

ENCON THERMAL ENGINEERS

...Answer to the Continued Need for Energy Conservation

AN INTRODUCTION

- Established in 1978 during energy crisis in India.
- Oriented towards energy Conservation
- Well known for Designing, Manufacturing, Supplying and Commissioning of **FUEL EFFICIENT HEATING SYSTEMS** on *Turn Key Basis*

WE SERVE...

- Steel Plants
- Transformers & Distribution [T&D] Industries
- Automotive Industries
- **Foundries**
- Aluminum Industries
- Pharmaceutical Industries
- Cement Industries
- Glass Industries
- Ceramics & Refractory Industries

LANDMARKS IN R&D

- YEAR 1978 :
- Development of indigenous Recuperator
- Condensate Recovery System.
- YEAR 1979:
- Fuel Conversion from Oil fired to Wood firing.

LANDMARKS CONTD.

- YEAR 1979:
- Designing of efficient Billet Reheating Furnace.
- YEAR 1985:
- Introduction of IIP-ENCON Film Burner.
- YEAR 1989:
- Recuperative Ladle Preheating System for Mukand Ltd, Mumbai resulted in 75% Energy savings.

• YEAR 1991:

- Introduce the concept of Ceramic Fibre in Billet Reheating Furnaces.
- YEAR 1992:
- Introduction of Mono Block Burners resulting in 30% in fuel saving and 95% Electrical saving.
- YEAR 1993:
- Development of 90 ton LPH with Hydraulic lifting & lowering Mechanism.

• YEAR 1996:

- Revamping with Energy Efficient Design of 45TPH/BRHF at TATA SSL at Tarapore. The total investment \$150,000.00 recovered in 45 days.
- YEAR 2000:
- Development of Industrial Gas Burner
- (Project Sponsored by Ministry of Science & Technology and GAIL)

- YEAR 2001:
- Development of Rad Heat Gas Heating Elements.
- YEAR 2005:
- Development of Raycon System for patch up lining of Induction Furnaces.
- Development of Sand Dryer for Foundries.

• YEAR 2007:

- Development of 160ft long conveyorised HYBRID Oven (Solar-Gas-Electric) for Divya Pharmacy.
- YEAR 2008:
- Development of Coke Oven Gas Burner
- YEAR 2009:
- Development of High Velocity Burner which resulted into 15-20% increased production capacity – saving of 15% in SFC carriedout at ISWPL (subsidy of TATA Steel)

- YEAR 2010:
- Development of Core Baking Oven energized by Gas heating elements for TATA Motors Jamshedpur.
- YEAR 2016:
- Conversion of THERMIC FLUID HEATERS to ENCON RADHEAT systems.

Innovation TATA MOTORS **Connecting Aspiration**

TATA 4. Innovative Projects implemented

			Source of Idea	1 st Time			
LDO t	o NG for Pretreatment		Replication Potential	In all Industries			
1) "First Time Implemented on National Level Project" - Elimination of polluting Light Diesel							
Oil (LDO) fuel with clean Natural Gas based heating system for Long Member pre-treatment process							
Process	: Phosphating and degreasing		n Before Kaizen ng member for pretreatmer	nt degreasing &			
Componer	nt : Long Member	phos	phating ,LDO thermic fluid ing purpose.				
Location	: E Block /E2 Bay	being	nefficient heating system as g heated at 200 °C to achiev to over come transmission	ve to 80°C at tank			

process cost of Long member per component was Rs 153 /-

exchangers, hence cost of process was appr.114

on account of auxiliary circulation pumps and heat

- Age old system (30 years old). Hence high breakdown time and cost of maintenance.
- It was very dirty system and was occupying 350 sq. mtrs for LDO Tank and boilers etc.

© Confederation of Indian Industry

Lakhs /year.

TATA MOTORS LTD - CVBU-Pune CII- National Award for Excellence in Energy Management-2018

TATA MOTORS Connecting Aspiration

4. Innovative Projects implemented

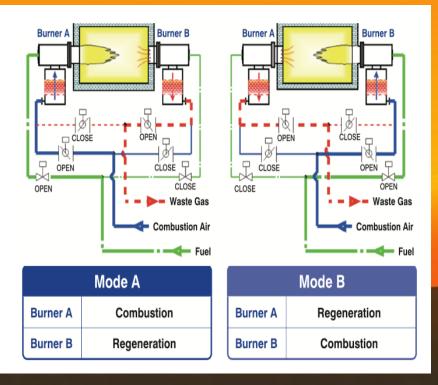
KAIZEN Result

No	Parameter	Before Kaizen	After Kaizen	Saving	% Improvement
1	Process Cost per component in (Rs. Per Component)	153	72	81	53 % cost reduction
2	Cost of fuel for process (Rs. in Lakhs)	114	60	54	47 % cost reduction
3	Space required – (Sq. meter)	350	25	325	93 % space reduction
4	Electric energy required (KWH)	250 KWH	1.76 KWH	248.24 KWH	99 % Electrical energy Reduction

Equivalent CO₂ reduction: 570 tons of CO₂ reduced per annum

© Confederation of Indian Industry

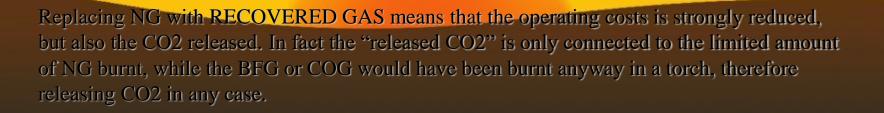
TATA MOTORS LTD - CVBU-Pune CII- National Award for Excellence in Energy Management-2018



TATA

2019:DEVELOPMENT OF REGENERATIVE BURNER

The aim of this development was to develop Regenerative burners to be used for regular fuels and for non-conventional fuels such as Blast Furnace Gas, Coke Oven Gas, Syn Gas etc, which are other wised flared, which results in production of polluting gasses and loss of useful energy.


SAVINGS onNG:-

Useful heat LHV fuel NG	1000000 8200) kcal/ h kcal/ Nm3				EI
Furnace T °C	Gas Consumption (Nm3/h)		Saving NG and	Saving NG and	Saving NG and CO2 regener vs. metallic	
	Cold Air	Metalli c rec. 450°C	Regen 800°C	CO2 metallic vs. cold %	CO2 regen er vs. cold %	rec.%
1000	230	164	135	28	41.5	18.1
1050	241	170	138	29	42.6	18.6
1100	252	176	142	30	43.7	19.1
1150	265	182	146	31	44.9	19.7
1200	279	188	150	33	46.2	20.2

SAVINGS onMIXED GAS

Useful heat	100000 0	kcal/h				
LHV fuel MIX GAS	1200	kcal/N m3				
Furnace T °C	Gas Consumption (Nm3/h)			Saving GAS and CO2	Saving GAS and	Saving GAS and CO2
	Cold Air	Metalli c rec. 450°C	Regen 800°C	metallic vs. cold %	CO2 regener vs. cold %	regener vs. metallic rec.%
1000	2,000	1,227	943	39	52.8	23.1
1050	2,151	1,282	976	40	54.6	23.9
1100	2,326	1,342	1,010	42	56.6	24.7
1150	2,532	1,408	1,047	44	58.6	25.7
1200	2,778	1,481	1,087	47	60.9	26.6

THANK YOU!

"Adopt eco-friendly technologies that your children can be proud of "

Vishve Bandhu Mahendra