

I'm not a robot
reCAPTCHA

I'm not a robot!

What is the compression ratio for child cpr

What is the ratio for child cpr. What is the compression-ventilation ratio for 2-rescuer child cpr.

Cardiac Compression and Ventilation Ratios			
Groups (yr)	Single Rescuer CPR	Two Rescuers CPR	Compression Rates
Adult (≥18 yrs)	30 comp. 2 ventilations	30 comp. 2 ventilations	100 per minute
Child (1-8 yrs)	30 comp. 2 ventilations	30 comp. 2 ventilations	100 per minute
Infant (<1 yrs)	30 comp. 2 ventilations	30 comp. 2 ventilations	100 per minute

What is the correct compression to breath ratio for child cpr. What is the compression-ventilation ratio for a one man cpr on a child or infant. What is the compression to breath ratio for child cpr. What is the compression-ventilation ratio for 1-rescuer child cpr.

Top 10 Take-Home Messages High-quality cardiopulmonary resuscitation (CPR) is the foundation of resuscitation. New data reaffirm the key components of high-quality CPR: providing adequate chest compression rate and depth, minimizing interruptions in CPR, allowing full chest recoil between compressions, and avoiding excessive ventilation. A respiratory rate of 20 to 30 breaths per minute is new for infants and children who are (a) receiving CPR with an advanced airway in place or (b) receiving rescue breathing and have a pulse. For patients with nonshockable rhythms, the earlier epinephrine is administered after CPR initiation, the more likely the patient is to survive. Using a cuffed endotracheal tube decreases the need for endotracheal tube changes. The routine use of cricothyroid pressure does not reduce the risk of regurgitation during bag-mask ventilation and may impede intubation success. For out-of-hospital cardiac arrest, bag-mask ventilation results in the same resuscitation outcomes as advanced airway interventions such as endotracheal intubation. Resuscitation does not end with return of spontaneous circulation (ROSC). Excellent post-cardiac arrest care is critically important to achieving the best patient outcomes. For children who do not regain consciousness after ROSC, this care includes targeted temperature management and continuous electroencephalography monitoring. The prevention and/or treatment of hypotension, hypoxia or hypoxia, and hypercapnia or hypocapnia is important. After discharge from the hospital, cardiac arrest survivors can have physical, cognitive, and emotional challenges and may need ongoing therapies and interventions. Naloxone can reverse respiratory arrest due to opioid overdose, but there is no evidence that it benefits patients in cardiac arrest. Fluid resuscitation in sepsis is based on patient response and requires frequent reassessment. Balanced crystalloid, unbalanced crystalloid, and colloid fluids are all acceptable for sepsis resuscitation. Epinephrine or norepinephrine infusions are used for fluid-refractory septic shock. 2Preamble More than 20 000 infants and children have a cardiac arrest per year in the United States. 1-4 In 2015, emergency medical service-documented out-of-hospital cardiac arrest (OHCA) occurred in more than 7000 infants and children. 4 Approximately 11.4% of pediatric OHCA patients survived to hospital discharge, but outcomes varied by age, with survival rates of 17.1% in adolescents, 13.2% in children, and 4.9% in infants. In the same year, pediatric in-hospital cardiac arrest (IHCA) incidence was 12.66 events per 1000 infant and child hospital admissions, with an overall survival to hospital discharge rate of 41.1%. 4 Neurological outcomes remain difficult to assess across the pediatric age spectrum, with variability in reporting metrics and time to follow-up across studies of both OHCA and IHCA. Favorable neurological outcome has been reported in up to 47% of survivors to discharge. 5 Despite increases in survival from IHCA, there is more to be done to improve both survival and neurological outcomes. 6 The International Liaison Committee on Resuscitation (ILCOR) Formula for Survival emphasizes 3 essential components for good resuscitation outcomes: guidelines based on sound resuscitation science, effective education of the lay public and resuscitation providers, and implementation of a well-functioning Chain of Survival. 7 These guidelines contain recommendations for pediatric basic and advanced life support, excluding the newborn period, and are based on the best available resuscitation science. The Chain of Survival (Section 2), which is now expanded to include recovery from cardiac arrest, requires coordinated efforts from medical professionals in a variety of disciplines and, in the case of OHCA, from bystanders, emergency dispatchers, and first responders. In addition, specific recommendations about the training of resuscitation providers are provided in Part 6: Resuscitation Education Science, and recommendations about systems of care are provided in Part 7: Introduction. 3.1 Scope of Guidelines These guidelines are intended to be a resource for lay rescuers and healthcare providers to identify and treat infants and children in the prearrest, intra-arrest, and postarrest settings. These apply to infants and children in multiple settings: the community, prehospital, and the hospital. 3.2 Prearrest, intra-arrest, and postarrest topics are included, including cardiac arrest in special circumstances, such as in patients with congenital heart disease. For the purposes of the pediatric advanced life support guidelines, pediatric patients are infants, children, and adolescents up to 13 years of age, including newborns. Pediatric basic life support (BLS) guidelines apply as follows: Infant guidelines apply to infants younger than approximately 1 year of age. Child guidelines apply to children approximately 1 year of age until puberty. For teaching purposes, puberty is defined as breast development in females and the presence of axillary hair in males. For those with signs of puberty and beyond, adult basic life support guidelines should be followed. Resuscitation of the neonate is addressed in "Part 5: Neonatal Resuscitation" and applies to the newborn typically only during the first hospitalization following birth. Pediatric basic and advanced life support guidelines apply to neonates (less than 30 days old) after hospital discharge. COVID-19 Guidance Together with other professional societies, the AHA has provided interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed coronavirus disease 2019 (COVID-19). Because evidence and guidance are evolving with the COVID-19 situation, this interim guidance is maintained separately from the emergency cardiovascular care (ECC) guidelines.

Infant CPR Differences

- Compression to breath ratio for 2 rescuer CPR is 15:2.
- Depth of chest compression is at least one third the depth of the chest (approximately 1 1/2 inches).
- 2 finger compression technique.
- Cover the infant's mouth AND nose during ventilations.
- "Hands-only" CPR (doing chest compressions with no breaths) is not recommended for infants.

Readers are directed to the American Heart Association (AHA) website for the most recent guidance. 8 3.2 Organization of the Pediatric Writing Committee The Pediatric Writing Group consisted of pediatric clinicians including intensivists, cardiac intensivists, cardiologists, emergency medicine physicians, medical toxicologists, and nurses. Volunteers with recognized expertise in resuscitation are nominated by the writing group chair and selected by the AHA ECC Committee. The AHA has rigorous conflict of interest policies and procedures to minimize the risk of bias or improper influence during development of the guidelines. 9 Prior to appointment, writing group members and peer reviewers disclosed all commercial relationships and other potential (including intellectual) conflicts. Writing group members whose research led to changes in guidelines were required to declare those conflicts during discussions and abstain from voting on those specific recommendations. This process is described more fully in "Part 2: Evidence Evaluation and Guidelines Development." Disclosure information for writing group members is listed in Appendix 1. 3.3 Methodology and Evidence Review These pediatric guidelines are based on the extensive evidence evaluation performed in conjunction with the ILCOR and affiliated ILCOR member councils. Three different types of evidence reviews (systematic reviews, scoping reviews, and evidence updates) were used in the 2020 process. 10,11 After review by the ILCOR Science Advisory Committee Chair, the evidence update worksheets were included in Appendix C of the 2020 ILCOR Consensus on CPR and ECC Science With Treatment Recommendations. 11a Each of these resulted in a description of the literature that facilitated guideline development. This process is described more fully in "Part 2: Evidence Evaluation and Guidelines Development." The writing group reviewed all relevant and current AHA Guidelines for Cardiopulmonary Resuscitation (CPR) and ECC and all relevant 2020 ILCOR Consensus on CPR and ECC Science With Treatment Recommendations evidence and recommendations to determine if current guidelines should be reaffirmed, revised, or retired or if new recommendations were needed. The writing group then drafted, reviewed, and approved recommendations, assigning to each a Class of Recommendation (COR; ie, strength, quality, certainty). Criteria for each COR and LOE are described in Table 1. 3.5 Guideline Structure The 2020 Guidelines are organized in discrete modules of information on specific topics or management issues. 13 Each modular "knowledge chunk" includes a table of recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of supporting LOE. Level A (highly randomized controlled trials) to Level C-EO (expert opinion). This order does not reflect the order in which care should be provided. A brief introduction or short synopsis is provided to contextualize the recommendations with important background information and overarching management or treatment concepts. Recommendations using standard AHA nomenclature of COR and LOE. Recommendations are presented in order of COR: most potential benefit (Class 1), followed by lesser certainty of benefit (Class 2), and finally potential for harm or no benefit (Class 3). Following the COR, recommendations are ordered by the certainty of

3.7 Abbreviations Abbreviation Meaning/Phrase ACLS advanced cardiovascular life support AED automated external defibrillator ALS advanced life support AHA American Heart Association BLS basic life support COI conflict of interest COR Class of Recommendation CPR cardiopulmonary resuscitation ECC emergency cardiovascular care ECLS extracorporeal life support ECMO extracorporeal membrane oxygenation ECPR extracorporeal cardiopulmonary resuscitation EO Expert Opinion ETI endotracheal intubation FBAO foreign body airway obstruction IHCA in-hospital cardiac arrest ILCOR International Liaison Committee on Resuscitation LD limited data LOE Level of Evidence MCS mechanical circulatory support NR nonrandomized OHCA out-of-hospital cardiac arrest PALS pediatric advanced life support PICO population, intervention, comparator, outcome pVT pulseless ventricular tachycardia RCT randomized clinical trial ROSC return of spontaneous circulation SGA supraglottic airway ITM targeted temperature

Cardiac arrest in infants and children does not usually result from a primary cardiac cause; rather, it is the end result of progressive respiratory failure or shock. In these patients, cardiac arrest is preceded by a variable period of deterioration, which eventually results in cardiopulmonary failure, bradycardia, and cardiac arrest. In children with congenital heart disease, cardiac arrest is often due to a primary cardiac cause, although the etiology is distinct from adults. Outcomes for pediatric IHCA have improved over the past 20 years, in part because of early recognition, high-quality CPR, postresuscitation care, and extracorporeal cardiopulmonary resuscitation (ECPR).^{1,2} In a recent analysis of the Get With The Guidelines Resuscitation Registry, a large multicenter, hospital-based cardiac arrest registry, pediatric cardiac arrest survival to hospital discharge was 19% in 2000 and 38% in 2018.² Survival has increased on average by 0.67% per year, though that increase has plateaued since 2010.² New directions of research and therapy may be required to improve cardiac arrest survival. More cardiac arrest events now occur in an intensive care unit (ICU) setting, suggesting that patients at risk for cardiac arrest are being identified sooner and transferred to a higher level of care.³ Survival rates from OHCA remain less encouraging. In a recent analysis of the Resuscitation Outcomes Consortium Epidemiological Registry, a multicenter OHCA registry, survival to hospital discharge of pediatric OHCA between 2007 and 2012 ranged from 6.7% to 10.2% depending on region and patient age.⁴ There was no significant change in these rates over time, consistent with other national registries from Japan and from Australia and New Zealand.^{5,6} These data also suggest that survival of OHCA has not improved with more arrests that were witnessed by emergency medical services and with higher bystander CPR rates, stressing the importance of early recognition and treatment of these patients.⁴ As survival rates from pediatric cardiac arrest increase, there has been a shift with more focus on neurodevelopmental, physical, and emotional outcomes of survivors.

Recent studies demonstrate that a quarter of patients with favorable outcomes have selective neuropsychological deficits.^{7,4,17} The Pediatric Chain of Survival Historically, cardiac arrest care has largely focused on the management of the cardiac arrest itself, highlighting high-quality CPR, early defibrillation, and effective teamwork. However, there are aspects of prearrest and postarrest care that are critical to improve outcomes. As pediatric cardiac arrest survivors have plateaued, the prevention of cardiac arrest becomes even more important. In the out-of-hospital environment, this includes safety initiatives (eg, bike helmet laws), sudden infant death syndrome prevention, lay rescuer CPR training, and early access to emergency care. When OHCA occurs, early bystander CPR is critical in improving outcomes. In the in-hospital environment, cardiac arrest prevention includes early recognition and treatment of patients at risk for cardiac arrest such as neonates undergoing cardiac surgical procedures, patients presenting with acute fulminant myocarditis, acute decompensated heart failure, or pulmonary hypertension. Following resuscitation from cardiac arrest, management of the post-cardiac arrest syndrome (which may include brain dysfunction, myocardial dysfunction with low cardiac output, and ischemia or reperfusion injury) is important to avoid contributing to secondary injury, such as hypotension.^{8,9} Accurate neuroprognostication is important to guide caregiver discussions and decision-making. Finally, given the high risk of neurodevelopmental impairment in cardiac arrest survivors, early referral for rehabilitation assessment and intervention is key. To highlight these different aspects of cardiac arrest management, the Pediatric Chain of Survival has been updated (Figure 1). A separate OHCA Chain of Survival has been created to distinguish the differences between OHCA and IHCA. In both the OHCA and IHCA chains, a sixth link has been added to stress the importance of recovery, which focuses on short- and long-term treatment evaluation, and support for survivors and their families. For both chains of survival, activating the emergency response is followed immediately by the initiation of high-quality CPR. If help is nearby or a cell phone is available, activating the emergency response and starting CPR can be nearly simultaneous. However, in the out-of-hospital setting, a single rescuer who does not have access to a cell phone should begin CPR (compressions-airway-breathing) for infants and children before calling for help because respiratory arrest is the most common cause of cardiac arrest and help may not be nearby. In the event of sudden witnessed collapse, rescuers should use an available automatic external defibrillator (AED), because early defibrillation can be lifesaving.^{1,2,18} References⁵ Sequence of Resuscitation Rapid recognition of cardiac arrest, immediate initiation of high-quality chest compressions, and delivery of effective ventilations are critical to improve outcomes from cardiac arrest. Lay rescuers should not delay starting CPR in a child with no “signs of life.” Healthcare providers may consider assessing the presence of a pulse as long as the initiation of CPR is not delayed more than 10 seconds. Palpation for the presence or absence of a pulse is not reliable as the sole determinant of cardiac arrest and the need for chest compressions. In infants and children, asphyxial cardiac arrest is more common than cardiac arrest from a primary cardiac event; therefore, effective ventilation is important during resuscitation of children. When CPR is initiated, the sequence is compressions-airway-breathing. High-quality CPR generates blood flow to vital organs and increases the likelihood of return of spontaneous circulation (ROSC). The 5 main components of high-quality CPR are (1) adequate chest compression depth, (2) optimal chest compression rate, (3) minimizing interruptions in CPR (ie, maximizing chest compression fraction or the proportion of time that chest compressions are provided for cardiac arrest), (4) allowing full chest recoil between compressions, and (5) avoiding excessive ventilation. Compressions of inadequate depth and rate, 1.2, incomplete chest recoil, and 3 high ventilation rates^{4,19} are common during pediatric resuscitation. 5.1 Initiation of CPR Recommendations for Initiation of CPR COR LOE Recommendations 1 C-LD Lay rescuers should begin CPR for any victim who is unresponsive, not breathing normally, and does not have signs of life; it is reasonable for healthcare providers to check for a pulse for up to 10 s and begin compressions unless a definite pulse is felt.²¹⁻²³ 2b C-EQ Lay rescuers should begin CPR for any victim who is unresponsive, not breathing normally, and does not have signs of life; it is reasonable for healthcare providers to check for a pulse for up to 10 s and begin compressions unless a definite pulse is felt.²¹⁻²³ 2b C-EQ It may be reasonable to initiate CPR with compressions-airway-breathing over airway-breathing-compressions.²⁴ 24 Recommendation-Specific Supportive Text Lay rescuers are unable to reliably determine the presence or absence of a pulse.⁶⁻²⁰ No clinical trials have compared manual pulse checks with observations of “signs of life.” However, adult and pediatric studies have identified a high error rate and harmful CPR pauses during manual pulse checks by trained rescuers.²¹⁻²³ In 1 study, healthcare provider pulse palpation accuracy was 78%²¹ compared with lay rescuer pulse palpation accuracy of 47% at 5 seconds and 73% at 10 seconds.⁶ One pediatric study demonstrated only a small delay (5.74 seconds) in commencement of rescue breathing with compressions-airway-breathing compared with airway-breathing-compressions.²⁴ Although the evidence is of low certainty, continuing to recommend compressions-airway-breathing likely results in minimal delays in rescue breathing and allows for a consistent approach to cardiac arrest treatment in adults and children.^{5,22} Components of High-Quality CPR Recommendations for Components of High-Quality CPR COR LOE Recommendations 1 B-NR CPR using chest compressions with rescue breaths should be provided to infants and children in cardiac arrest.²⁵⁻²⁹ 1 B-NR For infants and children, if bystanders are unwilling or unable to deliver rescue breaths, it is recommended that rescuers should provide chest compressions only.^{27,28} 1 C-EQ After each compression, rescuers should allow the chest to recoil completely.^{2,3,30} 2a C-LD It is reasonable to use a chest compression rate of \approx 100-120/min for infants and children.^{31,32} 2a C-LD For infants and children, it is reasonable for rescuers to provide chest compressions that depress the chest at least one third the anterior-posterior diameter of the chest, which equates to approximately 1.5 inches (4 cm) in infants to 2 inches (5 cm) in children.³² Once children have reached puberty, it is reasonable to use the adult compression depth of at least 5 cm but no more than 6 cm.³³⁻³⁶ 2a C-EQ For healthcare providers, it is reasonable to perform a rhythm check, lasting no more than 10 s, approximately every 2 min.³² 2a C-EQ It is reasonable to ventilate with 100% oxygen during CPR.^{2,3} 2a C-EQ When performing CPR in infants and children with an advanced airway, it may be reasonable to target a respiratory rate range of 1 breath every 2-3 s (20-30 breaths/min), accounting for age and clinical condition. Rates exceeding these recommendations may compromise hemodynamics.⁵ 5.2 Recommendation-Specific Supportive Text Large observational studies of children with OHCA show the best outcomes with compression-ventilation CPR, though outcomes for infants with OHCA are often poor.^{27,28} Allowing complete chest re-expansion improves the flow of blood returning to the heart and thereby blood flow to the body during CPR. There are no pediatric studies evaluating the effect of residual leaning during pediatric CPR, although leaning during pediatric CPR is common.^{2,3} In 1 observational study of invasively monitored and anesthetized children, leaning was associated with elevated cardiac filling pressures, leading to decreased coronary perfusion pressures during sinus rhythm.³⁰ A small observational study found that a compression rate of at least 100/min was associated with improved systolic and diastolic blood pressures during CPR for pediatric IHCA.³¹ One multicenter, observational study of pediatric IHCA demonstrated increased systolic blood pressures with chest compression rates between 100 and 120/min when compared with rates exceeding 120/min.³² Rates less than 100/min were associated with improved survival compared to rates of 100 to 120/min; however, the median rate in this slower category was approximately 95/min (ie, very close to 100/min).³² Three anthropometric studies have shown that the pediatric chest can be compressed to one third of the anterior-posterior chest diameter without damaging intrathoracic organs.³³⁻³⁵ An observational study found an improvement in rates of ROSC and 24-hour survival, when at least 60% of 30-second epochs of CPR achieve an average compression-depth greater than 5 cm for pediatric IHCA.³⁶ Current recommendations include a brief rhythm check every 2 minutes when a monitor or AED is available. There are no human studies addressing the effect of varying inhaled oxygen concentrations during CPR on outcomes in infants and children. The optimum compression-to-ventilation ratio is uncertain.

Large observational studies of children with OHCA demonstrated better outcomes with compression-ventilation CPR with ratios of either 15:2 or 30:2 compared with compression-only CPR.²⁵ One small, multicenter observational study of intubated pediatric patients found that ventilation rates (at least 30 breaths/min in children less than 1 year of age, at least 25 breaths/min in older children) were associated with improved rates of ROSC and survival.⁵ However, increasing ventilation rates are associated with decreased systolic blood pressure in children. The optimum ventilation rate during continuous chest compressions in children with an advanced airway is based on limited data and requires further study. Recommendations 1 and 2 were reviewed in the “2017 American Heart Association Focused Update on Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.”³⁷ 5.3 CPR Technique Recommendations For CPR Technique COR LOE Recommendations 1 C-LD For infants, single rescuers (whether lay rescuers or healthcare providers) should compress the sternum with 2 fingers (Figure 2) or 2 thumbs placed just below the intermammary line.³⁸⁻⁴¹ 1 C-LD For infants, the 2-thumb-encircling hands technique (Figure 3) is recommended. When CPR is provided by 2 rescuers, the rescuer cannot physically encircle the victim's chest to compress the sternum with 2 fingers.⁴² It may be reasonable to use either 1- or 2-hand techniques to perform chest compressions.⁴⁷⁻⁴⁹ 2b C-EQ For infants, if the rescuer is unable to achieve full-depth compressions (ie, unable to compress the sternum with 2 fingers), it may be reasonable to use 1 hand to perform chest compressions.³⁰ The 2-finger technique is preferred over the 3-finger technique.^{30,41} found that chest compression depth is greater than 5 cm for pediatric CPR. The 2-finger technique is preferred over the 3-finger technique. Systematic reviews suggest that the 2-thumb-encircling hands technique may be more effective than 2-finger compressions, particularly for depth.^{42,43} However, recent manikin studies suggest that the 2-thumb-encircling hands technique may be associated with lower chest compression fractions (percent of cardiac arrest time that chest compression are provided) than 2-finger compressions, particularly for depth.⁴² As with 2-finger compressions, the 2-thumb-encircling hands technique is recommended. There are no pediatric-specific clinical data to determine if the 1-hand or 2-hand technique produces better outcomes for children receiving CPR. In manikin studies, the 2-hand technique is associated with improved compression depth,⁴⁷ compression force,⁴⁸ and less rescuer fatigue.⁴⁹ There are no human studies comparing the 1-hand compression versus the 2-thumb-encircling hands technique in infants.^{5,4} 5.4 Support Surfaces for CPR Recommendations for Support Surfaces for CPR COR LOE Recommendations 1 C-LD During IHCA, when available, activate the bed's “CPR mode” to increase mattress stiffness.^{50,52} 3a C-LD It is reasonable to perform chest compressions on a firm surface.⁵³⁻⁵⁹ 2a C-LD During OHCA, it is reasonable to use a backboard to improve chest compression depth.^{53,55,56,60-63} 3a Recommendation-Specific Supportive Text “CPR mode” is available on some hospital beds to stiffen the mattress during CPR. Manikin studies and 1 pediatric case series show that effective compression depth can be achieved even on a soft surface, providing the CPR provider increases overall compression depth to compensate for a soft mattress.⁵³⁻⁵⁹ Meta-analysis of 6 studies^{53,56} showed a 3-mm (95% CI 1-4 mm) improvement in chest compression depth associated with backboard use when CPR was performed on a manikin placed on a mattress or bed.^{5,50} Opening the Airway COR LOE Recommendations 1 C-LD Unless a cervical spine injury is suspected, use a head tilt-chin lift maneuver to open the airway.⁶⁴ 1 C-EQ For the trauma patient with suspected cervical spine injury, use a jaw thrust without head tilt to open the airway.⁶⁵ 1 C-EQ For the trauma patient with suspected cervical spine injury, if the jaw thrust does not open the airway, use a head tilt-chin lift maneuver. Recommendation-Specific Supportive Text No data directly address the ideal method to open or maintain airway patency. One retrospective cohort study evaluated various head-tilt angles in neonates and young infants undergoing diagnostic MRI and found that the spinal canal was compressed to one third of the anterior-posterior diameter without damaging intrathoracic organs.⁶⁶ While no pediatric studies evaluate jaw thrust versus head tilt-chin lift to open the airway, the jaw thrust is widely accepted as an effective way to open the airway, and this maneuver theoretically limits cervical motion compared with the head tilt-chin lift.

There are no pediatric studies evaluating the impact of a head tilt-chin lift maneuver to open the airway in a trauma patient with suspected cervical spine injury. However, if providers are unable to open the airway and deliver effective ventilations using a jaw thrust, given the importance of a patent airway, using a head tilt-chin lift maneuver is recommended. Figures 4, 5, 6, and 7 show, respectively, an infographic for pediatric BLS for lay rescuers, the pediatric BLS algorithms for healthcare provider, single-rescuer CPR and 2-rescuer CPR, and the current algorithm for pediatric cardiac arrest.^{5,6} 5.6 References⁶ Advanced Airway Interventions During CPR Most pediatric cardiac arrests are triggered by respiratory deterioration. Airway management and effective ventilation are fundamental to pediatric resuscitation. Although the majority of patients can be successfully ventilated with bag-mask ventilation, this method requires interruptions in chest compressions and is associated with risk of aspiration and barotrauma. Advanced airway interventions, such as supraglottic airway (SGA) placement or endotracheal intubation (ETI), may improve ventilation, reduce the risk of aspiration, and enable uninterrupted compression delivery. However, airway placement may interrupt the delivery of compressions or result in a malpositioned device. Advanced airway placement requires specialized equipment and skilled providers, and it may be difficult for professionals who do not routinely intubate children. Recommendation for Advanced Airway Interventions During CPR COR LOE Recommendation 2a C-LD Bag-mask ventilation is reasonable compared with advanced airway interventions (SGA and ETI) in the management of children during cardiac arrest in the out-of-hospital setting.¹⁻⁴ 4 Recommendation-Specific Supportive Text A clinical trial and 2 propensity-matched retrospective studies show that ETI and bag-mask ventilation achieve similar rates of survival with good neurological function and survival to hospital discharge in pediatric patients with OHCA.¹⁻³ Propensity-matched retrospective studies also show similar rates of survival when comparing SGA with bag-mask ventilation in pediatric OHCA.^{2,3} No difference was observed in outcomes between SGA and ETI.^{2,3} There are limited data to compare outcomes between bagmask ventilation versus ETI in the management of IHCA, and there are no hospital-based studies of SGA.

The data are not sufficient to support a recommendation for advanced airway use in IHCA. There may be specific circumstances or populations in which early advanced airway interventions are beneficial. This recommendation was reviewed in the “2019 American Heart Association Focused Update on Pediatric Advanced Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.”⁵ 7 Dose Administration During CPR During CPR, providers should use a dose of epinephrine that is appropriate for the patient's weight, which is often difficult to obtain in an emergency setting. There are specific circumstances or populations in which dose administration is indicated, such as electrolyte imbalances and certain drug toxicities. Medication dosing for children is based on weight, which is often difficult to obtain in an emergency setting. There are numerous approaches to estimating weight when an actual weight cannot be obtained.^{8,17} 7.1 Dose Administration During Cardiac Arrest COR LOE Recommendations 2a C-LD For pediatric patients in any setting, it is reasonable to administer epinephrine every 3-5 min until ROSC is achieved.^{17,21} 8.2b C-LD For shock-refractory VF/VT, either amiodarone or lidocaine may be used.^{19,20} 3a B-NR Routine administration of sodium bicarbonate is not recommended in pediatric cardiac arrest in the absence of documented hypocalcemia, calcium channel blocker (eg, tricyclic antidepressant) toxicity,^{5,7-21} or hypokalemia.^{3,4,23} 3a Recommendation-Specific Supportive Text There are limited data in pediatrics comparing epinephrine administration to no epinephrine administration in any setting. In an OHCA study of 65 children, 12 patients did not receive epinephrine due to lack of a route of administration, and only 1 child had ROSC.²⁰ A recent evidence review identified 8 observational studies of sodium bicarbonate administration during cardiac arrest.^{5,7-25} Bicarbonate administration was associated with improved survival for both IHCA and OHCA. There are special circumstances in which bicarbonate is used, such as the treatment of hypocalcemia and sodium channel blocker toxicity, including from tricyclic antidepressants. Two observational studies examining the administration of calcium during cardiac arrest demonstrated no survival benefit and no survival to hospital discharge.^{21,22} 3a Recommendation-Specific Supportive Text “CPR mode” to increase mattress stiffness.^{50,52} 3a C-LD It is reasonable to perform chest compressions on a firm surface.⁵³⁻⁵⁹ 2a C-LD During OHCA, when available, activate the bed's “CPR mode” to increase mattress stiffness.^{53,55,56,60-63} 3a Recommendation-Specific Supportive Text “CPR mode” is available on some hospital beds to stiffen the mattress during CPR. Manikin studies and 1 pediatric case series show that effective compression depth can be achieved even on a soft surface, providing the CPR provider increases overall compression depth to compensate for a soft mattress.⁵³⁻⁵⁹ Meta-analysis of 6 studies^{53,56} showed a 3-mm (95% CI 1-4 mm) improvement in chest compression depth associated with backboard use when CPR was performed on a manikin placed on a mattress or bed.^{5,50} Opening the Airway COR LOE Recommendations 1 C-LD Unless a cervical spine injury is suspected, use a head tilt-chin lift maneuver to open the airway.⁶⁴ 1 C-EQ For the trauma patient with suspected cervical spine injury, use a jaw thrust without head tilt to open the airway.⁶⁵ 1 C-EQ For the trauma patient with suspected cervical spine injury, if the jaw thrust does not open the airway, use a head tilt-chin lift maneuver. Recommendation-Specific Supportive Text No data directly address the ideal method to open or maintain airway patency. One retrospective cohort study evaluated various head-tilt angles in neonates and young infants undergoing diagnostic MRI and found that the spinal canal was compressed to one third of the anterior-posterior diameter without damaging intrathoracic organs.⁶⁶ While no pediatric studies evaluate jaw thrust versus head tilt-chin lift to open the airway, the jaw thrust is widely accepted as an effective way to open the airway, and this maneuver theoretically limits cervical motion compared with the head tilt-chin lift.

There are no pediatric studies evaluating the impact of a head tilt-chin lift maneuver to open the airway in a trauma patient with suspected cervical spine injury. However, if providers are unable to open the airway and deliver effective ventilations using a jaw thrust, given the importance of a patent airway, using a head tilt-chin lift maneuver is recommended. Figures 4, 5, 6, and 7 show, respectively, an infographic for pediatric BLS for lay rescuers, the pediatric BLS algorithms for healthcare provider, single-rescuer CPR and 2-rescuer CPR, and the current algorithm for pediatric cardiac arrest.^{5,6} 5.6 References⁶ Advanced Airway Interventions During CPR Most pediatric cardiac arrests are triggered by respiratory deterioration. Airway management and effective ventilation are fundamental to pediatric resuscitation. Although the majority of patients can be successfully ventilated with bag-mask ventilation, this method requires interruptions in chest compressions and is associated with risk of aspiration and barotrauma. Advanced airway interventions, such as supraglottic airway (SGA) placement or endotracheal intubation (ETI), may improve ventilation, reduce the risk of aspiration, and enable uninterrupted compression delivery. However, airway placement may interrupt the delivery of compressions or result in a malpositioned device. Advanced airway placement requires specialized equipment and skilled providers, and it may be difficult for professionals who do not routinely intubate children. Recommendation for Advanced Airway Interventions During CPR COR LOE Recommendation 2a C-LD Bag-mask ventilation is reasonable compared with advanced airway interventions (SGA and ETI) in the management of children during cardiac arrest in the out-of-hospital setting.¹⁻⁴ 4 Recommendation-Specific Supportive Text A clinical trial and 2 propensity-matched retrospective studies show that ETI and bag-mask ventilation achieve similar rates of survival with good neurological function and survival to hospital discharge in pediatric patients with OHCA.¹⁻³ Propensity-matched retrospective studies also show similar rates of survival when comparing SGA with bag-mask ventilation in pediatric OHCA.^{2,3} No difference was observed in outcomes between SGA and ETI.^{2,3} There are limited data to compare outcomes between bagmask ventilation versus ETI in the management of IHCA, and there are no hospital-based studies of SGA.

The data are not sufficient to support a recommendation for advanced airway use in IHCA. There may be specific circumstances or populations in which early advanced airway interventions are beneficial. This recommendation was reviewed in the “2019 American Heart Association Focused Update on Pediatric Advanced Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.”⁵ 7 Dose Administration During CPR During CPR, providers should use a dose of epinephrine that is appropriate for the patient's weight, which is often difficult to obtain in an emergency setting. There are specific circumstances or populations in which dose administration is indicated, such as electrolyte imbalances and certain drug toxicities. Medication dosing for children is based on weight, which is often difficult to obtain in an emergency setting. There are numerous approaches to estimating weight when an actual weight cannot be obtained.^{8,17} 7.1 Dose Administration During Cardiac Arrest COR LOE Recommendations 2a C-LD For pediatric patients in any setting, it is reasonable to administer epinephrine every 3-5 min until ROSC is achieved.^{17,21} 8.2b C-LD For shock-refractory VF/VT, either amiodarone or lidocaine may be used.^{19,20} 3a B-NR Routine administration of sodium bicarbonate is not recommended in pediatric cardiac arrest in the absence of documented hypocalcemia, calcium channel blocker (eg, tricyclic antidepressant) toxicity,^{5,7-21} or hypokalemia.^{3,4,23} 3a Recommendation-Specific Supportive Text There are limited data in pediatrics comparing epinephrine administration to no epinephrine administration in any setting. In an OHCA study of 65 children, 12 patients did not receive epinephrine due to lack of a route of administration, and only 1 child had ROSC.²⁰ A recent evidence review identified 8 observational studies of sodium bicarbonate administration during cardiac arrest.^{5,7-25} Bicarbonate administration was associated with improved survival for both IHCA and OHCA. There are special circumstances in which bicarbonate is used, such as the treatment of hypocalcemia and sodium channel blocker toxicity, including from tricyclic antidepressants. Two observational studies examining the administration of calcium during cardiac arrest demonstrated no survival benefit and no survival to hospital discharge.^{21,22} 3a Recommendation-Specific Supportive Text “CPR mode” to increase mattress stiffness.^{50,52} 3a C-LD It is reasonable to perform chest compressions on a firm surface.⁵³⁻⁵⁹ 2a C-LD During OHCA, when available, activate the bed's “CPR mode” to increase mattress stiffness.^{53,55,56,60-63} 3a Recommendation-Specific Supportive Text “CPR mode” is available on some hospital beds to stiffen the mattress during CPR. Manikin studies and 1 pediatric case series show that effective compression depth can be achieved even on a soft surface, providing the CPR provider increases overall compression depth to compensate for a soft mattress.⁵³⁻⁵⁹ Meta-analysis of 6 studies^{53,56} showed a 3-mm (95% CI 1-4 mm) improvement in chest compression depth associated with backboard use when CPR was performed on a manikin placed on a mattress or bed.^{5,50} Opening the Airway COR LOE Recommendations 1 C-LD Unless a cervical spine injury is suspected, use a head tilt-chin lift maneuver to open the airway.⁶⁴ 1 C-EQ For the trauma patient with suspected cervical spine injury, use a jaw thrust without head tilt to open the airway.⁶⁵ 1 C-EQ For the trauma patient with suspected cervical spine injury, if the jaw thrust does not open the airway, use a head tilt-chin lift maneuver. Recommendation-Specific Supportive Text No data directly address the ideal method to open or maintain airway patency. One retrospective cohort study evaluated various head-tilt angles in neonates and young infants undergoing diagnostic MRI and found that the spinal canal was compressed to one third of the anterior-posterior diameter without damaging intrathoracic organs.⁶⁶ While no pediatric studies evaluate jaw thrust versus head tilt-chin lift to open the airway, the jaw thrust is widely accepted as an effective way to open the airway, and this maneuver theoretically limits cervical motion compared with the head tilt-chin lift.

There are no pediatric studies evaluating the impact of a head tilt-chin lift maneuver to open the airway in a trauma patient with suspected cervical spine injury. However, if providers are unable to open the airway and deliver effective ventilations using a jaw thrust, given the importance of a patent airway, using a head tilt-chin lift maneuver is recommended. Figures 4, 5, 6, and 7 show, respectively, an infographic for pediatric BLS for lay rescuers, the pediatric BLS algorithms for healthcare provider, single-rescuer CPR and 2-rescuer CPR, and the current algorithm for pediatric cardiac arrest.^{5,6} 5.6 References⁶ Advanced Airway Interventions During CPR Most pediatric cardiac arrests are triggered by respiratory deterioration. Airway management and effective ventilation are fundamental to pediatric resuscitation. Although the majority of patients can be successfully ventilated with bag-mask ventilation, this method requires interruptions in chest

