J Nucl Med. 2011; 52 (Supplement 1):1084

State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry

Yung Hsiang <u>KAO</u> (1), Andrew EH <u>TAN</u> (1), Richard HG <u>LO</u> (2), Kiang Hiong <u>TAY</u> (2), Mark C <u>BURGMANS</u> (2), Farah G <u>IRANI</u> (2), Li Ser <u>KHOO</u> (2), Bien Soo <u>TAN</u> (2), Pierce KH <u>CHOW</u> (3, 4), David CE <u>NG</u> (1), Anthony SW <u>GOH</u> (1)

(1) Department of Nuclear Medicine and PET, Singapore General Hospital

(2) Department of Diagnostic Radiology, Singapore General Hospital

(3) Department of General Surgery, Singapore General Hospital

(4) Duke-NUS Graduate Medical School, Singapore

First author contact:

Dr Yung Hsiang <u>KAO</u> MBBS, MRCP(UK), FAMS(Nuclear Medicine) yung.h.kao@gmail.com

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com J Nucl Med. 2011; 52 (Supplement 1):1084

State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry

Note: This PDF file is best viewed in 'full screen' mode i.e. 'Ctrl+L'.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

J Nucl Med. 2011; 52 (Supplement 1):1084 State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry Figure orientation: Untargeted tumor supplied by right inferior phrenic artery Tc-99m-MAA SPECT/CT (excluded from dosimetry) Necrotic tumor Non-tumorous liver (excluded from within planning target volume dosimetry) Tumor implanted with Tc-99m-MAA within planning target volume

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CT hepatic angiogram of proper hepatic artery

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 20 Max: 290 Mean: 134.7 StdDev: 72.9 Sum: 123,096 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax: 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 .094.451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax: 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3.930.995 mm³

Min: 15 ean: 573.5 13.094.451 Number of Voxels: 22832 Volume: 2.316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 /lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax: 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3.930.995 mm³

Min: 15 ean: 573.5 13.094.451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14.784.698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 .094.451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 .094.451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 20 Max: 290 Mean: 134.7 StdDev: 72.9 Sum: 123,096 Number of Voxels: 914 Volume: 92,730.3 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 .094.451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 /lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax: 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 /lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax: 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 13.094.451 Number of Voxels: 22832 Volume: 2.316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 an: 573.5 13.094.451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 /lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 .094.451 Number of Voxels: 22832 Volume: 2.316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 20 Max: 290 Mean: 134.7 StdDev: 72.9 Sum: 123,096 Number of Voxels: 914 Volume: 92,730.3 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 ax: 298 /lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

viin: 15 .094.451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth © Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 20 Max: 290 Mean: 134.7 StdDev: 72.9 Sum: 123,096 Number of Voxels: 914 Volume: 92,730.3 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth © Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 20 Max: 290 Mean: 134.7 StdDev: 72.9 Sum: 123,096 Number of Voxels: 914 Volume: 92,730.3 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 /lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 20 lax: 290 Number of Voxels: 914 Volume: 92,730.3 mm³

Min: 13 ean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 .094.451 Number of Voxels: 22832 Volume: 2.316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 13 InDev 53 784.698 Number of Voxels: 38746 Volume: 3.930.995 mm³

Min: 15 ,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Aax: 298 Aean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 13 StdDev 530 784.698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ean: 573.5 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 ax: 298 /lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 13 InDev 540 784.698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 ,094,451 Number of Voxels: 22832 Volume: 2.316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 Jean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 13 StdDev 530 784.698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 lax: 298 lean: 101.8 StdDev: 85 Sum: 236.654 Number of Voxels: 2325 Volume: 235,884.1 mm³

Min: 13 StdDev 530 784.698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 an: 573.5 .094.451 Number of Voxels: 22832 Volume: 2.316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Singapore General Hospital SingHealth © Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 16 Max: 298 Mean: 101.8 StdDev: 85 Sum: 236,654 Number of Voxels: 2325 Volume: 235,884.1 mm³ Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Min: 15 Max: 1732 Mean: 573.5 StdDev: 437.1 Sum: 13,094,451 Number of Voxels: 22832 Volume: 2,316,432.1 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Min: 13 Max: 1732 Mean: 381.6 StdDev: 530 Sum: 14,784,698 Number of Voxels: 38746 Volume: 3,930,995 mm³

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

Supplemental Figure 1:

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CT hepatic angiogram of proper hepatic artery

DEPARTMENT OF NUCLEAR MEDICINE & PET Image-Guided Personalized Predictive Dosimetry For Yttrium-90 Radioembolization (SIR-Spheres®)

Worked example of artery-specific SPECT/CT partition modeling of a single arterial territory

Reference: J Nucl Med. 2011; 52: 1084 Authors: Yung H <u>KAO</u>, Andrew EH <u>TAN</u> v01.11.11. See Pg 3, 6 for instructions, disclaimer and copyright information.

ARTERY-SPECIFIC SPECT/CT COMPARTMENTAL PERSONALIZED PREDICTIVE MIRD MACRODO SIMETRY

Total Desired Yttrium-90 Activity by Predictive MIRD Macrodosimetry	4.64	GBq
Predicted Mean Radiation Dose to Implanted Tumor	0.0	Gy
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver	0.0	Gy
PLANNING TARGET VOLUME 3 (TRI-COMPARTMENTAL MIRD)	Not Targeted	Artery
Treatered mean realized in Dose to implanted 1 dmor	0.0	Сy
Predicted Mean Radiation Dose to Implanted Tumor	0.0	Gy
Desired Mean Radiation Dose to Implanted Non-Tumorous Liver	0 0	Gu
PLANNING TARGET VOLUME 2 (TRI-COMPARTMENTAL MIRD)	Not Targeted	Artery
Predicted Mean Radiation Dose to Implanted Tumor	90.0	Gy
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver	15.0	Gy
PLANNING TARGET VOLUME 1 (TRI-COMPARTMENTAL MIRD)	Proper Hepatic	Artery
Predicted Mean Radiation Dose to Lungs	11.8	Gy
		-
Total Lung Mass (Assumed Standard Man)	1,000	gm
Mean Liver-to-Lung Shunt Percentage	5.1	%
Total Mass of Targeted, Implanted (Non-Tumorous Liver + Tumor)	3,746	gm
Total Mass of Targeted, Implanted Tumor	2.164	am
Total Mass of Targeted, Implanted, Non-Tumorous Liver	1,583	gm

PLANNING TARGET VOLUME 1 (TRI-COMPARTMENTAL MIRD)	Proper Hepatic	Artery
Mass of Targeted, Implanted, Non-Tumorous Liver	1,583	gm
Mass of Targeted, Implanted Tumor	2,164	gm
Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density	6.00	100000-
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver	15.0	Gy
Predicted Mean Radiation Dose to Implanted Tumor	90.0	Gy
Predicted Mean Radiation Dose to Lungs	11.8	Gy
Desired Artery-Specific Yttrium-90 Activity	4.64	GBq
PLANNING TARGET VOLUME 2 (TRI-COMPARTMENTAL MIRD)	Not Targeted	Artery
Mass of Targeted, Implanted, Non-Tumorous Liver	0	gm
Mass of Targeted, Implanted Tumor	0	gm
Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density	0.00	33
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver	44.00b	Gy
Predicted Mean Radiation Dose to Implanted Tumor	0.0	Gy
Predicted Mean Radiation Dose to Lungs	0.0	Gy
Desired Artery-Specific Yttrium-90 Activity	0.00	GBq
PLANNING TARGET VOLUME 3 (TRI-COMPARTMENTAL MIRD)	Not Targeted	Artery
Mass of Targeted, Implanted, Non-Tumorous Liver	0	gm
Mass of Targeted, Implanted Tumor	0	gm
Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density	0.00	
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver		Gy
Predicted Mean Radiation Dose to Implanted Tumor	0.0	Gy
Predicted Mean Radiation Dose to Lungs	0.0	Gy
Desired Artery-Specific Yttrium-90 Activity	0.00	GBq

ARTERY-SPECIFIC SPECT/CT COUNTS & VOLUMES-OF-INTEREST (VOI)

ARTERIAL TERRITORY SUPPLIED BY: (i.e. PLANNING TARGET VOLUME 1)

Perfused Territory (Liver + Tumor) SPECT/CT Counts Perfused Territory (Liver + Tumor) SPECT/CT VOI

Tumor 1 (Implanted + Necrotic) SPECT/CT Counts Tumor 1 (Implanted + Necrotic) SPECT/CT VOI

Tumor 2 (Implanted + Necrotic) SPECT/CT Counts Tumor 2 (Implanted + Necrotic) SPECT/CT VOI

Tumor 3 (Implanted + Necrotic) SPECT/CT Counts Tumor 3 (Implanted + Necrotic) SPECT/CT VOI

Tumor 4 (Implanted + Necrotic) SPECT/CT Counts Tumor 4 (Implanted + Necrotic) SPECT/CT VOI

Tumor 5 (Implanted + Necrotic) SPECT/CT Counts Tumor 5 (Implanted + Necrotic) SPECT/CT VOI

Tumor 6 (Implanted + Necrotic) SPECT/CT Counts Tumor 6 (Implanted + Necrotic) SPECT/CT VOI

Tumor 7 (Implanted + Necrotic) SPECT/CT Counts Tumor 7 (Implanted + Necrotic) SPECT/CT VOI

Tumor 8 (Implanted + Necrotic) SPECT/CT Counts Tumor 8 (Implanted + Necrotic) SPECT/CT VOI

Non-Implanted, Non-Tumorous Liver 1 SPECT/CT Counts Non-Implanted, Non-Tumorous Liver 1 SPECT/CT VOI

Necrotic Tumor 1 SPECT/CT Counts Necrotic Tumor 1 SPECT/CT VOI

Proper Hep	atic Arterv
(i.e. Artery	(1)
14,784,69	8 counts
3,930,995	.0 mm3
13 094 45	1 counts
2,316,432	.1 mm3
r-	Counts
	mm3
	- Filmer
	counts mm3
	counts
×	
	counts
1	mm3
	counts
	mm3
	counts
	mm3
1	counts
	mm3
123.096	counts
92,730.3	mm3
236.654	counts
235.884	1 mm3

ARTERY-SPECIFIC SPECT/CT MEAN TUMOR-TO-NORMAL LIVER RATIO CALCULATION

ARTERIAL TERRITORY SUPPLIED BY: (i.e. PLANNING TARGET VOLUME 1)	Proper Hepatic (i.e. Artery1)	Artery
Sum of (Implanted + Necrotic) Tumor SPECT/CT Counts	13,094,451	counts
Sum of (Implanted + Necrotic) Tumor SPECT/CT VOI	2,316,432.1	mm3
Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT Counts	123,096	counts
Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT VOI	92,730.3	mm3
Sum of Necrotic Tumor SPECT/CT Counts	236,654	counts
Sum of Necrotic Tumor SPECT/CT VOI	235,884.1	mm3
Net Implanted, Non-Tumorous Liver SPECT/CT Counts	1,567,151	counts
Net Implanted, Non-Tumorous Liver SPECT/CT VOI	1,521,832.6	mm3
Net Implanted, Non-Tumorous Liver Mass	1,582.71	gm
Net Implanted Tumor SPECT/CT Counts	12,857,797	counts
Net Implanted Tumor SPECT/CT VOI	2,080,548.0	mm3
Net Implanted Tumor Mass	2,163.77	gm
Implanted, Non-Tumorous Liver Mean SPECT/CT Count Density	1.03	counts/mm3
Implanted, Tumor Mean SPECT/CT Count Density	6.18	counts/mm3
Artery-Specific Mean Tumor-to-Normal Liver Ratio	6.00	
by Mean SPECT/CT Count Density, specific to territory supplied by:	Proper Hepatic	Artery

Kao et al. State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry. J Nucl Med. 2011; 52 (Supplement 1):1084.

www.facebook.com/radioembolization

SNM 2011 poster exhibit, dosimetric worksheet and more worked examples are available for download at: www.sgh.com.sg/Clinical-Departments-Centers/Nuclear-Medicine-PET

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com