ADVANCES IN PRODUCT DEVELOPMENT

Dr. Ramen Datta Consultant, SRTMI

KEY STEPS FOR PRODUCT DEVELOPMENT

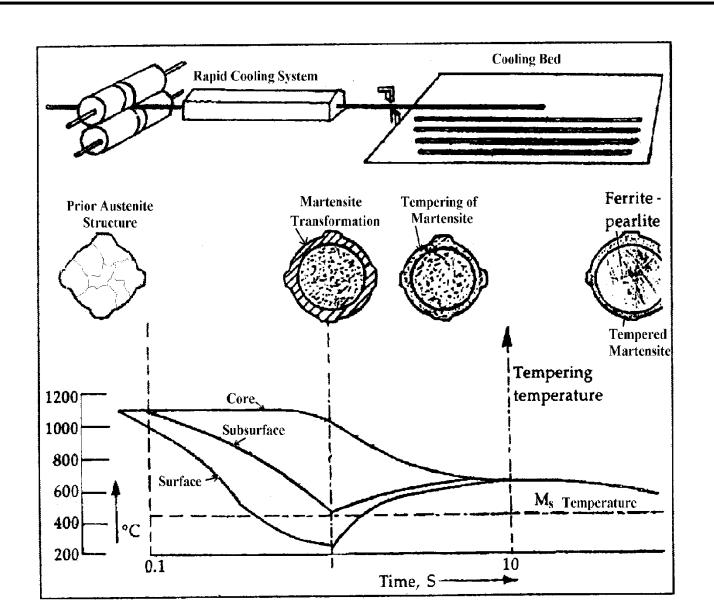
- Application/ Market
- Properties required
- Alloy Design
- Steelmaking & Processing
- Microstructure & Property Evaluation
- Field trials/ Customer Feedback
- Commercial Production

CLASSIFICATION OF NEW PRODUCTS

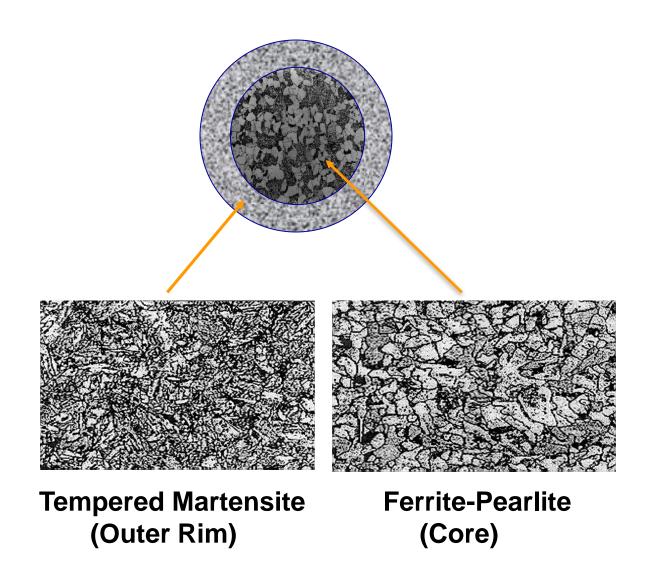
Improvement of existing products Enlarge market share Maintain competitive edge

Products developed elsewhere, but produced for the first time in India Profitability New market

Entirely new products developed for the first time in India Brand image Niche product Profitability


Major Products introduced for the first time in India

High Strength Micro Alloyed Plates, HR Coils and Structurals for **Construction Segment** ☐ SAIL HITEN Plates (UTS > 690 MPa) for ATM Chest ☐ High Strength Quenched & Tempered Plates for Defence ☐ Formable Quality HR Coils for LPG cylinder (Domestic & Export) ☐ High Strength Fine grained Steel for Automotive & PEB Segment TMT Rebars for Construction ☐ CRNO Electrical Steels for Power Segment ☐ High Strength Steel for Rails & Wheels


REBARS FOR CONSTRUCTION SEGMENT

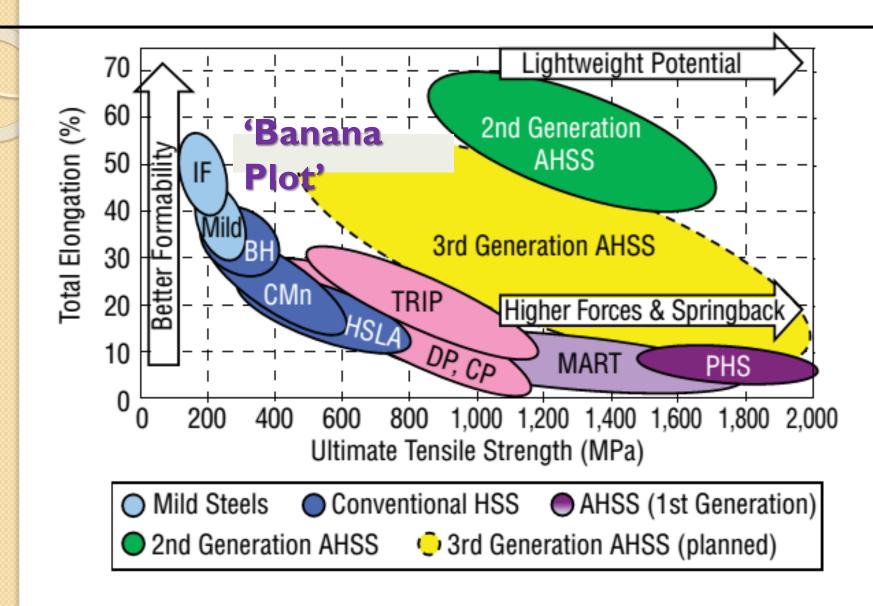
- CTD rebars
- Introduction of STELMOR/ TEMPCORE technology for TMT rebars
- \triangleright Fe -415 to Fe -600 TMT rebars
- > Corrosion resistant TMT rebars
- > EQR TMT rebars

SCHEMATIC TIME-TEMPERATURE COOLING CURVE FOR TMT-BARS

COMPOSITE MICROSTRUCTURE

EXPECTATIONS FROM EQR-TMT REBARS

- √ High Yield Strength (>500 MPa)
- √ Low variation in YS (50 MPa max.)
- √ High UTS / YS ratio (1.25 min.)
- √ Good ductility (>16%)
- √ Good Plastic Energy Absorption Capacity
- ✓ Weld Toughness
- ✓ Fire Resistance ($YS_{600} > 2/3^{rd} YS_{RT}$)


EQR - TMT REBARS

Grade	YS, MPa	TS, Mpa Min.	TS/YS Min.	EI, % Min.	Uniform Elongation %
Fe-415S EQR	415	540	1.25	18	8
Fe -415S HCR EQR	415	540	1.25	18	8
Fe-500S EQR	500	650	1.25	16	8
Fe-500S HCR EQR	500	650	1.25	16	8

AUTO GRADE STEELS

- DD/ EDD Steel
- IF/ IF(HS) Steel
- Dual Phase Steel
- CP/TRIP Steel
- Multiphase Steel
- Triplex Steel/ Martensitic Steel
- TWIP Steel
- AHSS (3rd Generation)

Steels for Auto Segment

ADVANCED HIGH STRENGTH STEEL (AHSS)

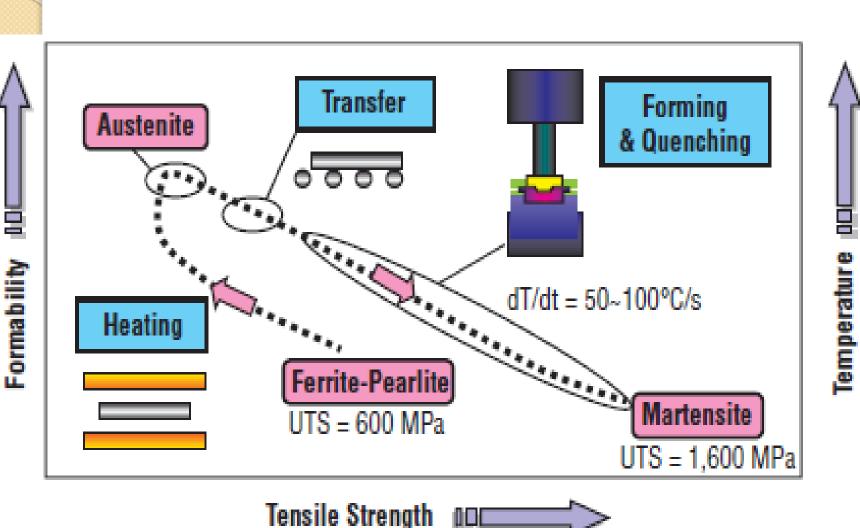
First-Generation AHSS

Dual-phase (DP), Complex Phase (CP) Steels,
Transformation-Induced Plasticity (TRIP) Steels,
Martensitic (MS) Steels, Hot-Formed (HF) Steels

Second-Generation AHSS

- Austenitic microstructure often having transformation induced plasticity (TRIP) effect.
- TRIP Steel, TWIP Steel, Triplex Steel

3rd Generation AHSS (Futuristic Steel)


Need for 3rd Generation AHSS

- 2nd generation AHSS have very high alloying additions. This makes the materials very expensive which in turn has led to their use only in luxury cars.
- There is a tendency to delayed cracking in 2nd generation steels.

3rd Generation of AHSS

Quenching and partitioning (Q&P) steel, TRIP-aided Bainitic Ferrite (TBF) Steels, Nano-Structured (NS) Steel, Three-Phase Steel with Nano-Precipitation (TPN steel)

HOT STAMPING TECHNOLOGY

Thank you