

NUMBERS GLOSSARY

All examples are based on the following scenario:		In a randomized trial, 200 adults were given either DRUG or placebo for 5 years. Here's what happened:			
			TREATMENT DRUG (100 adults)	CONTROL Placebo (100 adults)	
		Died	10	30	
Measure	DEFINITION	EXAMPLE			
Absolute risk	Number who had outcome	Absolute risk (DRUG group) = <u>10</u> = 0.10 = 10% 100			
Analogy: Risk →Price Absolute risk (<i>control</i>) → <i>regular</i> price. Absolute risk (<i>treatment</i>) → <i>sales</i> price.	Number who could have had outcome	Absolute risk (Placebo group) = <u>30</u> = 0.30 = 30% 100			
		Over 5 years, 10% of the DRUG group died compared to 30% of the placebo group.			
		DRUG lowered the chance of dying compared to placebo: 10% vs. 30% died over 5 years.			
Absolute risk reduction (ARR) "percentage points lower" Analogy: Savings from a sale. Subtract the sales price from the regular price.	Absolute risk _ Absolute risk (control) (treatment)	Absolute risk reduction = 30% - 10% = 20% = 20 in 100 DRUG lowered the chance of dying over 5 years by 20 percentage points compared to placebo: 10% vs. 30. For every 100 people who take DRUG instead of placebo for 5 years, 20 fewer would die.			
Number needed to treat (NNT)	1 Absolute risk reduction	Number needed to treat = $\frac{1}{20\%} = \frac{1}{0.20} = 5$ 5 adults would have to take DRUG for 5 years to prevent 1 death.			
Relative risk (RR)	Absolute risk (treatment) Absolute risk (control)	Relative Risk = $\frac{10\%}{30\%} = \frac{0.1}{0.3} = 0.33$ The DRUG group had 0.33 times the chance of dying			
		compared to placebo The DRUG group ha placebo group: 10%	d one third the dea	ths of the	
Relative risk reduction (RRR) "% lower" Analogy: "% off" for the sale ("67% off regular price")	1 - Relative risk	Relative risk reduction = 1 - 0.33 = 0.67 or 67% DRUG reduced the chance of dying by 67 percent compared to placebo: 10% vs. 30% died over 5 years. DRUG lowered deaths by two-thirds compared to placebo: 10% vs. 30% died over 5 years.			

BOTTOM LINE Always report absolute risks for each group (no matter what other numbers are used)

For all risks, you need to be clear about 3 things: exactly what the outcome is (e.g. having a heart attack), over what time period the outcome occurred (e.g. 5 years) and in whom (e.g. adults with diabetes).

STATISTICS GLOSSARY

1

All examples are based on the following scenario:

In a randomized trial, 200 adults were given either DRUG or placebo for 5 years. Here's what happened:

	TREATMENT DRUG (100 adults)	CONTROL Placebo (100 adults)	
Died	10	30	

MEASURE	EXPLANATION	Example	
STATISTICS			
p value	A way of gauging whether an observed result might reflect the play of chance: formally, the probability (ranging from 0 to 1) of seeing this result (or even more extreme results) if the treatment really had no effect. By tradition, p-values are interpreted according to an arbitrary cutoff, typically: - p < 0.05 is "statistically significant $- p \ge 0.05$ is "not statistically significant" Remember, even a very low p value does not mean the results are true (the study may be biased or confounded) or important (patients may not notice the difference).	Relative risk reduction = 0.67, p=0.0004 The observed difference in the 5-year risk of death between the DRUG and placebo groups is statistically significant (p=0.0004). There is a 4 in 10,000 chance of seeing differences this big or bigger if DRUG actually had no effect.	
Confidence interval (95% CI)	Because the observed value is only an estimate of the truth, we know it has a "margin of error". The range of plausible values around the observed value that will contain the truth 95% of the time.	Relative Risk Reduction (95% Cl) = 0.67 (0.36 - 0.83) While our best estimate is that DRUG lowers the 5-year risk of death by 67%, the results of this study say it is possible that DRUG may lower the risk by as little as 36% or as much as 83%.	
EARLY DETECTION	STATISTICS		
Survival	Number alive at a specified time after Cancer X diagnosis (typically 5 or 10 years) Number diagnosed with Cancer X Comparing survival of patients diagnosed by different methods tells you nothing about	 10-year lung cancer survival was: 29% for patients diagnosed by screening chest x-rays 14% for patients diagnosed by symptoms Lung cancer patients diagnosed by screening chest x-ray have a 10-year survival of 29% compared to 14% of lung cancer patients diagnosed by symptoms, like cough or 	
	the benefit of early detection. Consequently, comparing survival across time (e.g. 1970 vs. 2008) or place (e.g. UK vs. US) - when patterns of testing are different - is misleading. They cannot tell you whether anyone is living longer.	weight loss. Warning: This statement is misleading. It tells you nothing about the benefit of screening.	
Mortality	Number of Cancer X deaths over a specified time Total No. of people in study or population (i.e. with & without Cancer X diagnosis) Reduced mortality in a randomized trial is	 In a randomized trial of chest x-ray screening, 10-year lung cancer mortality was: 4% for the chest x-ray screening group 4% for the control group (not screened) The 10-year lung cancer mortality among the chest x-ray screening group was 4% versus 4% in the control group. 	

Reduced mortality in a randomized trial is the only reliable evidence of the benefit of screening.