1

OciorMVBA: Near-Optimal Error-Free Asynchronous MVBA

Jinyuan Chen jinyuan@ocior.com

Abstract

In this work, we propose an error-free, information-theoretically secure, asynchronous multi-valued validated Byzantine agreement (MVBA) protocol, called OciorMVBA. This protocol achieves MVBA consensus on a message \boldsymbol{w} with expected $O(n|\boldsymbol{w}|\log n + n^2\log q)$ communication bits, expected $O(n^2)$ messages, and expected $O(\log n)$ rounds, under optimal resilience $n \geq 3t+1$ in an n-node network, where up to t nodes may be dishonest. Here, t denotes the alphabet size of the error correction code used in the protocol. When error correction codes with a constant alphabet size (e.g., Expander Codes) are used, t becomes a constant. An MVBA protocol that guarantees all required properties without relying on any cryptographic assumptions, such as signatures or hashing, except for the common coin assumption, is said to be *information-theoretically secure (IT secure)*. Under the common coin assumption, an MVBA protocol that guarantees all required properties in *all* executions is said to be *error-free*.

We also propose another error-free, IT-secure, asynchronous MVBA protocol, called OciorMVBArr. This protocol achieves MVBA consensus with expected $O(n|\boldsymbol{w}|+n^2\log n)$ communication bits, expected O(1) rounds, and expected O(1) common coins, under a relaxed resilience (RR) of $n \geq 5t+1$. Additionally, we propose a hash-based asynchronous MVBA protocol, called OciorMVBAh. This protocol achieves MVBA consensus with expected $O(n|\boldsymbol{w}|+\kappa n^3)$ bits, expected O(1) rounds, and expected O(1) common coins, given $n \geq 3t+1$.

I. INTRODUCTION

Multi-valued validated Byzantine agreement (MVBA), introduced by Cachin et al. in 2001 [1], is one of the key building blocks for distributed systems and cryptography. In MVBA, distributed nodes proposes their input values and seek to agree on one of the proposed values, ensuring that the agreed value satisfies a predefined Predicate function (referred to as $External\ Validity$). MVBA is a variant of Byzantine agreement (BA), which was proposed by Pease, Shostak and Lamport in 1980 [2]. In BA, if all honest nodes input the same value w, it is required that every honest node eventually outputs w (referred to as Validity). As one can see, MVBA's External Validity is different from BA's Validity.

In this work, we focus on the design of *asynchronous* MVBA protocols. The seminal work by Fischer, Lynch, and Paterson [3] reveals that no deterministic MVBA protocol can exist in the asynchronous setting. Therefore, any asynchronous MVBA protocol must incorporate randomness. A common approach to designing such a protocol is to create a deterministic algorithm supplemented by common coins, which provide the necessary randomness.

Additionally, we primarily focus on the design of error-free, information-theoretically secure (IT secure), asynchronous MVBA protocols. An MVBA protocol that guarantees all required properties without relying on any cryptographic assumptions, such as signatures or hashing, except for the common coin assumption, is said to be *IT secure*. Under the common coin assumption, an MVBA protocol that guarantees all required properties in *all* executions is said to be *error-free*.

Specifically, we propose an error-free, IT secure, asynchronous MVBA protocol, called OciorMVBA. This protocol achieves MVBA consensus on a message \boldsymbol{w} with expected $O(n|\boldsymbol{w}|\log n + n^2\log q)$ communication bits, expected $O(n^2)$ messages, and expected $O(\log n)$ rounds, under optimal resilience $n \geq 3t+1$ in an n-node network, where up to t nodes may be dishonest. Here, q denotes the alphabet size of the error correction code used in the protocol. When error correction codes with a constant alphabet size (e.g., Expander Codes [4]) are used, q becomes a constant.

The design of OciorMVBA in this MVBA setting builds on the protocols COOL and OciorCOOL, originally designed for the BA setting [5]–[7]. Specifically, COOL and OciorCOOL introduced two

primitives: unique agreement (UA) and honest-majority distributed multicast (HMDM) [5]–[7]. COOL and OciorCOOL achieve the deterministic, error-free, IT secure, synchronous BA consensus with $O(n|\boldsymbol{w}| + nt\log q)$ communication bits and O(t) rounds, under optimal resilience $n \geq 3t+1$. When error correction codes with a constant alphabet size are used, q becomes a constant, and consequently, COOL and OciorCOOL are optimal.

- UA: In UA, distributed nodes input their values and seek to decide on an output of the form (w, s, v), where $s \in \{0, 1\}$ and $v \in \{0, 1\}$ denote a success indicator and a vote, respectively. UA requires that all honest nodes eventually output the same value w or a default value (*Unique Agreement*). Furthermore, if any honest node votes v = 1, then at least t + 1 honest nodes eventually output (w, 1, *) for the same w (*Majority Unique Agreement*).
- HMDM: In HMDM, there are at least t+1 honest nodes acting as senders, multicasting a message to n nodes. HMDM requires that if every honest sender inputs the same message w, then every honest node eventually outputs w.

Our proposed OciorMVBA is a recursive protocol (see Fig. 1) that consists of the algorithms of strongly-honest-majority distributed multicast (SHMDM), reliable Byzantine agreement (RBA), asynchronous biased binary Byzantine agreement (ABBBA), and asynchronous binary BA (ABBA).

- RBA: Our RBA algorithm, called OciorRBA, is built from UA and HMDM. We note that the Unique Agreement and Majority Unique Agreement properties of UA provide ideal conditions for HMDM.
 - SHMDM: SHMDM is slightly different from HMDM, as all honest nodes act as senders in SHMDM.
- ABBBA: This new primitive is introduced here and used as a building block in our protocols. In ABBBA, each honest node inputs a pair of binary numbers (a_1, a_2) , for some $a_1, a_2 \in \{0, 1\}$. One property is that if t+1 honest nodes input the second number as $a_2=1$, then any honest node that terminates outputs 1 (Biased Validity). Another property is that if an honest node outputs 1, then at least one honest node inputs $a_1=1$ or $a_2=1$ (Biased Integrity).

In this work, we also propose another error-free, IT-secure, asynchronous MVBA protocol, called OciorMVBArr. This protocol achieves MVBA consensus with expected $O(n|\boldsymbol{w}| + n^2\log n)$ communication bits, expected O(1) rounds, and expected O(1) common coins, under a relaxed resilience (RR) of $n \geq 5t+1$. Additionally, we propose a hash-based asynchronous MVBA protocol, called OciorMVBAh. This protocol achieves MVBA consensus with expected $O(n|\boldsymbol{w}| + \kappa n^3)$ bits, expected O(1) rounds, and expected O(1) common coins, under optimal resilience $n \geq 3t+1$.

The proposed OciorMVBA protocol is described in Algorithms 1-4 and Section II. The proposed OciorMVBArr protocol is described in Algorithms 5-7 and Section III. The proposed OciorMVBAh protocol is described in Algorithms 8-10 and Section IV. Table I provides a comparison between the proposed protocols and some other MVBA protocols. In the following subsection, we provide some definitions and primitives used in our protocols.

A. Primitives

Asynchronous network. We consider a network of n distributed nodes, where up to t of the nodes may be dishonest. Every pair of nodes is connected via a reliable and private communication channel. The network is considered to be *asynchronous*, i.e., the adversary can arbitrarily delay any message, but the messages sent between honest nodes will eventually arrive at their destinations.

Adaptive adversary. We consider an adaptive adversary, i.e., the adversary can corrupt any node at any time during the course of protocol execution, but at most t nodes in total can be controlled by adversary. Information-theoretic protocol. A protocol that guarantees all required properties without relying on any cryptographic assumptions, such as signatures or hashing, except for the common coin assumption, is said to be *IT secure*. The proposed protocols OciorMVBA and OciorMVBArr are IT secure.

Signature-free protocol. Under the common coin assumption, a protocol that guarantees all required properties without relying on signature-based cryptographic assumptions is said to be *signature-free*. All of the proposed protocols are signature-free.

TABLE I

Comparison between the proposed protocols and some other MVBA protocols. Here q denotes the alphabet size of the error correction code used in the proposed protocols. When error correction codes with a constant alphabet size (e.g., Expander Code [4]) are used, q becomes a constant. κ is a security parameter. In OciorMVBA, each node uses $O(\log n)$ common coins, but these coins are associated with network sizes of $n/2, n/2^2, n/2^3, \cdots, n/2^{\log n}$, respectively. This implies that the communication cost of using these common coins is equivalent to that of a scheme using O(1) common coins associated with a network size of n.

Protocols	Resilience	Communication	# Coin	Rounds	Cryptographic Assumption
		(Total Bits)			(Expect for Common Coin)
Cachin et al. [1]	$t < \frac{n}{3}$	$O(n^2 \boldsymbol{w} + \kappa n^2 + n^3)$	O(1)	O(1)	Threshold Sig
Abraham et al. [8]	$t < \frac{n}{3}$	$O(n^2 \boldsymbol{w} + \kappa n^2)$	O(1)	O(1)	Threshold Sig
Dumbo-MVBA [9]	$t < \frac{n}{3}$	$O(n \boldsymbol{w} + \kappa n^2)$	O(1)	O(1)	Threshold Sig
Duan et al. [10]	$t < \frac{n}{3}$	$O(n^2 \boldsymbol{w} + \kappa n^3)$	O(1)	O(1)	Hash
Feng et al. [11]	$t < \frac{n}{5}$	$O(n \boldsymbol{w} + \kappa n^2 \log n)$	O(1)	O(1)	Hash
Komatovic et al. [12]	$t < \frac{n}{4}$	$O(n \boldsymbol{w} + \kappa n^2 \log n)$	O(1)	O(1)	Hash
Proposed OciorMVBAh	$t < \frac{n}{3}$	$O(n \boldsymbol{w} + \kappa n^3)$	O(1)	O(1)	Hash
Duan et al. [10]	$t < \frac{n}{3}$	$O(n^2 \boldsymbol{w} + n^3\log n)$	O(1)	O(1)	Non
Proposed OciorMVBArr	$t < \frac{n}{5}$	$O(n \boldsymbol{w} + n^2 \log n)$	O(1)	O(1)	Non
Proposed OciorMVBA	$t < \frac{n}{3}$	$O(n \boldsymbol{w} \log n + n^2\log q)$	$O(\log n)$	$O(\log n)$	Non

Error-free protocol. Under the common coin assumption, a protocol that that guarantees all of the required properties in *all* executions is said to be *error-free*. The proposed protocols OciorMVBA and OciorMVBArr are error-free.

Definition 1 (Multi-valued validated Byzantine agreement (MVBA)). In the MVBA problem, there is an external Predicate function $\{0,1\}^* \to \{\text{true}, \text{false}\}\$ known to all nodes. In this problem, each honest node proposes its input value, ensuring that it satisfies the Predicate function to be true. The MVBA protocol guarantees the following properties:

- Agreement: If any two honest nodes output w' and w'', respectively, then w' = w''.
- **Termination:** Every honest node eventually outputs a value and terminates.
- External validity: If an honest node outputs a value w, then Predicate(w) = true.

Definition 2 (Byzantine agreement (BA)). In the BA protocol, the distributed nodes seek to reach agreement on a common value. The BA protocol guarantees the following properties:

- **Termination:** If all honest nodes receive their inputs, then every honest node eventually outputs a value and terminates.
- Consistency: If any honest node outputs a value w, then every honest node eventually outputs w.
- Validity: If all honest nodes input the same value w, then every honest node eventually outputs w.

Definition 3 (Reliable broadcast (RBC)). In a reliable broadcast protocol, a leader inputs a value and broadcasts it to distributed nodes, satisfying the following conditions:

- Consistency: If any two honest nodes output w' and w'', respectively, then w' = w''.
- Validity: If the leader is honest and inputs a value w, then every honest node eventually outputs w.
- Totality: If one honest node outputs a value, then every honest node eventually outputs a value.

Definition 4 (**Reliable Byzantine agreement** (RBA)). RBA is a variant of RBC problem and is a relaxed version of BA problem. The RBA protocol guarantees the following properties:

Consistency: If any two honest nodes output w' and w'', respectively, then w' = w''.

Validity: If all honest node input the same value w, then every honest node eventually outputs w.

Totality: If one honest node outputs a value, then every honest node eventually outputs a value.

Definition 5 (**Distributed multicast**). In the problem of distributed multicast (DM), there exits a subset of nodes acting as senders multicasting the message over n nodes, where up to t nodes could be dishonest. Each node acting as an sender has an input message. A protocol is called as a DM protocol if the following property is guaranteed:

• Validity: If all honest senders input the same message w, every honest node eventually outputs w. Honest-majority distributed multicast (HMDM, [5]–[7]): A DM problem is called as honest-majority DM if at least t+1 senders are honest. HMDM was used previously as a building block for COOL and OciorCOOL protocols [5]–[7].

Strongly-honest-majority distributed multicast (SHMDM): *A* DM *problem is called as strongly-honest-majority* DM *if all honest nodes are acting as senders.*

Definition 6 (Unique agreement (UA, [5]–[7])). UA is a variant of Byzantine agreement problem operated over n nodes, where up to t nodes may be dishonest. In a UA protocol, each node inputs an initial value and seeks to make an output taking the form as (w, s, v), where $s \in \{0, 1\}$ is a success indicator and $v \in \{0, 1\}$ is a vote. The UA protocol guarantees the following properties:

- Unique Agreement: If any two honest nodes output (w', 1, *) and (w'', 1, *), respectively, then w' = w''.
- Majority Unique Agreement: If any honest node outputs (*,*,1), then at least t+1 honest nodes eventually output $(\mathbf{w},1,*)$ for the same \mathbf{w} .
- Validity: If all honest nodes input the same value w, then all honest nodes eventually output (w, 1, 1). UA was used previously as a building block for COOL and OciorCOOL protocols [5]–[7].

Asynchronous complete information dispersal (ACID). We introduce a new primitive ACID. The goal of an ACID protocol is to disperse information over distributed nodes. Once a leader completes the dispersal of its proposed message, it is guaranteed that each honest node could retrieve the delivered message correctly from distributed nodes via a data retrieval scheme. Two ACID definitions are provided below: one for an ACID instance dispersing a message proposed by a leader, and the other one for a whole ACID protocol of running n parallel ACID instances.

Definition 7 (ACID instance). In an ACID[(ID, i)] protocol with an identity (ID, i), a message is proposed by P_i (i.e., the leader in this case) and is dispersed over n distributed nodes, for $i \in [1:n]$. An ACID[(ID, i)] protocol is complemented by a data retrieval protocol DR[(ID, i)] in which each node retrieves the message proposed by P_i from n distributed nodes. The ACID[(ID, i)] and DR[(ID, i)] protocols guarantee the following properties:

- Completeness: If P_i is honest, then P_i eventually completes the dispersal (ID, i).
- Availability: If P_i completes the dispersal for (ID, i), and all honest nodes start the data retrieval protocol for (ID, i), then each node eventually reconstructs some message.
- Consistency: If two honest nodes reconstruct messages w' and w'' respectively for (ID, i), then w' = w''.
- Validity: If an honest P_i has proposed a message w for (ID, i) and an honest node reconstructs a message w' for (ID, i), then w' = w.

Definition 8 (Parallel ACID instances). An ACID[ID] protocol is a protocol involves running n parallel ACID instances, $\{ACID[(ID,i)]\}_{i=1}^n$, over n distributed nodes, where up to t of the nodes may be dishonest. For an ACID[ID] protocol, the following conditions must be satisfied:

- **Termination:** Every honest node eventually terminates.
- Integrity: If one honest node terminates, then there exists a set \mathcal{I}^* such that the following conditions hold: 1) $\mathcal{I}^* \subseteq [1:n] \setminus \mathcal{F}$, where \mathcal{F} denotes the set of indexes of all dishonest nodes; 2) $|\mathcal{I}^*| \ge n 2t$; and 3) for any $i \in \mathcal{I}^*$, P_i has completed the dispersal ACID[(ID, i)].

Definition 9 (Asynchronous biased binary Byzantine agreement (ABBBA)). We introduce a new primitive called as ABBBA. In an ABBBA protocol, each honest node inputs a pair of binary numbers

 (a_1, a_2) , for some $a_1, a_2 \in \{0, 1\}$. The honest nodes seek to reach an agreement on a common value $a \in \{0, 1\}$. An ABBBA protocol should satisfy the following properties:

- Conditional termination: Under an input condition—i.e., if one honest node inputs its second number as $a_2 = 1$ then at least t + 1 honest nodes input their first numbers as $a_1 = 1$ —then every honest node eventually outputs a value and terminates.
- Biased validity: If t+1 honest nodes input the second number as $a_2=1$, then any honest node that terminates outputs 1.
- Biased integrity: If an honest node outputs 1, then at least one honest node inputs $a_1 = 1$ or $a_2 = 1$.

Definition 10 (Common coin). The seminal work by Fischer, Lynch, and Paterson in [3] reveals that no deterministic MVBA protocol can exist in the asynchronous setting. Therefore, any asynchronous MVBA protocol must incorporate randomness. A common approach to designing such a protocol is to create a deterministic algorithm supplemented by common coins, which provide the necessary randomness. Here, we assume the existence of a common coin protocol $l \leftarrow \text{Election}[\text{id}]$ associated with an identity id, which guarantees the following properties:

- **Termination:** If t+1 honest nodes activate Election[id], then each honest node that activates it will output a common value l.
- Consistency: If any two honest nodes output l' and l'' from Election[id], respectively, then l' = l''.
- Uniform: The output l from Election[id] is randomly generated based on a uniform distribution for $l \in [1:n]$.
- **Unpredictability:** The adversary cannot correctly predict the output of Election[id] unless at least one honest node has activated it.

When analyzing the performance of MVBA protocols, we exclude the cost of the common coin protocol.

Error correction code (ECC). An (n, k) error correction coding scheme consists of an encoding scheme ECCEnc: $\mathcal{B}^k \to \mathcal{B}^n$ and a decoding scheme ECCDec: $\mathcal{B}^{n'} \to \mathcal{B}^k$, where \mathcal{B} denotes the alphabet of each symbol and $q \triangleq |\mathcal{B}|$ denotes the size of \mathcal{B} , for some n'. While $[y_1, y_2, \cdots, y_n] \leftarrow \text{ECCEnc}(n, k, \mathbf{w})$ outputs n encoded symbols, $y_j \leftarrow \text{ECCEnc}_j(n, k, \mathbf{w})$ outputs the jth encoded symbol.

Reed-Solomon (RS) codes (cf. [13]) are widely used error correction codes. An (n,k) RS error correction code can correct up to t Byzantine errors and simultaneously detect up to t Byzantine errors in t symbol observations, given the conditions of t0 and t1 and t2 and t3 and t4 are t5 code is operated over Galois Field t6 and t7 under the constraint t8 and t8 are codes can be constructed using the Lagrange polynomial interpolation. The resulting code is a type of RS code with a minimum distance t8 and t9 are two efficient decoding algorithms for RS codes [13]-[15].

Although RS is a popular error correction code, it has a constraint on the size of the alphabet, namely $n \le q - 1$. To overcome this limitation, other error correction codes with a constant alphabet size, such as Expander Codes [4], can be used.

Erasure code (EC). An (n,k) erasure coding scheme consists of an encoding scheme ECEnc: $\mathcal{B}^k \to \mathcal{B}^n$ and a decoding scheme ECDec: $\mathcal{B}^k \to \mathcal{B}^k$, where \mathcal{B} denotes the alphabet of each symbol and $q \triangleq |\mathcal{B}|$ denotes the size of \mathcal{B} . With an (n,k) erasure code, the original message can be decoded from any k encoded symbols. Specifically, given $[y_1, y_2, \cdots, y_n] \leftarrow \text{ECEnc}(n, k, \mathbf{w})$, then $\text{ECDec}(n, k, \{y_{j_1}, y_{j_2}, \cdots, y_{j_k}\}) = \mathbf{w}$ holds true for any k distinct integers $j_1, j_2, \cdots, j_k \in [1:n]$.

Online error correction (OEC). Online error correction is a variant of traditional error correction [16]. An (n, k) error correction code can correct up to t' Byzantine errors in n' symbol observations, provided the conditions of $2t' + k \le n'$ and $n' \le n$. However, in an asynchronous setting, a node might not be able to decode the message with n' symbol observations if 2t' + k > n'. In such a case, the node can wait for one more symbol observation before attempting to decode again. This process repeats until the node successfully decodes the message. By setting the threshold as $n' \ge k + t$, OEC may perform up to t trials in the worst case before decoding the message.



Fig. 1. A block diagram of the proposed OciorMVBA protocol with an identifier ID.

Algorithm 1 OciorMVBA protocol, with identifier ID, for $n \ge 3t + 1$. Code is shown for P_i .

```
// ** RMVBA: Recursive MVBA, error-free, IT secure **
      \# ** \mathcal{S}_p is partitioned into two disjoint sets \mathcal{S}_{2p} and \mathcal{S}_{2p+1} such that |\mathcal{S}_{2p}| = \lfloor |\mathcal{S}_p|/2 \rfloor and |\mathcal{S}_{2p+1}| = \lceil |\mathcal{S}_p|/2 \rceil^*
      // ** Initially S_1 denotes the set of all nodes with size n **
 1: procedure RMVBA[(ID, p)](\boldsymbol{w})
           let \tilde{n} \leftarrow |\mathcal{S}_p|; \tilde{t} \leftarrow \lfloor \frac{|\mathcal{S}_p|-1}{3} \rfloor; r_p \leftarrow \lfloor \log p \rfloor + 1
let \theta \leftarrow 0, \bar{\theta} \leftarrow 1 if P_i \in \mathcal{S}_{2p}, else \theta \leftarrow 1, \bar{\theta} \leftarrow 0
 2:
 3:
           let I_{\text{finish}} \leftarrow \{\}; I_{\text{ready}} \leftarrow \{\}; I_{\text{confirm}} \leftarrow \{\}
 4:
           for j \in \{0, 1\} do
 5:
                 I_{\text{finish}}[j] \leftarrow 0; I_{\text{ready}}[j] \leftarrow 0; I_{\text{confirm}}[j] \leftarrow 0
 6:
 7:
           upon receiving input w, for Predicate(w) = true and P_i \in \mathcal{S}_p do:
 8:
                 if |\mathcal{S}_p| \leq M then
                                                                                                 // M is a preset finite number
 9:
                      \hat{\boldsymbol{w}} \leftarrow \text{IneMVBA}[(\text{ID}, p)](\boldsymbol{w})
                                                                                                 // IneMVBA: inefficient MVBA protocol
10:
                      return \hat{w} and terminate
11:
                                                                                                 // From Line 3, it is true that P_i \in \mathcal{S}_{2p+\theta} and P_i \notin \mathcal{S}_{2n+\bar{\theta}}
                      pass w into RMVBA[(ID, 2p + \theta)] as input
12:
                      pass \perp into SHMDM[(ID, p, \bar{\theta})] as input
13:
                      wait for (I_{\text{confirm}}[0] = 1) \vee (I_{\text{confirm}}[1] = 1)
14:
                      for l \in \{0, 1\} do
15:
16:
                           a \leftarrow \mathrm{ABBBA}[(\mathrm{ID}, p, l, \tilde{n}, \tilde{t})](I_{\mathrm{ready}}[l], I_{\mathrm{finish}}[l]) "asynchronous biased binary BA, within \mathcal{S}_p, with \tilde{n}, \tilde{t} parameters
17:
                           b \leftarrow ABBA[(ID, p, l, \tilde{n}, \tilde{t})](a)
                                                                                                   // asynchronous binary BA, operated within S_p, with \tilde{n}, \tilde{t} parameters
18:
                           if b = 1 then
19:
                                pass b into OciorRBA[(ID, p, l)] as a binary input (other than the message input)
20:
                                wait for OciorRBA[(ID, p, l)] to output value \hat{w}
21:
                                if Predicate(\hat{w}) = true then
                                     output \hat{w} and terminate this RMVBA[(ID, p)] and all invoked recursive protocols under it.
22:
23:
           upon RMVBA[(ID, 2p + \theta)] outputs \hat{w}, with Predicate(\hat{w}) = true, and P_i \in \mathcal{S}_{2p+\theta} do:
24:
                 pass \hat{\boldsymbol{w}} into SHMDM[(ID, p, \theta)] as a message input
           upon SHMDM[(ID, p, j)] outputs \hat{\boldsymbol{w}}, with Predicate(\hat{\boldsymbol{w}}) = true, for j \in \{0, 1\} and P_i \in \mathcal{S}_p do:
25:
26:
                 pass \hat{w} into OciorRBA[(ID, p, j)] as a message input // OciorRBA[(ID, p, j)] is a reliable BA protocol operated within S_p
           upon OciorRBA[(ID, p, j)] delivers v_i = 1, for j \in \{0, 1\} and P_i \in \mathcal{S}_p do:
27:
28:
                                                                                                       // ready
                 send ("READY", ID, r_p, j) to all nodes within S_p
29:
           upon receiving \tilde{n} - \tilde{t} ("READY", ID, r_p, j) messages from distinct nodes within S_p for j \in \{0, 1\} and P_i \in S_p do:
30:
31:
                 I_{\text{finish}}[j] \leftarrow 1
                                                                                                      // finish
                 send ("FINISH", ID, r_p, j) to all nodes within S_p
32:
           upon receiving \tilde{n} - \tilde{t} ("FINISH", ID, r_p, j) messages from distinct nodes within S_p for j \in \{0, 1\} and P_i \in S_p do:
33:
34:
                                                                                                      // confirm
                 I_{\text{confirm}}[j] \leftarrow 1
```

Algorithm 2 ABBBA protocol with identifier $(ID, p, l, \tilde{n}, \tilde{t})$, for $id := (ID, \lfloor \log p \rfloor + 1, l)$. This protocol operates on a network S_p of \tilde{n} nodes, up to \tilde{t} of which may be dishonest. Code is shown for P_i .

```
// ** Each node inputs a pair of numbers (a_1, a_2), for some a_1, a_2 \in \{0, 1\} **
      // ** Terminate is guaranteed if the following condition is satisfied: if one honest node inputs a_2 = 1, then at least \tilde{t} + 1 honest nodes
      input a_1 = 1 **
     "" ** If at least \tilde{t}+1 honest nodes input a_2=1, then none of the honest nodes will output 0. This is because at most \tilde{n}-(\tilde{t}+1)
     nodes input a_2 = 0 in this case, indicating that the condition in Line 8 could not be satisfied. **
     \# ** If one honest node outputs 1 (only when (\operatorname{cnt}_1 \geq \tilde{t}+1) \vee (\operatorname{cnt}_2 \geq \tilde{t}+1)), then at least one honest node has an input as a_1=1
      or a_2 = 1 **
 1: upon receiving input (a_1, a_2), for some a_1, a_2 \in \{0, 1\} do:
 2:
          cnt_1 \leftarrow 0; cnt_2 \leftarrow 0; cnt_3 \leftarrow 0
          send ("ABBBA", id, a_1, a_2) to all nodes
 3:
 4:
          if (a_1 = 1) \lor (a_2 = 1) then output 1 and terminate
 5:
          wait for at least one of the following events: 1) \operatorname{cnt}_1 \geq \tilde{t} + 1, 2) \operatorname{cnt}_2 \geq \tilde{t} + 1, or 3) \operatorname{cnt}_3 \geq \tilde{n} - \tilde{t}
                if (\operatorname{cnt}_1 \geq \tilde{t} + 1) \vee (\operatorname{cnt}_2 \geq \tilde{t} + 1) then
 6:
 7:
                    output 1 and terminate
 8:
                else if cnt_3 \geq \tilde{n} - \tilde{t} then
 9:
                    output 0 and terminate
10: upon receiving ("ABBBA", id, a_1, a_2) from P_i for the first time, for some a_1, a_2 \in \{0, 1\} do:
          \operatorname{cnt}_1 \leftarrow \operatorname{cnt}_1 + a_1; \operatorname{cnt}_2 \leftarrow \operatorname{cnt}_2 + a_2
11:
          if a_2 = 0 then cnt_3 \leftarrow cnt_3 + 1
12:
```

Algorithm 3 SHMDM protocol with identifier (ID, p, θ), for id := (ID, $\lfloor \log p \rfloor + 1, \theta$), and for $\theta \in \{0, 1\}$. Code is shown for P_i , where P_i denotes the *i*th node within S_p .

```
// ** SHMDM: Strongly-honest-majority distributed multicast **
       \# ** \mathcal{S}_p is partitioned into two disjoint sets \mathcal{S}_{2p} and \mathcal{S}_{2p+1} with \|\mathcal{S}_{2p}\| = \lfloor |\mathcal{S}_p|/2 \rfloor and \|\mathcal{S}_{2p+1}\| = \lceil |\mathcal{S}_p|/2 \rceil^*
  1: Initially set \mathbb{Z}_{\text{oec}} \leftarrow \{\}, n^{\star} \leftarrow |\mathcal{S}_{2p+\theta}|; t^{\star} \leftarrow \lfloor \frac{|\mathcal{S}_{2p+\theta}|-1}{3} \rfloor; k^{\star} \leftarrow t^{\star} + 1
      upon receiving input w do:
 3:
             if P_i \in \mathcal{S}_{2p+\theta} then
 4:
                    i^{\star} \leftarrow i - \theta \cdot |\mathcal{S}_{2p}|
                                                                                                                   //i^* is the position of this node within S_{2p+\theta}
                    z_{i^{\star}} \leftarrow \text{ECCEnc}_{i^{\star}}(n^{\star}, k^{\star}, \boldsymbol{w})
                                                                                                                    // ECCEnc<sub>i*</sub> outputs the i*th encoded symbol only
 5:
                   send ("INITIAL", id, z_{i^*}) to all nodes in S_p \setminus S_{2p+\theta} // broadcast coded symbol to other set for decoding initial message
 6:
 7:
                    output w and terminate
       upon receiving ("INITIAL", id, z) from P_j for the first time for some z, for P_j \in \mathcal{S}_{2p+\theta}, and P_i \in \mathcal{S}_p \setminus \mathcal{S}_{2p+\theta} do:
 8:
 9:
             j^* \leftarrow j - \theta \cdot |\mathcal{S}_{2p}|; \quad \mathbb{Z}_{\text{oec}}[j^*] \leftarrow z
                                                                                                                  //j^* is the position of P_i within S_{2n+\theta}
             if |\mathbb{Z}_{\text{oec}}| \geq k^{\star} + t^{\star} then
10:
                                                                                                                  // online error correcting (OEC)
11:
                    \tilde{\boldsymbol{w}} \leftarrow \text{ECCDec}(n^{\star}, k^{\star}, \mathbb{Z}_{\text{oec}})
12:
                    [z'_1, z'_2, \cdots, z'_{n^*}] \leftarrow \text{ECCEnc}(n, k, \tilde{\boldsymbol{w}})
13:
                    if at least k^* + t^* symbols in [z_1', z_2', \cdots, z_{n^*}'] match with those in \mathbb{Z}_{oec} then
14:
                         output \tilde{\boldsymbol{w}} and terminate
```

Algorithm 4 OciorRBA protocol with identifier (ID, p, θ) , for $id := (ID, \lfloor \log p \rfloor + 1, \theta)$. Code is shown for P_i , where P_i denotes the *i*th node within S_p . This protocol is operated within S_p .

```
// ** OciorRBA is an error-free reliable Byzantine agreement (RBA) protocol, extended from OciorCOOL and OciorRBC [7]. ** 1: Initially set \tilde{n} \leftarrow |\mathcal{S}_p|; \tilde{t} \leftarrow \lfloor \frac{|\mathcal{S}_p|-1}{3} \rfloor, \tilde{k} \leftarrow \lfloor \frac{\tilde{t}}{5} \rfloor + 1; I_{\text{oecfinal}} \leftarrow 0; \mathbb{Y}_{\text{oec}} \leftarrow \{\}; \mathbb{U}_0 \leftarrow \{\}; \mathbb{U}_1 \leftarrow \{\}; \mathbb{S}_0^{[1]} \leftarrow \{\}; \mathbb{S}_0^{[1]} \leftarrow \{\}; \mathbb{S}_0^{[2]} \leftarrow \{\}; \mathbb{S}_0^{[1]} \leftarrow \{\}; \mathbb{S}_0^{
                       \{\}; \mathbb{S}_{1}^{[2]} \leftarrow \{\}; I_{\text{ecc}} \leftarrow 0; I_{\text{SI2}} \leftarrow 0; I_{3} \leftarrow 0
       2: upon receiving a non-empty message input w_i do:
                                     \begin{aligned} & \boldsymbol{w}^{(i)} \leftarrow \boldsymbol{w}_i \\ & [y_1^{(i)}, y_2^{(i)}, \cdots, y_{\tilde{n}}^{(i)}] \leftarrow \text{ECCEnc}(\tilde{n}, \tilde{k}, \boldsymbol{w}_i) \\ & \textbf{send} \ (\text{"SYMBOL"}, \text{id}, (y_j^{(i)}, y_i^{(i)})) \ \text{to} \ P_j, \ \forall j \in [1:\tilde{n}], \ \text{and then set} \ I_{\text{ecc}} \leftarrow 1 \end{aligned}
      3:
       4:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    // exchange coded symbols
      6: upon receiving ("SYMBOL", id, (y_i^{(j)}, y_i^{(j)})) from P_j for the first time do:
                                      \begin{array}{l} \text{wait until } I_{\text{ecc}} = 1 \\ \text{if } (y_i^{(j)}, y_j^{(j)}) = (y_i^{(i)}, y_j^{(i)}) \quad \text{then} \\ \mathbb{U}_1 \leftarrow \mathbb{U}_1 \cup \{j\} \end{array}
        7:
       8:
      9:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // update the set of link indicators
   10:
                                                         \mathbb{U}_0 \leftarrow \mathbb{U}_0 \cup \{j\}
  11:
  12: upon |\mathbb{U}_1| \geq \tilde{n} - \tilde{t}, and ("SI1", id, *) not yet sent do:
                                       set s_i^{[1]} \leftarrow 1, and send ("SI1", id, s_i^{[1]}) to all nodes
  13:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // set success indicator
 14: upon |\mathbb{U}_0| \geq \tilde{t} + 1, and ("SI1", id, *) not yet sent do:
                                       set s_i^{[1]} \leftarrow 0, and send ("SI1", id, s_i^{[1]}) to all nodes
 16: upon receiving ("SI1", id, \mathbf{s}_{j}^{[1]}) from P_{j} for the first time do:
                                      if \mathbf{s}_{i}^{[1]} = 1 then \mathbb{S}_{1}^{[1]} \leftarrow \mathbb{S}_{1}^{[1]} \cup \{j\} else \mathbb{S}_{0}^{[1]} \leftarrow \mathbb{S}_{0}^{[1]} \cup \{j\}
 17:
18: upon (\mathbf{s}_{i}^{[1]} = 0) \lor (|\mathbb{S}_{0}^{[1]} \cup \mathbb{U}_{0}| \ge \tilde{t} + 1), and ("SI2", id, \mathbf{s}_{i}^{[2]}) not yet sent do: 19: set \mathbf{s}_{i}^{[2]} \leftarrow 0, send ("SI2", id, \mathbf{s}_{i}^{[2]}) to all nodes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // update success indicator
                    upon (\mathbf{s}_i^{[1]} = 1) \wedge (|\mathbb{S}_1^{[1]} \cap \mathbb{U}_1| \geq \tilde{n} - \tilde{t}), and ("SI2", id, \mathbf{s}_i^{[2]}) not yet sent do:
                                       set \mathbf{s}_i^{[2]} \leftarrow 1, I_{SI2} \leftarrow 1, and send ("SI2", id, \mathbf{s}_i^{[2]}) to all nodes
22: upon receiving ("SI2", id, \mathbf{s}_{j}^{[2]}) from P_{j} for the first time do:
                                       if \mathbf{s}_i^{[2]} = 1 then \mathbb{S}_1^{[2]} \leftarrow \mathbb{S}_1^{[2]} \cup \{j\} else \mathbb{S}_0^{[2]} \leftarrow \mathbb{S}_0^{[2]} \cup \{j\}
```

```
24: upon |\mathbb{S}_{\mathbf{v}}^{[2]}| \geq \tilde{n} - \tilde{t}, for a \mathbf{v} \in \{1, 0\}, and ("READY", id, *) not yet sent do:
25:
          set v_i \leftarrow v, and deliver v_i
                                                                                              // the value of v_i is delivered out to the protocol in Algorithm 1
26:
          send ("READY", \mathrm{id}, v_i) to all nodes
27: upon receiving \tilde{t} + 1 ("READY", id, v) messages from different nodes for the same v and ("READY", id, *) not yet sent do:
28:
          send ("READY", id, v) to all nodes
29: upon receiving 2\tilde{t} + 1 ("READY", id, v) messages from different nodes for the same v do:
          if ("READY", id, *) not yet sent then
30:
               send ("READY", id, v) to all nodes
31:
32:
          set v_o \leftarrow v
          if v_o = 0 then
33:
               set w^{(i)} \leftarrow \bot, then output w^{(i)} and terminate
34:
                                                                                                                                                     // \perp is a default value
35:
36:
37: upon receiving a binary input b = 1 (other than the message input w_i) do:
                                                                                                                  // b is delivered from the protocol in Algorithm I
38:
          set I_3 \leftarrow 1
      Phase 3
                                                                                                                               // only after executing Line 36 or Line 38
39: upon I_3 = 1 do:
40:
          if I_{SI2} = 1 then
41:
               output w^{(i)} and terminate
42:
               wait until receiving \tilde{t} + 1 ("SYMBOL", id, (y_i^{(j)}, *)) messages, \forall j \in \mathbb{S}_1^{[2]}, for the same y_i^{(j)} = y^*, for some y^*
43:
                                                                                                                      // update coded symbol based on majority rule
44:
               send ("CORRECT", id, y_i^{(i)}) to all nodes
45:
46:
               wait until I_{\text{oecfinal}} = 1
               output w^{(i)} and terminate
47:
48: upon receiving ("CORRECT", id, y_i^{(j)}) from P_j for the first time, j \notin \mathbb{Y}_{oec}, and I_{oecfinal} = 0 do:
          \mathbb{Y}_{\text{oec}}[j] \leftarrow y_j^{(j)}
49:
          if |\mathbb{Y}_{\text{oec}}| \geq \tilde{k} + \tilde{t} then
50:
                                                                                                                                         // online error correcting (OEC)
               \hat{\boldsymbol{w}} \leftarrow \text{ECCDec}(\tilde{n}, \tilde{k}, \mathbb{Y}_{\text{oec}})
51:
52:
               [y_1, y_2, \cdots, y_{\tilde{n}}] \leftarrow \text{ECCEnc}(\tilde{n}, \tilde{k}, \hat{\boldsymbol{w}})
53:
               if at least \tilde{k}+\tilde{t} symbols in [y_1,y_2,\cdots,y_{\tilde{n}}] match with those in \mathbb{Y}_{\text{oec}} then
                    \boldsymbol{w}^{(i)} \leftarrow \hat{\boldsymbol{w}}; I_{\text{oecfinal}} \leftarrow 1
54:
55: upon having received both ("SYMBOL", id, (y_i^{(j)}, y_i^{(j)})) and ("SI2", id, 1) messages from P_j, and j \notin \mathbb{Y}_{oec}, and I_{oecfinal} = 0 do:
          \mathbb{Y}_{\text{oec}}[j] \leftarrow y_i^{(j)}
56:
          run the OEC steps as in Lines 50-54
57:
```

II. OciorMVBA

This proposed OciorMVBA is an error-free, information-theoretically secure asynchronous MVBA protocol. OciorMVBA doesn't rely on any cryptographic assumptions, such as signatures or hashing, except for the common coin assumption. The design of OciorMVBA in this MVBA setting builds on the protocols COOL and OciorCOOL [5]–[7].

A. Overview of the proposed OciorMVBA protocol

The proposed OciorMVBA is described in Algorithm 1, along with Algorithms 2-4. Fig. 1 presents a block diagram of the proposed OciorMVBA protocol. For a network \mathcal{S}_p , we define the network size and the faulty threshold as $\tilde{n}_p := |\mathcal{S}_p|$ and $\tilde{t}_p := \lfloor \frac{|\mathcal{S}_p|-1}{3} \rfloor$, for $p \in \{1,2,3,\cdots\}$. The original network is defined as $\mathcal{S}_1 := \{P_i : i \in [1:n]\}$, where P_i denotes the ith node in the network. \mathcal{S}_p is partitioned into two disjoint sets \mathcal{S}_{2p} and \mathcal{S}_{2p+1} such that $|\mathcal{S}_{2p}| = \lfloor |\mathcal{S}_p|/2 \rfloor$ and $|\mathcal{S}_{2p+1}| = \lceil |\mathcal{S}_p|/2 \rceil$. Below, we provide an overview of the proposed protocol.

OciorMVBA is a recursive protocol. As shown in Fig. 1, the protocol RMVBA[(ID, p)] invokes two sub-protocols: RMVBA[(ID, 2p)] and RMVBA[(ID, 2p+1)]. Each sub-protocol, in turn, invokes two additional sub-protocols. This process continues until the size of network on which a sub-protocol operates on is smaller than a predefined finite threshold. In the final protocol invoked, any inefficient MVBA protocol

(referred to as IneMVBA) can be used without impacting overall performance, as the size of the operated network is finite.

The general protocol RMVBA[(ID, p)] comprises several steps, as illustrated in Fig. 1. It operates over the network S_p , which is partitioned into two disjoint sets, S_{2p} and S_{2p+1} , of balanced size. The two invoked protocols operate on these partitioned network sets. The key steps involved in RMVBA[(ID, p)] are described below.

- Step 1: Upon an invoked sub-protocol RMVBA[(ID, $2p + \theta$)], for $\theta \in \{0, 1\}$, outputs a message \mathbf{w}_{θ} , the nodes within $\mathcal{S}_{2p+\theta}$ input \mathbf{w}_{θ} into SHMDM[(ID, p, θ)].
- Step 2: Upon SHMDM[(ID, p, θ)] outputs a message \mathbf{w}_{θ} , the nodes within S_p input \mathbf{w}_{θ} into OciorRBA[(ID, p, θ)].
- Step 3: Upon OciorRBA[(ID, p, θ)] delivers $v_i = 1$, the nodes within S_p set $I_{\text{ready}}[\theta] \leftarrow 1$ and send ("READY", ID, r_p , θ) to all nodes within S_p , where $r_p := \lfloor \log p \rfloor + 1$.
- Step 4: Upon receiving $\tilde{n}_p \tilde{t}_p$ ("READY", ID, r_p, θ) messages from distinct nodes within \mathcal{S}_p , the nodes within \mathcal{S}_p set $I_{\text{finish}}[\theta] \leftarrow 1$ and send ("FINISH", ID, r_p, θ) to all nodes within \mathcal{S}_p .
- Step 5: Upon receiving $\tilde{n}_p \tilde{t}_p$ ("FINISH", ID, r_p, θ) messages from distinct nodes within S_p , the nodes within S_p set $I_{\text{confirm}}[\theta] \leftarrow 1$.
- Step 6: After setting $I_{\text{confirm}}[\theta] \leftarrow 1$, the nodes within S_p proceed to the Ordered Election step, which outputs l, taking a value from $\{0,1\}$ in order.
- Step 7: The nodes within S_p run the ABBBA protocol with inputs $(I_{\text{ready}}[l], I_{\text{finish}}[l])$.
- Step 8: After ABBBA outputs a value a, the nodes within S_p run an asynchronous binary BA (ABBA) protocol with input a.
- Step 9: If ABBA outputs a value 1, the nodes within S_p input 1 into OciorRBA[(ID, p, l)] and wait for its output. If OciorRBA[(ID, p, l)] outputs a value w_l such that Predicate(w_l) = true, the nodes within S_p output w_l and terminate the protocol RMVBA[(ID, p)]. If ABBA outputs a value 0, the nodes go back to Step 6.

In our design, by combining the Ready-Finish-Confirm process in Steps 4-6 with ABBBA in Steps 7, we ensure that if one honest node has set $I_{\text{confirm}}[l] \leftarrow 1$, eventually every honest node outputs 1 from ABBBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] in Step 7, due to the Biased Validity property of ABBBA. It is worth noting that the design of OciorRBA protocol in the RBA setting builds upon the protocols COOL and OciorCOOL, which utilize UA and HMDM as building blocks [5]–[7].

B. Analysis of OciorMVBA

Definition 11 (Good resilience). A network S_p is said to have good resilience if the number of dishonest nodes within S_p , denoted by $t_p := |S_p \cap \mathcal{F}|$, satisfies the condition $t_p < \frac{|S_p|}{3}$, where \mathcal{F} denotes the set of all dishonest nodes. This condition $t_p < \frac{|S_p|}{3}$ is equivalent to $t_p \leq \frac{|S_p|-1}{3}$, and also equivalent to the condition $t_p \leq \lfloor \frac{|S_p|-1}{3} \rfloor$ due to the integer nature of t_p .

Definition 12 (Network tree). In our setting, S_p is partitioned into two disjoint sets S_{2p} and S_{2p+1} . For example, S_1 (at Layer 1) is partitioned into two disjoint sets: S_2 and S_3 (at Layer 2). The two sets S_2 and S_3 are partitioned into S_4 , S_5 and S_6 , S_7 , respectively, at Layer 3. We define the network tree as comprising all layers of sets: S_1 at Layer 1; S_2 and S_3 at Layer 2; S_4 , S_5 , S_6 and S_7 at Layer 3; and so on.

Definition 13 (Network chain). By selecting one network set at each layer from a network tree, where the set selected at Layer r is partitioned from the set selected at Layer r-1, for $r=2,3,\cdots$, then the selected network sets form a network chain. One example of a network chain is $S_1 \to S_3 \to S_7 \to S_{15} \to \cdots$.

Definition 14 (Network chain with good resilience). A network chain is considered to have good resilience if every network set it includes has good resilience. For example, if all of $S_1, S_3, S_7, S_{15}, \cdots$

have good resilience, then the network chain $S_1 \to S_3 \to S_7 \to S_{15} \to \cdots$ is considered to have good resilience.

Theorem 1 (Agreement and Termination). In OciorMVBA, given $n \ge 3t+1$, every honest node eventually outputs a consistent value and terminates.

Proof. In our setting, S_p is partitioned into two disjoint sets S_{2p} and S_{2p+1} . From Lemma 1, if S_p has good resilience, i.e., $|S_p \cap \mathcal{F}| < \frac{|S_p|}{3}$, then at least one of the two sets, S_{2p} or S_{2p+1} , also has good resilience. From Lemma 2, given $n \geq 3t+1$, there exists a network chain with good resilience.

Let us focus on a network chain $S_1 \to \cdots \to S_p \to S_{2p+\theta} \to \cdots$ with good resilience, for some $\theta \in \{0,1\}$. From Lemma 4, it is true that if $\mathrm{RMVBA}[(\mathrm{ID},2p+\theta)]$ outputs a consistent value at all honest nodes within $S_{2p+\theta}$ and terminates, then $\mathrm{RMVBA}[(\mathrm{ID},p)]$ eventually outputs a consistent value at all honest nodes within S_p and terminates. Based on a recursive argument, and given that the last invoked RMVBA protocol eventually outputs a consistent value at all honest nodes within the last network set in the chain, it is concluded that every honest node within S_1 eventually outputs a consistent value and terminates, given that $n \geq 3t+1$.

Theorem 2 (External Validity). In OciorMVBA, if an honest node outputs a value w, then Predicate(w) = true.

Proof. In OciorMVBA, if an honest node outputs a value w, it has verified that Predicate(w) = true at Line 21 of Algorithm 1.

Theorem 3 (Communication and Round Complexities). The communication complexity of OciorMVBA is $O(n|\mathbf{w}|\log n + n^2\log q)$ bits, while the round complexity of OciorMVBA is $O(\log n)$ rounds, given $n \ge 3t + 1$.

Proof. The protocol RMVBA[(ID, p)] is operated over S_p with a network size of $\tilde{n}_p := |S_p|$. The total communication complexity in bits of the protocol RMVBA[(ID, p)], defined by $f_{\text{TB}}(\tilde{n}_p)$ is expressed as

$$f_{\text{TB}}(\tilde{n}_p) = \begin{cases} O(|\boldsymbol{w}|) & \text{if } m \leq M \\ \beta_1 \tilde{n}_p |\boldsymbol{w}| + \beta_2 \tilde{n}_p^2 \log q + f_{\text{TB}}\left(\lfloor \frac{\tilde{n}_p}{2} \rfloor\right) + f_{\text{TB}}\left(\lceil \frac{\tilde{n}_p}{2} \rceil\right) & \text{otherwise} \end{cases}$$

where M is a finite constant; β_1 and β_2 are finite constants; and $|\boldsymbol{w}|$ denotes the size of each input message. It is worth mentioning that each coded symbol transmitted in DRBC-COOL protocol carries at least $\log q$ bits due to the alphabet size of error correction code. We ignore the cost of the index $r_p = \lfloor \log p \rfloor + 1$ in transmitted messages (using $\log \log n$ bits), as it can be redesigned such that the total indexing cost related to r_p becomes negligible compared to the cost of coded symbols. When $n = 2^J M$ for some J, then the total communication complexity in bits of the proposed OciorMVBA is

$$f_{TB}(n) = \beta_{1}n|\mathbf{w}| + \beta_{2}n^{2}\log q + 2f_{TB}\left(\frac{n}{2}\right)$$

$$= \beta_{1}n|\mathbf{w}| + \beta_{2}n^{2}\log q + 2\left(\beta_{1} \cdot \frac{n}{2} \cdot |\mathbf{w}| + \beta_{2}\frac{n^{2}}{4}\log q + 2f_{TB}\left(\frac{n}{2^{2}}\right)\right)$$

$$= \beta_{1}n|\mathbf{w}| + \beta_{2}n^{2}\log q + \beta_{1}n|\mathbf{w}| + \beta_{2}\frac{n^{2}}{2}\log q + 2^{2} \cdot f_{TB}\left(\frac{n}{2^{2}}\right)$$

$$\vdots$$

$$= \beta_{1}n|\mathbf{w}| + \beta_{2}n^{2}\log q + \beta_{1}n|\mathbf{w}| + \beta_{2}\frac{n^{2}}{2}\log q + \dots + \beta_{1}n|\mathbf{w}| + \beta_{2}\frac{n^{2}}{2^{J-1}}\log q + 2^{J} \cdot f_{TB}\left(\frac{n}{2^{J}}\right)$$

$$= J\beta_{1}n|\mathbf{w}| + \beta_{2}n^{2}\log q \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{J-1}}\right) + 2^{J} \cdot f_{TB}(M)$$

$$= O(n|\mathbf{w}|\log n + n^{2}\log q).$$

The round complexity of OciorMVBA is $O(\log n)$ rounds.

Lemma 1. If S_p has good resilience, i.e., $|S_p \cap \mathcal{F}| < \frac{|S_p|}{3}$, then at least one of the two sets, S_{2p} or S_{2p+1} , also has good resilience.

Proof. If S_p has good resilience, i.e., $|S_p \cap \mathcal{F}| < \frac{|S_p|}{3}$, then at least one of the following two conditions is satisfied: $|S_{2p} \cap \mathcal{F}| < \frac{|S_{2p}|}{3}$ or $|S_{2p+1} \cap \mathcal{F}| < \frac{|S_{2p+1}|}{3}$.

Lemma 2. Given $n \ge 3t + 1$, there exists a network chain with good resilience.

Proof. Given $n \geq 3t+1$, S_1 has good resilience. S_1 is partitioned into two disjoint sets, S_2 and S_3 . From Lemma 1, at least one of the sets S_2 and S_3 has good resilience. Let us assume that S_3 has good resilience and include it into a network chain. Next, S_3 is partitioned into two disjoint sets S_6 and S_7 . Again, from Lemma 1, at least one of the sets S_6 and S_7 has good resilience. Let us assume that S_7 has good resilience and include it into the network chain. By repeating this process, we construct a network chain $S_1 \to S_3 \to S_7 \to \cdots$ such that all network sets it includes have good resilience. This implies that the selected network chain has good resilience.

Without loss of generality, we will focus on the network set S_p , such that all other protocols RMVBA[(ID, p')] invoking RMVBA[(ID, p)] haven't outputted a value at any honest node yet, where the network sets $S_{p'}$ and S_p are within the same network chain with good resilience and p' < p.

Lemma 3. Let us assume that S_p has good resilience. If one honest node within S_p outputs a value w from RMVBA[(ID, p)], then all other honest nodes within S_p eventually outputs a consistent value w from RMVBA[(ID, p)].

Proof. Given that S_p has good resilience, if one honest node within S_p outputs a value \boldsymbol{w} from RMVBA[(ID, p)], then all hones nodes within S_p must have output $1 \leftarrow \text{ABBA}[(\text{ID}, p, l, \tilde{n}, \tilde{t})](a)$ in Line 17 of Algorithm 1, for some $l \in \{0, 1\}$. Then, from Lemma 10 (Consistency and Totality properties of OciorRBA), all hones nodes within S_p eventually output the same value \boldsymbol{w} from OciorRBA[(ID, p, l)] in Line 20 of Algorithm 1.

Lemma 4. Let us assume that $S_1 \to \cdots \to S_p \to S_{2p+\theta} \to \cdots$ forms a network chain with good resilience, for some $\theta \in \{0,1\}$. If RMVBA[(ID, $2p+\theta$)] outputs a consistent value at all honest nodes within $S_{2p+\theta}$ and terminates, then RMVBA[(ID, p)] eventually outputs a consistent value at all honest nodes within S_p and terminates.

Proof. Assume that S_p and $S_{2p+\theta}$ have good resilience. If RMVBA[(ID, $2p+\theta$)] outputs a consistent value \boldsymbol{w} at all honest nodes within $S_{2p+\theta}$, then eventually SHMDM[(ID, p,θ)] outputs a consistent value \boldsymbol{w} at all honest nodes within S_p (see Lines 23 and 24 of Algorithm 1). Consequently, OciorRBA[(ID, p,θ)] eventually outputs the same value \boldsymbol{w} at all hones nodes within S_p (See Lines 25 and 26 of Algorithm 1). Therefore, all honest nodes within S_p eventually set $I_{\text{ready}}[\theta] \leftarrow 1, I_{\text{finish}}[\theta] \leftarrow 1, I_{\text{confirm}}[\theta] \leftarrow 1$. In this case, all honest nodes within S_p eventually go to Line 15 and execute the steps in Lines 15-22 of Algorithm 1. Based on the result of Lemma 3, if $\theta = 0$, then all honest nodes within S_p eventually output a consistent value \boldsymbol{w} . For the case where $\theta = 1$, if $1 \leftarrow \text{ABBA}[(\text{ID}, p, 0, \tilde{n}_p, \tilde{t}_p)]$, then all honest nodes within S_p eventually output a consistent value \boldsymbol{w} . Otherwise, they eventually output a consistent value \boldsymbol{w} .

Lemma 5. Assume that S_p has good resilience. If $ABBA[(ID, p, l, \tilde{n}_p, \tilde{t}_p)]$ outputs 1, then at least one honest Node i within S_p has set $v_i = 1$ from OciorRBA[(ID, p, l)], for $l \in \{0, 1\}$.

Proof. In this setting, if ABBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] outputs b=1, then at least one honest node must have provided an input a=1 to ABBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] (see Line 17 of Algorithm 1), due to the validity property of Byzantine agreement. This means that at least one honest node must have produced an output a=1 from ABBBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)]($I_{\text{ready}}[l], I_{\text{finish}}[l]$) (see Line 16 of Algorithm 1). If an honest node outputs 1 from ABBBA, then at least one honest node must have provided at least one input as 1 to ABBBA (see Line 7 of Algorithm 2, biased integrity property). Thus, if ABBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] outputs

b=1, then at least one honest node must have set $I_{\rm ready}[l]=1$ or $I_{\rm finish}[l]=1$. If one honest Node i sets $I_{\rm ready}[l]=1$, it must have set ${\bf v}_i=1$ from OciorRBA[(ID, p,l)] (see Line 27 of Algorithm 1). If one honest Node i sets $I_{\rm finish}[l]=1$, then at least $\tilde{n}_p-2\tilde{t}_p$ honest nodes must have set ${\bf v}_i=1$ from OciorRBA[(ID, p,l)] (see Line 30 of Algorithm 1). Therefore, if ABBA[(ID, p,l, \tilde{n}_p,\tilde{t}_p)] outputs b=1, then at least one honest Node i within \mathcal{S}_p has set ${\bf v}_i=1$ from OciorRBA[(ID, p,l)].

Lemma 6. Assume that S_p has good resilience. If $ABBA[(ID, p, l, \tilde{n}_p, \tilde{t}_p)]$ outputs 1, then no honest Node i within S_p will set $v_i = 0$ from OciorRBA[(ID, p, l)], for $l \in \{0, 1\}$.

Proof. Lemma 5 reveals that if ABBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] outputs b=1, then at least one honest Node i within S_p has set $v_i=1$ from OciorRBA[(ID, p, l)] in this setting. If one honest node has set $v_i=1$, then at least $\tilde{n}_p-2\tilde{t}_p$ honest nodes have sent ("SI2", id, 1) (see Line 24 of Algorithm 4). In this case, the size of $\mathbb{S}_0^{[2]}$ is bounded by $|\mathbb{S}_0^{[2]}| \leq \tilde{n}_p - (\tilde{n}_p - 2\tilde{t}_p) < \tilde{n}_p - \tilde{t}_p$ from the view of any honest node, which indicates that no honest node will set $v_i=0$ from OciorRBA[(ID, p, l)].

Lemma 7. Assume that S_p has good resilience. If $ABBA[(ID, p, l, \tilde{n}_p, \tilde{t}_p)]$ outputs 1, then eventually every honest node within S_p will set $I_3 = 1$ from OciorRBA[(ID, p, l)], for $l \in \{0, 1\}$.

Proof. From the result of Lemma 6, if ABBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] outputs 1, then no honest Node i within \mathcal{S}_p will set $\mathbf{v}_i = 0$ from OciorRBA[(ID, p, l)]. This suggests that, in this case, no honest node will set $\mathbf{v}_o = 0$ and Line 34 of Algorithm 4 will never be executed in OciorRBA[(ID, p, l)]. On the other hand, if ABBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] outputs b = 1, then eventually every honest node within \mathcal{S}_p will input b = 1 into OciorRBA[(ID, p, l)] and set $I_3 = 1$ (see Line 38 of Algorithm 4).

Lemma 8. Assume that S_p has good resilience. If $ABBA[(ID, p, l, \tilde{n}_p, \tilde{t}_p)]$ outputs 1, then at least $\tilde{n}_p - 2\tilde{t}_p \ge \tilde{t}_p + 1$ honest nodes within S_p have set $s_i^{[2]} = 1$ from OciorRBA[(ID, p, l)], for $l \in \{0, 1\}$.

Proof. From the result of Lemma 5, if ABBA[(ID, $p, l, \tilde{n}_p, \tilde{t}_p$)] outputs 1, then at least one honest Node i within \mathcal{S}_p has set $\mathbf{v}_i = 1$ from OciorRBA[(ID, p, l)]. When one honest Node i within \mathcal{S}_p has set $\mathbf{v}_i = 1$, it means that at least $\tilde{n}_p - 2\tilde{t}_p \geq \tilde{t}_p + 1$ honest nodes within \mathcal{S}_p have set $\mathbf{s}_i^{[2]} = 1$ from OciorRBA[(ID, p, l)] (see Line 24 of Algorithm 4).

Lemma 9. [7, Lemma 11] Assume that S_p has good resilience. If $ABBA[(ID, p, l, \tilde{n}_p, \tilde{t}_p)]$ outputs 1, then all of the honest nodes who set $s_i^{[2]} = 1$ in Phase 2 of OciorRBA[(ID, p, l)] should have the same input message \mathbf{w}^* at the beginning of Phase 1 of OciorRBA[(ID, p, l)], for some \mathbf{w}^* , for $l \in \{0, 1\}$.

Proof. The result is directly derived from [7, Lemma 11].

Lemma 10 (Consistency and Totality Properties of OciorRBA). Assume that S_p has good resilience. If $ABBA[(ID, p, l, \tilde{n}_p, \tilde{t}_p)]$ outputs 1, then all honest nodes within S_p eventually output the same message \boldsymbol{w}^* from OciorRBA[(ID, p, l)], for some \boldsymbol{w}^* , for $l \in \{0, 1\}$.

Proof. The proof is similar to [7, Theorem 5]. If ABBA[(ID, p, l, \tilde{n}_p , \tilde{t}_p)] outputs 1, then we have the following facts:

- Fact 1: Eventually every honest node within S_p will set $I_3=1$ and go to Phase 3 of OciorRBA[(ID, p, l)] (Lemma 7).
- Fact 2: All of the honest nodes who set $s_i^{[2]} = 1$ in Phase 2 of OciorRBA[(ID, p, l)] should have the same input message w^* at the beginning of Phase 1 of OciorRBA[(ID, p, l)] for some w^* (Lemma 9).
- Fact 3: At least $\tilde{t}_p + 1$ honest nodes within \mathcal{S}_p have set $\mathbf{s}_i^{[2]} = 1$ from OciorRBA[(ID, p, l)] (Lemma 8). From Fact 2, if an honest node sets $\mathbf{s}_i^{[2]} = 1$, then this node outputs the value \boldsymbol{w}^* in OciorRBA[(ID, p, l)] (see Line 41 of Algorithm 4). From Facts 2 and 3, if an honest Node i sets $\mathbf{s}_i^{[2]} = 0$, then it will eventually receives at least $\tilde{t}_p + 1$ matching ("SYMBOL", id, (ECCEnc_i($\tilde{n}_p, \tilde{k}_p, \boldsymbol{w}^*$), *)) messages from the honest nodes within $\mathbb{S}_1^{[2]}$, where ECCEnc_i() denotes the ith encoded symbol and \tilde{k}_p is an encoding parameter. In this case, Node i will set $y_i^{(i)} \leftarrow \text{ECCEnc}_i(\tilde{n}_p, \tilde{k}_p, \boldsymbol{w}^*)$ in Line 44 of Algorithm 4, and send

("CORRECT", id, $y_i^{(i)}$) to all nodes in Line 45. Therefore, every symbol $y_j^{(j)}$ sent from honest nodes and collected in \mathbb{Y}_{oec} should be the symbol encoded from the same message \boldsymbol{w}^* . Thus, every honest node who sets $\mathbf{s}_i^{[2]} = 0$ will eventually decode the message \boldsymbol{w}^* with OEC decoding and output \boldsymbol{w}^* in Line 47 of Algorithm 4.

Algorithm 5 OciorMVBArr protocol, with identifier ID, for $n \ge 5t + 1$. Code is shown for P_i .

```
// ** OciorMVBArr: without any cryptographic assumption (other than common coin), with a relaxed resilience n \ge 5t + 1^{**}
    // ** ACID[ID]: a protocol for n parallel asynchronous complete information dispersal (ACID) instances; once an ACID instance
    is complete, there exists a retrieval scheme to correctly retrieve its delivered message. **
    \# ** Election[(ID, r)]: an election protocol, requiring at least t+1 inputs from distinct nodes to generate an output l, for r \in [1:n]^*
    //** ABArr[(ID, l)] calls the asynchronous Byzantine agreement (ABA) protocol by Li-Chen [17], for n \ge 5t + 1, using only O(1)
    common coins, O(n|\mathbf{w}| + n^2 \log q) total bits, and O(1) rounds, without any cryptographic assumption (other than common coin) **
1: upon receiving MVBA input message w_i and Predicate(w_i) = true do:
        S_{\text{shares}} \leftarrow \text{ACIDrr}[\text{ID}](\boldsymbol{w}_i)
                                                           // a protocol for n parallel ACID instances
        for r \in [1:n] do
3:
            l \leftarrow \text{Election}[(\text{ID}, r)]
                                                           // an election protocol
4:
5:
            \bar{\boldsymbol{w}} \leftarrow \text{DRrr}[(\text{ID}, l)](\mathcal{S}_{\text{shares}}[l])
                                                           // shuffle the code symbols originally sent from Node l and decode
6:
            \hat{\boldsymbol{w}} \leftarrow \text{ABArr}[(\text{ID}, l)](\bar{\boldsymbol{w}})
                                                           // call the asynchronous BA protocol by Li-Chen [17]
7:
            if Predicate(\hat{w}) = true then
8:
                output \hat{\boldsymbol{w}} and terminate
```

Algorithm 6 ACIDrr subprotocol with identifier ID for $t < \frac{n}{5}$. Code is shown for P_i

```
\# ** ACID[ID] is a protocol for n parallel ACID instances ACID[(ID, 1)], ACID[(ID, 2)], \cdots, ACID[(ID, n)] **
    // ** ACID[(ID, j)] is an ACID instance for delivering the message proposed from Node j **
    // ** Once Node j completes ACID[(ID, j)], there exists a retrieval scheme to correctly retrieve the message. **
    // ** When an honest node returns and stops this protocol, then at least n-t ACID instances have been completed. **
 1: Initially set S_{\text{shares}}[j] \leftarrow \bot, \forall j \in [1:n]
    // ** ACID-share **
 2: upon receiving input message w_i do:
        [y_1, y_2, \cdots, y_n] \leftarrow \text{ECCEnc}(n, t+1, \boldsymbol{w}_i)
 3:
        send ("SHARE", ID, y_i) to P_i, \forall j \in [1:n]
                                                                          // exchange coded symbols
    // ** ACID-vote **
 5: upon receiving ("SHARE", ID, y) from P_i for the first time do:
 6:
        S_{\text{shares}}[j] \leftarrow y
        send ("VOTE", ID) to P_i
 7:
    // ** vote for election **
 8: upon receiving n-t ("VOTE", ID) messages from distinct nodes do:
        send ("ELECTION", ID) to all nodes
                                                     // ACID[(ID, i)] is complete at this point
    // ** confirm for election **
10: upon receiving n-t ("ELECTION", ID) messages from distinct nodes and ("CONFIRM", ID) not yet sent do:
        send ("CONFIRM", ID) to all nodes
12: upon receiving t + 1 ("CONFIRM", ID) messages from distinct nodes and ("CONFIRM", ID) not yet sent do:
        send ("CONFIRM", ID) to all nodes
13:
    // ** return and stop **
14: upon receiving 2t + 1 ("CONFIRM", ID) messages from distinct nodes do:
        if ("CONFIRM", ID) not yet sent then
15:
            send ("CONFIRM", ID) to all nodes
16:
17:
        return S_{\rm shares}
```

Algorithm 7 DRrr subprotocol for $t < \frac{n}{5}$, with identifier id = (ID, l). Code is shown for P_i .

```
1: Initially set \mathbb{Y}_{\text{Symbols}}[l] \leftarrow \{\}
2: upon receiving input S_{\text{shares}}[l], for S_{\text{shares}}[l] := y^* do:

3: send ("ECHOSHARE", ID, l, y^*) to all nodes

4: wait for |\mathbb{Y}_{\text{Symbols}}[l]| = n - t

5: \hat{w} \leftarrow \text{ECCDec}(n, t + 1, \mathbb{Y}_{\text{Symbols}}[l])

6: return \hat{w}

7: upon receiving ("ECHOSHARE", ID, l, y) from P_j for the first time do:

8: \mathbb{Y}_{\text{Symbols}}[l] \leftarrow \mathbb{Y}_{\text{Symbols}}[l] \cup \{j : y\}
```

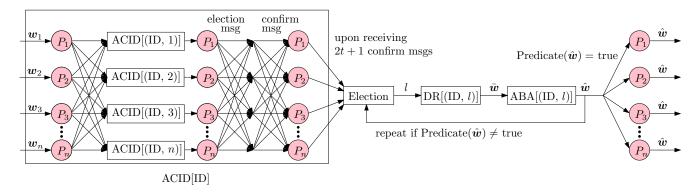


Fig. 2. A block diagram of the proposed OciorMVBArr protocol with an identifier ID.

III. OciorMVBArr

This proposed OciorMVBArr is an error-free, information-theoretically secure asynchronous MVBA protocol, with relaxed resilience $n \geq 5t + 1$. OciorMVBArr does not rely on any cryptographic assumptions, such as signatures or hashing, except for the common coin assumption.

A. Overview of the proposed OciorMVBArr protocol

The proposed OciorMVBArr is described in Algorithm 5, along with Algorithms 6 and 7. Fig. 2 presents a block diagram of the proposed OciorMVBArr protocol. The proposed OciorMVBArr consists of the algorithms ACIDrr[ID], Election[(ID, t)], DRrr[(ID, t)], and ABArr[(ID, t)] for t is t in t.

- ACIDrr[ID]: This is a protocol for n parallel ACID instances: ACID[(ID, 1)], ACID[(ID, 2)], ..., ACID[(ID, n)]. Once an ACID instance is complete, there exists a retrieval scheme to correctly retrieve its delivered message.
- Election[(ID, r)]: This is an election protocol that requires at least t+1 inputs from distinct nodes to generate a random value l, where $r \in [1:n]$.
- DRrr[(ID, l)]: An ACID[(ID, l)] protocol is complemented by a data retrieval protocol DR[(ID, l)], in which each node retrieves the message proposed by P_l from n distributed nodes.
 - If Node l is honest and has completed ACID[(ID, l)], then during DRrr[(ID, l)], each node will receive at least 2t + 1 shares generated from Node l, given $n \ge 5t + 1$. In this case all honest node eventually output the same message from DRrr[(ID, l)].
 - Even if Node l is dishonest, ABArr[(ID, l)] ensures that all honest nodes output the same message.
- ABArr[(ID, l)]: This is an asynchronous Byzantine agreement protocol that calls the protocol by Li-Chen [17] for $n \ge 5t+1$. It uses only O(1) common coins, $O(n|\boldsymbol{w}|+n^2\log q)$ total bits, and O(1) rounds, without relying on any cryptographic assumptions, except for the common coin assumption.

B. Analysis of OciorMVBArr

Theorem 4 (Agreement). In OciorMVBArr, given $n \ge 5t + 1$, if any two honest nodes output w' and w'', respectively, then w' = w''.

Proof. In OciorMVBArr, if any two honest nodes output values at Rounds r and r' (see Line 3 of Algorithm 5), respectively, then r = r', due to the consistency property of the protocols Election[(ID, r)] and ABArr[(ID, l)]. Moreover, at the same round r, if any two honest nodes output w' and w'', respectively, then w' = w'', due to the consistency property of the protocol ABArr[(ID, l)].

Theorem 5 (Termination). In OciorMVBArr, given $n \ge 5t + 1$, every honest node eventually outputs a value and terminates.

Proof. In this setting, every honest node eventually returns $\mathcal{S}_{\text{shares}}$ and terminates from the protocol ACIDrr[ID], due to the Termination property of this protocol. Furthermore, by the Integrity property of ACIDrr[ID], if an honest node returns $\mathcal{S}_{\text{shares}}$ and terminates from the protocol ACIDrr[ID], then there exists a set \mathcal{I}^* such that the following conditions hold:) $\mathcal{I}^* \subseteq [1:n] \setminus \mathcal{F}$, where \mathcal{F} denotes the set of indexes of all dishonest nodes; 2) $|\mathcal{I}^*| \geq n - 2t$; and 3) for any $i \in \mathcal{I}^*$, P_i has completed the dispersal ACID[(ID, i)].

Subsequently, every honest node eventually runs $l \leftarrow \operatorname{Election}[(\operatorname{ID},r)]$ in Line 4 of Algorithm 5, at the same round r. If Node l is honest and $l \in \mathcal{I}^*$, then during $\operatorname{DRrr}[(\operatorname{ID},l)]$, each node will receive at least 2t+1 shares generated from Node l, given $n \geq 5t+1$. In this case all honest node eventually output the same message from both $\operatorname{DRrr}[(\operatorname{ID},l)]$ and $\operatorname{ABArr}[(\operatorname{ID},l)]$, and then terminate. If Node l is dishonest and the message $\hat{\boldsymbol{w}}$ output by $\operatorname{ABArr}[(\operatorname{ID},l)]$ in Line 6 does not satisfy $\operatorname{Predicate}(\hat{\boldsymbol{w}}) = \operatorname{true}$, then all honest nodes proceed to the next round. All honest node eventually terminates if, at some round r, $\operatorname{Election}[(\operatorname{ID},r)]$ outputs a value l such that Node l is honest and $l \in \mathcal{I}^*$.

Theorem 6 (External Validity). In OciorMVBArr, if an honest node outputs a value w, then Predicate(w) = true.

Proof. In OciorMVBArr, if an honest node outputs a value w, it has verified that Predicate(w) = true at Line 7 of Algorithm 5.

Algorithm 8 OciorMVBAh protocol, with identifier ID, for $n \ge 3t + 1$. Code is shown for P_i .

```
// ** Merkle tree is implemented here for vector commitment based on hashing **
     // ** VcCom() outputs a commitment, i.e., Merkle root, with O(\kappa) bits **
     // ** VcOpen() returns a proof that the targeted value is the committed element of the vector **
     // ** VcVerify(j, C, y, \omega) returns true only if \omega is a valid proof that C is the commitment of a vector whose jth element is y **
 1: upon receiving MVBA input message w_i and Predicate(w_i) = true do:
          [\mathcal{L}_{	ext{lock}}, \mathcal{R}_{	ext{ready}}, \mathcal{F}_{	ext{finish}}, \mathcal{S}_{	ext{shares}}] \leftarrow 	ext{ACIDh}[	ext{ID}](\mathbf{w}_i)
 2:
                                                                                     // a protocol for n parallel ACID instances
 3:
          for r \in [1:n] do
 4:
               l \leftarrow \text{Election}[(\text{ID}, r)]
                                                                                     // an election protocol
               a \leftarrow \text{ABBBA}[(\text{ID}, l)](\mathcal{R}_{\text{ready}}[l], \mathcal{F}_{\text{finish}}[l])
 5:
                                                                                     // asynchronous biased binary Byzantine agreement (ABBBA)
 6:
               b \leftarrow ABBA[(ID, l)](a)
                                                                                     // an asynchronous binary Byzantine agreement (ABBA)
 7:
               if b = 1 then
                    \hat{\boldsymbol{w}}_l \leftarrow \text{DRh}[(\text{ID}, l)](\mathcal{L}_{\text{lock}}[l], \mathcal{S}_{\text{shares}}[l])
 8:
                                                                                     // Data Retrieval (DR)
 9:
                    if Predicate(\hat{w}_l) = true then
10:
                        output \hat{\boldsymbol{w}}_l and terminate
```

Algorithm 9 ACIDh subprotocol with identifier ID, based on hashing. Code is shown for P_i

```
\# ** ACID[ID] is a protocol for n parallel ACID instances ACID[(ID, 1)], ACID[(ID, 2)], \cdots, ACID[(ID, n)] **
     // ** ACID[(ID, j)] is an ACID instance for delivering the message proposed from Node j **
     "" ** Once Node j completes ACID[(ID, j)], there exists a retrieval scheme to correctly retrieve the message **
     // ** When an honest node returns and stops this protocol, then at least n-t ACID instances have been completed **
     \# ** ECEnc() and ECDec() are encoding function and decoding function of (n,k) erasure code **
 1: // initialization:
          \mathcal{L}_{lock} \leftarrow \{\}; \mathcal{R}_{ready} \leftarrow \{\}; \mathcal{F}_{finish} \leftarrow \{\}; \mathcal{S}_{shares} \leftarrow \{\}; \mathcal{H}_{hash} \leftarrow \{\}
 2:
 3:
          for j \in [1:n] do
               \mathcal{S}_{\mathrm{shares}}[j] \leftarrow (\perp, \perp, \perp); \mathcal{L}_{\mathrm{lock}}[j] \leftarrow 0; \mathcal{R}_{\mathrm{ready}}[j] \leftarrow 0; \mathcal{F}_{\mathrm{finish}}[j] \leftarrow 0
 4:
     // ** ACID-share **
 5: upon receiving input message w_i do:
          [y_1, y_2, \cdots, y_n] \leftarrow \text{ECEnc}(n, t+1, \boldsymbol{w}_i)
 6:
          C \leftarrow \text{VcCom}([y_1, y_2, \cdots, y_n])
 7:
 8:
          for j \in [1:n] do
 9:
               \omega_i \leftarrow \text{VcOpen}(C, y_j, j)
               send ("SHARE", ID, C, y_j, \omega_j) to P_j
10:
     // ** ACID-vote **
11: upon receiving ("SHARE", ID, C, y, \omega) from P_i for the first time do:
          if VcVerify(i, C, y, \omega) = true then
12:
               S_{\text{shares}}[j] \leftarrow (C, y, \omega); \mathcal{H}_{\text{hash}}[C] \leftarrow j
13:
               send ("VOTE", ID, C) to all nodes
14:
     // ** ACID-lock **
15: upon receiving n-t ("VOTE", ID, C) messages from distinct nodes, for the same C do:
          wait until C \in \mathcal{H}_{\mathrm{hash}}
          \begin{aligned} j^{\star} &\leftarrow \mathcal{H}_{\text{hash}}[C]; \mathcal{L}_{\text{lock}}[j^{\star}] \leftarrow 1 \\ \textbf{send} \ (\text{``LOCK''}, \text{ID}, C') \ \text{to all nodes} \end{aligned}
17:
     // ** ACID-ready **
19: upon receiving n-t ("LOCK", ID, C) messages from distinct nodes, for the same C do:
20:
          wait until C \in \mathcal{H}_{hash}
          j^{\star} \leftarrow \mathcal{H}_{\text{hash}}[C]; \mathcal{R}_{\text{ready}}[j^{\star}] \leftarrow 1
21:
          send ("READY", ID, C) to all nodes
22:
     // ** ACID-finish **
23: upon receiving n-t ("READY", ID, C) messages from distinct nodes, for the same C do:
24.
          wait until C \in \mathcal{H}_{hash}
25:
          j^{\star} \leftarrow \mathcal{H}_{\text{hash}}[C]; \mathcal{F}_{\text{finish}}[j^{\star}] \leftarrow 1
          send ("FINISH", ID) to P_{i^*}
26:
     // ** vote for election **
27: upon receiving n-t ("FINISH", ID) messages from distinct nodes do:
          send ("ELECTION", ID) to all nodes
28:
                                                                   // ACID[(ID, i)] is complete at this point
     // ** confirm for election **
29: upon receiving n-t ("ELECTION", ID) messages from distinct nodes and ("CONFIRM", ID) not yet sent do:
          send ("CONFIRM", ID) to all nodes
31: upon receiving t + 1 ("CONFIRM", ID) messages from distinct nodes and ("CONFIRM", ID) not yet sent do:
32:
          send ("CONFIRM", ID) to all nodes
     // ** return and stop **
33: upon receiving 2t + 1 ("CONFIRM", ID) messages from distinct nodes do:
34:
          if ("CONFIRM", ID) not yet sent then
35:
               send ("CONFIRM", ID) to all nodes
36:
          return [\mathcal{L}_{lock}, \mathcal{R}_{ready}, \mathcal{F}_{finish}, \mathcal{S}_{shares}]
```

Algorithm 10 DRh subprotocol, with identifier id = (ID, l), based on hashing. Code is shown for P_i .

```
1: Initially set \mathbb{Y}_{\text{Symbols}}[l] \leftarrow \{\}
 2: upon receiving input (lock_indicator, share) do:
            if (lock\_indicator = 1) \land (share \neq (\bot, \bot, \bot)) then
                 (C^{\star}, y^{\star}, \omega^{\star}) \leftarrow \text{share}
 4:
 5:
                 send ("ECHOSHARE", ID, l, C^{\star}, y^{\star}, \omega^{\star}) to all nodes
 6:
            wait for |\mathbb{Y}_{\text{Symbols}}[l][C]| = t + 1 for some C
 7:
                 \hat{\boldsymbol{w}} \leftarrow \text{ECDec}(n, t+1, \mathbb{Y}_{\text{Symbols}}[l][C])
 8:
                 if VcCom(ECEnc(n, t + 1, \hat{\boldsymbol{w}})) = C then
 9:
                      return \hat{w}
10:
                 else
11:
                      return 丄
12: upon receiving ("ECHOSHARE", ID, l, C, y, \omega) from P_j for the first time, for some C, y, \omega do:
13:
            if VcVerify(j, C, y, \omega) = true then
14:
                 if C \notin \mathbb{Y}_{\text{Symbols}}[l] then
15:
                       \mathbb{Y}_{\text{Symbols}}[l][C] \leftarrow \{j:y\}
16:
                       \mathbb{Y}_{\text{Symbols}}[l][C] \leftarrow \mathbb{Y}_{\text{Symbols}}[l][C] \cup \{j:y\}
17:
```



Fig. 3. A block diagram of the proposed OciorMVBAh protocol with an identifier ID.

IV. OciorMVBAh

This proposed OciorMVBAh is a hash-based asynchronous MVBA protocol. OciorMVBAh achieves consensus with a communication complexity of $O(n|\boldsymbol{w}| + \kappa n^3)$ bits, an expected round complexity of O(1) rounds, and an expected O(1) number of common coins, given $n \geq 3t + 1$.

A. Overview of the proposed OciorMVBAh protocol

The proposed OciorMVBAh is described in Algorithm 8, along with Algorithms 2, 9, and 10. Fig. 3 presents a block diagram of the proposed OciorMVBAh protocol. In this protocol, we use a vector commitment implemented with a Merkle tree based on hashing.

Vector commitment. A vector commitment consists of the following algorithms:

- VcCom $(y) \to C$: Given an input vector $y = [y_1, y_2, \cdots, y_n]$ of size n, this algorithm outputs a commitment C, i.e., Merkle root, with $O(\kappa)$ bits.
- VcOpen $(C, y_j, j) \to \omega_j$: Given inputs (C, y_j, j) , this algorithm returns a value ω_j to prove that the targeted value y_j is the jth committed element of the vector.
- VcVerify $(j, C, y_j, \omega_j) \to \text{true/false}$: This algorithm returns true only if ω_j is a valid proof that C is the commitment of a vector whose jth element is y_i .

The proposed OciorMVBAh consists of the algorithms ACIDh[ID], Election[(ID, r)], ABBA[(ID, l)], ABBA[(ID, l)], and DRh[(ID, l)], for $r, l \in [1 : n]$.

- ACIDrr[ID]: This is a protocol for n parallel ACID instances: ACID[(ID, 1)], ACID[(ID, 2)], ..., ACID[(ID, n)]. Once an ACID instance is complete, there exists a retrieval scheme to correctly retrieve its delivered message.
- Election[(ID, r)]: This is an election protocol that requires at least t + 1 inputs from distinct nodes to generate a random value l, where $r \in [1:n]$.
- ABBBA[(ID, l)]: This is an asynchronous biased binary BA protocol. It has two inputs (a_1, a_2) , for some $a_1, a_2 \in \{0, 1\}$. It guarantees the following properties:
 - Conditional termination: Under an input condition—i.e., if one honest node inputs its second number as $a_2 = 1$ then at least t + 1 honest nodes input their first numbers as $a_1 = 1$ —then every honest node eventually outputs a value and terminates.
 - Biased validity: If t + 1 honest nodes input the second number as $a_2 = 1$, then any honest node that terminates outputs 1.
 - Biased integrity: If an honest node outputs 1, then at least one honest node inputs $a_1 = 1$ or $a_2 = 1$.
- ABBA[(ID, l)]: This is an asynchronous binary BA protocol.
- DRh[(ID, l)]: This is a data retrieval protocol associated with an ACID[(ID, l)] protocol. It is activated only if b = 1 (see Line 7 of Algorithm 8), where b is the output of ABBA[(ID, l)].
 - The instance of b=1 reveals that at least one honest node outputs a=1 from ABBBA[(ID, l)], which further suggests that at least one honest node inputs $\mathcal{R}_{\text{ready}}[l]=1$ or $\mathcal{F}_{\text{finish}}[l]=1$ into ABBBA[(ID, l)], based on the biased integrity of ABBBA.
 - When one honest node inputs $\mathcal{R}_{\text{ready}}[l] = 1$ or $\mathcal{F}_{\text{finish}}[l] = 1$, it is guaranteed that at least n 2t honest nodes have stored correct shares sent from Node l (see Lines 15 and 17 of Algorithm 9), which implies that every honest node eventually retrieves the same message from DRh[(ID, l)].

B. Analysis of OciorMVBAh

Theorem 7 (Agreement). In OciorMVBAh, given $n \ge 3t + 1$, if any two honest nodes output w' and w'', respectively, then w' = w''.

Proof. In OciorMVBAh, if any two honest nodes output values at Rounds r and r' (see Line 3 of Algorithm 8), respectively, then r = r'. This follows from the consistency property of the protocols $\operatorname{Election}[(\operatorname{ID}, r)]$ and $\operatorname{ABBA}[(\operatorname{ID}, l)]$, as well as the consistency property of the $\operatorname{DRh}[(\operatorname{ID}, l)]$ protocol when $\operatorname{ABBA}[(\operatorname{ID}, l)]$ outputs 1 (see Lemma 11).

Moreover, at the same round r, if any two honest nodes output w' and w'', respectively, then w' = w'', due to the consistency property of the protocol DRh[(ID, l)] when ABBA[(ID, l)] outputs 1 (see Lemma 11). It is worth noting that DRh[(ID, l)] is activated only if ABBA[(ID, l)] outputs 1 (see Line 7 of Algorithm 8).

Theorem 8 (Termination). In OciorMVBAh, given $n \ge 3t + 1$, every honest node eventually outputs a value and terminates.

Proof. In this setting, every honest node eventually returns values and terminates from the protocol ACIDh[ID], due to the Termination property of this protocol. Furthermore, by the Integrity property of ACIDh[ID], if an honest node returns values and terminates from the protocol ACIDh[ID], then there exists a set \mathcal{I}^* such that the following conditions hold:) $\mathcal{I}^* \subseteq [1:n] \setminus \mathcal{F}$, where \mathcal{F} denotes the set of indexes of all dishonest nodes; 2) $|\mathcal{I}^*| \geq n - 2t$; and 3) for any $i \in \mathcal{I}^*$, P_i has completed the dispersal ACID[(ID,i)].

Subsequently, every honest node eventually runs $l \leftarrow \operatorname{Election}[(\operatorname{ID}, r)]$ in Line 4 of Algorithm 8, at the same round r. If Node l is honest and $l \in \mathcal{I}^*$, then $\operatorname{ABBA}[(\operatorname{ID}, l)]$ eventually outputs 1 (due to the biased validity property of $\operatorname{ABBBA}[(\operatorname{ID}, l)]$) and then during $\operatorname{DRh}[(\operatorname{ID}, l)]$ each node will receive at least t+1 correct shares generated from Node l, given $n \geq 3t+1$. In this case all honest node eventually

output the same message from DRh[(ID, l)], and then terminate. If Node l is dishonest or ABBA[(ID, l)] outputs 0, then all honest nodes proceed to the next round. All honest node eventually terminates if, at some round r, Election[(ID, r)] outputs a value l such that Node l is honest and $l \in \mathcal{I}^*$.

Theorem 9 (External Validity). In OciorMVBAh, if an honest node outputs a value w, then Predicate(w) = true.

Proof. In OciorMVBAh, if an honest node outputs a value w, it has verified that Predicate(w) = true at Line 9 of Algorithm 8.

Lemma 11. In OciorMVBAh, if ABBA[(ID, l)] outputs 1, then every honest node eventually retrieves the same message from DRh[(ID, l)], for $l \in [1 : n]$.

Proof. In OciorMVBAh, DRh[(ID, l)] is activated only if b = 1 (see Line 7 of Algorithm 8), where b is the output of ABBA[(ID, l)]. The instance of b = 1 reveals that at least one honest node outputs a = 1 from ABBBA[(ID, l)], which further suggests that at least one honest node inputs $\mathcal{R}_{\text{ready}}[l] = 1$ or $\mathcal{F}_{\text{finish}}[l] = 1$ into ABBBA[(ID, l)], based on the biased integrity of ABBBA. When one honest node inputs $\mathcal{R}_{\text{ready}}[l] = 1$ or $\mathcal{F}_{\text{finish}}[l] = 1$, it is guaranteed that at least n - 2t honest nodes have stored correct shares sent from Node l (see Lines 15 and 17 of Algorithm 9), which implies that every honest node eventually retrieves the same message from DRh[(ID, l)].

REFERENCES

- [1] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, "Secure and efficient asynchronous broadcast protocols," in *Advances in Cryptology—CRYPTO 2001. Lecture Notes in Computer Science*, vol. 2139, Aug. 2001.
- [2] M. Pease, R. Shostak, and L. Lamport, "Reaching agreement in the presence of faults," *Journal of the ACM*, vol. 27, no. 2, pp. 228–234, Apr. 1980.
- [3] M. Fischer, N. Lynch, and M. Paterson, "Impossibility of distributed consensus with one faulty process," *Journal of the ACM*, vol. 32, no. 2, pp. 374–382, Apr. 1985.
- [4] M. Sipser and D. Spielman, "Expander codes," IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.
- [5] J. Chen, "Fundamental limits of Byzantine agreement," 2020, available on ArXiv: https://arxiv.org/pdf/2009.10965.pdf.
- [6] —, "Optimal error-free multi-valued Byzantine agreement," in *International Symposium on Distributed Computing (DISC)*, Oct. 2021.
- [7] —, "OciorCOOL: Faster Byzantine agreement and reliable broadcast," Sep. 2024, available on ArXiv: https://arxiv.org/abs/2409.06008.
- [8] I. Abraham, D. Malkhi, and A. Spiegelman, "Asymptotically optimal validated asynchronous Byzantine agreement," in *Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC)*, Jul. 2019, pp. 337–346.
- [9] Y. Lu, Z. Lu, Q. Tang, and G. Wang, "Dumbo-MVBA: Optimal multi-valued validated asynchronous Byzantine agreement, revisited," in *Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC)*, Jul. 2020, pp. 129–138.
- [10] S. Duan, X. Wang, and H. Zhang, "FIN: Practical signature-free asynchronous common subset in constant time," in *Proceedings of the* 2023 ACM SIGSAC Conference on Computer and Communications Security, 2023, pp. 815–829.
- [11] H. Feng, Z. Lu, T. Mai, and Q. Tang, "Making hash-based MVBA great again," Mar. 2024, available on: https://eprint.iacr.org/2024/479.
- [12] J. Komatovic, J. Neu, and T. Roughgarden, "Toward optimal-complexity hash-based asynchronous MVBA with optimal resilience," Oct. 2024, available on ArXiv: https://arxiv.org/abs/2410.12755.
- [13] I. Reed and G. Solomon, "Polynomial codes over certain finite fields," *Journal of the Society for Industrial and Applied Mathematics*, vol. 8, no. 2, pp. 300–304, Jun. 1960.
- [14] R. Roth, *Introduction to coding theory*. Cambridge University Press, 2006.
- [15] E. Berlekamp, "Nonbinary BCH decoding (abstr.)," IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 242–242, Mar. 1968.
- [16] M. Ben-Or, R. Canetti, and O. Goldreich, "Asynchronous secure computation," in *Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing*, 1993, pp. 52–61.
- [17] F. Li and J. Chen, "Communication-efficient signature-free asynchronous Byzantine agreement," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Jul. 2021.