Special Triangle Segments and Points of Concurrency

AF, BD, and CE are medians. If these seaments intersect at point G, then G is the

HM, JN, and LK are altitudes. If these seaments intersect at point P, then P is the

TV, UV, and WV are perpendicular bisectors that intersect at point V, so V is the

 \overline{XA} , \overline{YA} , and \overline{ZA} are angle bisectors that intersect at point A, so A is the

2

AF, BD, and CE are medians that intersect at point G. If AG = 8,

then GF = ___ and AF = ___

HM, JN, and LK are altitudes that intersect at point P. If HL = 12 and LP = 5, then HP = ____

12

TV, UV, and WV are perpendicular bisectors. If QV = 18, then RV = ___ and SV = __ 17

 \overline{XA} , \overline{YA} , and \overline{ZA} are angle bisectors that intersect at A. If AC = 27, then AR = ___ and AH = ___

AF, BD, and CE are medians that intersect at point G. If BF = 6,

then FC = ___ and BC = ___

HM, JN, and LK are altitudes that intersect at point P. If $m \angle MPK = 67^{\circ}$, then m∠PKM = __

 \overline{TV} , \overline{UV} , and \overline{WV} are perpendicular bisectors. If VU = 9 and VR = 15, then RU = ____

18

 \overline{XA} , \overline{YA} , and \overline{ZA} are angle bisectors that intersect at A. If AC = 9 and AX = 17, then CX = ___

AF, BD, and CE are medians that intersect at point G. If EG = 2x - 1 and GC = 3x + 1then $x = \underline{\hspace{1cm}}$ and $EC = \underline{\hspace{1cm}}$

HM, JN, and LK are altitudes that intersect at point P. If JM = x - 8, JP = x - 7, and PM = x - 9, then $x = ____$

14

 \overline{TV} , \overline{UV} , and \overline{WV} are perpendicular bisectors. If QT = 5x - 19 and TR = 2x + 8then x = ___ and QR = ___

19

 \overline{XA} , \overline{YA} , and \overline{ZA} are angle bisectors that intersect at A. If $m \angle CXA = x - 9$ and $m\angle CXR = x + 10$, then $x = \underline{\hspace{1cm}}$

5

AF, BD, and CE are medians that intersect at point G.

then $x = \underline{\hspace{1cm}}$ and $AB = \underline{\hspace{1cm}}$

10

HM, JN, and LK are altitudes that intersect at point P. If AE = 9 - 2x and EB = 8x - 16 If $m \angle LPH = 2x + 2$ and

15

 \overline{TV} , \overline{UV} , and \overline{WV} are perpendicular bisectors. If $m \angle WVQ = 10x + 1$ and $m \angle VQW = 4x - 9$, then $x = _$ 20

 \overline{XA} , \overline{YA} , and \overline{ZA} are angle bisectors that intersect at A. If XR = 63, AZ = 34, and RZ = 30, then XA = ____