THE PERPETUAL TRIAD

LASER AIDED SURFACE ENGINEERING AND ADDITIVE MANUFACTURING OF STEEL

Indranil MANNA, *J C Bose Fellow and Institute Chair Professor Indian Institute of Technology KHARAGPUR imanna@metal.iitkgp.ac.in; Web: www.imanna.in*

 Surface degradation and failure
 Surface engineering – philosophy
 Basics of laser - matter interaction
 Laser assisted surface engineering Bearing/bainitic steel, ADI, H13 tool steel
 Laser assisted additive manufacturing (LAM) Genesis, fundamentals and scope of innovation
 Issues in direct manufacturing of steel components

Steel Technology Festival

New Delhi

21Jan2020

ENGINEERING COMPONENTS AND SURFACES

Laser Materials Processing, International Materials Reviews 56 (2011) 341-388

Wear/Abrasion

Fretting Fatigue

Surface Dependent Properties

Physical Color, Roughness, Wetting Emissivity **Chemical** Catalysis, Corrosion Chemisorption, Oxidation Mechanical Hardness, Wear, Erosion Friction, Fretting

Surface Engineering Approach

Material Removal (Machining, Polishing) Surface Modification (Alloying, Hardening)

Material Addition (Deposition, Cladding)

Surface Engineering

Tailoring the microstructure/composition of the near-surface region (nm-mm) to enhance surface-dependent properties

Conventional

Carburizing, Nitriding Electroplating, Painting Calorizing, Diffusion Coating Directed Energy Beam Techniques Ion beam, Electron beam, Laser beam

Light Amplification by Stimulated Emission of Radiation

Why is it different from ordinary light? \Rightarrow Coherent (both spatially and temporarily) \Rightarrow Monochromatic ($\Delta\lambda/\lambda = 10^{-10}$) \Rightarrow Low divergence (straight line) \Rightarrow High power density is achievable

Lasers Assisted Material Processing

Dutta Majumdar and Manna, Laser Material Processing, Sadhana-Academy Proceedings 28 (2003) 495-562

LSH of Austempered Low Alloy Steel

MICROSTRUCTURE and XRD

THERMAL PROFILE MODELING

Temperature profile as a function of time at different depths (z) from surface for scan speed 16 mm/s and variation of temperature as a function of depth from surface (z)

Basu et al, Scripta Mater. 56 (2007) 887-890

AISI H13 Tool Steel: Die Material for PDC

LAM Processes for Components

Additive Manufacturing

In the Global Arena

"Additive manufacturing has the potential to revolutionize the way we make almost everything". 2013 State of the Union Address, US President Obama. "... establish 15 additive manufacturing hubs in US".

1St in Ohio, early 2014

LAM **Processes** A] Liquid based LAM **B] Powder based** LAM **C] Solid based** LAM

Materials: Thermopalstics, Photoplastics, Stainless steel, Co-Cr, Nimonic, Ti6Al4V, Ceramics

Laser Additive Manufacturing

Components by LAM

Development of Compositionally Graded Component – Human Prosthesis/Implants

Artificial hip replacement

- - 1. Cortical bone
 - 2. Trabecular bone
 - **3. Bone cement**
 - 4. Femoral prosthesis
 - 5. Frame of acetabular cup
 - 6. Acetabular cup and balls

Bone defect

Concluding remarks:

- 1. Laser is also a versatile tool for developing graded composition, microstructure and functions by LSE and/or LAM
- 2. LAM is better suited for making complex shape/structure/design
- 3. Key issues for making LAM viable: atomized powder, flexibility for changing parameters/approach, cheaper machines/consumables, greater degree of automation, and reduction of defects/anisotropy

Specific Challenges in LAM:

- **Defects due to fluctuations in laser power delivery with time**
- □ All existing machines are open-loop enabling sequential operation
- □ Anisotropy in mechanical properties (along x-y-z) small beam size
- □ Heterogeneity in microstructure due to local variation in beam power

Acknowledgement: Students, Colleagues, Collaborators, Sponsors

