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Neural Network Mathematics



Neural Network Geometry

Geometry bestows the eye that beholds all things from above, a very ladder to the freedom

e Connected and stacked piecewise-smooth manifolds jointly form the
geometric structure of the representation space.

e Node covers act as the local units of these piecewise-smooth manifolds, and
their orientations change at every iteration.

e These piecewise-smooth manifolds are differentiable and integrable.




Geometry Rules

e Common Al View

o Obijectives(loss) + Optimization(parameter) determine the solution
o Geometry emerges as a byproduct, secondary

e Deep Manifold View

o Geometry determines what solutions can exist
o  Optimization only traverses a pre-shaped manifold

e Learning is inverse and non-identifiable
e Geometry is the only stable prior
e Geometry determines inference intrinsic pathways

Common Al View Deep Manifold View

‘@¥ Objectives , Optimization

Find the best solution. Explore allowed solutions.



Stacked Piecewise Manifold

A manifold: a point, a line, a cycle, a triangle, an infinite-dimensional Banach manifold
Image RGB: 3 stacked Pointwise Manifold

Neural Network: connected, stretched, stacked piecewise Manifold

Stacked Piecewise Manifold Benefit: High Order Nonlinear Data

reduce degree of nonlinearity

** 16,384 (llama 3, 405B)
** 768 (GPT2, 124M)
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Y. LeCun is right for a single manifold, but why do Transformers work so well ?
@

Auto-Regressive Generative Models Suck! lx‘_

» Auto-Regressive LLMs are doomed.
» They cannot be made factual, non-toxic, etc. Subtree of
» They are not controllable COMaEt " answer

» Probability e that any produced token takes gfgnoéé’é'u%?fcﬂg'e
us outside of the set of correct answers

» Probability that answer of length n is correct .
(assuming independence of errors): “ 16,384 (llama 3, 058B)

** 768 (GPT2, 124M)

> P(correct) = (1-€)" p—
P This diverges exponentially. (
P It's not fixable (without a major redesign).

token

» See also [Dziri...Choi, ArXiv:2305.18654]

e The exponential-decay critique treats generation as a single manifold trajectory with
independent failure at each step.

e Transformers operate on stacked piecewise manifolds, where deviations project onto
shared geometric subspaces.

e Error events overlap rather than compound. Generation stability follows union-bounded
geometry, not multiplicative probability collapse.
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Neural Network Algebra

Algebra is the science of operations, the silent one behind all transformation

The coordinate system evolves with each iteration;

Counting serves as the most primitive algebraic unit,

lterated-integral structure of forward propagation;
Activation is propertyless

Forward
Data Loss
Backward
Iterated Integral
Data Boundary

Differentiation

I Z 3 f(xo) f(xr)

A next token prediction is an integral process
w next token prediction
W W t+1 J(x)

Sf(x2)

Condition

discrete tokens (5x)

flxs) S (x6)

S(x)

(x3)




Neural Network Equation

An equation is the quiet connector that enables computation
e Fixed-Point Residual as the Primitive Equation
Trext = F(“dog”), Timage = F(dog pixels)
f(z) —z = e(x), mein e(z) 0= arg min E, | fo(z) — ||

e Lagrangian Formulation of Neural Fixed Points

L(0, ) = Eg || fo(z) — z[|* + A g(6)
VoL(0,\) =0 = critical point of E,||fo(z) — z||?
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Neural Network Stochastic

A stochastic world is an inequality world, but it is real

Stochasticity is expressed through inequalities and group statistics based on
summation

The statistical structure enables neural networks to learn the inherently
stochastic real world and naturally form stochastic fixed points.

It is effortless

REAL PROBABILITY NEURAL

True Average Stochastics

WORLD AND STATISTICS NETWORK \ / \/ W \//

random weight
initialization

............



Neural Network Fixed Point

Fixed point theory is the theory of iteration, until fixed

e |terations traverse billions of piecewise-smooth manifolds, giving rise to
innumerable fixed points and convergence paths within foundation models.

e Because the training data themselves contain high-order nonlinearity,
curvature (second derivatives), and moderate perturbations, the model can
distinguish the correct convergence direction toward a fixed point.

SVANLVARY, VARV

True Average Stochastics
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Neural Network Boundary Condition

Boundary conditions give iteration purpose and direction

e Boundary conditions are the sole source of iterative direction and determine
the convergence path during training.

e When a foundation model lacks static fixed points, symmetric, weak, and
discrete boundary conditions become necessary to guide the convergence of
a high-order nonlinear system.
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Learnable Numerical Computation



Mathematics & Numerical Computation

e Mathematics
o Universal in principle: seeks analytical solutions that hold across domains
o Mathematics excels at description; often not directly solvable or computable.
o  Structural limitation: analytical existence does not imply closed-form expressibility,
especially for high-order nonlinear, discontinuous, or stochastic systems.

e Numerical Computation
o Galerkin method: a numerical solver that replaces exact solvability with weak consistency

on a chosen representation space.

o Approximation theorem: a result guaranteeing that functions in a target class can be
approximated arbitrarily well by functions from a specified family, under a given metric.
discretization, approximation, iteration
Adaptable: empirical terms, adaptive meshes/layers, usable convergence over exactness.
Pragmatic: whatever works, as long as it converges.

Numerical computation can be deceptive. Without solid mathematical grounding, it may
advance remarkably far in practice—as seen in the supercomputer era, and again today in
Al. Scaling computational power does not imply scaling mathematical understanding.
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From Fixed Point to Learnable Computation

e Fixed point defines what learning is.
Trext = F(“dog”), Timage = F(dog pixels)

o Beautiful descriptor, but not a solver; no numerical procedure
o No notion of progress, No way to handle constraints (architecture, data)

e [agrangian Formulation makes it solvable.

f(z) —z=e(z),  mine(z) L(0,\) = Ez || fo(z) — = + X g(6)

o Lagrangian equilibrium = neural network fixed point
o X = boundary enforcer, g(6) =0 architectural / data constraints
e Numerical iteration makes it real.

o Mathematics becomes computation only when residuals are iteratively reduced
under constraints

o Galerkin Method: equations become solvable numerically only after
residualization and iteration

o Learning is not defined by objectives, but by the existence of a stable numerical
iteration.
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Different Model, Different Reasoning Path

e Neural Fixed Point Equation:

flo) =z = cla)mnele) ) St

e Lagrangian Formulation of Neural Fixed Points: path, yet the same

accurate output.
L(0.3) = Eq || fo(x) = =] + Ag(6) |

e Letthe model Architectural and/or Data constraints be g(6) =0

RelJump rep ion of D

ReJump rep ion of Phi-4’s i RelJump representation of Claude 3.7 Sonnet’s reasoning

Exploring Randomly Wired Neural Networks for Image ReJump: A Tree-Jump Representation for Analyzing and
Recognition, arXiv:1904.01569 Improving LLM Reasoning, arXiv:2512.00831v2
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Neural Networks as Galerkin-Type Numerical Systems

e Neural networks can be understood numerically through a Galerkin-type formulation,
rather than classical optimization.
e C(Classical Galerkin Method

o Solve operator equation
o Enforce solution weakly

N( ) —0 on®Q /N up)vp dp =0

m finite-dimensional trial space, residual orthogonality, numerical iteration
e Neural networks are not optimizing functions, they are numerically solving residual
equations on learned manifolds.

Galerkin
Operator
Trial space
Basis functions
Weak form

Quadrature
Assembly

Solver

Convergence

Neural Network (Deep Manifold)
Implicit data-induced operator

Learned manifold /\/19
Propertyless activations
Residual energy integral

Minibatch sampling
Stacked, piecewise manifolds

Backpropagation

Fixed-point stability

Galerkin without fixed geometry,
which itself is learned.

What “Solving” Means

Not: finding a global minimum
But: achieving stable fixed-point
consistency across admissible
manifold regions

Training solves a variational
fixed-point system numerically,
inference traverses the learned
geometry.



Al as Learnable Numerical Computation

Neural networks inherit a numerical worldview: solvers, not theorem provers.
Core tension: scaling from domain-specific numerics toward mathematical universality.

e Numerical computation pragmatism: as long as it converges, the method is not restricted.
As long as it converges, you can add any pizza toppings: pepperoni, pineapple,
anchovies, extra cheese, whatever works

e Absent a fixed point, the network breaks all constraints. The Olympians descend from
order into improvisation: each god crossing the same boundary by a different force,
unconstrained, uncoordinated, yet collectively sufficient.

Al as learnable
numerical computation

Numerical Computation
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Neural Network Propertyless



Property-Lessness and Counting

e Activation as hidden representations or latent variables, but they lack assertable
definitions and intrinsic properties.

e Classification asks which class has more support than the others.

e Property-lessness: Individual activations do not encode semantic properties.

e Discrete decision compatibility: Counting transitions cleanly from continuous
accumulation to discrete class selection (argmax).

arbitrary arbitrary

multimodal inputs

Discrete Class Counters - = | =
\ (Vocabulary) “

boundaries

[
cat “/““
dog V'V
car “ arbitrary multimodal inputs = ‘_n |
single computational ol
Internal "activations" are / fEraewieTi arbitrary
not meanings, they are counts.

dimensions
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Open Al is Not Wrong

Large language models fundamentally perform classification over learned representation spaces.

Why Language Models Hallucinate

Adam Tauman Kalai* Ofir Nachum Santosh S. Vempalal Edwin Zhang
OpenAl OpenAl Georgia Tech OpenAl

September 4, 2025

Abstract

Like students facing hard exam questions, large language models sometimes guess when
uncertain, producing plausible yet incorrect statements instead of admitting uncertainty. Such
“hallucinations™ persist even in state-of-the-art systems and undermine trust. We argue that
language models hallucinate because the training and evaluation procedures reward guessing over
acknowledging uncertainty, and we analyze the statistical causes of hallucinations in the modern
training pipeline. Hallucmatlons need not be mystenous——they ongmate snmply as errors in binary
classxﬁcatxon. If incorrect statements cannot be distinguished from facts, then hallucinations
in pretlamed language models will arise through natural statistical pressures. We then argue
that hallucinations persist due to the way most evaluations are graded-—language models are
optimized to be good test-takers, and guessing when uncertain improves test performance. This
“epidemic” of penalizing uncertain responses can only be addressed through a socio-technical
mitigation: modifying the scoring of existing benchmarks that are misaligned but dominate
leaderboards, rather than introducing additional hallucination evaluations. This change may
steer the field toward more trustworthy Al systems.



The Enlightenment Gallery at the British Museum

Classification

The classification is the system used to
place items on the shelves; the
catalogue is the records of each item,
and the way you locate items that have
been classified.

THE
BRITISH

MUSEUM

LONDON

Sir Hans Sloane’s Catalogue of Jamaican Plants published in 1696
Catalogue and classification enabled reasoning in the Enlightenment
by reducing knowledge to countable, comparable features.

A two-legged animal likely flys, A four-legged animal animal unlikely flys.
Neural networks follow a similar principle of classification via
aggregated activation counts, nothing else.
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Property-Lessness and Counting

e |f we examine the Transformer models, their operation is fundamentally classificatory
The vocabulary defines the discrete class space, and every activation represents a local stage of counting
e Each layer acts as an integral operator that aggregates and transports evidence:

he(€) = /Mu_l) K(&,m) o(Wehe—1(n)) dpse—1(n)

e Stacking these operators yields a full L-layer manifold integration:

L
hr(€L) = /Mw)' : '/M(L_l) (H Ke(fe,ff-—l)) b(p)dpr—1(&—1) -~ dpo(éo)

£=1

e The categorical decision for the next token is then obtained by integrating the final manifold representation
through a class-specific counting field:

z

eC

D kv €%

e=bot [ 0.Oh©du©),  plelp)=
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Data



High Order Nonlinear Data

US Flag: sharp color jumps between stripes (White/Red) ,
and between the white stars and the blue background. Such
abrupt changes can be considered high-order nonlinearities

| N”

Camera - Original

Linear

Linear

.

Moon - Original Linear

.
A
{i
Astronaut - Original Linear
Low order High order 9 3 i
Linear 3 i
nonlinear nonlinear

a?ﬁ

Low-Order Nonlinear

Low-Order Nonlinear

Low-Order Nonlinear

Low-Order Nonllneau
RQ

L-,ﬂ.

Table 3: NLP Nonlinearity

Illustrating Nonlinearity Types Using Famous Images

High-Order Nonlinear

Discontinuous

Discontinuous

Discontinuous

High-Order Nonlinear

. \e

A

High-Order Nonlinear Discontinuous

Rl

U

Type Example Sentence Relationship Description

Linear “More sugar makes it Direct, proportional relationship be-
sweeter.” tween input and output.

Low Order “A little wine relaxes, too Smooth, curved effect — like a

Nonlinearity much ruins the night.” quadratic or saturating response.

High  Order “I never said she stole the Meaning changes based on multi-token

Nonlinearity money.” interaction or emphasis.

Discontinuous  “Not bad” means “good.”  Small token change causes sudden se-

mantic shift or inversion.
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Data Complexity

Z,Scale * 2%{9
Y, Time
Pae s
. N
minibatch
: - Public Health  Clinical Cell Biochemistry
- Z >
X, Scope
o \
v
Mini-batching is a major challenge for fixed-point Mountain range Mountain Rock Joint ~ Rock Sample Rock Microscope

convergence in neural network computation.

)

Lo | Loworder High order SEMANTIC
nonlinear nonlinear
High-order nonlinearity in data is a major source of neural plasticity. Symbolic vs. semantic is a scale issue.
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Temporal Misalignment as an lll-Posed Inverse Problem

Neural Network is forward-inverse combined, which enable neural network to learning from the past.
The negative time is critical property of inverse problem.
Temporal misalignment in LLMs arises because time is a missing boundary condition without explicit
timestamps, inference producing aliasing between eras.
Neural Network property-lessness amplifies temporal ambiguity rather than resolving it.
Migration Path

o Explicit Timestamp in Training Data. This restores orientation to the data manifold

o Prompt-Level Temporal Boundary Conditions

____________ Z,Scale *

fAmrgmnawon weie | 'How many World Cups has Argentina won?', the correct LTme.
Lok 71 answer is three, as Argentina won in 1978, 1986, and minibatch

fywm(, s + 2022. However, if the majority of the training data for an B i Pl =
e frgentnawen” + LLM predates 2022, the model might incorrectly answer X, Scope
Hquery x| * with two. The explicitly timestamp was missing from the

: How many World C\.os: Vs

+ have Agentina won? ¢+ training data, or weight much less in the model.
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding, W. Shi et al. 2023

Temporal misalignment is a consequence of missing time as an explicit boundary condition in forward—inverse learning, not
a generalization error. From a Deep Manifold perspective (arXiv:2409.17592), neural networks converge to stochastic fixed
points shaped by data; they do not "fail" to generalize, but rather lack the temporal encoding necessary to distinguish eras.
While their forward—inverse nature allows integration of past data, the absence of timestamps prevents time from acting as
a formal constraint, leading to systematic misalignment.


https://arxiv.org/pdf/2305.14739

Inference



Next Token Predication is Integral Process

e [Each element of a token embedding defines a local piecewise manifold.
A token embedding is a stack of piecewise manifolds, thereby defining its intrinsic nonlinearity.
e The intrinsic dimension is identified with the tangent space induced by intrinsic nonlinearity between
embedding elements, as defined in dimensionality theory (algebra).
e Anintrinsic pathway is an integral curve of this field—millions, potentially billions, of such paths coexist.
e Neural network property-lessness makes all above possible.

MRS S ey next token prediction is an integral process

2 A / / ( next token prediction discrete tokens (5x)
) S(x)
S mn—iE A , S(xs) f(x6)
ntrinsic dimension ]
2 ) £(x
** 16,384 (llama 3, 405B)
** 768 (GPT2, 124M) f(xz) /
Intrinsic pathway b ///

— T g f (xB)
S fxo) f(x) /
/ ‘

(s
_
/) C \ /

OO

\
N\
\\

e _

/ a X X2 X3 Xy X5 Xg X7= b X

token

Xo

token embedding

Taking a derivative without an integral, What is the purpose of the derivative?
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Dimensionality and Nonlinearity

Intrinsic pathways generate nolinear tangent dimensions

Intrinsic

_ pathway

Neural Network property-lessness unifys dimensionality and nonlinearity

e Nonlinearity, defined by each element of a token embedding, piecewise manifold
e Dimensionality, the nonlinearity tangent (dimensionality theorem algebra)

What appears as dimension compression is in fact intrinsic dimension extraction along intrinsic nonlinearity



Inference Complexity: Dynamic fixed points and integral pathways.

e Inference is simultaneous traversal of a vast family of integral pathways
o Prompt / instruction defines the initial boundary condition of the integral
e Learned geometry contains many coexisting fixed points
o Each token prediction corresponds to a local convergence
e Fixed points during inference are dynamic
o Context update = boundary shift = fixed-point drift.
e Inference can be approximated by a series of Fourier expansion of the integral field
o Dramatic speedup and cost reduction without altering learned geometry.

Intrin?onlinearity / (
2 : %trinsic dimensio?

/ C -
~ R )

~ token embedding
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Multi-turn, Hierarchical and Recursive

e Multi-Turn: Neural networks admit an enormous number of emergent intrinsic
pathways, which could be in trillisions.

e Hierarchical: Neural Network is based on function composition and operates on
nested and iterated integral over stacked manifolds

e Recursive: Neural Network develops Interconnected Toroidal, ring-like Geometry

Intrinsic nonlinearity

/ 9:(9c-1(...91(Input)..))

2 Intrinsic dlmenswp
Intrinsic pathway
_—— T~

( \ ey~ 2
T < o

'

token embedding — Hierarchical

Continuous Stationary Interconnected Drifting Fixed Points
Representation Field Ring Manifold Toroidal Geometry (Plasticity)
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Causal Inference in Large Language Models

1. LLMs Already Exhibit Causal Behavior
Pattern learning from data, not symbolic graphs.

2. Not in Order Space
Causal relations in a distributed manifold.

E 3. Extracted via Perturbation

Interventions reveal causal stability.

o < S - Stable Response

° Perurb M. T N\ —t
R : F

Stable Response .

- ~ Causality Emerges from What Stays Stable Under Perturbation.
B Deep Manifold Part 2. Neural Network Mathematics, arXiv:2512.0 63 -

tion



Neural Network: A Powerful Learning Network

Property-lessness Stacked Picewise Manifold

Neural networks computation reduces to the most Enable reduce high order nonlinearity in data
primitive counting operations (addition and subtraction). | @nd create many convergence pathways

It is precisely this property-lessness that unifies
everything into a single computational framework:

Coordinate Change
The simplest base function, and change itself to

e arbitrary multimodal input is unified; learn the data (“data fitting”)

e arbitrary boundaries are unified;

e interpolation and extrapolation are unified; Forward and Inverse Combined Iteration
e dimensionality and order are unified. Enable coordinate change each iteration and

increase data learning efficiency

e Neural network Learnability: Neural networks do not possess intrinsic reasoning or cognitive
abilities; such capabilities are entirely learned from data through the model’s learnability.

e Scaling laws remain largely empirical and lack a unifying theoretical foundation; in particular, they
lack a principled notion of learning efficiency and largely ignore learning complexity.

Intrinsic nonlinearity

INTELLIGENCE

2 L & (MIRAGE) g | / (
EO — 4 )Amic dimensiop

== ~
s \-‘ Intrinsic pathway
. — — =

token embedding

N7 AL N\

4
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Emergence And Complexity

e Emergence and complexity are inseparable.
o Complexity is the substrate (soil) of emergence; emergence is its observable outcome (fruit).
Increasing complexity expands better emergent behavior.
e Deep Manifold attributes
o the emergence and complexity to property-lessness
o the fundamental reason neural networks are so powerful.
e From classification to emergence: a property-less foundation

o Classification precedes explanation and is grounded in mathematical property-lessness.
o The Enlightenment Gallery (British Museum) frames classification as the origin of science
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“Measure for Measure” JKEBEZ i, IREET At

It is excellent To have a giant's strength; But it is tyrannous To use it like a giant.

A neural network is a powerful learnable numerical computation. | EEE———"
One of its greatest strengths lies in its "property-lessness". This ME@R&JU%IE

allows neural networks to learn almost anything from mixed modalities
and across disciplines. However, It is not grounded in any specific
physical, known scientific principles, physical and time dimension,
moral compass, or even common sense. They are only as faithful as

their training data.

— A"*!‘ - ‘

Neural Network: A Powerful Learning Network

Property-lessness Stacked Picewise Manifold

Neural networks computation reduces to the most Enable reduce high order nonlinearity in data
primitive counting operations (addition and subtraction). | @nd create many convergence pathways

It is precisely this property-lessness that unifies
everything into a single computational framework:

Coordinate Change
The simplest base function, and change itself to

e arbitrary multimodal input is unified; learn the data (“data fitting”)

e arbitrary boundaries are unified;

e interpolation and extrapolation are unified; Forward and Inverse Combined Iteration
e dimensionality and order are unified. Enable coordinate change each iteration and

increase data learning efficiency
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Training Progression



Transformer Positional Embedding

e Itis Transformer’s blunder/defect

o  Transformers naturally operate on stacked, piecewise manifolds. Due to the very high
embedding dimensionality, token representations become effectively point-wise, like grains of
sand, resulting in strong adaptability to data high-order nonlinearity while promoting global
manifold smoothness (local continuity and global transitions) and computation stability

o  but leads to compute-budget overruns and ultimately a scaling ceiling, similar in spirit to
problematic binding mechanisms we have observed in Discrete Element Methods (DEM).

e Two fundamental aspects of Transformer have never been explicitly recognized by the Al community.

**16,384 (llama 3, 405B)
** 768 (GPT2, 124M)

token
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Continual Learning

e Why it is possible: neural-network node coordinates can change indefinitely across iterations: a
capability no classical numerical method or computation framework has ever possessed..

e What holds it back: neural plasticity and dynamically shifting fixed points constrain stability, making
long-horizon continual learning intrinsically difficult.

t+1

Ar , A
Learning capacity

@
o ’
(1] .,
D- ’
7]
3| oo % o
2 Covers raining
o | .- - | 0 |
§ : = /
’ i’raining
Neural Network Depth Neural Network Depth
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RL and Fixed Point Perturbation o0

irrelevant

e Without the fixed points, the iteration cannot rely on internal Gap
geometry; it must be guided exclusively by boundary conditions. ' b

e Without symmetric boundaries, the iteration must rely on weak,
Soft and Discrete boundary conditions. i

e “Weak and Soft”: numerical perturbations are minimal, yet ,
globally the system remains highly adaptable. ogese

e Discrete: Even when boundary conditions are discrete, sparse, or
non-strict, the network can still reconstruct its intrinsic integral
trajectory and locate new fixed points.

o

®
opposite

normalization

Fig. 14: Symmetric Boundary Condition

Then all three backward-pass regimes unify under a single fixed-point objec-
tive:

0" € arg m[;in IEP [a KL(Pdat_a ” qe) +8 C(¢9 (P)) + (1 g 8) f(qe’ y)] (71) Fig. 15: Weak and Discrete Boundary Condition

Table 2: Three stages of backpropagation Fixed Point Iteration.

next token instruction reinforcement
# Stage Name Boundary Type Iteration Type 3 k. - '\ /_\
0 Pre-Training Implicit boundary Weak fixed-point iteration 9 E, \\ . k \
. 1 . )
1 SFT Smi-Structured boundary Intended fixed-point iteration * . ¢ . < )

\
r
\

2 RL Explicit boundary Perturbed fixed-point iteration e o
Fig. 13: Foundation Model Boundary Conditions

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;  Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



Fixed Point Progression

e In practice, a fixed point corresponds to what we call a solution, answer, or decision.

e A Weak Fixed Point does not imply the point itself is weak; rather, its intrinsic convergence pathway
is weak and diffuse.

e An Intended Fixed Point serves as an anchor, shaping the convergence basin through explicit
boundary constraints.

e APerturbed Fixed Point is often the most effective, as weak and stochastic boundary conditions
activate richer convergence pathways.

e Under high-order nonlinearity, perturbation becomes essential for fixed-point iteration to converge.

e The effectiveness of Reinforcement Learning arises from boundary conditions that are symmetric,

weak, and discrete, which delay neural plasticity e oy
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Trainabillity, Learnability and Neural Plasticity

e Unbounded trainability via coordinate unlimited change
o Because node coordinates (manifold covers) change at every iteration, neural networks can be trained
indefinitely.
e Trainability # Learnability
o  Continued optimization may yield no new learning and can induce misalignment with previously
learned structures.
e Neural plasticity is the bottleneck
o Delaying neural plasticity is a critical objective in both architecture design and training strategy
e Learning Complexity
o Data-induced complexity: high-order nonlinearity and near-infinite data scope

Deep Manifold Space

o Architecture-induced complexity: rigid neural network architectures
o Boundary-induced complexity: asymmetric, strong, or pointwise boundary conditions
o  Optimization-induced complexity: batch structure and learning rate schedule
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Stationary, Symmetry and Neural Plasticity

e Stationarity arises when real-world data imposes many incompatible constraints; under stochastic training these
constraints cancel statistically, producing degenerate directions along which the variational gradient vanishes.

o  Stationarity in Deep Manifold is exactly the variational condition that defines neural fixed points: a neural
fixed point is a stationary solution of the implicit Lagrangian under weak, data-induced boundary conditions.

e Symmetry (Ring) emerges when such degenerate stationary directions admit continuous transformations that
leave the functional invariant, causing stationary solution sets to organize into closed level-set manifolds, observed
as rings or shells.

o Interconnected Toroidal Geometry arises when multiple ring-like stationary manifolds share overlapping
data constraints (e.g., “bank” with multiple meanings), coupling independent rings into intertwined tori and
enabling semantic superposition and neural plasticity.

e Neural plasticity arises from interconnected toroidal structures because they create extended, coupled flat
directions in which small boundary perturbations move the solution along the stationary manifold rather than
restoring it to a unique configuration.

Continuous Stationary Interconnected Drifting Fixed Points
Representation Field Ring Manifold Toroidal Geometry (Plasticity)
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Is the ring the most stable stationary manifold?

Locally yes, globally no. The ring is locally the most stable stationary manifold under isotropic
constraints, but global stability breaks when multiple invariances couple into higher-order geometry.
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Training Complexity: From Memorization to Generalization

Geometry and Fixed Point In Deep Learning

e Training is geometric evolution, not parameter optimization.

o Learning reshapes the admissible solution geometry rather than minimizing a fixed function.
e Data induces constraints; geometry absorbs them.

o Empirical data progressively deforms the representation manifold into stationary structures.
e Stationarity defines what is learned.

o Learned knowledge corresponds to stationary manifolds and their fixed-point sets under the

induced operator.

e Generalization is geometric traversal.

o  Generation arises from structured movement within invariant geometry

Memory Stationary Fixed-Point Traversal / Sampling Generation

(Data Representaion) Manifold Novel outputs arising

from structured traversal

Stable invariant Controlled motion along

Stored empirical Degenerate stationary configurations under stationary geometry

constraints from solution set induced
training data by data symmetries

the learned operator  without leaving invariance of fixed-point geometry
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Bigger Models Are Not the Ultimate Solution

(0, 1) mode

e Why scaling works - - -

o Larger models increase degrees of freedom

o Enable high-order nonlinearity

o Absorb near-infinite data scope and diversity Cantilever Beam
e \Why scaling alone fails — BabusSka’'s Paradox

o Pure scale-out introduces accumulated numerical error

o Massive node interactions amplify instability

o More parameters # better solution when geometry drifts
e Transformer: still the best we have

o Locally rigid, structurally fragile

o  MoE: more freedom, implicit federation — fragility remains
e Diffusion has own beauty

o Globally smooth and robust, computationally expensive

o  Not structurally scalable as a universal solver
e Play-doh like elasticity models

o Soft, large deformable geometry

o Stable under high-order nonlinearity

o Scales with data complexity, not just parameter count




Model CAP Theorem

Single-forward pass: only 2 of {Coverage, Accuracy, Performance} can be optimize.

e Coverage denotes how much of the real-world manifold the model attempts to represent across

semantic, symbolic, temporal, modal, and nonlinear axes.
e Accuracy denotes local geometric fidelity: curvature alignment, fixed—point stability, and residual

correctness within each manifold slice.

e Performance denotes the numerical efficiency of inference. neural plasticity 2.y, high ordetnonlineatity 2
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Manifold Federation: Real World and World Model

The Future Is Mini-AGI Federation

e Data complexity induces learning complexity
e Learning complexity arises from dat high-order nonlinearity

e Federation itself is a manifold concept
o Each model corresponds to a distinct manifold.
o Like an ML ensemble, each model captures a different aspect of high-order nonlinearity

e Local federation operates as a mosaic of small elastic models
e Global federation constitutes deep manifold federation learning
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Al for Science and Engineering



Z, Scale

Al for Science and Engineering —

Neural network property-lessness underpins its universal learnability. minfostch || .,
1. Extreme Learnability of Neural Networks s N
a. Forward-Inverse Unified Iteration "
b. Propertyless: Any data type, any boundary condition
c. Loss functions: without any governing physical equations or mathematical abstractions.
d. Unbounded Learning Space: Effective across resolutions, domains, data scopes, and modalities
through a unified numerical representation: property-lessness(token embedding)
e. Stochastic Fixed Points: much more close to the real world than human own interpretations.

2. What Enables

a. Inverse Problems become natural and effortless.

b. Applying any boundary conditions can speed up by up to 10,000,000x (10M) faster.

c. Discoverability: Interpolation and extrapolation merge along manifold trajectories.

d. Constitutive Modeling: Governing relations emerge from directly data with observation only.

3. PINN and Neural Operator

a. PINN and numerical computation are complementary; they cannot replace one another.
b. For highly complex problems, Neural Operators do not go far.
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Al4SE: Speed Up

e Upto 10Mx
e Explicit and Implicit coupling

50+ parameters

y
A 10,000,000x speedup
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Discoverability: Interpolation and Extrapolation

Neural networks implement no explicit or implicit knowledge boundary.
Interpolation and extrapolation collapse into a single process: manifold traversal.

How Discovery Emerges:
o Near-infinite data scope continuously expands
o Propertyless representations allow unrestricted coordinate reshaping
o Boundary-conditioned iteration guides motion along intrinsic pathways

Neural networks do not cross knowledge boundaries because no knowledge boundary exists.
“Extrapolation” is simply stable traversal until constraints fail.
Discovery is geometric inevitability, not symbolic reasoning

Continuous Manifold

‘Unknown’ is simply farther along the learned marifold,




Data-Driven Constitutive Modeling

e Constitutive law = intrinsic manifold
o Physical systems obey intrinsic relations (e.g. stress—strain)
o In high-order nonlinear regimes, no closed-form law exists
o Neural networks learn this relation as a constitutive manifold
e From equation to geometry

0 Law becomes learned geometry, not prescribed formula
°© 0 = f(é) (570)61\497 MQZ{(gafg(g))}
e Fixed-point interpretation
o Constitutive update treated as a fixed-point problem
o Training minimizes residuals to recover intrinsic law
o Learned behavior stabilizes as a numerical fixed point
e Projection onto learned manifold
o  Observations are projected onto ./\/le
o Update selects the nearest admissible constitutive state
o Robust to noise, plasticity, and incomplete measurements



Numerical Computation Limitation

Equations are assumed; the world is not
o Classical solvers require a known governing operator; real systems are partially unknown,
drifting, or unmodeled.
Geometry is fixed, not learned
o Mesh / basis / coordinate choice is external. The solver cannot create new representational
geometry when reality demands it.
Uncertainty is treated as noise, not a boundary condition
o  Stochasticity is usually appended (error bars, turbulence models), rather than integrated as a
first-class constraint shaping admissible solutions.
Complexity is offloaded into “closure terms”
o  When physics is missing, we add friction factors, constitutive laws, subgrid models, handcrafted
patches that do not scale.
No scalable mechanism for multi-regime transition

o Discontinuities, phase changes, damage, and bifurcations force solver switching, remeshing, or
model rewriting.



Vajont Landslide, 1963
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Coupling Approach

Couple the globally learned geometry into local, site-specific numerical fixed-point solutions

e Al excels at global generalization
o Learns from all historical and simulated cases
e Al is propertyless i b
o Handles heterogeneous data (images, text, signals, logs) Computation
e Physics-grounded solvers like DDA, FEM and NMM
o Naturally support inverse problems, discontinuities, and strong nonlinearity

Neural Network

Neural networks as learnable numerical computations and physics-grounded
numerical computations complement each other rather than replace each other.

Memory Stationary Fixed-Point Traversal / Sampling Generation
(Data Representaion) Manifold i
Stable invariant Controlled motion along Novel outputs arising
Stored empirical Degenerate stationary configurations under stationary geometry from structf:red traversal
cops}ramts from solution set mducgd the learned operator  without leaving invariance of fixed-point geometry
training data by data symmetries
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Harmony Model

Neural Network

e Neural Networks Tatia il
o Learnability across Data Types & Global Generalization Computation

e Numerical Computation
o Physics-Grounded Accuracy, True Fixed Points & Explicit Mechanism

e Numerical computation exposes the mechanism; neural networks learn the geometry.
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Federated Al

Deep Manifold

e The future is mini-AGlI federation
because high order nonlinear data

As CTO of Zoom, I'm excited to share a significant milestone in our Al journey. Today,
we're announcing that Zoom has achieved a new state-of-the-art (SOTA) result on the
challenging Humanity's Last Exam (HLE) full-set benchmark, scoring 48.1%, which
represents a substantial 2.3% improvement over the previous SOTA result of 45.8%
by Google Gemini3-pro with tool integration.

Model/System HLE Full Set Score

Zoom Al sets new
state-of-the-art
benchmark on
Humanity's Last Exam

Federated innovation driving breakthrough results in complex Al
testing

Updated on December 10, 2025 ' 4
Published on December 10, 2025 J

Xuedong Huang
Chief Technology Officer

The winning strategy: Federated excellence

OpenAl GPT-5 Pro w/ tools 42.0%
Anthropic Claude Opus 4.5 w/ tools 43.2%
Google Gemini 3 Pro w/ tools 45.8%

Zoom Federated Al 48.1%

Our SOTA performance on Humanity's Last Exam stems from both powerful models and
a new approach to their application. Central to our success is our effectively guided
explore-verify-federate strategy, an innovative agentic workflow that optimally balances
exploratory reasoning with rigorous verification. Instead of generating extensive
reasoning traces, our method strategically identifies and pursues the most informative
and accuracy-enhancing reasoning paths.



Neural Networks Geometry

Deep Manifold

e Neural network behavior is governed by the geometry of its
learned world representation.

Deep sequence models tend to memorize geometrically;
it is unclear why.

Shahriar Noroozizadeh *

Machine Learning Department & Heinz College
Carnegie Mellon University
snoroozi@cs.cmu.edu

Vaishnavh Nagarajan' Elan Rosenfeld Sanjiv Kumar

Google Research Google Research Google Research

vaishnavh@google.com elanr@google.com sanjivk@google.com
Abstract

Deep sequence models are said to store atomic facts predominantly in the form of
associative memory: a brute-force lookup of co-occurring entities. We identify a
dramatically different form of storage of atomic facts that we term as geometric
memory. Here, the model has synthesized embeddings encoding novel global
relationships between all entities, including ones that do not co-occur in training.
Such storage is powerful: for instance, we show how it transforms a hard reasoning
task involving an £-fold composition into an easy-to-learn 1-step navigation task.

From this phenomenon, we extract fundamental aspects of neural embedding
geometries that are hard to explain. We argue that the rise of such a geometry, as
against a lookup of local associations, cannot be straightforwardly attributed to

[cs.LG] 31 Dec 2025



Prompt Repetition

Deep Manifold

HEZ—MEARS TR, SRTBEINELBNBH N, XI—ENEEANERS
FiE1T, THERXS B HEESIEHEEE

Prompt Repetition Improves Non-Reasoning LL.Ms

Yaniv Leviathan* Matan Kalman® Yossi Matias
Google Research Google Research Google Research
leviathan@google.com matank@google.com yossi@google.com
Abstract

When not using reasoning, repeating the input prompt improves performance for popular models
(Gemini, GPT, Claude, and Deepseek) without increasing the number of generated tokens or latency.

17 Dec 2025
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No Position Embedding

Deep Manifold

Positional embeddings may not be strictly necessary. The reason they persist is
that they act as a 'glue’ for the high-dimensional embedding space, providing a
structural anchor for the model

REPO: Language Models with Context Re-Positioning

Huayang Li'? Tianyu Zhao' Richard Sproat!

Abstract General e B
In-context learning is fundamental to modern I e :;:i

Large Language Models (LLMs); however, pre-
vailing architectures impose a rigid and fixed
contextual structure by assigning linear or con-
stant positional indices. Drawing on Cognitive
Load Theory (CLT), we argue that this uninfor-
mative structure increases extraneous cognitive
load, consuming finite working memory capacity
that should be allocated to deep reasoning and —
attention allocation. To address this, we propose ~35-"
REPO, a novel mechanism that reduces extrane-
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Learnability

Deep Manifold

Neural Network is a learnable numerical computation

@ FT Technology News 3 -

Computer scientist Yann LeCun: ‘Intelligence really is about learning’
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Dataualism



Dataualism

Core Thesis
o Dataualism holds that intelligence and knowledge arise from fidelity to data, not from
human-designed meaning, intent, or structure.
Doctrinal Principles
o Data as the primary authority
m Dataitself is the ultimate source of truth. It is inherently high-order nonlinear and spans a
near-infinite scope, far exceeding what can be exhaustively specified by human-designed
rules or theories.
o Neural networks as learnable numerical computation
m Neural networks are best understood as learnable numerical computation, not as systems
governed by known physical laws, moral frameworks, or symbolic principles. Model
behavior is not prescribed; it is entirely learned from data.
o Mathematical foundations
m The mathematical structure underlying dataualism is grounded in three pillars:manifold
coverings, fixed-point theory, and calculus. Together, they describe how learning systems
represent complexity, stabilize behavior, and evolve through computation.
o  Doctrinal humility
m As a doctrine—by definition a school of thought—dataualism does not claim inherent
correctness. It is not true by fiat, but justified only insofar as it continues to explain and
predict empirical outcomes.
o Role of human knowledge
m Dataualism does not exclude human insight or domain knowledge in addressing specific
real-world problems. Rather, it treats such knowledge as contextual scaffolding, not as a
universal source of authority.



mHC and Muon L0, \) =E, || fo(z) — z||* + X g(6)

e Do not fully align with the doctrinal position of dataualism. One that introduces
explicit structural constraints, g(0)

e Not to say that these methods are incorrect or ineffective. Rather, they reflect a
different philosophical stance

e his limits gradient alignment across strongly repeated signals, preventing excessive
collapse toward a single fixed-point geometry during fine-tuning and subsequent
training phases.
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In Lens of Deep Manifold



Information Theory as Boundary Constraint

A Deep Manifold Perspective on Entropy, Compression, and Learning

g0)= [ U@, ) duto +(- ngﬂa(l)log#a(r)dw)

> A
Y ~"

learning on stacked nonlinear manifolds entropy as boundary functional

Entropy # learning objective — it is a capacity boundary

Compression — consequence of manifold alignment, not its cause

Learning — stochastic fixed points from geometric constraint cancellation

Why Minimum Description Length (MDL) fails for LLMs — description length measures
boundary cost, not interior geometry

e \What matters instead — intrinsic learning pathways on deep manifolds

Information theory limits representation; Deep Manifold theory explains learning.
Entropy bounds the boundary;geometry computes the solution.



Kolmogorov Complexity: A Beautiful Descriptor

e Kolmogorov complexity asks:
o  What is the shortest program that generates this object?

e Deep Manifold theory asks:

o  What geometric and dynamical constraints make this object a stable solution of a learnable
numerical system?

e Kolmogorov theory implicitly assumes: compression = structure
e Deep Manifold inverts this: structure = incidental compression

e Neural networks do not minimize description length.

o They integrate constraints until residuals vanish locally.
o Compression emerges only after a stable manifold geometry forms.

Kolmogorov complexity bounds description; Deep Manifold theory explains
computation. Entropy limits the boundary; geometry determines the solution.



Energy-Based Model

An energy-based model is a neural fixed-point system written in the language of
energy: the “energy” is the fixed-point residual, and inference is the numerical act
of driving that residual to a stable equilibrium under boundary constraints.

Lagrangian Neural Fixed Points € Enggy-Based Models

L(x, A) = Eg(x) + Ag(6) x*t

The “energy” is the fixed-point residual, and inference drives
44 P

to equil/ibirum under /Jounc[ary constraints.




SFT. Catastrophic Forgetting

From the Deep Manifold view, pretraining, SFT, and RL correspond to different boundary conditions. SFT
does not inherently cause catastrophic forgetting and can be implemented in ways that avoid it.

Supervised Fine-Tuning
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Superposmon Node Cover and Neural Plasticity

Deep Manifold Space
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Learning capacity

Node
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Neural Network Depth
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Every iteration rotates or reshapes the node’s local manifold orientation.
Training = continual node-cover re-orientation across stacked manifolds
Superposition = the stochastic average orientation of piecewise manifolds
Learning capacity (scaling law) is limited by neural plasticity.
Interconnected tori form inside the stacked piecewise manifolds during training
These knotted toroidal structures are the geometric source of neural plasticity

Deep Manifold Part 1: Anatomy of Neural Network Manifold, arXiv:2409.17592;

Superposition as Stochastic Average Orientation

Iteration t=0 Iteration t=k End of Training
O*
Piecewise Piecerientd Stochastic-Averaged
Manifold (re-oriented) Manifold
(initial) (superposition)

Deep Manifold Part 2: Neural Network Mathematics, arXiv:2512.06563



Mechanistic Interpretability
Circuit Deep Manifold

e Multiple stacked, slightly offset surfaces
(piecewise manifolds)

e A continuous curve descending / threading
through layers

e Path bends at layer boundaries (integration, not
jumps)

e No nodes, no symbols — only flow

Suggest depth via spacing, not shading

e One smooth continuous surface

e Athin discrete path traveling on the surface
e Nodes or dots along the path

e Geometry is flat and global

= ===

Content:  Circuit — Path on a single surface Content: Nested Integral Pathway — Across stackced manifolds




Category theory and Deep Manifold

Category theory, like many elegant mathematical theories, offers beautiful descriptions but
does not directly express the computable structure of neural networks. Deep Manifold
fills that gap by focusing on the computation and geometry that actually govern learning
dynamics.

e Category theory organizes how computations compose; Deep Manifold explains how

neural networks compute.
e Category theory excels at compositional syntax, not at modeling high-order nonlinearity,

manifold plasticity, or training dynamics.
e Neural networks are not categorical compositions but iterated integrals, whose
convergence and behavior are determined by evolving boundary conditions and

stochastic fixed points.
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Neural Network Optimization

e C(lassical optimization core thesis
o Optimization dynamics — implicit regularization — generalization

e Classical optimization requires a well-defined objective function.
o Neural network training does not optimize a predefined governing function

e Neural network enforces constraints induced by data and architecture, with
the loss serving only as a boundary functional.

e Neural network “optimization” is best understood as a numerical transport
mechanism for reducing a weak residual induced by data constraints. The
loss is a boundary functional defined on empirical constraint sites, not a
governing equation of the modeled world.

e In LLMs, the objective is non-stationary and semantically misaligned with
truth, so training converges, when it does, to stochastic fixed point shaped by
stacked piecewise manifold geometry rather than to a classical optimum.



The Mathematical Lineage of Deep Manifold



Neural Network Mathematics Already Exists
Deep Manifold Only uncovers it

e Neural networks advance mathematics: concretely through practice, subconsciously through
theory, driven largely by non-mathematicians, Al pioneers, and the broader Al community.
e History repeats itself. Some of the most significant advances in mathematics have historically come
from outside the discipline, pioneered by physicists, engineers, or other scientists
1. Pierre de Fermat — Number Theory (1637), background: Lawyer
2. Blaise Pascal — Probability Theory (1654 ), background: Physicist, inventor, and philosopher
3. Isaac Newton — Calculus (1666), background: Physicist and natural philosopher

4. J'anos Bolyai — Non-Euclidean Geometry (1832), background: Military officer
5. Claude Shannon — Information Theory (1948), background: Electrical engineer

e Newton developed calculus to express the laws of motion, not to solve abstract math. Today’s Al
revolution continues this tradition.
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Deep Manifold Mathematical Lineage
Gen-Hua Shi
Kiang Tsabtan B 60s: Theory of fixed point

S classes

The Theory 70s: KeyBlock Theory
Of Fixed Point 80s: Discontinuous
classes

Deformation Analysis

90s: Numerical Manifold
Method

00s: Contact Theory
(inequality theory)
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The theory of Fixed-point classes resolved the existence, uniqueness, and stability
@ o of solutions to differential equations, more than two centuries after Newton
introduced calculus

1980s, Numerical Manifold Method

Professor Shiing-Shen Chern, widely regarded as the father of modern differential

geometry, served as one of the three members of the Shi PhD dissertation committee

(UC Berkeley), providing academic validation for the mathematical framework of

numerical manifold method and laying the foundation for the subsequent development

% of the theory. Chern’s only question was: 'Can stacked piecewise manifolds be extended
. to any complex domain? He would have been delighted to see the progress in neural

| networks, as their geometry can be understood as stacked piecewise manifolds.




Mathematicians’ Dreams and Pursuits
e Local and global; continuity and discontinuity; forward and inverse problems

Global/Generalized Mathematics
Differential Geometry is the theory on differentiable manifolds

e 1830, Evariste Galois, Generalized Number

o Algebra groups, rings, fields, and Galois theory
e 1892, Henri Poincaré, Generalized Shapes

o Covering spaces and geometric laws in algebraic topology, Henri Poincaré
e 1952, Shiing-Shen Chern, Generalized Functions

o Manifolds and physical Laws based on cover systems,

o Differential equations to solve complex physics problems,

o Mathematical basis for later numerical computing techniques.

Broad Perspective

e Shiing-Shen Chern: how to solve arbitrary complex differential equations
e Shing-Tung Yau: how to solve arbitrary complex differential equations
e (Gen-Hua Shi: how to compute complex differential equations

e Computational methods may be naturally non-rigorous, but they are all rooted in a
small number of fundamental physical laws.

e These methods are very loosely connected to mathematics, yet they are interlinked.

e [t helps humanity understand the world; the same is true for artificial intelligence.

e Alis alearnable numerical computation.



“This is not how mathematicians are trained” (Gen-Hua Shi, 2024.05)

Simultaneously solving the forward problem in positive time and the inverse problem in
negative time has long been a dream of mathematicians, yet they never knew where to begin.
Neural networks, however, handle this problem naturally.

Variables, coefficients, and even coordinate systems evolve continuously—nothing remains
fixed. This is not how mathematicians are trained, and such a design could not have come
from mathematicians.

Mathematicians approach composite functions beyond two layers with great caution, mindful
of numerous subtle pitfalls; neural networks, by contrast, address them with near
nonchalance.

Neural networks possess stacked mathematical coverings, whereas numerical manifolds
typically involve only three to four layers of coverage. By contrast, neural networks stack
hundreds or even thousands of such layers. | never imagined anyone would push this so far.
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