

EcoSys Abatement M91A Plasma/Wet Integrated Scrubber Introduction

June 7th, 2024

Sustainability & the Path to Net Zero

EcoSys Microwave Plasma Gas Abatement:

- **>** Best Available Technology
- No Fossil Fuel Used
- Reduce CO₂ eq. by 1,000's Tons/Year
- Reduce NO_X emissions up to 85%
- **Reduce operating cost** ≥ 25%
- Treats all gases, including GHGs >99%

EcoSys Brand History

- 1984 Delatech (Innovative Engineering) launches CDO™ furnace
- 3 1986 MG Technologies introduce the Guardian™ burn box
- 1987 Vector Technology introduces the Vector™ water scrubber
- 1989 Delatech introduces the CDO integrated scrubber
- 1989 ATMI introduces the Novapure dry scrubber
- 3 1993 ATMI acquires Vector and creates EcoSys™ Brand
- 1996 EcoSys acquires Guardian
- 1999 EcoSys acquires Delatech (CDO)
- 2004 EcoSys ships Marathon™ alpha unit

- 2005 Applied Materials acquires EcoSys and merges into newly acquired Metron Fab Services division
- 2006 Marathon integrated burn/wet scrubber officially released
- 2011 EcoSys acquired by HT Advance Technology
- 2013 HT Advance Technology reverts to EcoSys brand name
- 2020 EcoSys launches "91" series products
- 2020 HT Advance Technology reincorporated as EcoSys Group Pte Ltd
- 2020 EcoSys launches "91" series product releases

EcoSys 91 Series Product Line

MICROWAVE (µWAVE) PLASMA AVAILABLE

Vector™

(Wet)

Guardian™

(Burn)

or

(Plasma)

CDO™

(Thermal-Electric/Wet)

or

(Plasma/Wet)

Marathon™

(Burn/Wet)

or

(Plasma/Wet)

Marathon M91/M91A Next-Gen Integrated Scrubber

- >99% DRE
- Ground up redesign with cutting edge new features for superior performance
- Suitable for all chemistries
- Burn/Wet and Plasma/Wet options
- Proprietary angled laminar flow inlet assembly concentrates gases directly in the flame/plasma for optimal efficiency and cost
- High reliability
 - High particulate capacity
 - SS tank & plumbing
- Highly configurable
 - Dual reactor option for higher capacity or redundancy
 - Pre-wet module option
 - Water filtration and PM 2.5 treatment options in development
- Fully certified & safety compliant

M91 Integrated Scrubber Reactor Entry Options

M91X - Burn/Wet

- Fuel fired (methane, hydrogen, LPG, etc.)
- Strong and stable pilot flame
- Angled flame injection ensures gases pass through flame
- Process dependent manual or auto fuelair ratio

M91A - Plasma/Wet

- Decompose effluent by plasmafication
- No fuel required
- > CDA, nitrogen or argon as plasma gas
- Suitable for PFC gases

M91P - Plasma/Wet (for Flammables)

- Decompose effluent through high temperature from plasma gastification
- No fuel required
- > CDA, nitrogen or argon as plasma gas
- Suitable for flammable gases

PLASMA REACTOR

Plasma Reactor Option for Marathon & Guardian

Abatement Plasma Technology Comparison

	EcoSys	Others		
Decomposition Method	Plasmafication of effluent	High temperature from plasma arc		
Power Consumption	Low power consumption $(1.8 \sim 1.9 \text{ kW})^1$	High power consumption (8.0~20.0 kW)		
Parts Cost	Commonly available microwave parts	High-cost power pack & torch		
Parts Consumption	No electrodes and fewer internal components, which can reduce the frequency of component failure and maintenance	More consumable parts, especially electrodes, increase the frequency of component failure and maintenance		

¹Resonant cavity is not necessary for sustaining a microwave plasma and that microwave coupling efficiency to plasma can be close to 100%

8

91 Series Plasma Reactor Option

(Demo Unit Shown)

- >99% DRE for all chemistries
- Available option for Guardian, CDO and Marathon
- Low energy consumption microwave plasma
- Proprietary waveguide design
- Stable
- Low-cost combustion option
- No electrical heaters and no fuel gas!
- Huge NO_x reduction

The Solution — Proprietary Microwave Plasma!

Not heat dependent!

- 1 Magnetron converts small amount of electrical energy into microwaves
- 2 Proprietary waveguide drives microwaves to center of a quartz tube to maximize "plasmarization" process
- 3 Plasma source gas (Ar, N₂, etc.) enters 1st stage plasmarization zone
- 4 Plasma source gas decomposed by microwave energy releasing large amounts of high kinetic energy electrons
- 5 Turbulence causes effluent gases to swirl into 2nd stage of plasma reactor where the highest microwave energy resides, and target molecules are dissociated in the plasma
- Reaction rate further enhanced by collisions with high kinetic energy electrons from 1st stage plasmarization zone
- 6 Atoms from target molecules recombine into desired by-products (lower energy state)

Marathon M91A Plasma/Wet Theory of Operation Ecosy

E COSYS

- 1 Exhaust gases drawn into entry designed for turbulent swirling of molecules to maximize ionization efficiency inside of the plasma zone
- 2 CDA injection and water vapor present for ionized gas recombination/oxidation
- 3 Waterwall reactor prevents particulate build-up in reactor, moves solids towards high particulate side of recirculation tank, and cools gases
- 4 1st stage water scrubbing captures coarse particles and water-soluble gases, particulate falls into tank
- 5 Particulate goes into high particulate side of sump tank and water is filtered for reliability

- 10 Optional blower increases/regulates exhaust draw
- 9 2 chamber differential pressure exhaust drying zone, 1st stage uses media to condense moisture out of gas stream; 2nd stage uses fast compressed air jets to dry water vapor
- 8 2nd stage water scrubbing (high surface area countercurrent packed bed) further removes particulates and watersoluble gases; Freshwater addition for polishing scrub
- 7 Mist zone capture ultrafine Drain particulate
- 6 Water recirculated to reduce fresh water consumption; Optional drain control via specific parameters (pH, conductivity, etc.) instead of continuous draining for further savings

M91A Weight & Dimensions (4 Inlet)

Parameter	Specification			
Weiight (Dry)	1,984.16 lb./900 kg			
Weight (Wet)	2,204.623 lb./1,000 kg			
Dimensions	84.658" H x 64.961" W x 43.370" D			
Differisions	2,150.30 mm H x 1,650.00 mm W x 1,100 MM D			
Dimensions w/ Light Bar	94.357" H x 64.961" W x 43.370" D			
Difficusions w/ Light Bar	2,396.66 mm H x 1,650.00 mm W x 1,100 MM D			

Marathon M91A Facilities Requirements Summary

Marathon M91A Safety Interlocks

M91A system configured w/:

- 4 entries
- Integrated bypass
- Dual plasma torches
- SS tank & plumbing
- Single pre-wet module

Safety PLC Monitors Multiple Parameters

- Cabinet exhaust draw
- Cabinet exhaust pressure
- Exhaust pressure & Delta-P
- lnlet pressure
- Plasma check (reflection wave sensor)
- Gas temperature
- Tank level
- Water leak
- Pressure relief device (optional)
- Cabinet door (optional)
- Hydrogen flashback arrestor (FBA)(optional)
- Cabinet hydrogen (optional)

M91A Destruction/Removal Efficiency (DRE)

Gas	DRE %	Gas	DRE %	Gas	DRE %	Gas	DRE %	Gas	DRE %
AsH ₃	99	CHF ₃	99	HCI	99	SiCl ₄	99	ТМВ	99
BCl ₃	99	CH₃F	99	HF	99	SiF ₄	99	TMCTS	99
B2H ₆	99	CH ₂ F ₂	99	H ₂	99	SiH ₂ Cl ₂	99	TMP	99
BF ₃	99	Cl2	99	NF ₃	95	SiH₄	99	WF6	99
CF₄	95	CIF ₃	99	NH ₃	99	SF ₆	99	3MS	99
C ₂ F ₆	99	СО	99	NO	95	TCS	99	4MS	99
C ₃ F ₈	99	DCS	99	NO ₂	99	TDEAT	99		
C ₄ F ₆	99	F ₂	99	N₂O	98	TDMAT	99		
C ₄ F ₈	99	GeH₄	99	OMCTS	99	TEOS	99		
C ₅ F ₈	99	HBr	99	PH ₃	99	TiCl₄	99		

Note – H₂ capacity up to 150 slm, high flows require SS tank & plumbing option