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News: Wind Blade Failure 

3 

Source: Peoria Journal Star 

On Oct. 24, 2008,  a 140 
foot, 6.5 ton blade fell off 
from a Suzlon Energy wind 
turbine near Peoria.   
 
Suzlon Energy is one of the 
world’s largest   wind 
turbine manufacturers. 
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Thermal Plants Failure:  
CWLP Dallman Explosion, Fall 2007 
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Source: The State Journal-Register  



CWLP Dallman Explosion, Fall 2007 

5 

 

 

 

 

 

 

 

 

 

 

 

 

Sm
ar

t 
G

ri
d

 –
 M

o
d

el
in

g 
an

d
 C

o
n

tr
o

l 

Source: ebah 



Thermal versus Hydro Generation 

• The two main types of generating units: 

 Thermal and Hydro (Renewable picking up slowly) 

• For hydro, the fuel (water) is free, but there may be 
many constraints on operation 

 Fixed amounts of water available 

 Reservoir levels must be managed and coordinated 

 Downstream flow rates for fish and navigation 

• Hydro optimization typically requires many months or 
years  
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Daily Load Duration Curve 
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Source: Viable Opposition 



Hydro Power Plant 
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8 Source: investphilippines.org 
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Pumped Storage Hydro Power Plant 

9 
Source: Scandia Wind Offshore LLC  



Traditionally utilities have three broad groups of 
generators: 

1. Base load units: Large coal/nuclear; always 
on at max. capacity 

2. Mid load units: Smaller coal that cycle on/off 
daily 

3. Peaker units: Combustion turbines used only 
for several hours during periods of high 
demand 
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Load Duration Curve: Generator Types 
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Thermal Power Plant Induced Pollution  

Source: EPA  



2 – 6% of power generated is used within the generating 
plant; this is known as the auxiliary power. 
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Boiler – Turbine – Generator Unit 

Boiler fuel input 

B T G 

Generator 

Gross Net 

Auxiliary Power System 

A/P 

Steam Turbine 



• Generator costs are typically represented by three to 
four different curves. 

 Input/Output (I/O) Characteristics 

 Incremental Characteristics 

 Net Heat Rate Characteristics 

• Reference: 

 1 Btu (British thermal unit) = 1054 J 

 1 MBtu = 1x106 Btu 

 1 MBtu = 0.29 MWh 
13 
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Generator Cost Curves 



Figure 1.) The I/O curve plots fuel input in MBtu/hr versus net MW output. 
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Input/Output Characteristics 
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Incremental Heat Rate Characteristics 
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Net Heat Rate Characteristics 
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Bird’s Eye View of a Thermal Power Plant 
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Source: Siemens  



• Generator cost curves are usually not smooth.  
• The curves, however, can be adequately approximated 

using piece-wise, smooth functions. 
• Two representations dominate: 
  Quadratic or cubic functions 
 Piece-wise linear functions 

We can assume a quadratic equation exists, such that… 
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2( ) $/hr (fuel-cost)

( )
( ) 2 $/MWh 

i Gi i Gi Gi

i Gi
i Gi Gi

Gi

C P P P

dC P
IC P P

dP

  
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Mathematical Formulation of Costs 



A 500 MW (net) generator is 35% efficient. It is being 
supplied with Western grade coal, which costs $1.70 per 
MBtu and has 9000 Btu per pound.  What is the coal 
usage in lbs/hr?  What is the cost? 

19 

At 35% efficiency required fuel input per hour is

500 MWh 1428 MWh 1 MBtu 4924 MBtu

hr 0.35 hr 0.29 MWh hr

4924 MBtu 1 lb 547,111 lbs

hr 0.009MBtu hr

4924 MBtu $1.70
Cost = 8370.8 $/hr or $16.74/MWh

hr MBtu

  


 

 
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Example #1: Coal Usage 



Assume a 100W lamp is left on by mistake for 8 hours, and 
the electricity is supplied by the previous coal plant. Also, 
the transmission and distribution losses are 20%. How 
much irreplaceable coal has this person wasted? 

 

 

20 

With 20% losses, a 100W load on for 8 hrs requires 

1 kWh of energy.  With 35% gen. efficiency this requires

1 kWh 1 MWh 1 MBtu 1 lb
1.09 lb

0.35 1000 kWh 0.29 MWh 0.009MBtu
   
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Example #2: Wasting Coal 



2
1 1 1 1

2
2 2 2 2

1 1
1 1 1

1

2 2
2 2 2

2

For a two generator system assume

( ) 1000 20 0.01 $ /

( ) 400 15 0.03 $ /

Then

( )
( ) 20 0.02 $/MWh

( )
( ) 15 0.06 $/MWh

G G G

G G G

G
G G

G

G
G G

G

C P P P hr

C P P P hr

dC P
IC P P

dP

dC P
IC P P

dP

  

  
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Example #3: Incremental Cost 



G1 G2

2
1

2
2

1

2

If P 250 MW and P 150 MW Then

(250) 1000 20 250 0.01 250 $ 6625/hr

(150) 400 15 150 0.03 150 $6025/hr

Then

(250) 20 0.02 250 $ 25/MWh

(150) 15 0.06 150 $ 24/MWh

C

C

IC

IC

 

     

     

   

   
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Example #3 cont’d. 
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Solution using the LaGrange Function  

0
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
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
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Example #4: LaGrange Function 

2,1,4

05

02

05.0

)5(25.0),,(

21

21

2

2

1

1

21

2

2

2

121






























xx

xx

x
x

x
x

xxxxxxL

 : : Solution                

L

L

L

 

 equations.  three  these  solvingby    found is   solution  The

:Function     LaGrangian
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Adding Inequality Constraints 

N  dimension  numbers,  real of vector  

  

  

 :to Subject

 

:Minimize

i

i







x

Ngixg

Nix

xf

,...,2,10|)(

,...,2,10|)(

)(



By adding the less than or equal to  constraint “g” we must 
follow more elaborate procedures than simply finding 
where the gradient of the Lagrangian is equal to zero.  
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The Karush-Kuhn Tucker Conditions 

 
 





N

i

Ng

i

iiii xgxxfxL
1 1

)()()(),,(

condition slacknessary Complement           for                4.

 condition constraint of tRestatemen           for                       3.

condition constraint of tRestatemen         for                       2.

 zero equal sderivative partial All            for             1.

are  point optimum the for conditions The

0

i

0

i

i

...Ng i 
xg

...Ng i xg

...N  i x

...N i ,μ,λx
x

L

,μ,λx

i

0

i

0

000

i

000

1
0

0)(

10)(

10)(

10)(

0























The goal of economic dispatch is to determine the 
generation dispatch that minimizes the instantaneous 
operating cost, subject to the constraint that total 
generation = total load + losses. 

27 

T
1

m

i=1

Minimize C ( )

Such that

m

i Gi
i

Gi D Losses

C P

P P P



 





Initially, we'll  
ignore generator 
limits and the 
losses 
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Economic Dispatch: Problem Formulation 
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Economic Dispatch Problem: Without Losses 

1 

2 

N 

F1      

F2      

FN      

P1      

P2      

PN      

Pload      



Economic Dispatch LaGrangian 

29 

G
1 1

G

For the economic dispatch we have a minimization 

constrained with a single equality constraint

L( , ) ( ) ( )   (no losses)

The necessary conditions for  minimum are

L( , )

m m

i Gi D Gi
i i

i

Gi

C P P P

dC
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 


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1 2

2
1 1 1 1

2
2 2 2 2

1 1

1

What is economic dispatch for a two generator 

system 500 MW  and

( ) 1000 20 0.01 $/h

( ) 400 15 0.03 $/h

Using the Lagrange multiplier method we know:

( )
20 0.0

D G G

G G G

G G G

G

G

P P P

C P P P

C P P P

dC P

dP


  

  

  

   1

2 2
2

2

1 2

2 0

( )
15 0.06 0

500 0

G

G
G

G

G G

P

dC P
P

dP

P P



 

 

    

  
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Example #5: Economic Dispatch 
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1

2

1 2

1

2

1

2

We therefore need to solve three linear equations

20 0.02 0

15 0.06 0

500 0

0.02 0 1 20

0 0.06 1 15

1 1 0 500

312.5 MW

187.5 MW

26.2 $/MW

G

G

G G

G

G

G

G

P

P

P P

P

P

P

P
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       
     
            

 
  
 
   h
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Example #5 cont’d.  
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Example #6: Economic Dispatch of 3 
Generators (Load 850 MW) 
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Example #6: Solution  






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P
dP

dF

P
dP

dF

hPPPHPF

hPPPHPF

hPPPHPF

dispatch optimum of conditions the Applying

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Sm
ar

t 
G

ri
d

 –
 M

o
d

el
in

g 
an

d
 C

o
n

tr
o

l 

34 

Problem  #1: Solution  

total. MW 850 desired the meet units three all

over summed when output total the and

 limitlow  and high its within is unit each

 is, that met; are contraints all that Note

MW 

MW 

MW 

 for solving then

 

 obtains one , for Solving

MW  and 

2.122

6.334

2.393

,,

/$148.9

85000964.097.7

3

2

1

321

3213

3

3




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1. If the coal price is  reducing to 0.9$/Mbtu, what 
is the economic dispatch?  
 

2. If Unit 1 is set at maximum output and Unit 2 to 
the minimum output, what is the economic 
dispatch? 

35 

Assignment #1 



Lambda-Iteration Solution Method 

• The direct solution using Lagrange multipliers only 
works if the generators are not at their limits. 

• Another method is the Lambda-Iteration Method 

• The method requires that there to be a unique 
mapping from a value of lambda (marginal cost) to 
each generator’s MW output  = 

36 
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Lambda-Iteration Solution Method 

• For any choice of lambda (marginal cost), the 
generators collectively produce a total MW output. 

• The method then starts with values of lambda 
below and above the optimal value (corresponding 
to too little and too much total output), then 
iteratively brackets the optimal value. 
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Lambda-Iteration: Graphical View 
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Adjust lambda up and 
down, until the sum of 
the gen output meets 
the load to be supplied.  
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• Draw the individual incremental cost  in the 
same scale.  

• On the vertical axis and then line them up as 
shown so that it will give us a value for power 
output for each generator assuming we are 
going to make the lambda the same for each 
generator. 

•  If the lambda comes below a generator’s 
minimum we hold it at Pmin, if above the 
generator’s max we hold it at Pmax.  

Explanation 
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Lambda-Iteration Method- Flow Chart 
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End 

Print Schedule  

|ϵ| < or = Tolerance  
No: Project lambda 

First Iteration?  
Yes: Back to Set Lambda 

Calculate ϵ = Pload – Pi for every i  

Calculate Pi for i = 1…N  

Set lambda 

Start 
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Determining Lambda Using Binary Search  

41 

  done is alogirthm tolerance   if

    

   

 then so lambda increase must we  if

    

   

 then so lambda reduce must we  if

   




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


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




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1

1
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1

1

min

maxmin

2/

2/

2/)(












Lambda max 

Lambda i+1 

Lambda i+2 

Lambda I  
starting value 

Lambda min 



Lambda-Iteration Algorithm 
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L H

1 1

H L

M H L

H M

1

L M

Pick (min) and (max) such that

( ) 0 ( ) 0

While    Do

( ) / 2

If ( ) 0 Then 

Else 

End While

m m
L H

Gi D Gi D
i i

m
M

Gi D
i

P P P P

P P

 
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  

 
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Example #7: Lambda-Iteration 
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1 1 1

2 2 2

3 3 3

1 2 3

Consider a three generator system with

( ) 15 0.02 $/MWh

( ) 20 0.01 $/MWh

( ) 18 0.025 $/MWh

and with constraint 1000MW

Rewriting generation as a function of , (

G G

G G

G G

G G G

Gi

IC P P

IC P P

IC P P

P P P
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
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G1 G2

G3

),  

we have

15 20
P ( ) P ( )
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P ( )
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Lambda-Iteration Example, cont’d 
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m
 

Gi
i=1

m

Gi
i=1

 

1

H 

1

Pick  so P ( ) 1000 0 and 

P ( ) 1000 0

Try  20 then (20) 1000 

15 20 18
1000 670 MW

0.02 0.01 0.025

Try  30 then (30) 1000 1230 MW

L L

H

m
L
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Lambda-Iteration Example, cont’d 

45 

1

1

Pick convergence tolerance   0.05 $/MWh 

Then iterate since 0.05

( ) / 2 25

Then since (25) 1000 280 we set 25

Since 25 20 0.05

(25 20) / 2 22.5

(22.5) 1000 195 we set 2

H L

M H L

m
H

Gi
i

M

m
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P



 
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Lambda-Iteration Example, cont’d 
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H

*

*

1

2

3

Continue iterating until 0.05

The solution value of , ,  is 23.53 $/MWh

Once  is known we can calculate the 

23.53 15
(23.5) 426 MW

0.02

23.53 20
(23.5) 353 MW

0.01

23.53 18
(23.5)

0.025

L

Gi

G

G

G

P

P

P

P

 

 



 


 


 


 221 MW
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Thirty Bus ED Example 

47 

Case is economically dispatched (without considering 
the incremental impact of the system losses). 
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Generator MW Limits 

• Generators have limits on the minimum and 
maximum amount of power they can produce. 

• Typically, the minimum limit is not zero.   

• Because of varying system economics usually 
many generators in a system are operated at 
their maximum MW limits: 

• Base load generators are at their maximum limits 
except during the off-peak.   
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Lambda-Iteration with Gen Limits 

49 

,max

,max

In the lambda-iteration method the limits are taken

into account when calculating ( ) :

if calculated production for  

                   then set ( )

if calculated production for 

Gi

Gi Gi

Gi Gi

P

P P

P P









,min

,min

 

                   then set ( )
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Example #8: Lambda-Iteration with Gen Limit 
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G1 G2

G3

1 2 3
1

In the previous three generator example assume

the same cost characteristics but also with limits

0 P 300 MW 100 P 500 MW

200 P 600 MW

With limits we get:

(20) 1000 (20) (20) (20) 10
m

Gi G G G
i

P P P P


   

 

    

1

00

250 100 200 1000

450 MW (compared to 670MW)

(30) 1000 300 500 480 1000 280 MW
m

Gi
i

P


   

  

     
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Again we continue iterating until the convergence

condition is satisfied.  

With limits the final solution of , is 24.43 $/MWh 

(compared to 23.53 $/MWh without limits).  

Maximum limits will always caus



1

2

3

e  to either increase 

or remain the same.

Final solution is: 

(24.43) 300 MW (at maximum limit)

(24.43) 443 MW

(24.43) 257 MW

G

G

G
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P

P
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Example #8: Lambda-Iteration with Gen Limit 



Economic Dispatch:  
Piece-wise Linear Cost Functions  
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Economic Dispatch:  Linear Programming  
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LP formulation  
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:finally and
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LP economic dispatch  
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Example #5: Solution (Using LP)   
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Economic Dispatch: Dynamic Programming  
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Find the optimum dispatch for a total demand of 310 MW. 



Plots for Generator - 1 
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Plots for Generator - 2 
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Plots for Generator - 3 



DP Method:  Dispatch Solution (Generators 1 and 2) 
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Last of all dispatch generator 3 with the other 
two 
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Adjust for demand = 310 MW 
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D Cost P3* P2* P1* 

300 4168 150 100 50 

325 4463 150 125 50 

Between 300 MW and 325 MW the 
marginal unit is Generator 2 so the 
solution to this dispatch is:  

 $/hPPP 4286150,110,50 321  of cost total a for 



Economic Dispatch of Generators by 
considering  Transmission Losses 

• The losses on the transmission system are a function of 
the generation dispatch.   

• In general, using generators closer to the load results in 
lower losses. 

• This impact on losses should be included when doing the 
economic dispatch. 

• Losses can be included by slightly rewriting the 
Lagrangian: 

64 
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Inclusion of Transmission Losses 
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Transmission network 
with losses Ploss 

 
 
 
 
 
 
 
 
 
 
 
 
 

F1      

F2      

FN      

P1      

P2      

PN      

Pload      



66 

G
1 1

G

The inclusion of losses then impacts the necessary

conditions for an optimal economic dispatch:

L( , ) ( ) ( )  .  

The necessary conditions for a minimum are now:

L( , )

m m

i Gi D L G Gi
i i

C P P P P P 
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

 P

P

1

( ) ( )
1 0  

( ) 0

i Gi L G
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dC P P P

P dP P

P P P P
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Impact of Transmission Losses 
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th

( ) ( )
Solving for ,  we get: 1 0  

( )1

( )
1

Define the penalty factor  for the  generator

(don't confuse with Lagrangian L!!!)

1

( )
1

i Gi L G

Gi Gi

i Gi

GiL G

Gi

i

i
L G

Gi

dC P P P

dP P

dC P

dPP P

P

L i

L
P P

P

 



 
    


 
  


 
 





The penalty factor at the 
slack bus is always unity! 
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Impact of Transmission Losses 
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1 1 1 2 2 2

The condition for optimal dispatch with losses is then

( ) ( ) ( )

1
. So, if increasing  increases

( )
1

( )
the losses then 0 1.0

This makes generator

G G m m Gm

i Gi
L G

Gi

L G
i

Gi

L IC P L IC P L IC P

L P
P P

P

P P
L

P

  


 
  


  



  appear to be more expensive

(i.e., it is penalized).  Likewise 1.0 makes a generator

appear less expensive.  

i

i

L 
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Impact of Transmission Losses 



Calculation of Penalty Factors 
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Unfortunately, the analytic calculation of  is 

somewhat involved.  The problem is a small change

in the generation at  impacts the flows and hence

the losses throughout the entire system.  However,

i

Gi

L

P

 

using a power flow you can approximate this function 

by making a small change to  and then seeing how

the losses change:  

( ) ( ) 1

( )
1

Gi

L G L G
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L GGi Gi
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P

P P P P
L

P PP P
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Example #9: Two Bus Penalty Factor  
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2 2

2 2

( ) ( ) 0.37
0.0387 0.037

10

0.9627 0.9643
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G G
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L L
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Thirty Bus ED Example 

71 

 Now consider losses, because of the penalty factors 
the generator’s incremental costs are no longer 
identical. 
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Area Supply Curve 

72 

Figure 1.) The area supply curve shows the cost to produce 
the next MW of electricity, assuming area is economically 
dispatched. 

   0  100  200  300  400

Total Area Generation (MW)

0.00

2.50

5.00

7.50

10.00

Supply 
curve for 
thirty bus 
system 
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Summary: Economic Dispatch 

• Economic dispatch determines the best way to minimize 
the current generator operating costs. 

• The lambda-iteration method is a good approach for 
solving the economic dispatch problem: 
 Generator limits are easily handled 

 Penalty factors are used to consider the impact of losses 

• Economic dispatch is not concerned with determining 
which units to turn on/off (this is the unit commitment 
problem). 

• Basic form of economic dispatch ignores the 
transmission system limitations. 
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Locational Marginal Price (LMP) 
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Generally, LMP determines an energy price for each electrical node on the 
grid as well as the transmission congestion price (if any) to serve that node. 
For the above reason, LMP is often referred to as “nodal pricing”. 

1 2 

1 2 

500 MW 400 MW 

Generator 1 MW Marginal Cost  
($/MWh) 

Generator 2 Bid MW Marginal Cost  
($/MWh) 

Segment A 400 5.00 Segment C 200 6.50 

Segment B 800 7.50 Segment D 400 8.00 



Generator Linear Segment Cost Functions   
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Generation dispatch:  
 
 
 
Note: LMP at both buses is 7.5 

Base dispatch with no line flow limit  
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1 2 

500 MW 400 MW 

200 MW 

700 MW 200 MW 

Segment MW Price 

A 400 5.00 

C 200 6.50 

B 300 7.50 



Dispatch with 100 MW line flow limit  
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1 2 

500 MW 400 MW 

100 MW 

600 MW 300 MW 

Generation dispatch: 
  
 
 
 
Note: LMP at bus 1 is 7.5; LMP at bus 2 is 8.0 

Segment MW Price 

A 400 5.00 

C 200 6.50 

B 200 7.50 

D 100 8.00 



Economic Dispatch & Unit Commitment 

The following is the question of Economic dispatch. With a 
given set of units running, how of the load much should be 
generated at each to cover the load and losses?   
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Deciding Which Units to “Commit” 

How does one define “economic operation?”   
Profit maximizing? Cost minimizing?  This all depends on 
the market in which you are.  
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What is Unit Commitment 

• We have a few generators (units) and some forecasted 
load. 

• Besides the cost of running the units, we have 
additional costs and constraints: 

 Start-up cost 

 Shut-down cost 

 Spinning reserve 

 Ramp-up time... and more 
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Assignment 2 
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Unit Combinations to supply 550 MW  

82 

Unit 1 Unit 2 Unit 3 Max 
Generation 

Min 
Generation 

P1 P2 P3 F1 F2 F3 Total Generation 
Cost  

F1 + F2 + F3 

Off Off Off 0 0 - - - - Infeasible - - 

Off Off On 200 50 - - - - Infeasible - - 

Off On Off 400 100 - - - - Infeasible - - 

Off On On 600 150 0 400 150 0 3760 1658 5418 

On Off Off 600 150 550 0 0 5389 0 0 5389 

On Off On 800 200 500 0 50 4911 0 586 5497 

On On Off 1000 250 295 255 0 3030 2440 0 5471 

On On On 1200 300 267 233 50 2787 2244 586 5617 
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Simple Peak and Valley Pattern 
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“Shut-down Rule”  
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Shut-down Rule applied to Load Pattern  
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Unit Commitment Solution Methods 

1. Priority-list Schemes 

2. Dynamic Programming (DP) 

3. Lagrange Relaxation (LR) 

4. Integer Programming (IP)   
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Priority List Solution  
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Dynamic Programming Paths and Unit 
Commitment  

88 
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88 

Each state represents a combination of generating units 
supplying the load specified for that hour. Each state has a 
production cost PCOST.  

FCOST is the accumulated cost 
to get to a state from the start 
through optimum path leading 
to that state. 

A dot represents one state 
operating in one time period. 

FCOST (end of path) =  
PCOST (start of path) + SCOST (along path) + FCOST (start of path)  



Dynamic Programming Solution  

89 

Figure 2.) Schedule shown is: 111 interval 1, 110 interval 2, 100 interval 3, 101 interval 4  
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Path Multiplication  
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Dynamic Programming Example  
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Unit Max  

(MW) 
Min  

(MW)  
Incremental  

Heat Rate  
(Btu/kWh) 

No-Load  
Cost 

 (R/h) 

Full-Load Ave. cost  
(R/mWh) 

Minimum  
Times (h) 

Up Down 

1 80 25 10440 213.00 23.54 4 2 

2 250 60 900 585.62 20.34 5 3 

3 300 75 8730 684.74 19.74 5 4 

4 60 20 11900 252.00 28.00 1 1 

Unit Hours Off-line(-)  
or On-line(+) 

Hot (R) Cold (R) Cold Start (h) 

1 -5 150 350 4 

2 8 170 400 5 

3 8 500 1100 5 

4 -6 0 0.02 0 

Hour Load (MW) 

1 450 

2 530 

3 600 

4 540 

5 400 

6 280 

7 290 

8 500 



Simplified Generator Cost Function  

92 

 

 

 

 

 

 

 

 

 

 

 

 

Sm
ar

t 
G

ri
d

 –
 M

o
d

el
in

g 
an

d
 C

o
n

tr
o

l 

P CostInc   Cost Load No )(PF



Full Set of Unit Combinations  
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a, 1=on 0=off  



Case 1: Strict Priority Order  
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Case 2: Complete Enumeration  
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Results 
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Case 3: Using Minimum Shut-Down Rules  
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Security Constrained ED or Optimal Power Flow 

• Transmission constraints often limit ability to use 
lower cost power. 

• Such limits require deviations from what would 
otherwise be minimum cost dispatch in order to 
maintain system “security.” 
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Security Constrained ED or Optimal Power Flow 

• The goal of a security constrained ED or optimal 
power flow (OPF) is to determine the “best” way to 
instantaneously operate a power system, considering 
transmission limits. 

• Usually “best” = minimizing operating cost, while 
keeping flows on transmission below limits. 

• In three bus case the generation at bus 3 must be 
limited to avoid overloading the line from bus 3 to 
bus 2.   
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Security Constrained Dispatch 

Bus 2 Bus 1

Bus 3Home Area

Scheduled Transactions

357 MW

179 MVR

194 MW

448 MW

 19 MVR

232 MVR

179 MW

 89 MVR

1.00 PU

-22 MW

  4 MVR

 22 MW

 -4 MVR

-142 MW

 49 MVR

145 MW

-37 MVR

124 MW

-33 MVR

-122 MW

 41 MVR

1.00 PU

1.00 PU

  0 MW

 37 MVR100%

100%

100 MW
OFF AGC

AVR ON

AGC ON

AVR ON

 100.0 MW

100 

Need to dispatch to keep line from bus 3 to bus 2 from 
overloading. 
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Optimal Power Flow 

• The goal of an optimal power flow (OPF) is to 
determine the “best” way to instantaneously 
operate a power system. 

• Usually “best” = minimizing operating cost. 

• OPF considers the impact of the transmission 
system 

• OPF is used as basis for real-time pricing in major US 
electricity markets such as Midcontinent 
Independent System Operator (MISO) and PJM 
Energy Market.   101 
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Two Bus ED Example 

Total Hourly Cost :

Bus A Bus B

300.0 MWMW

 199.6 MWMW  400.4 MWMW

300.0 MWMW

8459 $/hr 

Area Lambda : 13.02

AGC ON AGC ON

102 
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Market Marginal (Incremental) Cost 

103 

   0  175  350  525  700
Generator Power (MW)

12.00

13.00

14.00

15.00

16.00

Below are some graphs associated with this two bus system.  
The graph on left shows the marginal cost for each of the 
generators.  The graph on the right shows the system supply 
curve, assuming the system is optimally dispatched.   

Current generator operating point 

    0   350   700  1050  1400
Total Area Generation (MW)

12.00

13.00

14.00

15.00

16.00
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Real Power Markets 

• Different operating regions impose constraints 

 Total demand in region must equal total supply 

• Transmission system imposes constraints on the 
market. 

• Marginal costs become localized 

• Requires solution by an optimal power flow 

104 
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Optimal Power Flow (OPF) 

• OPF functionally combines the power flow with the 
economic dispatch. 

• Minimizes cost function, such as operating cost, taking 
into account realistic equality and inequality constraints 

• Equality constraints 

 Bus real and reactive power balance 

 Generator voltage set points 

 Area MW interchange  

 
105 

 

 

 

 

 

 

 

 

 

 

 

 

Sm
ar

t 
G

ri
d

 –
 M

o
d

el
in

g 
an

d
 C

o
n

tr
o

l 



OPF, cont’d 

• Inequality constraints: 

 Transmission line/transformer/interface flow limits 

 Generator MW limits 

 Generator reactive power capability curves 

 Bus voltage magnitudes (not yet implemented in Simulator 
OPF) 

• Available Controls: 

 Generator MW outputs 

 Transformer taps and phase angles 

 106 
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OPF Solution Methods 

• Non-linear approach using Newton’s method 

 Handles marginal losses well, but is relatively slow 
and has problems determining binding constraints 

• Linear Programming  

 Fast and efficient in determining binding constraints, 
but can have difficulty with marginal losses. 

 Used in Power World Simulator 
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LP OPF Solution Method 

• Solution iterates between 

 Solving a full ac power flow solution 

 Enforces real/reactive power balance at each bus 

 Enforces generator reactive limits 

 System controls are assumed fixed  

 Takes into account non-linearities 

 Solving a primal LP 

 Changes system controls to enforce linearized 
constraints while minimizing cost 

 108 
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Two Bus with Unconstrained Line 

109 

Total Hourly Cost :

Bus A Bus B

300.0 MWMW

 197.0 MWMW  403.0 MWMW

300.0 MWMW

8459 $/hr 

Area Lambda : 13.01

AGC ON AGC ON

13.01 $/MWh 13.01 $/MWh

Transmission line 
is not overloaded 

With no overloads, 
the OPF matches 
the economic 
dispatch 

Marginal cost of supplying 
power to each bus 
(locational marginal costs) 
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Two Bus with Constrained Line 

110 

Total Hourly Cost :

Bus A Bus B

380.0 MWMW

 260.9 MWMW  419.1 MWMW

300.0 MWMW

9513 $/hr 

Area Lambda : 13.26

AGC ON AGC ON

13.43 $/MWh 13.08 $/MWh

With the line loaded to its limit, additional load at Bus A must be supplied 
locally, causing the marginal costs to diverge.   
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Mathematical Optimization 

Convex Optimization 

Least-squares LP 

Nonlinear Optimization 

Convex Optimization 

111 
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Mathematical Optimization 
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i i

1

4

(Mathematical Optimization Problem)

minimize f (x)

subject to f (x) b , 1,............

( ,............. ) : var

:  

: 1,... : int

n

n
o

n

i m

x x x optimization iables

f R R Objective Function

f R R i m Constra Functions

Opti

 

 

  

   

*
o Solution x  smallest value of f

among all vectors that staisfy the constraints

mal has



Convex Optimization 
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o

i i

 f (x)

subject to f (x) b , 1,....,

  int   

( ) ( ) ( )

1, 0, 0

    

     

i i i

Minimize

i m

Objective and Constra Functions are convex

f x y f x f y

if

includes least squares problems

and linear programs as special caseses

   

   

 

  

   



Analytical Solution of Least-squares 
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T
i i

kxn

   

    

with no constraints

(ie., m =0) and an objective 

which is a sum of squares of 

terms of the form a x-b :

Here A R (  ),

   of A, an

T
i

A least squares problem

is an optimization problem

with K n a

are the rows



 

n

d the 

vector x R   

var

is the optimization

iable





Linear Programming 
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T

T

1 m

 Important Class of optimization

 problems is linear programming in 

which the objective and all constraints 

are linear.

minimize C x

subject to ai x bi, i = 1,....,m

Here the vectors c,a ,...,a  

Another

R





1 2 m

 

scalars   b , b ....b  are problem 

parameters that define objective function 

and constraint.

n

and

R



Solving Optimization Problems 
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Mathematical Optimization 

Convex Optimization 

Least-squares LP 

Nonlinear Optimization 
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• Analytical solution 
• Good algorithms and software 
• High accuracy and high reliability 
• Time complexity:  

 

Mathematical Optimization 

Convex Optimization 

Least-squares LP 

Nonlinear Optimization 

knC 2

A mature technology! 
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Solving Optimization Problems 

2

2
bAx  minimize



• No analytical solution 
• Algorithms and software 
• Reliable and efficient 
• Time complexity:  

 

Mathematical Optimization 

Convex Optimization 

Least-squares LP 

Nonlinear Optimization 

mnC 2

Also a mature technology! 
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Solving Optimization Problems 

mibxa

xc

i

T

i

T

,...,1,  to subject

 minimize



Mathematical Optimization 

Convex Optimization 

Nonlinear Optimization 

Almost a mature technology! 

Least-squares LP 

• No analytical solution 
• Algorithms and software 
• Reliable and efficient 
• Time complexity (roughly)  
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Solving Optimization Problems 

mibxf

xf

ii ,...,1,)(

)(0

 to subject

 minimize



Far from a technology! (something to avoid) 

Mathematical Optimization 

Convex Optimization 

Nonlinear Optimization 

Least-squares LP 

• Sadly, no effective methods to solve 
• Only approaches with some compromise 
• Local optimization: “more art than technology”  

• Global optimization: greatly compromised efficiency  
• Help from convex optimization 

1) Initialization 2) Heuristics 3) Bounds  
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Solving Optimization Problems 



Example #10:  
Convex Optimization in Power Flow 

121 

• On the figure, generator G1 and G2 connects to Bus1 and Bus2 respectively. 
• The two buses are connected via a power line.  
• At each bus, there is certain amount of  load that is already known.  
• We want to determine the power production in G1 and G2; so, that we could 

achieve the lowest cost for the overall generation cost. 

 

 

 

 

 

 

 

 

 

 

 

 

Sm
ar

t 
G

ri
d

 –
 M

o
d

el
in

g 
an

d
 C

o
n

tr
o

l G1 G2 

D1 D2 

P1 P2 



Convex Optimization in Power Flow 
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i Gi Di

1 1 2 2 i i

 Bus i, define power flow

into the line: P = P -P , i=1,2;

Our goal is , minimize f (P )+f (P ), where f (p ) stands

for the different cost functions for each generator

At
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We assume that the voltage magnitude at both bus 1 
and bus 2 are same and constant, i.e. |𝑉1|=|𝑉2|=1. 
Also, we will ignore reactive power for now.  



Convex Optimization in Power Flow 
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)cos(21)sin(2122

)cos(21)sin(2111

2

2





gVVbVVgVP

gVVbVVgVP







Problem Formulation 
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





cossin2

cossin1

),2()1( 21

gbgP

gbgP

PfPf







to Subject

 variable with 

:Minimize



Problem Formulation 

By observing the constraints, the linear transformation of 
the equations leads to an ellipse. As shown in Figure. We 
note the boundary of this ellipse as S. 
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Solution 

• The next step is to perform optimization.  

• We, however, cannot directly perform convex 
optimization to it, because the boundary of an ellipse 
is non-convex. 

• Here we have to introduce a concept named convex 
hull, which means the smallest convex set that 
contains the original set.  

• By obtaining the convex hull of S, we get a set that 
contains the both the boundary and the area within 
this ellipse as shown on the next slide.  
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Solution 

cSPP

PfPf

SPP

PfPf









)2,1(

)2()1(

)2,1(

)2()1(

21

21

 :to Subject

 :Minimize

:2 problem OPF

 :to Subject

 :Minimize



Solution 

• Sc is convex and can be optimized via convex 
optimization. 

• The idea of solving OPF problem 2 instead of OPF 
problem 1 is called “convexification”. 

• To make this analysis more practical, the upper 
bound of power production of each generator has to 
be taken into consideration.  

• Therefore, we add one more constrain to achieve it. 
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Solution 



We want to make sure the 
power need of  the loads 
are satisfied. Hence, 
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G1 G2 D1 D2P +P  P +P  

1 2 0

or

P P



 
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By combining the two 
feasible sets in Figure 2. 
and Figure 4.  

Solution 



 Convex Optimization Problem Formulation 
for Distribution Networks  
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 Convex Optimization Problem Formulation 
for General  Distribution Networks  
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]*)(Re[

]*)(Re[

,...2,1,

...3,2,1,,

,...2,1,

)]()([

*

*

max

max

maxmin

1,

ijijjj

ijjii

ii

ijij

iii

ji

jjii

yVVVP

yVViVP

niPP

njiPP

niVVV

PfPf














to Subject

:Minimize

n



Convex Optimization Links 

1. http://web.stanford.edu/class/ee392o/links.html 

2. http://www.ee.columbia.edu/~lavaei/Students_Proj
ects_Power.html 
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http://web.stanford.edu/class/ee392o/links.html
http://web.stanford.edu/class/ee392o/links.html
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Convex Optimization: Software 
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http://www.ee.columbia.edu/~lavaei/Software.html 

Recommended Software:  



Assignment 
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1. By using any of the Convex 
Optimization toolbox/software 
obtain the OPF solution for IEEE 14 
bus system. 
2. Obtain the OPF solution for the 
IEEE 14 bus system with the help of 
any standard software say PSAT of 
Waterloo. 
3. Compare the solution and 
comment on the results. 
4. What are the benefits and 
drawbacks of the convex 
optimization when compared to 
the conventional optimization 
methods for solving  algorithms  
such as OPF. 
 
 Any other data if required can be 
assumed. 



REDLAB 
Renewable Energy Design Laboratory 

http://manoa.hawaii.edu/me/redlab 
2540 Dole St. – Holmes Hall 201 

Honolulu HI, Hawaii, USA 
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Questions? 
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