J Nucl Med. 2011; 52 (Supplement 1):1084

State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry

Yung Hsiang <u>KAO</u> (1), Andrew EH <u>TAN</u> (1), Richard HG <u>LO</u> (2), Kiang Hiong <u>TAY</u> (2), Mark C <u>BURGMANS</u> (2), Farah G <u>IRANI</u> (2), Li Ser <u>KHOO</u> (2), Bien Soo <u>TAN</u> (2), Pierce KH <u>CHOW</u> (3, 4), David CE <u>NG</u> (1), Anthony SW <u>GOH</u> (1)

- (1) Department of Nuclear Medicine and PET, Singapore General Hospital
- (2) Department of Diagnostic Radiology, Singapore General Hospital
- (3) Department of General Surgery, Singapore General Hospital
- (4) Duke-NUS Graduate Medical School, Singapore

First author contact:

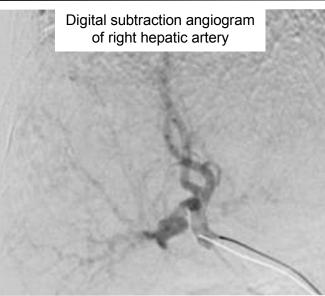
Dr Yung Hsiang <u>KAO</u> MBBS, MRCP(UK), FAMS(Nuclear Medicine) yung.h.kao@gmail.com

<u>Supplemental Figure 2</u>: Worked example of artery-specific SPECT/CT partition modeling of three arterial territories

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

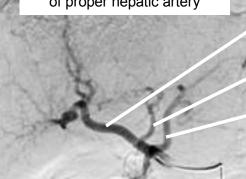
November 2011

J Nucl Med. 2011; 52 (Supplement 1):1084


State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry

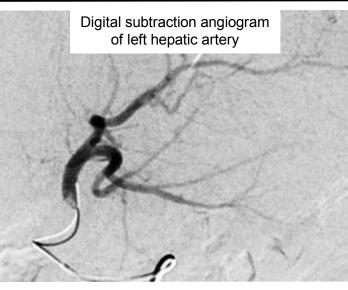
Note: This PDF file is best viewed in 'full screen' mode i.e. 'Ctrl+L'.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com


Figure orientation: Angiography

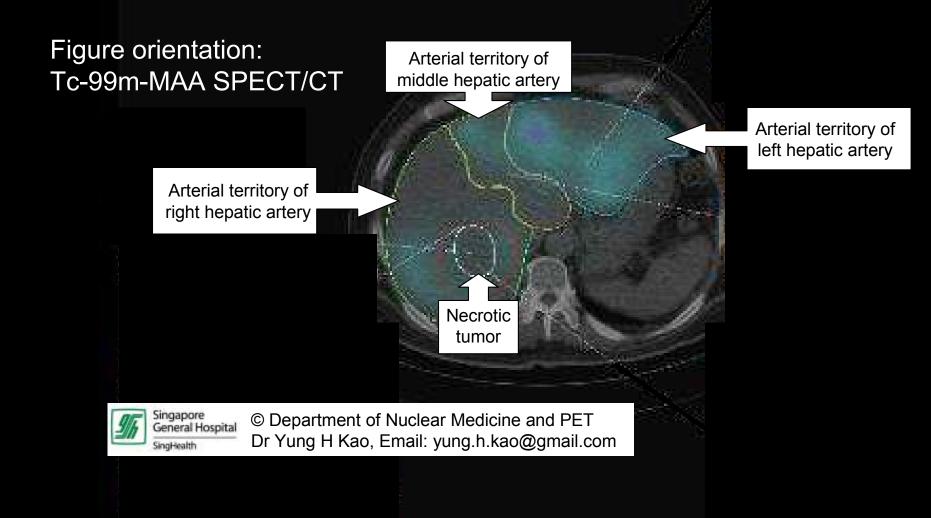
Catheter-directed CT hepatic angiogram of right hepatic artery

Digital subtraction angiogram of proper hepatic artery


Right hepatic artery

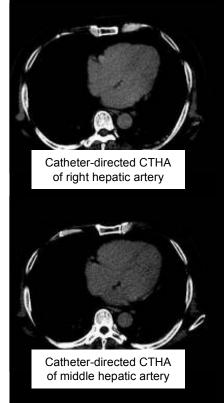
- Middle hepatic artery
- Left hepatic artery

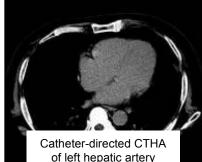
Digital subtraction angiogram of middle hepatic artery


Catheter-directed CT hepatic angiogram of middle hepatic artery

Catheter-directed CT hepatic angiogram of left hepatic artery J Nucl Med. 2011; 52 (Supplement 1):1084

State-of-the-art yttrium-90 selective internal radiation therapy: Technical aspects of artery-specific SPECT/CT partition model dosimetry




Supplemental Figure 2:

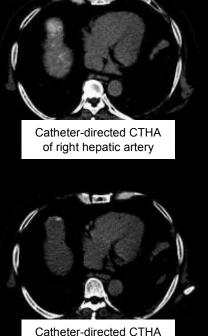
Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

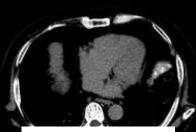
© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Tc-99-MAA SPECT/CT

Tc-99-MAA SPECT/CT

Supplemental Figure 2:


Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

imber of Vaxels: 1

Volume: 1,737,121.1

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

win: 191

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery Max: 1105 Mean: 667.8 StdDev: 224.3 Sum: 133,552 Number of Voxels: 200 Volume: 20,291.1 mm³

Tc-99-MAA SPECT/CT

Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 1712 Volume: 1,737,121.1 mr

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

Singapore General Hospital

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com



Catheter-directed CTHA of right hepatic artery

Min: 191 Max: 1105 Mean: 667.8 StdDev: 224.3 Sum: 133,552 Number of Voxels: 200 Volume: 20,291.1 mm³ Min: 250 Max: 6022 Mean: 3238.8 StdDev: 1428.1 Sum: 722,256 Number of Voxels: 223 Volume: 22,624.6 mm³ Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm^a

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 171 Volume: 1,737,121.1 m Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 191

Catheter-directed CTHA of right hepatic artery

Mean: 667.8 StdDev: 224.3 Sum: 133,552 Number of Voxels: 200 Volume: 20,291.1 mm³ Min: 250 Max: 6022 Mean: 3238.8 StdDev: 1428.1 Sum: 722,256 Number of Voxels: 223 Volume: 22,624.6 mm³ Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery Min: 19 Max 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 171 Volume: 1,737,121.1 m Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

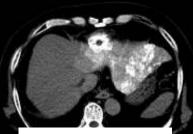
Min. 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1,403,946 Number of Voxels: 2617 Volume: 265,509 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com


Min: 191

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery Max: 1105 Mean: 667.8 StdDev: 224.3 Sum: 133,552 Number of Voxels: 200 Volume: 20,291.1 mm³

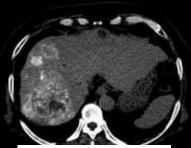
Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57,220.9 mm³

Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 13 Volume: 1,737,121.1 Min. 250 Max: 6022 Mean: 3238.8 StdDev: 1428.1 Sum: 722,256 Number of Voxels: 223 Volume: 22,624.6 mm² Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min. 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1.403.946 Number of Voxels: 2617 Volume: 265,509 mm⁹

Min: 250


Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

Singapore General Hospital SingHealth

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Min: 191

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery Max: 1105 Mean: 667.8 StdDev: 224.3 Sum: 133,552 Number of Voxels: 200 Volume: 20,291.1 mm³

Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57<u>,220.9 mm³</u>

Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm² Min: 790 Max: 1390 Mean: 1049.1 StdDev: 139 Sum: 150.018 Number of Voxels: 143 Volume: 14.508.1 mm³

Number of Voxels: 223

Volume: 22,624.6 mm³

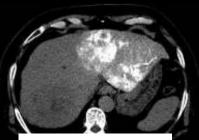
Tc-99-MAA SPECT/CT Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min. 103 Max: 1122 Mean: 536.5 StdDev: 244.5 Sum: 1,403.946 Number of Voxels: 2617 Volume: 265,509 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57,220.9 mm³

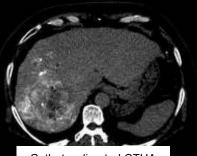
Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm² Min: 250 Max: 6022 Mean: 3238.8 StdDev: 1428.1 Sum: 722,256 Number of Voxels: 223 Volume: 22,624.6 mm³

the of Voxels 14-

Volume: 14,508,1 mm³

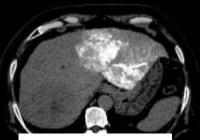
Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³


Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.5 Sum: 1,403,946 Number of Voxets: 2617 Volume: 265,509 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57,220.9 mm³

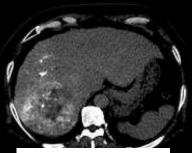
Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm³ Min: 250 Max: 6022 Mean: 3238.8 StdDev: 1428.1 Sum: 722,256 Number of Voxels: 223 Volume: 22,624.6 mm³

mber of Voxels 14-

Volume: 14,508,1 mm³

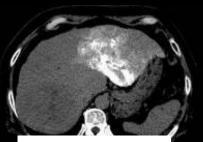
Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³


Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1.403.946 Number of Voxets: 2617 Volume: 265,509 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57,220.9 mm³

Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm² Min: 250 Max: 6022 Mean: 3238.8 StdDev: 1428.1 Sum: 722,256 Number of Voxels: 223 Volume: 22,624.6 mm²

mber of Voxels 143

Volume: 14,508,1 mm³

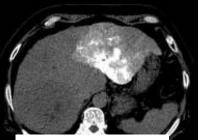
Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.5 Sum: 1,403.946 Number of Voxels: 2617 Volume: 265,509 mm⁹

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery


Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57,220.9 mm³

Min: 19 Max 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 13 Volume: 1,737,121.1

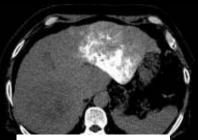
Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

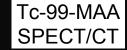
Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1.403.946 Number of Voxels: 2617 Volume: 265,509 mm⁹

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery


Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57,220.9 mm³

Min: 19 Max 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 1 Volume: 1,737,121.1

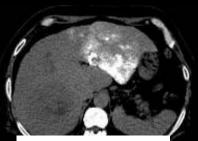
Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

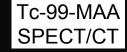
Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1.403.946 Number of Voxels: 2617 Volume: 265,509 mm⁹

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery


Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 103 Max: 510 Mean: 281.1 StdDev: 96.8 Sum: 158,554 Number of Voxels: 564 Volume: 57,220.9 mm³

Min: 19 Max 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17 Volume: 1,737,121.1 r

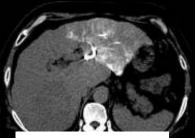
Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.5 Sum: 1.403.946 Number of Voxels: 2617 Volume: 265,509 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm³

Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm^a

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.5 Sum: 1,403.946 Number of Voxels: 2617 Volume: 265,509 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Number of Voxels: 1


Volume: 1,737,121,1

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 795 Max: 1974 Mean: 1186.5 StdDev: 261.9 Sum: 113,908 Number of Voxels: 96 Volume: 9,739.7 mm³ Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1.403.946 Number of Voxels: 2617 Volume: 265,509 mm⁹

Supplemental Figure 2:


Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Max: 931 Mean: 761.1 StdDev: 73.7 Sum: 31;206 Number of Voxels: 41 Volume: 4,159.7 mm³

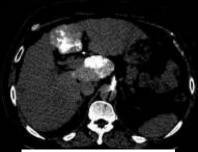
lin 647

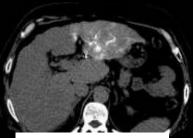
Min: 19 Max 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17 Volume: 1,737,121.1 r Min: 795 Max: 1974 Mean: 1186.5 StdDev: 261.9 Sum: 113,908 Number of Voxels: 96 Volume: 9,739.7 mm³ Min: 11 Max: 6022 Mean: 812.2 SidDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1,403,946 Number of Voxels: 2617 Volume: 265,509 mm³

Supplemental Figure 2:


Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 647 Max: 931 Mean: 761.1 StdDev: 73.7 Sum: 31,206 Number of Voxels: 41 Volume: 4,159.7 mm?

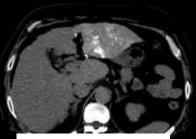
Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17 Volume: 1,737,121.1 r Min: 795 Max: 1974 Mean: 1186.5 StdDev: 261.9 Sum: 113,908 Number of Voxels: 96 Volume: 9,739.7 mm³ Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm^a

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1.403.946 Number of Voxels: 2617 Volume: 265,509 mm⁹

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 647 Max: 931 Mean: 761.1 StdDev: 73.7 Sum: 31;206 Number of Voxels: 41 Volume: 4,159.7 mm?

Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17 Volume: 1,737,121.1 r Min: 795 Max: 1974 Mean: 1186.5 StdDev: 261.9 Sum: 113,908 Number of Voxels: 96 Volume: 9,739.7 mm³ Min: 11 Max: 6022 Mean: 812.2 SidDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Min: 103 Max: 1122 Mean: 536.5 StdDev: 244.6 Sum: 1.403.946 Number of Voxels: 2617 Volume: 265,509 mm⁹

Min: 795

m: 113,908

imber of Voxels: 96

Volume: 9,739.7 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 647 Max: 931 Mean: 761.1 StdDev: 73.7 Sum: 31;206 Number of Voxels: 41 Volume: 4,159.7 mm?

Min: 19 Max 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm³ Min: 648 Max: 881 Mean: 751 StdDev: 60.6 Sum: 78,852 Number of Voxels: 105 Volume: 10,652.8 mm³ Volume: 1,035,962.1 mm³ Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504

Number of Voxels: 10211

Min 10

Tc-99-MAA SPECT/CT

Volume: 355,500.1 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 19 Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm³ Min: 648 Max: 881 Mean: 751 StdDev: 60.6 Sum: 78,852 Number of Voxels: 105 Volume: 10,652.8 mm³

Tc-99-MAA SPECT/CT Min: 11 Max: 6022 Mean: 812.2 StdDev: 1138.8 Sum: 8,293,727 Number of Voxels: 10211 Volume: 1,035,962.1 mm³

Min: 27 Max: 1974 Mean: 398.7 StdDev: 397.1 Sum: 1,396,887 Number of Voxels: 3504 Volume: 355,500.1 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

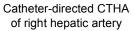
Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Min: 19 Max 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm³ Min: 648 Max: 881 Mean: 751 StdDev: 60.6 Sum: 78,852 Number of Voxels: 105 Volume: 10,652.8 mm³ Min 10

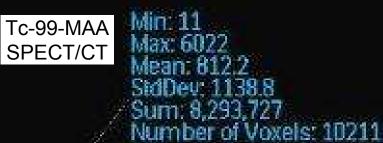
Number of Voxels: 10211 Volume: 1,035,962.1 mm^a

Tc-99-MAA SPECT/CT


Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com



Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm³

Volume: 1,035,962.1 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

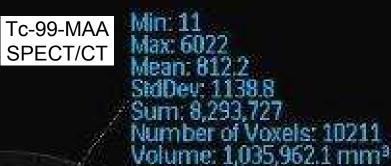
Catheter-directed CTHA of left hepatic artery Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery



Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm²

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

Catheter-directed CTHA of right hepatic artery



Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery

Max: 1390 Mean: 325.4 StdDev: 415.9 Sum: 5,572,305 Number of Voxels: 17122 Volume: 1,737,121.1 mm

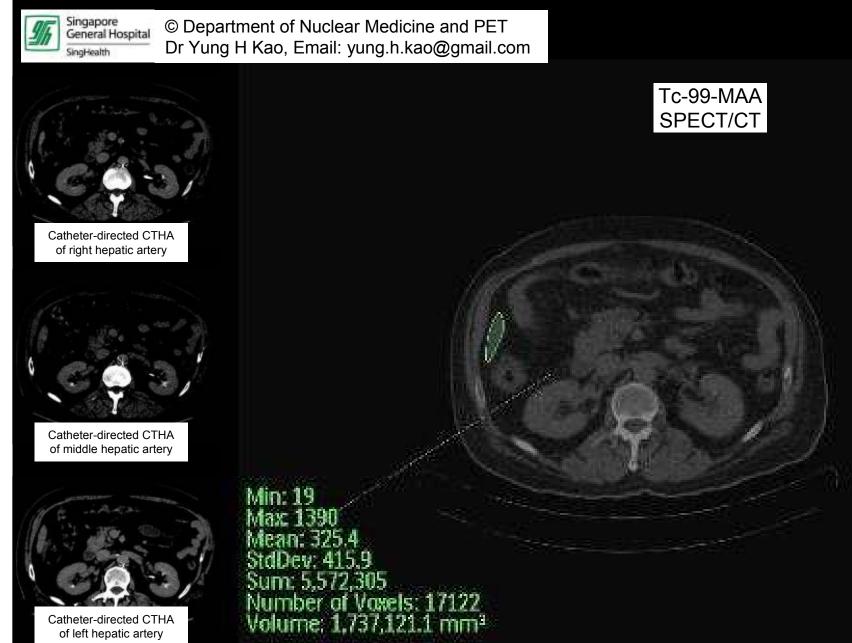
Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

Catheter-directed CTHA of right hepatic artery

Catheter-directed CTHA of middle hepatic artery

Catheter-directed CTHA of left hepatic artery


© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com

> Number of Voxels: 17122 Volume: 1,737,121.1 mm³

Supplemental Figure 2:

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories.

Singapore General Hospital SingHealth DEPARTMENT OF NUCLEAR MEDICINE & PET Image-Guided Personalized Predictive Dosimetry For Yttrium-90 Radioembolization (SIR-Spheres®)

Worked example of artery-specific SPECT/CT partition modeling of three arterial territories Reference: J Nucl Med. 2011; 52: 1084 Authors: Yung H <u>KAO</u>, Andrew EH <u>TAN</u> v01.11.11. See Pg 3, 6 for instructions, disclaimer and copyright information.

ARTERY-SPECIFIC SPECT/CT COMPARTMENTAL PERSONALIZED PREDICTIVE MIRD MACRODOSIMETRY

302 3,194	gm
3,194	
	gm
<mark>6.1</mark>	%
1,000	gm
8.5	Gy
Left Hepatic 24.0 103.3	Artery Gy Gy
Middle Hepatic 32.0 100.9	Artery Gy Gy
Right Hepatic 42.0 100.6	Artery Gy Gy
	1,000 8.5 Left Hepatic 24.0 103.3 Middle Hepatic 32.0 100.9 Right Hepatic 42.0

PLANNING TARGET VOLUME 1 (TRI-COMPARTMENTAL MIRD)	Left Hepatic	Artery
Mass of Targeted, Implanted, Non-Tumorous Liver	1,054	gm
Mass of Targeted, Implanted Tumor	24	gm
Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density	4.30	144 C
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver	24.0	Gy
Predicted Mean Radiation Dose to Implanted Tumor	103.3	Gy
Predicted Mean Radiation Dose to Lungs	1.8	Gy
Desired Artery-Specific Yttrium-90 Activity	0.59	GBq
PLANNING TARGET VOLUME 2 (TRI-COMPARTMENTAL MIRD)	Middle Hepatic	Artery
Mass of Targeted, Implanted, Non-Tumorous Liver	360	gm
Mass of Targeted, Implanted Tumor	10	gm
Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density	3.15	155
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver	32.0	Gy
Predicted Mean Radiation Dose to Implanted Tumor	100.9	Gy
Predicted Mean Radiation Dose to Lungs	0.8	Gy
Desired Artery-Specific Yttrium-90 Activity	0.27	GBq
PLANNING TARGET VOLUME 3 (TRI-COMPARTMENTAL MIRD)	Right Hepatic	Artery
Mass of Targeted, Implanted, Non-Tumorous Liver	1,479	gm
Mass of Targeted, Implanted Tumor	268	gm
Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density	2.39	N758648
Desired Mean Radiation Dose to Implanted, Non-Tumorous Liver	42.0	Gy
Predicted Mean Radiation Dose to Implanted Tumor	100.6	Gy
Predicted Mean Radiation Dose to Lungs	5.8	Gy
Desired Artery-Specific Yttrium-90 Activity	1.91	GBq

ARTERY-SPECIFIC SPECT/CT COUNTS & V	OLUMES-OF-INTEREST (VOI)	_
ARTERIAL TERRITORY SUPPLIED BY: (i.e. PLANNING TARGET VOLUME 1)	Left Hepatic (i.e. Artery1)	Artery
Perfused Territory (Liver + Tumor) SPECT/CT Counts Perfused Territory (Liver + Tumor) SPECT/CT VOI	8,239,727 1,035,962.1	counts mm3
Tumor 1 (Implanted + Necrotic) SPECT/CT Counts Tumor 1 (Implanted + Necrotic) SPECT/CT VOI	722,256 22,624.6	counts mm3
Tumor 2 (Implanted + Necrotic) SPECT/CT Counts Tumor 2 (Implanted + Necrotic) SPECT/CT VOI		counts mm3
Tumor 3 (Implanted + Necrotic) SPECT/CT Counts Tumor 3 (Implanted + Necrotic) SPECT/CT VOI		counts mm3
Tumor 4 (Implanted + Necrotic) SPECT/CT Counts		counts mm3
Tumor 5 (Implanted + Necrotic) SPECT/CT Counts Tumor 5 (Implanted + Necrotic) SPECT/CT VOI		counts mm3

ARTERY-SPECIFIC SPECT/CT MEAN TUMOR-TO-NORMAL LIVER RATIO CALCULATION			
ARTERIAL TERRITORY SUPPLIED BY: (i.e. PLANNING TARGET VOLUME 1)	Left Hepatic (i.e. Artery1)	Artery	
Sum of (Implanted + Necrotic) Tumor SPECT/CT Counts	722,256	counts	
Sum of (Implanted + Necrotic) Tumor SPECT/CT VOI	22,624.6	mm3	
Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT Counts	0	counts	
Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT VOI	0.0	mm3	
Sum of Necrotic Tumor SPECT/CT Counts	0	counts	
Sum of Necrotic Tumor SPECT/CT VOI	0.0	mm3	
Net Implanted, Non-Tumorous Liver SPECT/CT Counts	7,517,471	counts	
Net Implanted, Non-Tumorous Liver SPECT/CT VOI	1,013,337.5	mm3	
Net Implanted, Non-Tumorous Liver Mass	1,053.87	gm	
Net Implanted Tumor SPECT/CT Counts Net Implanted Tumor SPECT/CT VOI Net Implanted Tumor Mass	722,256 22,624.6 23.53	counts mm3	
Implanted, Non-Tumorous Liver Mean SPECT/CT Count Density	7.42	counts/mm3	
Implanted, Tumor Mean SPECT/CT Count Density	31.92	counts/mm3	
Artery-Specific Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density, specific to territory supplied by:	4.30 Left Hepatic	Artery	

ARTERY-SPECIFIC SPECT/CT COUNTS & VOLUMES-OF-I	NTEREST FOR TRI-COMPART	MENTAL MIRD
ARTERIAL TERRITORY SUPPLIED BY:	Middle Hepatic	Artery
(i.e. PLANNING TARGET VOLUME 2)	(i.e. Artery2)	
Perfused Territory (Liver + Tumor) SPECT/CT Counts	1,396,887	counts
Perfused Territory (Liver + Tumor) SPECT/CT VOI	355,500.1	mm3
Tumor 1 (Implanted + Necrotic) SPECT/CT Counts	113,908	counts
Tumor 1 (Implanted + Necrotic) SPECT/CT VOI	9,739.7	mm3
Tumor 2 (Implanted + Necrotic) SPECT/CT Counts		counts
Tumor 2 (Implanted + Necrotic) SPECT/CT VOI		mm3
Tumor 3 (Implanted + Necrotic) SPECT/CT Counts		counts
Tumor 3 (Implanted + Necrotic) SPECT/CT VOI		mm3
Tumor 4 (Implanted + Necrotic) SPECT/CT Counts		counts
Tumor 4 (Implanted + Necrotic) SPECT/CT VOI		mm3

ARTERY-SPECIFIC SPECT/CT MEAN TUMOR-TO-NORMAL LIVER RATIO CALCULATION		
ARTERIAL TERRITORY SUPPLIED BY: (i.e. PLANNING TARGET VOLUME 2)	Middle Hepatic (i.e. Artery2)	Artery
Sum of (Implanted + Necrotic) Tumor SPECT/CT Counts	113,908	counts
Sum of (Implanted + Necrotic) Tumor SPECT/CT VOI	9,739.7	mm3
Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT Counts	0	counts
Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT VOI	0.0	mm3
Sum of Necrotic Tumor SPECT/CT Counts	0	counts
Sum of Necrotic Tumor SPECT/CT VOI	0.0	mm3
Net Implanted, Non-Tumorou's Liver SPECT/CT Counts	1,282,979	counts
Net Implanted, Non-Tumorou's Liver SPECT/CT VOI	345,760,4	mm3
<u>Net Implanted, Non-Tumorous Liver Mass</u>	359,59	gm
Net Implanted Tumor SPECT/CT Counts	113,908	counts
Net Implanted Tumor SPECT/CT VOI	9,739.7	mm3
<u>Net Implanted Tumor Mass</u>	10.13	gm
Implanted, Non-Tumorous Liver Mean SPECT/CT Count Density	3.71	counts/mm3
Implanted Tumor Mean SPECT/CT Count Density	11.70	counts/mm3
Artery-Specific Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density, specific to territory supplied by:	3,15 Middle Hepatic	Artery

ARTERY-SPECIFIC SPECT/CT COUNTS & VOLUMES-OF-I	INTEREST FOR TRI-COMPART	MENTAL MIRD
	Diabilita antia	laters
ARTERIAL TERRITORY SUPPLIED BY:	Right Hepatic	Artery
(i.e. PLANNING TARGET VOLUME 3)	(i.e. Artery3)	
Perfused Territory (Liver + Tumor) SPECT/CT Counts	5,572,305	counts
Perfused Territory (Liver + Tumor) SPECT/CT VOI	1,737,121.1	mm3
Tumor 1 (Implanted + Necrotic) SPECT/CT Counts	133,552	counts
Tumor 1 (Implanted + Necrotic) SPECT/CT VOI	20,291.1	mm3
	20,291.1	Immo
Tumor 2 (Implanted + Necrotic) SPECT/CT Counts	1,403,946	counts
Tumor 2 (Implanted + Necrotic) SPECT/CT VOI	265,509.0	mm3
Tumor 3 (Implanted + Necrotic) SPECT/CT Counts	150,018	counts
Tumor 3 (Implanted + Necrotic) SPECT/CT VOI	14,508.1	mm3
	14,500.1	Junuo
Tumor 4 (Implanted + Necrotic) SPECT/CT Counts	31,206	counts
Tumor 4 (Implanted + Necrotic) SPECT/CT VOI	4,159.7	mm3
Tumor 5 (Implanted + Necrotic) SPECT/CT Counts	78,852	counts
Tumor 5 (Implanted + Necrotic) SPECT/CT VOI	10,652.8	mm3
Tumor 6 (Implanted + Necrotic) SPECT/CT Counts		counts
Tumor 6 (Implanted + Necrotic) SPECT/CT VOI		mm3
Necrotic Tumor 1 SPECT/CT Counts	158,554	counts
Necrotic Tumor 1 SPECT/CT VOI	57,220.9	mm3
Necrotic Tumor 2 SPECT/CT Counts		counts
Necrotic Tumor 2 SPECT/CT VOI		mm3
		Innis

ARTERY-SPECIFIC SPECT/CT MEAN TUMOR-TO-NORMA	L LIVER RATIO CALCUL	ATION
ARTERIAL TERRITORY SUPPLIED BY: (i.e. PLANNING TARGET VOLUME 3)	Right Hepatic (i.e. Artery3)	Artery
Sum of (Implanted + Necrotic) Tumor SPECT/CT Counts Sum of (Implanted + Necrotic) Tumor SPECT/CT VOI	1,797, <mark>5</mark> 74 315,120.7	counts mm3
Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT Counts Sum of Non-Implanted, Non-Tumorous Liver SPECT/CT VOI	0 0.0	counts mm3
Sum of Necrotic Tumor SPECT/CT Counts Sum of Necrotic Tumor SPECT/CT VOI	158,554 57,220.9	counts mm3
Net Implanted, Non-Tumorous Liver SPECT/CT Counts Net Implanted, Non-Tumorous Liver SPECT/CT VOI Net Implanted, Non-Tumorous Liver Mass	3,774,731 1,422,000.4 1,478,88	counts mm3
Net Implanted Tumor SPECT/CT Counts Net Implanted Tumor SPECT/CT VOI	1,639,020 257,899.8	counts mm3
Net Implanted Tumor Mass Implanted, Non-Tumorous Liver Mean SPECT/CT Count Density Implanted Tumor Mean SPECT/CT Count Density	268.22 2.65 6.36	gm counts/mm3 counts/mm3
Artery-Specific Mean Tumor-to-Normal Liver Ratio by Mean SPECT/CT Count Density, specific to territory supplied by:	2.39 Right Hepatic	Artery
,,,,,,		

www.facebook.com/radioembolization

SNM 2011 poster exhibit, dosimetric worksheet and more worked examples are available for download at: www.sgh.com.sg/Clinical-Departments-Centers/Nuclear-Medicine-PET

© Department of Nuclear Medicine and PET Dr Yung H Kao, Email: yung.h.kao@gmail.com