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ABSTRACT: The palladium-catalyzed cross-coupling of 2-allylanilines
with 1-bromo-2-chlorobenzene derivatives provides dihydroindoloindoles
in moderate to good yield with up to 15:1 dr. The transformations involve
initial Pd-catalyzed N-arylation to generate a substituted diphenylamine
derivative, followed by intramolecular Pd-catalyzed carboamination of the
alkene via an azapalladabenzocyclobutene intermediate to generate the
tetracyclic products. The scope, mechanism, and stereocontrol of these
reactions is described.

The synthesis of saturated polycyclic nitrogen heterocycles
has been of longstanding interest due to the biological

relevance of these compounds.1 Cascade reactions are a
potentially attractive means of generating these structures, as
several different bonds and rings can be formed in a one-flask
operation. For example, a cascade annulation reaction between
2-allylaniline, which contains both alkene and amine
nucleophiles, and an arene bearing two adjacent electrophilic
sites (2), could generate tetracyclic heterocycles (e.g., 3a) with
formation of three different bonds (eq 1). In practical terms,

we reasoned that a 1,2-bromochlorobenzene derivative (4)
could be employed as the bis-electrophile,2 and the trans-
formation could be achieved through a Pd-catalyzed N-
arylation reaction of 13 followed by a subsequent Pd-catalyzed
alkene carboamination reaction of intermediate 5 (eq 2).4

Chemler has reported a related synthesis of dihydroindo-
loindoles via intramolecular Cu-catalyzed alkene carboamina-
tion reactions of substrates such as 5f (eq 3), but this approach
is complementary to ours.5 The Cu-catalyzed reactions lead to

C−H functionalization of the substrate’s N-aryl group, so
halogenated starting materials are not required. However, the
C−H functionalization produces mixtures of regioisomers in
reactions of substrates bearing m-substituted aryl groups (e.g.,
3f and 3i), and requires a large excess of MnO2.

In contrast, although halogenated substrates are required for
our approach, this allows for control of product regiochemistry,
and no oxidant other than the aryl halide is required. In
addition to their potential synthetic utility, the Pd-catalyzed
reactions would likely proceed via syn-migratory insertion of
the alkene into a 4-membered palladium amido complex
(Scheme 1, 18 to 19), which has not previously been
demonstrated.

The feasibility of the coupling of 1 with 4 was supported by
our prior syntheses of tetrahydroindoloisoquinolines (e.g., 7,
eq 4) through fully intramolecular Pd/PCy3-catalyzed alkene
carboamination reactions of substrates such as 6.6,7 As such, in
initial experiments we examined the Pd-catalyzed cross-
coupling of 2-allylaniline (1a) with o-bromochlorobenzene
(4a) using PCy3 as the ligand for palladium. However, these
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conditions produced only N-phenyl-2-methylindole 9b (Table
1, entry 1), which results from β-hydride elimination prior to
the reductive elimination step in the catalytic cycle (Scheme
1).8

We then began to explore the reactivity of dialkylbiaryl
phosphine derivatives as ligands for this transformation, as they
are sufficiently electron-rich to promote oxidative addition of

the aryl chloride, and they also have demonstrated efficacy in
alkene carboamination reactions.3a As shown in Table 1, the
cascade reaction initially generates phenylenediamine inter-
mediate 5a, which can undergo the intramolecular alkene
carboamination reaction to afford product 3a. The main side
product formed in these reactions is N-phenyl-2-methylindole
9a.7 Less electron-rich ligands such as Xantphos and DPE-
Phos were effective for the N-arylation step, but not the
subsequent alkene carboamination.9 After some exploration we
found that RuPhos provided results superior to those obtained
with other ligands, and slightly improved results were obtained
with a 0.1 M reaction concentration. Efforts to use 1,2-
dibromobenzene or 1,2-dichlorobenzene in place of 4a failed
to produce 3a and instead provided mixtures of 5a and
unreacted 1a.

With optimized conditions in hand, we explored the scope
of this transformation. As shown in Table 2, the reactions are

effective with several p-substituted N-allylanilines, producing
3a−d in moderate to good yield. The presence of a methyl
group on the internal alkene carbon was also tolerated, as 3e
was isolated in 51% yield. Importantly, the regioselective
synthesis of products 3f,g, which contain m-substituents, was
accomplished in moderate to good yield using the appropriate
commercially available bromochlorobenzene derivative. In
contrast, the coupling of 2-allylaniline with 2-bromo-1-
chloro-3-methylbenzene provided 3h in only 9% isolated yield.

In order to probe stereocontrol in these transformations,
substrate 10, which contains an allylic methyl group, was
synthesized and converted to 11 in 67% yield and 15:1 dr (eq
5).10 Internal alkene substrate 12, which was initially prepared
via a literature route as a 1:1 mixture of alkene stereoisomers,11

was converted to 13 in 43% yield and 5:1 dr (eq 6). This
indicates the Z alkene stereoisomer is transformed to product
much faster than the E alkene, which is converted to side
products rather than a dihydroindoloindole.12 When Z-12
(>20:1 Z:E) was used in this transformation 13 was produced

Scheme 1. Catalytic Cycle

Table 1. Initial Studiesa

entry ligand solvent 1a:5a:3a:9ab

1 PCy3·HBF4 toluene 0:0:0:0c

2 Brettphos toluene 0:100:0:0
3 CyJohnphos toluene 0:50:18:32
4 SPhos toluene 17:52:0:31
5 XPhos toluene 0:0:28:72
6 CPhos toluene 0:21:58:21
7 DavePhos toluene 0:0:72:28
8 RuPhos toluene 0:0:77:23
9 RuPhos toluened 0:0:70:30
10 RuPhos toluenee 0:0:83:17
11 RuPhos PhCF3

e 0:0:59:41
12 RuPhos dioxanee 0:0:56:44

aConditions: reactions were conducted on a 0.2 mmol scale using 1.0
equiv 1a, 1.2 equiv 4a, 2.4 equiv NaOtBu, 1 mol % Pd2(dba)3, 4 mol
% ligand, toluene (0.2 M), 95 °C, 16 h. bRatios were determined by
1H NMR analysis of crude reaction mixtures. The number provided
for 5a includes N-arylation products that had undergone isomer-
ization of the alkene. cThe reaction generated 2-methylindole as the
sole product. dThe reaction was conducted with a 0.5 M
concentration. eThe reaction was conducted with a 0.1 M
concentration.

Table 2. Substrate Scopea

aConditions: reactions were conducted on a 0.2 mmol scale using 1.0
equiv 1, 1.2 equiv 4, 2.4 equiv NaOtBu, 1 mol % Pd2(dba)3, 4 mol %
RuPhos, toluene (0.1 M), 105 °C, 16 h. All yields are isolated yields
(average of two or more experiments). bThe reaction was conducted
on a 2.0 mmol scale.

Organic Letters pubs.acs.org/OrgLett Letter

https://doi.org/10.1021/acs.orglett.5c01747
Org. Lett. 2025, 27, 6445−6448

6446

https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=eq4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=eq4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=eq4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=eq4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01747?fig=tbl2&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.5c01747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in 65% yield and >20:1 dr. This method is also modestly
effective for six-membered ring formation, as the coupling of
butenylaniline 14 with o-bromochlorobenzene provided
tetrahydroindoloquinoline 15, albeit in a modest 32% yield
(eq 7).

The mechanism of these transformations appears to be
similar to that of previously reported Pd-catalyzed alkene
carboamination reactions. As shown in Scheme 1, an initial Pd-
catalyzed N-arylation reaction between 10 and 4a produces 16.
Oxidative addition of the aryl chloride 16 to Pd(0) provides
17, which is converted to 4-membered amido complex 18
upon reaction with NaOtBu. Coordination of the alkene to Pd
followed by syn-migratory insertion of the alkene into the Pd−
N bond via transition state 19 provides 20. Reductive
elimination from 20 then affords the desired product 11 and
regenerates the active Pd(0) catalyst.

In order to provide further support for this mechanism, we
carried out the Pd-catalyzed N-arylation of 2-allylaniline 1a
with 4a to afford 5a in 87% yield, which contained ∼10% of
the corresponding styrene resulting from partial isomerization
of the alkene (eq 8). When 5a was subjected to our standard
reaction conditions, 3a was produced in 88% isolated yield (eq
8).

In conclusion, we have described a new method for the
synthesis of dihydroindoloindoles via cascade Pd-catalyzed
intramolecular N-arylation/alkene carboamination reactions.
These transformations affect the regioselective cross-coupling
of 2-allylanilines with 1,2-bromochlorobenzenes to afford the
products in moderate to good yield with synthetically useful
levels of diastereoselectivity. These are the first examples of Pd-
catalyzed alkene carboamination reactions that appear to
proceed via 4-membered palladium amido complexes. Future
work will be directed toward the preparation, characterization,

and study of these and other related 4-membered amido
complexes.13
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