OciorMVBA: Near-Optimal Error-Free
Asynchronous MVBA

Jinyuan Chen
jinyuan@ocior.com

Abstract

In this work, we propose an error-free, information-theoretically secure, asynchronous multi-valued validated
Byzantine agreement (MVBA) protocol, called OciorMVBA. This protocol achieves MVBA consensus on a
message w with expected O(n|w|logn + n?logq) communication bits, expected O(n?) messages, and expected
O(logn) rounds, under optimal resilience n > 3¢+ 1 in an n-node network, where up to ¢ nodes may be dishonest.
Here, g denotes the alphabet size of the error correction code used in the protocol. When error correction codes with
a constant alphabet size (e.g., Expander Codes) are used, ¢ becomes a constant. An MVBA protocol that guarantees
all required properties without relying on any cryptographic assumptions, such as signatures or hashing, except for
the common coin assumption, is said to be information-theoretically secure (IT secure). Under the common coin
assumption, an MVBA protocol that guarantees all required properties in all executions is said to be error-free.

We also propose another error-free, IT-secure, asynchronous MVBA protocol, called OciorMVBArr. This
protocol achieves MVBA consensus with expected O(n|w|+n?logn) communication bits, expected O(1) rounds,
and expected O(1) common coins, under a relaxed resilience (RR) of n > 5t + 1. Additionally, we propose a
hash-based asynchronous MVBA protocol, called OciorMVBAh. This protocol achieves MVBA consensus with
expected O(n|w| + xkn3) bits, expected O(1) rounds, and expected O(1) common coins, given n > 3t + 1.

I. INTRODUCTION

Multi-valued validated Byzantine agreement (MVBA), introduced by Cachin et al. in 2001 [1], is
one of the key building blocks for distributed systems and cryptography. In MVBA, distributed nodes
proposes their input values and seek to agree on one of the proposed values, ensuring that the agreed
value satisfies a predefined Predicate function (referred to as External Validity). MVBA is a variant of
Byzantine agreement (BA), which was proposed by Pease, Shostak and Lamport in 1980 [2]. In BA, if all
honest nodes input the same value w, it is required that every honest node eventually outputs w (referred
to as Validity). As one can see, MVBA’s External Validity is different from BA’s Validity.

In this work, we focus on the design of asynchronous MVBA protocols. The seminal work by Fischer,
Lynch, and Paterson [3] reveals that no deterministic MVBA protocol can exist in the asynchronous
setting. Therefore, any asynchronous MVBA protocol must incorporate randomness. A common approach
to designing such a protocol is to create a deterministic algorithm supplemented by common coins, which
provide the necessary randomness.

Additionally, we primarily focus on the design of error-free, information-theoretically secure (IT secure),
asynchronous MVBA protocols. An MVBA protocol that guarantees all required properties without relying
on any cryptographic assumptions, such as signatures or hashing, except for the common coin assumption,
is said to be IT secure. Under the common coin assumption, an MVBA protocol that guarantees all required
properties in all executions is said to be error-free.

Specifically, we propose an error-free, IT secure, asynchronous MVBA protocol, called OciorMVBA.
This protocol achieves MVBA consensus on a message w with expected O(n|w|logn + n?logq)
communication bits, expected O(n?) messages, and expected O(logn) rounds, under optimal resilience
n > 3t+1 in an n-node network, where up to ¢ nodes may be dishonest. Here, ¢ denotes the alphabet size
of the error correction code used in the protocol. When error correction codes with a constant alphabet
size (e.g., Expander Codes [4]) are used, ¢ becomes a constant.

The design of OciorMVBA in this MVBA setting builds on the protocols COOL and OciorCOOL,
originally designed for the BA setting [S]-[7]. Specifically, COOL and OciorCOOL introduced two

primitives: unique agreement (UA) and honest-majority distributed multicast (HMDM) [5]-[7]. COOL
and OciorCOOL achieve the deterministic, error-free, IT secure, synchronous BA consensus with
O(n|w| + ntlogq) communication bits and O(t) rounds, under optimal resilience n > 3t + 1. When
error correction codes with a constant alphabet size are used, ¢ becomes a constant, and consequently,
COOL and OciorCOOL are optimal.

e UA: In UA, distributed nodes input their values and seek to decide on an output of the form (w, s, v),
where s € {0,1} and v € {0,1} denote a success indicator and a vote, respectively. UA requires that all
honest nodes eventually output the same value w or a default value (Unique Agreement). Furthermore, if
any honest node votes v = 1, then at least ¢ + 1 honest nodes eventually output (w, 1, x*) for the same w
(Majority Unique Agreement).

e HMDM: In HMDM, there are at least ¢ + 1 honest nodes acting as senders, multicasting a message
to n nodes. HMDM requires that if every honest sender inputs the same message w, then every honest
node eventually outputs w.

Our proposed OciorMVBA is a recursive protocol (see Fig. 1) that consists of the algorithms of strongly-
honest-majority distributed multicast (SHMDM), reliable Byzantine agreement (RBA), asynchronous
biased binary Byzantine agreement (ABBBA), and asynchronous binary BA (ABBA).

e RBA: Our RBA algorithm, called OciorRBA, is built from UA and HMDM. We note that the Unique
Agreement and Majority Unique Agreement properties of UA provide ideal conditions for HMDM.

e SHMDM: SHMDM is slightly different from HMDM, as all honest nodes act as senders in SHMDM.

e ABBBA: This new primitive is introduced here and used as a building block in our protocols. In
ABBBA, each honest node inputs a pair of binary numbers (a4, a3), for some a;, as € {0, 1}. One property
is that if ¢ + 1 honest nodes input the second number as a; = 1, then any honest node that terminates
outputs 1 (Biased Validity). Another property is that if an honest node outputs 1, then at least one honest
node inputs a; = 1 or ay = 1 (Biased Integrity).

In this work, we also propose another error-free, IT-secure, asynchronous MVBA protocol, called
OciorMVBArr. This protocol achieves MVBA consensus with expected O(n|w| + n*logn) communi-
cation bits, expected O(1) rounds, and expected O(1) common coins, under a relaxed resilience (RR) of
n > 5t 4 1. Additionally, we propose a hash-based asynchronous MVBA protocol, called OciorMVBAh.
This protocol achieves MVBA consensus with expected O(n|w| + xkn?) bits, expected O(1) rounds, and
expected O(1) common coins, under optimal resilience n > 3t + 1.

The proposed OciorMVBA protocol is described in Algorithms 1-4 and Section II. The proposed
OciorMVBATrr protocol is described in Algorithms 5-7 and Section III. The proposed OciorMVBAh
protocol is described in Algorithms 8-10 and Section IV. Table I provides a comparison between the
proposed protocols and some other MVBA protocols. In the following subsection, we provide some
definitions and primitives used in our protocols.

A. Primitives

Asynchronous network. We consider a network of n distributed nodes, where up to ¢ of the nodes may
be dishonest. Every pair of nodes is connected via a reliable and private communication channel. The
network is considered to be asynchronous, i.e., the adversary can arbitrarily delay any message, but the
messages sent between honest nodes will eventually arrive at their destinations.

Adaptive adversary. We consider an adaptive adversary, i.e., the adversary can corrupt any node at any
time during the course of protocol execution, but at most ¢ nodes in total can be controlled by adversary.
Information-theoretic protocol. A protocol that guarantees all required properties without relying on
any cryptographic assumptions, such as signatures or hashing, except for the common coin assumption,
is said to be IT secure. The proposed protocols OciorMVBA and OciorMVBArr are IT secure.
Signature-free protocol. Under the common coin assumption, a protocol that guarantees all required
properties without relying on signature-based cryptographic assumptions is said to be signature-free. All
of the the proposed protocols are signature-free.

TABLE I
COMPARISON BETWEEN THE PROPOSED PROTOCOLS AND SOME OTHER MVBA PROTOCOLS. HERE ¢ DENOTES THE ALPHABET SIZE OF
THE ERROR CORRECTION CODE USED IN THE PROPOSED PROTOCOLS. WHEN ERROR CORRECTION CODES WITH A CONSTANT ALPHABET
SIZE (E.G., EXPANDER CODE [4]) ARE USED, ¢ BECOMES A CONSTANT. K IS A SECURITY PARAMETER. IN OciorMVBA, EACH NODE
USES O(logn) COMMON COINS, BUT THESE COINS ARE ASSOCIATED WITH NETWORK SIZES OF n/2,n/2% n/2% ... n/2'°8™,
RESPECTIVELY. THIS IMPLIES THAT THE COMMUNICATION COST OF USING THESE COMMON COINS IS EQUIVALENT TO THAT OF A
SCHEME USING O(1) COMMON COINS ASSOCIATED WITH A NETWORK SIZE OF n.

Protocols Resilience Communication # Coin Rounds Cryptographic Assumption
(Total Bits) (Expect for Common Coin)
Cachin et al. [1] t<z O(n*|lw| + kn? 4+ n?) 0o(1) o(1) Threshold Sig
Abraham et al. [8] t< 2 O(n?lw| 4 kn?) o) o) Threshold Sig
Dumbo-MVBA [9] t< 2 O(n|w| + kn?) o(1) o(1) Threshold Sig
Duan et al. [10] t<z O(n?|w| + kn®) o(1) 0(1) Hash
Feng et al. [11] t< g O(n|w| + xn?logn) o(1) o(1) Hash
Komatovic et al. [12] t< g O(n|w| + xkn?logn) O(1) o(1) Hash
Proposed OciorMVBA t<3 O(n|w| + kn?) o(1) 0(1) Hash
Duan et al. [10] t< 3 O(n?|w| 4 n®logn) 0o(1) 0(1) Non
Proposed OciorMVBArr t< 2 O(n|w| + n®logn) o(1) o(1) Non
Proposed OciorMVBA t<3 O(n|w|logn +n?logq) | O(logn) | O(logn) Non

Error-free protocol. Under the common coin assumption, a protocol that that guarantees all of the
required properties in all executions is said to be error-free. The proposed protocols OciorMVBA and
OciorMVBATrr are error-free.

Definition 1 (Multi-valued validated Byzantine agreement (MVBA)). In the MVBA problem, there is
an external Predicate function {0, 1}* — {true, false} known to all nodes. In this problem, each honest
node proposes its input value, ensuring that it satisfies the Predicate function to be true. The MVBA
protocol guarantees the following properties:

o Agreement: If any two honest nodes output w' and w", respectively, then w' = w".

o Termination: Every honest node eventually outputs a value and terminates.

« External validity: If an honest node outputs a value w, then Predicate(w) = true.

Definition 2 (Byzantine agreement (BA)). In the BA protocol, the distributed nodes seek to reach
agreement on a common value. The BA protocol guarantees the following properties:
o Termination: If all honest nodes receive their inputs, then every honest node eventually outputs a
value and terminates.
« Consistency: If any honest node outputs a value w, then every honest node eventually outputs w.
« Validity: If all honest nodes input the same value w, then every honest node eventually outputs w.

Definition 3 (Reliable broadcast (RBC)). In a reliable broadcast protocol, a leader inputs a value and
broadcasts it to distributed nodes, satisfying the following conditions:
« Consistency: If any two honest nodes output w' and w", respectively, then w' = w".
o Validity: If the leader is honest and inputs a value w, then every honest node eventually outputs w.
« Totality: If one honest node outputs a value, then every honest node eventually outputs a value.

Definition 4 (Reliable Byzantine agreement (RBA)). RBA is a variant of RBC problem and is a relaxed
version of BA problem. The RBA protocol guarantees the following properties:

Consistency: If any two honest nodes output w' and w”, respectively, then w' = w".

Validity: If all honest node input the same value w, then every honest node eventually outputs w.
Totality: If one honest node outputs a value, then every honest node eventually outputs a value.

Definition 5 (Distributed multicast). In the problem of distributed multicast (DM), there exits a subset of
nodes acting as senders multicasting the message over n nodes, where up to t nodes could be dishonest.
Each node acting as an sender has an input message. A protocol is called as a DM protocol if the
following property is guaranteed:

« Validity: If all honest senders input the same message w, every honest node eventually outputs w.
Honest-majority distributed multicast (HMDM, [5]-/7]): A DM problem is called as honest-majority
DM if at least t + 1 senders are honest. HMDM was used previously as a building block for COOL and
OciorCOOL protocols [5]-[7].

Strongly-honest-majority distributed multicast (SHMDM): A DM problem is called as strongly-honest-
majority DM if all honest nodes are acting as senders.

Definition 6 (Unique agreement (UA, [5]-[7])). UA is a variant of Byzantine agreement problem
operated over n nodes, where up to t nodes may be dishonest. In a UA protocol, each node inputs
an initial value and seeks to make an output taking the form as (w,s,v), where s € {0, 1} is a success
indicator and v € {0,1} is a vote. The UA protocol guarantees the following properties:
o Unique Agreement: [f any two honest nodes output (w',1,%) and (w”,1,x), respectively, then
w' = w".
« Majority Unique Agreement: [f any honest node outputs (x,*,1), then at least t + 1 honest nodes
eventually output (w, 1, *) for the same w.
« Validity: If all honest nodes input the same value w, then all honest nodes eventually output (w, 1, 1).

UA was used previously as a building block for COOL and OciorCOOL protocols [5]-[7].

Asynchronous complete information dispersal (ACID). We introduce a new primitive ACID. The goal
of an ACID protocol is to disperse information over distributed nodes. Once a leader completes the
dispersal of its proposed message, it is guaranteed that each honest node could retrieve the delivered
message correctly from distributed nodes via a data retrieval scheme. Two ACID definitions are provided
below: one for an ACID instance dispersing a message proposed by a leader, and the other one for a
whole ACID protocol of running n parallel ACID instances.

Definition 7 (ACID instance). In an ACID[(ID, 7)] protocol with an identity (1D, i), a message is proposed
by P, (i.e., the leader in this case) and is dispersed over n distributed nodes, for i € [1 : n|. An
ACID[(ID,9)] protocol is complemented by a data retrieval protocol DR[(ID,)] in which each node
retrieves the message proposed by P; from n distributed nodes. The ACID|(ID,i)] and DR|(ID,1)]
protocols guarantee the following properties:
« Completeness: If P; is honest, then P; eventually completes the dispersal (1D, 1).
« Availability: If P, completes the dispersal for (1D,1i), and all honest nodes start the data retrieval
protocol for (ID, 1), then each node eventually reconstructs some message.
« Consistency: If two honest nodes reconstruct messages w' and w" respectively for (ID,1), then
w' = w".
« Validity: If an honest P; has proposed a message w for (1D, 1) and an honest node reconstructs a
message w' for (ID, 1), then w' = w.

Definition 8 (Parallel ACID instances). An ACID[ID] protocol is a protocol involves running n parallel
ACID instances, {ACID|[(ID,)|}, over n distributed nodes, where up to t of the nodes may be
dishonest. For an ACID[ID] protocol, the following conditions must be satisfied:
o Termination: Every honest node eventually terminates.
« Integrity: If one honest node terminates, then there exists a set L* such that the following conditions
hold: 1) T* C [1 : n]\ F, where F denotes the set of indexes of all dishonest nodes; 2) |Z*| > n—2t;
and 3) for any i € T*, P, has completed the dispersal ACID[(ID,)].

Definition 9 (Asynchronous biased binary Byzantine agreement (ABBBA)). We introduce a new
primitive called as ABBBA. In an ABBBA protocol, each honest node inputs a pair of binary numbers

(ay,as), for some ay,as € {0,1}. The honest nodes seek to reach an agreement on a common value
a € {0,1}. An ABBBA protocol should satisfy the following properties:

« Conditional termination: Under an input condition—i.e., if one honest node inputs its second number
as as = 1 then at least t + 1 honest nodes input their first numbers as ay = 1—then every honest
node eventually outputs a value and terminates.

« Biased validity: If t + 1 honest nodes input the second number as a; = 1, then any honest node that
terminates outputs 1.

« Biased integrity: If an honest node outputs 1, then at least one honest node inputs a, = 1 or as = 1.

Definition 10 (Common coin). The seminal work by Fischer, Lynch, and Paterson in [3] reveals that no
deterministic MVBA protocol can exist in the asynchronous setting. Therefore, any asynchronous MVBA
protocol must incorporate randomness. A common approach to designing such a protocol is to create a
deterministic algorithm supplemented by common coins, which provide the necessary randomness. Here,
we assume the existence of a common coin protocol | < Election[id] associated with an identity id, which
guarantees the following properties:

« Termination: If ¢ + 1 honest nodes activate Electionlid], then each honest node that activates it will
output a common value 1.

« Consistency: If any two honest nodes output I and l” from Electionlid], respectively, then I’ =1".

 Uniform: The output | from Election[id| is randomly generated based on a uniform distribution for
[€ll:n]

o Unpredictability: The adversary cannot correctly predict the output of Election[id] unless at least
one honest node has activated it.

When analyzing the performance of MVBA protocols, we exclude the cost of the common coin protocol.

Error correction code (ECC). An (n, k) error correction coding scheme consists of an encoding scheme
ECCEnc : B¥ — B" and a decoding scheme ECCDec : B* — B*, where B denotes the alphabet of
each symbol and ¢ = |B| denotes the size of B, for some n’. While [y, s, - - ,¥n] + ECCEnc(n, k, w)
outputs n encoded symbols, y; <— ECCEnc;(n, k, w) outputs the jth encoded symbol.

Reed-Solomon (RS) codes (cf. [13]) are widely used error correction codes. An (n,k) RS error
correction code can correct up to ¢t Byzantine errors and simultaneously detect up to e Byzantine errors in
n’/ symbol observations, given the conditions of 2t+e+k < n’ and n’ < n. The (n, k) RS code is operated
over Galois Field GF(q) under the constraint n < g — 1 (cf. [13]). RS codes can be constructed using
Lagrange polynomial interpolation. The resulting code is a type of RS code with a minimum distance
d = n — k + 1, which is optimal according to the Singleton bound. Berlekamp-Welch algorithm and
Euclid’s algorithm are two efficient decoding algorithms for RS codes [13]-[15].

Although RS is a popular error correction code, it has a constraint on the size of the alphabet, namely
n < q — 1. To overcome this limitation, other error correction codes with a constant alphabet size, such
as Expander Codes [4], can be used.

Erasure code (EC). An (n, k) erasure coding scheme consists of an encoding scheme ECEnc : BF — B"
and a decoding scheme ECDec : B* — B*, where B denotes the alphabet of each symbol and ¢ = |B|
denotes the size of B. With an (n, k) erasure code, the original message can be decoded from any & encoded
symbols. Specifically, given [y1, y2, - - - ,yn| < ECEnc(n, k, w), then ECDec(n, k, {y;,, Yj», - Yjr }) = W
holds true for any £ distinct integers ji, jo, -+ ,Jjx € [1 : n].

Online error correction (OEC). Online error correction is a variant of traditional error correction [16].
An (n, k) error correction code can correct up to ¢ Byzantine errors in n’ symbol observations, provided
the conditions of 2t + k£ < n’ and n’ < n. However, in an asynchronous setting, a node might not be
able to decode the message with n’ symbol observations if 2¢' + k& > n’. In such a case, the node can
wait for one more symbol observation before attempting to decode again. This process repeats until the
node successfully decodes the message. By setting the threshold as n’ > k + ¢, OEC may perform up to
t trials in the worst case before decoding the message.

w

Iready [9} —1 Iﬁnish[e} —1

» RMVBA/(ID, 2p + 6)]|
wg
| SHMDM[(ID, p, 0)] | o,
o
\ OciorRBA[(ID, p, 6)]

]conﬁrm[e} 1

\ 1e{0,1}
] Qdered MABBBAH\ ABBA |+OciorRBA
/1 0

repeat if output of ABBA is 0

RMVBA[(ID, p)]

Fig. 1. A block diagram of the proposed OciorMVBA protocol with an identifier ID.

Algorithm 1 OciorMVBA protocol, with identifier ID, for n > 3t 4+ 1. Code is shown for P,.

A O o b

I e T e N e T T e S S S
RN HRDTO0

NS
DN —

23:
24:
25:
26:

27:

28:
29:

30:

31:
32:

33:
34:

e}
= e

/¥ RMVBA: Recursive MVBA, error-free, IT secure **
// #% S, is partitioned into two disjoint sets Sap and Sapi1 such that |Sap| = ||Sp|/2] and |Szp+1] = [|Spl/2]**
// ** Initially S1 denotes the set of all nodes with size n **

procedure RMVBA[(ID, p)](w)
let i+ [Spl; ¥ [1227 iy« [logp) +1
let < 0,0 < 1if P; € Sap, else 0 <— 1,0 <0
let Iﬁnish — {};Ircady — {};ICOnﬁrm — {}
for j € {0,1} do
Inisn[j] <= 0; Iready [7] = 0; Leonfirm [j] <= O

upon receiving input w, for Predicate(w) = true and P; € S, do:

if |Sp| < M then // M is a preset finite number
W < IneMVBA[(ID, p)](w) // IneMVBA: inefficient MVBA protocol
return w and terminate
else
pass w into RMVBA[(ID, 2p 4 6)] as input // From Line 3, it is true that P; € Sapye and P; & Sa,5

pass L into SHMDM][(ID, p, #)] as input
wait for (Iconfirm[0] = 1) V (Lconfirm[1] = 1)
for 1 € {0,1} do
a < ABBBAI(ID, p,,
b« ABBA[(ID, p, [, 7,
if b =1 then
pass b into OciorRBA[(ID, p,)] as a binary input (other than the message input)
wait for OciorRBA[(ID, p,)] to output value w
if Predicate(w) = true then
output w and terminate this RMVBA[(ID, p)] and all invoked recursive protocols under it.

D) (Iready 1], Isnisn[l]) # asynchronous biased binary BA, within S,, with i, T parameters

m,
1))(a) // asynchronous binary BA, operated within Sy, with 1, parameters

upon RMVBA([(ID, 2p + 6)] outputs w, with Predicate(w) = true, and P; € Szp1¢ do:
pass w into SHMDM][(ID, p, #)] as a message input
upon SHMDM([(ID, p,)] outputs w, with Predicate(w) = true, for j € {0,1} and P; € S, do:
pass W into OciorRBA[(ID, p, 7)] as a message input // OciorRBA[(ID, p, j)] is a reliable BA protocol operated within Sp

upon OciorRBA[(ID, p, j)] delivers v; = 1, for j € {0,1} and P; € S, do:

Lcaay[j] < 1 // ready
send (“READY”,ID, rp, j) to all nodes within S,

upon receiving 7 — £ (“READY”,ID, r,, j) messages from distinct nodes within S,, for 5 € {0,1} and P; € S, do:

Iﬁnish [,]} +—1 //ﬁmsh
send (“FINISH”,ID, r,, j) to all nodes within S,

upon receiving 72 — ¢ (“FINISH”, 1D, r,, j) messages from distinct nodes within S,, for j € {0,1} and P; € S, do:
]conﬁrm [.]} +—1 / conﬁrm

Algorithm 2 ABBBA protocol with identifier (ID,p,l,7,t), for id := (ID, [logp| + 1,1). This protocol
operates on a network S, of 7 nodes, up to ¢ of which may be dishonest. Code is shown for P;.

A A A

°

10:

11:
12:

// ** Each node inputs a pair of numbers (a1, az2), for some a1,as € {0,1} **

// % Terminate is guaranteed if the following condition is satisfied: if one honest node inputs az = 1, then at least t + 1 honest nodes
input ap =1 **

// #% If at least t + 1 honest nodes input az = 1, then none of the honest nodes will output 0. This is because at most # — (t + 1)
nodes input a> = 0 in this case, indicating that the condition in Line 8 could not be satisfied. **

// *#* If one honest node outputs 1 (only when (cnty > t+ 1)V (cnte > t+ 1)), then at least one honest node has an input as a1 = 1
or ay = 1 **

upon receiving input (a1, az), for some a1, a2 € {0,1} do:
cnty < 0;cnte <— 0;cntz <0
send (“ABBBA”,id, a1, az2) to all nodes
if (a1 = 1)V (a2 = 1) then output 1 and terminate
wait for at least one of the following events: 1) cnty > £+ 1, 2) cnta > £+ 1, or 3) cntz > fi — £
if (cnt; > ¢+ 1)V (cntg > ¢+ 1) then
output 1 and terminate
else if cnts > n — ¢ then
output 0 and terminate
upon receiving (“ABBBA”,id, a1, a2) from P; for the first time, for some a1, a2 € {0,1} do:
cnty <= cnty 4 ar; cnte < cnta 4 a2
if ac = 0 then cnt3 <— cnt3 + 1

Algorithm 3 SHMDM protocol with identifier (ID, p, #), for id := (ID, |log p| + 1, 6), and for 6 € {0, 1}.
Code is shown for P;, where P; denotes the ith node within S,.

A O S o b

— e
A e

// *#* SHMDM.: Strongly-honest-majority distributed multicast **
/] *#* S, is partitioned into two disjoint sets Sap and Sapi1 With |Sap| = [|Sp|/2] and |Sapi1| = [|Sp|/2] **
Initially set Zoec 4 {},n* < |Sappol; t* = 22220120 |opr x4
upon receiving input w do:
if P, € Sgp+9 then
i 10— 0 -|Sap] // i* is the position of this node within Sapt0
zix ECCEnc;» (n*, k™, w) // ECCEnc;+ outputs the i*th encoded symbol only
send (“INITIAL”,id, z;+) to all nodes in S, \ Sop+o #/ broadcast coded symbol to other set for decoding initial message
output w and terminate
upon receiving (“INITIAL”,id, z) from P; for the first time for some z, for P; € Sopt0, and P; € Sp \ Sapto do:
J =0 |Sopl; Zoeclf] < 2 // 3% is the position of P; within Sapie
if |Zocc| > k* + t* then // online error correcting (OEC)
w + ECCDec(n*, k*, Zoec)
[21, 25, -+ , 2p+] + ECCEnc(n, k, w)
if at least k* + t* symbols in [2], 25, - - , z5,»] match with those in Zoec then
output w and terminate

Algorithm 4 OciorRBA protocol with identifier (ID, p, 8), for id := (ID, [log p| + 1,8). Code is shown
for P;, where P; denotes the ith node within S,. This protocol is operated within S,,.

11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:

A A i

// ** OciorRBA is an error- free rellable Byzantine agreement (RBA) protocol, extended from OciorCOOL and OciorRBC [7]. **

: Imtlally set v 4 [SplsF = |22k | 2] 4 15 Toecinal < 03 Yoee < {};Uo = {}; U1 « {180« {807 « {3588 «

{},S — {}, Toce <+ 0; Is12 +— 0,]3 ~—0
Phase 1
upon receiving a non-empty message input w; do:
w' — w;
IR ,y<] ECCEnc(n k,w;)
send (“SYMBOL”,id, (yj ,yl(l)) to P;, Vj € [1: 7], and then set Jecc < 1 // exchange coded symbols
upon receiving (“SYMBOL”7 id, (y m,y](]))) from P; for the first time do:

wait until Io.c =
it (3, y) = (yfz),yﬁ”) then

U+ U1 U{j} // update the set of link indicators
else
Uy + Ug U {j}
upon |Uz| > 7 — £, and (“SI1”,id, %) not yet sent do:
set s[l] < 1, and send (“SI1”,id, sgl]) to all nodes // set success indicator

upon |Up| > ¢+ 1, and (“SI1”,id, *) not yet sent do:
set SEH <+ 0, and send (“SI1”,id, sgl]) to all nodes

upon receiving (“SI1”,id, sg.l]) from P; for the first time do:
if sg-l] =1 then S[lll — S[II] U{j} else S[OI] — Sg] U {j}

Phase 2
upon (s El] 0) Vv (|S[1] UUp| >t+1), and (“S127,1d, SEQ]) not yet sent do:

set SEQ] < 0, send (“SIQ” id, s (2]) to all nodes // update success indicator
upon (s £ F=1)A (|S NU;| > @ —), and (“S127,id, s[]) not yet sent do:

set s[1 1, Isi2 + 1, and send (“SI2”,id, SE]) to all nodes

upon receiving (“SI2”,id, s[}]) from P; for the first time do:
if sf] =1 then 8[12] — 8[12] U{j} else S([f] — SE] U{j}

24: upon |S‘[,2]| >fn —t, forav € {1,0}, and (“READY”,id, *) not yet sent do:
25: set v; < v, and deliver v; // the value of v; is delivered out to the protocol in Algorithm 1
26: send (“READY”,id, v;) to all nodes

27: upon receiving £ + 1 (“READY”, id, v) messages from different nodes for the same v and (“READY”, id, *) not yet sent do:
28: send (“READY™,id, v) to all nodes

29: upon receiving 2¢ + 1 (“READY”,id, v) messages from different nodes for the same v do:

30: if (“READY”,id, %) not yet sent then

31: send (“READY”,id, v) to all nodes
32: set Vo <V
33: if vo =0 then
34: set w® « 1, then output w® and terminate // L is a default value
35: else
36: set I3 + 1
37: upon receiving a binary input b = 1 (other than the message input w;) do: // b is delivered from the protocol in Algorithm 1
38: set I3 <1
Phase 3
39: upon I3 =1 do: // only after executing Line 36 or Line 38
40: if Is;o = 1 then
41: output w® and terminate
42: else
43: wait until receiving £ 4+ 1 (“SYMBOL?”, id, (yl(j), *)) messages, Vj € 8[12], for the same ylw = y*, for some y*
44: ygz) «—y* // update coded symbol based on majority rule
45: send (“CORRECT”, id, ") to all nodes
46: wait until Ioecfina = 1
47: output w® and terminate

48: wupon receiving (“CORRECT”, id, y;j)) from P; for the first time, j € Yoec, and Ioecfinal = 0 do:
49 Yoec[f] ¢ 3

50: if [Yoec| > k41 then // online error correcting (OEC)
51: w + ECCDec(1, k, Yoec) ~

52: [y1,92, -, ya] < ECCEnc(n, k, W)

53: if at least k + ¢ symbols in [y1,y2, - - - ,yn] match with those in Yoec then

54: W < W; Loectinal + 1

55: upon having received both (“SYMBOL”, id, (ygj), yj(-j))) and (“SI2”,id, 1) messages from P;, and j ¢ Yoec, and Ioecfinal = 0 do:
56: Yoeelj] ¢ ¢
57: run the OEC steps as in Lines 50-54

II. OciorMVBA

This proposed OciorMVBA is an error-free, information-theoretically secure asynchronous MVBA
protocol. OciorMVBA doesn’t rely on any cryptographic assumptions, such as signatures or hashing,
except for the common coin assumption. The design of OciorMVBA in this MVBA setting builds on the
protocols COOL and OciorCOOL [5]-[7].

A. Overview of the proposed OciorMVBA protocol

The proposed OciorMVBA is described in Algorithm 1, along with Algorithms 2-4. Fig. 1 presents
a block diagram of the proposed OciorMVBA protocol. For a network S,, we define the network size
and the faulty threshold as 71, := |S,| and ¢, := L%J, for p € {1,2,3,---}. The original network is
defined as S; := {P, : i € [1 : n]}, where P; denotes the ith node in the network. S, is partitioned into
two disjoint sets Sy, and Sy,41 such that |Sy,| = [|S,|/2] and |Sapi1| = [|S,p]/2]. Below, we provide an
overview of the proposed protocol.

OciorMVBA is a recursive protocol. As shown in Fig. 1, the protocol RMVBA|[(ID, p)] invokes two sub-
protocols: RMVBA[(ID, 2p)] and RMVBA[(ID, 2p+1)]. Each sub-protocol, in turn, invokes two additional
sub-protocols. This process continues until the size of network on which a sub-protocol operates on is
smaller than a predefined finite threshold. In the final protocol invoked, any inefficient MVBA protocol

10

(referred to as IneMVBA) can be used without impacting overall performance, as the size of the operated
network is finite.

The general protocol RMVBA[(ID, p)] comprises several steps, as illustrated in Fig. 1. It operates over
the network S,, which is partitioned into two disjoint sets, Sa, and Sy, of balanced size. The two
invoked protocols operate on these partitioned network sets. The key steps involved in RMVBA[(ID, p)]
are described below.

« Step 1: Upon an invoked sub-protocol RMVBA|[(ID, 2p + 0)], for 8 € {0, 1}, outputs a message wy,
the nodes within Sy, input wy into SHMDM](ID, p, 8)].

o Step 2: Upon SHMDM][(ID, p,0)] outputs a message wy, the nodes within S, input wy into
OciorRBA[(ID, p, 9)].

« Step 3: Upon OciorRBA[(ID, p,)| delivers v, = 1, the nodes within S, set [caqy[f] <— 1 and send
(“READY”,ID, rp,) to all nodes within S,, where r, := |logp| + 1.

« Step 4: Upon receiving 71, — t, (“READY”,ID,r,,) messages from distinct nodes within S, the
nodes within S, set Ig,isn[0] <= 1 and send (“FINISH”,ID, r,,) to all nodes within S,, .

« Step 5: Upon receiving 7i, — t, (“FINISH”,ID, r,,) messages from distinct nodes within S,, the
nodes within S, set Ieonfirm[0] < 1.

o Step 6: After setting I .onfirm[0] < 1, the nodes within S, proceed to the Ordered Election step, which
outputs [, taking a value from {0, 1} in order.

o Step 7: The nodes within S, run the ABBBA protocol with inputs (Lready|!], Znisn[!])-

o Step 8: After ABBBA outputs a value a, the nodes within S, run an asynchronous binary BA
(ABBA) protocol with input a.

o Step 9: If ABBA outputs a value 1, the nodes within S, input 1 into OciorRBA[(ID, p,)] and wait
for its output. If OciorRBA[(ID, p,)] outputs a value w; such that Predicate(w,) = true, the nodes
within S, output w; and terminate the protocol RMVBA|[(ID, p)]. If ABBA outputs a value 0, the
nodes go back to Step 6.

In our design, by combining the the Ready-Finish-Confirm process in Steps 4-6 with ABBBA in Steps 7,
we ensure that if one honest node has set I.ongm|[l] < 1, eventually every honest node outputs 1 from
ABBBA[(ID, p, [, #,,,)] in Step 7, due to the Biased Validity property of ABBBA. It is worth noting that
the design of OciorRBA protocol in the RBA setting builds upon the protocols COOL and OciorCOOL,
which utilize UA and HMDM as building blocks [S]-[7].

B. Analysis of OciorMVBA

Definition 11 (Good resilience). A network S, is said to have good resilience if the number of dishonest

nodes within S, denoted by t, := |S, N F|, satisfies the condition t, < Bl \where F denotes the set
of all dishonest nodes. This condition t, <

3)
ISp]
condition t, < L%j due to the integer nature of t,,.

15, 5o 121" and also equivalent to the

is equivalent to t, < 3

Definition 12 (Network tree). In our setting, S, is partitioned into two disjoint sets Sa, and Sy 1. For
example, Sy (at Layer 1) is partitioned into two disjoint sets: Sy and S3 (at Layer 2). The two sets So
and Ss are partitioned into S;, S5 and Sg, Sy, respectively, at Layer 3. We define the network tree as
comprising all layers of sets: Sy at Layer 1; Sy and S3 at Layer 2; Sy, Ss, S¢ and S; at Layer 3; and
50 on.

Definition 13 (Network chain). By selecting one network set at each layer from a network tree, where the
set selected at Layer r is partitioned from the set selected at Layer r—1, forr = 2,3, - - -, then the selected
network sets form a network chain. One example of a network chain is S, — S3 — S7 — S5 — -+ .

Definition 14 (Network chain with good resilience). A network chain is considered to have good
resilience if every network set it includes has good resilience. For example, if all of S1,Ss,S7, 815, -

11

have good resilience, then the network chain S — S3 — S7 — S15 — - -+ is considered to have good
resilience.

Theorem 1 (Agreement and Termination). In OciorMVBA, given n > 3t+1, every honest node eventually
outputs a consistent value and terminates.

Proof. In our setting, S, is partitioned into two disjoint sets Sy, and Ss,11. From Lemma 1, if S, has good
resilience, i.e., |S, N F | < |S—3f’|, then at least one of the two sets, Sy, or Sa,41, also has good resilience.
From Lemma 2, given n > 3t + 1, there exists a network chain with good resilience.

Let us focus on a network chain §; — --- = §, = Syp49 — --- with good resilience, for some
6 € {0,1}. From Lemma 4, it is true that if RMVBA[(ID, 2p+)] outputs a consistent value at all honest
nodes within S;,.¢ and terminates, then RMVBA[(ID, p)] eventually outputs a consistent value at all
honest nodes within S, and terminates. Based on a recursive argument, and given that the last invoked
RMVBA protocol eventually outputs a consistent value at all honest nodes within the last network set
in the chain, it is concluded that every honest node within &; eventually outputs a consistent value and
terminates, given that n > 3t 4 1. OJ

Theorem 2 (External Validity). In OciorMVBA, if an honest node outputs a value w, then
Predicate(w) = true.

Proof. In OciorMVBA, if an honest node outputs a value w, it has verified that Predicate(w) = true at
Line 21 of Algorithm 1.]

Theorem 3 (Communication and Round Complexities). The communication complexity of OciorMVBA
is O(n|w|logn + n?logq) bits, while the round complexity of OciorMVBA is O(logn) rounds, given
n>3t+ 1L

Proof. The protocol RMVBA|[(ID, p)] is operated over S, with a network size of 7, := |S,|. The total
communication complexity in bits of the protocol RMVBA[(ID, p)], defined by frg(n,) is expressed as
. O(|w)) ifm< M
fre(it,) = ~ ~o ip ip .
Buip|lw| + B2 logq + fre([2]) + fre([%]) otherwise
where M is a finite constant; /3 and (3, are finite constants; and |w| denotes the size of each input message.
It is worth mentioning that each coded symbol transmitted in DRBC-COOL protocol carries at least log g
bits due to the alphabet size of error correction code. We ignore the cost of the index 7, = |logp| + 1
in transmitted messages (using loglogn bits), as it can be redesigned such that the total indexing cost
related to 7, becomes negligible compared to the cost of coded symbols. When n = 27M for some J,
then the total communication complexity in bits of the proposed OciorMVBA is

n
fra(n) =pin|w| + fanlog ¢ + 2fTB(§)
2 n n2 n
=Gn|w| + Bon”logq + 2(61 g lw| + 62110gq + 2fTB(2—2))

TL2 n
=fin|w| + fon®log g + Sin|w| + 527 logq+2°- fTB(?)

n? n? n
=Bin|w| + Bon®log g + Bin|w| + 527 logq+ -+ Binjw| + ﬂZﬁ logq + 27 fTB(2—J)

)+ 27 fra (M)

1
:Jﬁﬂﬂ’lﬂl +62n210gq . (1 + 5 4+t 5T

=O(n|w|logn + n*logq).
The round complexity of OciorMVBA is O(logn) rounds. O

12

Lemma 1. If S, has good resilience, i.e., |S,NF| < % then at least one of the two sets, Sa, or Sapy1,

also has good resilience.

Proof. It S, has good resilience, i.e., |Sp NF| < %, then at least one of the following two conditions

. . S S
is satisfied: |82p ﬂ./—"| < % or |S2p+1 m}‘l < | 2§+1|' =
Lemma 2. Given n > 3t + 1, there exists a network chain with good resilience.

Proof. Given n > 3t + 1, §; has good resilience. S is partitioned into two disjoint sets, S; and Ss.
From Lemma 1, at least one of the sets S; and S3 has good resilience. Let us assume that S3 has good
resilience and include it into a network chain. Next, S3 is partitioned into two disjoint sets Sg and Sy.
Again, from Lemma 1, at least one of the sets S and S; has good resilience. Let us assume that S; has
good resilience and include it into the network chain. By repeating this process, we construct a network
chain &7 — S3 — S; — - -+ such that all network sets it includes have good resilience. This implies that
the selected network chain has good resilience. [

Without loss of generality, we will focus on the network set S,, such that all other protocols
RMVBA[(ID, p')] invoking RMVBA[(ID, p)] haven’t outputted a value at any honest node yet, where
the network sets S,; and S, are within the same network chain with good resilience and p’ < p.

Lemma 3. Let us assume that S, has good resilience. If one honest node within S, outputs a value w
from RMVBA[(ID, p)], then all other honest nodes within S, eventually outputs a consistent value w
from RMVBA[(ID, p)].

Proof. Given that S, has good resilience, if one honest node within S, outputs a value w from
RMVBA[(ID, p)], then all hones nodes within S, must have output 1 < ABBA[(ID, p,[,7,%)](a) in
Line 17 of Algorithm 1, for some [€ {0, 1}. Then, from Lemma 10 (Consistency and Totality properties
of OciorRBA), all hones nodes within S, eventually output the same value w from OciorRBA[(ID, p,)]

in Line 20 of Algorithm 1.]

Lemma 4. Let us assume that S — --- = S, — Sopye — -+ forms a network chain with good
resilience, for some 0 € {0,1}. If RMVBA[(ID, 2p + 0)| outputs a consistent value at all honest nodes
within Sy,1¢9 and terminates, then RMVBA[(ID, p)| eventually outputs a consistent value at all honest
nodes within S, and terminates.

Proof. Assume that S, and S, have good resilience. If RMVBA[(ID, 2p+-6)] outputs a consistent value
w at all honest nodes within Ss,14, then eventually SHMDM][(ID, p,)] outputs a consistent value w at
all honest nodes within S, (see Lines 23 and 24 of Algorithm 1). Consequently, OciorRBA[(ID, p, 6)]
eventually outputs the same value w at all hones nodes within S, (See Lines 25 and 26 of Algorithm 1).
Therefore, all honest nodes within S, eventually set lrcaay[0] < 1, Ianisn[0] < 1, Iconfim[0] < 1. In
this case, all honest nodes within S, eventually go to Line 15 and execute the steps in Lines 15-22 of
Algorithm 1. Based on the result of Lemma 3, if § = 0, then all honest nodes within S, eventually
output a consistent value w. For the case where § = 1, if 1 < ABBAJ(ID, p, 0, 72,,,%,)], then all honest
nodes within S, eventually output a consistent value w’ for some w’. Otherwise, they eventually output
a consistent value w. 0

Lemma 5. Assume that S, has good resilience. If ABBA[(ID, p, [, i, t,)] outputs 1, then at least one
honest Node i within S, has set v; = 1 from OciorRBA[(ID, p,1)], for | € {0, 1}.

Proof. In this setting, if ABBA[(ID, p,,7,,t,)] outputs b = 1, then at least one honest node must have
provided an input @ = 1 to ABBA[(ID, p,[,7,,%,)] (see Line 17 of Algorithm 1), due to the validity
property of Byzantine agreement. This means that at least one honest node must have produced an output
a = 1 from ABBBA[(ID, p, 1, 71y, t,)] (Lready (1], Ianisn[l]) (see Line 16 of Algorithm 1). If an honest node
outputs 1 from ABBBA, then at least one honest node must have provided at least one input as 1 to
ABBBA (see Line 7 of Algorithm 2, biased integrity property). Thus, if ABBA[(ID, p, [, 7i,,,)] outputs

13

b = 1, then at least one honest node must have set [eaqy|l] = 1 or Ignisu|l] = 1. If one honest Node ¢
sets ready|l] = 1, it must have set v; = 1 from OciorRBA[(ID, p,1)] (see Line 27 of Algorithm 1). If

one honest Node i sets Ignisn|l] = 1, then at least n, — pr honest nodes must havei set v, = 1 from
OciorRBA[(ID, p,)] (see Line 30 of Algorithm 1). Therefore, if ABBA[(ID, p,,7n,,t,)] outputs b = 1,
then at least one honest Node 7 within S, has set v; = 1 from OciorRBA[(ID, p, [)]. N

Lemma 6. Assume that S, has good resilience. If ABBA[(ID, p, [, #i,, t,)] outputs 1, then no honest Node i
within S, will set v; = 0 from OciorRBA|[(ID, p, 1)), for | € {0,1}.

Proof. Lemma 5 reveals that if ABBA[(ID,p, 1, 7,,%,)] outputs b = 1, then at least one honest Node i
within S, has set v; = 1 from OciorRBA[(ID, p,[)] in this setting. If one honest node has set v; = 1,
then at least 71, — 2¢, honest nodes have sent (“SI2”,id, 1) (see Line 24 of Algorithm 4). In this case, the
size of SE] is bounded by]SB2]| <, — (R, — 2t,) < @i, —t, from the view of any honest node, which
indicates that no honest node will set v; = 0 from OciorRBA[(ID, p,)]. O

Lemma 7. Assume that S, has good resilience. If ABBA[(ID, p, [, fi,,, ,,)] outputs 1, then eventually every
honest node within S, will set I3 = 1 from OciorRBA[(ID, p,1)], for | € {0, 1}.

Proof. From the result of Lemma 6, if ABBA[(ID, p,,,,t,)] outputs 1, then no honest Node i within
S, will set v; = 0 from OciorRBA[(ID, p,1)]. This suggests that, in this case, no honest node will set
v, = 0 and Line 34 of Algorithm 4 will never be executed in OciorRBA[(ID, p,[)]. On the other hand, if

ABBA[(ID, p,1,n,,t,)] outputs b = 1, then eventually every honest node within S, will input b = 1 into
OciorRBA[(ID, p,)] and set I3 = 1 (see Line 38 of Algorithm 4). O

Lemma 8. Assume that S, has good resilience. If ABBA[(ID, p, [, 7i,,t,)] outputs 1, then at least 7i,—2t, >
t, + 1 honest nodes within S, have set SZ[-Q] =1 from OciorRBA[(ID, p,1)], for 1 € {0,1} .

Proof. From the result of Lemma 5, if ABBA[(ID, p, [, 7,,1,)] outputs 1, then at least one honest Node i
within S, has set v; = 1 from OciorRBA[(ID, p,[)]. When one honest Node ¢ within S, has set v; = 1, it
means that at least 7, — 24, > ¢, + 1 honest nodes within S, have set s?} =1 from OciorRBA[(ID, p,)]
(see Line 24 of Algorithm 4). L]

Lemma 9. [7, Lemma 11] Assume that S, has good resilience. If ABBA[(ID, p,l,7,,t,)| outputs 1, then
all of the honest nodes who set S?] = 1 in Phase 2 of OciorRBA[(ID, p,1)] should have the same input
message w* at the beginning of Phase 1 of OciorRBA[(ID, p,1)], for some w*, for | € {0, 1}.

Proof. The result is directly derived from [7, Lemma 11]. [

Lemma 10 (Consistency and Totality Properties of OciorRBA). Assume that S, has good resilience. If
ABBA[(ID, p, 1,7y, t,)] outputs 1, then all honest nodes within S, eventually output the same message
w* from OciorRBA[(ID, p,1)], for some w*, for [€ {0, 1}.

Proof. The proof is similar to [7, Theorem 5]. If ABBA[(ID, p,[,,,%,)] outputs 1, then we have the
following facts:
o Fact 1: Eventually every honest node within S, will set I3 = 1 and go to Phase 3 of
OciorRBA[(ID, p,1)] (Lemma 7).
« Fact 2: All of the honest nodes who set S?] = 1 in Phase 2 of OciorRBA[(ID, p,)] should have the
same input message w* at the beginning of Phase 1 of OciorRBA[(ID, p,)] for some w* (Lemma 9).
o Fact 3: At least £, + 1 honest nodes within S, have set s?] = 1 from OciorRBA[(ID, p, [)] (Lemma 8).

From Fact 2, if an honest node sets sl = 1, then this node outputs the value w* in OciorRBA[(ID, p, 1)]

(see Line 41 of Algorithm 4). From Facts 2 and 3, if an honest Node i sets s?] = 0, then it will
eventually receives at least £, + 1 matching (“SYMBOL”,id, (ECCEnc;(fi,, k,, w*), *)) messages from

the honest nodes within 8[12}, where ECCEnc;() denotes the ith encoded symbol and k, is an encoding
parameter. In this case, Node 7 will set y(l) < ECCEnc;(n,, ky, w*) in Line 44 of Algorithm 4, and send

i

14

(“CORRECT”, id, yfl)) to all nodes in Line 45. Therefore, every symbol yj(.j) sent from honest nodes and

collected in Y,.. should be the symbol encoded from the same message w*. Thus, every honest node
who sets S?] = 0 will eventually decode the message w* with OEC decoding and output w* in Line 47

of Algorithm 4. 0

Algorithm 5 OciorMVBArr protocol, with identifier ID, for n > 5t + 1. Code is shown for P;.

// ** OciorMVBArr: without any cryptographic assumption (other than common coin), with a relaxed resilience n > 5t + 1%**

// *##% ACID[ID]: a protocol for n parallel asynchronous complete information dispersal (ACID) instances; once an ACID instance
is complete, there exists a retrieval scheme to correctly retrieve its delivered message. **

// ** Election[(ID, r)]: an election protocol, requiring at least t+ 1 inputs from distinct nodes to generate an output l, for r € [1 : n]**
/ **% ABArr[(ID,1)] calls the asynchronous Byzantine agreement (ABA) protocol by Li-Chen [17], for n > 5t + 1, using only O(1)
common coins, O(n|w| 4 n?log q) total bits, and O(1) rounds, without any cryptographic assumption (other than common coin) **

1: upon receiving MVBA input message w; and Predicate(w;) = true do:

2: Sshares ACIDrr[ID](w;) // a protocol for n parallel ACID instances

3: for r € [1: n] do

4: 1 < Election[(ID, r)] // an election protocol

5: w < DRrr[(ID, 1)](Ssnares [I]) // shuffle the code symbols originally sent from Node | and decode
6: W + ABArr[(ID,)](w) // call the asynchronous BA protocol by Li-Chen [17]

7: if Predicate(w) = true then

8: output w and terminate

Algorithm 6 ACIDrr subprotocol with identifier ID for ¢ < ¢. Code is shown for F;

// *#* ACIDIID] is a protocol for n parallel ACID instances ACID[(ID, 1)], ACID[(ID, 2)],--- , ACID[(ID, n)] **

// #% ACIDI(ID, 5)] is an ACID instance for delivering the message proposed from Node j **

// *% Once Node j completes ACID[(ID, 7)), there exists a retrieval scheme to correctly retrieve the message. **

// ** When an honest node returns and stops this protocol, then at least n — t ACID instances have been completed. **

1: Initially set Sshares[j] < L, Vj € [1 : n]

/7 #% ACID-share **
2: upon receiving input message w; do:
[y17 Y2, 7yn] <~ ECCEHC(TL,t + 17 wl)
4: send (“SHARE”,ID, y;) to P;, Vj € [1 : n] // exchange coded symbols

w

/ ## ACID-vote **
5: wpon receiving (“SHARE”,ID, y) from P; for the first time do:

: Ssharcs []] — Yy
7: send (“VOTE”,ID) to P;

// ** vote for election **
8: wupon receiving n — t (“VOTE”,ID) messages from distinct nodes do:

send (“ELECTION”,ID) to all nodes // ACID[(ID, ©)] is complete at this point

// ** confirm for election **
10: upon receiving n — ¢ (“ELECTION”, ID) messages from distinct nodes and (“CONFIRM”,ID) not yet sent do:

11: send (“CONFIRM”,ID) to all nodes
12: wapon receiving ¢ + 1 (“CONFIRM”, ID) messages from distinct nodes and (“CONFIRM”,ID) not yet sent do:
13: send (“CONFIRM”,ID) to all nodes

// ** return and stop **
14: wpon receiving 2t + 1 (“CONFIRM”, ID) messages from distinct nodes do:

15: if (‘CONFIRM”,ID) not yet sent then
16: send (“CONFIRM”,ID) to all nodes

17: return Sghares

15

Algorithm 7 DRir subprotocol for ¢ < ¢, with identifier id = (ID,). Code is shown for P;.

1: Initially set Ysymbois[l] < {}

2: upon receiving input Sghares[l], for Sshares[l] := y* do:
send (“ECHOSHARE”,ID, [, y") to all nodes

4 wait for |Ysymbois[l]| =n — ¢

5: w + ECCDec(n,t + 1, Ysymbois[l])
6: return w
7

8

: upon receiving (“ECHOSHARE”,ID, [, y) from P; for the first time do:
YSytnbols [” — YSymbols [” U {,7 . y}

election confirm

upon receiving
2t + 1 confirm msgs

Predicate(w) = true

‘}:fé ACID|(ID, 2)] @$\'h A
A M

: ?,%‘5{ ACID[(ID, 3)] 7,

: | ACID|(ID, n)]'l

ACID[ID]

N] :
I Election }—lﬁ DR[(ID, H]|-—+{ABA[(ID, 1)]}-T
i

repeat if Predicate(w) # true

Fig. 2. A block diagram of the proposed OciorMVBArr protocol with an identifier ID.

III. OciorMVBArr

This proposed OciorMVBATrr is an error-free, information-theoretically secure asynchronous MVBA
protocol, with relaxed resilience n > 5t + 1. OciorMVBArr does not rely on any cryptographic
assumptions, such as signatures or hashing, except for the common coin assumption.

A. Overview of the proposed OciorMVBArr protocol

The proposed OciorMVBArr is described in Algorithm 5, along with Algorithms 6 and 7. Fig. 2
presents a block diagram of the proposed OciorMVBArr protocol. The proposed OciorMVBATrr consists
of the algorithms ACIDrr[ID], Election[(ID, r)], DRrr[(ID,)], and ABArr[(ID,)] for r,1 € [1 : n].

« ACIDrr[ID]: This is a protocol for n parallel ACID instances: ACID[(ID,1)], ACID[(ID, 2)],---,
ACID[(ID, n)]. Once an ACID instance is complete, there exists a retrieval scheme to correctly
retrieve its delivered message.

« Election[(ID,r)]: This is an election protocol that requires at least ¢ + 1 inputs from distinct nodes
to generate a random value [, where r € [1 : n).

« DRrr[(ID,)]: An ACIDI(ID,)] protocol is complemented by a data retrieval protocol DRI(ID,)],
in which each node retrieves the message proposed by F; from n distributed nodes.

— If Node [is honest and has completed ACID[(ID,)], then during DRrr[(ID,)], each node will
receive at least 2¢ 4+ 1 shares generated from Node [/, given n > 5t 4 1. In this case all honest
node eventually output the same message from DRrr[(ID, [)].

— Even if Node [is dishonest, ABArr[(ID, /)] ensures that all honest nodes output the same message.

« ABArr[(ID,!)] : This is an asynchronous Byzantine agreement protocol that calls the protocol by
Li-Chen [17] for n > 5t+1. It uses only O(1) common coins, O(n|w|+n?log q) total bits, and O(1)
rounds, without relying on any cryptographic assumptions, except for the common coin assumption.

B. Analysis of OciorMVBArr
Theorem 4 (Agreement). In OciorMVBArr, given n > 5t + 1, if any two honest nodes output w' and

w”, respectively, then w' = w".

16

Proof. In OciorMVBATrr, if any two honest nodes output values at Rounds r and r’ (see Line 3 of
Algorithm 5), respectively, then r = 7/, due to the consistency property of the protocols Election[(ID,)]
and ABArr[(ID, 1)]. Moreover, at the same round 7, if any two honest nodes output w’ and w”, respectively,
then w’ = w”, due to the consistency property of the protocol ABArr[(ID,[)]. O

Theorem 5 (Termination). In OciorMVBATrr, given n > 5t + 1, every honest node eventually outputs a
value and terminates.

Proof. In this setting, every honest node eventually returns Sgnares and terminates from the protocol
ACIDrr[ID], due to the Termination property of this protocol. Furthermore, by the Integrity property
of ACIDrr[ID], if an honest node returns Sgpares and terminates from the protocol ACIDrr[ID], then there
exists a set Z* such that the following conditions hold:) Z* C [1 : n| \ F, where F denotes the set of
indexes of all dishonest nodes; 2) |Z*| > n — 2t; and 3) for any i € Z*, P, has completed the dispersal
ACID[(ID, 7)].

Subsequently, every honest node eventually runs [< Election[(ID,)] in Line 4 of Algorithm 5, at
the same round r. If Node [is honest and [€ Z*, then during DRrr[(ID,)], each node will receive at
least 2¢ 4+ 1 shares generated from Node [/, given n > 5¢ + 1. In this case all honest node eventually
output the same message from both DRrr[(ID,)] and ABArr[(ID,)], and then terminate. If Node [is
dishonest and the message w output by ABArr[(ID,)] in Line 6 does not satisfy Predicate(w) = true,
then all honest nodes proceed to the next round. All honest node eventually terminates if, at some round 7,
Election[(ID, r)] outputs a value [such that Node [is honest and [€ Z*. O

Theorem 6 (External Validity). In OciorMVBArr, if an honest node outputs a value w, then
Predicate(w) = true.

Proof. In OciorMVBArr, if an honest node outputs a value w, it has verified that Predicate(w) = true
at Line 7 of Algorithm 5. [

Algorithm 8 OciorMVBA protocol, with identifier ID, for n > 3t + 1. Code is shown for F,.

// ** Merkle tree is implemented here for vector commitment based on hashing **

/Ao VCCom() outputs a commitment, i.e., Merkle root, with O(,"i) bits **

// *% VcOpen() returns a proof that the targeted value is the committed element of the vector **

/ *## VeVerify (j, C,y,w) returns true only if w is a valid proof that C' is the commitment of a vector whose jth element is y **

upon receiving MVBA input message w; and Predicate(w;) = true do:

1:

2: [Liocks Rready ;s Finishs Sshares] <— ACIDh[ID](wy;) // a protocol for n parallel ACID instances

3: for r € [1:n| do

4: l + Election[(ID, r)] // an election protocol

5: a <— ABBBA[(ID, 1)](Rready[!], Fnisn [I]) // asynchronous biased binary Byzantine agreement (ABBBA)
6: b+ ABBA[(ID,)](a) // an asynchronous binary Byzantine agreement (ABBA)

7: if b = 1 then

8: w; < DRO[(ID,)] (Liock[l], Sshares[l]) // Data Retrieval (DR)

9: if Predicate(w;) = true then
10: output w; and terminate

17

Algorithm 9 ACIDh subprotocol with identifier ID, based on hashing. Code is shown for P;

b

15:

16:
17:
18:

19:

20:
21:
22:

23:

24
25:
26:

27:
28:

29:
30:
31:
32:

33:

34:
35:

36:

ORI N

// *##% ACID[ID] is a protocol for n parallel ACID instances ACID[(ID, 1)], ACID[(ID, 2)],--- , ACID[(ID, n)] **

// *#% ACID[(ID, j)] is an ACID instance for delivering the message proposed from Node j **

// #* Once Node j completes ACID[(ID, j)], there exists a retrieval scheme to correctly retrieve the message **

// ** When an honest node returns and stops this protocol, then at least n — t ACID instances have been completed **
// *#* ECEnc() and ECDec() are encoding function and decoding function of (n, k) erasure code **

// initialization:
Eflock — {}’ chady — {}a]:ﬁnish — {}a Ssharcs — {};Hhash — {}
for j € [1:n] do
Sshares[j] «— (J-7 J—, J—), Elock[‘ﬂ — 0, Rready[‘ﬂ — 0,]:ﬁnish[_ﬂ — 0

/7 *% ACID-share **
upon receiving input message w; do:
[y1,y2, - ,yn] < ECEnc(n,t 4+ 1, w;)
C <+ VcCom([y1,y2, s Yn])
for j € [1:n] do
wj < VcOpen(C,y;,7)
send (“SHARE”,ID, C, y;,w;) to P;

// *% ACID-vote **

: upon receiving (“SHARE”,ID, C, y,w) from P; for the first time do:
12:
13:
14:

if VcVerify (i, C, y,w) = true then
Sshares []] — (C, Y, w)7 Hhash [C] «—]
send (“VOTE”,ID, C) to all nodes

// #% ACID-lock **
upon receiving n — t (“VOTE”,ID, C') messages from distinct nodes, for the same C' do:

wait until C' € Hpasn
j* — Hhash[c]; ‘ClOCk[j*} —1
send (“LOCK”,ID, C) to all nodes

// #% ACID-ready **
upon receiving n — ¢ (“LOCK”,ID, C) messages from distinct nodes, for the same C' do:

wait until C' € Hpash
J* 4 Huash [C]; Rready[J7] ¢ 1
send (“READY”,ID, C) to all nodes

// *#% ACID-finish **
upon receiving n — t (“READY”,ID, C') messages from distinct nodes, for the same C' do:

wait until C € Hpasn
j* < Hhash [C]Q}—ﬁnish [.7*] 1
send (“FINISH”,ID) to P;j«

// *¥* vote for election **
upon receiving n — ¢ (“FINISH”,ID) messages from distinct nodes do:

send (“ELECTION”,ID) to all nodes // ACID[(ID,)] is complete at this point

// ** confirm for election **
upon receiving n — ¢ (“ELECTION”,ID) messages from distinct nodes and (“CONFIRM”,ID) not yet sent do:

send (“CONFIRM”,ID) to all nodes
upon receiving ¢t + 1 (“CONFIRM”,ID) messages from distinct nodes and (“CONFIRM”,ID) not yet sent do:
send (“CONFIRM”,ID) to all nodes

// ** return and stop **
upon receiving 2t + 1 (“CONFIRM”, ID) messages from distinct nodes do:

if (“CONFIRM”,ID) not yet sent then
send (“CONFIRM”,ID) to all nodes

return [Aclocka 7zready7 Fﬁnish» Sshares}

18

Algorithm 10 DRh subprotocol, with identifier id = (ID, 1), based on hashing. Code is shown for P;.

1: Initially set Ysymbois[l] < {}

2: upon receiving input (lock_indicator, share) do:

3: if (lock_indicator = 1) A (share # (L, L, 1)) then

4: (C*,y*,w”) « share

5 send (“ECHOSHARE”,ID, [, C*, y*,w™) to all nodes
6: wait for |Ysymbois[[][C]] = ¢ + 1 for some C

7: w ECDeC(’I’L7 t+ 1, Ysymbols [l] [CD

8 if VcCom(ECEnc(n,t + 1,w)) = C then

9: return w
10: else
11: return |

12: wpon receiving (“ECHOSHARE”,ID, [, C, y,w) from P; for the first time, for some C,y,w do:
13: if VcVerify (4, C, y, w) = true then

14: if C ¢ YSymbols [l} then

15: Ysymbois[{][C] < {J : y}

16: else

17: Ysymbols [[][C] = Ysymbois[[][C] U {7 : y}

election confirm
mso msg

/‘v/@

ACID | ACID(ID, 2)]| @‘"

ACIDh[ID]

upon receiving

ACI D[
2t 4+ 1 confirm msgs

:j Electlon L apsBal~aBBAl—DRAF

b=0
repeat if b = 0 or Predicate(w) # true

Fig. 3. A block diagram of the proposed OciorMVBAh protocol with an identifier ID.

IV. OciorMVBAh

This proposed OciorMVBAN is a hash-based asynchronous MVBA protocol. OciorMVBAh achieves
consensus with a communication complexity of O(n|w| + xn?) bits, an expected round complexity of
O(1) rounds, and an expected O(1) number of common coins, given n > 3t + 1.

A. Overview of the proposed OciorMVBAh protocol

The proposed OciorMVBA is described in Algorithm 8, along with Algorithms 2, 9, and 10. Fig. 3
presents a block diagram of the proposed OciorMVBAh protocol. In this protocol, we use a vector
commitment implemented with a Merkle tree based on hashing.

Vector commitment. A vector commitment consists of the following algorithms:
« VcCom(y) — C: Given an input vector y = [y1, Y2, -+ ,ys] Of size n, this algorithm outputs a
commitment C, i.e., Merkle root, with O(x) bits.
o VcOpen(C,y;,j) — w;: Given inputs (C,y;, j), this algorithm returns a value w; to prove that the
targeted value y; is the jth committed element of the vector.
o VcVerify(j, C,y;,w;) — true/false: This algorithm returns true only if w; is a valid proof that C' is
the commitment of a vector whose jth element is y;.

The proposed OciorMVBA consists of the algorithms ACIDh[ID], Election[(ID, r)], ABBBA[(ID,)],
ABBA[(ID,)], and DRh[(ID,)], for r,l € [1 : n].

19

« ACIDrr[ID]: This is a protocol for n parallel ACID instances: ACID[(ID,1)], ACID[(ID, 2)],---,
ACID[(ID, n)]. Once an ACID instance is complete, there exists a retrieval scheme to correctly
retrieve its delivered message.

« Election[(ID, r)]: This is an election protocol that requires at least ¢ + 1 inputs from distinct nodes
to generate a random value [, where r € [1 : n|.

« ABBBA|(ID,)]: This is an asynchronous biased binary BA protocol. It has two inputs (a, as), for
some ay,ay € {0, 1}. It guarantees the following properties:

— Conditional termination: Under an input condition—i.e., if one honest node inputs its second
number as ay = 1 then at least ¢ + 1 honest nodes input their first numbers as a; = 1—then
every honest node eventually outputs a value and terminates.

— Biased validity: If £ + 1 honest nodes input the second number as a, = 1, then any honest node
that terminates outputs 1.

— Biased integrity: If an honest node outputs 1, then at least one honest node inputs a; = 1 or
a9 = 1.

« ABBA[(ID,!)]: This is an asynchronous binary BA protocol.
« DRh[(ID,)]: This is a data retrieval protocol associated with an ACID[(ID, [)] protocol. It is activated
only if b =1 (see Line 7 of Algorithm 8), where b is the output of ABBA[(ID, 1)].

— The instance of b = 1 reveals that at least one honest node outputs « = 1 from ABBBA[(ID, [)],
which further suggests that at least one honest node inputs Rieaqy|l] = 1 or Fenisn[l] = 1 into
ABBBA[(ID,)], based on the biased integrity of ABBBA.

— When one honest node inputs Ryeady[l] = 1 or Fpnisn[l] = 1, it is guaranteed that at least n — 2¢
honest nodes have stored correct shares sent from Node [(see Lines 15 and 17 of Algorithm 9),
which implies that every honest node eventually retrieves the same message from DRh[(ID, 1)].

B. Analysis of OciorMVBA
Theorem 7 (Agreement). In OciorMVBAh, given n > 3t + 1, if any two honest nodes output w' and

w”, respectively, then w' = w".

Proof. In OciorMVBAD, if any two honest nodes output values at Rounds r and 7’ (see Line 3 of
Algorithm 8), respectively, then r = 7’. This follows from the consistency property of the protocols
Election[(ID, r)] and ABBA[(ID,[)], as well as the consistency property of the DRh[(ID,)] protocol
when ABBA[(ID, /)] outputs 1 (see Lemma 11).

Moreover, at the same round r, if any two honest nodes output w’ and w”, respectively, then w’' =
w”, due to the consistency property of the protocol DRh[(ID,)] when ABBA[(ID,[)] outputs 1 (see
Lemma 11). It is worth noting that DRh[(ID, [)] is activated only if ABBA[(ID,)] outputs 1 (see Line 7
of Algorithm 8).]

Theorem 8 (Termination). In OciorMVBAh, given n > 3t + 1, every honest node eventually outputs a
value and terminates.

Proof. In this setting, every honest node eventually returns values and terminates from the protocol
ACIDO[ID], due to the Termination property of this protocol. Furthermore, by the Integrity property
of ACIDh[ID], if an honest node returns values and terminates from the protocol ACIDh[ID], then there
exists a set Z* such that the following conditions hold:) Z* C [1 : n| \ F, where F denotes the set of
indexes of all dishonest nodes; 2) |Z*| > n — 2t; and 3) for any i € Z*, P, has completed the dispersal
ACID[(ID, 7)].

Subsequently, every honest node eventually runs [< Election[(ID,)] in Line 4 of Algorithm 8, at
the same round r. If Node [is honest and [€ Z*, then ABBA[(ID, ()] eventually outputs 1 (due to the
biased validity property of ABBBAJ(ID,[)]) and then during DRh[(ID, /)] each node will receive at least
t + 1 correct shares generated from Node [, given n > 3t + 1. In this case all honest node eventually

20

output the same message from DRh[(ID, /)], and then terminate. If Node [is dishonest or ABBA[(ID, /)]
outputs 0, then all honest nodes proceed to the next round. All honest node eventually terminates if, at
some round r, Election[(ID, r)] outputs a value [such that Node [is honest and [€ Z*. O

Theorem 9 (External Validity). In OciorMVBAh, if an honest node outputs a value w, then
Predicate(w) = true.

Proof. In OciorMVBAWL, if an honest node outputs a value w, it has verified that Predicate(w) = true
at Line 9 of Algorithm 8. [

Lemma 11. In OciorMVBAL, if ABBA[(ID,)] outputs 1, then every honest node eventually retrieves
the same message from DRh[(ID,1)], for I € [1 : n].

Proof. In OciorMVBAL, DRh[(ID,)] is activated only if b = 1 (see Line 7 of Algorithm 8), where
b is the output of ABBAJ(ID,[)]. The instance of b = 1 reveals that at least one honest node outputs
a = 1 from ABBBAJ(ID, /)], which further suggests that at least one honest node inputs R,eaay[l] = 1
or Fenisn[l] = 1 into ABBBA[(ID, /)], based on the biased integrity of ABBBA. When one honest node
inputs Ryeady|l] = 1 or Fhnisn[l] = 1, it is guaranteed that at least n — 2¢ honest nodes have stored correct
shares sent from Node [(see Lines 15 and 17 of Algorithm 9), which implies that every honest node
eventually retrieves the same message from DRh[(ID,)]. O

REFERENCES

[1] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broadcast protocols,” in Advances in Cryptology—
CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, Aug. 2001.
[2] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228-234,
Apr. 1980.
[3] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distributed consensus with one faulty process,” Journal of the ACM, vol. 32,
no. 2, pp. 374-382, Apr. 1985.
[4] M. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 1710-1722, Nov. 1996.
[5] J. Chen, “Fundamental limits of Byzantine agreement,” 2020, available on ArXiv: https://arxiv.org/pdf/2009.10965.pdf.
[6] ——, “Optimal error-free multi-valued Byzantine agreement,” in International Symposium on Distributed Computing (DISC), Oct.
2021.
[71 ——, “OciorCOOL: Faster Byzantine agreement and reliable broadcast,” Sep. 2024, available on ArXiv:
https://arxiv.org/abs/2409.06008.
[8] L. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal validated asynchronous Byzantine agreement,” in Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), Jul. 2019, pp. 337-346.
[9] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-MVBA: Optimal multi-valued validated asynchronous Byzantine agreement, revisited,”
in Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), Jul. 2020, pp. 129-138.
[10] S. Duan, X. Wang, and H. Zhang, “FIN: Practical signature-free asynchronous common subset in constant time,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security, 2023, pp. 815-829.
[11] H. Feng, Z. Lu, T. Mai, and Q. Tang, “Making hash-based MVBA great again,” Mar. 2024, available on: https://eprint.iacr.org/2024/479.
[12] J. Komatovic, J. Neu, and T. Roughgarden, “Toward optimal-complexity hash-based asynchronous MVBA with optimal resilience,”
Oct. 2024, available on ArXiv: https://arxiv.org/abs/2410.12755.
[13] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300-304, Jun. 1960.
[14] R. Roth, Introduction to coding theory. Cambridge University Press, 2006.
[15] E. Berlekamp, “Nonbinary BCH decoding (abstr.),” IEEE Trans. Inf. Theory, vol. 14, no. 2, pp. 242-242, Mar. 1968.
[16] M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computation,” in Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, 1993, pp. 52-61.
[17] F Li and J. Chen, “Communication-efficient signature-free asynchronous Byzantine agreement,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2021.

