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Abstract
The use of digital content to support classroom learning is evolving rapidly. Retrieval Augmented Generation

(RAG), as a approach to training LLMs, has emerged as a powerful framework to ground generation in trusted

content. In the educational context this is materials sourced by professors/teachers for a specific courses. Although

RAG systems traditionally rely on textual input, modern digital textbooks often includes a blend of modalities

such as course slides, video lectures, and other interactive content containing both textual and visual information.

In this project, we investigate the role of multimodal retrieval in an educational context using digital textbooks

and other multimodal course data.

We embed and store textual and visual components from an undergraduate machine learning course into

a vector database and use them to enhance chatbot responses. Through zero-shot RAG experiments and eval-

uation using RAGAS metrics such as Context Recall, Faithfulness and Factual Correctness, we examine how

supplementing text with images impacts retrieval and response quality. Our findings show that multimodal input

significantly improves factual correctness for complex or specific queries, although excessive image inclusion

may reduce performance. Conversely, image inclusion does not provide gains on more generic questions. We

propose an agent-based RAG system that dynamically selects relevant vectors based on query specificity.
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1. Introduction

Recent advances in LLM have catalyzed interest in the application of generative models to educational

tools. However, standard LLMs lack awareness of the multimodal data prevalent in classrooms. This

includes interactive elements of textbooks, slide visuals and lecture recordings. One promising approach

to addressing this limitation is Retrieval Augmented Generation (RAG), which enables models to

incorporate external knowledge into the generative process.

Rather than relying solely on pre-trained outputs, RAG retrieves relevant documents from an external

corpus based on a user’s query. In an educational context this includes material sourced or generated

by professors/teachers. These augmented documents can be used to aid in the response generation

process. This approach could prove to be particularly valuable in educational settings, where a chatbot

can generate responses that align closely with the specific content and instructional level of any given

course. Although RAG typically relies on text-based retrieval, we explore its extension to include both

text and image embeddings from digital educational materials.

This is an exploratory study designed to position deeper understand on potential technical approaches

for developing an LLM based Intelligent Assistant to support students with a focus on self-regulated

learning. Our goal was to first understand the utility of using a RAG based approach with data from open

source textbooks and lecture materials. This was followed by a exploration on whether the incorporation
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of visual content enhances the generation of educational response and under what circumstances it may

hinder it. The RAG-bot is specifically designed for a undergraduate course, Foundations of Machine

Learning, taught at the University of Virginia School of Data Science.

2. Background

During the last decade the inclusion of AI driven education tools has increased dramatically resulting

in the maturity of a new field; Artificial Intelligence in Education (AIEd) [9]. The rise in the presence of

AI in global society and emersion into our everyday lives has not only produced the development of

additional educational tools but has also driven the need for the creation of a new literacy. Growing out

of Data Literacy [3], AI Literacy is maturing to the point of being referenced in educational programs

and research Long and Magerko [7]. In addition, the belief that AI has the potential to continue

to transform how we communicate, consume information, learn, and interact in society seems like

a forgone conclusion. Consequently, the need to measure the effectiveness of teaching methods in

pursuit of AI literacy is currently high with additional research still being needed. Ouyang and co-

authors in constructing a AI literacy framework through a meta-analysis of papers spanning several

disciplines made note of this point. The authors further suggest this is especially true of courses in Data

Science oriented programs designed to teach AI fundamentals, that often pull students from a variety

of backgrounds [11].

The nature of how AI driven tools get incorporated into higher education occurs at essentially three

levels; instruction/service, learning, and administration, [4]. Instruction/service-oriented can be seen

as tools that help instructors grade assignments, facilitate students in choosing courses or identifying

university resources but do not directly aid in knowledge growth. Learning oriented is focused mostly

on classroom applications with the goal of helping students achieve learning outcomes. This may

include tutoring, providing learning materials, facilitating students self-guided learning or intelligent

assistants that have been tailored to course content [2, 5]. This category could also include general Large

Language Models that aid in answering student questions or in the case of Data Science or Computer

Science generated code. Administrative tools are geared toward educational staff or professionals that

function out of direct line of sight of students. These could be anything from business intelligence

systems for financial analyses or application tools that help aid in the admissions processes.

This project focuses on the learning level by exploring the creation of a multimodal chatbot to help

students in a specific course. The multimodal nature of the approach is a growing research area, but one

that requires more attention [8]. The follow on work will not only present the tool but give students a

understanding of how it is trained and opportunities to augment with new data throughout the course.

Thus touching the previous referenced ideas of facilitating AI literacy. This also allows for a active

learning approach known to be productive for learning in STEM environments [1].

The original RAG framework [6] introduced a method of augmenting LLM output with external

documents. Follow-up research has explored knowledge-grounded dialogue, domain-specific retrieval,

and image-text fusion models like CLIP [10]. Our work draws from these threads, but focuses on

integrating image and text embeddings within RAG for a specific instructional context, aligning with

efforts in educational NLP and multimodal LLMs.

3. Methodology

3.1. Data Sources

We curated multimodal data from DS3001: Foundations of Machine Learning, including:

• Lecture slides (text + images)

• Lecture audio transcripts (text)

• Open Source ML Textbooks (text + images)

• Open Source ML papers (text + images)

https://novavolunteer.github.io/MLBook/whatisml
https://novavolunteer.github.io/MLBook/whatisml


Images and textual content were extracted and segregated from lecture slides, machine learning research

papers and textbooks in PDF format. Additionally, lecture videos’ audio recordings were transcribed

into text using a speech-to-text conversion tool and incorporated as part of the textual dataset.

3.2. Embedding Details

Textual Data: Chunks (1500 tokens, 100-token overlap) were embedded using SentenceTransformer

all-mpnet-base-v2 and stored in Pinecone DB (dim=768).

Visual Data: Images were embedded using OpenAI CLIP (clip-vit-base-patch32, dim=512) and

indexed in Pinecone Vector Database with filenames stored as metadata. Then the binary representations

of the raw images are stored in MongoDB. Upon completing the cosine similarity search, the filenames

of the most relevant images are retrieved and used to fetch the corresponding raw images from the

database.

3.3. Experiment Design

We tested multiple RAG configurations:

• Zero-shot LLMs: Not including the RAG component

• Text Only RAG (10 text vectors): Using only text retrieved from our vector DB

• Text + Image (5 text + 5 image vectors): Text with less relevant vectors replaced by top images

• Text + Image (10 text + 10 image vectors): Addition of more visual information along with

base textual information

Figure 1: Visualization of how multimodality differs from text-only RAG

To properly visualize the performance of these experiments, we needed to compare their results to a

zero-shot LLM using the most recent version of ChatGPT against the same questions. For fidelity, we

created a multimodal information based dataset of 30 data science questions and answers to evaluate

the performance of the models.

These questions ranged from generic data science questions like "What is K-Nearest Neighbors?" to

highly domain specific questions for testing multimodal performance like "Explain Brian’s Machine

Learning Lifecycle." With a wide range of questions at our disposal, we could see how differing model

types generalize to broad concepts and also validate how they perform on specific images from class

content.

3.4. Evaluation

We used the evaluation package RAGAS to obtain metrics for our models:



• Context Recall: fraction of relevant documents retrieved (Context)

• Faithfulness: factual support in retrieved context (Query)

• Factual Correctness: overall factual alignment with the answer (Response)

Figure 2: Visualization of how evaluation metrics interact with each component of the RAG model

These metrics were chosen to target three critical components of Retrieval Augmented Generation for

evaluation. With RAG, we want to evaluate how the model performs in terms of the Context, the Query,

and the Response, as seen in the list above each aligns with one of these components. From the query,

we need to ensure that retrieved context is relevant to the query at hand. From the context, we need to

ensure that the generated response aligns with the retrieved information. From the response, we need

to ensure that the response actually answers the query we began with. Finding evaluation metrics for

these aspect proved crucial to executing the experimental design of the study. Testing was bootstrapped

using 50 diverse questions run 10 times allowing for the capture of variance in the evaluation metrics.

4. Experiment Results

We evaluated the effect of incorporating images into the Retrieval-Augmented Generation (RAG)

workflow for educational question answering using a multimodal LLM (GPT-4.1 Nano). Our goal was

to assess whether visual content improves response quality and contextual grounding, especially across

question types of varying specificity.

4.1. Experimental Setup

We tested two configurations for image inclusion:

• Text + Image (10T + 10I): Adds 10 image vectors to the 10 retrieved text vectors, preserving all

textual context while layering on visual information.

• Balanced Swap (5T + 5I): Replaces the bottom 5 text vectors with the top 5 image vectors,

maintaining the same number of total context inputs but altering the text-image ratio.

Both configurations were evaluated on a curated dataset of generic and specific questions derived

from course materials. We compared these against a Text-Only RAG baseline and a Zero-Shot (no

retrieval) setting. Evaluation was based on three key metrics: Context Recall, Faithfulness, and Factual
Correctness.

4.2. Generic Questions

For generic questions, in terms of the first goal of better understanding the variances between generic

LLM versus a RAG system, it appears no real differences are present as the confidence intervals have

significant overlaps for text only and text + images (10+10) approaches when compared to the zero shot

model. However, the model does get significanyly worse in the text + images (5+5) approach.

For the RAG specific measures we observed that the 10T + 10I configuration modestly improved

Context Recall compared to the Text-Only baseline. The 5T + 5I setup led to a more significant increase

in recall, suggesting that adding well-ranked images can improve retrieval relevance.



Figure 3: Performance Metrics on Generic Questions

However, this improvement came at a cost. Faithfulness and Factual Correctness declined in the

5T + 5I setup, likely due to the removal of text content that the LLM relied on for broader context

and coherence. This tradeoff implies that generic questions—often answerable via general textual

knowledge—benefit more from rich text contexts than from visual augmentation.

Summary: Image inclusion boosts Context Recall, but replacing even marginally relevant text hurts

Faithfulness and Factual Correctness in generic settings. Retaining broader textual context is crucial for

accurate and coherent answers, thus it might not be worth including images in all scenarios. Although

we observed no differences between zero shot and RAG model metrics it is worth noting that using a

RAG approach allows for the content to be easily updated and since performance was not worsened we

would recommend this approach.

4.3. Specific Questions

Figure 4: Performance Metrics on Specific Questions

For specific queries it did appear that the addition of the RAG based system added to the content being

provided to users. This was again determined by analyzing the before and after effects of including and

not including the RAG approach (zero shot) using factual correctness. The bootstrapped confidence

intervals are either completely separate (Text + Images 10 + 10) or just slightly overlapping (Text +

Images 5 + 5) for text + image approaches. Interestingly, this was not the case for the text only RAG

approach. This suggest that the inclusion of images on more specific questions has a significant positive

effect on the factual correctness of the LLM. Moreover, the RAG system allows for the tracking of where

content is getting pulled from inside the vector database to supplement the generation of responses.

Which could allow for a deeper level of understanding of relevant content as it relates to student

questions.



For the RAG specific measures adding 10 images on top of 10 text vectors slightly reduced Context

Recall, likely due to visual noise introduced by less relevant images. However, the 5T + 5I configuration

achieved perfect recall consistently, showing that highly ranked visual content can provide strong

contextual grounding for specialized queries adding further support for text and images on specific

questions.

As compared to the generic questions faithfulness and factual correctness remained stable or slightly

improved in both multimodal settings for specific questions. This suggests that relevant visual content

supports accurate generation without undermining the consistency of the LLM responses.

Summary: For specific questions, selectively replacing lower-ranked text vectors with relevant

images improves retrieval and enhances response quality. Excessive image inclusion, however, may

distract the model. Overall, including images significantly improves results for specific questions when

compared to zero shot models.

5. Conclusion and Future Work

This study explored the impact of multimodal retrieval, specifically the integration of image vec-

tors within a Retrieval-Augmented Generation (RAG) framework for educational applications. Our

experiments demonstrated that visual content, when selectively incorporated, can enhance the informa-

tiveness, contextual relevance, and response accuracy of a multimodal LLM, especially for conceptually

dense.

However, our results also show that a fixed or naive strategy for image inclusion is suboptimal. In the

10T + 10I setup, the inclusion of excessive visual information led to performance degradation in certain

metrics, particularly Faithfulness and Factual Correctness. These findings underscore the importance of

context curation and relevance filtering in multimodal systems.

Future work will focus on developing dynamic, adaptive strategies to optimize retrieval and im-

prove LLM responses. Key directions include:

• Designing an agentic RAG selector that adjusts the mix of text and image vectors based on

real-time query specificity analysis.

• Exploring semantic clustering and alignment across modalities to better group and rank

context vectors.

• Enhancing evaluation efficiency through smarter sampling, reproducible scoring pipelines, and

reduced compute requirements.

• Knowledge Graph based RAG would work very well on this corpus of data as observed from

the PCA Analysis of Clustered Text Vectors.

These improvements aim to support the development of intelligent, multimodal RAG systems that

dynamically tailor context inputs—maximizing educational value and improving user engagement in

classroom and self-guided learning environments.
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A. Appendix

A.1. Vector Store Visualization

This is a live link to an example of how questions and documents are embedded in our vector store.

The most semantically similar documents used in the response are highlighted in purple and green.

https://msds-capstone-project.github.io/MultiModalRAGViz/

Figure 5: 3D Plot of PCA from 768 Dimension Text Vectors

A.2. Evaluation Metrics

These are the evaluation metrics calculated via 10 Bootstrapped sampling rounds of 50 queries each.

Table 1
Generic Questions Evaluation Metrics

Context Recall
Model Mean Std Dev
Text-Only 0.945 0.032
Text+Images 10+10 0.975 0.024
Text+Images 5+5 0.997 0.006

Faithfulness
Model Mean Std Dev
Text-Only 0.963 0.020
Text+Images 10+10 0.956 0.026
Text+Images 5+5 0.676 0.062

Factual Correctness (F1)

Model Mean Std Dev
ZeroShot 0.818 0.025
Text-Only 0.750 0.027
Text+Images 10+10 0.807 0.029
Text+Images 5+5 0.593 0.037

https://msds-capstone-project.github.io/MultiModalRAGViz/


Table 2
Specific Questions Evaluation Metrics

Context Recall
Model Mean Std Dev
Text-Only 0.988 0.009
Text+Images 10+10 0.982 0.013
Text+Images 5+5 1.000 0.000

Faithfulness
Model Mean Std Dev
Text-Only 0.881 0.005
Text+Images 10+10 0.883 0.030
Text+Images 5+5 0.892 0.022

Factual Correctness (F1)

Model Mean Std Dev
ZeroShot 0.457 0.029
Text-Only 0.547 0.057
Text+Images 10+10 0.583 0.041
Text+Images 5+5 0.545 0.040

A.3. Storage Pipeline Diagram

Figure 6: A.3 Pipeline of how we store our data

A.4. User Pipeline Diagram



Figure 7: A.4 Pipeline of how the user is going to experience the architecture
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