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Abstract

In this work, we propose Ocior, a practical asynchronous Byzantine fault-tolerant (BFT) consensus protocol
that achieves the optimal performance in resilience, communication, computation, and round complexity. Unlike
traditional BFT consensus protocols, Ocior processes incoming transactions individually and concurrently using
parallel instances of consensus. While leader-based consensus protocols rely on a designated leader to propose
transactions, Ocior is a leaderless consensus protocol that guarantees stable liveness. A protocol is said to satisfy
the stable liveness property if it ensures the continuous processing of incoming transactions, even in the presence
of an adaptive adversary who can dynamically choose which nodes to corrupt, provided that the total number of
corrupted nodes does not exceed t, where n ≥ 3t+ 1 is the total number of consensus nodes. Ocior achieves:

• Optimal resilience: Ocior tolerates up to t faulty nodes controlled by an adaptive adversary, for n ≥ 3t+ 1.
• Optimal communication complexity: The total expected communication per transaction is O(n).
• Optimal (or near-optimal) computation complexity: The total computation per transaction is O(n) in the best

case, or O(n log2 n) in the worst case.
• Optimal round complexity: A legitimate two-party transaction can be finalized with a good-case latency of two

asynchronous rounds, for any n ≥ 3t+1, where each round corresponds to a single one-way communication.
The good case in terms of latency refers to the scenario where the transaction is proposed by any (not
necessarily designated) honest node. A two-party transaction involves the transfer of digital assets from one
user (or group of users) to one or more recipients.

To support efficient consensus, we introduce a novel non-interactive threshold signature (TS) scheme called
OciorBLSts. It offers fast signature aggregation, and is adaptively secure under the algebraic group model and the
hardness assumption of the one-more discrete logarithm problem. OciorBLSts achieves a computation complexity of
signature aggregation of only O(n) in the good cases. Moreover, OciorBLSts supports the property of Instantaneous
TS Aggregation. A TS scheme guarantees this property if it can aggregate partial signatures immediately, without
waiting for all k signatures, where k is the threshold required to compute the final signature. This enables real-time
aggregation of partial signatures as they arrive, reducing waiting time and improving responsiveness. Additionally,
OciorBLSts supports weighted signing power or voting, where nodes may possess different signing weights, allowing
for more flexible and expressive consensus policies.
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I. INTRODUCTION

Distributed Byzantine fault-tolerant (BFT) consensus is a fundamental building block of blockchains
and distributed systems. Yet, according to CoinMarketCap [1], the top thirty blockchain systems by
market capitalization rely on consensus protocols designed under synchronous or partially synchronous
assumptions. When the network becomes fully asynchronous, such protocols may no longer guarantee
safety or liveness, creating critical risks for blockchain infrastructure. This motivates the design of a
practical asynchronous consensus protocol.

For many Web 3.0 applications, particularly latency-sensitive services, the traditional guarantees of
safety and liveness are insufficient. Applications such as decentralized finance (DeFi) trading, cross-
chain transfers, non-fungible token (NFT) marketplaces, supply-chain tracking, gaming platforms, and
real-time blockchain systems demand fast transaction finality, a cryptographically verifiable confirmation
that a transaction will be accepted irrevocably by all consensus nodes. High latency degrades user
experience, increases risks in financial settings, and limits scalability. Thus, the goal is not only to design
an asynchronous consensus protocol but also a fast asynchronous consensus protocol.

Despite significant progress in BFT consensus, many existing protocols remain leader-based, relying on
a designated leader to propose transactions (e.g., [2], [3]). This design introduces systemic vulnerabilities:
if the leader is faulty or under distributed denial of service (DDoS) attacks, the entire system may
stall or suffer degraded performance. In adversarial environments with adaptive adversaries, capable of
dynamically corrupting or targeting nodes, these vulnerabilities become even more severe. Leader-based
protocols fail to provide stable liveness, which we define as the ability to continuously process incoming
transactions despite an adaptive adversary corrupting up to t nodes out of n ≥ 3t+ 1 participants.

This raises a central research question:

Can we design a fast, adaptively secure, asynchronous BFT consensus protocol with stable liveness?

We address this challenge by introducing Ocior, a fast, leaderless, adaptively secure, asynchronous BFT
consensus protocol that guarantees stable liveness. Unlike traditional batch-based designs, Ocior processes
transactions individually and concurrently, executing parallel consensus instances to maximize throughput
and responsiveness.

A key performance metric is transaction latency (also called finality time or confirmation latency),
which measures the time from transaction submission until the client receives a cryptographic acknowl-
edgment of acceptance. To support lightweight and trustless verification, we introduce the notion of
an Attested Proof of Seal (APS), a short cryptographic proof that a transaction has been sealed and is
guaranteed to be accepted irrevocably by all consensus nodes. This enables external parties, including
light clients, to efficiently verify transaction acceptance without running a full node.

Ocior achieves the following asymptotically optimal guarantees:
• Optimal resilience: It tolerates up to t Byzantine nodes controlled by an adaptive adversary, for
n ≥ 3t+ 1.

• Optimal communication complexity: The total expected communication per transaction is O(n).
• Optimal (or near-optimal) computation complexity: The total computation per transaction is O(n)

in the best case, or O(n log2 n) in the worst case, measured in cryptographic operations (signing,
verification, hashing, and arithmetic on signature-sized values).

• Optimal round complexity: A legitimate two-party transaction can be finalized in two asynchronous
rounds (good-case latency) for any n ≥ 3t+1, where each round is a single one-way communication.
Here, the good case refers to transactions proposed by any honest node. A two-party transaction
involves the transfer of digital assets from one user (or group) to one or more recipients. All other
transactions can be finalized in four asynchronous rounds, with linear communication and computation
overhead. Following common conventions [3]–[7], we do not count client-to-node communication in
round complexity.
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TABLE I
COMPARISON BETWEEN THE PROPOSED OCIOR PROTOCOL AND SOME OTHER CONSENSUS PROTOCOLS. ∆ IS A CONSTANT BUT IS MUCH

LARGER THAN 4. B DENOTES THE NUMBER OF TRANSACTIONS IN A BLOCK. IN THIS COMPARISON, WE CONSIDER THE OPTIMAL
RESILIENCE SETTING OF n ≥ 3t+ 1 FOR ALL PROTOCOLS. IN THIS COMPARISON, WE JUST FOCUS ON THE TWO-PARTY TRANSACTIONS.

Protocols Network Security Rounds Total Communication Total Computation Instantaneous Stable Short

(Finality) Per Transaction Per Transaction TS Aggr. Liveness APS

(Good Case) (Good Case)

Ethereum 2.0 [8] Partially Syn. Static > ∆ O(n) - - × ✓

Solana [2] Partially Syn. Static > ∆ O(n) - - × ✓

PBFT [4] Partially Syn. Static 3 O(n2) O(max{n2/B, n}) - × ×

HotStuff [3] Partially Syn. Static 6 or 4 O(n) O(max{n2/B, n}) × × ✓

Hydrangea [5] Partially Syn. Static 3 or 2 O(max{n2/B, n) O(max{n2/B, n}) - × ×

Avalanche [9] Synchronous Adaptive O(logn) O(n · logn) O(n · logn) - ✓ ×

HoneyBadger [6], [7] Asynchronous Adaptive > ∆ O(n) O(max{n2/B, n}) × ✓ ×

Ocior Asynchronous Adaptive 2 O(n) O(n) ✓ ✓ ✓

Notes: 1. HoneyBadger relies on threshold cryptography that is statically secure, and is therefore secure only against static adversaries [7].
The work in [7] improves HoneyBadger to achieve adaptive security by using adaptively secure threshold cryptography. 2. Following common
conventions [3]–[7], when measuring round complexity, we do not include the communication cost between clients and consensus nodes. 3.
Hydrangea provides an APS called a block certificate, but it is not short. The size of its APS is O(n). 4. Hydrangea achieves a good-case
latency of three rounds in settings where the number of Byzantine nodes is greater than ⌊ τ

2
⌋ for a total of n = 3t + τ + 1 nodes, where

τ ≥ 0. In particular, when τ = 0, Hydrangea achieves a good-case latency of three rounds when the number of Byzantine nodes is greater
than 0. When the number of Byzantine nodes is at most ⌊ τ

2
⌋, it achieves a good-case latency of two rounds.

To support efficient consensus and fast attestation, Ocior introduces a novel non-interactive threshold
signature (TS) scheme called OciorBLSts. Unlike traditional TS schemes that require O(n2) effort for
signature aggregation (or O(n log2 n) with optimizations [10]), OciorBLSts reduces aggregation to O(n)
in the best case while ensuring adaptive security. Its design is based on a new idea of non-interactive
Layered Threshold Signatures (LTS), where the final signature is composed through L layers of partial
signatures, for a predefined parameter L. At each layer ℓ, a partial signature is generated from a set of
partial signatures at layer ℓ+1, for ℓ ∈ {1, 2, . . . , L−1}. In the signing phase of LTS, nodes sign messages
independently, producing partial signatures that are treated as the signatures of Layer L. An example is
illustrated in Fig. 2 (Section III).

The LTS construction enables fast and parallelizable aggregation. In particular, OciorBLSts supports
Instantaneous TS Aggregation, where partial signatures can be combined immediately upon arrival, without
waiting for all k shares. This reduces waiting time and lowers transaction latency. Additionally, OciorBLSts
supports weighted signing power (or voting), where nodes may possess different signing weights, allowing
for more flexible and expressive consensus policies.

Finally, Table I compares Ocior with other consensus protocols. Along this line of research, some
works attempt to reduce round complexity, but only under synchronous or partially synchronous settings
(e.g., [3], [5], [11]–[13]). In particular, the authors of [5] proved that no consensus protocol can achieve
a two-round latency when the number of Byzantine nodes exceeds

⌊
τ+2
2

⌋
, for a total of n = 3t + τ + 1

nodes, where τ ≥ 0. In contrast, we show that Ocior breaks this barrier by achieving two-round latency
even in the asynchronous setting, when the number of Byzantine nodes is up to t =

⌊
n−1−τ

3

⌋
, for any

τ ≥ 0.
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II. SYSTEM MODEL

We consider an asynchronous Byzantine fault-tolerant consensus problem over a network consisting of
n consensus nodes (servers), where up to t of them may be corrupted by an adaptive adversary, assuming
the optimal resilience condition n ≥ 3t + 1. A key challenge in this BFT consensus problem lies in
achieving agreement despite the presence of corrupted (dishonest) nodes that may arbitrarily deviate from
the designed protocol. In this setting, the consensus nodes aim to reach agreement on transactions issued
by clients. These transactions may represent digital asset transfers in cryptocurrencies or the execution of
smart contracts. The system model and relevant definitions are presented below.

Adaptive Adversary: We consider an adaptive adversary that can dynamically choose which nodes to
corrupt, subject to the constraint that the total number of corrupted nodes does not exceed t.

Asynchronous Network: We assume an asynchronous network in which any two consensus nodes are
connected by reliable and authenticated point-to-point channels. Messages sent between honest nodes may
experience arbitrary delays but are guaranteed to be eventually delivered.

Network Structure: Each consensus node is fully interconnected with all other consensus nodes
and also maintains connections with Remote Procedure Call (RPC) nodes, following an asymmetric
outbound-inbound connection model, in which clients may also act as RPC nodes, as shown in Fig. 1.
Specifically, each consensus node is capable of sending low-latency outbound messages regarding the
finality confirmations for transactions it processes to all RPC nodes. To enhance resilience against
distributed denial of service attacks, each consensus node limits its inbound connections to a dynamically
sampled and periodically refreshed subset of RPC nodes for receiving new transaction submissions.
Lightweight clients submit transactions and verify their finality through interactions with RPC nodes.
RPC nodes propagate pending, legitimate transactions to their connected RPC nodes and to consensus
nodes with inbound connections. Upon receiving a finality confirmation, an RPC node forwards it to its
connected RPC nodes and relevant clients, often leveraging real-time subscription mechanisms such as
WebSockets [14].

We classify transactions into two types: Two-party (Type I) and third-party (Type II) transactions,
defined below.

Definition 1 (Two-Party (Type I) Transactions). A two-party transaction involves the transfer of digital
assets from one user (or a group of users) to one or more recipients. For a Type I transaction, both the
sender and the recipients must be able to verify the finality of the transaction. However, no third party is
required to verify its finality. Multi-signature transactions, which require multiple signatures from different
parties to authorize a single transaction, and multi-recipient transactions also fall under this category.

Definition 2 (Third-Party (Type II) Transactions). The key distinction between Type I and Type II
transactions is the involvement of a third party. In a Type II transaction, it is necessary for any third
party to be able to verify the finality of the transaction.

Definition 3 (Transaction Latency and APS). Transaction latency, also referred to as transaction finality
time or confirmation latency, measures the time elapsed from the submission of a transaction to the moment
when the client receives a concise cryptographic acknowledgment of its acceptance. Specifically, this
acknowledgment takes the form of a short Attested Proof of Seal (APS), which attests that the transaction
has been sealed and is guaranteed to be irrevocably accepted by all consensus nodes, even if it has not
yet appeared on the ledger. This proof allows any external parties, including resource-constrained light
clients, to efficiently verify the transaction’s acceptance status without running a full node.

Definition 4 (Parent Transactions). A two-party transaction involving the transfer of digital assets from
Client A to Client B is denoted by TA,B, where A and B represent the respective wallet addresses of
Clients A and B. Once TA,B is finalized (i.e., has received a valid APS), Client B becomes the official
owner of the transferred digital assets. If Client B subsequently initiates a new transaction TB,C to transfer
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ClientServerRPC

Fig. 1. The network architecture of Ocior, consisting of consensus nodes (servers), remote procedure call (RPC) nodes and clients.

the assets received in TA,B to Client C, then TA,B must be cited as a parent transaction. In this case, the
new transaction TB,C is referred to as a child transaction of TA,B.

Definition 5 (Proof of Parents (PoP)). When Client B initiates a new transaction TB,C to transfer the
assets received in TA,B to Client C, the transaction TA,B is cited as a parent transaction. Our proposed
consensus mechanism includes a process for proving that TA,B is a valid parent of TB,C . We refer to this
consensus approach as proof of parents.

Definition 6 (Conflicting Transactions). If Client B creates two different transactions, TB,C and TB,C′ ,
attempting to doubly spend the asset inherited from TA,B, then TB,C and TB,C′ are considered conflicting
transactions (i.e., an instance of double spending). Any descendant of a conflicting transaction is also
considered a conflicting transaction.

Definition 7 (Legitimate Transactions). A transaction TB,C that cites TA,B as its parent is considered
legitimate if all of the following conditions are satisfied:

• Condition 1: It must attach a valid APS for the parent transaction TA,B, serving as a cryptographic
proof of the parent transaction’s finality;

• Condition 2: TB,C must not conflict with any other transaction that cites TA,B as its parent;
• Condition 3: The addresses and balances between TB,C and its parent must be consistent; and
• Condition 4: The signature of TB,C must be valid, i.e., it must be correctly signed by B.

Definition 8 (Safety and Liveness). To solve the BFT consensus problem considered here, the protocol
must satisfy the following conditions:

• Safety: Any two transactions accepted by honest nodes do not conflict. Furthermore, if two valid APSs
are generated for two different transactions, then those transactions must also be non-conflicting.
Finally, any node that receives a transaction together with its valid APS must accept that transaction.

• Liveness: If a legitimate transaction is received and proposed by at least one consensus node that
remains uncorrupted throughout the protocol, and the transaction remains legitimate, then a valid
APS for the transaction is eventually generated, delivered to, and accepted by all honest consensus
nodes and all active RPC nodes.
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Definition 9 (Stable Liveness). A protocol is said to have stable liveness if liveness is guaranteed in the
presence of an adaptive adversary who can decide which nodes to control at any time, provided that the
total number of corrupted nodes is bounded by t.

Definition 10 (Type I APS:). A Type I APS for a transaction satisfies the Safety conditions: if the network
generates valid APSs for two transactions, then those transactions are non-conflicting. Furthermore, any
node that receives a transaction together with its valid APS accepts that transaction. For any Type I
transaction, a Type I APS is sufficient to verify the transaction finality.

Definition 11 (Type II APS:). Like a Type I APS, a Type II APS satisfies the Safety conditions and, in
addition, meets the following requirement: at least t+1 honest nodes have received a Type I APS for this
transaction and have accepted the transaction. A Type II APS is typically used for a Type II transaction
but can also serve as an APS option for a Type I transaction.

Remark 1 (Type I and Type II APSs:). The proposed Ocior guarantees the following two properties.
• In Ocior, if a valid Type II APS is generated for a transaction tx, then eventually all honest consensus

nodes and RPC nodes will receive a valid Type II APS and accept tx, even if another transaction
conflicts with tx (see Theorem 3 in Section V).

• In Ocior, if a valid Type I APS is generated for a legitimate transaction tx, and tx remains legitimate,
then eventually all honest consensus nodes and RPC nodes will receive a valid Type II APS and
accept tx (see Theorem 4 in Section V). Note that any node that receives a transaction tx together
with a valid Type I or Type II APS will accept tx, even if another transaction conflicts with it (see
Theorem 1 in Section V).

Definition 12 (Good-Case Round Complexity:). Following common conventions [3]–[7], when measur-
ing round complexity, we do not include the communication cost between clients and consensus nodes.
The good-case round complexity refers to the scenario where the transaction is proposed by any (not
necessarily designated) honest node, and is measured from the round in which the node proposes the
transaction to the round in which an APS of the transaction is generated.

Definition 13 (Honest-Majority Distributed Multicast (HMDM) [15]–[17]). In the distributed multicast
(DM) problem, there are n nodes in total in set S and n̄ nodes in total in another set R, where up to t
nodes in S may be dishonest. In this problem, a subset of nodes in S act as senders, each multicasting
an input message to the nodes in S and R. A DM protocol guarantees the following property:

• Validity: If all honest senders input the same message w, then every honest node in S and R
eventually outputs w.

We call a DM problem an honest-majority DM if at least t+ 1 senders are honest.

We present two HMDM protocols: OciorHMDMh and OciorHMDMit, given in Algorithms 1 and 2,
respectively. The OciorHMDMit protocol is derived from the COOL protocol [15]–[17] and is information-
theoretically secure and error-free; that is, it guarantees the required properties in all executions without
relying on cryptographic assumptions. OciorHMDMit achieves HMDM consensus in two rounds, with
O(n|w|+n2 log q) total communication bits and Õ(n|w|) computation per node in the worst case, where
q denotes the alphabet size of the error-correcting code used. In contrast, the OciorHMDMh protocol is a
hash-based HMDM protocol that completes in one round, with O(n|w|+κn2 log n) total communication
bits and Õ(|w|+ κn) computation per node, where κ is a security parameter. When |w| ≥ κn log n, the
OciorHMDMh protocol becomes an attractive option in terms of round, communication, and computation
complexities.
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Algorithm 1 OciorHMDMh protocol, with identifier ID. Code is shown for Node i ∈ [n].

// ** This asynchronous HMDM protocol is a hash-based protocol. **
1: Initially set YSymbols ← {}; k⋄ ← t+ 1

// ***** Code for Node i ∈ S for S := [n] *****
2: upon receiving input message w, and if Node i is a sender do:
3: [y1, y2, · · · , yn]← ECEnc(n, k⋄,w)
4: (C, aux)← VC.Com([y1, y2, · · · , yn])
5: ωi ← VC.Open(C, yi, i, aux)
6: send (SHARE, ID, C, yi, ωi) to all nodes
7: output w

// ***** Code for Node i ∈ S ∪R *****
8: upon receiving (SHARE, ID, C, y, ω) from Node j ∈ [n] for the first time, for some C, y, ω, and if Node i is not a sender do:
9: if VC.Verify(j, C, y, ω) = true then

10: if C /∈ YSymbols then YSymbols[C]← {j : y} else YSymbols[C]← YSymbols[C] ∪ {j : y}
11: if |YSymbols[C]| = k⋄ then
12: ŵ ← ECDec(n, k⋄,YSymbols[C])
13: output ŵ

Algorithm 2 OciorHMDMit protocol with identifier ID . Code is shown for Node i ∈ [n].

// ** This asynchronous HMDM protocol is information theocratic secure and error free **
1: Initially set YSymbols ← {}; k⋄ ← t+ 1

// ***** Code for Node i ∈ S for S := [n] *****
2: upon receiving input message w, and if Node i is a sender do:
3: [y1, y2, · · · , yn]← ECCEnc(n, k⋄,w)
4: send (“SYMBOL”, ID, yj , yi) to Node j, ∀j ∈ [n]
5: send (“SYMBOL”, ID,⊥, yi) to all nodes in R
6: output w

7: upon receiving t+ 1 (“SYMBOL”, ID, yi, ∗) messages from distinct nodes in S, for the same yi, and if Node i is not a sender do:
8: send (“SYMBOL”, ID,⊥, yi) to all nodes

// ***** Code for Node i ∈ S ∪R *****
9: upon receiving message (“SYMBOL”, ID, ∗, yj) from Node j ∈ S for the first time, and if Node i is not a sender do:

10: YSymbols[j]← yj
11: if |YSymbols| ≥ k⋄+t then // online error correcting (OEC)
12: ŵ ← ECCDec(n, k⋄,YSymbols)
13: [y′1, y

′
2, · · · , y′n]← ECCEnc(n, k⋄, ŵ)

14: if at least k⋄ + t symbols in [y′1, y
′
2, · · · , y′n] match with those in YSymbols then

15: output ŵ

Definition 14 (Vector Commitment (VC)). A vector commitment scheme allows one to commit to an
entire vector while enabling efficient proofs of membership for individual positions. We consider a vector
commitment scheme implemented using a Merkle tree based on hashing. It consists of the following
algorithms:

• VC.Com(y) → (C, aux): Given an input vector y = [y1, y2, . . . , yn] of length n, this algorithm
generates a commitment C and an auxiliary string aux. In a Merkle-tree-based VC, C corresponds
to the Merkle root, which has size O(κ) bits.

• VC.Open(C, yj, j, aux) → ωj: Given inputs (C, yj, j, aux), this algorithm outputs a proof ωj

demonstrating that yj is indeed the j-th element of the committed vector.
• VC.Verify(j, C, yj, ωj)→ true/false: This algorithm outputs true if and only if ωj is a valid proof

showing that C is a commitment to a vector whose j-th element is yj .
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Definition 15 (Error Correction Code (ECC)). An (n, k⋄) error correction code consists of the following
algorithms:

• ECCEnc : Bk⋄ → Bn: This encoding algorithm maps a message of k⋄ symbols to an output of n
symbols. Here, B denotes the alphabet of each symbol, and q := |B| denotes its size.

• ECCDec : Bn′ → Bk⋄: This decoding algorithm recovers the original message from an input of n′

symbols, for some n′.
Reed-Solomon (RS) codes (cf. [18]) are widely used error correction codes. An (n, k⋄) RS code can correct
up to t Byzantine errors and simultaneously detect up to a Byzantine errors from n′ symbol observations,
provided that

2t+ a+ k⋄ ≤ n′ and n′ ≤ n.

Although RS codes are popular, they impose a constraint on the alphabet size, namely n ≤ q − 1. To
overcome this limitation, other error correction codes with constant alphabet size, such as Expander
Codes [19], can be employed. In the asynchronous setting, online error correction (OEC) provides a
natural method for decoding the message [20]. A node may be unable to recover the message from only
n′ symbol observations; in such cases, it waits for an additional symbol before attempting to decode
again. This procedure continues until the node successfully reconstructs the message.

Definition 16 (Erasure Code (EC)). An (n, k⋄) erasure code consists of the following algorithms:
• ECEnc : Bk⋄ → Bn: This encoding algorithm maps a message of k⋄ symbols to an output of n

symbols.
• ECDec : Bk⋄ → Bk⋄: This decoding algorithm recovers the original message from an input of k⋄

symbols.
By using an (n, k⋄) erasure code, the original message can be recovered from any k⋄ encoded symbols.

Definition 17 (Reliable Broadcast (RBC)). The RBC protocol allows a designated leader to broadcast
an input value to a set of distributed nodes, while ensuring the following properties:

• Consistency: If two honest nodes output values w′ and w′′, then w′ = w′′.
• Validity: If the leader is honest and broadcasts w, then all honest nodes eventually output w.
• Totality: If any honest node outputs a value, then all honest nodes eventually output a value.

Notations: In the asynchronous network considered here, we will use the notion of asynchronous rounds
when counting the communication rounds, where each round does not need to be synchronous. The
computation cost is measured in units of cryptographic operations, including signing, signature verification,
hashing, and basic arithmetic operations (addition, subtraction, multiplication, and division) on values of
signature size.

We use [b] to denote the ordered set {1, 2, 3, . . . , b}, and [a, b] to denote the ordered set {a, a+ 1, a+
2, . . . , b}, for any integers a and b such that b > a and b ≥ 1. The symbol := is used to mean “is defined
as.” The symbol ⊥ denotes a default value or an empty value. Let G be a cyclic group of prime order p, and
let GT be a multiplicative cyclic group of the same order p. Let Zp denote the finite field of order p. Let
H : {0, 1}∗ → G be a hash function that maps arbitrary-length bit strings to elements of G, modeled as a
random oracle. Let Hz : {0, 1}∗ → Zp be a hash function that maps arbitrary-length bit strings to elements
of Zp, also modeled as a random oracle. Here f(x) = O(g(x)) implies that lim supx→∞|f(x)|/g(x) <∞.
Similarly, f(x) = Õ(g(x)) implies that lim supx→∞|f(x)|/(log x)a · g(x) <∞, for some constant a ≥ 0.
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III. OciorBLSts: A FAST NON-INTERACTIVE THRESHOLD SIGNATURE SCHEME

We propose a novel non-interactive threshold signature scheme called OciorBLSts. It offers fast signature
aggregation in good cases of partial signature collection, as defined in Definition 27. Moreover, OciorBLSts
enables real-time aggregation of partial signatures as they arrive, reducing waiting time and improving
responsiveness. In addition, OciorBLSts supports weighted signing power or voting, where nodes may
possess different signing weights, allowing for more flexible and expressive consensus policies.

A. Non-Interactive Threshold Signature

Let us at first provide some definitions on the threshold signature scheme.

Definition 18 (Non-Interactive Threshold Signature (TS)). A non-interactive (n, k) TS scheme allows
any k valid partial signatures to collaboratively generate a final signature, for some k ∈ [t+ 1, n− t]. It
comprises a tuple of algorithms ΣTS = (TS.Setup,TS.DKG,TS.Sign,TS.Verify,TS.Combine,TS.Verify)
satisfying the following properties.

• TS.Setup(1κ) → (p,G,GT , e, g,H): This algorithm generates the public parameters (pp). All
subsequent algorithms take the public parameters as input, but these are omitted in the presentation
for simplicity.

• TS.DKG(1κ, n, k) → (pk, pk1, . . . , pkn, sk1, sk2, . . . , skn): Given the security parameter κ, this
algorithm generates a set of public keys pk := (pk, pk1, . . . , pkn), which are available to all nodes,
and a private key share ski that is available only to Node i, for each i ∈ [n]. Any k valid private key
shares are sufficient to reconstruct a secret key sk corresponding to the public key pk. The TS.DKG
algorithm is implemented using an Asynchronous Distributed Key Generation (ADKG) scheme.

• TS.Sign(ski,H(w))→ σi: This algorithm produces the i-th partial signature σi on the input message
w using the private key share ski, for i ∈ [n]. This partial signature can be interpreted as the vote
from Node i on the message w. We sometimes denote this operation as TS.Signi(H(w)). H() is a
hash function.

• TS.Verify(pki, σi,H(w))→ true/false: This algorithm verifies whether σi is a valid partial signature
on message w by using the public key pki, for i ∈ [n]. It outputs true if the verification succeeds,
and false otherwise.

• TS.Combine(n, k, {(i, σi)}i∈T ⊆[n],|T |≥k,H(w)) → σ: This algorithm combines any k valid partial
signatures {σi}i∈T ⊆[n],|T |≥k on the same message w to produce the final signature σ, for any T ⊆ [n]
with |T | ≥ k.

• TS.Verify(pk, σ,H(w)) → true/false: This algorithm verifies whether σ is a valid final signature
on message w using the public key pk. It outputs true if the verification is successful, and false
otherwise.

In our setting, we set k = ⌈n+t+1
2
⌉ for the TS scheme. Here, different TS schemes are used for

different epochs. To express this, we extend the notation and define epoch-specific algorithms as follows:
TS.DKG(e, 1κ, n, k), TS.Sign(ske,i,H(w)), TS.Verify(pke,i, σi,H(w)), where the additional parameter e
denotes the epoch number associated with the corresponding instance of the TS scheme. The TS scheme
guarantees the properties of Robustness and Unforgeability defined below.

Robustness of the TS scheme ensures that an adaptive adversary, who controls up to t nodes, cannot
prevent the honest nodes from forming a valid final signature on a message of their choice. This definition
is presented in the Random Oracle Model (ROM), where the hash function H is modeled as a publicly
available random oracle.

Definition 19 (Robustness of TS under Adaptive Chosen-Message Attack (ACMA)). A non-interactive
(n, k) TS scheme ΣTS = (TS.Setup,TS.DKG,TS.Sign,TS.Verify,TS.Combine,TS.Verify) is robust
under adaptive chosen-message attack (TS-ROB-ACMA) if for any probabilistic polynomial-time (PPT)
adversary A that corrupts at most t nodes, the following properties hold with overwhelming probability:
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1) Correctness of Partial Signatures: For any message w and any honest node i ∈ [n], if a partial
signature σi is produced by running σi ← TS.Sign(ski,H(w)), then TS.Verify(pki, σi,H(w)) =
true.

2) Correctness of Final Signatures: For any message w and any set of partial signatures {σi}i∈T ⊆[n]

with |T | ≥ k, if for each i ∈ T , TS.Verify(pki, σi,H(w)) = true, then combining them
must yield a valid final signature. Specifically, if σ ← TS.Combine(n, k, {(i, σi)}i∈T ,H(w)), then
TS.Verify(pk, σ,H(w)) = true.

Unforgeability of the TS scheme ensures that an adaptive adversary cannot forge a valid final signature
on a new message, even with the ability to corrupt up to t nodes and obtain partial signatures.

Definition 20 (Unforgeability of TS under Adaptive Chosen-Message Attack). Let ΣTS =
(TS.Setup,TS.DKG,TS.Sign,TS.Verify,TS.Combine,TS.Verify) be a non-interactive (n, k) TS scheme.
We say that ΣTS is unforgeable under adaptive chosen-message Aattack (TS-UNF-ACMA) if for any PPT
adversary A, the advantage of A in the following game is negligible.

• Setup: The challenger runs (pk, pk1, . . . , pkn, sk1, . . . , skn)← TS.DKG(1κ, n, k). It gives the public
keys pk, pk1, . . . , pkn to the adversary A and keeps the private keys. All nodes, including the
adversary, have oracle access to a public random oracle OH that models the hash function H.

• Queries: The adversary A is given oracle access to the following queries:
– RandomOracleQuery(w): On input a message w, the challenger computes H(w) by querying

the random oracle OH and returns the result to A. The challenger maintains a list QroQuery of
all w queried to the random oracle.

– Corrupt(i): On input an index i ∈ [n], the challenger reveals the private key share ski to the
adversary. The set of corrupted nodes is denoted by Ccorrupt ⊆ [n]. This query can be made at
any time. The adversary A must not be able to corrupt more than t nodes.

– PartialSign(i,w): On input an index i ∈ [n] and a message w, the challenger computes σi ←
TS.Sign(ski,H(w)) and returns it to A. The challenger maintains a list QpsQuery of all pairs
(i,w) for which a partial signature was requested.

• Challenge: After querying phase, the adversary A outputs a message w⋆ and a final signature σ⋆.
• Win: The adversary A wins if the following conditions are met:

1) TS.Verify(pk, σ⋆,H(w⋆)) = true.
2) The number of nodes from which the adversary has obtained a secret share or a partial signature

for w⋆ is strictly less than the threshold, i.e., |Ccorrupt ∪ {i | (i,w⋆) ∈ QpsQuery}| < k.
The advantage of the adversary is defined as:

AdvTS-UNF-ACMA
A (κ) = Pr[A wins].

ΣTS is TS-UNF-ACMA secure if for any PPT adversary A, AdvTS-UNF-ACMA
A (κ) is a negligible function of

κ.

B. Non-Interactive Layered Threshold Signature (LTS)
We here introduce a new primitive: the Layered Threshold Signature scheme. The proposed LTS scheme

achieves an aggregation computation cost of only O(n) in good cases of partial signature collection, as
defined in Definition 27. Moreover, LTS supports the property of Instantaneous TS Aggregation. A TS
scheme guarantees this property if it can aggregate partial signatures immediately, without waiting for k
partial signatures, where k is the threshold required to compute the final signature.

Definition 21 (Non-Interactive Layered Threshold Signature (LTS)). The (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) LTS
scheme generates a signature from at least k valid partial signatures, with the parameters constrained by

n =
L∏

ℓ=1

nℓ,

L∏
ℓ=1

kℓ ≥ k, and uℓ :=
ℓ∏

ℓ′=1

nℓ′ , ∀ℓ ∈ [L] (1)
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for some k ∈ [t + 1, n − t]. In this LTS scheme, multiple layers of partial signatures are generated to
produce the final signature, with L representing the total number of layers. Let σℓ,i denotes the i-th partial
signature at Layer ℓ, for ℓ ∈ [L] and i ∈ [uℓ]. At Layer ℓ, nℓ denotes the number of partial signatures
within a group, and any kℓ of them can be combined to generate a valid group signature. This group
signature can be considered a partial signature for a “parent group” at the upper layer. We define the
b-th group of partial signatures at Layer ℓ as

Pℓ,b := {σℓ,i | i ∈ Gℓ,b} (2)

where Gℓ,b denotes the corresponding set of indices of the b-th group of partial signatures at Layer ℓ

Gℓ,b := [(b− 1)nℓ + 1, (b− 1)nℓ + nℓ] (3)

for ℓ ∈ [L] and b ∈ [uℓ−1], where u0 := 1. The i-th partial signature σℓ,i at Layer ℓ maps to the ωℓ,i-th
element of the group Pℓ,βℓ,i

, where

βℓ,i := ⌈i/nℓ⌉, ωℓ,i := i− (⌈i/nℓ⌉ − 1)nℓ. (4)

The LTS scheme ΣLTS = (LTS.Setup, LTS.DKG, LTS.Sign, LTS.Verify, LTS.Combine, LTS.Verify) satisfies
the following properties.

• LTS.Setup(1κ)→ (p,G,GT , e, g,H): This algorithm generates the public parameters. All subsequent
algorithms take the public parameters as input, but these are omitted in the presentation for simplicity.

• LTS.DKG(1κ, n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) → (pkl, pkl1, . . . , pkln, skl1, . . . , skln): Given the security pa-
rameter κ and other parameters satisfying n =

∏L
ℓ=1 nℓ,

∏L
ℓ=1 kℓ ≥ k, and uℓ =

∏ℓ
ℓ′=1 nℓ′ for each

ℓ ∈ [L], this algorithm generates a set of public keys pkl := (pkl, pkl1, . . . , pkln) available to all
nodes, and a private key share skli available only to Node i, for each i ∈ [n]. The LTS key generation
is implemented using an ADKG scheme. In our setting, it is required that pkl = pk and skl = sk,
where pk and sk are the public and secret keys, respectively, for the TS scheme defined above.

• LTS.Sign(skli,H(w)) → σL,i: Given a message w, this algorithm uses the private key share skli
to produce the i-th partial signature σL,i at Layer L, for i ∈ [n]. This partial signature can be
interpreted as Node i’s vote on w.

• LTS.Verify(pkli, σL,i,H(w)) → true/false: This algorithm verifies whether σL,i is a valid partial
signature on message w using the public key pkli, for i ∈ [n]. It outputs true if verification succeeds
and false otherwise.

• LTS.Combine(nℓ, kℓ, {(ωℓ,i, σℓ,i)}i∈T ⊆Gℓ,b,|T |≥kℓ ,H(w)) → σℓ−1,b: This algorithm combines any kℓ
valid partial signatures from the b-th group at Layer ℓ, i.e., Pℓ,b, on the same message w to produce
a signature σℓ−1,b, for ℓ ∈ [L] and b ∈ [uℓ−1], where ωℓ,i is defined in (4). In our setting, σ0,1 denotes
the final signature.

• LTS.Verify(pkl, σ0,1,H(w)) → true/false: This algorithm verifies whether σ0,1 is a valid final
signature on message w using the public key pkl. It outputs true if verification succeeds and false
otherwise.

In our setting, we set k = ⌈n+t+1
2
⌉. Here, different LTS schemes are used for different epochs. We de-

fine epoch-specific algorithms as follows: LTS.DKG(e, 1κ, n, k, L, {nℓ, kℓ, uℓ}Lℓ=1), LTS.Sign(skle,i,H(w)),
LTS.Verify(pkle,i, σL,i,H(w)), and LTS.Verify(pkle, σ0,1,H(w)), where the additional parameter e denotes
the epoch number associated with the corresponding instance of the LTS scheme. Algorithm 3 presents a
key generation protocol with a trusted dealer for both the TS and LTS schemes, referred to as OciorDKGtd.
Algorithm 9 presents the proposed ADKG protocol, referred to as OciorADKG. Fig. 2 illustrates a tree
structure of partial signatures of the proposed LTS scheme for the example with parameters: n = 1400,
t = ⌊1400−1

3
⌋ = 466, k = ⌈n+t+1

2
⌉ = 934, L = 3, n1 = 14, n2 = 10, n3 = 10, k1 = 13, k2 = 9, k3 = 8,

n = n1n2n3, and k = k1k2k3.
The LTS scheme guarantees the properties of Good-Case Robustness and Unforgeability defined in

Definitions 28 and 29. At first, let us provide the following definitions related to the LTS scheme.
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σ1,1 σ1,14

σ2,1 σ2,10

σ3,1 σ3,10

P2,1 P2,14

P1,1

P3,1 P3,140

σ3,1400σ3,1391

σ2,140σ2,131

` = 1

` = 2

` = 3

σ0,1

Fig. 2. A tree structure of partial signatures of the proposed LTS scheme for the example with parameters: n = 1400, t = ⌊ 1400−1
3
⌋ = 466,

k = ⌈n+t+1
2
⌉ = 934, L = 3, n1 = 14, n2 = 10, n3 = 10, k1 = 13, k2 = 9, k3 = 8, n = n1n2n3, and k = k1k2k3. In this example, the

partial signatures generated from n distinct nodes at Layer L are represented by {σ3,i}i∈[n]. The group P3,1 is collection of n3 corresponding
partial signatures, that is, P3,1 = {σ3,i | i ∈ [10]}. Any k3 valid partial signatures in P3,1 can be used to generate the partial signature σ2,1.
We refer to σ2,1 as the parent of the partial signatures in P3,1. Similarly, any k2 valid partial signatures in P2,1 can be used to generate the
partial signature σ1,1, and any k1 valid partial signatures in P1,1 can be used to generate the final signature σ0,1.

Definition 22 (Faulty Group, Non-Faulty (or Valid) Group, and Valid Partial Signature). The b-th
group of partial signatures at Layer ℓ, denoted by Pℓ,b as defined in (2), for ℓ ∈ [L] and b ∈ [uℓ−1], is
said to be faulty if the number of faulty, unavailable, or invalid partial signatures in the group exceeds
nℓ − kℓ. In this case, the group signature it generates is also considered faulty (or invalid). Conversely,
Pℓ,b is said to be non-faulty or valid if the number of valid partial signatures within the group is greater
than or equal to kℓ. In this case, the signature it generates is considered non-faulty or valid. The signature
generated by Pℓ,b may serve as a partial signature for a “parent group” at Layer ℓ− 1, and is denoted
by σℓ−1,b. Therefore, if Pℓ,b is non-faulty, the resulting partial signature σℓ−1,b is also non-faulty or valid.

Definition 23 (Parent of Partial Signatures). The i-th partial signature σℓ,i at Layer ℓ corresponds to
the ωℓ,i-th element of the βℓ,i-th group of partial signatures at Layer ℓ, denoted by Pℓ,βℓ,i

, where βℓ,i and
ωℓ,i are defined in (4), for ℓ ∈ [L] and i ∈ [uℓ]. The partial signature generated by Pℓ,βℓ,i

, denoted by
σℓ−1,βℓ,i

, is considered the βℓ,i-th partial signature at Layer ℓ − 1. We refer to σℓ−1,βℓ,i
as the parent of

the partial signature σℓ,i.

Definition 24 (Partial Signature Layer). The ℓ-th layer of partial signatures, denoted by Lℓ, is defined
as the collection of all partial signatures at Layer ℓ, i.e.,

Lℓ = {σℓ,1, σℓ,2, . . . , σℓ,uℓ
}

for ℓ ∈ [L], where uℓ =
∏ℓ

ℓ′=1 nℓ′ .

Definition 25 (Partial Signature Tree). The full tree of partial signatures, denoted by Ttree, is defined
as the union of all partial signature layers, i.e.,

Ttree =
L⋃

ℓ=1

Lℓ.

Definition 26 (Partial Signature Collection). A partial signature collection, denoted by CL, is a subset
of partial signatures at Layer L, i.e., CL ⊆ LL.

Definition 27 (Good Cases of Partial Signature Collection). A partial signature collection CL is said
to be a good case of partial signature collection if there exist partial signature subsets L⋄

ℓ ⊆ Lℓ for each
ℓ ∈ [L− 1], such that:
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• L⋄
L−1 includes all the parents of CL;

• for all ℓ ∈ [L− 2], the subset L⋄
ℓ includes all the parents of L⋄

ℓ+1;
• all partial signatures in

⋃L−1
ℓ=1 L⋄

ℓ are valid;
• and |L⋄

1| ≥ k1.

Good-Case Robustness of the LTS scheme ensures that an adaptive adversary cannot prevent the honest
nodes from successfully producing a valid final signature in the good cases of partial signature collection.

Definition 28 (Good-Case Robustness of LTS under ACMA). A non-interactive (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1)
LTS scheme ΣLTS = (LTS.Setup, LTS.DKG, LTS.Sign, LTS.Verify, LTS.Combine, LTS.Verify) is good-case
robust under adaptive chosen-message attack (LTS-ROB-ACMA) if for any PPT adversary A that corrupts
at most t nodes, the following properties hold with overwhelming probability:

1) Correctness of Partial Signatures: For any message w and any i ∈ [n], a partial signature σL,i ←
LTS.Sign(skli,H(w)) must always be valid, i.e., LTS.Verify(pkli, σL,i,H(w)) = true.

2) Correctness of Final Signatures: For any message w, let CL ⊆ LL be a partial signature collection
(as defined in Definition 26) on a message w. The scheme is robust if CL is a good case of partial
signature collection (as defined in Definition 27), which implies that a valid final signature σ0,1 can
be produced through the successive combination of signatures from the lowest layer up to Layer 1,
where it can be verified successfully, i.e., LTS.Verify(pkl, σ0,1,H(w)) = true.

Unforgeability of the LTS scheme ensures that an adaptive adversary cannot forge a valid final signature
on a new message, even with the ability to corrupt up to t nodes and obtain partial signatures.

Definition 29 (Unforgeability of LTS under ACMA). Let ΣLTS = (LTS.Setup, LTS.DKG, LTS.Sign,
LTS.Verify, LTS.Combine, LTS.Verify) be a non-interactive (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) LTS scheme. We say
that ΣLTS is unforgeable under adaptive chosen-message attack (LTS-UNF-ACMA) if for any PPT
adversary A, the advantage of A in the following game is negligible.

• Setup: The challenger runs (pkl, pkl1, . . . , pkln, skl1, . . . , skln)←LTS.DKG(1κ,n,k,L,{nℓ, kℓ, uℓ}Lℓ=1).
It gives the public keys pkl, pkl1, . . . , pkln to the adversary A and keeps the private keys. All nodes,
including the adversary, have oracle access to a public random oracle OH that models the hash
function H.

• Queries: The adversary A is given oracle access to the following queries:

– RandomOracleQuery(w): On input a message w, the challenger computes H(w) by querying
the random oracle OH and returns the result to A. The challenger maintains a list QroQuery of
all w queried to the random oracle.

– Corrupt(i): On input an index i ∈ [n], the challenger reveals the private key share skli to the
adversary. The set of corrupted nodes is denoted by Ccorrupt ⊆ [n]. This query can be made at
any time. The adversary A must not be able to corrupt more than t nodes.

– PartialSign(i,w): On input an index i ∈ [n] and a message w, the challenger computes σL,i ←
LTS.Sign(skli,H(w)) and returns it to A. The challenger maintains a list QpsQuery of all pairs
(i,w) for which a partial signature was requested.

• Challenge: After querying phase, the adversary A outputs a message w⋆ and a final signature σ⋆.
• Win: The adversary A wins if the following conditions are met:

1) LTS.Verify(pkl, σ⋆,H(w⋆)) = true.
2) The number of nodes from which the adversary has obtained a secret share or a partial signature

for w⋆ is strictly less than the threshold, i.e., |Ccorrupt ∪ {i | (i,w⋆) ∈ QpsQuery}| < k.

The advantage of the adversary is defined as: AdvLTS-UNF-ACMA
A (κ) = Pr[A wins]. ΣLTS is LTS-UNF-ACMA

secure if for any PPT adversary A, AdvLTS-UNF-ACMA
A (κ) is a negligible function of κ.
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C. OciorBLSts: A Composition of a Single TS Scheme and One or More LTS Schemes
The proposed OciorBLSts is a composition of a single TS scheme and one or more LTS schemes.

Fig. 3 provides the description of the algorithms used in the proposed OciorBLSts. Algorithm 4 presents
OciorBLSts with a single TS scheme and a single LTS scheme. As discussed in the next subsection,
OciorBLSts can be easily extended to support multiple parallel LTS schemes. By combining a single TS
scheme with one or more LTS schemes, OciorBLSts enables fast signature aggregation in the good cases
of partial signature collection, while ensuring both robustness and unforgeability in worst-case scenarios.

While OciorBLSts guarantees both robustness and unforgeability even under asynchronous network
conditions and adaptive adversaries, it achieves fast signature aggregation in good cases of partial signature
collection. Such good cases are likely in scenarios where, for example, network delays are bounded, the
actual number of Byzantine nodes is small, and the Byzantine nodes are evenly distributed across groups
in the LTS schemes. To increase the likelihood of such good cases, we incorporate a mechanism that
uniformly shuffles nodes into groups at each epoch. This promotes a more even distribution of Byzantine
nodes across groups for LTS schemes, thereby improving the chances of good cases of partial signature
collection. Even in the presence of an adaptive adversary, as long as the total number of dishonest
nodes remains bounded by t throughout the protocol and shuffling occurs at each epoch, the system will
eventually reach a state where the adversary becomes effectively static after O(t) epochs (i.e., it exhausts its
corruption budget). From that point onward, the probability that good cases of partial signature collection
occur becomes very high.

In OciorBLSts, an ADKG protocol is used to generate the public keys and private key shares for both
the TS and LTS schemes. Algorithm 3 presents a key generation protocol with a trusted dealer for both
the TS and LTS schemes, referred to as OciorDKGtd. Algorithm 9 presents the proposed ADKG protocol,
referred to as OciorADKG. It is required that pkl = pk and skl = sk, where pk and sk are the public
key and secret key for the TS scheme, and pkl and skl are the public key and secret key for the LTS
scheme, respectively. As described in Algorithm 4, OciorBLSts involves the following parallel processes
for the TS and LTS schemes:

• Parallel Signature Generation: When a node signs a message w, it generates a partial sig-
nature via TS.Sign(ski,H(w)) for the TS scheme and, in parallel, another partial signature via
LTS.Sign(skli,H(w)) for the LTS scheme.

• Parallel Signature Verification: When a verifier checks partial signatures from a signer, it verifies
both the TS and LTS partial signatures in parallel.

• Parallel Signature Aggregation: When an aggregator collects partial signatures, it performs
aggregation for both the TS and LTS schemes in parallel. The LTS scheme supports instantaneous
aggregation, whereas the TS scheme must wait for k partial signatures, plus a predefined delay period
∆delay, which allows additional partial signatures to be included in the LTS scheme, if possible. As
soon as aggregation completes for either scheme, the process for the other is terminated, since both
schemes produce identical final signatures.

For the LTS.Combine algorithm described in Fig. 3, since nℓ and kℓ are both finite numbers (e.g.,
nℓ = 10 and kℓ = 8), the nodes can precompute and store all Lagrange coefficients for every possible
T ∈ [nℓ] with |T | = kℓ. In contrast to traditional TS signature aggregation, where the computational
bottleneck lies in computing Lagrange coefficients for an unpredictable aggregation set, the proposed
LTS enables significantly faster aggregation. The total computation per message for signature aggregation
is O(n) in good cases completed via LTS, and up to O(n log2 n) in worst-case scenarios completed via
the TS scheme.

D. OciorBLSts with Multiple Parallel LTS Schemes
One approach to increase the probability of success for the LTS signature is to allow each node

to sign multiple LTS partial signatures, each generated using a secret key share derived from a
different instantiation of LTS.DKG(1κ, n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) → (pkl, pkl1, . . . , pkln, skl1, . . . , skln),
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with pkl = pk. In other words, instead of using a single LTS scheme, we can use multiple (but finite)
parallel LTS schemes, each with node indices shuffled differently and independently. As long as any
one of these LTS schemes generates a final signature, the signing process is considered complete. For
simplicity, we present OciorBLSts using only a single LTS scheme.

Algorithm 3 OciorDKGtd protocol for key generation with a trusted dealer, with an identifier ID.

Public Parameters: pp = (G, g); (n, k) for TS scheme; and (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) for LTS scheme under the constraints: n =∏L
ℓ=1 nℓ,

∏L
ℓ=1 kℓ ≥ k, and uℓ :=

∏ℓ
ℓ′=1 nℓ′ for each ℓ ∈ [L], with u0 := 1, for some k ∈ [t+ 1, n− t], and n ≥ 3t+ 1. Here we

set k = ⌈n+t+1
2
⌉. BLTSBook is a book of index mapping for LTS scheme, available at all nodes.

1: Set d := k − 1 and dℓ := kℓ − 1 for ℓ ∈ [L]. Set j▽ := BLTSBook[(ID, j)],∀j ∈ [n]

// ***** for the TS scheme *****
2: sample d-degree random polynomials ϕ(·) ∈ Zp[x], where s := ϕ(0) ∈ Zp is a randomly generated secret
3: set pk := gϕ(0), skj := ϕ(j), pkj := gskj , ∀j ∈ [n]

// ***** for the LTS scheme *****
4: sample dℓ-degree random polynomials ψℓ,b(·) ∈ Zp[x], for each ℓ ∈ [L] and b ∈ [uℓ−1] under the following constraints:

ψ1,1(0) = s and ψℓ,b(0) = ψℓ−1,βℓ−1,b(ωℓ−1,b), ∀ℓ ∈ [2, L], b ∈ [uℓ−1]

where βℓ,b := ⌈b/nℓ⌉, ωℓ,b := b− (⌈b/nℓ⌉ − 1)nℓ

5: set pkl := pk, sklj := ψL,βL,j (ωL,j), pklj := gsklj , ∀j ∈ [n]

6: return (skj , sklj▽ , pk, pkl, {pki}i∈[n], {pkli}i∈[n]) to Node j, ∀j ∈ [n]
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OciorBLSts: A Composition of a Single TS Scheme and One or More LTS Schemes

TS.Setup(1κ)→ (p,G,GT , e, g,H).
This algorithm generates the public parameters (pp).

1) Elliptic Curve and Pairing Selection: Let G be a cyclic group of prime order p. Let g be a generator of G.
Choose a computable, non-degenerate bilinear pairing e : G × G → GT , where GT is a multiplicative cyclic
group of order p. The pairing e must satisfy the following properties:

• Bilinearity: For all u, v ∈ G, and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
• Non-degeneracy: e(g, g) ̸= 1.
• Computability: There is an efficient algorithm to compute e(u, v) for any u, v ∈ G.

2) Hash Function: Choose a cryptographic hash function H : {0, 1}∗ → G. This hash function maps arbitrary
messages to elements in G. It is often modeled as a random oracle for security proofs.

3) Public Parameters: The public parameters are pp = (p,G,GT , e, g,H).

TS.DKG(1κ, n, k)→ (pk, pk1, . . . , pkn, sk1, sk2, . . . , skn).
Every honest node i eventually outputs a private key share ski := si ∈ Zp and a public key vector

pk := (pk, pk1, . . . , pkn), where pk := gs and pki := gsi , for i ∈ [n]

where s is the final secret jointly generated by the n distributed nodes. Any subset of k valid private key shares from
{s1, s2, . . . , sn} can reconstruct the same unique secret s.

TS.Sign(ski,H(w))→ σi.
To sign a message w ∈ {0, 1}∗, the i-th signer, who holds the secret key share ski, first computes the hash of the
message: H(w) ∈ G, and then computes the i-th partial signature σi as:

σi = H(w)ski ∈ G.

TS.Verify(pki, σi,H(w))→ true/false.
This algorithm verifies the i-th partial signature σi on a message w using the corresponding public key pki. It first
computes the hash of the message: H(w) ∈ G, and then checks the pairing equation:

e(σi, g)
?
= e(H(w), pki).

If the equality holds, the partial signature is valid and the algorithm returns true. Otherwise, it is invalid and the
algorithm returns false.

TS.Combine(n, k,Ats := {(i, σi)}i∈T ′⊆[n],|T ′|≥k,H(w))→ σ.
It is required that partial signatures σi be successfully verified before being added to the set Ats.
It is also required that |Ats| ≥ k when running this algorithm.
Let T ⊆ T ′ := {i ∈ [n] | (i, σi) ∈ Ats} be a subset of indices included in Ats, with |T | = k.
Let λT ,i =

∏
j∈T ,j ̸=i

j
j−i be the i-th Lagrange coefficient, for i ∈ T .

The final signature σ is computed as follows and then returned:

σ =
∏
i∈T

σ
λT ,i

i .

TS.Verify(pk, σ,H(w))→ true/false.
This algorithm verifies the final signature σ on a message w using a corresponding public key pk. This verification of
the final signature is similar to that of a partial signature, by checking the pairing equation: e(σ, g) ?

= e(H(w), pk). If
the equality holds, the algorithm returns true; otherwise, it returns false.
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OciorBLSts: A Composition of a Single TS Scheme and One or More LTS Schemes (Continued)

LTS.Setup(1κ)→ (p,G,GT , e, g,H).
The LTS scheme use the same public parameters (p,G,GT , e, g,H) as the TS scheme.

LTS.DKG(1κ, n, k, L, {nℓ, kℓ, uℓ}Lℓ=1)→ (pkl, pkl1, . . . , pkln, skl1, . . . , skln).
Every honest node i eventually outputs a private key share skli := s̃i ∈ Zp and a public key vector

pkl := (pkl, pkl1, . . . , pkln), where pkl = pk = gs and pkli := gs̃i , for i ∈ [n]

where s is the same as that used in the TS scheme, with pkl = pk = gs. A secret s may be reconstructed only when
at least k valid private key shares from {s̃1, s̃2, . . . , s̃n} are provided; and all reconstructed secrets are identical.

LTS.Sign(skli,H(w))→ σL,i.
To sign a message w ∈ {0, 1}∗, the i-th signer, who holds the secret key share skli, first computes the hash of the
message: H(w) ∈ G, and then computes the i-th partial signature σL,i at Layer L, for i ∈ [n]:

σL,i = H(w)skli ∈ G.

LTS.Verify(pkli, σL,i,H(w))→ true/false.
This algorithm verifies the i-th partial signature σL,i at Layer L on a message w using the corresponding public key
pkli. It first computes the hash of the message: H(w) ∈ G, and then checks the pairing equation:

e(σL,i, g)
?
= e(H(w), pkli).

If the equality holds, the algorithm returns true; otherwise, it returns false.

LTS.Combine(nℓ, kℓ,Alts[(ℓ, b)] := {(ωℓ,i, σℓ,i)}i∈T ′⊆Gℓ,b,|T ′|≥kℓ
,H(w))→ σℓ−1,b for ℓ ∈ [L] and b ∈ [uℓ−1].

When ℓ = L, it is required that partial signatures σL,i be successfully verified before being added to the set Alts.
It is also required that |Alts[(ℓ, b)]| ≥ kℓ when running this algorithm.
Let T ⊆ T ′ := {i ∈ Gℓ,b | (ωℓ,i, σℓ,i) ∈ Alts[(ℓ, b)]} be a subset of indices included in Alts[(ℓ, b)], with |T | = kℓ.
Here Gℓ,b := [(b− 1)nℓ + 1, (b− 1)nℓ + nℓ], and ωℓ,i := i− (⌈i/nℓ⌉ − 1)nℓ.
Let λT ,i =

∏
j∈T ,j ̸=i

j
j−i be the i-th Lagrange coefficient, for i ∈ T .

Since nℓ and kℓ are both finite numbers (e.g., nℓ = 10 and kℓ = 8), the nodes can precompute and store all Lagrange
coefficients for every possible T ∈ [nℓ] with |T | = kℓ.
The combined signature σℓ−1,b is computed as follows and then returned:

σℓ−1,b =
∏
i∈T

σ
λT ,i

ℓ,i .

LTS.Verify(pkl, σ0,1,H(w))→ true/false.
This algorithm verifies the final signature σ0,1 on a message w using a corresponding public key pkl = pk. This
verification of the final signature is similar to that of a partial signature, by checking the pairing equation: e(σ0,1, g)

?
=

e(H(w), pkl). If the equality holds, the algorithm returns true; otherwise, it returns false.

Fig. 3. The description of the algorithms used in the proposed OciorBLSts. The proposed OciorBLSts is a composition of a single TS
scheme and one or more LTS schemes. For the LTS.Combine algorithm, since nℓ and kℓ are both finite numbers (e.g., nℓ = 10 and
kℓ = 8), the nodes can precompute and store all Lagrange coefficients for every possible T ∈ [nℓ] with |T | = kℓ. Compared to traditional
TS signature aggregation, whose computational bottleneck lies in computing Lagrange coefficients for an unpredictable aggregated set, the
signature aggregation in the proposed LTS is significantly faster.
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Algorithm 4 OciorBLSts protocol, with an epoch identity e. Code is shown for Node i ∈ [n].

// ** For simplicity, we present OciorBLSts with a single TS scheme and a single LTS scheme. **
// ** OciorBLSts can be extended easily to support multiple parallel LTS schemes. **

Public Parameters: pp = (p,G,GT , e, g,H); (n, k) for TS scheme; and (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) for LTS scheme under the constraints:
n =

∏L
ℓ=1 nℓ,

∏L
ℓ=1 kℓ ≥ k, and uℓ :=

∏ℓ
ℓ′=1 nℓ′ for each ℓ ∈ [L], with u0 := 1, for some k ∈ [t + 1, n − t]. ∆delay is a preset

delay parameter.

Run a key generation protocol to generate keys for this epoch:
TS.DKG(e, 1κ, n, k)→ (pke, pke,1, . . . , pke,n, ske,1, ske,2, . . . , ske,n)
LTS.DKG(e, 1κ, n, k, L, {nℓ, kℓ, uℓ}Lℓ=1)→ (pkle, pkle,1, . . . , pkle,n, skle,1, . . . , skle,n)
It is required that pke = pkle.
Every honest node i eventually outputs secret key share ski for TS scheme, and secret key share skli for for LTS scheme.
Every honest node i also eventually outputs public key vectors (pke, pke,1, . . . , pke,n) and (pkle, pkle,1, . . . , pkle,n).
Every honest node updates a dictionary BLTSBook that maps node indices to new indices each epoch, based on index shuffling.

Initialize global dictionaries Ats ← {};Alts ← {}
global i▽ ← BLTSBook[(e, i)] // i▽ is a new index of this node for LTS scheme based on index shuffling, changed every epoch

// ***** As a Signer (or Voter) *****
1: upon the condition that signing a message w with identity ID is satisfied do:
2: send (VOTE, ID,TS.Sign(ske,i,H(w)), LTS.Sign(skle,i▽ ,H(w))) to the aggregator

// ***** As an Aggregator, who has the message w for identity ID *****
3: upon receiving (VOTE, ID, vote, votel) from Node j ∈ [n] for the first time do: // parallel processing between Line 3 and Line 12
4: if sig has not yet been delivered for identity ID then
5: content_h← H(w)
6: j▽ ← BLTSBook[(e, j)]
7: if TS.Verify(pke,j , vote, content_h) = true and LTS.Verify(pkle,j▽ , votel, content_h) = true then
8: [indicator, sig]← SigAggregationLTS(ID, e, j▽, votel, content_h)
9: if indicator = true and sig has not yet been delivered for identity ID then

10: deliver sig for identity ID

11: if ID /∈ Ats then Ats[ID]← {j : vote} else Ats[ID][j]← vote

12: upon |Ats[ID]| = n− t and sig has not yet been delivered for identity ID do: // parallel processing between Line 3 and Line 12
13: wait for ∆delay time // to include more partial signatures and complete LTS scheme, if possible, within the limited delay time
14: if sig has not yet been delivered for identity ID then
15: sig ← TS.Combine(n, k,Ats[ID], content_h)
16: if sig has not yet been delivered for identity ID then
17: deliver sig for identity ID

18: procedure SigAggregationLTS(ID, e, j▽, votel, content_h)
19: b← ⌈j▽/nL⌉ // map Node j to the bth group and its index j′ within this group at Layer L for this epoch
20: j′ ← j▽ − (b− 1)nL

21: if (ID, L, b) /∈ Alts then Alts[(ID, L, b)]← {j′ : votel} else Alts[(ID, L, b)][j
′]← votel

22: ℓ← L
23: while ℓ ≥ 1 do
24: if |Alts[(ID, ℓ, b)]| = kℓ then
25: sig ← LTS.Combine(nℓ, kℓ,Alts[(ID, ℓ, b)], content_h)
26: if ℓ = 1 then
27: return [true, sig]

28: else
29: break
30: b′ ← ⌈b/nℓ−1⌉
31: j′ ← b− (b′ − 1)nℓ−1

32: ℓ← ℓ− 1
33: b← b′

34: if (ID, ℓ, b) /∈ Alts then Alts[(ID, ℓ, b)]← {j′ : sig} else Alts[(ID, ℓ, b)][j
′]← sig

35: return [false,⊥]
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IV. Ocior

The proposed Ocior protocol is an asynchronous BFT consensus protocol. It is described in Algorithm 5
and supported by Algorithms 6 and 7. Before delving into the full protocol, we first introduce some key
features and concepts of Ocior.

A. Key Features and Concepts of Ocior

Parallel Chains: Unlike traditional blockchain consensus protocols, which typically operate on a single
chain, Ocior is a chained-type protocol consisting of n parallel chains. The i-th chain is proposed
independently by Node i, in parallel with others, for all i ∈ [n]. Fig. 4 illustrates these parallel chains in
Ocior, where each Chain i, proposed by Node i, grows over heights h = 0, 1, 2, . . . . Each Chain i links
a sequence of threshold signatures sigi,0 → sigi,1 → sigi,2 → · · · , where sigi,h is a threshold signature
generated at height h on a transaction tx proposed by Node i. It is possible for multiple signatures,
e.g., sigi,h and sig′i,h, to be generated at the same height of the same chain by a dishonest node, each
corresponding to a different transaction, tx and tx′, respectively.

Chain 1 sig1,0

h = 0 h = 1 h = 2 h = 3

sig1,1 sig1,2 sig1,3

sig′1,3

sig1,4

h = 4

sig2,0 sig2,1 sig2,2 sig2,3 sig2,4Chain 2

sign,0 sign,1 sign,2 sign,3 sign,4Chain n

sig′2,2

Fig. 4. The description of the parallel chains in Ocior. sigi,h and sig′i,h are distinct threshold signatures generated at the same height h of
the chain proposed by a dishonest Node i, with each signature corresponding to a different transaction, for i ∈ [n] and h ≥ 0.

Epoch: The Ocior protocol proceeds in epochs. In each epoch, each consensus node is allowed to
propose up to mmax transactions, where mmax is a preset parameter. In Ocior, the consensus nodes
receive incoming transactions from connected RPC nodes, where clients can also serve as RPC nodes.
The selection of new transactions follows rules that will be described later. Fig. 5 illustrates the epoch
structure of Ocior, where different nodes may enter a new epoch at different times due to the asynchronous
nature of the network.

Asynchronous Distributed Key Generation (ADKG): Before the beginning of a new epoch, an ADKG
scheme is executed to generate new threshold signature keys for the TS and LTS schemes for the upcoming
epoch, as described in Fig. 5. Specifically, during the system initialization phase, an ADKG[1] scheme is
executed to generate keys for Epoch 1. During Epoch e, for e ≥ 1, the ADKG[e+ 1] scheme is executed
to generate keys for Epoch e+1, with ADKG[e+1] running in parallel to the transaction-chain growth of
Epoch e. When mmax is sufficiently large, the cost of ADKG schemes becomes negligible. Algorithm 9
presents the proposed ADKG protocol, called OciorADKG, which generates the public keys and private
key shares for both the TS and LTS schemes. When e ≥ 1, ADKG[e + 1] can be implemented using an
efficient key-refreshing scheme based on the existing TS keys of Epoch e.

Erasing Old Private Key Shares: When each Node i enters a new Epoch e, it erases all old private key
shares {ske′,i, skle′,·}e−1

e′=1, along with any temporary data related to those secrets from previous epochs.
Erasing the old private key shares enhances the long-term security of the chains.
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Node 1

Node 2

Node 3

Node n

Epoch e Epoch e+ 1

ADKG[e+1] ADKG[e+2]

Fig. 5. The epoch structure of Ocior, where different nodes may enter a new epoch at different times due to the asynchronous nature of
the network. During Epoch e, for e ≥ 1, the ADKG[e+1] scheme is executed to generate keys for Epoch e+1, with ADKG[e+1] running
in parallel to the transaction-chain growth of Epoch e. When each Node i enters a new Epoch e, it erases all old private key shares from
previous epochs. When e ≥ 1, ADKG[e + 1] can be implemented using an efficient key-refreshing scheme based on the existing TS keys
of Epoch e.

Signature Content: A threshold signature sigi,h generated at height h of Chain i during Epoch e is
signed on a message of the form

(i, e,m, h, tx, sig_vp, sig_op_tuple)

for the m-th transaction tx proposed by Node i in Epoch e, where sig_vp is a virtual parent signature
and sig_op_tuple is a tuple of official parent signatures, as defined below. By our definition, sigi,h links
to the virtual parent signature sig_vp and to the tuple of official parent signatures sig_op_tuple. If there
is only one official parent signature, then sig_op_tuple reduces to a single signature.

Official Parent (OP) and Virtual Parent (VP): As defined in Definition 4, if Client B subsequently
initiates a new transaction TB,C to transfer the assets received in TA,B to Client C, then TA,B must be
cited as a parent transaction. The signature on transaction TA,B becomes the official parent signature of
the signature on transaction TB,C . As illustrated in Fig. 6, if sig′1,3 is the signature on transaction TA,B and
sigi,5 is the signature on transaction TB,C , then sig′1,3 is an official parent signature of sigi,5. At the same
time, as shown in Fig. 6, the signature sigi,5, generated at height 5, also links to the signature sigi,4 as
its virtual parent signature. It is possible for a single transaction tx to have multiple threshold signatures
generated on different chains.

Chain 1 sig1,2 sig1,3

sig′1,3

sigi,4Chain i sigi,5

Fig. 6. Description of the official parent signature and virtual parent signature in Ocior. In this example, sig′1,3 is the official parent signature
of sigi,5. At the same time, the signature sigi,5, generated at height 5, links to sigi,4 as its virtual parent signature.

Acceptance Weight (AW): Each Chain i, proposed by Node i, grows over heights h = 0, 1, 2, . . . . For
Chain i, we have sigi,0 → sigi,1 → sigi,2 → · · · → sigi,h⋆ , where h⋆ is the top height. For any sigi,h′

included in this chain, the acceptance weight of sigi,h′ is defined as

AW(sigi,h′) = h⋆ − h′ + 1.

If sigi,h′ is signed on a transaction tx, then the acceptance weight of tx is at least h⋆ − h′ + 1, i.e.,

AW(tx) ≥ h⋆ − h′ + 1.

Transaction Identity (ID) and Transaction Clusters: The identity of a transaction tx, denoted by id_tx,
is defined as the hash output of tx, i.e., id_tx = Hz(tx), where Hz : {0, 1}∗ → Zp is a hash function
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that maps arbitrary-length bit strings to elements of Zp. A transaction tx is said to belong to the i-th
transaction cluster if Hz(tx) mod n = i− 1, where i ∈ [n].

Randomized Sets: A randomized set is implemented internally using a list and a dictionary. The average
time complexity for adding, removing an element, or randomly selecting a value from a randomized set
R is O(1).

Rules for New Transaction Selection: The consensus nodes select new transactions to propose by
following a set of designed rules aimed at maximizing system throughput. These rules are implemented in
NewTxProcess (Lines 147-177 of Algorithm 6). Specifically, each Node i first selects a transaction identity
id_tx from TNewIDSetPOLE, and then TAW1IDSetPOLE, if these sets are not empty. Here, TAW1IDSetPOLE

denotes a randomized set of identities of accepted transactions (with acceptance weight less than 3
but greater than 0) proposed by other nodes in the previous epoch, while TNewIDSetPOLE denotes a
randomized set of identities of pending transactions proposed by other nodes in the previous epoch. If
both TNewIDSetPOLE and TAW1IDSetPOLE are empty, Node i selects id_tx from TNewSelfIDQue with probability
1/mtxself , where mtxself is a preset parameter and TNewSelfIDQue is a FIFO queue containing identities
of pending transactions within Cluster i, maintained by node i. Otherwise, Node i selects id_tx from
TNewIDSetPO with probability

(1− 1

mtxself

) · 1

mtxpo

where mtxpo is a preset parameter and TNewIDSetPO is a randomized set of identities of pending transactions
proposed by other nodes. Finally, Node i selects id_tx from TNewIDSet with the remaining probability, where
TNewIDSet is a randomized set containing identities of pending transactions.

Type I APS: If a threshold signature sig is generated at height h of Chain i on a signature content of
the form

content = (i, ∗, ∗, h, tx, ∗, ∗)

for a transaction tx, then (sig, content) is called a Type I APS for the transaction tx.
Type II APS: If two threshold signatures sig and sig′ are generated at heights h and h+1 of Chain i

on signature contents of the forms

content = (i, ∗, ∗, h, tx, ∗, ∗)

and
content′ = (i, ∗, ∗, h+ 1, ∗, sig, ∗),

respectively, for a transaction tx, then (sig, content, sig′, content′) is called a Type II APS for the
transaction tx.

Proposal Completion: A proposal made by Node j for a transaction tx⋄ is considered completed
if a threshold signature on tx⋄ from this proposal has been generated, or if tx⋄ conflicts with another
transaction. A consensus Node i must verify that all of Node j’s preceding proposals in the same Epoch e⋆,
as well as all proposals voted on by Node i for Chain j, are completed before voting on Node j’s current
proposal.

B. Basic Ocior

Before presenting the chained Ocior protocol, we first describe the basic Ocior protocol to clarify the
ideas underlying the chained version. Figure 7 illustrates the two-round consensus process of the basic
Ocior for two-party transactions. In this example, a transaction TA,B is proposed by an honest node,
Node 1, and consensus is finalized in two rounds: Propose and Vote.

The transaction TA,B represents a transfer from Client A to Client B. Client A submits TA,B together
with (sig_op, content_op), where sig_op denotes the threshold signature and content_op denotes the
corresponding content of the official parent transaction linked to TA,B. For simplicity, in this example we
focus on the transaction where there is only one official parent transaction. Client A can act as an RPC
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Node 1

Node 2

Node 3

Node 4
Propose Vote

(TA,B , sig op, content op) (sig, content)

Nodes
RPC

Fig. 7. The two-round consensus of basic Ocior for two-party transactions. In this description, the transaction TA,B is proposed by an honest
node, Node 1, and the consensus is finalized in two rounds: Propose and Vote.

node to submit (TX, TA,B, sig_op, content_op) directly to connected consensus nodes, such as Node 1 in
this example.

Propose: Upon receiving (TX, TA,B, sig_op, content_op), if TA,B is legitimate and its acceptance weight
is less than 2, Node 1 proposes TA,B by sending the following proposal message to all consensus nodes:

(PROP, 1, e,m, h, TA,B, sig_vp, sig_op, content_op, ∗, ∗, ∗, ∗).

Here, e denotes the current epoch number, m indicates that TA,B is the m-th transaction proposed by this
node during the current epoch, h denotes the height of the most recent proposed transaction, and sig_vp
denotes the virtual parent signature linked to TA,B. The remaining elements, denoted by ∗, will be defined
later in the chained protocol.

Vote: Upon receiving (PROP, 1, e⋆,m⋆, h⋆, TA,B, sig_vp, sig_op, content_op, ∗, ∗, ∗, ∗) from Node 1,
and after verifying that TA,B is legitimate and that e = e⋆, each honest Node i sends, in the second round,
its TS and LTS partial signatures (also called votes) back to Node 1. The message sent takes the form:

(VOTE, 1, e⋆,m⋆,TS.Sign(ske⋆,i,H(content)), LTS.Sign(skle⋆,i▽ ,H(content)))

where the partial signatures are computed over:

content = (1, e⋆,m⋆, h⋆, TA,B, sig_vp, sig_op)

Here, ske⋆,i and skle⋆,i▽ are Node i’s secret key shares for the TS and LTS schemes, respectively, for
Epoch e⋆.

After receiving k = ⌈n+t+1
2
⌉ valid TS partial signatures from distinct nodes, the proposer (Node 1)

generates a threshold signature sig over the content of TA,B. In good cases of partial signature collection,
the threshold signature sig can be generated from valid LTS partial signatures. The pair (sig, content)
forms the APS for TA,B, which can be verified by any node. Node 1 then sends (APS, ∗, ∗, sig, content)
to RPC nodes, which propagate this APS to clients.

As will be shown later, once an APS for TA,B is created, no other APS for a conflicting transaction
can be formed. Moreover, if TA,B is legitimate, both Client A and Client B will eventually receive its
valid APS. Upon receiving a valid APS for TA,B, Client B may initiate a new transaction TB,∗ to transfer
the assets obtained in TA,B, citing (sig, content) as the APS of the parent transaction TA,B.
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Chain i sigi,0

h = 0 h = 1 h = 2 h = 3

sigi,1 sigi,2 sigi,3 sigi,4

h = 4

Propose Vote

Propose Vote

Propose Vote

tx

tx′

tx′′

Fig. 8. The structure of chained Ocior, shown here for Chain i with i ∈ [n]. The other chains follow a similar Propose-Vote structure.

C. Chained Ocior

The chained Ocior is described in Fig. 8 for Chain i with i ∈ [n]. The other chains follow a similar
Propose-Vote structure. When a transaction tx is proposed by an honest Node i at height h, this proposal
links exactly one fixed threshold signature sigi,h−1, generated at height h−1, as its virtual parent signature.
At the end of the Vote round, a threshold signature sigi,h for tx may be generated at height h. This signature
sigi,h can then be linked as the virtual parent signature to the next proposal at height h+ 1. Here, sigi,0
denotes an initialized threshold signature. Chained Ocior is described in Algorithm 5 and supported by
Algorithms 6 and 7. Tables II and III provide some notations for the proposed Ocior protocol. We now
present an overview of the chained Ocior protocol from the perspective of an honest Node i, with i ∈ [n].

New Transaction Selection: Node i, for i ∈ [n], maintains a set of pending transactions that are
legitimate and have an acceptance weight less than η, by updating TNewIDSet, TNewIDSetPO, TAW1IDSetPO,
TNewIDSetPOLE, and TAW1IDSetPOLE. The parameter η is a threshold on the acceptance weight, with η = 2 for
Type I transactions (see Theorems 8 and 9 in Section V) and η = 3 for Type II transactions (see Theorems 3
and 4 in Section V). For simplicity and consistency, we set η = 3 for all transactions in the protocol
description. Here, TNewIDSet denotes a randomized set containing the IDs of pending transactions. The sets
TNewIDSetPO and TNewIDSetPOLE are randomized sets containing the IDs of pending transactions proposed
by other nodes in the current epoch and in the previous epoch, respectively. Similarly, TAW1IDSetPO and
TAW1IDSetPOLE are randomized sets containing the IDs of accepted transactions (with acceptance weight
less than 3 but greater than 0) proposed by other nodes in the current epoch and in the previous epoch,
respectively. Node i selects new transactions to propose by following a set of rules designed to maximize
system throughput. These rules are implemented in NewTxProcess (Lines 147-177 of Algorithm 6) and
are described in Section IV-A.

Propose: Node i executes the steps of the Propose round as specified in Lines 21-33 of Algorithm 5.
Specifically, at the m-th transaction most recently proposed in the current epoch e, Node i selects a new
transaction tx that is legitimate and has an acceptance weight less than η, following the new transaction
selection rules. Node i then proposes tx by sending the following proposal message to all consensus
nodes:

(PROP, i, e,m, h, tx, sig_vp, sig_op_tuple, content_op_tuple, e⋄,m⋄,myproof,myprooftx) (5)

Here:
• h is the height of the most recent proposed transaction.
• sig_vp is the threshold signature generated at height h − 1, serving as the virtual parent signature

linked to tx. The virtual parent transaction was proposed by Node i as the m⋄-th transaction during
Epoch e⋄. Consensus nodes must verify a valid and fixed sig_vp generated at height h−1 of Chain i
before voting for the transaction at height h.
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• sig_op_tuple and content_op_tuple are, respectively, a tuple of official parent signatures and the
corresponding contents linked to tx. Consensus nodes must verify valid official parent signatures
sig_op_tuple before voting for the proposed transaction.

• myproof is a proof that the previous proposal made by Node i for the (m − 1)-th transaction (or
a transaction proposed in the previous epoch), denoted tx⋄, has been completed. A proposal for a
transaction tx⋄ is considered complete if a threshold signature on tx⋄ from this proposal has been
generated, or if tx⋄ conflicts with another transaction. Consensus nodes must verify that myproof
indeed proves the proposal completion for tx⋄ before voting on the m-th transaction, for any m ≥ 1.
The value of myproof is set as follows:

– If a threshold signature has been generated by this node for tx⋄, then myproof is set as follows
(Lines 126 and 136 of Algorithm 5):

myproof = ⊥. (6)

– If tx⋄ conflicts with another transaction tx_conflict, then myproof is set as follows (Line 118):

myproof = (C, e◦,m◦, tx_conflict) (7)

where (e◦,m◦) denotes a pair of indices of the proposal for tx⋄.
• myprooftx is a Type I APS proof for the proposed transaction tx if it has been proposed by another

node and accepted at Node i, but the acceptance weight is less than η. If tx conflicts with another
transaction, the consensus nodes must verify that myprooftx is a valid APS proof for tx before
voting for it. The value of myprooftx is set as follows (see Lines 179-201 of Algorithm 6):

– If tx has been accepted at Node i, but the acceptance weight is less than η (except for a specific
case, see Line 180 of Algorithm 6), then myprooftx is set as follows (Line 184 of Algorithm 6):

myprooftx = (sig, (j, e⋆,m⋆, h⋆,⊥, sig_vp,⊥)) (8)

where (sig, (j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple)) is a Type I APS for tx, and the missing
elements tx and sig_op_tuple can be obtained from the proposal in (5).

– Otherwise, myprooftx is set as follows (Line 179 of Algorithm 6):

myprooftx = ⊥. (9)

If e > 1 and m = 1, Node i proposes the last proposal proposed in the previous epoch (see Lines 23 and
24 of Algorithm 5).

Vote: Upon receiving (PROP, j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple, content_op_tuple, e⋄,m⋄, proof ,
prooftx) from Node j, for j ∈ [n], Node i executes the steps of the Vote round as specified in Lines 34-
111 of Algorithm 5. The main steps are outlined below.

• If e⋆ > e, Node i waits until e ≥ e⋆.
• Node i waits until the proposal of the VP transaction has been received (Lines 43 and 51).
• Node i must verify that sig_vp is a valid threshold signature for the VP transaction before voting

on this proposal (Line 61). Node i must also verify that sig_vp is the only one threshold signature
accepted at height h⋆ − 1 of Chain j (Lines 59-61).

• Node i waits until the previous proposals (indexed by m⋆ − 1,m⋆ − 2, . . . , 1) proposed by Node j
during the same Epoch e⋆ have been received.

• Node i must verify that all of Node j’s preceding proposals in the same Epoch e⋆, as well as all
proposals voted on by Node i for Chain j, are completed before voting on this proposal (Lines 80
and 81).

• Node i must verify that the transaction tx is legitimate before voting on this proposal (Lines 90-98).
• If tx conflicts with another transaction, Node i must verify that prooftx is a valid APS proof for tx

before voting on this proposal (Lines 97-98). If myprooftx is a valid APS for tx, Node i can vote
for it, even if tx conflicts with another transaction.
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After that, Node i may send a message back to Node j, depending on which conditions are satisfied:
• If all of the above conditions are satisfied, then Node i sends the following vote message back to

Node j:

(VOTE, j, e⋆,m⋆,TS.Sign(ske⋆,i,H(content)), LTS.Sign(skle⋆,i▽ ,H(content))) (10)

(Line 108), where content = (j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple).
• If all of the above conditions are satisfied except that tx conflicts with another transaction tx_conflict

recorded by Node i (and prooftx is not a valid APS proof for tx), then Node i sends the following
message back to Node j (Line 111):

(CONF, j, e⋆,m⋆, tx_conflict). (11)

Proposal Completion: After receiving at least k = ⌈n+t+1
2
⌉ messages of valid partial signatures as

in (10) from distinct nodes, the proposer (focusing on Node i) generates a threshold signature sig over
the content of tx (see Lines 119-136 of Algorithm 5). In good cases of partial signature collection, the
threshold signature sig can be generated from valid LTS partial signatures (Lines 119-126). Once the
threshold signature sig is generated for the proposed tx, the proposer sends an APS message to RPC
nodes:

(APS, sig_vp, content_vp, sig, content)

(Lines 125 and 135), where content_vp is the content of the threshold signature sig_vp for the virtual
parent linked to tx. Here, (sig, content) is a Type I APS for tx, and (sig_vp, content_vp, sig, content) is a
Type II APS for the virtual parent linked to tx. In this case, the proposal indexed by (j, e,m) is completed.
If the proposer receives any message as in (11) that includes a transaction tx_conflict conflicting with
the proposed transaction tx, and given myprooftx = ⊥ (see (9) and Line 114), then the proposal is
also considered completed. It is worth noting that if the proposer is honest, and if myprooftx ̸= ⊥, then
myprooftx should be a valid APS for tx, and all honest nodes should vote for it, even if tx conflicts with
another transaction. When a proposal is completed, the proposer sets the value of myproof accordingly,
as in (6) and (7), and then proposes the next transaction.

Real-Time and Complete APS Dissemination: In Ocior, there are three scenarios that guarantee real-
time and complete APS dissemination to consensus nodes and RPC nodes:

• Dissemination Scenario 1: If the proposer is honest and generates a valid APS for a transaction tx,
then this APS is sent to all RPC nodes immediately (Lines 125 and 135 of Algorithm 5).

• Dissemination Scenario 2: If the proposer is dishonest but its chain continues to grow, then the
valid APS generated by this proposer is guaranteed to be propagated in a timely manner through the
following mechanism. Specifically, during the Vote round on a proposal indexed by (j, e⋆,m⋆, h⋆) at
height h⋆, Node i sends an APS message

(APS, sig′, content′, sig⋄, content⋄)

to one randomly selected RPC node, provided this APS message has not already been sent (Line 103
of Algorithm 5). Here, sig′ and sig⋄ are accepted at heights h⋆−2 and h⋆−1, respectively, of Chain j.
Once an RPC node receives a valid APS, it forwards the message to its connected RPC nodes via
network gossiping. This mechanism ensures that the APS is propagated immediately, even if the
proposer fails to disseminate it directly to the RPC nodes.

• Dissemination Scenario 3: If a chain has grown by hdm new locked heights, the network invokes the
HMDM algorithm to multicast these hdm signatures and their corresponding contents in the locked
chain to all consensus nodes and all RPC nodes (see Lines 139-145 of Algorithm 5). If a chain
has not grown for eout epochs (for a preset parameter eout), the network broadcasts the remaining
signatures locked in this chain, together with one additional signature accepted at a height immediately
following that of the top locked signature (see Lines 146-151 of Algorithm 5).
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Update of TNewIDSetPO, TNewIDSetPOLE, TAW1IDSetPO, and TAW1IDSetPOLE: In Ocior, at any point in time,
each of the sets TNewIDSetPO and TNewIDSetPOLE contains at most three IDs of transactions proposed at
Chain j, while each of the sets TAW1IDSetPO and TAW1IDSetPOLE contains at most two IDs of transactions
proposed at Chain j, for every j ∈ [n]. These four sets are updated as follows:

• When a node votes for a transaction tx at height h of Chain j, it adds the ID of tx to TNewIDSetPO and
adds to TAW1IDSetPO the ID of a transaction accepted at height h− 1 of Chain j. At the same time,
it removes from TNewIDSetPO, TNewIDSetPOLE, TAW1IDSetPO, and TAW1IDSetPOLE the ID of a transaction
accepted at height h− 3 of Chain j (see Lines 104-106 of Algorithm 5).

• When a proposed transaction tx conflicts with another transaction, the ID of tx is removed from
TNewIDSetPO and TNewIDSetPOLE (Line 70 of Algorithm 6).

• When a node proposes a transaction tx, the ID of tx is removed from TNewIDSetPO, TNewIDSetPOLE,
TAW1IDSetPO, and TAW1IDSetPOLE accordingly (Lines 147-177 of Algorithm 6).

• At the end of an epoch, the set TNewIDSetPO is merged into TNewIDSetPOLE, and the set TAW1IDSetPO

is merged into TAW1IDSetPOLE (Line 168 of Algorithm 5).
• Based on the rules for new transaction selection, at the beginning of a new epoch, each node first

proposes transactions from TNewIDSetPOLE and TAW1IDSetPOLE until both sets are empty.
The APS dissemination, together with the updates of TNewIDSetPO, TNewIDSetPOLE, TAW1IDSetPO, and
TAW1IDSetPOLE, guarantees the following two properties:

• In Ocior, if a valid Type II APS is generated for a transaction tx, then eventually all honest consensus
nodes and RPC nodes will receive a valid Type II APS and accept tx, even if another transaction
conflicts with tx (see Theorem 3).

• In Ocior, if a valid Type I APS is generated for a legitimate transaction tx, and tx remains legitimate,
then eventually all honest consensus nodes and RPC nodes will receive a valid Type II APS and
accept tx (see Theorem 4). Note that any node that receives a transaction tx together with a valid
Type I or Type II APS will accept tx, even if another transaction conflicts with it (see Theorem 1).

Key Regeneration and Epoch Transition: In Ocior, before entering a new epoch (e+1), an ADKG[e+1]
scheme is executed to generate new threshold signature keys for the TS and LTS schemes for the upcoming
epoch, as described in Lines 152-157 of Algorithm 5. Specifically, when m = mseed, Node i activates
SeedGen protocol with other nodes to generate a random seed (see Lines 152-153 of Algorithm 5, and
Algorithm 7). The random seed is used to shuffle the node indices for the LTS scheme for the next epoch.
When m = mmax and ADKG[e+ 1] outputs the keys for the TS and LTS schemes, Node i votes for the
next epoch by sending (EPOCH, e) to all nodes (Line 159). After one more round of message exchange
(Line 161), the nodes eventually reach consensus to proceed to the next epoch (Lines 164-170).

V. ANALYSIS OF Ocior: SAFETY, LIVENESS, AND COMPLEXITIES

Here we provide an analysis of Ocior with respect to safety, liveness, and its communication,
computation, and round complexities.

Theorem 1 (Safety). In Ocior, any two transactions accepted by honest nodes do not conflict. Furthermore,
if two valid APSs are generated for two different transactions, then those transactions must also be non-
conflicting. Finally, any node that receives a transaction together with its valid APS will accept the
transaction.

Proof. We prove this result by contradiction. Suppose there exist two conflicting transactions, tx and tx′,
that are accepted by honest nodes. We first consider the case where tx and tx′ conflict with each other
and share the same parent. Since tx and tx′ are accepted by honest nodes, there must exist two valid
APSs for tx and tx′, respectively. Let sig and sig′ be the threshold signatures included in the APSs for
tx and tx′, respectively.

To generate the threshold signature sig, at least k = ⌈n+t+1
2
⌉ partial signatures from distinct nodes

voting (signing) for tx are required, which implies that at least ⌈n+t+1
2
⌉ − t honest nodes have voted for



27

tx. In Ocior, when an honest node votes for tx, it will not vote for any transaction that conflicts with tx
and shares the same parent.

Therefore, if sig is generated for tx, then the number of partial signatures voting for a conflicting tx′

is at most
n−

(⌈n+ t+ 1

2

⌉
− t
)
< k

given the identity n + t < 2
(
n+t+1

2

)
≤ 2

(⌈
n+t+1

2

⌉)
, for k = ⌈n+t+1

2
⌉. This implies that the threshold

signature sig′ for tx′ could not have been generated. This contradicts our assumption, and thus we conclude
that transactions accepted by honest nodes and sharing the same parent do not conflict with each other.

Let us now consider the case where tx and tx′ conflict with each other but do not share a direct parent,
i.e., at least one of them is a descendant of a conflicting transaction. When a node votes for tx (or tx′), it
must verify that the proposal includes a valid APS for each parent of tx (or tx′). From the above result,
at most one valid APS will be generated for conflicting transactions that share the same parent. This
implies that one of the conflicting transactions tx or tx′ that do not share a direct parent will not receive
any votes from honest nodes due to the lack of a valid APS for its parent.

Thus, any two transactions accepted by honest nodes do not conflict. Furthermore, the above result
implies that if two valid APSs are generated for two different transactions, then those transactions must
also be non-conflicting. Finally, in Ocior, any node that receives a transaction tx together with its valid
APS accepts the transaction tx (see Accept function in Lines 116-132 of Algorithm 6).

Theorem 2 (Liveness). In Ocior, if a legitimate transaction tx is received and proposed by at least one
consensus node that remains uncorrupted throughout the protocol, and tx remains legitimate, then a valid
APS for tx is eventually generated, delivered to, and accepted by all honest consensus nodes and all
active RPC nodes.

Proof. From Lemma 3, if a legitimate transaction tx is proposed by a consensus node that remains
uncorrupted throughout the protocol, and tx remains legitimate, then eventually it will be proposed by at
least one honest node with AW(tx) ≥ η, where η = 3. From Lemma 4, if AW(tx) ≥ 3, then eventually all
honest consensus nodes and RPC nodes will receive a valid Type II APS and accept tx, even if another
transaction conflicts with tx. This completes the proof.

Lemma 1. In Ocior, if a transaction tx has been voted for by an honest node, and this node is guaranteed
to propose mmax complete transactions in a new epoch, then unless tx becomes conflicting or AW(tx) ≥ η,
this node will eventually propose tx in its chain with AW(tx) ≥ η, where the parameter mmax is typically
set as mmax ≥ O(n2) and η = 3.

Proof. When an honest node votes for a transaction tx at height h of Chain j, it adds the ID of tx to
TNewIDSetPO. At the same time, it removes from TNewIDSetPO and TNewIDSetPOLE the ID of the transaction
accepted at height h− 3 of Chain j (see Lines 104–106 of Algorithm 5).

If a proposed transaction tx conflicts with another transaction, then its ID is removed from both
TNewIDSetPO and TNewIDSetPOLE (Line 70 of Algorithm 6).

At any point in time, each of the sets TNewIDSetPO and TNewIDSetPOLE contains at most three IDs of
transactions proposed at Chain j, while each of the sets TAW1IDSetPO and TAW1IDSetPOLE contains at most
two IDs of transactions proposed at Chain j, for every j ∈ [n].

At the end of an epoch, TNewIDSetPO is merged into TNewIDSetPOLE, and TAW1IDSetPO is merged into
TAW1IDSetPOLE (Line 168 of Algorithm 5). According to the rules for new transaction selection, each node
first selects transactions from TNewIDSetPOLE and TAW1IDSetPOLE until both sets are empty.

Therefore, if a transaction tx has been voted for by a node, and this node is guaranteed to propose mmax

complete transactions in a new epoch, then unless tx becomes conflicting or AW(tx) ≥ η, the node will
eventually propose tx in its chain with AW(tx) ≥ η at the beginning of a new epoch, and subsequently
remove the ID of tx from TNewIDSetPO and TNewIDSetPOLE (Lines 147–177 of Algorithm 6).
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Lemma 2. In Ocior, if a valid Type I APS is generated for a legitimate transaction tx, and tx remains
legitimate, then eventually it will be proposed by at least one honest node with AW(tx) ≥ η.

Proof. When a valid Type I APS is generated for a legitimate transaction tx, at least

k − |F| ≥ k − t =
⌈
n+t+1

2

⌉
− t

honest nodes must have voted for tx, where F denotes the set of dishonest nodes with |F| ≤ t, and where
the parameter k = ⌈(n+ t+ 1)/2⌉ is the threshold for the threshold signature.

Furthermore, all honest nodes, except for at most t of them, are guaranteed to propose mmax complete
transactions in each epoch, where typically mmax ≥ O(n2). Note that an honest consensus node enters a
new epoch only if it has received confirmation messages from at least n−t distinct nodes, each confirming
that they have proposed mmax complete transactions.

Therefore, when a valid Type I APS is generated for a legitimate transaction tx, at least

k − |F| − t ≥
⌈
n+t+1

2

⌉
− 2t ≥ 3t+1+t+1

2
− 2t > 1

honest node must have voted for tx and is also guaranteed to propose mmax complete transactions in a
new epoch.

By Lemma 1, if a transaction tx has been voted for by an honest node, and this node is guaranteed to
propose mmax complete transactions in a new epoch, then unless tx becomes conflicting or AW(tx) ≥ η,
this node will eventually propose tx in its chain AW(tx) ≥ η.

Thus, if a valid Type I APS is generated for a legitimate transaction tx, and tx remains legitimate,
then eventually it will be proposed by at least one honest node with AW(tx) ≥ η.

Lemma 3. In Ocior, if a legitimate transaction tx is proposed by a consensus node that remains
uncorrupted throughout the protocol, and tx remains legitimate, then eventually it will be proposed by at
least one honest node with AW(tx) ≥ η.

Proof. If a legitimate transaction tx is proposed by a consensus node that remains uncorrupted throughout
the protocol, and tx continues to be legitimate, then there are two possible cases: 1) the proposal of tx is
completed with a valid Type I APS; or 2) the proposal is the last proposal made by this consensus node.

For the first case, by Lemma 2, if a valid Type I APS is generated for a legitimate transaction tx, and
tx remains legitimate, then eventually it will be proposed by at least one honest node with AW(tx) ≥ η.

We now turn to the second case. If a legitimate transaction tx is proposed by a consensus node that
remains uncorrupted throughout the protocol, tx remains legitimate, and this proposal is the last proposal
made by that consensus node, then every honest node eventually adds the ID of tx to the set TNewIDSetPO

(see Line 104 of Algorithm 6).
As noted in the proof of Lemma 1, at any point in time, each of the sets TNewIDSetPO and TNewIDSetPOLE

contains at most three IDs of transactions proposed at Chain j, while each of the sets TAW1IDSetPO and
TAW1IDSetPOLE contains at most two IDs of transactions proposed at Chain j, for every j ∈ [n].

At the end of an epoch, TNewIDSetPO is merged into TNewIDSetPOLE, and TAW1IDSetPO is merged into
TAW1IDSetPOLE (Line 168 of Algorithm 5). According to the rules for new transaction selection, each node
first selects transactions from TAW1IDSetPOLE and TNewIDSetPOLE until both sets are empty.

As noted in the proof of Lemma 2, all honest nodes, except for at most t of them, are guaranteed to
propose mmax complete transactions in each epoch. If the ID of tx has been added to TNewIDSetPOLE by
an honest node that is guaranteed to propose mmax complete transactions in a new epoch, then unless tx
becomes conflicting or AW(tx) ≥ η, this node will eventually propose tx in its chain with AW(tx) ≥
η.

Theorem 3 (Type II APS). In Ocior, if a valid Type II APS is generated for a transaction tx, then
eventually all honest consensus nodes and active RPC nodes will receive a valid Type II APS and accept
tx, even if another transaction conflicts with tx.
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Proof. When a valid Type II APS has been generated for a transaction tx, at least t + 1 honest nodes
must have accepted tx with a Type I APS. When an honest Node i accepts tx at height h− 1 of Chain j
(during a vote round for a proposal at height h proposed by Node j), Node i adds the ID of tx into
TAW1IDSetPO, and removes from TAW1IDSetPO and TAW1IDSetPOLE the ID of the transaction accepted at
height h− 3 of Chain j (see Line 105 of Algorithm 5). The number of transaction identities included in
each of TAW1IDSetPO and TAW1IDSetPOLE for Chain j is always bounded by 2.

At the end of Epoch e, the set TAW1IDSetPO is merged into TAW1IDSetPOLE (Line 168 of Algorithm 5).
According to the rules for new transaction selection, at the beginning of Epoch e+1, Node i first proposes
transactions from TNewIDSetPOLE and TAW1IDSetPOLE, until both sets becomes empty (Lines 147-177 of
Algorithm 6).

When honest Node i reproposes an accepted transaction tx, it attaches a valid APS for tx (Line 184
of Algorithm 6). Consequently, all honest nodes will eventually accept tx and vote for it again, even if
another transaction conflicts with tx (see Lines 97-98 of Algorithm 5).

Moreover, among the t+1 honest nodes that have accepted tx with a Type I APS, at least t+1− t = 1
honest node must both have accepted tx and be guaranteed to propose mmax complete transactions in a
new epoch (as in the proof of Lemma 3).

Therefore, from these t+1 honest nodes, unless AW(tx) ≥ 3, at least one honest node that is guaranteed
to propose mmax complete transactions in a new epoch will eventually repropose tx with AW(tx) ≥ 3.
From Lemma 4, if AW(tx) ≥ 3, then eventually all honest consensus nodes and RPC nodes will receive
a valid Type II APS and accept tx, even if another transaction conflicts with tx.

Thus, if a valid Type II APS is generated for a transaction tx, then eventually all honest consensus
nodes and RPC nodes will receive a valid Type II APS and accept tx, even if another transaction conflicts
with tx.

Theorem 4 (Type I APS). In Ocior, if a valid Type I APS is generated for a legitimate transaction tx,
and tx remains legitimate, then eventually all honest consensus nodes and RPC nodes will receive a valid
Type II APS and accept tx.

Proof. From Lemma 2, if a valid Type I APS is generated for a legitimate transaction tx, and tx remains
legitimate, then eventually it will be proposed by at least one honest node with AW(tx) ≥ η, which
implies that a valid Type II APS is eventually generated for tx. Then, from Theorem 3, if a valid Type II
APS is generated for a transaction tx, then eventually all honest consensus nodes and RPC nodes will
receive a valid Type II APS and accept tx.

Lemma 4. If AW(tx) ≥ 3, then eventually all honest consensus nodes and RPC nodes will receive a
valid Type II APS for tx and accept tx, even if another transaction conflicts with tx.

Proof. If AW(tx) ≥ 3, then at least k−|F| ≥
⌈
n+t+1

2

⌉
− t ≥ t+1 honest consensus nodes have accepted

tx with AW(tx) ≥ 2 in a locked chain. We say that Chain j is locked at height h⋆ at Node i if all
signatures at heights h′ ≤ h⋆ + 1 have been accepted in Chain j. From Lemma 5, if Chain j is locked at
height h⋆ at both Node i and Node i′, then Nodes i and i′ hold the same copy of the locked Chain j.

If a chain grows by hdm new locked heights, the HMDM algorithm is invoked to multicast these hdm

signatures and their corresponding contents in the locked chain to all consensus nodes and all RPC nodes
(see Lines 139–145 of Algorithm 5). If a chain has not grown for eout epochs (for a preset parameter
eout), the network broadcasts the remaining signatures locked in the chain, along with one additional
signature accepted at a height immediately following that of the top locked signature (see Lines 146-151
of Algorithm 5). The broadcast of the last signature ensures that every node receives the signatures needed
to construct a valid Type II APS for tx whenever AW(tx) ≥ 3.

Therefore, if AW(tx) ≥ 3, then eventually all honest consensus nodes and RPC nodes will receive a
valid Type II APS for tx and accept tx, even if another transaction conflicts with tx.
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Lemma 5. If Chain j is locked at height h⋆ at both honest Node i and honest Node i′, then Nodes i and
i′ hold the same copy of the locked Chain j.

Proof. When a node votes for a proposal at height h′ of Chain j, it must verify that the proposal links
to a fixed VP accepted at height h′ − 1, and that all signatures at heights h′ − 1, h′ − 2, . . . , 1 have been
accepted. Due to the network quorum, if a signature at height h′ is generated, it can only link to a single
VP accepted at height h′ − 1.

If Chain j is locked at height h⋆ at Node i, then all signatures at heights h′ ≤ h⋆+1 have been accepted
in Chain j. Therefore, if Chain j is locked at height h⋆ at both Node i and Node i′, then Nodes i and i′

must hold the same copy of the locked Chain j.

Lemma 6. If a node is guaranteed to propose mmax transactions in an epoch e, then each of its proposals
is eventually completed.

Proof. In Ocior, at least n−t−|F| ≥ t+1 honest nodes are guaranteed to propose mmax transactions in an
epoch e. For each such node, and for each proposal it makes in epoch e, the proposal is eventually either
accompanied by a threshold signature for the proposed transaction (see Lines 119-136 of Algorithm 5)
or by a proof showing that the proposed transaction conflicts with another transaction (see Lines 113-
118 of Algorithm 5). In either case, the proposal is considered completed, allowing the node to attach a
completeness proof and subsequently propose a new transaction in epoch e.

Note that for any node that is not guaranteed to propose mmax transactions in epoch e, each of its
proposals is also eventually completed, except possibly the last proposal if the node transitions to a new
epoch e + 1. In this case, the last proposal from epoch e will be re-proposed at the beginning of epoch
e+ 1.

Lemma 7. For a two-party transaction TA,B, if the recipient B receives a valid APS for TA,B, then B
can initiate a new legitimate transaction TB,∗ to successfully transfer the assets received in TA,B.

Proof. From Theorem 1, if two valid APSs are generated for two different transactions, then those
transactions must be non-conflicting. Furthermore, any node that receives a transaction together with
its valid APS will accept the transaction.

Therefore, for a two-party transaction TA,B, if the recipient B receives a valid APS for TA,B, then B
can initiate a new legitimate transaction TB,∗ to transfer the assets obtained in TA,B by attaching the APS
of TA,B to TB,∗. Any node that receives the APS for TA,B will accept TA,B and subsequently vote for
TB,∗, even if another transaction conflicts with TA,B.

Theorem 5 (Round complexity). Ocior achieves a good-case latency of two asynchronous rounds for
Type I transactions.

Proof. For a legitimate two-party (Type I) transaction, a valid Type I APS can be generated by an
honest node after the propose and vote rounds. Thus, it can be finalized with a good-case latency of two
asynchronous rounds, for any n ≥ 3t+1. The good case in terms of latency refers to the scenario where
the transaction is proposed by any (not necessarily designated) honest node.

Theorem 6 (Communication complexity). In Ocior, the total expected message complexity per transaction
is O(n), and the total expected communication in bits per transaction is O(nκ), where κ denotes the size
of a threshold signature.

Proof. For each proposal made by an honest node, the total message complexity is O(n), while the total
communication in bits is O(nκ), where κ denotes the size of a threshold signature.

It is guaranteed that, when proposing a new transaction, each honest node selects a transaction different
from those proposed by other honest nodes with constant probability, provided that the pool of pending
transactions is sufficiently large. More precisely, according to the transaction selection rules, after choosing
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transactions from TAW1IDSetPOLE and TNewIDSetPOLE (each of size at most O(n)), each node selects a new
transaction tx with AW(tx) < 3 from TNewSelfIDQue with probability

1/mtxself

where mtxself > 1 is a preset parameter (e.g., mtxself = 2). Here, TNewSelfIDQue is a FIFO queue maintained
by node i, containing the identities of pending transactions within Cluster i. In addition, each honest node
selects a new transaction tx with AW(tx) < 3 from TNewIDSet with probability(

1− 1

mtxself

)
·

(
1− 1

mtxpo

)
where TNewIDSet is a randomized set containing the identities of pending transactions, and the parameter
mtxpo > 1 can be set as mtxpo = ⌈n/10⌉.

When a Chain j has grown hdm new locked heights, the network activates the OciorHMDMh protocol to
multicast these hdm signatures and contents locked in the chain, where hdm ≥ ⌈n log n⌉. The total message
complexity of OciorHMDMh is O(n2), while the total communication in bits is O(nhdmκ + κn2 log n)
for multicasting hdm signatures and contents. This implies that, on average, for multicasting one signature
and its content, the total message complexity is at most O(n/ log n), and the total communication in bits
is O(nκ).

If a chain has not grown for eout epochs, with a preset parameter eout = n, the network broadcasts
the remaining signatures locked in this chain, together with one additional signature accepted at a height
immediately following that of the top locked signature (see Lines 146-151 of Algorithm 5). By setting
a sufficiently large parameter eout = n, and given that the maximum number of transactions that can
be proposed by a node in an epoch is mmax > n2, this cost is negligible in the overall communication
complexity.

There is also a communication cost incurred from the ADKG scheme in each epoch. However, by setting
the parameter mmax > n2, this cost becomes negligible in the overall communication complexity.

Thus, the total expected message complexity per transaction is O(n), and the total expected communi-
cation in bits per transaction is O(nκ).

Theorem 7 (Computation complexity). In Ocior, the total computation per transaction is O(n) in the
best case, and O(n log2 n) in the worst case.

Proof. In Ocior, for each proposal made by an honest node, the total computation is O(n) in the best case,
and O(n log2 n) in the worst case, dominated by signature aggregation. The computation cost is measured
in units of cryptographic operations, including signing, signature verification, hashing, and basic arithmetic
operations (addition, subtraction, multiplication, and division) on values of signature size. The best case
is achieved with the LTS scheme, based on the proposed OciorBLSts.

As in the case of communication complexity, the computation costs incurred by OciorHMDMh, signature
broadcasting, and the ADKG scheme in each epoch are negligible in the overall computation complexity,
provided sufficiently large parameters are set, i.e., hdm ≥ ⌈n log n⌉, eout = n, and mmax > n2.

A. The case of η = 2

In the above analysis, we focused on the default case of η = 3. The following two theorems are derived
under the specific case of η = 2.

Theorem 8 (Type II APS, η = 2). Given η = 2, if a valid Type II APS is generated for a transaction
tx, then eventually all honest consensus nodes and active RPC nodes will receive a valid Type I APS
and accept tx, even if another transaction conflicts with tx.

Proof. Suppose a valid Type II APS has been generated for a transaction tx on Chain j at height h⋆,
with AW(tx) ≥ 2. Then, at least t+ 1 honest nodes must have accepted tx with a Type I APS and have
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linked the threshold signature sigj,h⋆ for tx as a VP at height h⋆. Note that an honest node links only
one fixed signature as a VP at a given height of a chain. Thus, due to quorum, the signature sigj,h⋆ for
tx is locked at height h⋆ of Chain j.

From Lemma 5, if Chain j is locked at height h⋆ at both honest Node i and honest Node i′, then
Nodes i and i′ hold the same copy of the locked Chain j.

Similar to the proof of Lemma 4, if a chain grows by hdm new locked heights, the HMDM algorithm
is invoked to multicast these hdm signatures and their corresponding contents in the locked chain to all
consensus nodes and all RPC nodes. If a chain does not grow for eout epochs (for a preset parameter eout),
the network broadcasts the remaining signatures locked in the chain, along with one additional signature
accepted at the height immediately following that of the top locked signature. The broadcast of this last
signature ensures that every node receives the signatures for tx whenever AW(tx) ≥ 2.

Thus, given η = 2, if a valid Type II APS is generated for a transaction tx, then eventually all honest
consensus nodes and active RPC nodes will receive a valid Type I APS and accept tx, even if another
transaction conflicts with tx.

Theorem 9 (Type I APS, η = 2). Given η = 2, if a valid Type I APS is generated for a legitimate
transaction tx, and tx remains legitimate, then eventually all honest consensus nodes and RPC nodes
will receive a valid Type I APS and accept tx.

Proof. From Lemma 2, if a valid Type I APS is generated for a legitimate transaction tx, and tx remains
legitimate, then eventually it will be proposed by at least one honest node with AW(tx) ≥ η, which
implies that a valid Type II APS is eventually generated for tx. Then, given η = 2, by Theorem 8, if a
valid Type II APS is generated for a transaction tx, then eventually all honest consensus nodes and RPC
nodes will receive a valid Type I APS and accept tx.
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TABLE II
SOME NOTATIONS FOR THE PROPOSED Ocior PROTOCOL.

Notations Interpretation

n The total number of consensus nodes in the network.

t The maximum number of corrupted nodes that can be tolerated in the network, for t < n
3

.

k The threshold of the threshold signature scheme, defined as k = ⌈n+t+1
2
⌉.

mmax The maximum number of transactions that can be proposed by a node in an epoch, typically mmax > n2.

m The number of transactions that have been proposed by a node as a proposer in an epoch.

h A height h (not necessarily accepted yet) of a transaction chain.

e The epoch number.

η A threshold on the acceptance weight, with η = 2 for Type I transactions and η = 3 for Type II transactions.
For simplicity and consistency, we set η = 3 for all transactions in the protocol description.

hdm An interval on a chain for multicasting signatures and contents locked in the chain, for hdm ≥ ⌈n logn⌉.
eout If a chain is not growing for eout epochs, broadcast remaining signatures locked in this chain, for eout=n.

tx A transaction.

id_tx The transaction ID, which is the hash output of the transaction tx, i.e., id_tx = Hz(tx).

Trans. Cluster i A transaction tx is said to belong to Cluster i if Hz(tx) mod n = i− 1.

TA,B A transaction made from Client A to Client B,
where A and B denote the transaction addresses of clients.

OP Each transaction has one or multiple official parent (OP) transactions, except for the genesis transactions.
Genesis transactions were accepted by all nodes either initially or at specific events according to policy.

VP Each proposal for a transaction tx at height h is linked to a previous transaction tx′

accepted at height h− 1 on the same chain. tx′ is called the virtual parent (VP) of tx.

sig A threshold signature of a transaction.
sig_op A threshold signature of an official parent transaction.
sig_vp A threshold signature of a virtual parent transaction.

THeightAccept THeightAccept[(j, h
⋄)] records one and only one sig at a given height h⋄ of Chain j.

THeightAcceptLock THeightAcceptLock[(j, h
⋄)] records a sig locked at a height h⋄ (with AW ≥ 2),

and all previous heights were already locked.

HHeight HHeight[j] denotes the top accepted height of Chain j.

HHeightLock HHeightLock[j] = h⋄ denotes the top locked height of Chain j,
meaning that heights h⋄, h⋄ − 1, . . . , 1 of Chain j are locked.

AW If tx is accepted at height h⋆ of Chain j, and HHeight[j] denotes the top accepted height of Chain j,
then the acceptance weight (AW) of tx is at least HHeight[j]− h⋆ + 1.

MProposedLock MProposedLock[e
⋆][j] denotes the largest index of locked proposals of Chain j at Epoch e⋆.

A proposal is said to be locked if it has been processed and passed the check,
and all preceding proposals in the same epoch and all voted proposals of Chain j have also been locked.

MProposedVoted MProposedVoted[j]=[e⋆,m⋆, tx] records the information of recent voted proposal of Chain j.

TSigAccept A dictionary containing a set of entries of the form {sig : content} for accepted transactions.

TTxAccept A dictionary containing a set of entries of the form {id_tx : [tx, sig, sig′, . . . ]} for accepted transactions.

WTxWeight2 A dictionary containing a set of entries of the form {id_tx : [j, h⋄, sig⋄, sig]} with AW ≥ 2.

WTxWeight3 A dictionary containing a set of entries of the form {id_tx : [j, h′, sig′, sig⋄, sig]} with AW ≥ 3.

PProposal A dictionary containing a set of entries of the form {(j, e⋆,m⋆) : [content_h, content]},
where each entry represents a proposal from Node j at Epoch e⋆ with index m⋆.

Pproof A dictionary containing a set of entries of the form {(j, e⋆,m⋆) : (j, e⋆,m⋆, e⋄,m⋄, sig_vp, proof)},
where each entry records a proof proof included in the proposal from Node j at Epoch e⋆ with index m⋆.

TOChildren A dictionary containing a set of entries of the form {(id_op, op_index) : [id_tx, tx]},
where each entry represents a transaction ID id_op with recipient index op_index that has been validly

linked as an official parent by a transaction tx with ID id_tx.
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TABLE III
SOME NOTATIONS FOR THE PROPOSED Ocior PROTOCOL (CONTINUED).

Notations Interpretation

TNewTxDic A dictionary containing pending transactions.

TNewSelfIDQue A FIFO queue containing IDs of pending transactions within Cluster i, maintained by this node i.

TConfTxDic A dictionary containing transactions that conflict with other transactions.

TProposedIDSet A set containing IDs of transactions that have been proposed by this node i.
TAW1ProposedIDSet A set containing IDs of accepted transactions that have been proposed by this node i.

TNewIDSet A randomized set containing IDs of pending transactions.
TNewIDSetPO A randomized set of IDs of pending transactions proposed by other nodes.
TNewIDSetPOLE A randomized set of IDs of pending transactions proposed by other nodes in the last epoch.
TAW1IDSetPO A randomized set of IDs of accepted transactions (1≤AW<3) proposed by other nodes.
TAW1IDSetPOLE A randomized set of IDs of accepted transactions (1≤AW<3) proposed by other nodes in last epoch.

tx_ini An initial transaction.
sig_ini An initial signature for tx_ini.

content_ini content_ini = (0, 0, 0, 0, tx_ini,⊥,⊥) represents an initial content of signature sig_ini.
id_tx_ini id_tx_ini = Hz(tx_ini).

content_hash_ini content_hash_ini = H(content_ini).

D D[(e,m)] = 1 indicates the m-th proposal is complete; otherwise, it is incomplete, m∈ [0,mmax].

L The number of layers for LTS scheme.
nℓ The size of each group at Layer ℓ, for ℓ ∈ [L].
kℓ A threshold on the number partial signatures within a group at Layer ℓ, for ℓ ∈ [L].
tℓ tℓ = nℓ − kℓ, for ℓ ∈ [L] .

LTS Requirements n =
∏L

ℓ=1 nℓ and
∏L

ℓ=1 kℓ ≥ k

BLTSBook BLTSBook[(e
⋆, j)]→ j▽ maps Node j to a new index j▽ for Epoch e⋆,

based on the index shuffling of Epoch e⋆.

i▽ i▽ is the new index of this node i for LTS scheme,
based on index shuffling, which will be changed every epoch.

D.pop(key) D.pop(key) returns the value associated with the key key from a dictionary D,
and then removes this key-value pair from D.

D.pop(key,None) D.pop(key,None) returns the value None if the key key is not in a dictionary D;
otherwise, it behaves the same as D.pop(key).

Time D.pop(key): O(1) on average.
Complexities D.pop(key,None): O(1) on average.

Randomized Set A randomized set is implemented internally using a list and a dictionary.

R.get_random() The operation R.get_random() returns a randomly selected value from a randomized set R.

Time R.add(): O(1) on average, in a randomized set R.
Complexities R.remove(): O(1) on average, in a randomized set R.

R.get_random(): O(1), in a randomized set R.

Q.append() Q.append() adds an item to the back of a FIFO queue Q.
Q.popleft() Q.popleft() returns and removes an item from the front of a FIFO queue Q.

Time Q.append(): O(1) amortized, in a FIFO queue.
Complexities R.popleft(): O(1), in a FIFO queue.

Parameter mseed When m = mseed, this node activates SeedGen protocol with other nodes to generate a random seed.
The random seed is used to shuffle the node indices for the LTS scheme for the next epoch.

Parameter mtxself A parameter (positive integer) that is set as, e.g., mtxself = 2.

Parameter mtxpo A parameter (positive integer) that is set as, e.g., mtxpo = ⌈n/10⌉.
New First, select id_tx from TNewIDSetPOLE or TAW1IDSetPOLE, if they are not empty.

Transaction If they are both empty, select id_tx from TNewSelfIDQue with probability 1/mtxself .
Selection Otherwise, select id_tx from TNewIDSetPO with probability (1− 1

mtxself
) · 1

mtxpo
.

Rule Finally, select id_tx from TNewIDSet with the remaining probability.

H A hash function H : {0, 1}∗→G maps messages to elements in G and is modeled as a random oracle.

Hz A hash function Hz : {0, 1}∗→Zp maps messages to elements in Zp and is modeled as a random oracle.

∆delay A preset delay parameter.
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Algorithm 5 Ocior protocol. Code is shown for Node i.

Initialization:
1: global Sets or Dictionaries TSigAccept ← {}; TTxAccept ← {};WTxWeight2 ← {};WTxWeight3 ← {}; HHeight ←
{};HHeightLock ← {}; THeightAcceptLock ← {}; THeightAccept ← {}; TOChildren ← {};PProposal ← {};PMyProposal ←
{};PProposalPending ← {};Ats ← {};Alts ← {};BLTSBook ← {}; Cadkg ← {};SSeed ← {};VSeed ← {}; TNewTxDic ←
{}; TProposedIDSet ← {}; TAW1ProposedIDSet ← {}; TConfTxDic ← {};D ← {};MProposedLock ← {};MProposedVoted ←
{};NNeedPropVP ← {};NNeedPropHL ← {};NNeedPropML ← {};Pproof ← {};AAPSSent ← {}

2: global Randomized Sets TNewIDSet ← {}; TNewIDSetPO ← {}; TNewIDSetPOLE ← {}; TAW1IDSetPO ← {}; TAW1IDSetPOLE ← {}
3: global FIFO Queue TNewSelfIDQue ← []
4: global e← 1; h← 0;m← 0; ∆delay ← a preset delay parameter
5: global n← the total number of consensus nodes; t← the maximum number of corrupted nodes tolerated, for t < n

3
; k = ⌈n+t+1

2
⌉

6: global mmax ← the maximum number of transactions that can be proposed by a node in an epoch, typically set as mmax > n2

7: global mseed ← ⌈mmax/2⌉; mtxself ← 2; mtxpo ← ⌈n/10⌉; hdm ← ⌈n logn⌉; eout ← n
8: global L← number of layers for LTS scheme // LTS parameter requirements: n =

∏L
ℓ=1 nℓ and

∏L
ℓ=1 kℓ ≥ k

9: global nℓ ← the size of each group at Layer ℓ, for ℓ ∈ [L]
10: global kℓ ← the threshold on the number partial signatures within a group at Layer ℓ, for ℓ ∈ [L]
11: global tℓ ← nℓ − kℓ, for ℓ ∈ [L]; i▽ ← i; myproof ← ⊥; myprooftx← ⊥; myproposal← ⊥;
12: global tx_ini← an initial transaction; sig_ini← an initial signature; content_ini← (0, 0, 0, 0, tx_ini,⊥,⊥)
13: global id_tx_ini← Hz(tx_ini); content_hash_ini← H(content_ini); MProposedLock[e]← {}
14: BLTSBook[(e, j)]← j; HHeight[j]← 0; HHeightLock[j]← 0;MProposedLock[e][j]← 0, ∀j ∈ [n]
15: TSigAccept[sig_ini]← content_ini; TTxAccept[id_tx_ini]← [tx_ini, sig_ini]
16: THeightAcceptLock[(j, 0)]← [id_tx_ini, sig_ini,⊥]; THeightAccept[(j, 0)]← [id_tx_ini, sig_ini,⊥], ∀j ∈ [n]
17: PProposal[(j, 0, 0)]← [content_hash_ini, content_ini], ∀j ∈ [n]
18: run OciorADKG[e] protocol with other nodes to generate threshold signature keys for Epoch e
19: wait until OciorADKG[e] outputs ske,i, skle,i▽ , [pke, pke,1, . . . , pke,n], and [pkle, pkle,1, . . . , pkle,n] as global parameters
20: Cadkg ← Cadkg ∪ {1}; D[(e,m⋆)]← 0,∀m⋆ ∈ [mmax]; D[(e,m)]← 1

// ************************************************ As a Proposer ***********************************************
21: upon (D[(e,m)] = 1) ∧ (m < mmax) do:
22: m← m+ 1
23: if (m = 1) ∧ (e > 1) then // in this case, re-propose the last proposal (in the previous epoch) but replace the indices with e,m
24: (PROP, ∗, ∗, ∗, h, tx, sig_vp, sig_op_tuple, content_op_tuple, e⋄,m⋄,myproof,myprooftx)← myproposal
25: else // in this case, propose a new proposal
26: [∗, sig_vp, ∗]← THeightAccept[(i,HHeight[i])]
27: (∗, e⋄,m⋄, ∗, ∗, ∗, ∗)← TSigAccept[sig_vp]
28: h← HHeight[i] + 1 // sig_vp is a recently accepted sig of this Chain i, accepted at HHeight[i], at Epoch e⋄ with index m⋄

29: [tx, sig_op_tuple, content_op_tuple,myprooftx]← GetNewTx() // return a new legitimate tx with AW(tx) < η

30: content← (i, e,m, h, tx, sig_vp, sig_op_tuple); content_h← H(content)
31: PMyProposal[(i, e,m)]← [content_h, content]
32: myproposal← (PROP, i, e,m, h, tx, sig_vp, sig_op_tuple, content_op_tuple, e⋄,m⋄,myproof,myprooftx)
33: send myproposal to Node j, ∀j ∈ [n]

// ************************************************ As a Voter ************************************************
34: upon receiving (PROP, j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple, content_op_tuple, e⋄,m⋄, proof, prooftx) from Node j ∈ [n] do:
35: if e⋆ > e then
36: wait until e ≥ e⋆ // record this pending proposal in PProposalPending[e

⋆], and then open it for processing when e ≥ e⋆

37: if (j, e⋆,m⋆) /∈ PProposal and m⋆ ∈ [mmax] and h⋆ ≥ 1 then
38: content← (j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple)
39: content_h← H(content)
40: PProposal[(j, e

⋆,m⋆)]← [content_h, content]
41: Pproof [(j, e

⋆,m⋆)]← (j, e⋆,m⋆, e⋄,m⋄, sig_vp, proof)
42: pp_input_tuple← (j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple, content_op_tuple, e⋄,m⋄, content_h, prooftx)
43: if (j, e⋄,m⋄) ∈ PProposal then
44: ProposalProcess(pp_input_tuple)
45: else if (j, e⋄,m⋄) ∈ NNeedPropVP then
46: (∗, e′,m′, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗)← NNeedPropVP[(j, e

⋄,m⋄)]
47: if (e⋆ > e′) ∨ ((e⋆ = e′) ∧ (m⋆ > m′)) then
48: NNeedPropVP[(j, e

⋄,m⋄)]← pp_input_tuple
49: else
50: NNeedPropVP[(j, e

⋄,m⋄)]← pp_input_tuple
51: if (j, e⋆,m⋆) ∈ NNeedPropVP then
52: input_tuple← NNeedPropVP.pop((j, e

⋆,m⋆)) //return value associated with the key and remove key-value from dictionary
53: ProposalProcess(input_tuple)
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54: procedure ProposalProcess(j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple, content_op_tuple, e⋄,m⋄, content_h, prooftx)
// ** Before running this, make sure (j, e⋄,m⋄) ∈ PProposal. **
// ** Run this to make sure sig_vp is accepted and the only one VP accepted at h⋆ − 1 of Chain j, before further executions. **
// ** Also make sure HHeightLock[j] = max{h⋆ − 2, 0}, before further executions. **

55: if (j, e⋄,m⋄) ∈ PProposal then
56: [∗, content_vp]← PProposal[(j, e

⋄,m⋄)]
57: acheck_indicator ← Accept(sig_vp, content_vp)
58: (j⋄, ∗, ∗, h⋄, ∗, ∗, ∗)← content_vp
59: if (h⋄ = h⋆ − 1) ∧ (acheck_indicator = true) ∧ ((j, h⋄) ∈ THeightAccept) ∧ (j⋄ = j) then
60: [∗, sig⋄, ∗]← THeightAccept[(j, h

⋄)]
61: if sig⋄ = sig_vp then // V P check is good at this point
62: HeightLockUpdate(j) // interactively update THeightAcceptLock,HHeightLock[j],WTxWeight2,WTxWeight3 for Chain j
63: h′ ← HHeightLock[j]; in_tuple← (j, e⋆,m⋆, h⋆, tx, sig_op_tuple, content_op_tuple, content_h, prooftx)
64: if h′ = max{h⋆ − 2, 0} then
65: ProposalProcessHL(in_tuple)
66: else if h′ < h⋆ − 2 then
67: if (j, h⋆ − 2) /∈ NNeedPropHL then
68: NNeedPropHL[(j, h

⋆ − 2)]← in_tuple
69: else
70: (∗, e′,m′, ∗, ∗, ∗, ∗, ∗, ∗)← NNeedPropHL[(j, h

⋆ − 2)]
71: if (e⋆ > e′) ∨ ((e⋆ = e′) ∧ (m⋆ > m′)) then
72: NNeedPropHL[(j, h

⋆ − 2)]← in_tuple
73: else if (h′ > h⋆ − 2) ∧ ((j, h′) ∈ NNeedPropHL) then
74: input_tuple← NNeedPropHL.pop((j, h

′))
75: ProposalProcessHL(input_tuple)
76: return
77: procedure ProposalProcessHL(j, e⋆,m⋆, h⋆, tx, sig_op_tuple, content_op_tuple, content_h, prooftx)

// ** Before running this, make sure HHeightLock[j] = max{h⋆ − 2, 0} and sig_vp has been accepted at h⋆ − 1. **
// ** Run this to make sure MProposedLock[e

⋆][j] = m⋆ − 1 before further executions. **
78: if HHeightLock[j] = max{h⋆ − 2, 0} then
79: ProofCheckNPLUpdate(j, e⋆) // interactively check proof and update MProposedLock[e

⋆][j]
80: m′′ ←MProposedLock[e

⋆][j]; in_tuple← (j, e⋆,m⋆, h⋆, tx, sig_op_tuple, content_op_tuple, content_h, prooftx)
81: if m′′ = m⋆ − 1 then // previous proposals proposed by Node j have been checked at this point
82: ProposalProcessHLML(in_tuple)
83: else
84: NNeedPropML[(j, e

⋆,m⋆ − 1)]← in_tuple
85: if ((j, e⋆,m′′) ∈ NNeedPropML) ∧ (m′′ ≥ m⋆) then // just vote for the most recent proposal proposed from Node j
86: input_tuple← NNeedPropML.pop((j, e

⋆,m′′))
87: ProposalProcessHLML(input_tuple)
88: return
89: procedure ProposalProcessHLML(j, e⋆,m⋆, h⋆, tx, sig_op_tuple, content_op_tuple, content_h, prooftx)

// ** To vote, make sure sig_vp is accepted and is the right VP (and the only one VP) accepted at h⋆ − 1 of Chain j. **
// ** To vote, also make sure HHeightLock[j] = max{h⋆ − 2, 0} and MProposedLock[e

⋆][j] = m⋆ − 1. **
90: if HHeightLock[j]=max{h⋆−2, 0} and MProposedLock[e

⋆][j]=m⋆−1 and size(sig_op_tuple)=size(content_op_tuple) then
91: num_op← size(sig_op_tuple); all_indicator ← true; id_tx← Hz(tx)
92: for α ∈ range(num_op) do
93: acheck_indicator ← Accept(sig_op_tuple[α], content_op_tuple[α])
94: all_indicator ← all_indicator ∧ acheck_indicator
95: if all_indicator then
96: [check_indicator, tx_conflict]← CheckTx(tx) //return true if accepted already, otherwise, make sure tx is legitimate
97: checkp_indicator←CheckProofTx(check_indicator, tx_conflict, tx, sig_op_tuple, prooftx) //vote if tx has APS
98: if (check_indicator = true) ∨ (checkp_indicator = true) then
99: [id_tx′′, ∗, ∗]← THeightAcceptLock[(j,max{h⋆ − 3, 0})]; [∗, sig′, ∗]← THeightAcceptLock[(j,max{h⋆ − 2, 0})]

100: [id_tx⋄, sig⋄, sig_vp⋄]← THeightAccept[(j, h
⋆ − 1)]

101: if ((j, h⋆ − 1) /∈ AAPSSent) ∧ (h⋆ − 2 ≥ 0) ∧ (sig_vp⋄ = sig′) then
102: content⋄ ← TSigAccept[sig

⋄]; content′ ← TSigAccept[sig
′]; AAPSSent ← AAPSSent ∪ {(j, h⋆ − 1)}

103: send (APS, sig′, content′, sig⋄, content⋄) to one randomly selected RPC node
104: TNewIDSetPO.remove(id_tx′′); TNewTxDic.pop(id_tx′′, None); TNewIDSetPO.add(id_tx); TNewTxDic[id_tx]← tx
105: TAW1IDSetPO.remove(id_tx′′); TAW1IDSetPOLE.remove(id_tx′′); TAW1IDSetPO.add(id_tx⋄);
106: TNewIDSetPOLE.remove(id_tx′′)
107: if e⋆ = e and MProposedLock[e

⋆][j]=m⋆−1 then // vote for the current epoch only
108: send (VOTE, j, e⋆,m⋆,TS.Sign(ske⋆,i, content_h), LTS.Sign(skle⋆,i▽ , content_h)) to Node j
109: MProposedVoted[j]← [e⋆,m⋆, tx]

110: else if (tx_conflict ̸= ⊥) ∧ (e⋆ = e) then
111: send (CONF, j, e⋆,m⋆, tx_conflict) to Node j
112: return
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// ************************************************ As a Proposer ***********************************************
113: upon receiving (CONF, i, e⋆,m⋆, tx_conflict) from a node, and (i, e⋆,m⋆)∈PMyProposal, D[(e⋆,m⋆)] = 0, e⋆=e, m⋆=m do:
114: if myprooftx = ⊥ then // if myprooftx ̸= ⊥, then myprooftx should be a valid APS for tx; honest nodes should vote for it
115: [∗, content]← PMyProposal[(i, e

⋆,m⋆)]; (∗, ∗, ∗, ∗, tx, ∗, ∗)← content
116: ccheck_indicator ← ConflictTxCheck(tx, tx_conflict) // ccheck_indicator = true means: tx conflicts with tx_conflict
117: if ccheck_indicator = true then
118: myproof ← (C, e⋆,m⋆, tx_conflict); D[(e⋆,m⋆)]← 1

119: upon receiving (VOTE, i, e⋆,m⋆, vote, votel) from Node j, and (i, e⋆,m⋆) ∈ PMyProposal, D[(e⋆,m⋆)] = 0, e⋆ = e, m⋆ = m do:
120: [content_h, content]← PMyProposal[(i, e

⋆,m⋆)]; j▽ ← BLTSBook[(e
⋆, j)]

121: if TS.Verify(pke⋆,j , vote, content_h) = true and LTS.Verify(pkle⋆,j▽ , votel, content_h) = true then
122: [indicator, sig]← SigAggregationLTS((e⋆,m⋆), e⋆, j▽, votel, content_h) // see Line 18 of Algorithm 4
123: if indicator = true and D[(e⋆,m⋆)] = 0 then
124: Accept(sig, content); (∗, ∗, ∗, ∗, ∗, sig_vp, ∗)← content; content_vp← TSigAccept[sig_vp]
125: send (APS, sig_vp, content_vp, sig, content) to RPC nodes
126: myproof ← ⊥; D[(e⋆,m⋆)]← 1

127: if (e⋆,m⋆) /∈ Ats then Ats[(e
⋆,m⋆)]← {j : vote} else Ats[(e

⋆,m⋆)][j]← vote

128: upon |Ats[(e
⋆,m⋆)]| = n− t, and (i, e⋆,m⋆) ∈ PMyProposal, and D[(e⋆,m⋆)] = 0, and e⋆ = e, m⋆ = m do:

129: wait for ∆delay time // to include more partial signatures and complete LTS scheme, if possible, within the limited delay time
130: if D[(e⋆,m⋆)] = 0 then
131: [content_h, content]← PMyProposal[(i, e

⋆,m⋆)]
132: sig ← TS.Combine(n, k,Ats[ID], content_h)
133: if D[(e⋆,m⋆)] = 0 then
134: Accept(sig, content); (∗, ∗, ∗, ∗, ∗, sig_vp, ∗)← content; content_vp← TSigAccept[sig_vp]
135: send (APS, sig_vp, content_vp, sig, content) to RPC nodes
136: myproof ← ⊥; D[(e⋆,m⋆)]← 1

// *********************************** As a Node ************* (Process New Transactions and HMDM) ***********
137: upon receiving (TX, tx, sig_op_tuple, content_op_tuple) message the first time do: // process new transactions
138: NewTxProcess(tx, sig_op_tuple, content_op_tuple)
139: upon HHeightLock[j] = h⋄ such that h⋄ mod hdm = 0 and h⋄ > 0 for j ∈ [n] do: // HMDM sig & contents in locked chains
140: ID← (j, h⋄ − hdm + 1, h⋄); w ← [] // the index of w begins with 0
141: for h′ ∈ [h⋄ − hdm + 1, h⋄] do
142: [∗, sig, ∗]← THeightAcceptLock[(j, h

′)]; content← TSigAccept[sig]; w[h′ − (h⋄ − hdm + 1)]← (sig, content)

143: pass w into OciorHMDMh[ID] as an input // see Algorithm 1
144: upon OciorHMDMh[(j, h⋄−hdm+1, h⋄)] outputting w :=[(sigj,h⋄−hdm+1, contentj,h⋄−hdm+1), . . . ,(sigj,h⋄ , contentj,h⋄)],j∈ [n] do:
145: accept the signatures and contents from w with height > HHeightLock[j] if any are missing in Chain j at this node
146: upon Chain j not growing for eout epochs, with HHeightLock[j] = h⋄ and h⋄ > 0, where j ∈ [n], do:
147: for h′ ∈ [h⋄ − ⌊h⋄/hdm⌋ · hdm, h

⋄ + 1] do // HHeightLock[j] = h⋄ implies (j, h′) ∈ THeightAccept for 1 ≤ h′ ≤ h⋄ + 1
148: [∗, sig, ∗]← THeightAccept[(j, h

′)]; content← TSigAccept[sig]
149: send (APSI, sig, content) to all consensus nodes and all RPC nodes
150: upon receiving (APSI, sig, content) message the first time do:
151: if sig /∈ TSigAccept then Accept(sig, content)

// ************************************ As a Node ************ (Key Regeneration and Epoch Transition) ************
152: upon m = mseed, at the current epoch e do:
153: pass a value m⋆ = mseed into SeedGen[e] as an input
154: upon SeedGen[e] outputs a random value seed at the current epoch e do:
155: update BLTSBook for Epoch e+ 1 based on seed; and pass updated BLTSBook into OciorADKG[e+ 1]

156: upon OciorADKG[e+ 1] outputs ske+1,i, skle+1,BLTSBook[e+1,i], [pke+1, pke+1,1,. . ., pke+1,n], [pkle+1, pkle+1,1,. . ., pkle+1,n] do:
157: Cadkg ← Cadkg ∪ {e+ 1}
158: upon m = mmax and e+ 1 ∈ Cadkg and |TAW1IDSetPO| ≥ 4 and (EPOCH, e) not yet sent do:
159: send (EPOCH, e) to all nodes
160: upon receiving n− t (EPOCH, e) messages from distinct nodes and e+ 1 ∈ Cadkg and (EOK, e) not yet sent do:
161: send (EOK, e) to all nodes
162: upon receiving t+ 1 (EOK, e⋆) messages from distinct nodes and e⋆ + 1 ∈ Cadkg and (EOK, e⋆) not yet sent, for e⋆ ≥ 1 do:
163: send (EOK, e⋆) to all nodes
164: upon receiving 2t+ 1 (EOK, e) messages from distinct nodes and e+ 1 ∈ Cadkg do:
165: if (EOK, e) not yet sent then send (EOK, e) to all nodes
166: e← e+ 1; m← 0; update parameter ∆delay

167: D[(e,m⋆)]← 0,∀m⋆ ∈ [mmax]; MProposedLock[e]← {}; MProposedLock[e][j]← −1, ∀j ∈ [n]; i▽ ← BLTSBook[e, i]
168: TNewIDSetPOLE ← TNewIDSetPOLE ∪ TNewIDSetPO; TAW1IDSetPOLE ← TAW1IDSetPOLE ∪ TAW1IDSetPO

169: erase all old private key shares {ske′,i, skle′,∗}e−1
e′=1 and any temporary data related to those secrets of old epochs

170: D[(e,m)]← 1; then go to a new epoch
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Algorithm 6 Algorithms for Ocior protocol. Code is shown for Node i.

1: procedure HeightLockUpdate(j)
// ** Interactively update THeightAcceptLock, HHeightLock[j], WTxWeight2, and WTxWeight3 for Chain j. **

2: h⋄ ← HHeightLock[j]
3: while ((j, h⋄ + 1) ∈ THeightAccept) ∧ ((j, h⋄ + 2) ∈ THeightAccept) do
4: [∗, sig, sig_vp]← THeightAccept[(j, h

⋄ + 2)]
5: [id_tx⋄, sig⋄, sig_vp⋄]← THeightAccept[(j, h

⋄ + 1)]
6: [id_tx′, sig′, ∗]← THeightAcceptLock[(j, h

⋄)]
7: if (sig_vp = sig⋄) ∧ (sig_vp⋄ = sig′) then
8: THeightAcceptLock[(j, h

⋄ + 1)]← [id_tx⋄, sig⋄, sig_vp⋄]
9: HHeightLock[j]← h⋄ + 1

10: WTxWeight2[id_tx⋄]← [j, h⋄ + 1, sig⋄, sig] // sig⋄ (locked) → sig (not locked) accepted at heights h⋄ + 1 and h⋄ + 2
11: WTxWeight3[id_tx′]← [j, h⋄, sig′, sig⋄, sig] // sig′ → sig⋄ → sig are accepted in Chain j; the first two are locked
12: else
13: return
14: h⋄ ← h⋄ + 1

15: return

16: procedure ProofCheckNPLUpdate(j, e⋆)
17: if (e⋆ = e) ∧ (j ∈MProposedVoted) then
18: [e△,m△, tx△]←MProposedVoted[j]
19: if MProposedLock[e

⋆][j] = −1 then // MProposedLock[e
⋆][j] is initialized to 0 when e⋆ = 1, and to −1 when e⋆ > 1

20: ProofCheckNPLUpdateNormal(j, e△)
21: if MProposedLock[e

△][j] ≥ m△ then
22: MProposedLock[e

⋆][j]← max{MProposedLock[e
⋆][j], 0}

23: else
24: e′ ← e△ + 1
25: while e′ ≤ e⋆ do
26: ProofCheckNPLUpdateSpecicial(j, e′)
27: if MProposedLock[e

′][j] ≥ 1 then
28: MProposedLock[e

⋆][j]← max{MProposedLock[e
⋆][j], 0}

29: break
30: e′ ← e′ + 1

31: if MProposedLock[e
⋆][j] ≥ 0 then

32: ProofCheckNPLUpdateNormal(j, e⋆)

33: return

34: procedure ProofCheckNPLUpdateNormal(j, e⋆)
35: m⋆ ←MProposedLock[e

⋆][j] + 2
36: while ((j, e⋆,m⋆) ∈ Pproof) ∧ ((j, e⋆,m⋆ − 1) ∈ PProposal) ∧ (m⋆ ≥ 2) ∧ (MProposedLock[e

⋆][j] ≥ 0) do
37: input_tuple← Pproof [(j, e

⋆,m⋆)]
38: pcheck_indicator ← ProofCheck(input_tuple) // check on proof for a previously proposed transaction, only for m⋆ ≥ 2
39: if pcheck_indicator = true then
40: MProposedLock[e

⋆][j]←MProposedLock[e
⋆][j] + 1

41: else
42: return
43: m⋆ ←MProposedLock[e

⋆][j] + 2

44: return

45: procedure ProofCheckNPLUpdateSpecicial(j, e⋆)
46: if (MProposedLock[e

⋆][j]<1) ∧ ((j, e⋆, 2)∈Pproof) ∧ ((j, e⋆, 1)∈PProposal) ∧ (j∈MProposedVoted) then
47: [∗, ∗, tx△]←MProposedVoted[j]; input_tuple′′ ← Pproof [(j, e

⋆, 2)]
48: [∗, content]← PProposal[(j, e

⋆, 1)]; (∗, ∗, ∗, ∗, tx, ∗, ∗)← content
49: if tx△ = tx then
50: MProposedLock[e

⋆][j]← max{MProposedLock[e
⋆][j], 0}

51: if MProposedLock[e
⋆][j] = 0 then

52: pcheck_indicator ← ProofCheck(input_tuple′′)
53: if pcheck_indicator = true then
54: MProposedLock[e

⋆][j]←MProposedLock[e
⋆][j] + 1

55: else
56: return
57: return
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58: procedure ProofCheck(j, e⋆,m⋆, e⋄,m⋄, sig_vp, proof ) // only for m⋆ ≥ 2
// ** Check on the proof for a transaction tx previously proposed by Node j **
// ** If the proposed tx conflicts with other transaction, then remove it from TNewTxDic, TNewIDSetPO and TNewIDSetPOLE. **

59: pcheck_indicator ← false
60: if m⋆ ≥ 2 then
61: if (e⋆ = e⋄) ∧ (m⋆ = m⋄ + 1) ∧ ((j, e⋄,m⋄) ∈ PProposal) then
62: [content_h, content]← PProposal[(j, e

⋄,m⋄)]
63: if TS.Verify(pke⋆ , sig_vp, content_h) = true then pcheck_indicator ← true

64: return pcheck_indicator
65: if proof takes the form proof :=(C, e◦,m◦, tx_conflict) and ((j, e⋆,m⋆−1) ∈ PProposal)∧ (e◦=e⋆)∧ (m◦=m⋆−1) then
66: [∗, content]← PProposal[(j, e

⋆,m⋆ − 1)]; (∗, ∗, ∗, ∗, tx, ∗, ∗)← content
67: ccheck_indicator ← ConflictTxCheck(tx, tx_conflict)
68: if ccheck_indicator = true then // ccheck_indicator = true means: tx conflicts with tx_conflict
69: pcheck_indicator ← true; id_tx← Hz(tx)
70: TNewIDSetPO.remove(id_tx); TNewTxDic.pop(id_tx,None); TNewIDSetPOLE.remove(id_tx)
71: return pcheck_indicator
72: return pcheck_indicator

73: procedure CheckTx(tx)
// ** Return true if tx has been already accepted. **
// ** Return true if 1) the signature is valid; 2) the address matches; 3) the amount matches; and 4) no double spending. **

74: id_tx← Hz(tx)
75: if id_tx ∈ TTxAccept then return [true,⊥]
76: id_op_tuple← the tuple of IDs of official parents of tx, obtained from tx
77: op_index_tuple← the tuple of indices referring to the sender address of tx in the corresponding ops, obtained from tx
78: sender ← the sender address of tx, obtained from tx; out_amount← the total output amount of tx, obtained from tx
79: fee← the amount of fee of tx, obtained from tx; in_amount← 0
80: if (the signature in tx is NOT valid) ∨ (size(id_op_tuple) ̸= size(op_index_tuple)) then return [false,⊥]
81: if id_tx ∈ TConfTxDic then
82: [∗, tx_conflict]← TConfTxDic[id_tx]
83: return [false, tx_conflict]
84: for α ∈ range(size(id_op_tuple)) do
85: id_op← id_op_tuple[α]; op_index← op_index_tuple[α]
86: if id_op /∈ TTxAccept then return [false,⊥]
87: tx_op← TTxAccept[id_op][0]; op_receiver ← the address of the op_index th recipient in tx_op
88: op_amount← the output amount of the op_index th recipient in tx_op; in_amount← in_amount+ op_amount
89: if op_receiver ̸= sender then return [false,⊥]
90: if (id_op, op_index) /∈ TOChildren then
91: TOChildren[(id_op, op_index)]← [id_tx, tx] //record to avoid voting for double spending from tx_op; record only one time
92: else
93: [id_tx_conflict, tx_conflict]← TOChildren[(id_op, op_index)]
94: if id_tx_conflict ̸= id_tx then // this means that tx conflicts with another transaction
95: TConfTxDic[id_tx]← [tx, tx_conflict] // record tx as a transaction that conflicts with another transaction
96: return [false, tx_conflict]
97: if in_amount = out_amount+ fee then return [true,⊥] else return [false,⊥]

98: procedure ConflictTxCheck(tx, tx_conflict) // Return true if tx conflicts with tx_conflict.
// ** If tx conflicts with tx_conflict, record TConfTxDic[id_tx]← [tx, tx_conflict]. **

99: OopSetTemporary ← {}
100: if (the signature in tx is valid) ∧ (the signature in tx_conflict is valid) ∧ (tx ̸= tx_conflict) then
101: sender ← the sender address of tx; sender′ ← the sender address of tx_conflict
102: if sender = sender′ then
103: id_tx← Hz(tx); id_op_tuple← the tuple of IDs of official parents of tx, obtained from tx
104: op_index_tuple← the tuple of indices referring to the sender address of tx in the corresponding ops, obtained from tx
105: id_op_tuple′ ← the tuple of IDs of official parents of tx_conflict, obtained from tx_conflict
106: op_index_tuple′ ← the tuple of indices referring to the sender address of tx_conflict in the corresponding ops
107: if (size(id_op_tuple) = size(op_index_tuple)) ∧ (size(id_op_tuple′) = size(op_index_tuple′)) then
108: for α ∈ range(size(id_op_tuple)) do
109: id_op← id_op_tuple[α]; op_index← op_index_tuple[α]; OopSetTemporary.add((id_op, op_index))
110: for α ∈ range(size(id_op_tuple′)) do
111: id_op← id_op_tuple′[α]; op_index← op_index_tuple′[α]
112: if (id_op, op_index) ∈ OopSetTemporary then
113: TConfTxDic[id_tx]← [tx, tx_conflict]
114: return true
115: return false
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116: procedure Accept(sig, content)
// ** Return true if sig is already accepted or is successfully accepted here at the end. **
// ** THeightAccept[(j, h

⋄)] accepts only one sig at a given height h⋄ of Chain j **
117: acheck_indicator ← false
118: if content takes the form content := (j, e⋄,m⋄, h⋄, tx, sig_vp, sig_op_tuple), and e⋄ ≤ e then
119: content_h← H(content)
120: if TS.Verify(pke⋄ , sig, content_h) = true then
121: if sig /∈ TSigAccept then
122: TSigAccept[sig]← content; id_tx← Hz(tx)
123: if id_tx /∈ TTxAccept then TTxAccept[id_tx]← [tx, sig] else TTxAccept[id_tx].append(sig)
124: if (j, h⋄) /∈ THeightAccept then
125: THeightAccept[(j, h

⋄)]← [id_tx, sig, sig_vp]; HHeight[j]← max{HHeight[j], h
⋄}

126: PProposal[(j, e
⋄,m⋄)]← [content_h, content]

127: id_op_tuple← the tuple of IDs of official parents of tx, obtained from tx
128: op_index_tuple← the tuple of indices referring to sender address of tx in the corresponding ops, obtained from tx
129: for α ∈ range(size(id_op_tuple)) do
130: TOChildren[(id_op_tuple[α], op_index_tuple[α])]← [id_tx, tx] // record to avoid voting for double spending
131: acheck_indicator ← true

132: return acheck_indicator

133: procedure NewTxProcess(tx, sig_op_tuple, content_op_tuple)
134: num_op← size(sig_op_tuple); id_tx← Hz(tx)
135: if (num_op = size(content_op_tuple)) ∧ (num_op ≥ 1) ∧ (id_tx /∈ WTxWeight3) ∧ (id_tx /∈ TProposedIDSet) ∧ (id_tx /∈

TNewIDSet) ∧ (id_tx /∈ TConfTxDic) then
136: all_indicator ← true; check_indicator ← false
137: for α ∈ range(num_op) do
138: acheck_indicator ← Accept(sig_op_tuple[α], content_op_tuple[α])
139: all_indicator ← all_indicator ∧ acheck_indicator
140: if all_indicator then
141: [check_indicator, tx_conflict]← CheckTx(tx) // make sure tx is legitimate and no double spending from tx_op
142: if check_indicator = true then
143: TNewTxDic[id_tx]← tx; TNewIDSet.add(id_tx)
144: if id_tx mod n = i− 1 then
145: TNewSelfIDQue.append(id_tx)
146: return
147: procedure GetNewTx()
148: while |TNewIDSetPOLE| > 0 do
149: id_tx← TNewIDSetPOLE.get_random(); TNewIDSetPOLE.remove(id_tx); TNewIDSet.remove(id_tx)
150: [indicator, tx, sig_op_tuple, content_op_tuple, prooftx]← GetNewTxCheck(id_tx)
151: if indicator then
152: TProposedIDSet.add(id_tx)
153: return [tx, sig_op_tuple, content_op_tuple, prooftx]
154: while |TAW1IDSetPOLE| > 0 do
155: id_tx← TAW1IDSetPOLE.get_random(); TAW1IDSetPOLE.remove(id_tx) TNewIDSet.remove(id_tx)
156: [indicator, tx, sig_op_tuple, content_op_tuple, prooftx]← GetNewTxCheck(id_tx)
157: if indicator then
158: TProposedIDSet.add(id_tx); TAW1ProposedIDSet.add(id_tx)
159: return [tx, sig_op_tuple, content_op_tuple, prooftx]
160: while (|TNewSelfIDQue| > 0) ∧ (m mod mtxself = 0) do
161: id_tx← TNewSelfIDQue.popleft(); TNewIDSet.remove(id_tx)
162: [indicator, tx, sig_op_tuple, content_op_tuple, prooftx]← GetNewTxCheck(id_tx)
163: if indicator then
164: TProposedIDSet.add(id_tx)
165: return [tx, sig_op_tuple, content_op_tuple, prooftx]
166: while (|TNewIDSetPO| > 0) ∧ (m mod mtxpo = 0) do
167: id_tx← TNewIDSetPO.get_random(); TNewIDSetPO.remove(id_tx); TNewIDSet.remove(id_tx)
168: [indicator, tx, sig_op_tuple, content_op_tuple, prooftx]← GetNewTxCheck(id_tx)
169: if indicator then
170: TProposedIDSet.add(id_tx)
171: return [tx, sig_op_tuple, content_op_tuple, prooftx]
172: while true do
173: id_tx← TNewIDSet.get_random(); TNewIDSet.remove(id_tx)
174: [indicator, tx, sig_op_tuple, content_op_tuple, prooftx]← GetNewTxCheck(id_tx)
175: if indicator then
176: TProposedIDSet.add(id_tx)
177: return [tx, sig_op_tuple, content_op_tuple, prooftx]
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178: procedure GetNewTxCheck(id_tx)
// ** The acceptance weight of selected id_tx needs to be less than η, i.e., id_tx /∈ WTxWeight3. **
// ** Make sure id_op ∈ TTxAccept, where id_op is the ID of official parent of selected tx. **

179: sig_op_list← [ ]; content_op_list← [ ]; sig_op_tuple← (); content_op_tuple← (); indicator ← false; prooftx← ⊥
180: if ((id_tx /∈ WTxWeight3) ∧ (id_tx /∈ TAW1ProposedIDSet)) ∨ ((|TNewIDSetPOLE| = 0) ∧ (1 ≤ |TAW1IDSetPOLE| ≤ 3)) then
181: if id_tx ∈ TTxAccept then
182: indicator ← true; sig ← TTxAccept[id_tx][1]; TNewTxDic.pop(id_tx,None)
183: content← TSigAccept[sig]; (j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple)← content
184: prooftx← (sig, (j, e⋆,m⋆, h⋆,⊥, sig_vp,⊥))
185: for sig_op ∈ sig_op_tuple do // interactively get from the fist element to the last element in sig_op_tuple
186: content_op← TSigAccept[sig_op]; content_op_list.append(content_op)
187: content_op_tuple← tuple(content_op_list)
188: else if (id_tx ∈ TNewTxDic) ∧ (id_tx /∈ TProposedIDSet) then
189: tx← TNewTxDic.pop(id_tx)
190: [check_indicator, ∗]← CheckTx(tx) // make sure tx legitimate and no double spending
191: if check_indicator then
192: id_op_tuple← the tuple of IDs of official parents of tx, obtained from tx
193: for id_op ∈ id_op_tuple do
194: if id_op ∈ TTxAccept then
195: sig_op← TTxAccept[id_op][1] // if sig_op is in TTxAccept[id_op][1], it should be in TSigAccept (Line 122)
196: content_op←TSigAccept[sig_op]; sig_op_list.append(sig_op); content_op_list.append(content_op)
197: else
198: break
199: if size(sig_op_list) = size(id_op_tuple) then
200: indicator ← true; sig_op_tuple← tuple(sig_op_list); content_op_tuple← tuple(content_op_list)
201: return [indicator, tx, sig_op_tuple, content_op_tuple, prooftx]

202: procedure CheckProofTx(check_indicator, tx_conflict, tx, sig_op_tuple, prooftx)
// ** Return true if tx has a valid APS, or if check_indicator = true, or if tx has been accepted already. **

203: id_tx← Hz(tx)
204: if (check_indicator = true) ∨ (id_tx ∈ TTxAccept) then
205: return true
206: if tx_conflict ̸= ⊥ then
207: if prooftx takes the form prooftx := (sig, content) and content := (j, e⋆,m⋆, h⋆, ∗, sig_vp, ∗) then
208: content′ ← (j, e⋆,m⋆, h⋆, tx, sig_vp, sig_op_tuple);
209: acheck_indicator ← Accept(sig, content′)
210: if acheck_indicator = true then
211: return true
212: return false

Algorithm 7 SeedGen protocol, with an identifier e⋆. Code is shown for Node i.

// ** Generate a random seed to shuffle the indices of nodes, recorded at BLTSBook, for the LTS scheme for the next epoch. **
1: initially set VSeed ← {};VSeed[e⋆]← {};SSeed ← {}
2: upon receiving an input value m⋆, for m⋆ = mseed do:
3: content_h← H(SEED, e⋆)
4: send (SVOTE, i, e⋆,TS.Sign(ske⋆,i, content_h)) to all nodes
5: upon receiving (SVOTE, j, e⋆, vote) from Node j, and e⋆ /∈ SSeed do:
6: content_h← H(SEED, e⋆)
7: if TS.Verify(pke⋆,j , vote, content_h) = true then
8: VSeed[e⋆][j]← vote
9: if |VSeed[e⋆]| = n− t then

10: seed← TS.Combine(n, k,VSeed[e⋆], content_h)
11: SSeed[e⋆]← seed
12: send (SEED, e⋆, seed) to all nodes
13: output seed
14: upon receiving a (SEED, e⋆, seed) message, and e⋆ /∈ SSeed do:
15: if TS.Verify(pke⋆ , seed,H(SEED, e⋆)) = true) then
16: SSeed[e⋆]← seed
17: send (SEED, e⋆, seed) to all nodes
18: output seed
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VI. OciorADKG

We propose an ADKG protocol, called OciorADKG, to generate the keys for both the (n, k) TS scheme
and the (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) LTS scheme under the following constraints:

n =
L∏

ℓ=1

nℓ,
L∏

ℓ=1

kℓ ≥ k, uℓ :=
ℓ∏

ℓ′=1

nℓ′ for each ℓ ∈ [L],

with u0 := 1, for some k ∈ [t+ 1, n− t], and n ≥ 3t+ 1.
The proposed OciorADKG protocol is described in Algorithm 9, and is supported by Algorithm 8. We

also introduce a simple strictly-hiding polynomial commitment (SHPC) scheme (see Definition 31 and
Fig. 9). The proposed SHPC scheme guarantees the Strict Secrecy property: if the prover is honest, then
no adversary can obtain any information about the secret s or the corresponding public key gs until a
specified timing condition is satisfied. This lightweight SHPC scheme is well-suited for designing efficient
and simpler ADKG protocols.

In this work, we focus on describing the proposed OciorADKG protocol and the introduced primitives,
while leaving detailed proofs to the extended version of this paper.

A. Definitions and New Preliminaries

Definition 30 (Strictly-Hiding Verifiable Secret Sharing (SHVSS)). We introduce a new primitive,
SHVSS. The (n, t, k) SHVSS protocol consists of a sharing phase and a reconstruction phase. In the
sharing phase, a dealer D distributes a secret s ∈ Zp into n shares, each sent to a corresponding
node, where up to t nodes may be corrupted by an adversary. In the reconstruction phase, the protocol
guarantees that any subset of at most k − 1 shares reveals no information about s, while any k shares
are sufficient to reconstruct s, for k ∈ [t + 1, n − t]. Unlike traditional verifiable secret sharing (VSS),
the SHVSS protocol guarantees an additional property: Strict Secrecy, defined below. Specifically, the
SHVSS protocol guarantees the following properties, with probability 1−negl(κ) against any probabilistic
polynomial-time (PPT) adversary:

• Global Secrecy: If the dealer is honest, any coalition of up to k − 1 nodes learns no information
about the secret s.

• Private Secrecy: If the dealer is honest, the share held by any honest node remains hidden from the
adversary.

• Correctness: If the dealer is honest and has shared a secret s, any set of k shares can reconstruct s.
• Termination: If the dealer is honest, then every honest node eventually terminates the sharing phase

of SHVSS protocol. Furthermore, if any honest node terminates the sharing phase, then all honest
nodes eventually terminate the sharing phase.

• Completeness: If an honest node terminates in the sharing phase, then there exists a (k− 1)-degree
polynomial ϕ(·) ∈ Zp[x] such that ϕ(0) = s′ and every node i, for i ∈ [n], eventually outputs a key
share si = ϕ(i), as well as commitments of {sj}j∈[n]. Furthermore, if the dealer is honest and has
shared a secret s, then s′ = s.

• Homomorphic Commitment: If some honest nodes output commitments, then these commitments are
additively homomorphic across different SHVSS instances.

• Strict Secrecy: If the dealer is honest, then no adversary can gain any information about the secret
s or the corresponding public key gs until a specified timing condition is satisfied, where g ∈ G is
a randomly chosen generator of a group G.

In the asynchronous setting, we focus on asynchronous SHVSS (ASHVSS). The proposed ASHVSS
protocol, called OciorASHVSS, is described in Algorithm 8.

Definition 31 (Strictly-Hiding Polynomial Commitment (SHPC) Scheme). We propose a simple strictly-
hiding polynomial commitment scheme. The proposed SHPC scheme, called OciorSHPC, is presented in
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Fig. 9. The proposed SHPC scheme guarantees a Strict Secrecy property: if the prover is honest, then no
adversary can gain any information about the secret s := ϕ(0) or the corresponding public key gs until
a specified timing condition is satisfied, where g ∈ G is a randomly chosen generator of a group G and
ϕ(·) ∈ Zp[x] is the committed polynomial. The SHPC scheme consists of the following algorithms.

• SHPC.Setup(1κ) → pp. This algorithm generates the public parameters (pp) based on the security
parameter κ. The algorithms below all input the public parameters (and omitted in the presentation
for simplicity).

• SHPC.Commit(ϕ(·), r, d, n) → v. Given the public parameters pp, a polynomial ϕ(·) of degree d,
the number of evaluation points n, and the random witness r, this algorithm outputs a commitment
vector v to a polynomial ϕ(·) + Hz(r). Here, Hz() :M→ Zp is a hash function.

• SHPC.WitnessCommit(r, t, n) → (h, r). Given the random witness r, this algorithm outputs a
commitment vector h to the witness r, along with a witness share vector r. The witness r can
be reconstructed by any t+ 1 valid witness shares.

• SHPC.Open(ϕ(·), r, i)→ ši. Given i ∈ [n], this algorithm outputs the evaluation ši := ϕ(i) + Hz(r)
of the polynomial ϕ(·) + Hz(r).

• SHPC.WitnessOpen(r, i) → ri. Given i ∈ [n], this algorithm outputs a valid witness share ri, for
r = [r1, r2, . . . , rn].

• SHPC.DegCheck(v, T , d) → true/false. Given a set of evaluation points T and a commitment
vector v, this algorithm returns true if v is a commitment to a polynomial of degree at most d;
otherwise, it returns false.

• SHPC.Verify(vi, ši, hi, ri, i) → true/false. Given the index i ∈ [n], the commitment vi to the i-th
evaluation of a polynomial ϕ(·) + Hz(r) for some random witness r, the commitment hi to the i-th
share of the witness r, this algorithm returns true if ši = ϕ(i) + Hz(r) and Hz(ri) = hi; otherwise,
it returns false.

• SHPC.WitnessReconstruct({(j, hj)}j∈[n], {(j, rj)}j∈T )→ r/⊥. This algorithm returns a witness r if
{rj}j∈T includes |T | ≥ t + 1 valid witness shares that are matched to the commitments {hj}j∈[n];
otherwise, it returns a default value ⊥.

• SHPC.Reconstruct(v, r, ši, i) → (si,v
⋆). Given the index i ∈ [n], the decoded witness r, the

commitment vector v and the evaluation ši = ϕ(i) + Hz(r) of the polynomial ϕ(·) + Hz(r), this
algorithm outputs the evaluation si = ϕ(i) and the commitment vector v⋆ of the polynomial ϕ(·).

Definition 32 (PKI Digital Signatures). Under the Public Key Infrastructure (PKI) setup, Node i holds a
public-private key pair (pk⋄

i , sk
⋄
i ) for digital signatures, a public-private key pair (eki, dki) for verifiable

encryption, and all public keys {pk⋄
j , ekj}j . The signing and verification algorithms for digital signatures

are defined as follows:
• PKI.Sign(sk⋄

i ,H(w)) → σi: Given an input message w, this algorithm produces the signature σi

from Node i using its private key sk⋄
i , for i ∈ [n]. Here, H(·) denotes a hash function.

• PKI.Verify(pk⋄
i , σi,H(w))→ true/false: This algorithm verifies whether σi is a valid signature from

Node i on w using a public key pk⋄
i . It outputs true if verification succeeds, and false otherwise.

Definition 33 (Verifiable Encryption (VE) Scheme [22]). A verifiable encryption scheme for a committed
message consists of the following algorithms. Each Node i holds a public-private key pair (eki, dki), with
eki = gdki , for i ∈ [n]. Public keys {ekj}j are available to all nodes. The scheme employs the Feldman
commitment scheme.

• VE.bEncProve(I, {eki}i∈I , {si}i∈I , {vi}i∈I)→ (c := {(i, ci)}i∈I , πVE). This algorithm takes as input
a set of public keys {eki}i∈I , messages {si}i∈I , and commitments {vi}i∈I . It encrypts each secret
si with ElGamal encryption under the corresponding public key eki = gdki , producing ciphertexts
ci, where dki is the private decryption key held by Node i. It also outputs a non-interactive zero-
knowledge (NIZK) proof πVE attesting that, for all i ∈ I , the commitment satisfies vi = gsi and that
ci is a correct encryption of si.
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OciorSHPC Strictly-Hiding Polynomial Commitment Scheme

SHPC.Setup(1κ)→ pp.
This algorithm generates the public parameters pp = (G,Zp, g) based on the security parameter κ. Here, G is a group
of prime order p, g ∈ G is a randomly chosen generator of the group, and Zp is a finite field of order p.

SHPC.Commit(ϕ(·), r, d, n)→ v.
Here ϕ(·) ∈ Zp[x] is the input polynomial of degree d, and r ∈ Zp is the input random witness.
Let ϕ̌(x) := ϕ(x) + Hz(r) be a new polynomial.
Compute si := ϕ(i), ši := ϕ̌(i) = si + Hz(r), ∀i ∈ [0, n].
Compute and output the commitment vector v for the polynomial ϕ̌(·):

v =
[
gϕ̌(0), gϕ̌(1), gϕ̌(2), . . . , gϕ̌(n)

]
=
[
gs0+Hz(r), gs1+Hz(r), gs2+Hz(r), . . . , gsn+Hz(r)

]
.

SHPC.WitnessCommit(r, t, n)→ (h, r).
Sample t-degree random polynomial φ(·) ∈ Zp[x] with φ(0) = r.
Compute ri := φ(i), ∀i ∈ [n].
Compute the witness share vector: r = [r1, r2, . . . , rn].
Compute hash-based commitment vector h for the shares of the witness r: h = [Hz(r1),Hz(r2), . . . ,Hz(rn)].
The algorithm outputs (h, r).

SHPC.Open(ϕ(·), r, i)→ ši.
This algorithm outputs the evaluation ši := ϕ(i) + Hz(r) of polynomial ϕ(·) + Hz(r).

SHPC.WitnessOpen(r = [r1, r2, . . . , rn], i)→ ri.
Given i ∈ [n], this algorithm outputs a valid witness share ri, for r = [r1, r2, . . . , rn].

SHPC.DegCheck(v = [v0, v1, . . . , vn], T = {0, 1, 2, . . . , n}, d)→ true/false.
Given a set of evaluation points T = {0, 1, 2, . . . , n} and a commitment vector v = [v0, v1, . . . , vn], this algorithm
samples a random polynomial θ(·) ∈ Zp[x] with deg(θ) = |T | − 2− d, and then checks the following condition:∏

i∈T
v
θ(i)·γi

i
?
= 1G,

where γi =
∏

j∈T ,j ̸=i
1

i−j ; and the correct vi takes the form of vi = gϕ̌(i) for a polynomial ϕ̌(·). The algorithm returns
true if the above condition is satisfied; otherwise, it returns false. It is worth noting that for any polynomial f(x)
with deg(f) ≤ |T |− 2, it holds that:

∑
i∈T f(i) · γi = 0 (see Lemma 8 in Appendix A). Furthermore, given deg(θ) =

|T |−2−d and deg(ϕ̌) = d, and let f(x) := ϕ̌(x)·θ(x) ∈ Zp[x], then it is true that deg(f) ≤ deg(ϕ̌)+deg(θ) = |T |−2.

SHPC.Verify(vi, ši, hi, ri, i)→ true/false.
if vi = gši and Hz(ri) = hi then return true else return false

SHPC.WitnessReconstruct({(j, hj)}j∈[n],Wwit := {(j, rj)}j∈T )→ r/⊥.
let T := {j ∈ [n] | (j, rj) ∈ Wwit}
if |T | < t+ 1 then return ⊥
if Hz(rj) = hj , ∀j ∈ T then

interpolate r = φ(0) and all missing ri = φ(i) from {rj}j∈T using Lagrange interpolation
if Hz(rj) = hj , ∀j ∈ [n] then return r else return ⊥

else
return ⊥

SHPC.Reconstruct(v, r, ši, i)→ (si,v
⋆).

Set si = ši − Hz(r)
Set v⋆ = v · g−Hz(r)

return (si,v
⋆)

Fig. 9. The description of the proposed strictly-hiding polynomial commitment scheme OciorSHPC. Here t denotes the maximum number
of dishonest nodes controlled by the adversary. Hz() :M→ Zp is a hash function. We use the degree-checking technique from [21].
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• VE.bVerify(I, {eki}i∈I , {vi}i∈I , c, πVE) → true/false. This algorithm verifies the NIZK proof. It
returns true if πVE is a valid proof that, for each i ∈ I , there exists a value si such that vi = gsi

and ci is a correct encryption of si, where c := {(i, ci)}i∈I . Otherwise, it returns false.
• VE.bDec(dki, ci) → si. This algorithm decrypts ci using the private key dki to recover the original

secret si.

Definition 34 (Asynchronous Partial Vector Agreement (APVA [23])). The APVA problem involves
n nodes, where each node i ∈ [n] starts with an input vector wi of length n. Each entry of wi belongs to
the set V ∪ {⊥o}, where V is a non-empty alphabet, and ⊥o denotes a missing or unknown value (with
⊥o /∈ V). If wi[j] = ⊥o for some j ∈ [n], it means node i lacks a value for the j-th position. Over time,
nodes may learn missing entries and thus reduce the number of ⊥o symbols in their vectors. The objective
of the protocol is for all honest nodes to eventually agree on a common output vector w, which may still
contain missing values. The APVA protocol must satisfy the following properties:

• Consistency: If any honest node outputs a vector w, then every honest node eventually outputs the
same vector w.

• Validity: For any non-missing entry w[j] ̸= ⊥o in the output vector of an honest node, there must
exist at least one honest node i such that wi[j] = w[j] ̸= ⊥o. In addition, the output vector must
contain at least n− t non-missing entries.

• Termination: If all honest nodes have at least n − t common non-missing entries in their input
vectors, then all honest nodes eventually produce an output and terminate.

In this setting, we consider the alphabet to be V = {1} and represent missing values with ⊥o = 0. We
use the efficient APVA protocol proposed in [23], which achieves APVA consensus with an expected
communication complexity of O(n3 log n) bits and an expected round complexity of O(1) rounds. The
APVA protocol in [23] uses an expected constant number of common coins, which can be generated by
efficient coin generation protocols, for example, the protocol in [24], which has an expected communication
cost of O(κn3) and an expected round complexity of O(1).

B. Overview of OciorADKG

The proposed OciorADKG protocol is described in Algorithm 9, while the OciorASHVSS protocol
invoked by OciorADKG is described in Algorithm 8. In addition, OciorADKG invokes the APVA protocol
proposed in [23]. Fig. 10 presents a block diagram of the proposed OciorADKG protocol. The protocol
consists of four phases: (i) ASHVSS phase, (ii) APVA selection phase, (iii) witness reconstruction phase,
and (iv) key derivation phase. The main steps of OciorADKG are outlined below.

1) OciorASHVSS: The goal of this phase is to allow each honest Node i to distribute shares of a
random secret s(i) that it generates, for i ∈ [n]. The final secret corresponds to the agreed-upon set of
secrets generated by the distributed nodes. Each honest node executes the following steps:

• Each node i, i ∈ [n], randomly samples a secret s(i) ∈ Zp and runs OciorASHVSS[(ID, i)](s(i)).
• In parallel, Node i also participates in OciorASHVSS[(ID, j)], ∀j ∈ [n] \ {i}, along with the other

nodes.

In our protocol, we employ the SHPC scheme. Specifically, instead of directly sharing s, Node i shares
the hidden secret

š = s+ Hz(r),

where r is a randomly generated witness. Each node receives its share of š and the corresponding
polynomial commitments, as well as its share of the witness r and the associated hash-based polynomial
commitments.
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Fig. 10. A block diagram of the proposed OciorADKG protocol with an identifier ID, where Aones := {j ∈ [n] | a⋆[j] = 1} and Bones is
obtained from Aones by removing the indices of nodes that did not honestly share their secrets in the OciorASHVSS phase. In the description,
we focus on the example with n = 4 and t = 1.

2) APVA: The goal of this phase is to agree on the set of OciorASHVSS[(ID, j)] instances that correctly
distribute shares of random secrets s(j) generated by Node j, for j ∈ [n]. Due to the SHPC scheme,
agreement on the selected set is completely independent of the values of the secrets s(j). In particular, the
adaptive adversary cannot infer the secrets of honest nodes in order to bias or manipulate the selection
set. Each honest node executes the following steps:

• Each honest node waits for APVA[ID] to output a⋆ such that
∑

j∈[n] a
⋆[j] ≥ n− t, and then sets

Aones := {j ∈ [n] | a⋆[j] = 1}.
Here, a⋆[j] = 1 indicates that Node j has correctly shared its secret.

• Each honest node then waits for OciorASHVSS[(ID, τ)] to output

({v(τ)j }j∈[0,n], {ṽ
(τ)
j }j∈[n], {h

(τ)
j }j∈[n], š

(τ)
i , s̃

(τ)
i▽ , r

(τ)
i )

for every τ ∈ Aones. Here i▽ denotes the index of Node i in the LTS scheme after index shuffling.
The following notions are defined:

– v
(τ)
j : the j-th evaluation of the polynomial commitment of the hidden secret

š(τ) = s(τ) + Hz(r
(τ))

shared by Node τ , for the TS scheme.
– ṽ

(τ)
j : the j-th commitment of š(τ) for the LTS scheme.

– h
(τ)
j : the j-th commitment of the polynomial for the witness r(τ) generated by Node τ .

Specifically, during the OciorASHVSS phase, Node τ samples a t-degree random polynomial
φ(τ)(x) ∈ Zp[x] with φ(τ)(0) = r(τ). It then computes the shares

r
(τ)
j := φ(τ)(j), ∀j ∈ [n],

and the corresponding commitments

h
(τ)
j := Hz(r

(τ)
j ).

– š
(τ)
i : the i-th share of š(τ) for the TS scheme.

– s̃
(τ)
i▽ : the i▽-th share of š(τ) for the LTS scheme.

– r
(τ)
i : the i-th share of the witness r(τ).

3) Witness Reconstruction: In this phase, each honest Node i sends its shares {(τ, r(τ)i )}τ∈Aones to all
other nodes. This exchange enables reconstruction of the witness r(τ) for all τ ∈ Aones. Since at least t+1
honest nodes provide correct shares matched with publicly available commitments, each honest node can
reconstruct every r(τ). If r(τ) matches all of its commitments, then all honest nodes consistently accept
it and add τ to the set Bones. It is guaranteed that |Bones| ≥ t+ 1, ensuring that at least one honest node
contributes to the final secret.
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4) Key Derivation: In this phase each honest Node i derives the keys as follows:

ski =
∑

τ∈Bones

(š
(τ)
i − Hz(r

(τ))); skli▽ =
∑

τ∈Bones

(s̃
(τ)
i▽ − Hz(r

(τ)))

pkj =
∏

τ∈Bones

v
(τ)
j · g−Hz(r(τ)), ∀j ∈ [0, n]

pklj =
∏

τ∈Bones

ṽ
(τ)
j · g−Hz(r(τ)), ∀j ∈ [n]

pk = pk0; pkl = pk0.

Finally Node i outputs
(ski, skli▽ , pk, pkl, {pkj}j∈[n], {pklj}j∈[n]).

The proposed OciorADKG protocol is adaptively secure under the algebraic group model and the
hardness assumption of the one-more discrete logarithm problem. In this work, we focus on describing
the proposed OciorADKG protocol and the introduced primitives, while leaving detailed proofs to the
extended version of this paper.
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Algorithm 8 OciorASHVSS protocol, with an identifier ID. Code is shown for Node i ∈ [n].

// ** This can serve as the ASHVSS protocol for the TS scheme only by simply removing the parts associated with LTS **

// ***** Public and Private Parameters *****
Public Parameters: pp = (G, g); {pk⋄j }j∈[n], {ekj}j∈[n], (n, k) for TS scheme; and (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) for LTS scheme under
the constraints: n =

∏L
ℓ=1 nℓ,

∏L
ℓ=1 kℓ ≥ k, and uℓ :=

∏ℓ
ℓ′=1 nℓ′ for each ℓ ∈ [L], with u0 := 1, for some k ∈ [t + 1, n − t], and

n ≥ 3t+ 1. ∆delay is a preset delay parameter. BLTSBook is a book of index mapping for LTS scheme, available at all nodes.
Set d := k − 1 and dℓ := kℓ − 1 for ℓ ∈ [L]. Set j▽ := BLTSBook[(ID, j)],∀j ∈ [n].
Private Inputs: sk⋄i and dki

1: initially set Cack ← {}

// ***** Code run by Dealer D with input s *****
// ***** for the TS scheme *****

2: sample a d-degree random polynomial ϕ(·) ∈ Zp[x] with ϕ(0) = s, where s ∈ Zp is an input secret
3: randomly generate a witness r ∈ Zp such that r ̸= ⊥
4: v := [v0, v1, . . . , vn]← SHPC.Commit(ϕ(·), r, d, n)
5: (h := [h1, h2, . . . , hn], r := [r1, r2, . . . , rn])← SHPC.WitnessCommit(r, t, n)
6: šj ← SHPC.Open(ϕ(·), r, j), ∀j ∈ [n]
7: rj ← SHPC.WitnessOpen(r, j), ∀j ∈ [n]

// ***** for the LTS scheme *****
8: sample dℓ-degree random polynomials ψℓ,b(·) ∈ Zp[x] for each ℓ ∈ [L] and b ∈ [uℓ−1], such that:

ψ1,1(0) = s, and ψℓ,b(0) = ψℓ−1,βℓ−1,b(ωℓ−1,b), ∀ℓ ∈ [2, L], b ∈ [uℓ−1]

where βℓ,b := ⌈b/nℓ⌉, ωℓ,b := b− (⌈b/nℓ⌉ − 1)nℓ

9: ṽℓ,b := [vℓ,b,0, vℓ,b,1, . . . , vℓ,b,nℓ ]← SHPC.Commit(ψℓ,b(·), r, dℓ, nℓ), ∀ℓ ∈ [L], ∀b ∈ [uℓ−1]
10: set s̃j := ψL,βL,j (ωL,j) + Hz(r), and ṽj := ṽL,βL,j ,ωL,j , ∀j ∈ [n]

11: send (SHARE, ID, vj , šj , hj , rj , ṽj▽ , s̃j▽) to Node j, ∀j ∈ [n]
12: upon receiving (ACK, ID, σj) from Node j for the first time do:
13: if PKI.Verify(pk⋄j , σj ,H(vj , hj , ṽj▽)) = true then
14: Cack ← Cack ∪ {(j, σj)}
15: upon |Cack| = n− t do:
16: wait for ∆delay time // to allow more valid signatures to be included, if possible, within the limited delay time
17: update Cack to include all valid signatures received from distinct nodes
18: let Iack := {j ∈ [n] | (j, σj) ∈ Cack} and Imiss := [n] \ Iack
19: (c(0), π

(0)
VE)← VE.bEncProve(Imiss, {ekj}j∈Imiss , {šj}j∈Imiss , {vj}j∈Imiss)

20: (c(1), π
(1)
VE)← VE.bEncProve(Imiss, {ekj}j∈Imiss , {s̃j▽}j∈Imiss , {ṽj▽}j∈Imiss)

21: broadcast (RBC, ID,v, {ṽℓ,b}ℓ∈[L],b∈[uℓ−1],h, Imiss, Cack, {c(τ), π(τ)
VE}τ∈{0,1}) with a RBC

// ***** Code run by each node *****
22: upon receiving (SHARE, ID, vi, ši, hi, ri, ṽi▽ , s̃i▽) from Dealer D for the first time do:
23: if SHPC.Verify(vi, ši, hi, ri, i) = true and SHPC.Verify(ṽi▽ , s̃i▽ , hi, ri, i) = true then
24: σi ← PKI.Sign(sk⋄i ,H(vi, hi, ṽi▽))
25: send (ACK, ID, σi) to Dealer D
26: upon outputting (RBC, ID,v, {ṽℓ,b}ℓ∈[L],b∈[uℓ−1],h, Imiss, Cack, {c(τ), π(τ)

VE}τ∈{0,1}) from a RBC do:

27: parse v as
[
v0, v1, . . . , vn

]
; parse ṽℓ,b as

[
ṽℓ,b,0, ṽℓ,b,1, . . . , ṽℓ,b,nℓ

]
, ∀ℓ ∈ [L], b ∈ [uℓ−1]

28: parse h as
[
h1, h2, . . . , hn

]
; parse Cack as {(j, σj)}j ; parse c(τ) as {(j, c(τ)j )}j for τ ∈ {0, 1},

29: set ṽj := ṽL,βL,j ,ωL,j , ∀j ∈ [n]
30: check PC.DegCheck(v, d) = true
31: check PC.DegCheck(ṽℓ,b, dℓ) = true, ∀ℓ ∈ [L] and b ∈ [uℓ−1]
32: check PKI.Verify(pk⋄j , σj ,H(vj , hj , ṽj▽)) = true, ∀j ∈ Iack := [n] \ Imiss

33: check VE.bVerify(Imiss, {ekj}j∈Imiss , {vj}j∈Imiss , c
(0), π

(0)
VE) = true

34: check VE.bVerify(Imiss, {ekj}j∈Imiss , {ṽj▽}j∈Imiss , c
(1), π

(1)
VE) = true

35: check v0 = ṽ1,1,0; and ṽℓ,b,0 = ṽℓ−1,βℓ−1,b,ωℓ−1,b , ∀ℓ ∈ [2, L], b ∈ [uℓ−1]
36: if all the above parallel checks pass then
37: if this node i ∈ Imiss then
38: ši ← VE.bDec(dki, c

(0)
i ); s̃i▽ ← VE.bDec(dki, c

(1)
i ); ri ← ⊥

39: output ({vj}j∈[0,n], {ṽj}j∈[n], {hj}j∈[n], ši, s̃i▽ , ri) and return
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Algorithm 9 OciorADKG protocol, with an identifier ID. Code is shown for Node i ∈ [n].

// ***** Public and Private Parameters *****
Public Parameters: pp = (G, g); {pk⋄j }j∈[n], {ekj}j∈[n], (n, k) for TS scheme; and (n, k, L, {nℓ, kℓ, uℓ}Lℓ=1) for LTS scheme under
the constraints: n =

∏L
ℓ=1 nℓ,

∏L
ℓ=1 kℓ ≥ k, and uℓ :=

∏ℓ
ℓ′=1 nℓ′ for each ℓ ∈ [L], with u0 := 1, for some k ∈ [t + 1, n − t], and

n ≥ 3t+ 1. ∆delay is a preset delay parameter. BLTSBook is a book of index mapping for LTS scheme, available at all nodes.
Set d := k − 1 and dℓ := kℓ − 1 for ℓ ∈ [L]. Set ⊥o := 0. Set j▽ := BLTSBook[(ID, j)],∀j ∈ [n].
Private Inputs: sk⋄i and dki

1: Initially set ai ← [⊥o] ∗ n; Wwit ← {}; Wwit[j]← {}, ∀j ∈ [n]; Bones ← {}, Cdone ← {}
// ***********************************************************************************
// ***** OciorASHVSS Phase *****
// ***********************************************************************************

2: randomly sample a secret s ∈ Zp

3: run OciorASHVSS[(ID, i)](s) // also run OciorASHVSS[(ID, j)],∀j ∈ [n] \ {i} in parallel with all other nodes

// ***********************************************************************************
// ***** APVA Selection Phase *****
// ***********************************************************************************

4: upon OciorASHVSS[(ID, j)] outputting values, for j ∈ [n] do:
5: input ai[j] = 1 to APVA[ID]

6: wait for APVA[ID] to output a⋆ such that
∑

j∈[n] a
⋆[j] ≥ n− t; and then let Aones := {j ∈ [n] | a⋆[j] = 1}

7: wait for OciorASHVSS[(ID, τ)] to output ({v(τ)j }j∈[0,n], {ṽ(τ)j }j∈[n], {h(τ)
j }j∈[n], š

(τ)
i , s̃

(τ)
i▽ , r

(τ)
i ), ∀τ ∈ Aones

// ***********************************************************************************
// ***** Witness Reconstruction Phase *****
// ***********************************************************************************

8: send (WITNESS, ID, {(τ, r(τ)i )}τ∈Aones) to all nodes
9: upon receiving (WITNESS, ID, {(τ, r(τ)j )}τ∈Aones) from Node j for the first time do:

10: for τ ∈ Aones do
11: if Hz(r

(τ)
j ) = h

(τ)
j then

12: Wwit[τ ]←Wwit[τ ] ∪ {(j, r(τ)j )}
13: if (|Wwit[τ ]| ≥ t+ 1) ∧ (τ /∈ Cdone) then
14: r(τ) ← SHPC.WitnessReconstruct({(j, hj)}j∈[n],Wwit[τ ])
15: Cdone ← Cdone ∪ {τ}
16: if r(τ) ̸= ⊥ then Bones ← Bones ∪ {τ}
17: wait for |Cdone| = |Aones|

// ***********************************************************************************
// ***** Key Derivation Phase *****
// ***********************************************************************************

18: ski ←
∑

τ∈Bones
(š

(τ)
i − Hz(r

(τ)))

19: skli▽ ←
∑

τ∈Bones
(s̃

(τ)
i▽ − Hz(r

(τ)))

20: pkj ←
∏

τ∈Bones
v
(τ)
j · g−Hz(r

(τ)), ∀j ∈ [0, n]

21: pklj ←
∏

τ∈Bones
ṽ
(τ)
j · g−Hz(r

(τ)), ∀j ∈ [n]
22: pk ← pk0; pkl← pk0
23: output (ski, skli▽ , pk, pkl, {pkj}j∈[n], {pklj}j∈[n])
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APPENDIX A
LAGRANGE COEFFICIENT SUM LEMMA

Lemma 8. Let T = {x1, x2, . . . , xM} ⊂ Zp be a set of M := |T | distinct points, and let f(x) ∈ Zp[x] be
a polynomial such that deg(f) ≤M − 2. Define the Lagrange coefficient at each point xi ∈ T as:

γi :=
1∏

j∈[M ],j ̸=i

(xi − xj)
. (12)

Then, the following identity holds true:
M∑
i=1

f(xi) · γi = 0.

Proof. We will prove this lemma using the method of partial fraction decomposition. First, let P (x) be
the polynomial defined by the product of linear factors corresponding to the points in T :

P (x) =
M∏
i=1

(x− xi).

It is true that the degree of P (x) is M . The derivative of P (x) is expressed as

P ′(x) =
M∑
i=1

 M∏
j=1
j ̸=i

(x− xj)

 .

By evaluating P ′(x) at a specific point xi ∈ T , we have

P ′(xi) =
M∏
j=1
j ̸=i

(xi − xj). (13)

Comparing (13) with the definition of the Lagrange coefficient γi in (12), it holds true that

γi =
1

P ′(xi)
.

Next, consider the rational function R(x) = f(x)
P (x)

. Since deg(f) ≤M − 2, and deg(P ) = M , it implies
that as x→∞, the rational function R(x) approaches 0:

lim
x→∞

R(x) = lim
x→∞

f(x)

P (x)
= 0.

We can decompose the rational function R(x) into partial fractions. Since the roots x1, x2, . . . , xM of
P (x) are distinct, the partial fraction decomposition takes the form:

f(x)

P (x)
=

f(x)∏M
i=1(x− xi)

=
M∑
i=1

Ai

x− xi

. (14)

By multiplying both sides of the equation (14) by (x − xi) and then taking the limit as x → xi, we
compute the coefficients Ai as:

Ai = lim
x→xi

f(x)∏M
j=1
j ̸=i

(x− xj)
.
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Since f(x) is continuous and the denominator
∏M

j=1
j ̸=i

(x − xj) is non-zero at x = xi, we can substitute
x = xi:

Ai =
f(xi)∏M

j=1
j ̸=i

(xi − xj)
.

By the definition of γi, we have Ai = f(xi)γi. By substituting Ai back into the partial fraction
decomposition in (14), we get:

f(x)

P (x)
=

M∑
i=1

f(xi)γi
x− xi

. (15)

Now, multiply both sides of equation (15) by x, it gives

xf(x)

P (x)
=

M∑
i=1

xf(xi)γi
x− xi

. (16)

We can rewrite the term on the right-hand side of equation (16) as follows:

xf(xi)γi
x− xi

=
(x− xi + xi)f(xi)γi

x− xi

=
(x− xi)f(xi)γi

x− xi

+
xif(xi)γi
x− xi

= f(xi)γi +
xif(xi)γi
x− xi

.

Then, the equation (16) can be rewritten as:

xf(x)

P (x)
=

M∑
i=1

(
f(xi)γi +

xif(xi)γi
x− xi

)
=

M∑
i=1

f(xi)γi +
M∑
i=1

xif(xi)γi
x− xi

. (17)

In the following, let’s take the limit as x→∞ for both sides of the equation (17). For the left-hand side
of (17), given that deg(f) ≤M − 2 and deg(P ) = M , the limit as x→∞ is 0:

lim
x→∞

xf(x)

P (x)
= 0. (18)

Let us now look at the second sum on the right-hand side of (17). For each term xif(xi)γi
x−xi

, as x→∞, the
denominator x− xi approaches ∞, while the numerator xif(xi)γi is a constant. Thus, each term xif(xi)γi

x−xi

approaches 0:

lim
x→∞

xif(xi)γi
x− xi

= 0.

Therefore, second sum on the right-hand side of (17) approaches 0:

lim
x→∞

M∑
i=1

xif(xi)γi
x− xi

= 0. (19)

By substituting the limits in (18) and (19) back into the equation (17), we have :

0 =
M∑
i=1

f(xi)γi + 0.

This implies the desired identity:
M∑
i=1

f(xi)γi = 0

which completes the proof.
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