

Programming Stories in English

In his superb memoir, On Writing, Stephen King says that rather than deciding what he wants in

a story and then writing to make it turn out that way, he puts characters in interesting and

difficult situations, then writes to find out what happens. He says stories are “found things, like

fossils in the ground”, and says he plots his as infrequently as possible because life is largely

plotless despite all our precautions and planning: “Plotting and the spontaneity of creation

aren’t compatible. … [M]y basic belief about the making of stories is that they pretty much

make themselves. The job of a writer is to give them a place to grow.”

In a 2008 interview about the twelve brilliant Fawlty Towers TV farces he and Connie Booth

wrote, John Cleese said that they never really started to write the dialogue until they’d got the

plot worked out in considerable detail. They might get stuck for a while. And they always had to

change it a bit if they found that a scene didn’t work. But this was key: They never started until

they had the story line, so they always knew where they were going. He said, “Some people try

to write comedy by starting, Scene 1, and then start writing the dialogue. Well, the chances of

them getting to a satisfactory ending are one in a hundred. You’ve gotta kinda know where

you’re going while you’re building the thing.”

Both King and Cleese are absolutely right. But most authors are hybrids somewhere between

those “seat of the pants” and “plotter” extremes. And even King, Cleese, and Booth do both:

King the pantser does his plotting during the edits after seeing the fossil emerge; he digs as a

plotter to bring out more clearly the story he has discovered. Plotters such as Cleese and Booth

do some pantsing while writing the plot, but they do most of it later writing the dialogue.

A story is a series of happenings that resolve into an ending. Each author gets there by some

combination of pantsing and plotting. This essay is not biased toward either extreme. Rather, it

embraces both as being necessary functions no matter which kind of writer we think we are.

But any of us can get stuck with our pants down, or stuck with our plot circling the drain.

My first move to get past these problems is to sidestep the sticky place by putting a signpost in

the text to confess the problem, like: [Here, yyy needs to happen so xxx can happen later.]

Sometimes I know what yyy and xxx are; sometimes I don’t. In the example below, I didn’t, and

its signpost could read: [As a break, put a scene here of something else that needs to happen.]

Honest confession admits failure. We may not like to, but it’s crucial: We can then stop berating

or defending ourselves, and start working on the problem subconsciously. This frees us to move

forward consciously. Computer programmers call that background thought process a daemon.

It looks for certain sets of conditions, then signals the main program whenever it sees them.

Sometimes the daemon—authors may call it a muse—wakes us up at 3 a.m. with a story bone

or two to replace a confessing signpost. But if not, eventually time runs out. So, it’s best to have

some technique for turning bullet points or signposts into scenes. Techniques save time—the

time we would spend drinking and moaning about being stuck.

The essence of “getting stuck” is either that the characters (including the narrator) stop moving

around and talking in an author’s head, or that their movements and talk seem uninteresting.

The only way to get un-stuck is to get them going and talking well again, and the best way to do

that is to start peppering our muse with questions. Let’s look at the questions and history of a

short scene to illustrate the process I use for turning story bullet points and signpost notes, step

by step, into an edited but rough draft. Maybe it will help others do the same.

The plot of a story is the series of things that happen. Some people use the word “outline”, but

I prefer Stephen King’s metaphor of a spine: It is a series of bullet point bones arranged on a

story board or in a stack of 3x5 cards. As a pantser, I write them down as I get them. As a

plotter, I re-arrange them. I may find other bones to hang from the spine as if they were arms,

legs, fingers or toes: i.e., bullet sequences of subplots, setups, payoffs, etc. Greg Sager, a friend

with a Masters in theater arts from Kent State University, used this spine system. I stole it from

him (and Walt Disney) such a long time ago that the Statute of Limitations has expired.

SPINE BONES EXAMPLE

Two bickering engineers are driving around, trying to hunt down a Thinking Machine (i.e., TM)

that is acting oddly. (It doesn’t have GPS for reasons I won’t bother to tell you.) The engineers

reveal themselves plus other things along the way. In the spine, this hunting sequence started

as a bunch of bullet-point bones and dialogue which all must happen (the bickering; the spy

that was two spies; the intern; the gossip about Bobby; etc.). One by one I turned those bullets

into story text using my process. So far, so good.

Although everything to this point was either setup, payoff, or other useful stuff, I felt readers

needed a break—a brief change of location and character. Any new scene must advance plot, of

course, and reveal character, maybe, but also must keep in mind the advice: “Show; don’t tell.”

But show what? What needs to happen soon in the story which isn’t part of the search scene

I’m interrupting? I asked my muse that and other questions, and here is the result, shown

below in blue. It’s pure tell (having some show in there would be a bonus). The “.” Line below it

is a stub. That’s programmer jargon. In programs, stubs are do-nothing code with a meaningful

label, which will be replaced later by subroutines or method calls or whatever. In my English sci-

fi story, it will be replaced by more story. (Any yyy xxx or other signpost is a kind of stub.)

• The troubles trigger complaints from Chairman Bozworth, who says the Board has

heard about odd machine behavior. He wants answers from Doc.

“.”

METHOD and MUSE

Since this new scene must advance the plot and possibly reveal character, what’s the next step?

Make a list of input things taken from the signpost bullet. The things are any ideas, key words,

and actions which the scene needs in order to work. Writing this list is likely to bring up things

to add that are not in the bullet. If so, I’m happy: The story is talking to me again.

Next, I must write the questions Boz would ask. Note that I do not try to list Doc’s answers yet.

If the muse blurts them, I’ll write them down, but I’d rather they came fresh out of the faucet

after I write each of Boz’s questions in the story text. Finally, I must list any output things that

can or should happen as a result of the scene. Thus, in red and brackets, we get:

• The troubles trigger complaints from Chairman Bozworth, who says the Board has

heard about odd machine behavior. He wants answers from Doc. [Boz asks: What is

odd? Which reseller? Any customer complaints? What are you doing about it? In

return, Doc wants to know how Boz knows. (Doc is trying to identify leaks.)]

“.”

MORE PANTSING

In this step, I put those listed things into the stub as story text, and I should probably include

the scene intro, which should use Doc’s POV. But I had nothing specific until I stared at the

bullet while imagining Doc’s office with Boz coming in differently than he does in other scenes.

If I had stayed stuck, I would have imagined them meeting in some other place because it

doesn’t matter where they meet. But I got a picture of Bozworth carefully shutting Doctor

Little’s office door. Usually, Boz is energetic. So this change of pace immediately grabbed me,

and I was able to pants the scene from there. I didn’t worry about “show versus tell” or other

editor-hat things like removing adverbs, and so on. Note that I left out the “Which reseller”

input after a story muse whispered to me that although it is necessary, it’s rather obvious.

Immediately a muse blurted that its absence could therefore serve as a setup clue for later:

• The troubles trigger complaints from Chairman Bozworth, who says the Board has

heard about odd machine behavior. He wants answers from Doc. [Boz asks: What is

odd? Which reseller? Any customer complaints? What are you doing about it? In

return, Doc wants to know how Boz knows. (Doc is trying to identify leaks.)]

Winston closed the office door slowly and quietly. It was clear to Dr. Little that the

chairman was gathering his thoughts.

“The Board has heard about odd problems, Maynard. What is this odd business?”

“We are not sure. It may be serious or silly, and we’re trying to find out which. How did you

find out?”

“What are you doing about it?”

“I would rather not say just now.”

“Have you had any customer complaints?”

“.”

KEEP GOING

I am a hybrid writer somewhere near the middle between Pantser and Plotter. Pantsers will

surely get more scene text than I got once they start writing. From my programming roots,

though, I like to know approximately where I’m going before I start, which makes me more a

Plotter, I guess. But once I start on a scene, a chapter, or whatever, I try to pants it to some

interesting end and leave artsy presentational features until later (unless some manage to spurt

out of the faucet now).

Occasionally the pantsing step is interrupted by an unrelated idea or picture, or by characters

that argue or discuss something. True pantsers ignore it and push on, but I prefer making any

valuable stuff into a bracketed signpost right where I am in the text. I can relocate it later.

Here is an intermediate version of the Doc/Boz scene. It might have gaps that I will possibly

recognize and fill with more keys and story. I edit a bit as I go because when I programmed in

Java, the IDE insisted on good syntax,1 and old habits die hard. Also, this editing-as-we-go is

what some programmers call “blacksmithing” which beats the program into shape, making it do

what we want in stages much as the cycle of re-heating and beating will forge metal into shape.

When writing stories, I compare it to bouncing between plotting and pantsing. Please note that

Boz’s comment, “The Board has heard”, is now reversed to enhance suspense. Plus, I added

things (outputs) in a new bullet after the stub to clarify what the scene should produce:

• The troubles trigger complaints from Chairman Bozworth, who says the Board has not

heard about odd machine behavior. He wants answers from Doc. [Boz asks: What is

odd? Which reseller? Any customer complaints? What are you doing about it? In

return, Doc wants to know how Boz knows. (Doc is trying to identify leaks.)]

Winston Bozworth thanked Marie and stared at the office door as he closed it slowly. It was

clear to Dr. Little that the chairman was assembling his thoughts and they must be important.

“The Board has not heard,” Winston said after taking the best chair in the same thoughtful

ease. “But there will be problems when it does. I assume you can guess what I’m talking about?”

“It would be odd if I didn’t.”

Winston smiled and (surprise) asked for Kona coffee. As Doc puttered, the chairman pitched

questions.

“What about this odd TM business, Maynard?”

“We are not sure. It may be serious or silly, and we’re trying to find out which. How did you

find out?”

“I have to say this is a serious problem and we need data before the Board finds out. What

are you doing about it?”

“I would rather not say just now.”

“Have you had any customer complaints?”

“No. Have you?”

“No, thank God.”

“.”

• [Doc gets no clues about the leak except that Boz didn’t ask which TM reseller has the

odd machine. (Does Boz know which one it is?) Doc stonewalls Boz about the odd

behavior. Boz lists possible damages (foreshadowing).]

ROUGH DRAFT

Here is the edited rough draft with more key words highlighted. The additions are not crucial

enough to bloat the signpost list, but they foreshadow important things, and it is a good idea to

1 IDE stands for Integrated Development Environment. At a minimum, it helps programmers use correct syntax and
calling sequences to speed the coding process and avoid bugs that can otherwise be hard to find. Authors have
spelling and grammar checkers, but a programmer’s IDE is never flaky like an author’s tools can be.

keep track of them by using color or a word you can search for easily in case the story changes.

The stub is gone; the scene is complete, but rough, and I’ll smooth it out later when I’m editing

(i.e., debugging). Also, “the stock price” is so important that I should have included it earlier.

…And some artsy presentational spurts made it into the first paragraph:

• The troubles trigger complaints from Chairman Bozworth, who says the Board has not

heard about odd machine behavior. He wants answers from Doc. [Boz asks: What is

odd? Which reseller? Any customer complaints? They affect the stock price. What are

you doing about it? In return, Doc wants to know how Boz knows. (Doc is trying to

identify leaks.)]

Winston Bozworth thanked Marie and stared at the office door as he eased it shut. Dr. Little

sat straighter, certain that the chairman was assembling his thoughts and they had sharp edges.

“The Board has not heard,” Winston said after taking the best chair with that same

thoughtful ease. “But there will be problems when it does. I assume you can guess what I’m

talking about?”

“It would be odd if I didn’t.”

Winston smiled and (surprise) asked for Kona coffee. As Doc puttered in his tiny

commissary, the chairman pitched questions.

“What about this odd TM business, Maynard?”

“We are not sure. It may be serious or silly, and we’re trying to discover which. How did

you find out?”

“We have to say this is a serious problem and I need data before the Board finds out. What

are you doing about it?”

“I would rather not say just now.”

“Have you had any customer complaints?”

“No. Have you?”

“No, thank God.”

Accepting a steaming mug, Winston added, “Are you going to consult Legal?”

“Certainly not. What are you afraid of? This is probably a configuration issue.”

“I’m not so sure.”

Doc’s sharp “Why?” cut through the polite calm.

After a hitch, Bozworth said, “I’m more concerned with the marketplace than you are.”

Little sighed, “That’s as it should be, I suppose.”

After more sparing and some small talk, the chairman asked, “Is there anything Marketing

should know—about changes to the existing machines?”

Doc laughed.

“Okay, Maynard, have it your way, but such things affect the stock price.”

Doc gave him the Eyebrow Look, and they shared friendly banter as Winston left.

Then he reached for the phone.

• [Doc gets no clues about the leak except that Boz didn’t ask which TM reseller has the

odd machine. (Does Boz know which one it is?) Doc stonewalls Boz about the odd

behavior. Boz lists possible damages (foreshadowing).]

ANNOTATIONS

Programmers should pepper their programs with Remarks, i.e., plain-text notes to themselves

(and other programmers) about what the code is doing. Notes are identified a symbol (e.g., //)

or word (e.g., REM) or by whatever the programming language uses. They aren’t compiled into

the executable machine code, but such notes are necessary because Maintenance of existing

code is the most common programming task.

So is it with authors who program in English: Editing is the most common task. My bulleted

paragraphs and bracketed notes are like Remarks I made to myself. Once a story draft is fit to

send out, I’ll save it in an archive directory. Then I’ll copy it, strip out all bullets and notes from

the copy (they’re easy to find), and send it off with any necessary cover letter.

SUMMARY

The input and output lists are key for making this process work to both show and tell. Plotters

and Outliners tend to get the outputs before they “pants” the scene. Pantsers tend to write the

scene and—if they are wise—will understand the scene well enough to highlight any outputs

they can use as inputs for other scenes. (Unused outputs are prime candidates for deletion later

but may also be inspirations for sub-plots or sequels.)

Computer programs and novels have many modules which all need inputs to produce outputs.

• Programs have: Commands, subroutines, methods, applications, etc.

• Novels have: Sentences, paragraphs, scenes, chapters, sequels, prequels, etc.

The goal of any module is to produce outputs from the inputs so that later modules have what

they need. Programmers then run their code, see bugs and other problems, and rewrite to fix

them. Authors read their story, see typos, POV, and other problems, and rewrite to fix them.

There are other curiously different similarities:

Programmers have a dictionary (an instruction set) where word meanings never change with

fashion, and they use its words to tell machines what to look for and what to do. However: such

program content (i.e., commands and data) has no meaning for the machines themselves to

grasp or misinterpret (unless the machine is said to be intelligent—and we’ll debate that later).

Authors have a dictionary that changes somewhat every year, and the words in it carry meaning

as well as content to the biological machines we call “readers”.

This distinction between content and meaning applies to the words tell and show. The stock

advice to authors is: Don’t tell it, show it. But what is “it”? …I offer a programmer’s perspective:

Writing, like life, is loaded with paradox.

All writing is “telling”. Even in that scene where I show Bozworth assembling his thoughts, I

tell readers how he showed it. To reinforce the show, I tell Dr. Little’s “sat straighter” reaction.

“Showing” is what Shows do: Our television, movies, and plays show more things better than

writing can, and the most effective shows are the ones we give each other every day. Our

written tells may come close to showing—sometimes very close—but the phrase “you had to

be there” hints at the chasm between them.

However.

All writing is “showing”. With every word, punctuation mark, and even blank space, readers

automatically build or recall mental constructs of feelings, images, ideas, events, even other

words. In fact, producing those mental constructs is the entire function of words and language.

René Descartes said, “I think, therefore I am.” He meant that thinking is how we know we exist.

I prefer to say, “I remember what I think. Therefore, I am.” (I cannot resist an aside: Some

philosophers tell us they themselves do not exist. But in fact, they show us that they are nuts.)

So, it turns out that tell and show are the opposite extremes of doing the same thing. This gives

us a clue that each might be better than the other for some things, and worse than the other

for other things. For example: Show is slow and generally takes more words to produce the

mental constructs, but they are usually richer. This richness may bog the story down. But if the

richness is too brief or colloquial, it may produce wildly different mental constructs in different

readers, so, in places where a story needs narrative drive or clarity, prefer a telling word like

“shouted” or “sighed” (“Yes,” he sighed, “I do sometimes sigh while I say words.”). Of course,

some telling words like say and reply are practically invisible; they carry no color or texture and

produce nothing in readers except the idea that other spoken noises carry a meaning.

No matter whether we use show or tell, it must be interesting. If a character or setting needs to

be rich, give readers a feast but omit useless words. When narrative drive is important, take the

time to find words that quickly suggest the right color or texture. And unless a character likes to

use clichés, try to avoid them—unless they are thematic or give a twist somehow.

This article and my bullet/signpost list technique are mostly about how to create or discover

good telling bullet points and turn them into showing scenes. But my emphasis has been on the

turning, not the showing. I have focused on the input/output things themselves rather than on

how to render them, because there are boatloads of excellent advice already on how to show.

I’ve suggested all along that writing stories is much like programming computers. So, did I talk

to my muse when I wrote code for Goodyear, Sherwin Williams, et cetera? Certainly! But when

I worked for businesses, my boss first gave me a full specification or at least a bullet list of

everything the code had to do. Authors in English must make those inputs up on their own (like

Booth and Cleese), or plug along hoping they appear (like King). Could one reason why authors

get stuck be that they focus on how to say something, before they know well enough what they

want to say? That is the problem my method solves—for me, anyway. Maybe it will for you.

Copyright ©, Lewis Jenkins, 2020-25

In an interview about the brilliant farces of, Fawlty Towers he wrote with Connie Booth, John

Cleese said, “What Connie and I discovered was that we never really started to write the

dialogue until we’d got the plot worked out. So we’d spend sometimes as much as two and a

half weeks on a plot. And not always the same one because if we got stuck, we’d sometimes

put it to one side and pick up another one that we were half-way through and try to run with

that. But we never really bothered to write the dialogue until we’d got the story worked out in

considerable detail. You always have to change it a bit because you can never visualize it all

when you’ve got the story line there, and you’ll find that one scene that you’d imagined doesn’t

work…. But that was the key: We never started until we had the story, so we always knew

where we were going. Some people try to write comedy by starting, Scene 1, and then start

writing the dialogue. Well, the chances of them getting to a satisfactory ending are one in a

hundred. You’ve gotta kinda know where you’re going while you’re building the thing.”

