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COOL Is Optimal in Error-Free Asynchronous
Byzantine Agreement

Jinyuan Chen

Abstract

COOL (Chen’21) is an error-free, information-theoretically secure Byzantine agreement (BA) protocol proven
to achieve BA consensus in the synchronous setting for an ℓ-bit message, with a total communication complexity
of O(max{nℓ, nt log q}) bits, four communication rounds in the worst case, and a single invocation of a binary
BA, under the optimal resilience assumption n ≥ 3t+1 in a network of n nodes, where up to t nodes may behave
dishonestly. Here, q denotes the alphabet size of the error correction code used in the protocol.

In this work, we present an adaptive variant of COOL, called OciorACOOL, which achieves error-free,
information-theoretically secure BA consensus in the asynchronous setting with total O(max{nℓ, nt log q})
communication bits, O(1) rounds, and a single invocation of an asynchronous binary BA protocol, still under
the optimal resilience assumption n ≥ 3t+1. Moreover, OciorACOOL retains the same low-complexity, traditional
(n, k) error-correction encoding and decoding as COOL, with k = t/3.

I. INTRODUCTION

Byzantine agreement (BA) has been extensively studied for over forty years [1]. In a BA problem, n
consensus nodes aim to agree on a common ℓ-bit message, where up to t of the nodes may be dishonest.
BA is widely considered as a fundamental building block of Byzantine fault-tolerant distributed systems
and cryptographic protocols [1]–[18].

In the study of multi-valued, error-free BA, significant efforts have been made to improve communication
complexity, round complexity, and resilience [3]–[5], [12]–[15]. In this direction, Chen proposed the
COOL (or OciorCOOL) protocol, which achieves multi-valued, error-free, information-theoretically secure
BA consensus in the synchronous setting, with a communication complexity of O(max{nℓ, nt log q}) bits
and with four communication rounds in the worst case and a single invocation of a binary BA, under the
optimal resilience condition n ≥ 3t+ 1 [3]–[5]. Here, q denotes the alphabet size of the error correction
code used in the protocol.

The COOL protocol introduced two key primitives: Unique Agreement (UA) and Honest-Majority
Distributed Multicast (HMDM).

Unique Agreement: UA is a variant of BA. In UA, each node i inputs an initial value wi and seeks
to produce an output of the form (w, s, v), where s ∈ {0, 1} is a success indicator and v ∈ {0, 1} is a
vote. A UA protocol guarantees three properties. One property of UA is that if two honest nodes output
(w′, 1, ∗) and (w′′, 1, ∗), respectively, then w′ = w′′ (Unique Agreement). Additionally, if an honest node
outputs (∗, ∗, 1), then at least t + 1 honest nodes eventually output (w, 1, ∗) for the same w (Majority
Unique Agreement). Furthermore, if all honest nodes start with the same input value w, then all honest
nodes eventually output (w, 1, 1) (Validity).

Honest-Majority Distributed Multicast: In the HMDM problem, at least t + 1 honest nodes act as
senders, each multicasting a message to all n nodes. The HMDM property ensures that if all honest
senders input the same message w, then every honest node eventually outputs w.

In this work, we present an adaptive variant of COOL, called OciorACOOL, which achieves BA
consensus in the asynchronous setting with total communication O(max{nℓ, nt log q}) bits, O(1) rounds,
and a single invocation of an asynchronous binary BA protocol, under the optimal resilience assumption
n ≥ 3t + 1. Moreover, OciorACOOL retains the same low-complexity, traditional (n, k) error-correction
encoding and decoding as COOL, with k = t/3.

As shown in Fig. 1, the COOL protocol is composed of three main components: COOL-UA, a binary
BA (BBA), and COOL-HMDM. OciorACOOL extends COOL to the asynchronous setting. As shown in
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Fig. 1. A block diagram of the COOL protocol, which consists of the COOL-UA, binary BA, and COOL-HMDM algorithms.
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Fig. 2. A block diagram of the OciorACOOL protocol, which consists of the COOL-UA[1], COOL-UA[2], asynchronous binary BA (ABBA),
binary reliable Byzantine agreement (BRBA), and COOL-HMDM[2] algorithms. If an invoked ABBA algorithm already guarantees the
Totality property, then BRBA is not required in OciorACOOL.

Fig. 2, the OciorACOOL protocol consists of COOL-UA[1], COOL-UA[2], an asynchronous binary BA
(ABBA), a binary reliable Byzantine agreement (BRBA), and COOL-HMDM[2]. Some existing ABBA
protocols require each honest node to have an input value before producing an output. In such cases,
BRBA is employed to ensure the Totality property: if one honest node outputs a value, then every honest
node eventually outputs a value. If the invoked ABBA protocol already guarantees the Totality property,
then BRBA is not required in OciorACOOL.

In the direction of error-free asynchronous BA (ABA), Li and Chen proposed an ABA protocol built on
COOL that achieves communication complexity O(max{nℓ, nt log q}) and expected O(1) rounds, but with
a weaker resilience requirement n ≥ 5t + 1 [9]. Chen later proposed a multi-valued validated Byzantine
agreement protocol with expected communication complexity O(nℓ log n + n2 log q) bits, and expected
O(log n) rounds under the optimal resilience n ≥ 3t + 1 [6]. Another ABA protocol by Chen achieves
expected communication complexity O(nℓ + n3 log n) bits and expected round complexity O(1), under
optimal resilience n ≥ 3t+1 [7]. Erbes and Wattenhofer proposed an ABA protocol with communication
complexity O

(
nℓ

min{1,ϵ2} + n2max{1, log 1
ϵ
}
)

bits and near-optimal resilience t < n
3+ϵ

for some ϵ > 0 [19].
Recently, Abraham and Asharov [20] built upon COOL by incorporating list decoding [21], [22] for an

(n, k′) error correction code with k′ = t/7, achieving asynchronous BA consensus with a communication
complexity of O(max{nℓ, n2 log n}) bits and a single invocation of a binary BA protocol. However,
compared to traditional unique decoding of error correction codes, list decoding is less mature in terms
of practical implementations. Therefore, off-the-shelf error correction code decoders cannot be directly
used for the protocol in [20].
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In contrast, OciorACOOL achieves error-free ABA without relying on list decoding. It retains the
same low-complexity, traditional (n, k) error-correction encoding and decoding as COOL, with k = t/3.
Compared to the protocol in [20], OciorACOOL achieves a smaller communication cost, providing at least
a 57% reduction in total communication.

A. Primitives

Information-Theoretic (IT) Protocol. A protocol that guarantees all required properties without relying
on any cryptographic assumptions–such as digital signatures or hash functions–except for the common
coin or binary BA assumptions, is said to be information-theoretically secure.

Error-Free Protocol. Under the common coin or binary BA assumptions, a protocol that guarantees all
required properties in every execution is said to be error-free.

Error Correction Code (ECC). An (n, k) error correction code consists of an encoding function
ECCEnc : Fk

q → Fn
q and a decoding function ECCDec : Fn⋄

q → Fk
q , where Fq denotes the alphabet

of each symbol, and n⋄ ≤ n represents the number of symbols available for decoding. Specifically, the
encoding [y1, y2, . . . , yn]← ECCEnc(n, k,w) outputs n encoded symbols, where yj(w) denoted the j-th
symbol encoded from the message w. An (n, k) Reed-Solomon (RS) code can correct up to t Byzantine
(arbitrary) errors in n⋄ observed symbols, provided that 2t + k ≤ n⋄ and n⋄ ≤ n. The RS code operates
over a finite field Fq, subject to the constraint n ≤ q − 1 (cf. [23]), where q denotes the alphabet size.
Since RS codes are limited by the constraint n ≤ q − 1, alternative error correction codes with constant
alphabet size, such as expander codes [24], can be used instead.

Online Error Correction (OEC). Online error correction is particularly useful for decoding messages in
asynchronous settings [25]. A node may not be able to decode the message from n⋄ symbol observations,
when the actual number of Byzantine errors among these observations, denoted by t⋄, satisfies 2t⋄+k > n⋄.
In such cases, the node waits for an additional symbol before attempting to decode again. This procedure
repeats until the message is successfully reconstructed. In the worst case, OEC may perform up to t such
trials before decoding the message.

Definition 1 (Byzantine Agreement (BA)). In a BA protocol, consensus nodes aim to reach an agreement
on a common value. It guarantees three properties:

• Termination: If all honest nodes have received their inputs, then every honest node eventually
produces an output and terminates.

• Consistency: If any honest node outputs a value w, then all honest nodes eventually output the same
value w.

• Validity: If all honest nodes start with the same input value w, then every honest node eventually
outputs w.

Definition 2 (Reliable Byzantine Agreement (RBA)). RBA is a variant of both the Byzantine agreement
and reliable broadcast problems. An RBA protocol guarantees the following three properties:

• Consistency: If any two honest nodes output w′ and w′′, respectively, then w′ = w′′.
• Validity: Same as in BA.
• Totality: If one honest node outputs a value, then every honest node eventually outputs a value.

The proposed OciorACOOL uses a binary RBA (BRBA), which is described in Lines 27-33 of
Algorithm 1. In Algorithm 4, we provide an optimal, error-free, multi-valued RBA protocol, denoted
as OciorRBA, which is an updated version of Algorithm 4 in [6]. The OciorRBA protocol achieves error-
free multi-valued RBA consensus with a total communication complexity of O(max{nℓ, n2 log q}) bits,
requiring at most five asynchronous communication rounds in the worst case (four rounds in the good case,
when all honest nodes have the same input message), under the optimal resilience condition n ≥ 3t+ 1.
The proof of OciorRBA is similar to that of the OciorRBC protocol (see the proof of OciorRBC in [5]).
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Definition 3 (Reliable Broadcast (RBC)). In the reliable broadcast problem, a designated leader
disseminates an input message to n nodes. A protocol implementing RBC must satisfy the following
properties:

• Consistency: Same as in RBA.
• Validity: If the leader is honest and broadcasts a value w, every honest node eventually outputs w.
• Totality: Same as in RBA.

In Algorithm 5, we present an optimal, error-free, multi-valued, balanced RBC protocol, denoted as
OciorRBC, which is an updated version of Algorithm 3 in [5]. The OciorRBC protocol achieves error-
free multi-valued RBC consensus with a total communication complexity of O(max{nℓ, n2 log q}) bits
(a per-node communication complexity of O(max{ℓ, n log q}) bits), requiring at most six asynchronous
communication rounds in the worst case (or five rounds in the good case, without balanced communication),
under the optimal resilience condition n ≥ 3t+ 1 (see the proof of OciorRBC in [5]).

Definition 4 (Honest-Majority Distributed Multicast (HMDM) [3]–[5]). In the distributed multicast
(DM) problem, a subset of nodes acts as senders that multicast messages to all n nodes, where up to t
nodes may be dishonest. Each sender node has its own input message. A protocol is called a DM protocol
if it satisfies the following property:

• Validity: If all honest senders input the same message w, then every honest node eventually outputs
w.

The DM problem is referred to as an honest-majority distributed multicast (HMDM) if at least t+1 of the
senders are honest. The HMDM abstraction was used as a building block in the COOL protocol [3]–[5].

Definition 5 (Strongly-Honest-Majority Distributed Multicast (SHMDM) [6]). A distributed multicast
problem is called a strongly-honest-majority distributed multicast if the set of senders is fixed and denoted
by S ⊆ [n], where |S| ≥ 3t+ 1. A SHMDM protocol satisfies the following property:

• Validity: If all honest senders in S input the same message w, then every honest node eventually
outputs w.

Definition 6 (Unique Agreement (UA) [3]–[5]). In a UA protocol, each node begins with an initial input
value and aims to produce an output of the form (w, s, v), where s ∈ {0, 1} denotes a success indicator
and v ∈ {0, 1} represents a vote. A UA protocol must satisfy the following properties:

• Unique Agreement: If two honest nodes output (w′, 1, ∗) and (w′′, 1, ∗), respectively, then w′ = w′′.
• Majority Unique Agreement: If an honest node outputs (∗, ∗, 1), then at least t + 1 honest nodes

eventually output (w, 1, ∗) for the same w.
• Validity: If all honest nodes begin with the same input value w, then all honest nodes eventually

output (w, 1, 1).

Notations: In an asynchronous setting, when measuring communication rounds, we use asynchronous
rounds, where each round need not be synchronized across the distributed nodes. Let := denote “is defined
as.” Let ⊥ denote a default or empty value. Let [b] := {1, 2, . . . , b} and [a, b] := {a, a+1, a+2, . . . , b} for
integers a and b. We use f(x) = O(g(x)) to denote that lim supx→∞

|f(x)|
g(x)

<∞. We use f(x) = Ω(g(x))

to denote that lim infx→∞
f(x)
g(x)

> 0. We use f(x) = Õ(g(x)) to mean that lim supx→∞
|f(x)|

(log x)ag(x)
<∞ for

some constant a ≥ 0.

II. OciorACOOL

The proposed OciorACOOL is an error-free asynchronous Byzantine agreement protocol. OciorACOOL
does not rely on any cryptographic assumptions such as signatures or hashing, except for a single invocation
of an asynchronous binary BA protocol. OciorACOOL is an adaptive variant of COOL.
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Algorithm 1 OciorACOOL protocol with identifier ID. Code is shown for Node i for i ∈ [n].
// ** We use s̄

[1]
i , s̄

[2]
i , S̄[1]

1 , S̄[1]
0 , S̄[2]

1 , S̄[2]
0 , v̄i, w̄

(i), {(ȳ(j)
i , ȳ

(j)
j )}j to denote the corresponding values delivered from COOL-UA[1] **

// ** We use s̃
[1]
i , s̃

[2]
i , S̃[1]

1 , S̃[1]
0 , S̃[2]

1 , S̃[2]
0 , ṽi, w̃

(i), {(ỹ(j)
i , ỹ

(j)
j )}j to denote the corresponding values delivered from COOL-UA[2] **

1: Initially set k ← t/3; w̃i ← ⊥;w(i) ← ⊥; Ioec = 0; Ioecfinal ← 0; Ȳoec ← {};Yoec ← {};M← {}; I3 ← 0; y̌i ← ⊥
2: wait until the delivery of s̄[1]i , s̄[2]i , S̄[1]

1 , S̄[1]
0 , S̄[2]

1 , S̄[2]
0 from COOL-UA[1] and s̃

[1]
i , s̃[2]i , S̃[1]

1 , S̃[1]
0 , S̃[2]

1 , S̃[2]
0 from COOL-UA[2]

// ******************** COOL-UA[1]********************
3: upon receiving a non-empty message input wi do:
4: pass wi into COOL-UA[1] as an input value

// ******************** Set the Input Value w̃i for COOL-UA[2]********************
5: upon receiving (NewSYMBOL, ID, y̌j) from Node j for the first time, and j /∈ Ȳoec do:
6: Ȳoec[j]← y̌j
7: if |Ȳoec| ≥ k + t and Ioec = 0 then // online error correcting (OEC)
8: ŵ ← ECCDec(n, k, Ȳoec)
9: [y1, y2, · · · , yn]← ECCEnc(n, k, ŵ)

10: if at least k + t symbols in [y1, y2, · · · , yn] match with those in Ȳoec then set w̃i ← ŵ and Ioec ← 1

11: upon COOL-UA[1] having delivered (SYMBOL, 1, (∗, ȳ(j)
j )) and S̄[1]

1 such that j ∈ S̄[1]
1 , and j /∈ Ȳoec do:

12: Ȳoec[j]← ȳ
(j)
j

13: run the OEC steps as in Lines 7-10
14: upon delivery of (SYMBOL, 1, (ȳ

(j)
i , ∗)) from COOL-UA[1] do:

15: if ȳ(j)
i ∈ M then M[ȳ

(j)
i ]← M[ȳ

(j)
i ] ∪ {j} else M[ȳ

(j)
i ]← {j}

16: upon (|M[y⋆] ∪ S̄[2]
0 | ≥ n− t) ∧ (|M[y⋆]| ≥ n− 2t) ∧ (s̄

[1]
i ̸= 1) ∧ (y̌i = ⊥) for some y⋆ do: // s̄[1]i , S̄[2]

0 updated from COOL-UA[1]
17: set y̌i ← y⋆; and send (NewSYMBOL, ID, y̌i) to all nodes

// ******************** COOL-UA[2] ********************
18: upon delivery of s̄[2]i = 1 from COOL-UA[1], and COOL-UA[2] has no input message yet do:
19: set w̃i ← wi

20: pass w̃i into COOL-UA[2] as an input message
21: upon w̃i ̸= ⊥, and COOL-UA[2] has no input message yet do:
22: pass w̃i into COOL-UA[2] as an input message

// ******************** ABBA ********************
23: upon delivery of [w̃(i), s̃

[2]
i , ṽi] from COOL-UA[2], and ABBA has no input yet do:

24: pass ṽi into ABBA as an input message // an asynchronous binary BA (ABBA) protocol
25: upon delivery of [w̄(i), s̄

[2]
i , v̄i = 0] or s̄[2]i = 0 from COOL-UA[1], and ABBA has no input yet do:

26: pass 0 into ABBA as an input message
// ******************** Binary RBA (BRBA)********************

27: upon ABBA outputting v⋆ do:
28: send (READY, ID, v⋆) to all nodes
29: upon receiving t+ 1 (READY, ID, v) messages from different nodes for the same v, and (READY, ID, ∗) not yet sent do:
30: send (READY, ID, v) to all nodes
31: upon receiving 2t+ 1 (READY, ID, v) messages from different nodes for the same v do:
32: set v⋄ ← v
33: if v⋄ = 0 then output w(i) = ⊥ and terminate else set I3 ← 1

// ******************** COOL-HMDM[2] ********************
34: upon I3 = 1 do: // only after executing Line 33
35: if COOL-UA[2] has delivered [w̃(i), s̃

[2]
i , ṽi] with s̃

[2]
i = 1 then

36: output w̃(i) and terminate
37: else
38: wait until COOL-UA[2] delivering at least t+ 1 (SYMBOL, 2, (ỹ

(j)
i , ∗)), ∀j ∈ S̃[2]

1 , for the same ỹ
(j)
i = y⋆, for some y⋆

39: ỹ
(i)
i ← y⋆ // update coded symbol based on majority rule

40: send (CORRECT, ID, ỹ
(i)
i ) to all nodes

41: wait until Ioecfinal = 1
42: output w(i) and terminate
43: upon receiving (CORRECT, ID, ỹ

(j)
j ) from Node j for the first time, j /∈ Yoec, and Ioecfinal = 0 do:

44: Yoec[j]← ỹ
(j)
j

45: if |Yoec| ≥ k + t then // online error correcting
46: ŵ ← ECCDec(n, k,Yoec)
47: [y1, y2, · · · , yn]← ECCEnc(n, k, ŵ)
48: if at least k + t symbols in [y1, y2, · · · , yn] match with those in Yoec then set w(i) ← ŵ and Ioecfinal ← 1

49: upon COOL-UA[2] having delivered (SYMBOL, 2, (∗, ỹ(j)
j )) and S̃[2]

1 such that j ∈ S̃[2]
1 , and j /∈ Yoec, and Ioecfinal = 0 do:

50: Yoec[j]← ỹ
(j)
j

51: run the OEC steps as in Lines 45-48
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Algorithm 2 COOL-UA protocol in asynchronous setting, with identifier ID. Code is shown for Node i.

// ** This COOL-UA protocol continuously updates and delivers the values s
[1]
i , s

[2]
i , S[1]

1 , S[1]
0 , S[2]

1 , S[2]
0 , vi,w

(i), {(y(j)
i , y

(j)
j )}j to the

main protocol that invokes it. It terminates when the main protocol terminates. **

1: Initially set k ← t/3;U0 ← {};U1 ← {}; S[1]
0 ← {}; S[1]

1 ← {}; S[2]
0 ← {}; S[2]

1 ← {};w(i) ← ⊥; Iecc ← 0; s
[1]
i ← ⊥; s[2]i ←

⊥; vi ← ⊥ // ⊥ is a default value or an empty value
2: deliver s

[1]
i , s[2]i , S[1]

1 , S[1]
0 , S[2]

1 , S[2]
0

Phase 1
3: upon receiving a non-empty message input wi do:
4: w(i) ← wi; [y

(i)
1 , y

(i)
2 , · · · , y(i)

n ]← ECCEnc(n, k,wi)

5: send (SYMBOL, ID, (y
(i)
j , y

(i)
i )) to Node j, ∀j ∈ [n]

6: Iecc ← 1

7: upon receiving (SYMBOL, ID, (y
(j)
i , y

(j)
j )) from Node j for the first time do:

8: wait until Iecc = 1
9: if (y(j)

i , y
(j)
j ) = (y

(i)
i , y

(i)
j ) then U1 ← U1 ∪ {j} else U0 ← U0 ∪ {j}

10: deliver (SYMBOL, ID, (y
(j)
i , y

(j)
j ))

11: upon (|U1| ≥ n− t) ∧ (s
[1]
i = ⊥) do:

12: set s[1]i ← 1; send (SI1, ID, s
[1]
i ) to all nodes; and deliver s

[1]
i

13: upon (|U0| ≥ t+ 1) ∧ (s
[1]
i = ⊥) do:

14: set s[1]i ← 0; send (SI1, ID, s
[1]
i ) to all nodes; and deliver s

[1]
i

15: upon receiving (SI1, ID, s
[1]
j ) from Node j for the first time do:

16: if s[1]j = 1 then S[1]
1 ← S[1]

1 ∪ {j} else S[1]
0 ← S[1]

0 ∪ {j}
17: deliver S[1]

1 and S[1]
0

Phase 2
18: upon ((s

[1]
i = 0) ∨ (|S[1]

0 ∪ U0| ≥ t+ 1)) ∧ (s
[2]
i = ⊥) do:

19: set s[2]i ← 0; send (SI2, ID, s
[2]
i ) to all nodes; and deliver s

[2]
i

20: upon (s
[1]
i = 1) ∧ (|S[1]

1 ∩ U1| ≥ n− t) ∧ (s
[2]
i = ⊥) do:

21: set s[2]i ← 1; send (SI2, ID, s
[2]
i ) to all nodes; and deliver s

[2]
i

22: upon receiving (SI2, ID, s
[2]
j ) from Node j for the first time do:

23: if s[2]j = 1 then S[2]
1 ← S[2]

1 ∪ {j} else S[2]
0 ← S[2]

0 ∪ {j}
24: deliver S[2]

1 and S[2]
0

25: upon |S[2]
1 | ≥ n− t do:

26: vi ← 1; and deliver [w(i), s
[2]
i , vi]

27: upon |S[2]
0 | ≥ t+ 1 do:

28: vi ← 0; and deliver [w(i), s
[2]
i , vi]

A. Revisiting COOL for the Synchronous Setting

Before presenting the proposed OciorACOOL protocol for the asynchronous setting, we first revisit
the original COOL (or OciorCOOL) protocol designed for the synchronous setting. Note that the original
COOL protocol consists of the following components: the COOL-UA, binary BA, and the COOL-HMDM
algorithms, as shown in Fig. 1.

1) COOL-UA: COOL-UA is a UA algorithm in which each node i inputs an initial value wi and
aims to produce an output (w, s, v), where w is the updated message, s ∈ {0, 1} is a success indicator,
and v ∈ {0, 1} is a vote. COOL-UA guarantees three properties: Unique Agreement, Majority Unique
Agreement, and Validity (see Definition 6).

2) Binary BA: After obtaining outputs from COOL-UA, each node i passes its vote v to the binary
BA consensus as input. The binary BA consensus ensures that all honest nodes reach the same decision
on whether to terminate at the end of the binary BA or proceed to the COOL-HMDM phase.

3) COOL-HMDM: By the Consistency and Validity properties of the binary BA consensus, if any honest
node enters the COOL-HMDM phase, it is guaranteed that at least one honest node has voted v = 1 in the
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binary BA consensus. In this case, by the Unique Agreement and Majority Unique Agreement properties
of UA, at least t + 1 honest nodes must have output (w, 1, ∗) from COOL-UA for the same w. This
condition satisfies the HMDM requirement in distributed multicast, i.e., at least t+ 1 senders are honest.

HMDM guarantees the Validity property: if all honest senders (with at least t + 1 honest senders)
input the same message w, then every honest node eventually outputs w in HMDM. COOL-HMDM is
an HMDM algorithm that ensures that the encoded symbols from honest nodes can be calibrated using
a majority rule, so that the calibrated symbols are encoded from the same w. Consequently, all honest
nodes eventually decode and output the same final message.

B. The Challenge of COOL in the Asynchronous Setting
It can be verified that the COOL protocol satisfies the Consistency and Validity properties in the

asynchronous setting. However, the main challenge lies in ensuring termination for the COOL protocol
under asynchrony. To illustrate this challenge, we consider the following example.

Let wi denote the initial message of node i, and let F denote the index set of all dishonest nodes. We
define the index groups of honest nodes as

Al := {i ∈ [n] \ F | wi = w̄l},

for l ∈ [η], where w̄1, w̄2, . . . , w̄η are distinct non-empty ℓ-bit values and η is an integer. Let us consider
the following example:

Example: n = 3t+ 1, |A1| = n− t− |F|, |A2| = t, |F| = t.

In this asynchronous setting, the honest nodes in A1 may be unable to produce outputs (w, s, v) in
COOL-UA (see Algorithm 2). Intuitively, for this example, as shown in Algorithm 2, each honest node i
in A2 eventually sets its success indicators to s

[2]
i = s

[1]
i = 0 (see Lines 9, 14, and 19) because of the

mismatched initial messages between the honest nodes in A1 and A2 (see Line 9). However, each honest
node i in A1 may be unable to update the values of s

[2]
i and s

[1]
i if the dishonest nodes do not send

messages to the honest nodes in A1 (see Algorithm 2).
In the following, we introduce the OciorACOOL protocol, an adaptive variant of COOL, which resolves

the termination challenge in the asynchronous setting while preserving the Consistency and Validity
properties.

C. Overview of OciorACOOL for asynchronous stetting
The proposed OciorACOOL protocol is described in Algorithm 1 and supported by Algorithm 2. We

here provide an overview of the proposed OciorACOOL, which mainly consists of the COOL-UA[1],
COOL-UA[2], asynchronous binary BA (ABBA), binary RBA (BRBA), and COOL-HMDM[2] algorithms.
Note that the original COOL protocol comprises the COOL-UA, binary BA (BBA), and COOL-HMDM
algorithms.

As shown in the previous subsection, in the asynchronous setting, some honest nodes may be unable to
produce outputs (w, s, v) in COOL-UA[1] (see Algorithm 2). The design of OciorACOOL guarantees that
all honest nodes eventually terminate, while preserving the Consistency and Validity properties. Before
describing the OciorACOOL protocol, we first introduce several definitions.

In COOL-UA, the values of s[1]i and s
[2]
i are initially set to s

[1]
i = ⊥ and s

[2]
i = ⊥, respectively, where ⊥

denotes a default or empty value. Let

Ä[p]
l := { i ∈ [n] \ F | wi = w̄l, s

[p]
i ̸= 0 }, l ∈ [η̈[p]], p ∈ [2],

for some non-negative integers η, η̈[1], and η̈[2] satisfying η̈[2] ≤ η̈[1] ≤ η. In the definition of Ä[p]
l , we

consider the final value of s
[p]
i if it has been updated. Intuitively, Ä[p]

l represents the indices of honest
nodes that eventually set the success indicator s[p]i = 1 or never update s

[p]
i .
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We prove in Lemma 10 that if all honest nodes eventually input their initial messages and keep running
the COOL-UA protocol, then it holds that

η̈[2] ≤ 1,

i.e., every honest node i eventually sets s
[2]
i = 0 for all i ∈ Al and all l ∈ [2, η]. In the following, we

consider two possible cases for COOL-UA[1]:

Case I: |Ä[2]
1 | ≥ n− |F| − t,

Case II: |Ä[2]
1 | < n− |F| − t.

The OciorACOOL protocol guarantees that, by combining the following algorithms, for each of the above
two cases, all honest nodes eventually terminate, while preserving the Consistency and Validity properties.

For notational convenience, we use s̄
[1]
i , s̄

[2]
i , S̄[1]

1 , S̄[1]
0 , S̄[2]

1 , S̄[2]
0 , v̄i, w̄

(i), {(ȳ(j)i , ȳ
(j)
j )}j to denote the

corresponding values delivered from COOL-UA[1]. Similarly, we use s̃
[1]
i , s̃

[2]
i , S̃[1]

1 , S̃[1]
0 , S̃[2]

1 , S̃[2]
0 , ṽi, w̃

(i),
{(ỹ(j)i , ỹ

(j)
j )}j to denote the corresponding values delivered from COOL-UA[2].

Here, s̄[1]i and s̄
[2]
i (and s̃

[1]
i and s̃

[2]
i ) denote the success indicators of Node i at Phase 1 and Phase 2,

respectively (see Lines 12, 14, 19, and 21 of Algorithm 2). S̄[p]
b (and S̃[p]

b ) denotes the index set containing
the nodes that send s̄

[p]
i = b, for b ∈ {0, 1} and p ∈ {1, 2} (see Lines 17 and 24 of Algorithm 2). v̄i (and

ṽi) denotes the binary vote value. (ȳ(j)i , ȳ
(j)
j ) (and (ỹ

(j)
i , ỹ

(j)
j )) denotes the pair consisting of the i-th and

the j-th coded symbols sent from Node j.
1) COOL-UA[1]: COOL-UA[1] is a UA algorithm, presented in Algorithm 2, in which each node i

inputs an initial value wi and aims to produce an output (w, s, v), where w is the updated message,
s ∈ {0, 1} is a success indicator, and v ∈ {0, 1} is a vote. COOL-UA[1] guarantees three properties:
Unique Agreement, Majority Unique Agreement, and Validity (see Definition 6).

As mentioned earlier, some honest nodes may be unable to produce outputs (w, s, v) in COOL-UA[1].
However, COOL-UA[1] may still update and deliver the following values and sets to the main protocol
that invokes it: s̄[1]i , s̄

[2]
i , S̄[1]

1 , S̄[1]
0 , S̄[2]

1 , S̄[2]
0 , and {(ȳ(j)i , ȳ

(j)
j )}j .

2) Set the Input Value w̃i for COOL-UA[2]: The goal of this phase is to set the input message for
COOL-UA[2] by executing the steps in Lines 6-17 of Algorithm 1. This phase ensures that, in Case I, if all
honest nodes eventually input their initial messages to OciorACOOL and keep running the OciorACOOL
protocol, then all honest nodes eventually input the same value w̃i = w̄1 into COOL-UA[2] as the input
messages (see Lemma 4). Here, w̄1 is the initial message of all honest nodes within Ä[2]

1 for COOL-UA[1].
3) COOL-UA[2]: COOL-UA[2] is also a UA algorithm, which guarantees three properties: Unique

Agreement, Majority Unique Agreement, and Validity. In Case I, if all honest nodes keep running the
OciorACOOL protocol, and given the conclusion that in this case every honest node i eventually inputs
the same message w̃i = w̄1 to COOL-UA[2] (see Lemma 4), then every honest node i eventually sets
s̃
[1]
i = 1 (see Lines 11 and 12 of Algorithm 2), every honest node i eventually sets s̃[2]i = 1 (see Lines 20 and

21 of Algorithm 2), and every honest node i eventually sets ṽi = 1 (see Lines 25 and 26 of Algorithm 2).
In this case, every honest node i eventually delivers [w̃(i), s̃

[2]
i , ṽi = 1] from COOL-UA[2] (see Line 26 of

Algorithm 2).
4) ABBA and BRBA: ABBA executes the steps in Lines 23-26 of Algorithm 1, while BRBA executes

the steps in Lines 27-33.
In Case I, every honest node i eventually inputs the value 1 into ABBA, if node i has not already

provided an input to ABBA (see Lines 23 and 24 of Algorithm 1). Hence, in Case I, ABBA eventually
outputs a value v⋆ ∈ {1, 0} at each node, due to the Termination and Consistency properties of ABBA.
Then, every honest node eventually sends (READY, ID, v⋆) to all nodes in Line 28 of Algorithm 1, and
every honest node eventually sets v⋄ = v⋆ in Line 32 of Algorithm 1.

In Case II, the condition |S[2]
0 | ≥ t + 1 in Line 27 of Algorithm 2 is eventually satisfied at all honest

nodes, and each honest node i eventually sets v̄i = 0 and delivers [w̄(i), s̄
[2]
i , v̄i = 0] from COOL-UA[1].
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Consequently, in Case II each honest node i eventually passes 0 into ABBA as its input message, if
node i has not already provided an input to ABBA (see Lines 25 and 26 of Algorithm 1). In this case,
every honest node eventually provides an input to ABBA, and hence ABBA eventually outputs a value
v⋆ ∈ {1, 0} at each node, due to the Termination property of ABBA. Then, every honest node eventually
sends (READY, ID, v⋆) to all nodes in Line 28 of Algorithm 1, and every honest node eventually sets
v⋄ = v⋆ in Line 32 of Algorithm 1.

If v⋆ = 0, then all honest nodes eventually output ⊥ and terminate in Line 33 of Algorithm 1. If v⋆ = 1,
then all honest nodes eventually go to the COOL-HMDM[2] phase.

5) COOL-HMDM[2]: By the Consistency and Validity properties of the ABBA consensus, if any honest
node enters the COOL-HMDM[2] phase, it is guaranteed that at least one honest node has voted v = 1 in
the ABBA consensus. In this case, by the Unique Agreement and Majority Unique Agreement properties
of COOL-UA[2], at least t + 1 honest nodes must have output (w, 1, ∗) from COOL-UA[2] for the same
w. This condition satisfies the HMDM requirement in distributed multicast, i.e., at least t+1 senders are
honest.

HMDM guarantees the Validity property: if all honest senders (with at least t+1 honest senders) input
the same message w, then every honest node eventually outputs w in HMDM. COOL-HMDM[2] is an
HMDM algorithm, executed in Lines 34-51 of Algorithm 1. Therefore, all honest nodes eventually decode
and output the same final message.

D. Analysis of OciorACOOL
Our analysis closely follows that of COOL and OciorCOOL [3]–[5]. Here, we use notations consistent

with that previously used for COOL and OciorCOOL. Here we use wi to denote the initial value of Node i.
If Node i never sets an initial value, then wi is considered as wi = ⊥, where ⊥ denotes a default value
or an empty value. The values of s

[1]
i and s

[2]
i are initially set to s

[1]
i = ⊥ and s

[2]
i = ⊥, respectively. The

set F is defined as the set of indices of all dishonest nodes. We let [n] := {1, 2, . . . , n}. We define some
groups of honest nodes as

Al :={i ∈ [n] \ F | wi = w̄l}, l ∈ [η] (1)

A[p]
l :={i ∈ [n] \ F | wi = w̄l, s

[p]
i = 1}, l ∈ [η[p]], p ∈ [2] (2)

Ä[p]
l :={i ∈ [n] \ F | wi = w̄l, s

[p]
i ̸= 0}, l ∈ [η̈[p]], p ∈ [2] (3)

B[p] :={i ∈ [n] \ F | s[p]i = 0}, p ∈ [2] (4)

B̈[p] :={i ∈ [n] \ F | s[p]i ̸= 1}, p ∈ [2] (5)

for some non-empty ℓ-bit distinct values w̄1, w̄2, · · · , w̄η and some non-negative integers
η, η[1], η[2], η̈[1], η̈[2] such that η[2] ≤ η[1] ≤ η, η̈[2] ≤ η̈[1] ≤ η, η[1] ≤ η̈[1], and η[2] ≤ η̈[2]. In the above
definitions, we consider the final value of s

[p]
i if it has been updated. Group Al (and Groups A[p]

l , Ä[p]
l )

can be divided into some possibly overlapping sub-groups defined as

Al,j :={i ∈ Al | hT

i w̄l = hT

i w̄j}, j ̸= l, j, l ∈ [η] (6)
Al,l :=Al \

(
∪η

j=1,j ̸=lAl,j

)
, l ∈ [η] (7)

A[p]
l,j :={i ∈ A

[p]
l | h

T

i w̄l = hT

i w̄j}, j ̸= l, j, l ∈ [η[p]], p ∈ [2] (8)

A[p]
l,l :=A

[p]
l \

(
∪η

[p]

j=1,j ̸=lA
[p]
l,j

)
, l ∈ [η[p]], p ∈ [2] (9)

Ä[p]
l,j :={i ∈ Ä

[p]
l | h

T

i w̄l = hT

i w̄j}, j ̸= l, j, l ∈ [η̈[p]], p ∈ [2] (10)

Ä[p]
l,l :=Ä

[p]
l \

(
∪η̈[p]

j=1,j ̸=lÄ
[p]
l,j

)
, l ∈ [η̈[p]], p ∈ [2] (11)

where hi is the encoding vector of the error-correction code, such that the i-th encoded symbol is computed
as yi = h⊤

i w, given the input vector w, for i ∈ [n]. If a non-linear encoding is used, then the i-th encoded
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symbol is computed as yi = fi(w), where fi(•) is a polynomial function evaluated at the i-th point. In this
case, we can simply replace the term h⊤

i w̄l with fi(w). For consistency, however, we retain the original
definition with linear encoding.

We use ui(j) ∈ {0, 1} to denote the link indicator between Node i and Node j, defined as

ui(j) =

{
1 if (y(j)i , y

(j)
j ) = (y

(i)
i , y

(i)
j ), (12)

0 otherwise,

(see Line 9 of Algorithm 2). In our setting, it holds true that ui(j) = uj(i) for any i, j ∈ [n] \ F . If
(y

(i)
i , y

(i)
j ) are never sent out by Node i or (y

(j)
i , y

(j)
j ) are never sent out by Node j, then we consider

ui(j) = uj(i) = 0.
Here we let

U(i)
1 := {j ∈ [n] | (y(j)i , y

(j)
j ) = (y

(i)
i , y

(i)
j )}, and U(i)

0 := {j ∈ [n] | (y(j)i , y
(j)
j ) ̸= (y

(i)
i , y

(i)
j )} (13)

denote the link indicator sets U1 and U0 updated by Node i, as described in Line 9 of Algorithm 2. Here
y
(j)
i = hT

iwj and y
(j)
j = hT

jwj are the i-th and the j-th coded symbols encoded from the input message
wj of Node j. We define

V(i)
1 := U(i)

1 \ F , and V(i)
0 := U(i)

0 \ F . (14)

Theorems 1-4 present the main results of OciorACOOL. Specifically, Theorems 1-3 show that
OciorACOOL satisfies the Consistency, Validity, and Termination properties in all executions (error-free),
under the assumption of an error-free ABBA invoked in this protocol. From Theorem 4, it reveals that
OciorACOOL is optimal in terms of communication complexity, round complexity and resilience.

Theorem 1 (Consistency). In OciorACOOL, given n ≥ 3t + 1, if one honest node outputs a value w⋆,
then every honest node eventually outputs a value w⋆, for some w⋆.

Proof. In OciorACOOL, if an honest node outputs a value w⋆, it must have set the variable v⋄ in Line 32
of Algorithm 1. From Lemma 2, if an honest node sets v⋄ = v⋆ in Line 32 of Algorithm 1, for v⋆ ∈ {0, 1},
then all honest nodes eventually set v⋄ = v⋆. Therefore, if one honest node sets v⋄ = 0, then all honest
nodes eventually set v⋄ = 0 and output ⊥ in Line 33 of Algorithm 1. In the following, we focus on the
case where all honest nodes eventually set v⋄ = 1.

When an honest node sets v⋄ = 1, it implies that ABBA must have output the value 1 (see Lines 27-32
of Algorithm 1). Due to the Validity and Consistency properties of ABBA, if ABBA outputs the value 1,
then at least one honest node i has input the value 1 to ABBA and has delivered ṽi = 1 from COOL-UA[2]
(see Lines 23 and 24 of Algorithm 1). When an honest node i has delivered ṽi = 1 from COOL-UA[2],
at least n− 2t honest nodes must have set s̃[2]j = 1 in COOL-UA[2] (see Lines 25 and 26 of Algorithm 2).

From Lemma 10, the honest nodes that set s̃[2]i = 1 in COOL-UA[2] must have the same input message
w̃(i) = w⋆, for some w⋆. If an honest node i has set v⋄ = 1 and has delivered [w̃(i), s̃

[2]
i = 1, ṽi] from

COOL-UA[2], then this node outputs the value w̃(i) = w⋆ (see Line 36 of Algorithm 1).
If an honest node i has set v⋄ = 1 but has not yet delivered [w̃(i), s̃

[2]
i = 1, ṽi] from COOL-UA[2], it can

be shown that this node will eventually output the same value w⋆ in Line 42 of Algorithm 1. Recall that
when an honest node has delivered ṽ = 1 from COOL-UA[2], at least n− 2t ≥ t+ 1 honest nodes must
have set s̃[2]i = 1 in COOL-UA[2]. In this case, from Lemma 10, at least t + 1 honest nodes i must have
set s̃[2]i = 1 and have sent (SYMBOL, 2, (ỹ

(i)
j (w⋆), ỹ

(i)
i (w⋆))) to Node j, for all j ∈ [n], where ỹ

(i)
j (w⋆)

and ỹ
(i)
i (w⋆) denote the coded symbols generated from the message w⋆.

From the above results, if an honest node i has set v⋄ = 1 but has not yet delivered [w̃(i), s̃
[2]
i =

1, ṽi] from COOL-UA[2], then it will eventually deliver from COOL-UA[2] at least t + 1 matching
(SYMBOL, 2, (ỹ

(j)
i (w⋆), ∗)) messages for all j ∈ S̃[2]

1 , where ỹ
(j)
i (w⋆) = y⋆i for some y⋆i , which is the

i-th symbol encoded from the message w⋆. In this case, Node i sets ỹ
(i)
i = y⋆i in Line 39 and sends
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(CORRECT, ID, ỹ
(i)
i ) to all nodes in Line 40. Thus, each symbol y

(j)
j included in Yoec \ F must be

encoded from the same message w⋆. Therefore, if an honest node i has set v⋄ = 1 but has not yet
delivered [w̃(i), s̃

[2]
i = 1, ṽi] from COOL-UA[2], it will eventually decode the message w⋆ using online

error-correction decoding and output w⋆ in Line 42 of Algorithm 1.

Theorem 2 (Validity). Given n ≥ 3t+ 1, if all honest nodes input the same value w, then every honest
node eventually outputs w in OciorACOOL.

Proof. From Theorem 3, if all honest nodes receive their inputs, then every honest node eventually outputs
a value and terminates in OciorACOOL. Furthermore, from Theorem 1, in OciorACOOL, if one honest
node outputs a value w⋆, then every honest node eventually outputs the same value w⋆, for some w⋆.
Thus, based on Theorem 3 and Theorem 1, what remains to prove for this theorem is that if all honest
nodes input the same value w, and if an honest node i outputs a value w⋆ in OciorACOOL, then w⋆ = w.

First, we prove that if all honest nodes input the same message w in OciorACOOL, then in COOL-UA[1],
no honest node will set s[1]i = 0 (see Lines 13 and 14 of Algorithm 2), no honest node will set s[2]i = 0
(see Lines 18 and 19 of Algorithm 2), and no honest node will set vi = 0 (see Lines 27 and 28 of
Algorithm 2). Specifically, in this case, if an honest node i sends out the message in Line 5 of Algorithm 2,
then the message must be (SYMBOL, ID, (y

(i)
j (w), y

(i)
i (w))), where y

(i)
j (w) and y

(i)
i (w) are symbols

encoded from the message w (see Lines 4 and 5 of Algorithm 2). Thus, the equality (y
(j)
i (w), y

(j)
j (w)) =

(y
(i)
i (w), y

(i)
j (w)) must hold for any i, j ∈ [n] \ F (see Line 9 of Algorithm 2). This implies that the

condition |U0| ≥ t + 1 in Line 13 of Algorithm 2 will never be satisfied at any honest node, and
therefore no honest node will set s[1]i = 0 in Line 14 of Algorithm 2. Since no honest node will send out
(SI1, ID, s

[1]
i = 0), the condition |S[1]

0 | ≥ t + 1 in Line 13 of Algorithm 2 will never be satisfied at any
honest node, and thus no honest node will set s[2]i = 0 in Line 19 of Algorithm 2. Similarly, since no
honest node will send out (SI2, ID, s[2]i = 0), the condition |S[2]

0 | ≥ t + 1 in Line 27 of Algorithm 2 will
never be satisfied at any honest node, and hence no honest node will set vi = 0 in Line 28 of Algorithm 2.

Next, we prove that if all honest nodes input the same message w in OciorACOOL, and if any honest
node i passes w̃i into COOL-UA[2] as an input message (see Lines 20 and 22 of Algorithm 1), then
w̃i = w. Specifically, the above results show that, in this case, no honest node will set s̄[2]i = 0. If any
honest node i passes w̃i into COOL-UA[2] as an input message, and if node i has set s̄

[2]
i = 1 from

COOL-UA[1], then node i sets w̃i = wi = w and passes w into COOL-UA[2] as its input message (see
Lines 18-20 of Algorithm 1). Furthermore, from Lemma 1, if all honest nodes input the same value w,
and if an honest node i sets w̃i = ŵ in Line 10 of Algorithm 1, where ŵ is the message decoded from
online error correction in Line 8, then ŵ = w. This results implies that, if all honest nodes input the
same value w, and if any honest node i passes w̃i into COOL-UA[2] as an input message, then w̃i = w
(see Lines 21-22 of Algorithm 1).

From the above results, if all honest nodes input the same message w in OciorACOOL, then the input
messages (if any) of all honest nodes in COOL-UA[2] must also be w. Following from the previous
arguments, in this case, within COOL-UA[2], no honest node will set s̃[1]i = 0 (see Lines 13 and 14 of
Algorithm 2), no honest node will set s̃[2]i = 0 (see Lines 18 and 19 of Algorithm 2), and no honest node
will set ṽi = 0 (see Lines 27 and 28 of Algorithm 2).

From Theorem 3, if all honest nodes input the same message w in OciorACOOL, then every honest node
eventually outputs a value and terminates in OciorACOOL. In this case, by combining the above results, we
conclude that no honest node sets ṽi = 0, and that at least one honest node i delivers [w̃(i) = w, s̃

[2]
i , ṽi = 1]

from COOL-UA[2] and inputs 1 into ABBA as its input message in Line 24 of Algorithm 1. Since no
honest node sets ṽi = 0, no honest node will input 0 into ABBA as its input message. This implies that
ABBA eventually outputs 1, and all honest nodes eventually set v⋄ = 1 (see Lines 27-33 of Algorithm 1).

Consequently, if all honest nodes input the same message w in OciorACOOL, and if an honest node i has
set v⋄ = 1 and has delivered [w̃(i), s̃

[2]
i = 1, ṽi] from COOL-UA[2], then node i eventually outputs the value
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w in Line 36 of Algorithm 1. If an honest node i has set v⋄ = 1 but has not yet delivered [w̃(i), s̃
[2]
i = 1, ṽi]

from COOL-UA[2], this node eventually outputs the same value w in Line 42 of Algorithm 1 (see the
last two paragraphs of the proof of Theorem 1). This completes the proof.

Lemma 1. In OciorACOOL, if all honest nodes input the same value w, and if an honest node i sets
w̃i = ŵ in Line 10 of Algorithm 1, where ŵ is the message decoded from online error correction in
Line 8, then ŵ = w.

Proof. We consider the case where all honest nodes input the same value w. In this case, if there exists
a symbol y⋆ such that the condition |M[y⋆]| ≥ n − 2t ≥ t + 1 in Line 16 of Algorithm 1 is satisfied
at an honest node i, then it follows that y⋆ = yi(w), i.e., y⋆ is equal to the i-th coded symbol encoded
from the message w. Thus, in this case, if any honest node i sends (NewSYMBOL, ID, y̌i) to all nodes
in Line 17, then y̌i = yi(w). Furthermore, in this case, if any honest node i sends (SYMBOL, 1, (∗, ȳ(i)i ))

in COOL-UA[1], then ȳ
(i)
i = yi(w). Therefore, if an honest node sets Ȳoec[j] ← y̌j in Lines 6 and 12 of

Algorithm 1, for any j ∈ [n] \ F , then y̌j = yj(w). In other words, each symbol y(j)j included in Ȳoec at
any honest node i, for any j ∈ [n] \ F , must be encoded from the same message w. Hence, in this case,
if any honest node i decodes a message ŵ from online error correction in Line 8, then ŵ = w.

Theorem 3 (Termination). Given n ≥ 3t + 1, if all honest nodes receive their inputs, then every honest
node eventually outputs a value and terminates in OciorACOOL.

Proof. From Lemma 3, if all honest nodes receive their inputs, then at least one honest node eventually
sets v⋄ = v⋆ in Line 32 of Algorithm 1, for some v⋆ ∈ {0, 1}. From Lemma 2, if an honest node sets
v⋄ = v⋆ in Line 32 of Algorithm 1, then all honest nodes eventually set v⋄ = v⋆. If one honest node sets
v⋄ = 0, then all honest nodes eventually set v⋄ = 0, output ⊥, and terminate in Line 33 of Algorithm 1.
In the following, we focus on the case where all honest nodes eventually set v⋄ = 1.

As in the proof of Theorem 1, if an honest node i has set v⋄ = 1 and has delivered [w̃(i), s̃
[2]
i = 1, ṽi]

from COOL-UA[2], then this node outputs the value w̃(i) and terminates in Line 36 of Algorithm 1. It
has also been shown in the proof of Theorem 1 that if an honest node i has set v⋄ = 1 but has not yet
delivered [w̃(i), s̃

[2]
i = 1, ṽi] from COOL-UA[2], then Node i eventually outputs a message and terminates

in Line 42 of Algorithm 1 (see the last two paragraphs of the proof of Theorem 1).

Lemma 2 (Totality and Consistency Properties of RBA). In OciorACOOL, if an honest node sets v⋄ = v⋆

in Line 32 of Algorithm 1, for v⋆ ∈ {1, 0}, then all honest nodes eventually set v⋄ = v⋆.

Proof. This result follows from the Totality and Consistency properties of RBA, as described in Lines 27-
33 of Algorithm 1. Specifically, when an honest node sets v⋄ = v⋆ in Line 32 of Algorithm 1, for
v⋆ ∈ {1, 0}, it implies that this node has received at least 2t+1 (READY, ID, v⋆) messages (see Line 31).
In this case, at least t+ 1 honest nodes must have sent out (READY, ID, v⋆) messages.

In our setting, if an honest node has sent out a (READY, ID, v⋆) message, then ABBA must have output
a value v⋆ at at least one honest node (see Line 27). Due to the Consistency property of ABBA, if two
messages (READY, ID, v⋆) and (READY, ID, v′) are sent out from two honest nodes, respectively, then
v⋆ = v′.

Therefore, if an honest node sets v⋄ = v⋆, then each honest node eventually sends out a message
(READY, ID, v⋆) (see Lines 29 and 30). Consequently, each honest node eventually receives at least
2t+1 (READY, ID, v⋆) messages and subsequently sets v⋄ = v⋆ in Line 32. Note that every honest node
should have sent out a message (READY, ID, v⋆) and set v⋄ = v⋆ before termination.

Lemma 3 (Termination). In OciorACOOL, if all honest nodes receive their inputs, then at least an honest
node eventually sets v⋄ = v⋆ in Line 32 of Algorithm 1, for some v⋆ ∈ {1, 0}.
Proof. We prove this result by contradiction. Assume that no honest node sets the value of v⋄ in Line 32
of Algorithm 1. Under this assumption, no honest node would terminate in OciorACOOL. Note that every
honest node must set v⋄ = v⋆ before termination (see Lines 32 and 33 of Algorithm 1).



13

From Lemma 10, if all honest nodes eventually input their initial messages and keep running the
COOL-UA[1] protocol, then in COOL-UA[1] it holds true that η̈[2] ≤ 1, i.e., every honest node i eventually
sets

s
[2]
i = 0, ∀i ∈ Al, ∀l ∈ [2, η] (15)

in COOL-UA[1]. Here, Ä[2]
1 := {i ∈ [n] \ F | wi = w̄1, s

[2]
i ̸= 0} (see (3)). From the result in (15), and

based on our notation B[2] := {i ∈ [n] \ F | s[2]i = 0} (see (4)), it is true that

|Ä[2]
1 |+ |B[2]| = n− |F| (16)

and that ⋃
l∈[2,η]

Al ⊆ B[2]

for COOL-UA[1]. In the following, we consider each of the two cases for COOL-UA[1]:

Case I: |Ä[2]
1 | ≥ n− |F| − t, (17)

Case II: |Ä[2]
1 | < n− |F| − t. (18)

• Analysis for Case I:
Let us first consider Case I in (17) with |Ä[2]

1 | ≥ n−|F|−t for COOL-UA[1]. In this case, from Lemma 4,
if all honest nodes eventually input their initial messages and keep running the OciorACOOL, COOL-UA[1]
and COOL-UA[2] protocols, then every honest node i eventually inputs the same message w̃i = w̄1 to
COOL-UA[2], where w̄1 is the initial message of all honest nodes within Ä[2]

1 .
If all honest nodes keep running the OciorACOOL, COOL-UA[1] and COOL-UA[2] protocols, and given

the conclusion that every honest node i eventually inputs the same message w̃i = w̄1 to COOL-UA[2],
then every honest node i eventually sets s̃

[1]
i = 1 (see Lines 11 and 12 of Algorithm 2), every honest

node i eventually sets s̃
[2]
i = 1 (see Lines 20 and 21 of Algorithm 2), and every honest node i eventually

sets ṽi = 1 (see Lines 25 and 26 of Algorithm 2). In this case, every honest node i eventually delivers
[w̃(i), s̃

[2]
i , ṽi = 1] from COOL-UA[2].

Consequently, in this case, every honest node i eventually passes 1 into ABBA as its input message, if
node i has not already provided an input to ABBA (see Lines 23 and 24 of Algorithm 1). Hence, ABBA
eventually outputs a value v⋆ ∈ {1, 0} at each node, due to the Termination property of ABBA. Then,
every honest node eventually sends (READY, ID, v⋆) to all nodes in Line 28 of Algorithm 1, and every
honest node eventually sets v⋄ = v⋆ in Line 32 of Algorithm 1. This conclusion contradicts the original
assumption that no honest node sets the value of v⋄ in Line 32. Thus, the original assumption is false,
and the statement of this lemma holds for Case I.

• Analysis for Case II:
Let us now consider Case II in (18). In this case, we have

|B[2]| = n− |F| − |Ä[2]
1 | (19)

> n− |F| − (n− |F| − t) (20)
= t (21)

where (19) follows from (16), while (20) uses the assumption in (18) for this Case II. The result in
(21) implies that |B[2]| ≥ t + 1 in COOL-UA[1]. In this case, the condition |S[2]

0 | ≥ t + 1 in Line 27 of
Algorithm 2 is eventually satisfied at all honest nodes, and each honest node i eventually sets v̄i = 0 and
delivers [w̄(i), s̄

[2]
i , v̄i = 0] from COOL-UA[1]. Consequently, each honest node i eventually passes 0 into
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ABBA as its input message, if node i has not already provided an input to ABBA (see Lines 25 and 26
of Algorithm 1). In this case, every honest node eventually provides an input to ABBA, and hence ABBA
eventually outputs a value v⋆ ∈ {1, 0} at each node, due to the Termination property of ABBA. Then,
every honest node eventually sends (READY, ID, v⋆) to all nodes in Line 28 of Algorithm 1, and every
honest node eventually sets v⋄ = v⋆ in Line 32 of Algorithm 1. This conclusion contradicts the original
assumption that no honest node sets the value of v⋄ in Line 32. Thus, the original assumption is false,
and the statement of this lemma holds for Case II.

Lemma 4. Consider the case where |Ä[2]
1 | ≥ n−|F|−t for COOL-UA[1], and assume that all honest nodes

eventually input their initial messages and keep running the OciorACOOL, COOL-UA[1] and COOL-UA[2]
protocols. Under this assumption, every honest node i eventually inputs the same message w̃i = w̄1 to
COOL-UA[2], where w̄1 is the initial message of all honest nodes within Ä[2]

1 .

Proof. Let us assume |Ä[2]
1 | ≥ n− |F| − t for COOL-UA[1], and assume that all honest nodes eventually

input their initial messages and keep running the OciorACOOL, COOL-UA[1] and COOL-UA[2] protocols.
Under these assumptions, we consider each of the following cases for every honest node i:

Case A: Node i sets s̄
[1]
i ̸= 1, (22)

Case B: Node i sets s̄
[1]
i = 1 (23)

where we consider the final value of s̄[1]i updated in COOL-UA[1]. Under the assumptions considered here,
we argue in the following that, for each case, the index of every honest node i is eventually included
in Ȳoec at each honest node, as in Lines 6 or 12 of Algorithm 1, such that

Ȳoec[i] = yi(w̄1) ∀i ∈ [n] \ F . (24)

Here, yi(w̄1) denotes the i-th coded symbol encoded from the message w̄1, and w̄1 is the initial message
of all honest nodes within Ä[2]

1 . With the conclusion in (24), it follows that every honest node eventually
decodes the message as w̄1 from the online error correction procedure in Line 8 of Algorithm 1, and then
sets the input of COOL-UA[2] as

w̃i = w̄1 (in Line 10 of Algorithm 1). (25)

If an honest node i sets s̄
[2]
i = 1 in COOL-UA[1] and COOL-UA[2] has not yet received an input message,

then node i sets w̃i = wi as in Line 19 of Algorithm 1. Lemma 10 states that if all honest nodes
eventually input their initial messages and keep running the COOL-UA[1] protocol, then in COOL-UA[1]
it holds that η̈[2] ≤ 1. From Lemma 10, if an honest node i sets s̄

[2]
i = 1 in COOL-UA[1] and COOL-UA[2]

has not yet received an input message, then it follows that i ∈ Ä[2]
1 and that node i sets

w̃i = w̄1 (in Line 19 of Algorithm 1). (26)

With the results in (25) and (26), it follows that every honest node i eventually inputs the same
message w̃i = w̄1 to COOL-UA[2] (see Lines 20 and 22 of Algorithm 1). What remains to be proven
now is the conclusion in (24).

• Proof of (24) for Case A:
We first consider Case A, where an honest i never sets s̄

[1]
i = 1. Lemma 10 shows that if all honest

nodes eventually input their initial messages and keep running the COOL-UA[1] protocol, then it holds
that η̈[2] ≤ 1 for COOL-UA[1]. Recall that Ä[2]

1 := { j ∈ [n] \ F | wj = w̄1, s
[2]
j ̸= 0 } for some w̄1. From

Lemma 10, it follows that the index of each honest node j ∈ [n] \ (F ∪ Ä[2]
1 ) is eventually included in

the set S̄[2]
0 at node i, i.e.,

[n] \ (F ∪ Ä[2]
1 ) ⊆ S̄[2]

0 . (27)
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Furthermore, the index of each honest node j′ ∈ Ä[2]
1 is eventually included in the set M[yi(w̄1)] at node i

(see Lines 14 and 15 of Algorithm 1), i.e.,

Ä[2]
1 ⊆M[yi(w̄1)]. (28)

From (28), and given the condition |Ä[2]
1 | ≥ n− |F| − t considered here for COOL-UA[1], the following

bound eventually holds:

|M[yi(w̄1)]| ≥ |Ä[2]
1 | ≥ n− |F| − t ≥ n− 2t. (29)

Moreover, from (27) and (28), we have that the following bound eventually holds:

|M[yi(w̄1)] ∪ S̄[2]
0 | ≥

∣∣([n] \ (F ∪ Ä[2]
1 )) ∪ Ä[2]

1

∣∣ = |[n] \ F| = n− |F| ≥ n− t. (30)

Therefore, from (29) and (30), if s̄[1]i ̸= 1, then the conditions

|M[yi(w̄1)] ∪ S̄[2]
0 | ≥ n− t, |M[yi(w̄1)]| ≥ n− 2t, and s̄

[1]
i ̸= 1

in Line 16 of Algorithm 1 are all eventually satisfied at the honest node i. In this case, the honest node i
eventually sets y̌i = yi(w̄1) and then sends (NewSYMBOL, ID, y̌i) to all nodes (see Lines 16 and 17 of
Algorithm 1). Therefore, in this case, the index of every honest node i that never sets s̄[1]i = 1 is eventually
included in Ȳoec at each honest node, as in Line 6 of Algorithm 1, such that

Ȳoec[i] = yi(w̄1), for i ∈ [n] \ F .

• Proof of (24) for Case B:
We now consider Case B, where an honest node i eventually sets s̄

[1]
i = 1. We assume that |Ä[2]

1 | ≥
n − |F| − t for COOL-UA[1], and that all honest nodes eventually input their initial messages and keep
running the OciorACOOL and COOL-UA[1] protocols. Under these assumptions, from Lemma 6, if an
honest node i sets s̄

[1]
i = 1 and sends (SYMBOL, 1, (∗, ȳ(i)i )) in COOL-UA[1], then

ȳ
(i)
i = yi(w̄1).

Here, w̄1 is the initial message of all honest nodes within Ä[2]
1 . Note that under the assumptions considered

here, every honest node i eventually sends (SYMBOL, 1, (∗, ȳ(i)i )) in COOL-UA[1]. Therefore, under the
same assumptions, every honest node i that sets s̄

[1]
i = 1 is eventually included in Ȳoec at each honest

node, as in Line 12 of Algorithm 1 (or in Line 6, as in Case A), such that

Ȳoec[i] = yi(w̄1), for i ∈ [n] \ F .

This completes the proof.

Lemma 5. Consider the case where |Ä[2]
1 | ≥ n−|F|−t for COOL-UA[1], and assume that all honest nodes

eventually input their initial messages and keep running the OciorACOOL and COOL-UA[1] protocols.
Under this assumption, if an honest node i sets y̌i ← y⋆ in Line 17 of Algorithm 1, then y⋆ = yi(w̄1).
Here, yi(w̄1) is the i-th coded symbol encoded from the message w̄1, while w̄1 is the initial message of
all honest nodes within Ä[2]

1 .

Proof. Let us now we consider the case where

|Ä[2]
1 | ≥ n− |F| − t (31)

for COOL-UA[1], and assume that all honest nodes eventually input their initial messages and keep running
the OciorACOOL and COOL-UA[1] protocols. Here, Ä[2]

1 := {j ∈ [n] \ F | wj = w̄1, s
[2]
j ̸= 0 } for some
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w̄1. Under this assumption, if an honest node i sets y̌i ← y⋆ in Line 17 of Algorithm 1, then the conditions
in Line 16 must be satisfied, i.e.,

|M[y⋆] ∪ S̄[2]
0 | ≥ n− t, and |M[y⋆]| ≥ n− 2t (32)

for some y⋆. Here, M[y⋆] includes the indices of nodes that sent (SYMBOL, 1, (ȳ
(j)
i , ∗)) to node i in

COOL-UA[1] such that ȳ(j)i = y⋆ (see Lines 14 and 15 of Algorithm 1). The set S̄[2]
0 includes the indices

of nodes that sent s[2]j = 0. Since each honest node j ∈ Ä[2]
1 never sends s

[2]
j = 0, it follows that

Ä[2]
1 ∩ S̄[2]

0 = ∅. (33)

On the other hand, it holds true that

|Ä[2]
1 ∪ {M[y⋆] ∪ S̄[2]

0 }| ≤ n. (34)

Given the conditions in (31)-(34), we now argue that Ä[2]
1 ∩ M[y⋆] ̸= ∅. We prove this result by

contradiction and assume, for the sake of contradiction, that Ä[2]
1 ∩M[y⋆] = ∅. Specifically, under the

assumption Ä[2]
1 ∩M[y⋆] = ∅ and given the condition Ä[2]

1 ∩ S̄
[2]
0 = ∅ in (33), we have the following bound:

|Ä[2]
1 ∪ {M[y⋆] ∪ S̄[2]

0 }| = |Ä[2]
1 |︸ ︷︷ ︸

≥n−|F|−t

+ |M[y⋆] ∪ S̄[2]
0 |︸ ︷︷ ︸

≥n−t

− |Ä[2]
1 ∩ {M[y⋆] ∪ S̄[2]

0 }|︸ ︷︷ ︸
=0

(35)

≥ (n− |F| − t) + (n− t) (36)
≥ n− t− t+ 3t+ 1− t (37)
≥ n+ 1 (38)

where (36) follows from the inequalities in (31) and (32), as well as the identity∣∣Ä[2]
1 ∩ {M[y⋆] ∪ S̄[2]

0 }
∣∣ = 0

under the assumption Ä[2]
1 ∩M[y⋆] = ∅ and given the condition Ä[2]

1 ∩ S̄[2]
0 = ∅ in (33). Here (37) uses

the assumptions n ≥ 3t + 1 and |F| ≤ t. One can see that the conclusion in (38) contradicts the result
in (34). Therefore, the original assumption Ä[2]

1 ∩M[y⋆] = ∅ is false, and the statement Ä[2]
1 ∩M[y⋆] ̸= ∅

holds true. The conclusion Ä[2]
1 ∩M[y⋆] ̸= ∅ implies that there exists at least one honest node j ∈ Ä[2]

1

whose index also belongs to M[y⋆]. In other words, node j has sent (SYMBOL, 1, (ȳ
(j)
i , ∗)) to node i in

COOL-UA[1] with ȳ
(j)
i = yi(w̄1) = y⋆ (see Lines 14 and 15 of Algorithm 1). Consequently, if an honest

node i sets y̌i ← y⋆ in Line 17 of Algorithm 1, then y⋆ = yi(w̄1).

Lemma 6. Consider the case where |Ä[2]
1 | ≥ n−|F|−t for COOL-UA[1], and assume that all honest nodes

eventually input their initial messages and keep running the OciorACOOL and COOL-UA[1] protocols.
Under this assumption, if an honest node i sets s[1]i = 1 and sends (SYMBOL, 1, (∗, ȳ(i)i )) in COOL-UA[1],
then ȳ

(i)
i = yi(w̄1). Here, w̄1 is the initial message of all honest nodes within Ä[2]

1 .

Proof. Similar to the proof of Lemma 5, we also consider the case where

|Ä[2]
1 | ≥ n− |F| − t (39)

for COOL-UA[1], and assume that all honest nodes eventually input their initial messages and continue
executing the OciorACOOL and COOL-UA[1] protocols. Suppose further that there exists an honest node i,
where i ∈ Al⋆ for some l⋆ ∈ [η], such that node i sets s

[1]
j = 1 and sends (SYMBOL, 1, (∗, ȳ(i)i )) in

COOL-UA[1]. We now argue that ȳ(i)i = yi(w̄1). Specifically, when an honest node i ∈ Al⋆ sets s
[1]
i = 1,

it implies that at least n− t nodes in U1 have sent (SYMBOL, 1, (ȳ
(j)
i , ∗)) to node i in COOL-UA[1] with

ȳ
(j)
i = ȳ

(i)
i , ∀j ∈ U1 (40)
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(see Lines 9 and 12 of Algorithm 2), where

|U1| ≥ n− t. (41)

On the other hand, it holds true that

|Ä[2]
1 ∪ U1| ≤ n. (42)

Given the conditions in (39)-(42), we argue that Ä[2]
1 ∩U1 ̸= ∅. This proof is similar to that of Lemma 5.

Specifically, if Ä[2]
1 ∩ U1 = ∅, then we have

|Ä[2]
1 ∪ U1| = |Ä[2]

1 |︸ ︷︷ ︸
≥n−|F|−t

+ |U1|︸︷︷︸
≥n−t

− |Ä[2]
1 ∩ U1|︸ ︷︷ ︸
=0

≥ n+ 1 (43)

which contradicts the result in (42). Therefore, the statement Ä[2]
1 ∩ U1 ̸= ∅ holds true. The conclusion

Ä[2]
1 ∩ U1 ̸= ∅ implies that there exists at least one honest node j ∈ Ä[2]

1 whose index also belongs
to U1 such that the condition ȳ

(j)
i = ȳ

(i)
i in (40) is satisfied. In other words, node j ∈ Ä[2]

1 has sent
(SYMBOL, 1, (ȳ

(j)
i , ∗)) to node i in COOL-UA[1] with ȳ

(j)
i = yi(w̄1) = ȳ

(i)
i . Consequently, in this case, if

an honest node i sets s
[1]
i = 1 and sends (SYMBOL, 1, (∗, ȳ(i)i )) in COOL-UA[1], then ȳ

(i)
i = yi(w̄1).

Theorem 4 (Communication, Round, Resilience, and Computation). OciorACOOL achieves the ABA
consensus with total O(max{nℓ, nt log q}) communication bits, O(1) rounds, and a single invocation of
a binary BA protocol, under the optimal resilience assumption n ≥ 3t + 1. Moreover, the computation
complexity of OciorACOOL is Õ(ℓ + t) in the good case and Õ(tℓ + t2) in the worst case, measured in
bit-level operations per node, where the good case occurs when the actual number of Byzantine nodes is
small or the network is nearly synchronous.

Proof. From Theorems 1-3, it follows that the proposed OciorACOOL protocol satisfies the Consistency,
Validity, and Termination properties in all executions, under the assumption of an asynchronous binary
BA protocol invoked within it, given that n ≥ 3t+ 1.

Regarding the analysis of communication complexity, we first focus on the case where t = Ω(n). Recall
that the size of the message to be agreed upon is ℓ bits. In OciorACOOL, each coded symbol carries

c = max

{
ℓ

k
, log q

}
bits, where k = t/3, and q denotes the alphabet size of the error correction code used in the protocol.
The total communication complexity of OciorACOOL is computed as

Total Comm. = O(cn2 + n2)

= O
(
max{ℓn, n2 log q}

)
bits. (44)

In the above communication complexity analysis, we do not include the communication cost of the binary
BA protocol, which is assumed to have a total communication complexity bounded by O(n2) bits and an
expected O(1) number of rounds.

Similar to COOL, when t is very small compared to n, we first select n′ := 3t+1 nodes (e.g., the first
n′ nodes), denoted by the set S ′, from the n nodes to run the OciorACOOL protocol (see OciorACOOL⋆

protocol in Algorithm 3). In this setting, each coded symbol still carries c bits. After the OciorACOOL
protocol reaches agreement on a message w′ within S ′, the i-th node in S ′ sends a coded symbol y′i,
encoded from the agreed message w′, to the n− n′ nodes outside S ′, where the symbols are encoded as

[y′1, y
′
2, . . . , y

′
n′ ]← ECCEnc(n′, k,w′).

Each node outside S ′ eventually decodes the agreed message w′ using online error-correction decoding
from the symbols {y′i}i∈S′ collected from the nodes within S ′ (see Algorithm 3).
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Note that the OciorACOOL protocol executed within S ′ satisfies the Consistency, Validity, and
Termination properties, given n′ = 3t + 1. Furthermore, based on the decoding property of the error
correction code, the overall protocol OciorACOOL⋆ (see Algorithm 3)–comprising OciorACOOL within
S ′ and the subsequent Strongly-Honest-Majority Distributed Multicast (SHMDM) from S ′–also satisfies
the Consistency, Validity, and Termination properties. In this case, the total communication complexity of
the overall protocol OciorACOOL⋆ is computed as

Total Comm. = O(cn′ · n′ + n′ · n′ + cn′(n− n′))

= O(max{ℓn, nt log q}) bits. (45)

Thus, by combining the result in (44) for the case t = Ω(n) and the result in (45) for the case of very
small t, the total communication complexity of OciorACOOL can be expressed as

Total Comm. = O(max{nℓ, nt log q}) bits.

The proposed OciorACOOL protocol uses O(1) rounds and a single invocation of a binary BA protocol
that is assumed to have an expected O(1) number of rounds.

The computation complexity of the proposed OciorACOOL is nominated by the online error-correction
decoding in Lines 7-10 and 45-48 of Algorithm 1. Fast (n, k) Reed-Solomon decoding and polynomial
error-correction decoding of degree-(k − 1) polynomials from n̄ evaluation points (with n̄ ≤ n) are
achievable in

O(n̄ log2 n̄ log log n̄)

field operations using Fast Fourier Transform (FFT)-based polynomial arithmetic over the finite field Fq

[23], [26]–[28].
If each symbol is represented using c = max

{
ℓ
k
, log q

}
bits, where k = t/3, then multiplication of

two symbols can be done in O(c log c log log c) bit-level operations using fast multiplication algorithms,
while inversion or division can be done in O(c log2 c log log c) bit-level operations using fast inversion
algorithms. Therefore, fast (n, k) Reed-Solomon decoding of the message w can be achieved in

O((n̄ log2 n̄ log log n̄) · (c log2 c log log c)) = Õ(n̄c) = Õ(
n̄ℓ

k
+ n̄ log q) = Õ(ℓ+ n̄ log q)

bit-level operations. For the Reed-Solomon codes, q can be set such that q ≥ n+ 1. In OciorACOOL, for
the error-correction decoding in Lines 7-10 and 45-48 of Algorithm 1, n̄ is set to O(t), and the decoding
may be repeated up to t times. Hence, the computational complexity of the proposed OciorACOOL in the
worst case is

t · Õ(ℓ+ n̄ log q) = t · Õ(ℓ+ t log n) = Õ(tℓ+ t2)

bit-level operations per node. The computation complexity of OciorACOOL in the good case is

Õ(ℓ+ t)

bit-level operations per node, where the good case occurs when the actual number of Byzantine nodes is
small or the network is nearly synchronous.

E. Proofs of Lemma 10
In the following, we present Lemma 10, which is used in the above analysis. First, we provide several

lemmas that will be used in the proof of Lemma 10. Lemma 10 extends the result of [5, Lemma 3] (see
Lemma 9 below).

Lemma 7. [4, Lemma 7] For η ≥ 2, it is true that

|Al,j|+ |Aj,l| <k, ∀j ̸= l, j, l ∈ [η] (46)
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where k is a parameter of (n, k) error correction code.

Lemma 8. [5, Lemma 7] [5, Lemma 16] For the COOL-UA protocol with n ≥ 3t + 1 and k ≤ t/3, if
η[1] = 2 then it holds true that η[2] ≤ 1.

Lemma 9. [5, Lemma 3] [5, Lemma 11] For the COOL-UA protocol with n ≥ 3t+ 1, it holds true that
η[2] ≤ 1.

Lemma 10. For the COOL-UA protocol with n ≥ 3t + 1 and k ≤ t/3, it holds true that η[2] ≤ 1.
Furthermore, if all honest nodes eventually input their initial messages and keep running the COOL-UA
protocol, then it holds true that η̈[2] ≤ 1, i.e., every honest node i eventually sets s

[2]
i = 0 for all i ∈ Al

and for all l ∈ [2, η].

Proof. We first prove the first statement. For this statement, each honest node can terminate at any point
in time, and some nodes may not have input their initial messages before termination. From Lemma 11,
it follows that η[1] ≤ 2. Then, from Lemma 8, if η[1] = 2, it holds that η[2] ≤ 1. If η[1] ≤ 1, it follows
immediately that η[2] ≤ 1.

We now prove the second statement. From Lemma 11, if all honest nodes eventually input their initial
messages and keep running the COOL-UA protocol, then η̈[1] ≤ 2. Then, from Lemma 12, if all honest
nodes eventually input their initial messages and keep running the COOL-UA protocol, and if η̈[1] = 2, it
follows that η̈[2] ≤ 1. If η̈[1] ≤ 1, it follows immediately that η̈[2] ≤ 1. This completes the proof.

Lemma 11. For the COOL-UA protocol, it is true that η[1] ≤ 2. Furthermore, if all honest nodes eventually
input their initial messages and keep running the COOL-UA protocol, then it is also true that η̈[1] ≤ 2.

Proof. Recall that U(i)
1 := {j ∈ [n] | (y(j)i , y

(j)
j ) = (y

(i)
i , y

(i)
j )} and U(i)

0 := {j ∈ [n] | (y(j)i , y
(j)
j ) ̸=

(y
(i)
i , y

(i)
j )} denote the link indicator sets U1 and U0 updated by Node i, as described in Line 9 of

Algorithm 2 (see (13)). Here we define V(i)
1 := U(i)

1 \ F and V(i)
0 := U(i)

0 \ F (see (14)). Recall that
Al := {i ∈ [n] \ F | wi = w̄l} for l ∈ [η] and for some non-empty ℓ-bit distinct values w̄1, w̄2, · · · , w̄η.
Let us first prove the second statement and then the first of this lemma.

• Proof for η̈[1] ≤ 2, if all honest nodes eventually input messages and keep running COOL-UA:
Let us first assume that all honest nodes eventually input their initial messages and keep running the
COOL-UA protocol, and that there already exist an honest Node i1 ∈ A1 and an honest Node i2 ∈ A2

such that they never set s[1]i1
= 0 and s

[1]
i2

= 0, respectively. We now argue that each honest Node i3 ∈ Al,
for all l ∈ [3, η], will eventually set s[1]i3

= 0.
Given s

[1]
i1
̸= 0 and s

[1]
i2
̸= 0, we have the following bounds on |V(i1)

0 | and |V(i2)
0 |:

|V(i1)
0 | ≤ t, and |V(i2)

0 | ≤ t. (47)

If all honest nodes eventually input their initial messages and keep running the COOL-UA protocol, then
for each i ∈ [n] \ F , eventually the following equality holds true:

|V(i)
1 |+ |V

(i)
0 | = n− |F|. (48)

Then, the above results in (47) and (48) imply:

|V(i1)
1 | ≥ n− t− |F|, and |V(i2)

1 | ≥ n− t− |F|. (49)

Furthermore, for each j ∈ V(i1)
1 ∩ V(i2)

1 , it is true that hT
jw̄1 = hT

jwj and hT
jw̄2 = hT

jwj (see Line 9 of
Algorithm 2), which implies that hT

jw̄1 = hT
jw̄2, ∀j ∈ V(i1)

1 ∩ V(i2)
1 . Thus, we conclude:

|V(i1)
1 ∩ V(i2)

1 | ≤ k − 1, (50)

otherwise w̄1 = w̄2 due to a property of linear algebra, which contradicts our assumption w̄1 ̸= w̄2. Note
that if there exists a full-rank matrix H of size k × k such that Hx = 0, then it follows that x = 0.
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Similarly, we have

|V(i1)
1 ∩ V(i3)

1 | ≤ k − 1, and |V(i2)
1 ∩ V(i3)

1 | ≤ k − 1. (51)

In our setting, the following identities hold true:

|V(i1)
1 ∪ V(i2)

1 ∪ V(i3)
1 | ≤ n− |F|, (52)

|V(i1)
1 ∪ V(i2)

1 ∪ V(i3)
1 | ≥ |V

(i1)
1 |+ |V

(i2)
2 |+ |V

(i3)
1 |− |V

(i1)
1 ∩ V(i2)

1 |− |V
(i1)
1 ∩ V(i3)

1 |− |V
(i2)
1 ∩ V(i3)

1 |, (53)

where the first identity follows from the fact V(i1)
1 ∪V

(i2)
1 ∪V

(i3)
1 ⊆ [n]\F and the second identity follows

from the inclusion-exclusion identity for the union of three sets. At this point, |V(i3)
1 | can be bounded by:

|V(i3)
1 | ≤ |V

(i1)
1 ∪ V(i2)

1 ∪ V(i3)
1 | − |V

(i1)
1 |− |V

(i2)
2 |+ |V

(i1)
1 ∩ V(i2)

1 |+ |V
(i1)
1 ∩ V(i3)

1 |+ |V
(i2)
1 ∩ V(i3)

1 | (54)
≤ n− |F| − 2(n− t− |F|) + 3(k − 1) (55)
≤ n− |F| − 2 · (3t+ 1− t− t) + 3 · (t/3− 1) (56)
= n− |F| − t− 5 (57)
< n− |F| − t (58)

where the first inequality follows from the identity in (53); the second inequality follows from the results
in (49)-(52); and the third inequality uses the identities n ≥ 3t+ 1, |F| ≤ t and k ≤ t/3.

Since V(i)
0 ⊆ U(i)

0 , and from (48) and (57), if all honest nodes eventually input their initial messages
and keep running the COOL-UA protocol, then we have

|U(i3)
0 | ≥ |V

(i3)
0 |

= n− |F| − |V(i3)
1 | (59)

≥ n− |F| − (n− |F| − t− 5) (60)
> t+ 1 (61)

where (59) follows from (48); and (60) is from (57). The result in (61) reveals that, if all honest
nodes eventually input their initial messages and keep running the COOL-UA protocol, then each honest
Node i3 ∈ Al, for all l ∈ [3, η], will eventually set s[1]i3

= 0. Thus, it is true that η̈[1] ≤ 2.

• Proof for η[1] ≤ 2:
Let us assume that there already exist an honest node i1 ∈ A1 and an honest node i2 ∈ A2 such that
they have set s[1]i1

= 1 and s
[1]
i2

= 1, respectively, in COOL-UA protocol. In this case, we assume that each
honest node can terminate at any point in time, and that some nodes may not have input their initial
messages before termination. We now argue that every honest node i3 ∈ Al, for all l ∈ [3, η], will never
set s[1]i3

= 1.
Under the assumption of s

[1]
i1

= 1 and s
[1]
i2

= 1, and from the condition in Line 11 of Algorithm 2, the
following inequities hold true:

|U(i1)
1 | ≥ n− t, and |U(i2)

1 | ≥ n− t. (62)

Then, the above result implies:

|V(i1)
1 | ≥ n− t− |F|, and |V(i2)

1 | ≥ n− t− |F|. (63)

One can check that, under this assumption that s[1]i1
= 1 and s

[1]
i2

= 1, the results in (49)-(58) hold true and
it is concluded that

|V(i3)
1 | < n− |F| − t (64)
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(see (58)). This result reveals that each honest Node i3 ∈ Al, for all l ∈ [3, η], will never set s[1]i3
= 1.

Thus, it is true that η[1] ≤ 2. This completes the proof.

Lemma 12. For the COOL-UA protocol with n ≥ 3t+1 and k ≤ t/3, and assuming that all honest nodes
eventually input their initial messages and keep running the COOL-UA protocol, if η̈[1] = 2 then it holds
true that η̈[2] ≤ 1.

Proof. This proof follows closely that of [5, Lemma 7] [5, Lemma 16]. Here we assume that all honest
nodes eventually input their initial messages and keep running the COOL-UA protocol. We also assume
that η̈[1] = 2. Under this assumption, the definition in (1)-(11) suggests that

Ä[1]
1 :={i ∈ [n] \ F | wi = w̄1, s

[1]
i ̸= 0}, (65)

Ä[1]
2 :={i ∈ [n] \ F | wi = w̄2, s

[1]
i ̸= 0}, (66)

B[1] :={i ∈ [n] \ F | s[1]i = 0} (67)

Ä[1]
2,1 :={i ∈ Ä

[1]
2 | hT

i w̄2 = hT

i w̄1} (68)

Ä[1]
2,2 :=Ä

[1]
2 \ Ä

[1]
2,1 = {i ∈ Ä

[1]
2 | hT

i w̄2 ̸= hT

i w̄1} (69)

Ä[1]
1,2 :={i ∈ Ä

[1]
1 | hT

i w̄1 = hT

i w̄2} (70)

Ä[1]
1,1 :=Ä

[1]
1 \ Ä

[1]
1,2 = {i ∈ Ä

[1]
1 | hT

i w̄1 ̸= hT

i w̄2} (71)

Given the identity |A1|+ |A2| = n− |F| −
∑η

l=3 |Al|, we will consider each of the following two cases:

Case 1: |A2| ≤
n− |F| −

∑η
l=3 |Al|

2
, (72)

Case 2: |A1| ≤
n− |F| −

∑η
l=3 |Al|

2
. (73)

• Analysis for Case 1:
We first consider Case 1. Under the assumption that all honest nodes eventually input their initial messages
and keep running the COOL-UA protocol, for each Node i ∈ Ä[1]

2 , it is true that

B[1] ∈ S[1]
0 ∪ U0, (74)

Ä[1]
1,1 ∈ S[1]

0 ∪ U0, (75)

and that

|S[1]
0 ∪ U0| ≥ |B[1] ∪ Ä[1]

1,1|
= n− |F| − (|Ä[1]

1,2|+ |Ä
[1]
2 |)

= n− |F|︸︷︷︸
≤t

−(|Ä[1]
1,2|+ |Ä

[1]
2,1|︸ ︷︷ ︸

≤k−1

+ |Ä[1]
2,2|︸ ︷︷ ︸

≤2(k−1)

)

≥ n− t− 3(k − 1) (76)
> t+ 1. (77)

Here, (76) follows from Lemma 13 and the identity that |Ä[1]
1,2| + |Ä

[1]
2,1| ≤ |A1,2| + |A2,1| ≤ k − 1 (see

Lemma 7), while (77) uses the assumption of n ≥ 3t+1 and k ≤ t/3. The result |S[1]
0 ∪U0| > t+1 in (77)

reveals that each Node i ∈ Ä[1]
2 eventually sets s

[2]
i = 0, as described in Lines 18 and 19 of Algorithm 2,

for Case 1.
• Analysis for Case 2:
By interchanging the roles of A1 and A2 and following the proof for Case 1, one can show that each
Node i ∈ Ä[1]

1 eventually sets s
[2]
i = 0, as described in Line 19 of Algorithm 2, for Case 2.
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Lemma 13. Given |Ai| ≤
n−|F|−

∑η
l=3 |Al|

2
and η ≥ 2, and assuming that all honest nodes eventually input

their initial messages and keep running the COOL-UA protocol, it is true that

|Ä[1]
i,i | ≤ 2(k − 1) (78)

for i ∈ {1, 2}.

Proof. This proof closely follows that of [5, Lemma 8]. Here we assume that all honest nodes eventually
input their initial messages and keep running the COOL-UA protocol. Without loss of generality, we just
focus on the proof of |Ä[1]

2,2| ≤ 2(k − 1), given the condition |A2| ≤
n−|F|−

∑η
l=3 |Al|

2
and η ≥ 2.

We first consider the case where η ≥ 3. Recall that U(i)
1 := {j ∈ [n] | (y(j)i , y

(j)
j ) = (y

(i)
i , y

(i)
j )} and

U(i)
0 := {j ∈ [n] | (y(j)i , y

(j)
j ) ̸= (y

(i)
i , y

(i)
j )} denote the link indicator sets U1 and U0 updated by Node i,

as described in Line 9 of Algorithm 2 (see (13)). Also recall that V(i)
1 := U(i)

1 \ F and V(i)
0 := U(i)

0 \ F .
Here ui(j) ∈ {0, 1} denotes the link indicator between Node i and Node j, defined in (12). Under the
assumption that all honest nodes eventually input their initial messages and keep running the COOL-UA
protocol, since each Node i ∈ Ä[1]

2,2 never set s[1]i = 0, it holds true that

|V(i)
0 | ≤ t, ∀i ∈ Ä[1]

2,2. (79)

If all honest nodes eventually input their initial messages and keep running the COOL-UA protocol, it is
true that |V(i)

1 |+ |V
(i)
0 | = n− |F|. Thus, from the above identity and from (79), we have

|V(i)
1 | = n− |F| − |V(i)

0 | ≥ n− |F| − t, ∀i ∈ Ä[1]
2,2. (80)

The result in (80) implies that ∑
j∈[n]\F

ui(j) ≥ n− |F| − t, ∀i ∈ Ä[1]
2,2. (81)

and that ∑
j∈[n]\(F∪A2)

ui(j) ≥ n− t− |F| − |A2|, ∀i ∈ Ä[1]
2,2. (82)

In this setting, since hT
i w̄1 ̸= hT

i w̄2 for any i ∈ Ä[1]
2,2 (see (69)), we conclude that ui(j) = 0, ∀i ∈

Ä[1]
2,2, ∀j ∈ A1. This result implies that the inequality in (82) can be updated as∑

j∈[n]\(F∪A2∪A1)

ui(j) ≥ n− t− |F| − |A2|, ∀i ∈ Ä[1]
2,2. (83)

Given [n] \ (F ∪A2 ∪ A1) = ∪η
l=3Al, the result in (83) can be rewritten as∑

j∈∪η
l=3Al

ui(j) ≥ n− t− |F| − |A2|, ∀i ∈ Ä[1]
2,2 (84)

which implies the following bound∑
i∈Ä[1]

2,2

∑
j∈∪η

l=3Al

ui(j) ≥ (n− t− |F| − |A2|) · |Ä[1]
2,2|. (85)

On the other hand, for any given j ∈ Al⋆ and l⋆ ∈ [3, η], we have∑
i∈Ä[1]

2,2

ui(j) ≤
∑
i∈A[1]

2

ui(j) =
∑

i∈A[1]
2,l⋆

ui(j) +
∑

i∈A[1]
2 \A[1]

2,l⋆

ui(j) =
∑

i∈A[1]
2,l⋆

ui(j) ≤ |A[1]
2,l⋆| ≤ k − 1 (86)
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where the above result uses the identity that hT
i w̄l⋆ ̸= hT

i w̄2 for i ∈ A[1]
2 \ A

[1]
2,l⋆ (see (8)), and from

Lemma 7. The result in (86) then implies that∑
j∈∪η

l=3Al

∑
i∈Ä[1]

2,2

ui(j) ≤ (k − 1) ·
η∑

l=3

|Al| (87)

From the inequalities (85) and (87), we have (n− t− |F| − |A2|) · |Ä[1]
2,2| ≤ (k − 1) ·

∑η
l=3 |Al| and

|Ä[1]
2,2| ≤

(k − 1) ·
∑η

l=3 |Al|
n− t− |F| − |A2|

, (88)

where n− t− |F| − |A2| > 0 is true given |A2| ≤
n−|F|−

∑η
l=3 |Al|

2
and n ≥ 3t+ 1. The bound in (88) can

be further extended as

|Ä[1]
2,2| ≤

(k − 1) ·
∑η

l=3 |Al|
n− t− |F| − n−|F|−

∑η
l=3 |Al|

2

=
2(k − 1)

n−2t−|F|∑η
l=3 |Al|

+ 1
≤ 2(k − 1)

0 + 1
= 2(k − 1) (89)

where the first inequality follows from the condition |A2| ≤
n−|F|−

∑η
l=3 |Al|

2
; and the second inequality

results from the fact that n−2t−|F|∑η
l=3 |Al|

> 0 in this case with η ≥ 3.

We now focus on the case where η = 2. We assume that |Ä[1]
2,2| > 0. Under this assumption, by following

the steps in (79)-(84), and given η = 2, we have

0 =
∑

j∈∪η
l=3Al

ui(j) ≥ n− t− |F| − |A2|, ∀i ∈ Ä[1]
2,2. (90)

The bound in (90) contradicts the condition |A2| ≤
n−|F|−

∑η
l=3 |Al|

2
< n− t− |F|. Hence, the assumption

|Ä[1]
2,2| > 0 leads to a contradiction; therefore, it is true that |Ä[1]

2,2| = 0 for this case with η = 2. This
completes the proof.

Algorithm 3 OciorACOOL⋆ protocol with identifier ID for a small t. Code is shown for Node i ∈ [n].
// ** This protocol is designed for the case where t is very small compared to n **
// ** It includes OciorACOOL within S ′ := [n′], and a Strongly-Honest-Majority Distributed Multicast (SHMDM) from S ′. **
// ** Here n′ := 3t+ 1. **

1: Initially set n′ ← 3t+ 1; k ← t/3;Yoec ← {}

// ******************** OciorACOOL********************
2: upon receiving a non-empty message input wi and i ∈ [n′] do:
3: pass wi into OciorACOOL as an input value
4: run the OciorACOOL protocol with other nodes within [n′]

// ******************** SHMDM ********************
5: upon outputting a message w′ from OciorACOOL protocol, and i ∈ [n′] do:
6: [y′

1, y
′
2, . . . , y

′
n′ ]← ECCEnc(n′, k,w′)

7: send (SHMDM, ID, yi) to all nodes within [n] \ [n′]
8: output w′ and terminate
9: upon receiving (SHMDM, ID, y′

j) from Node j ∈ [n′] for the first time, and i /∈ [n′] do:
10: Yoec[j]← y′

j

11: if |Yoec| ≥ k + t then // online error correcting
12: ŵ ← ECCDec(n′, k,Yoec)
13: [y1, y2, · · · , yn′ ]← ECCEnc(n′, k, ŵ)
14: if at least k + t symbols in [y1, y2, · · · , yn′ ] match with those in Yoec then
15: output ŵ and terminate
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Algorithm 4 OciorRBA protocol with identifier ID. Code is shown for Node i for i ∈ [n].
1: Initially set k ← t/3;w(i) ← ⊥; Ioecfinal ← 0;Yoec ← {}; I3 ← 0

// ******************** COOL-UA********************
2: upon receiving a non-empty message input wi do:
3: pass wi into COOL-UA as an input value

// ******************** Binary RBA (BRBA)********************
4: upon delivery of S[2]

v⋆ from COOL-UA such that |S[2]
v⋆ | ≥ n− t, for a v⋆ ∈ {1, 0}, and (READY, ID, ∗) not yet sent do:

5: send (READY, ID, v⋆) to all nodes // For some application in [6], the value of v⋆ is delivered to the protocol invoking OciorRBA

6: upon receiving t+ 1 (READY, ID, v) messages from different nodes for the same v, and (READY, ID, ∗) not yet sent do:
7: send (READY, ID, v) to all nodes
8: upon receiving 2t+ 1 (READY, ID, v) messages from different nodes for the same v do:
9: set v⋄ ← v

10: if v⋄ = 0 then output w(i) = ⊥ and terminate else set I3 ← 1

// ******************** COOL-HMDM ********************
11: upon I3 = 1 do: // For some application in [6], I3 may be set I3 ← 1 by receiving a binary input b = 1 (other than message input)
12: if COOL-UA has delivered [w(i), s

[2]
i , vi] with s

[2]
i = 1 then

13: output w(i) and terminate
14: else
15: wait until COOL-UA delivering at least t+ 1 (SYMBOL, ID, (y

(j)
i , ∗)), ∀j ∈ S[2]

1 , for the same y
(j)
i = y⋆, for some y⋆

16: y
(i)
i ← y⋆ // update coded symbol based on majority rule

17: send (CORRECT, ID, y
(i)
i ) to all nodes

18: wait until Ioecfinal = 1
19: output w(i) and terminate
20: upon receiving (CORRECT, ID, y

(j)
j ) from Node j for the first time, j /∈ Yoec, and Ioecfinal = 0 do:

21: Yoec[j]← y
(j)
j

22: if |Yoec| ≥ k + t then // online error correcting
23: ŵ ← ECCDec(n, k,Yoec)
24: [y1, y2, · · · , yn]← ECCEnc(n, k, ŵ)
25: if at least k + t symbols in [y1, y2, · · · , yn] match with those in Yoec then set w(i) ← ŵ and Ioecfinal ← 1

26: upon COOL-UA having delivered (SYMBOL, ID, (∗, y(j)
j )) and S[2]

1 such that j ∈ S[2]
1 , and j /∈ Yoec, and Ioecfinal = 0 do:

27: Yoec[j]← y
(j)
j

28: run the OEC steps as in Lines 22-25
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Algorithm 5 OciorRBC protocol with identifier ID. Code is shown for Node i for i ∈ [n].
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// ** Without balancing, in the initial phase the leader simply broadcasts the entire message to each node (see Lines 14-17). **

1: Initially set k ← t/3;wi ← ⊥; Ioec ← 0;Zoec ← {}; I3 ← 0

// ******************** Initial Phase (With Balanced Communication) ********************
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