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Neural Network Mathematics



Neural Network Geometry
Geometry bestows the eye that beholds all things from above, a very ladder to the freedom

● Connected and stacked piecewise-smooth manifolds jointly form the 
geometric structure of the representation space. 

● Node covers act as the local units of these piecewise-smooth manifolds, and 
their orientations change at every iteration. 

● These piecewise-smooth manifolds are differentiable and integrable.



Geometry Rules
● Common AI View

○ Objectives(loss) + Optimization(parameter) determine the solution
○ Geometry emerges as a byproduct, secondary

● Deep Manifold View
○ Geometry determines what solutions can exist
○ Optimization only traverses a pre-shaped manifold

● Learning is inverse and non-identifiable
● Geometry is the only stable prior
● Geometry determines inference intrinsic pathways



Stacked Piecewise Manifold
● A manifold:  a point, a line, a cycle, a triangle,  an infinite-dimensional Banach manifold
● Image RGB: 3 stacked Pointwise Manifold 
● Neural Network: connected, stretched, stacked piecewise Manifold
● Stacked Piecewise Manifold Benefit: High Order Nonlinear Data
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Y. LeCun is right for a single manifold, but why do Transformers work so well ?

● The exponential-decay critique treats generation as a single manifold trajectory with 
independent failure at each step.

● Transformers operate on stacked piecewise manifolds, where deviations project onto 
shared geometric subspaces.

● Error events overlap rather than compound. Generation stability follows union-bounded 
geometry, not multiplicative probability collapse.
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Neural Network Algebra
Algebra is the science of operations, the silent one behind all transformation

● The coordinate system evolves with each iteration; 
● Counting serves as the most primitive algebraic unit, 
● Iterated-integral structure of forward propagation; 
● Activation is propertyless



Neural Network Equation
An equation is the quiet connector that enables computation

● Fixed-Point Residual as the Primitive Equation

● Lagrangian Formulation of Neural Fixed Points
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Neural Network Stochastic
A stochastic world is an inequality world, but it is real

● Stochasticity is expressed through inequalities and group statistics based on 
summation 

● The statistical structure enables neural networks to learn the inherently 
stochastic real world and naturally form stochastic fixed points.

● It is effortless



Neural Network Fixed Point
Fixed point theory is the theory of iteration, until fixed

● Iterations traverse billions of piecewise-smooth manifolds, giving rise to 
innumerable fixed points and convergence paths within foundation models.

● Because the training data themselves contain high-order nonlinearity, 
curvature (second derivatives), and moderate perturbations, the model can 
distinguish the correct convergence direction toward a fixed point.
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Neural Network Boundary Condition
Boundary conditions give iteration purpose and direction

● Boundary conditions are the sole source of iterative direction and determine 
the convergence path during training. 

● When a foundation model lacks static fixed points, symmetric, weak, and 
discrete boundary conditions become necessary to guide the convergence of 
a high-order nonlinear system. 



Learnable Numerical Computation



Mathematics & Numerical Computation
● Mathematics

○ Universal in principle: seeks analytical solutions that hold across domains
○ Mathematics excels at description; often not directly solvable or computable.
○ Structural limitation: analytical existence does not imply closed-form expressibility, 

especially for high-order nonlinear, discontinuous, or stochastic systems.
● Numerical Computation

○ Galerkin method: a numerical solver that replaces exact solvability with weak consistency 
on a chosen representation space.

○ Approximation theorem: a result guaranteeing that functions in a target class can be 
approximated arbitrarily well by functions from a specified family, under a given metric. 
discretization, approximation, iteration

○ Adaptable: empirical terms, adaptive meshes/layers, usable convergence over exactness. 
○ Pragmatic: whatever works, as long as it converges.

Numerical computation can be deceptive. Without solid mathematical grounding, it may 
advance remarkably far in practice—as seen in the supercomputer era, and again today in 
AI. Scaling computational power does not imply scaling mathematical understanding.
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From Fixed Point to Learnable Computation
● Fixed point defines what learning is.

○ Beautiful descriptor, but not a solver; no numerical procedure
○ No notion of progress, No way to handle constraints (architecture, data)

● Lagrangian Formulation makes it solvable.

○ Lagrangian equilibrium = neural network fixed point
○ ℷ = boundary enforcer,  g(θ) =0 architectural / data constraints

● Numerical iteration makes it real.
○ Mathematics becomes computation only when residuals are iteratively reduced 

under constraints
○ Galerkin Method: equations become solvable numerically only after 

residualization and iteration
○ Learning is not defined by objectives, but by the existence of a stable numerical 

iteration.
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● Neural Fixed Point Equation: 

● Lagrangian Formulation of Neural Fixed Points:

● Let the model Architectural and/or Data constraints be g(θ) = 0

Different Model, Different Reasoning Path

g(θ): Same prompt, 
different reasoning 
path, yet the same 
accurate output.

Exploring Randomly Wired Neural Networks for Image 
Recognition, arXiv:1904.01569

ReJump: A Tree-Jump Representation for Analyzing and 
Improving LLM Reasoning, arXiv:2512.00831v2 
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Neural Networks as Galerkin-Type Numerical Systems
● Neural networks can be understood numerically through a Galerkin-type formulation, 

rather than classical optimization.
● Classical Galerkin Method

○ Solve operator equation
○ Enforce solution weakly

■ finite-dimensional trial space, residual orthogonality, numerical iteration
● Neural networks are not optimizing functions, they are numerically solving residual 

equations on learned manifolds.

Galerkin Neural Network (Deep Manifold) Galerkin without fixed geometry, 
which itself is learned.Operator Implicit data-induced operator

Trial space Learned manifold What “Solving” Means
Not: finding a global minimum
But: achieving stable fixed-point 
consistency across admissible 
manifold regions

Basis functions Propertyless activations

Weak form Residual energy integral
Quadrature Minibatch sampling
Assembly Stacked, piecewise manifolds Training solves a variational 

fixed-point system numerically,
inference traverses the learned 
geometry.

Solver Backpropagation

Convergence Fixed-point stability



AI as Learnable Numerical Computation
● Neural networks inherit a numerical worldview: solvers, not theorem provers.
● Core tension: scaling from domain-specific numerics toward mathematical universality.
● Numerical computation pragmatism: as long as it converges, the method is not restricted. 

As long as it converges, you can add any pizza toppings: pepperoni, pineapple, 
anchovies, extra cheese, whatever works

● Absent a fixed point, the network breaks all constraints. The Olympians descend from 
order into improvisation: each god crossing the same boundary by a different force, 
unconstrained, uncoordinated, yet collectively sufficient.
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Neural Network Propertyless



Property-Lessness and Counting
● Activation as hidden representations or latent variables, but they lack assertable 

definitions and intrinsic properties.
● Classification asks which class has more support than the others.
● Property-lessness: Individual activations do not encode semantic properties.
● Discrete decision compatibility: Counting transitions cleanly from continuous 

accumulation to discrete class selection (argmax).
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Open AI is Not Wrong
Large language models fundamentally perform classification over learned representation spaces.



Classification

● Sir Hans Sloane’s Catalogue of Jamaican Plants published in 1696
● Catalogue and classification enabled reasoning in the Enlightenment 

by reducing knowledge to countable, comparable features. 
● A two-legged animal likely flys, A four-legged animal animal unlikely flys.
● Neural networks follow a similar principle of classification via 

aggregated activation counts, nothing else.

The Enlightenment Gallery at the British Museum

The classification is the system used to 
place items on the shelves; the 
catalogue is the records of each item, 
and the way you locate items that have 
been classified.



Property-Lessness and Counting
● If we examine the Transformer models, their operation is fundamentally classificatory
● The vocabulary defines the discrete class space, and every activation represents a local stage of counting
● Each layer acts as an integral operator that aggregates and transports evidence:

● Stacking these operators yields a full L-layer manifold integration:

● The categorical decision for the next token is then obtained by integrating the final manifold representation 
through a class-specific counting field:
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Data



High Order Nonlinear Data
US Flag: sharp color jumps between stripes (White/Red) , 
and between the white stars and the blue background. Such 
abrupt changes can be considered high-order nonlinearities
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Data Complexity
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Mini-batching is a major challenge for fixed-point 
convergence in neural network computation.

High-order nonlinearity in data is a major source of neural plasticity. Symbolic vs. semantic is a scale issue.



Temporal Misalignment as an Ill-Posed Inverse Problem

27

'How many World Cups has Argentina won?', the correct 
answer is three, as Argentina won in 1978, 1986, and 
2022. However, if the majority of the training data for an 
LLM predates 2022, the model might incorrectly answer 
with two. The explicitly timestamp was missing from the 
training data, or weight much less in the model. 

Trusting Your Evidence: Hallucinate Less with Context-aware Decoding, W. Shi et al. 2023

● Neural Network is  forward-inverse combined, which enable neural network to learning from the past.
● The negative time is critical property of inverse problem. 
● Temporal misalignment in LLMs arises because time is a missing boundary condition  without explicit 

timestamps, inference producing aliasing between eras.
● Neural Network property-lessness amplifies temporal ambiguity rather than resolving it.
● Migration Path

○ Explicit Timestamp in Training Data. This restores orientation to the data manifold
○ Prompt-Level Temporal Boundary Conditions

Temporal misalignment is a consequence of missing time as an explicit boundary condition in forward–inverse learning, not 
a generalization error. From a Deep Manifold perspective (arXiv:2409.17592), neural networks converge to stochastic fixed 
points shaped by data; they do not "fail" to generalize, but rather lack the temporal encoding necessary to distinguish eras. 
While their forward–inverse nature allows integration of past data, the absence of timestamps prevents time from acting as 
a formal constraint, leading to systematic misalignment.

https://arxiv.org/pdf/2305.14739


Inference



Next Token Predication is Integral Process
● Each element of a token embedding defines a local piecewise manifold.
● A token embedding is a stack of piecewise manifolds, thereby defining its intrinsic nonlinearity.
● The intrinsic dimension is identified with the tangent space induced by intrinsic nonlinearity between 

embedding elements, as defined in dimensionality theory (algebra).
● An intrinsic pathway is an integral curve of this field—millions, potentially billions, of such paths coexist.
● Neural network property-lessness makes all above possible.
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Taking a derivative without an integral, What is the purpose of the derivative?



● Nonlinearity, defined by each element of a token embedding, piecewise manifold

● Dimensionality, the nonlinearity tangent (dimensionality theorem algebra)

What appears as dimension compression is in fact intrinsic dimension extraction along intrinsic nonlinearity



Inference Complexity: Dynamic fixed points and integral pathways.

● Inference is simultaneous traversal of a vast family of integral pathways
○ Prompt / instruction defines the initial boundary condition of the integral 

● Learned geometry contains many coexisting fixed points 
○ Each token prediction corresponds to a local convergence 

● Fixed points during inference are dynamic 
○ Context update ⇒ boundary shift ⇒ fixed-point drift. 

● Inference can be approximated by a series of Fourier expansion of the integral field
○ Dramatic speedup and cost reduction without altering learned geometry.
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Multi-turn, Hierarchical and Recursive
● Multi-Turn: Neural networks admit an enormous number of emergent intrinsic 

pathways, which could be in trillisions. 
● Hierarchical: Neural Network is based on function composition and operates on 

nested and iterated integral over stacked manifolds
● Recursive: Neural Network develops Interconnected Toroidal, ring-like Geometry
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● Neural network Learnability: Neural networks do not possess intrinsic reasoning or cognitive 
abilities; such capabilities are entirely learned from data through the model’s learnability.

● Scaling laws remain largely empirical and lack a unifying theoretical foundation; in particular, they 
lack a principled notion of learning efficiency and largely ignore learning complexity.
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Emergence And Complexity
● Emergence and complexity are inseparable. 

○ Complexity is the substrate (soil) of emergence; emergence is its observable outcome (fruit). 
Increasing complexity expands better emergent behavior.

● Deep Manifold attributes 
○ the emergence and complexity to property-lessness
○ the fundamental reason neural networks are so powerful.

● From classification to emergence: a property-less foundation
○ Classification precedes explanation and is grounded in mathematical property-lessness.
○ The Enlightenment Gallery (British Museum) frames classification as the origin of science
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“Measure for Measure” 水能载舟，亦能覆舟
It is excellent To have a giant's strength; But it is tyrannous To use it like a giant.

A neural network is a powerful learnable numerical computation. 
One of its greatest strengths lies in its "property-lessness".  This 
allows neural networks to learn almost anything from mixed modalities 
and across disciplines. However, It is not grounded in any specific 
physical, known scientific principles, physical and time dimension,  
moral compass, or even common sense. They are only as faithful as 
their training data.
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Training Progression



Transformer Positional Embedding
● It is Transformer’s blunder/defect 

○ Transformers naturally operate on stacked, piecewise manifolds. Due to the very high 
embedding dimensionality, token representations become effectively point-wise, like grains of 
sand, resulting in strong adaptability to data high-order nonlinearity while promoting global 
manifold smoothness (local continuity and global transitions) and computation stability 

○ but leads to compute-budget overruns and ultimately a scaling ceiling, similar in spirit to 
problematic binding mechanisms we have observed in Discrete Element Methods (DEM).

● Two fundamental aspects of Transformer have never been explicitly recognized by the AI community.
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Continual Learning
● Why it is possible: neural-network node coordinates can change indefinitely across iterations: a 

capability no classical numerical method or computation framework has ever possessed..
● What holds it back: neural plasticity and dynamically shifting fixed points constrain stability, making 

long-horizon continual learning intrinsically difficult.
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RL and Fixed Point Perturbation
● Without the fixed points, the iteration cannot rely on internal 

geometry; it must be guided exclusively by boundary conditions.
● Without symmetric boundaries, the iteration must rely on weak, 

Soft and Discrete boundary conditions.
● “Weak and Soft”: numerical perturbations are minimal, yet 

globally the system remains highly adaptable.
● Discrete: Even when boundary conditions are discrete, sparse, or 

non-strict, the network can still reconstruct its intrinsic integral 
trajectory and locate new fixed points.
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Fixed Point Progression
● In practice, a fixed point corresponds to what we call a solution, answer, or decision.
● A Weak Fixed Point does not imply the point itself is weak; rather, its intrinsic convergence pathway 

is weak and diffuse.
● An Intended Fixed Point serves as an anchor, shaping the convergence basin through explicit 

boundary constraints.
● A Perturbed Fixed Point is often the most effective, as weak and stochastic boundary conditions 

activate richer convergence pathways.
● Under high-order nonlinearity, perturbation becomes essential for fixed-point iteration to converge.
● The effectiveness of Reinforcement Learning arises from boundary conditions that are symmetric, 

weak, and discrete, which delay neural plasticity

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;     Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



Trainability, Learnability and Neural Plasticity
● Unbounded trainability via coordinate unlimited change

○ Because node coordinates (manifold covers) change at every iteration, neural networks can be trained 
indefinitely.

● Trainability ≠ Learnability
○ Continued optimization may yield no new learning and can induce misalignment with previously 

learned structures.
● Neural plasticity is the bottleneck

○ Delaying neural plasticity is a critical objective in both architecture design and training strategy
● Learning Complexity 

○ Data-induced complexity: high-order nonlinearity and near-infinite data scope
○ Architecture-induced complexity: rigid neural network architectures
○ Boundary-induced complexity: asymmetric, strong, or pointwise boundary conditions
○ Optimization-induced complexity: batch structure and learning rate schedule
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Stationary, Symmetry and Neural Plasticity
● Stationarity arises when real-world data imposes many incompatible constraints; under stochastic training these 

constraints cancel statistically, producing degenerate directions along which the variational gradient vanishes.
○ Stationarity in Deep Manifold is exactly the variational condition that defines neural fixed points: a neural 

fixed point is a stationary solution of the implicit Lagrangian under weak, data-induced boundary conditions.
● Symmetry (Ring) emerges when such degenerate stationary directions admit continuous transformations that 

leave the functional invariant, causing stationary solution sets to organize into closed level-set manifolds, observed 
as rings or shells.

○ Interconnected Toroidal Geometry arises when multiple ring-like stationary manifolds share overlapping 
data constraints (e.g., “bank” with multiple meanings), coupling independent rings into intertwined tori and 
enabling semantic superposition and neural plasticity.

● Neural plasticity arises from interconnected toroidal structures because they create extended, coupled flat 
directions in which small boundary perturbations move the solution along the stationary manifold rather than 
restoring it to a unique configuration.
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Is the ring the most stable stationary manifold?
Locally yes, globally no. The ring is locally the most stable stationary manifold under isotropic 
constraints, but global stability breaks when multiple invariances couple into higher-order geometry.

Towards Understanding Grokking: An 
Effective Theory of Representation Learning. 
(M. Liu… Max Tegmark, 2022)

Not All Language Model Features Are 
One-Dimensionally Linear, (J. Engels… 
Max Tegmark, 2024)

Dimensionality Reduction by Learning an 
Invariant Mapping, R. Hadsell… Yann 
LeCun, 2005



Training Complexity: From Memorization to Generalization
Geometry and Fixed Point In Deep Learning
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● Training is geometric evolution, not parameter optimization.
○ Learning reshapes the admissible solution geometry rather than minimizing a fixed function.

● Data induces constraints; geometry absorbs them.
○ Empirical data progressively deforms the representation manifold into stationary structures.

● Stationarity defines what is learned.
○ Learned knowledge corresponds to stationary manifolds and their fixed-point sets under the 

induced operator.
● Generalization is geometric traversal.

○ Generation arises from structured movement within invariant geometry



Bigger Models Are Not the Ultimate Solution
● Why scaling works

○ Larger models increase degrees of freedom
○ Enable high-order nonlinearity
○ Absorb near-infinite data scope and diversity

● Why scaling alone fails — Babuška’s Paradox
○ Pure scale-out introduces accumulated numerical error
○ Massive node interactions amplify instability
○ More parameters ≠ better solution when geometry drifts

● Transformer: still the best we have
○ Locally rigid, structurally fragile
○ MoE: more freedom, implicit federation — fragility remains

● Diffusion has own beauty
○ Globally smooth and robust, computationally expensive
○ Not structurally scalable as a universal solver

● Play-doh like elasticity models
○ Soft, large deformable geometry
○ Stable under high-order nonlinearity
○ Scales with data complexity, not just parameter count



Model CAP Theorem
● Coverage denotes how much of the real–world manifold the model attempts to represent across 

semantic, symbolic, temporal, modal, and nonlinear axes.
● Accuracy denotes local geometric fidelity: curvature alignment, fixed–point stability, and residual 

correctness within each manifold slice.
● Performance denotes the numerical efficiency of inference.

Single-forward pass: only 2 of {Coverage, Accuracy, Performance} can be optimize.
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Manifold Federation: Real World and World Model

● Data complexity induces learning complexity
● Learning complexity arises from dat high-order nonlinearity
● Federation itself is a manifold concept

○ Each model corresponds to a distinct manifold. 
○ Like an ML ensemble, each model captures a different aspect of high-order nonlinearity

● Local federation operates as a mosaic of small elastic models
● Global federation constitutes deep manifold federation learning

The Future Is Mini-AGI Federation
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AI for Science and Engineering



AI for Science and Engineering
1. Extreme Learnability of Neural Networks

a. Forward–Inverse Unified Iteration 
b. Propertyless: Any data type, any boundary condition
c. Loss functions: without any governing physical equations or mathematical abstractions.
d. Unbounded Learning Space: Effective across resolutions, domains, data scopes, and modalities 

through a unified numerical representation: property-lessness(token embedding)
e. Stochastic Fixed Points: much more close to the real world than human own interpretations.

2. What Enables
a. Inverse Problems become natural and effortless.
b. Applying any boundary conditions can speed up by up to 10,000,000x (10M) faster.
c. Discoverability: Interpolation and extrapolation merge along manifold trajectories.
d. Constitutive Modeling: Governing relations emerge from directly data with observation only.

3. PINN and Neural Operator
a. PINN and numerical computation are complementary; they cannot replace one another.
b. For highly complex problems, Neural Operators do not go far.

Neural network property-lessness underpins its universal learnability.
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AI4SE: Speed Up
● Up to 10Mx
● Explicit and Implicit coupling

50+ parameters



Discoverability: Interpolation and Extrapolation
● Neural networks implement no explicit or implicit knowledge boundary. 
● Interpolation and extrapolation collapse into a single process: manifold traversal.
● How Discovery Emerges: 

○ Near-infinite data scope continuously expands 
○ Propertyless representations allow unrestricted coordinate reshaping
○ Boundary-conditioned iteration guides motion along intrinsic pathways

● Neural networks do not cross knowledge boundaries because no knowledge boundary exists. 
● “Extrapolation” is simply stable traversal until constraints fail.
● Discovery is geometric inevitability, not symbolic reasoning



Data-Driven Constitutive Modeling
● Constitutive law = intrinsic manifold

○ Physical systems obey intrinsic relations (e.g. stress–strain)
○ In high-order nonlinear regimes, no closed-form law exists
○ Neural networks learn this relation as a constitutive manifold

● From equation to geometry
○ Law becomes learned geometry, not prescribed formula
○

● Fixed-point interpretation 
○ Constitutive update treated as a fixed-point problem
○ Training minimizes residuals to recover intrinsic law
○ Learned behavior stabilizes as a numerical fixed point

● Projection onto learned manifold 
○ Observations are projected onto 
○ Update selects the nearest admissible constitutive state
○ Robust to noise, plasticity, and incomplete measurements



Numerical Computation Limitation
● Equations are assumed; the world is not

○ Classical solvers require a known governing operator; real systems are partially unknown, 
drifting, or unmodeled.

● Geometry is fixed, not learned
○ Mesh / basis / coordinate choice is external. The solver cannot create new representational 

geometry when reality demands it.
● Uncertainty is treated as noise, not a boundary condition

○ Stochasticity is usually appended (error bars, turbulence models), rather than integrated as a 
first-class constraint shaping admissible solutions.

● Complexity is offloaded into “closure terms”
○ When physics is missing, we add friction factors, constitutive laws, subgrid models, handcrafted 

patches that do not scale.
● No scalable mechanism for multi-regime transition

○ Discontinuities, phase changes, damage, and bifurcations force solver switching, remeshing, or 
model rewriting.



Vajont Landslide, 1963

● Rapid sliding and friction degradation: Lessons from the catastrophic 
Vajont Landslide, J. Ibañeza,, Y. Hatzorb, 2018, Engineering Geology

● Discontinuous Deformation Analysis (DDA)



Coupling Approach
Couple the globally learned geometry into local, site-specific numerical fixed-point solutions

● AI excels at global generalization
○ Learns from all historical and simulated cases

● AI is propertyless
○ Handles heterogeneous data (images, text, signals, logs)

● Physics-grounded solvers like DDA, FEM and NMM
○ Naturally support inverse problems, discontinuities, and strong nonlinearity 

Neural networks as learnable numerical computations and physics-grounded 
numerical computations complement each other rather than replace each other.



● Neural Networks
○ Learnability across Data Types & Global Generalization

● Numerical Computation
○ Physics-Grounded Accuracy, True Fixed Points & Explicit Mechanism

● Numerical computation exposes the mechanism; neural networks learn the geometry.

Harmony Model



Not Coincidence
Part 2 was officially published on December 6, 2025



Federated AI
Deep Manifold

● The future is mini-AGI federation 
because high order nonlinear data



Neural Networks Geometry
Deep Manifold

● Neural network behavior is governed by the geometry of its 
learned world representation.



Prompt Repetition
Deep Manifold

推理是一种迭代积分过程；当积分路径规模达到数十亿时，这一架构早已在现实系统

中运行，无需区分所谓的推理或非推理模型



No Position Embedding
Deep Manifold

Positional embeddings may not be strictly necessary. The reason they persist is 
that they act as a 'glue' for the high-dimensional embedding space, providing a 
structural anchor for the model



Learnability

Deep Manifold

Neural Network is a learnable numerical computation



Dataualism



Dataualism
● Core Thesis

○ Dataualism holds that intelligence and knowledge arise from fidelity to data, not from 
human-designed meaning, intent, or structure.

● Doctrinal Principles
○ Data as the primary authority

■ Data itself is the ultimate source of truth. It is inherently high-order nonlinear and spans a 
near-infinite scope, far exceeding what can be exhaustively specified by human-designed 
rules or theories.

○ Neural networks as learnable numerical computation
■ Neural networks are best understood as learnable numerical computation, not as systems 

governed by known physical laws, moral frameworks, or symbolic principles. Model 
behavior is not prescribed; it is entirely learned from data.

○ Mathematical foundations
■ The mathematical structure underlying dataualism is grounded in three pillars:manifold 

coverings, fixed-point theory, and calculus. Together, they describe how learning systems 
represent complexity, stabilize behavior, and evolve through computation.

○ Doctrinal humility
■ As a doctrine—by definition a school of thought—dataualism does not claim inherent 

correctness. It is not true by fiat, but justified only insofar as it continues to explain and 
predict empirical outcomes.

○ Role of human knowledge
■ Dataualism does not exclude human insight or domain knowledge in addressing specific 

real-world problems. Rather, it treats such knowledge as contextual scaffolding, not as a 
universal source of authority.



mHC and Muon
● Do not fully align with the doctrinal position of dataualism. One that introduces 

explicit structural constraints, g(θ)
● Not to say that these methods are incorrect or ineffective. Rather, they reflect a 

different philosophical stance
● his limits gradient alignment across strongly repeated signals, preventing excessive 

collapse toward a single fixed-point geometry during fine-tuning and subsequent 
training phases.

Image source 
@CalcCon



In Lens of Deep Manifold



Information Theory as Boundary Constraint
A Deep Manifold Perspective on Entropy, Compression, and Learning

● Entropy ≠ learning objective → it is a capacity boundary
● Compression → consequence of manifold alignment, not its cause
● Learning → stochastic fixed points from geometric constraint cancellation
● Why  Minimum Description Length (MDL) fails for LLMs → description length measures 

boundary cost, not interior geometry
● What matters instead → intrinsic learning pathways on deep manifolds

Information theory limits representation; Deep Manifold theory explains learning.
Entropy bounds the boundary;geometry computes the solution.



Kolmogorov Complexity: A Beautiful Descriptor

● Kolmogorov complexity asks: 
○ What is the shortest program that generates this object?

● Deep Manifold theory asks:
○ What geometric and dynamical constraints make this object a stable solution of a learnable 

numerical system?
● Kolmogorov theory implicitly assumes: compression ⇒ structure
● Deep Manifold inverts this: structure ⇒ incidental compression
● Neural networks do not minimize description length.

○ They integrate constraints until residuals vanish locally.
○ Compression emerges only after a stable manifold geometry forms.

Kolmogorov complexity bounds description; Deep Manifold theory explains 
computation. Entropy limits the boundary; geometry determines the solution.



Energy-Based Model
An energy-based model is a neural fixed-point system written in the language of 
energy: the “energy” is the fixed-point residual, and inference is the numerical act 
of driving that residual to a stable equilibrium under boundary constraints.



SFT: Catastrophic Forgetting
From the Deep Manifold view, pretraining, SFT, and RL correspond to different boundary conditions. SFT 
does not inherently cause catastrophic forgetting and can be implemented in ways that avoid it.

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;     Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



Superposition, Node Cover and Neural Plasticity

● Every iteration rotates or reshapes the node’s local manifold orientation.
● Training = continual node-cover re-orientation across stacked manifolds
● Superposition = the stochastic average orientation of piecewise manifolds
● Learning capacity (scaling law) is limited by neural plasticity. 
● Interconnected tori form inside the stacked piecewise manifolds during training
● These knotted toroidal structures are the geometric source of neural plasticity

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;     Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



Mechanistic Interpretability
Circuit

● One smooth continuous surface 
● A thin discrete path traveling on the surface
● Nodes or dots along the path 
● Geometry is flat and global

Deep Manifold
● Multiple stacked, slightly offset surfaces 

(piecewise manifolds)
● A continuous curve descending / threading 

through layers
● Path bends at layer boundaries (integration, not 

jumps)
● No nodes, no symbols — only flow
● Suggest depth via spacing, not shading



Category theory and Deep Manifold
Category theory, like many elegant mathematical theories, offers beautiful descriptions but 
does not directly express the computable structure of neural networks. Deep Manifold 
fills that gap by focusing on the computation and geometry that actually govern learning 
dynamics.

● Category theory organizes how computations compose; Deep Manifold explains how 
neural networks compute.

● Category theory excels at compositional syntax, not at modeling high-order nonlinearity, 
manifold plasticity, or training dynamics.

● Neural networks are not categorical compositions but iterated integrals, whose 
convergence and behavior are determined by evolving boundary conditions and 
stochastic fixed points.

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;     Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



Neural Network Optimization

● Classical optimization core thesis
○ Optimization dynamics → implicit regularization → generalization

● Classical optimization requires a well-defined objective function. 
○ Neural network training does not optimize a predefined governing function 

● Neural network enforces constraints induced by data and architecture, with 
the loss serving only as a boundary functional.

● Neural network “optimization” is best understood as a numerical transport 
mechanism for reducing a weak residual induced by data constraints. The 
loss is a boundary functional defined on empirical constraint sites, not a 
governing equation of the modeled world. 

● In LLMs, the objective is non-stationary and semantically misaligned with 
truth, so training converges, when it does, to stochastic fixed point shaped by 
stacked piecewise manifold geometry rather than to a classical optimum.



The Mathematical Lineage of Deep Manifold



Neural Network Mathematics Already Exists 
Deep Manifold Only uncovers it

● Neural networks advance mathematics: concretely through practice, subconsciously through 
theory, driven largely by non-mathematicians, AI pioneers, and the broader AI community.

● History repeats itself. Some of the most significant advances in mathematics have historically come 
from outside the discipline, pioneered by physicists, engineers, or other scientists

1. Pierre de Fermat – Number Theory (1637), background: Lawyer
2. Blaise Pascal – Probability Theory (1654 ), background: Physicist, inventor, and philosopher
3. Isaac Newton – Calculus (1666), background: Physicist and natural philosopher
4. J´anos Bolyai – Non-Euclidean Geometry (1832), background: Military officer
5. Claude Shannon – Information Theory (1948), background: Electrical engineer

● Newton developed calculus to express the laws of motion, not to solve abstract math. Today’s AI 
revolution continues this tradition.

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;     Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



Deep Manifold Mathematical Lineage

The theory of Fixed-point classes resolved the existence, uniqueness, and stability 
of solutions to differential equations,  more than two centuries after Newton 
introduced calculus

1980s, Numerical Manifold Method
Professor Shiing-Shen Chern, widely regarded as the father of modern differential 
geometry, served as one of the three members of the Shi PhD dissertation committee 
(UC Berkeley), providing academic validation for the mathematical framework of 
numerical manifold method and laying the foundation for the subsequent development 
of the theory. Chern’s only question was: 'Can stacked piecewise manifolds be extended 
to any complex domain? He would have been delighted to see the progress in neural 
networks, as their geometry can be understood as stacked piecewise manifolds.

Jiang Zehan
Kiang Tsai-han Gen-Hua Shi Jiang Boju

Gen-Hua Shi
60s: Theory of fixed point 
classes
70s: KeyBlock Theory
80s: Discontinuous 
Deformation Analysis
90s: Numerical Manifold 
Method
00s: Contact Theory 
(inequality theory)



Global/Generalized Mathematics
Differential Geometry is the theory on differentiable manifolds

● 1830, Évariste Galois, Generalized Number
○ Algebra groups, rings, fields, and Galois theory

● 1892, Henri Poincaré, Generalized Shapes
○ Covering spaces and geometric laws in algebraic topology, Henri Poincaré

● 1952, Shiing-Shen Chern, Generalized Functions
○ Manifolds and physical Laws based on cover systems,
○ Differential equations to solve complex physics problems, 
○ Mathematical basis for later numerical computing techniques.

79

● Computational methods may be naturally non-rigorous, but they are all rooted in a 
small number of fundamental physical laws.

● These methods are very loosely connected to mathematics, yet they are interlinked.
● It helps humanity understand the world; the same is true for artificial intelligence.
● AI is a learnable numerical computation.

Mathematicians’ Dreams and Pursuits
● Local and global; continuity and discontinuity; forward and inverse problems

Broad Perspective
● Shiing-Shen Chern: how to solve arbitrary complex differential equations
● Shing-Tung Yau: how to solve arbitrary complex differential equations
● Gen-Hua Shi: how to compute complex differential equations



“This is not how mathematicians are trained” (Gen-Hua Shi, 2024.05)
● Simultaneously solving the forward problem in positive time and the inverse problem in 

negative time has long been a dream of mathematicians, yet they never knew where to begin. 
Neural networks, however, handle this problem naturally.

● Variables, coefficients, and even coordinate systems evolve continuously—nothing remains 
fixed. This is not how mathematicians are trained, and such a design could not have come 
from mathematicians.

● Mathematicians approach composite functions beyond two layers with great caution, mindful 
of numerous subtle pitfalls; neural networks, by contrast, address them with near 
nonchalance.

● Neural networks possess stacked mathematical coverings, whereas numerical manifolds 
typically involve only three to four layers of coverage. By contrast, neural networks stack 
hundreds or even thousands of such layers. I never imagined anyone would push this so far. 


