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Auto-Regressive Generative Models Suck! if_
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» Auto-Regressive LLMs are doomed.
» They cannot be made factual, non-toxic, etc. Subtree of
» They are not controllable COITect” answers

» Probability e that any produced token takes gf:noéggu%?ﬁlg'e

us outside of the set of correct answers S—=

» Probability that answer of length n is correct “ 16,384 (lama 3, 4058)
(assuming independence of errors): e

> P(correct) = (1-e)" ! ‘

» This diverges exponentially. e

P It's not fixable (without a major redesign).

» See also [Dziri...Choi, ArXiv:2305.18654]
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Why Language Models Hallucinate

Adam Tauman Kalai* Ofir Nachum Santosh S. Vempalal Edwin Zhang
OpenAl OpenAl Georgia Tech OpenAl

September 4, 2025

Abstract

Like students facing hard exam questions, large language models sometimes guess when
uncertain, producing plausible yet incorrect statements instead of admitting uncertainty. Such
“hallucinations™ persist even in state-of-the-art systems and undermine trust. We argue that
language models hallucinate because the training and evaluation procedures reward guessing over
acknowledging uncertainty, and we analyze the statistical causes of hallucinations in the modern
training pipeline. Hallucinations need not be mystenous——they originate sxmply as errors in bmary
classxﬁcatxon. If incorrect statements cannot be distinguished from facts, then hallucinations
in pretrained language models will arise through natural statistical pressures. We then argue
that hallucinations persist due to the way most evaluations are graded-—language models are
optimized to be good test-takers, and guessing when uncertain improves test performance. This
“epidemic” of penalizing uncertain responses can only be addressed through a socio-technical
mitigation: modifying the scoring of existing benchmarks that are misaligned but dominate
leaderboards, rather than introducing additional hallucination evaluations. This change may
steer the field toward more trustworthy Al systems.
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Linear

Camera - Original

Linear

.

Illustrating Nonlinearity Types Using Famous Images

Low-Order Nonlinear

High-Order Nonlinear Discontinuous

Discontinuous

Low-Order Nonlinear

/‘\J\)(\ Moon - Original Linear Low-Order NonlAngar High-Order Nonlinear Discontinuous
. ! .‘,‘ . \e
o N
e s
Astronaut - Original Linear Low-Order Nonllneau High-Order Nonlm‘ear Discontinuous
= Low order High order 9” i ‘ 3 ‘ & ) l
nonlinear nonlinear
?ﬁ -y A
L'g L-,ﬂ.
Table 3: NLP Nonlinearity
Type Example Sentence Relationship Description
Linear “More sugar makes it Direct, proportional relationship be-
sweeter.” tween input and output.
Low Order “A little wine relaxes, too Smooth, curved effect — like a
Nonlinearity much ruins the night.” quadratic or saturating response.
High  Order “I never said she stole the Meaning changes based on multi-token
Nonlinearity money.” interaction or emphasis.
Discontinuous  “Not bad” means “good.”  Small token change causes sudden se-

mantic shift or inversion.

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;
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E 8 2x

Z, Scale *
Y, Time i
minibatch
: Public Health  Clinical Cell
= = g
X, Scope
v ‘ = N @ k
MitR ﬂllﬁ%#*&ﬂ%ﬁ§¢iﬁﬁl& ﬁ( Mountain range Mountain Rock Joint  Rock Sample Rock Microscope
B—EEZH &
Linear | Loworder High order y SEMANTIC
nonlinear nonlinear
BiIEPE ISt R S BT EER S vs. B R—1TRE [T

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592; Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



\ : l—l—l A Y
Ve R TSE T R I BR R 22 SR B
LMK B ERSH R IEBMEESH, XEEEBMIITEBIBUE)PHTES
FaRT8) 2 I Bl B % D B 1
KIBERER DR ITZERERTATEMNERE, ATFRZ EXMKE/ATEBOREE, EREERAELRR B
RKZE~=ERE
ML TR FIEIEERFRRTEE X, RMFEH-THK
TBIRE
o INZGHFEFH EXRTEB, XEXFRBIKE T AR
o RRNAEEMATEIARES

............ Z, Scale 4

O — 'How many World Cups has Argentina won?', the correct Y, Time
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. .

Trusting Your Evidence: Hallucinate Less with Context-aware Decoding, W. Shi et al. 2023
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Then all three backward-pass regimes unify under a single fixed-point objec-
tive:
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0" € argminE, [a K L(paata |l g6) +8C(P(p)) + (1 —a— B) f(qmy)] (71)
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progressive

normalization

Fig. 14: Symmetric Boundary Condition

Fig. 15: Weak and Discrete Boundary Condition

Table 2: Three stages of backpropagation Fixed Point Iteration.

# Stage Name Boundary Type

0 Pre-Training Implicit boundary

1 SFT Smi-Structured boundary

2 RL Explicit boundary

next token instruction reinforcement
Iteration Type o - '\ -
Weak fixed-point iteration 9 %, e . k \
? . 3 - )
Intended fixed-point iteration ol . . a < )
. .— L /

Perturbed fixed-point iteration
Fig. 13: Foundation Model Boundary Conditions

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;  Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563
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Table 5: A Classification of Function Complexity

Class Definition Complexity index k(f) Scaling with Z Scale 4
input size n d
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P (Low-order polynomial) degree k k Oo(n¥) minibatch
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As CTO of Zoom, I'm excited to share a significant milestone in our Al journey. Today,
we're announcing that Zoom has achieved a new state-of-the-art (SOTA) result on the
challenging Humanity's Last Exam (HLE) full-set benchmark, scoring 48.1%, which
represents a substantial 2.3% improvement over the previous SOTA result of 45.8%
by Google Gemini3-pro with tool integration.

Model/System HLE Full Set Score

Zoom Al sets new
state-of-the-art
benchmark on
Humanity's Last Exam

Federated innovation driving breakthrough results in complex Al
testing

Updated on December 10, 2025 ' 4
Published on December 10, 2025 J

Xuedong Huang
Chief Technology Officer

The winning strategy: Federated excellence

OpenAl GPT-5 Pro w/ tools 42.0%
Anthropic Claude Opus 4.5 w/ tools 43.2%
Google Gemini 3 Pro w/ tools 45.8%

Our SOTA performance on Humanity's Last Exam stems from both powerful models and
a new approach to their application. Central to our success is our effectively guided
explore-verify-federate strategy, an innovative agentic workflow that optimally balances
exploratory reasoning with rigorous verification. Instead of generating extensive
reasoning traces, our method strategically identifies and pursues the most informative
and accuracy-enhancing reasoning paths.
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it is unclear why.

Shahriar Noroozizadeh *!

Machine Learning Department & Heinz College
Carnegiec Mellon University
snoroozi@cs.cmu.edu

Vaishnavh Nagarajan' Elan Rosenfeld Sanjiv Kumar

Google Research Google Research Google Research

vaishnavh@google.com elanr@google.com sanjivk@google.com
Abstract

Deep sequence models are said to store atomic facts predominantly in the form of
associative memory: a brute-force lookup of co-occurring entities. We identify a
dramatically different form of storage of atomic facts that we term as geometric
memory. Here, the model has synthesized embeddings encoding novel global
relationships between all entities, including ones that do not co-occur in training.
Such storage is powerful: for instance, we show how it transforms a hard reasoning
task involving an £-fold composition into an easy-to-learn 1-step navigation task.

From this phenomenon, we extract fundamental aspects of neural embedding
geometries that are hard to explain. We argue that the rise of such a geometry, as
against a lookup of local associations, cannot be straightforwardly attributed to

[cs.LG] 31 Dec 2025
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Prompt Repetition Improves Non-Reasoning LL.Ms

Yaniv Leviathan® Matan Kalman* Yossi Matias
Google Research Google Research Google Research
leviathan@google.com matank@google.com yossi@google.com
Abstract

When not using reasoning, repeating the input prompt improves performance for popular models

(Gemini, GPT, Claude, and Deepseek) without increasing the number of generated tokens or latency.

1 Prompt Repetition
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REPO: Language Models with Context Re-Positioning

Huayang Li'? Tianyu Zhao' Richard Sproat !

Abstract General e SR
. " 7 e
In-context learning is fundamental to modern / 2 y :;:i

Large Language Models (LLMs); however, pre-
vailing architectures impose a rigid and fixed
contextual structure by assigning linear or con-
stant positional indices. Drawing on Cognitive
Load Theory (CLT), we argue that this uninfor-
mative structure increases extraneous cognitive
load, consuming finite working memory capacity
that should be allocated to deep reasoning and —N”
attention allocation. To address this, we propose 2 35~
REPO, a novel mechanism that reduces extrane- B o

R2N1
we= RePo (Ours)

Long Context
~
(=]
~4
o
IXIJu0) AsjoN

16 Dec 2025



LY

i

“NE

Y
b
oo
ot

G

Soe
=t
W

MM K Z—FAIFIIMIBETE

@ FT Technology News 2 e

Computer scientist Yann LeCun: ‘Intelligence really is about learning’
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