xc, and x_{d_s} and by minimizing the thrust-to-velocity ratio, T_R/V_{∞} , two approximate relations between V_c and V_d can be determined as follows:

(1) Medium altitudes
$$Vd = \{Vc^4 - \frac{32}{\rho^2 S^2 C_{D,0} \pi e A R} [(1/2) A^2 (xd^2 - xc^2) + AB(xd - xc]\}^{1/4}$$

(2) High altitudes
$$V_d = V_c \{ (xd+B/A) / (xc+B/A) \}^{2/3}$$

To determine the corresponding maximum range and the equilibrium velocity during the flight, the following equation next to be satisfied:

$$\int_{Wc}^{Wd} -dW = \int_{xc}^{xd} Ct \left\{ T_R / V_{\infty} \right\} dx$$

where Ct is the fuel consumption rate.