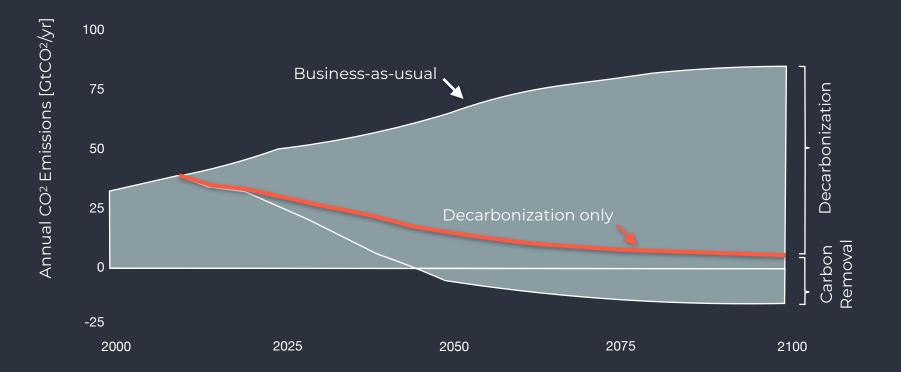
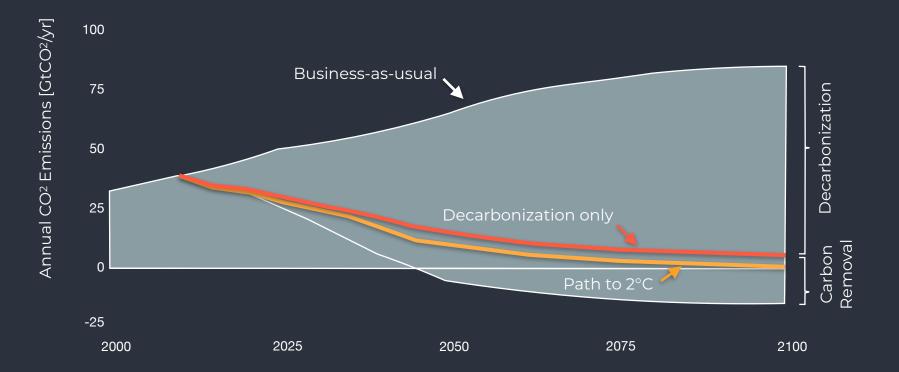
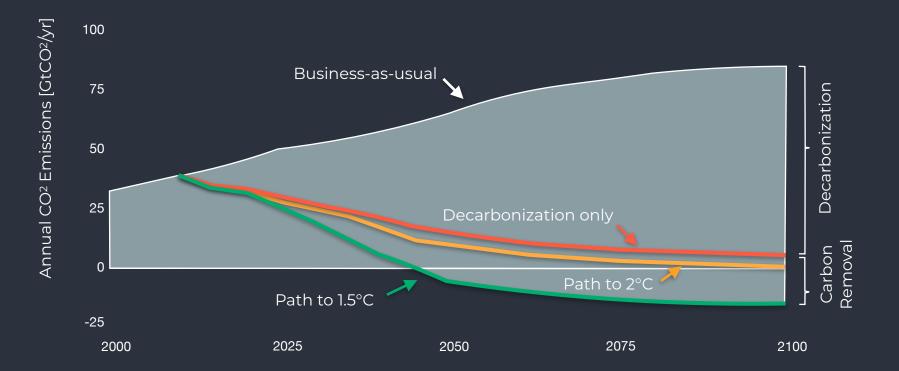

Content Overview


- Why do we need to remove CO2 from the atmosphere?
- How is CO2 being removed from the atmosphere?
- How is CO2 being stored?
- Method overviews, pros, and cons
- How much do companies sell carbon removal credits for?
- Is now the time to invest in carbon removal?
- Investment factors to consider

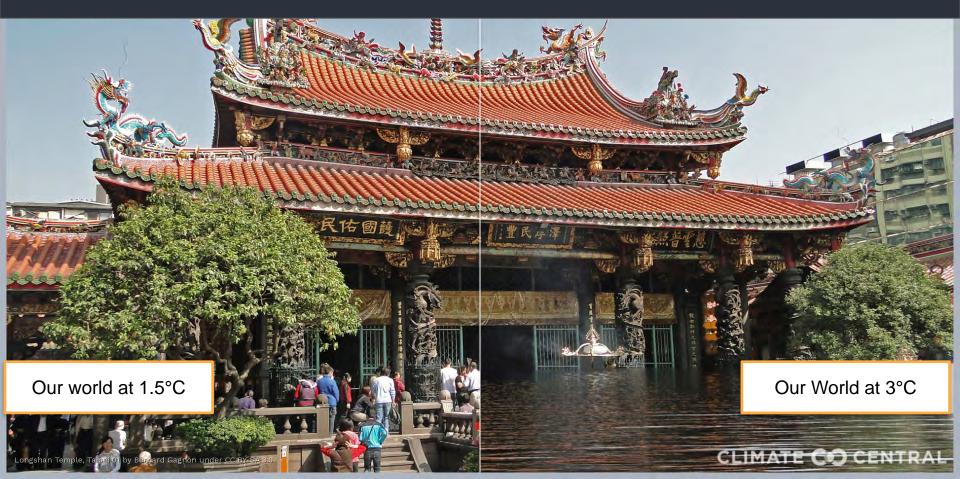

Climate change is a trillion dollar opportunity disguised as an existential crisis


Why do we need to remove CO₂ from the atmosphere?

reducing carbon emissions Because decarbonization is not enough

tactics to reflect sunlight , and reduce heating

Geoengineering just buys us time, it doesn't solve the problem.


What's the difference?

1	.5C	VS	2C
ofwa	rming		of warming
	^{Up to} 1.1 months		1.5 months
	9%	Freshwater availability in the Mediterranean*	17%
		Crop yields	
<u> </u>	Wheat production down 9%	in tropical regions*	Wheat production down
1ª	Maize production down 3%		Maize production down 6%
<i>5</i> 0	Soy production up		Soy production up

Washington DC, USA

Taipei, Taiwan

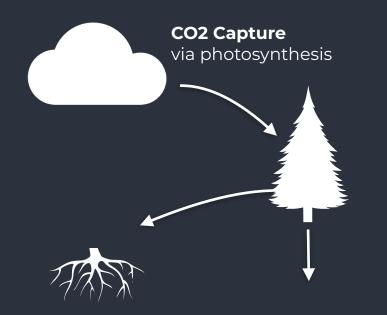
Dubai, UAE

Mumbai, India

We have limited time...

What technologies remove CO₂ from the atmosphere?

How is the CO2 stored?


How are companies making money?

CO2 Storage

via photosynthesis

CO2 Capture

Forestry via reforestation **50+ year permanence**

Soil Carbon via regenerative ag **20 year permanence**

Forestry via reforestation **50+ year permanence**

CO2 Capture via photosynthesis

Soil Carbon via regenerative ag **20 year permanence**

Forestry via reforestation **50+ year permanence** BioChar via low oxygen burning **100 year permanence**

via photosynthesis

CO2 Capture

TREAT

Soil Carbon via regenerative ag **20 year permanence**

Forestry via reforestation **50+ year permanence** BioChar via low oxygen burning **100 year permanence** BioOil via low oxygen burning **1000 year permanence**

Туре	Pros	Cons
Soil	Large potential sink 5GT of CO2e/yr	Reversal and measurement risk
Forestry	Low tech barrier, ecology value	Fires, land use, long time to removal
BioChar	Scalable, can be sold as a product	Feedstock availability, tech defensibility
BioOil	Scaleable, high permanence	Feedstock availability

Regenerative Ag

Indigo Ag helps farmers generate income from carbon farming, provides a collection of biological products derived from plants to increase crop yields, and provides a digital application to make selling crops easier.

Forestry

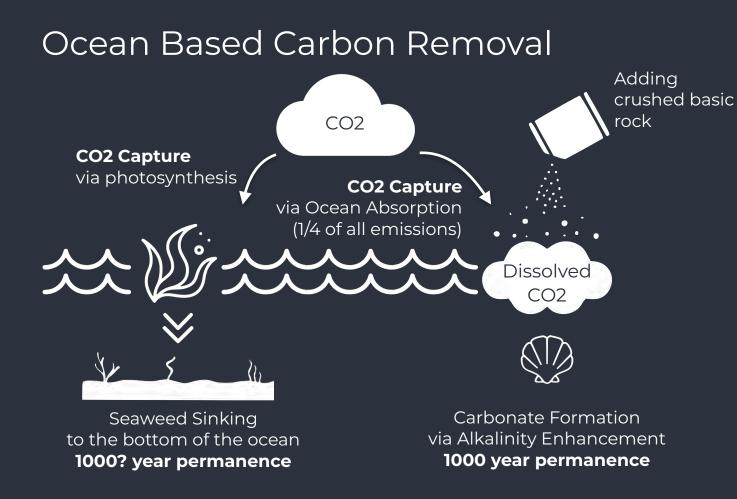
Drone Seed is reforesting land after wildfires more efficiently using drones to reduce people requirements and expand the types of areas that can be reforested. Each tree replanted will uptake CO2 for the life of the tree.

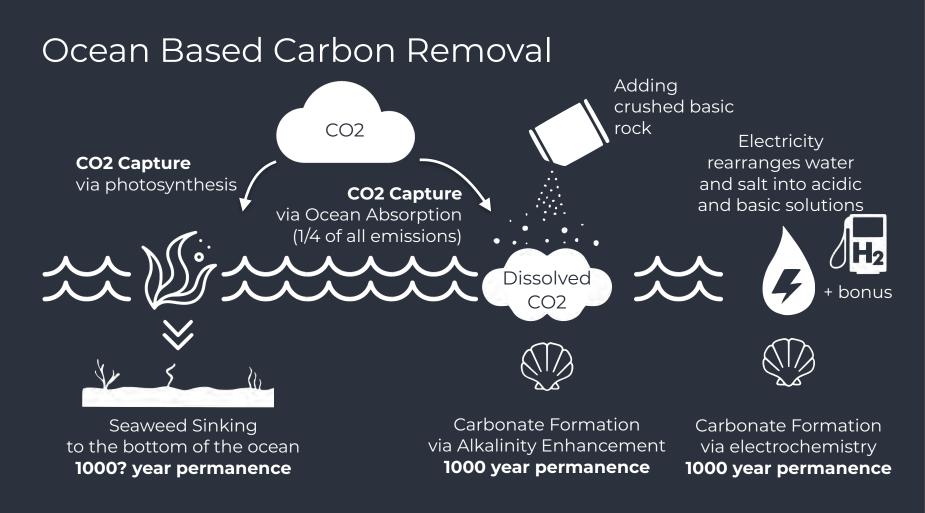
These companies convert agricultural or wood waste biomass into biochar, a usable fuel, fertilizer, and carbon storage solution.

BioOil

Charm uses plants to capture CO₂ from the atmosphere. Then they convert the biomass into a stable, carbon-rich liquid and then pump it deep underground.

Ocean Based Carbon Removal


Ocean Based Carbon Removal



Seaweed Sinking to the bottom of the ocean **1000? year permanence**

CO2 Storage

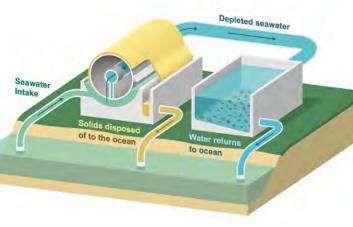
Ocean Based Carbon Removal

Туре	Pros	Cons
Seaweed Sinking	Massive potential sink <u>1-10GT of CO2e/</u> <u>yr</u>	Unintended ecology impacts, measurement risk
Ocean Alkalinity Enhancement	Low tech barrier, scalable, potential ecology co-benefits	Unintended ecology impacts, measurement risk
Electro- chemistry	Scalable, potential ecology co-benefits, secondary products	Unintended ecology impacts, measurement risk

Seaweed Sinking

RUNNING TIDE

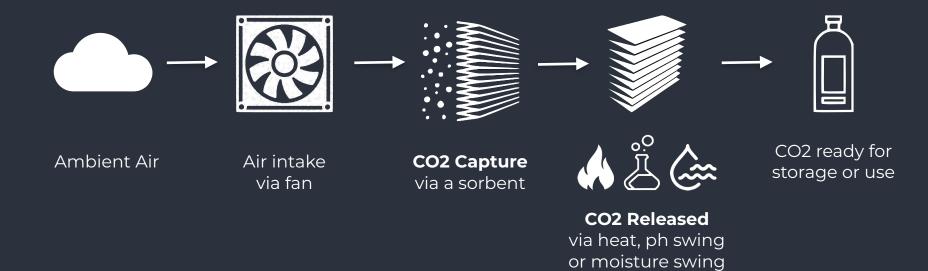
Running Tide creates biodegradable buoys grow kelp and after 3 months sink to the ocean floor to store the CO₂ for possibly millennia.



SEACHANGE

Seachange uses an electrochemical process to sequester CO_2 in seawater as carbonates, an inert material comparable to seashells, thereby enabling energy-efficient and permanent CO_2 removal.


Ocean Alkalinity Enhancement


Planetary Technologies uses basic rock waste from mining to sequester CO₂ in seawater as carbonates while simultaneously producing H2. They process the mining waste to ensure there are no toxins being adding it to the seawater.

Direct Air Capture - Carbon Capture

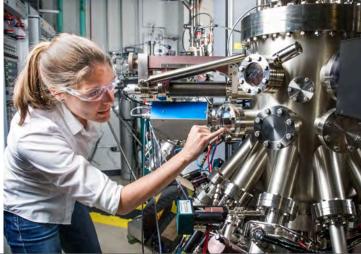
NOTE: Direct Air Capture only captures, it does not store the carbon.

Direct Air Capture - Carbon Capture

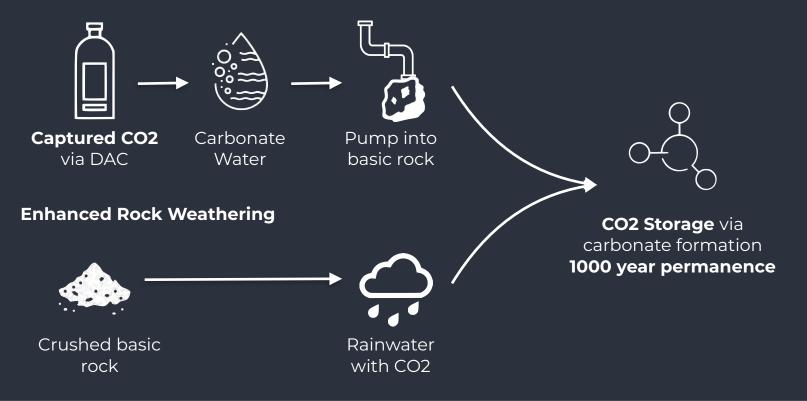
Туре	Pros	Cons
Centralized	Economies of scale, highly measurable, permanent storage options, US government will pay	Currently high \$/ton, high infrastructure cost, storage partner required, limited location options
Modular	Deployable in more locations, highly measurable, permanent storage options, US government will pay	Currently high \$/ton, storage partner required, transportation of CO2, maintenance of units is distributed

Centralized DAC

Both companies capture CO_2 from the air by building large plants with giant fan systems and sorbents. Their aim is to build facilities that can remove megatons of CO_2 per year.


Modular DAC

Noya retrofits cooling towers to capture CO₂ and profit shares the carbon credits with the cooling tower owners. Their technology is far more distributed than centralized systems like Climeworks and Carbon Engineering.



Geologic Carbon Removal

Storage for CO2 captured another way

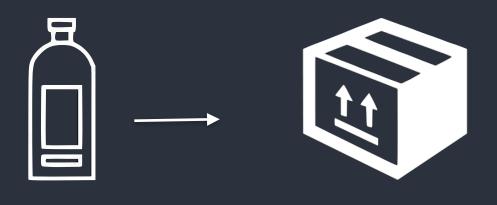
Geologic Carbon Removal

Туре	Pros	Cons
Geologic Storage	High permanence, very large storage capacity, US government will pay	Requires specific geography, requires CO2 capture partner
Enhanced Weathering	High permanence, very large storage capacity, US government will pay, using managed materials	Requires sourcing material (from mines, demo sites, or concrete makers), requires CO2 capture partner

Geologic Storage

Both companies inject CO₂ + water underground into basic rock types that react and form carbonates over a few years.

Enhanced Weathering


Carbin Minerals uses waste basic rock from mines and mixes it with CO2 rich water to form carbonates that stores carbon for thousands of years.

Product Based Carbon Removal

Product Options: Detergents Lenses Diamonds Car Parts Concrete Fabrics Plastics and more...

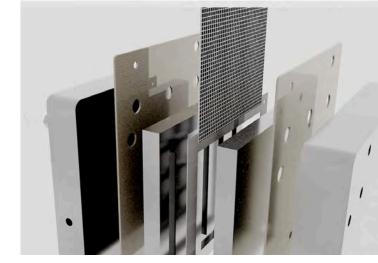
Captured CO2 via DAC CO2 Storage via products Permanence depends on product type

Product Based Carbon Removal

Pros	Cons
Makes it possible to manufacture products that would otherwise require	Not all products have high permanence
CO2 creation using emitting methods	Many are not considered removal (like fuels) because the CO2 will be re-released
Can make products carbon negative	when burned

Products

Both companies are injecting CO₂ into concrete during its production. The CO₂ mineralizes and is trapped for millennia timescale.

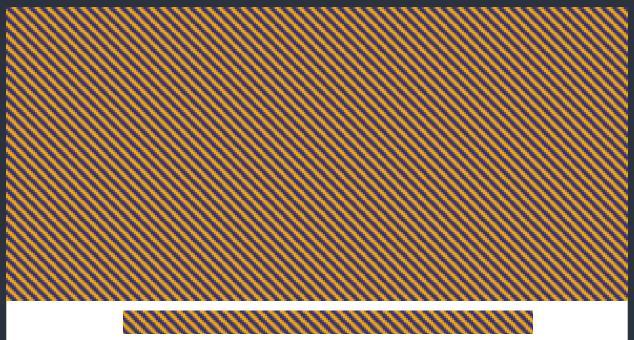


Products

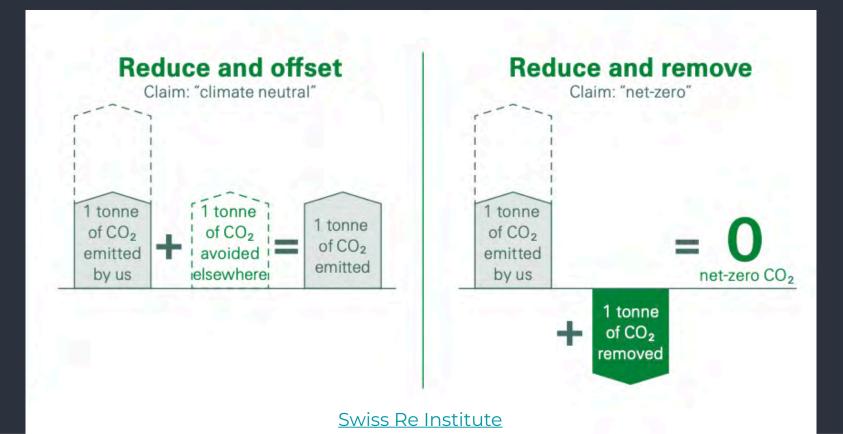
-----twelve

Twelve is transforming CO2 into thousands of everyday products including glasses lenses, fuel, car parts, ethanol, and many other products.

Voluntary Market - \$1B in 2021


Soil Carbon	Seaweed Sinking	DAC - Modular + Geo
<u><\$50/ton</u>	\$200-250/ton	<u>\$500/ton</u>
Forestry <u>\$20-100/ton</u>	Ocean Alkalinity Enhancement <u>\$1000+/ton</u>	Enhanced Weathering \$200-300/ton
BioChar	Ocean Electrochemistry	Concrete Mineralization
<u>\$100-500/ton</u>	\$1600/ton	<u>\$250/ton</u>
BioOil	DAC - Centralized + Geo	Other Products
<u>\$600/ton</u>	\$600-2000/ton	varies with permanence

Mandatory Offset Market - \$851B in 2021 Emissions Trading Schemes


https://carbonpricingdashboard.worldbank.org/map_data

Mandatory Offset Market - \$851B in 2021 Carbon Tax

https://carbonpricingdashboard.worldbank.org/map_data

Difference between Offsets and Removals

Mandatory Offset Markets

Carbon Credit Pricing by Type

Project Type:	Volume Sold (MtCO2e):	Average Price:	Price Range:
Wind	12.8	\$1.9	\$0.3 - \$18
REDD+	11	\$3.3	\$0.8 - \$20+
Landfill methane	7.9	\$2	\$0.2 - \$19
Tree planting	3	\$7.5	\$2.2 - \$20+
Clean cookstoves	3	\$4.9	\$2 - \$20+
Run-of-river hydro	1.5	\$1.4	\$0.2 - \$8
Water/purification	1.2	\$3.8	\$1.7 - \$9
Improved forest management	0.8	\$9.6	\$2 - \$17.5
Biomass/biochar	0.7	\$3	\$0.9 - \$20+
Energy efficiency - industrial-focused	0.7	\$4.1	\$0.1 - \$20
Biogas	0.6	\$5.9	\$1 - \$20+
Energy efficiency - community-focused	0.6	\$9.4	\$3.3 - \$20+
Transportation	0.5	\$2.9	\$2.2 - \$6.8
Fuel switching	0.5	\$11.4	\$3.5 - \$20+
Solar	0.3	\$4.1	\$1 - \$9.8
Livestock methane	0.2	\$7	\$4 - \$20+
Geothermal	0.1	\$4	\$2.5 - \$8
Agro-forestry	0.1	\$9.9	\$9 - \$11

Mandatory Markets Expand to Removals

World v Business v Legal v Markets v Breakingviews Technology v

2 minute read · December 15, 2021 5:51 AM PST · Last Updated 10 months ago

EU to set up scheme to encourage CO2 removal from atmosphere

By Kate Abnett

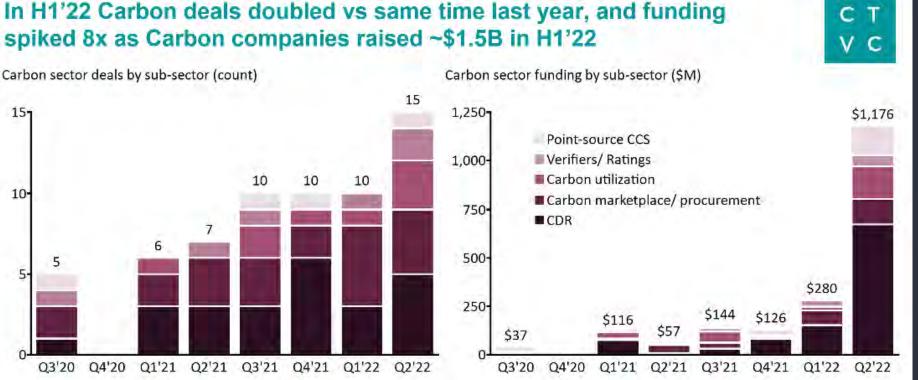
The European Commission said it will draw up a system of certifying carbon removals in 2022, by measuring CO2 removals from technologies and individual land holdings in the EU, and factoring in how long the CO2 would be stored.

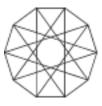
Mandatory Markets Expand to Removals

Carbon Gap

The EU has already created the basis for maintaining the distinction between removals and reductions by establishing a cap on the degree to which the EU climate goals will be fulfilled by removals before 2030 (225 MtCO₂)², and reaffirming the goal to reduce the consumption of fossil carbon energy by 95% (an absolute emission reduction) by 2050³. It has also committed to climate neutrality by 2050,

US Government Expands Support for Removals


About Our Members Our Team Ethical Oath Policies News


Carbon Removal Takes Major Step Forward

FOR IMMEDIATE RELEASE: August 16, 2022

The IRA <u>increases 45Q tax incentives</u> for carbon removal, from \$50 a ton to \$130 a ton for utilization and \$180 for storage and direct air capture. The IRA also adds a direct pay option for 45Q and adjusts the size qualification, which streamlines the process for carbon removal companies and increases eligibility for startups. The IRA invests <u>\$20 billion in conservation</u> <u>programs</u> at the U.S. Department of Agriculture, which can help advance carbon storage. The IRA provides billions of dollars in grants for the <u>conservation and restoration of forests</u>. The IRA's \$5 billion appropriation to the Loan Program Office enables the office to <u>issue guarantees on project loans up to \$250 billion</u>. The IRA is projected to reduce emissions by as much as <u>40%</u> <u>by 2030</u>. IRA follows the passage of the CHIPS Act, which provides <u>\$1 billion in funding</u> to carbon removal RD&D.

Is now the time to invest in carbon removal?

CARBON REMOVAL PARTNERS

LOWERCARBON CAPITAL

\$2B Fund

\$2B Fund

Investment Factors

Climate Criteria	Permanence	How long are emissions removed from the atmosphere?
	Additionality	Would the emissions removal not have occurred otherwise?
	Leakage	What is the probability that removals activity could lead to shifting (e.g. deforestation increases in another location as a result of an afforestation project) with no net benefit resulting.
	Life Cycle Analysis	Does the method remove significantly more emissions than is emitted in the process?
	Verifiability	How is the company verifying emissions are actually removed?
Unintended Harms	Social/ Environmental Impacts	Are there unintended risks/stressors to people and the environment?
Co-Benefits	Environmental Justice	Has the local community consented to the development, implementation and maintenance? Are there environmental enhancements?
Scalability	Cost	\$ / ton CO2e (now and in the future)
	Volume Potential	Are there scaling limitations? (land use, energy use, etc)

Closing Poll

https://www.menti.com/al8h1nq7fa1n

Thank you! Questions?

Common objections

What if we are off in the number of GT of carbon removal we need? What if we need 100GT by 2050? What would the point be?

Opportunities in carbon removal

Genetic enhancement of crops

Measurement, verification, and reporting

Room temperature direct air capture

Resources

AirMiners Accelerator Launchpad: Launchpad.airminers.org

AirMiners Crash Course in Carbon Removal Boot Up: Bootup.airminers.org

AIRMINERS

Event Series Calendar: https://lu.ma/airminers_

YouTube Channel: <u>www.youtube.com/c/AirMiners</u>

Carbon Dioxide Removal Primer: <u>www.CDRPrimer.org</u>

XPRIZE: <u>https://www.xprize.org/prizes/elonmusk</u>

Resources

Ocean Alkalinity Enhancement Explainer Video

Ocean Electrochemical Explainer Video