

Smart Grid – Modeling and Control

Smart Grid – Modeling and Control

Economic Despatch & Optimal Power Flow

University of Hawaii's Renewable Energy Design Laboratory (REDLab) in collaboration with Powersim Inc. and MyWay

© 2015 University of Hawai'i All Rights Reserved

No part of this publication maybe reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

News: Wind Blade Failure

Source: Peoria Journal Star

On Oct. 24, 2008, a 140 foot, 6.5 ton blade fell off from a Suzlon Energy wind turbine near Peoria.

Suzlon Energy is one of the world's largest wind turbine manufacturers.

Thermal Plants Failure: CWLP Dallman Explosion, Fall 2007

Source: The State Journal-Register

CWLP Dallman Explosion, Fall 2007

Source: ebah

• The two main types of generating units:

> Thermal and Hydro (Renewable picking up slowly)

- For hydro, the fuel (water) is free, but there may be many constraints on operation
 - Fixed amounts of water available
 - Reservoir levels must be managed and coordinated
 - Downstream flow rates for fish and navigation
- Hydro optimization typically requires many months or years

Daily Load Duration Curve

Hydro Power Plant

Source: investphilippines.org

Pumped Storage Hydro Power Plant

Source: Scandia Wind Offshore LLC

Traditionally utilities have three broad groups of generators:

- 1. Base load units: Large coal/nuclear; always on at max. capacity
- 2. Mid load units: Smaller coal that cycle on/off daily
- Peaker units: Combustion turbines used only for several hours during periods of high demand

Thermal Power Plant Induced Pollution

Source: EPA

Boiler – Turbine – Generator Unit

2 – 6% of power generated is used within the generating plant; this is known as the **auxiliary power**.

- Generator costs are typically represented by three to four different curves.
 - Input/Output (I/O) Characteristics
 - Incremental Characteristics
 - Net Heat Rate Characteristics
- Reference:
 - I Btu (British thermal unit) = 1054 J
 - ➢ 1 MBtu = 1x10⁶ Btu
 - ▶ 1 MBtu = 0.29 MWh

Input/Output Characteristics

Figure 1.) The I/O curve plots fuel input in MBtu/hr versus net MW output.

Smart Grid – Modeling and Control

Net Heat Rate Characteristics

Bird's Eye View of a Thermal Power Plant

Source: Siemens

Mathematical Formulation of Costs

- Generator cost curves are usually not smooth.
- The curves, however, can be adequately approximated using piece-wise, smooth functions.
- Two representations dominate:
 - Quadratic or cubic functions
 - Piece-wise linear functions

We can assume a quadratic equation exists, such that...

$$C_{i}(P_{Gi}) = \alpha_{i} + \beta P_{Gi} + \gamma P_{Gi}^{2} \quad \text{$/hr (fuel-cost)}$$
$$IC_{i}(P_{Gi}) = \frac{dC_{i}(P_{Gi})}{dP_{Gi}} = \beta + 2\gamma P_{Gi} \quad \text{$/MWh}$$

A 500 MW (net) generator is 35% efficient. It is being supplied with Western grade coal, which costs \$1.70 per MBtu and has 9000 Btu per pound. What is the coal usage in lbs/hr? What is the cost?

At 35% efficiency required fuel input per hour is $\frac{500 \text{ MWh}}{\text{hr} \times 0.35} = \frac{1428 \text{ MWh}}{\text{hr}} \times \frac{1 \text{ MBtu}}{0.29 \text{ MWh}} = \frac{4924 \text{ MBtu}}{\text{hr}}$ $\frac{4924 \text{ MBtu}}{\text{hr}} \times \frac{1 \text{ lb}}{0.009 \text{ MBtu}} = \frac{547,111 \text{ lbs}}{\text{hr}}$ $Cost = \frac{4924 \text{ MBtu}}{\text{hr}} \times \frac{\$1.70}{\text{MBtu}} = \$370.8 \text{ \$/hr or \$16.74/MWh}$

Assume a 100W lamp is left on by mistake for 8 hours, and the electricity is supplied by the previous coal plant. Also, the transmission and distribution losses are 20%. How much irreplaceable coal has this person wasted?

With 20% losses, a 100W load on for 8 hrs requires 1 kWh of energy. With 35% gen. efficiency this requires $\frac{1 \text{ kWh}}{0.35} \times \frac{1 \text{ MWh}}{1000 \text{ kWh}} \times \frac{1 \text{ MBtu}}{0.29 \text{ MWh}} \times \frac{1 \text{ lb}}{0.009 \text{ MBtu}} = 1.09 \text{ lb}$

Example #3: Incremental Cost

For a two generator system assume

 $C_1(P_{G1}) = 1000 + 20P_{G1} + 0.01P_{G1}^2$ \$/hr $C_2(P_{G2}) = 400 + 15P_{G2} + 0.03P_{G2}^2$ \$/hr Then

 $IC_{1}(P_{G1}) = \frac{dC_{1}(P_{G1})}{dP_{G1}} = 20 + 0.02P_{G1} \quad \text{%/MWh}$ $IC_{2}(P_{G2}) = \frac{dC_{2}(P_{G2})}{dP_{G2}} = 15 + 0.06P_{G2} \quad \text{%/MWh}$

Example #3 cont'd.

If $P_{G1} = 250$ MW and $P_{G2} = 150$ MW Then $C_1(250) = 1000 + 20 \times 250 + 0.01 \times 250^2 = \$ 6625/hr$ $C_2(150) = 400 + 15 \times 150 + 0.03 \times 150^2 = \$ 6025/hr$ Then $IC_1(250) = 20 + 0.02 \times 250 = \$ 25/MWh$

 $IC_2(150) = 15 + 0.06 \times 150 = \$ 24/MWh$

Solution using the LaGrange Function

 $L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda \omega(x_1, x_2)$ This problem now has three variables : x_1, x_2, λ $\frac{\partial \mathsf{L}}{\partial x_1} = 0$ At the optimum : $\frac{\partial L}{\partial x_2} = 0$ $\frac{\partial \mathsf{L}}{\partial \lambda} = 0$

LaGrangian Function :

 $L(x_1, x_2, \lambda) = 0.25x_1^2 + x_2^2 + \lambda(5 - x_1 - x_2)$ The solution is found by solving these three equations. $\frac{\partial \mathsf{L}}{\partial x_1} = 0.5x_1 - \lambda = 0$ $\frac{\partial \mathsf{L}}{\partial x_2} = 2x_2 - \lambda = 0$ Solution :: $x_1 = 4, x_2 = 1, \lambda = 2$ $\frac{\partial \mathsf{L}}{\partial \lambda} = 5 - x_1 - x_2 = 0$

Adding Inequality Constraints

Minimize :

f(x)Subject to : $\omega_i(x) \models 0 \quad i = 1, 2, ..., N\omega$

$$g_i(x) \leq 0 \ i = 1, 2, ..., Ng$$

x = vector of real numbers, dimension = N

By adding the less than or equal to constraint "g" we must follow more elaborate procedures than simply finding where the gradient of the Lagrangian is equal to zero.

The Karush-Kuhn Tucker Conditions

$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{N\omega} \lambda_i \,\omega_i(x) + \sum_{i=1}^{Ng} \mu_i g_i(x)$$

The conditions for the optimum point x^{o} , λ^{o} , μ^{o} are

1. $\frac{\partial L}{\partial x_i}(x^o,\lambda^o,\mu^o) = 0$ for i = 1...N All partial derivative s equal zero 2. $\omega_i(x^o) = 0$ for $i = 1...N\omega$ Restatement of constraint condition 3. $g_i(x^o) = 0$ for i = 1...Ng Restatement of constraint condition 4. $\frac{\mu_i^0 g_i(x^0) = 0}{\mu_i^0 \ge 0}$ for i = 1...Ng Complementary slackness condition

The goal of economic dispatch is to determine the generation dispatch that minimizes the instantaneous operating cost, subject to the constraint that total generation = total load + losses.

Minimize $C_T \triangleq \sum_{i=1}^m C_i(P_{Gi})$ Such that $\sum_{i=1}^m P_{Gi} = P_D + P_{Losses}$

Initially, we'll ignore generator limits and the losses

Economic Dispatch Problem: Without Losses

Economic Dispatch LaGrangian

For the economic dispatch we have a minimization constrained with a single equality constraint

$$L(\mathbf{P}_{G},\lambda) = \sum_{i=1}^{m} C_{i}(P_{Gi}) + \lambda(P_{D} - \sum_{i=1}^{m} P_{Gi}) \quad (\text{no losses})$$

The necessary conditions for minimum are

$$\frac{\partial L(\mathbf{P}_{G},\lambda)}{\partial P_{Gi}} = \frac{dC_{i}(P_{Gi})}{dP_{Gi}} - \lambda = 0 \quad \text{(for } i = 1 \text{ to } m\text{)}$$
$$P_{D} - \sum_{i=1}^{m} P_{Gi} = 0$$

Example #5: Economic Dispatch

What is economic dispatch for a two generator system $P_D = P_{G1} + P_{G2} = 500 \text{ MW}$ and $C_1(P_{G1}) = 1000 + 20P_{G1} + 0.01P_{G1}^2$ \$/h $C_2(P_{G2}) = 400 + 15P_{G2} + 0.03P_{G2}^2$ \$/h Using the Lagrange multiplier method we know: $\frac{dC_1(P_{G1})}{dP_{G1}} - \lambda = 20 + 0.02P_{G1} - \lambda = 0$ $\frac{dC_2(P_{G2})}{dP_{G2}} - \lambda = 15 + 0.06P_{G2} - \lambda = 0$ $500 - P_{G1} - P_{G2} = 0$

Example #5 cont'd.

We therefore need to solve three linear equations $20 + 0.02P_{G1} - \lambda = 0$ $15 + 0.06P_{G2} - \lambda = 0$ $500 - P_{G1} - P_{G2} = 0$ $\begin{bmatrix} 0.02 & 0 & -1 \\ 0 & 0.06 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} P_{G1} \\ P_{G2} \\ \lambda \end{bmatrix} = \begin{bmatrix} -20 \\ -15 \\ -500 \end{bmatrix}$ $\begin{bmatrix} P_{G1} \\ P_{G2} \\ \lambda \end{bmatrix} = \begin{bmatrix} 312.5 \text{ MW} \\ 187.5 \text{ MW} \\ 26.2 \text{ }/\text{MWh} \end{bmatrix}$

Example #6: Economic Dispatch of 3 Generators (Load 850 MW)

Unit 1 : Coal - fired steam unit : Max output = 600 MW

Min output = 150 MW

Input-output curve:

$$H_1\left(\frac{\text{MBtu}}{\text{h}}\right) = 510.0 + 7.2P_1 + 0.00142P_1^2$$
Unit2 : Oil – firedsteamunit : Max output = 400 MW Unit1 :
Min output = 100 MW Unit2 :
Input–output curve: Unit3 :

$$H_2\left(\frac{\text{MBtu}}{\text{h}}\right) = 310.0 + 7.85P_2 + 0.00194P_2^2$$
Unit3 : Oil – firedsteamunit : Max output = 200 MW

Min output = 50 MW

Input-output curve:

$$H_3\left(\frac{\text{MBtu}}{\text{h}}\right) = 78.0 + 7.97P_3 + 0.00482P_3^2$$

fuel cost = 1.1 / MBtu fuel cost = 1.0 / MBtu fuel cost = 1.0 / MBtu

Example #6: Solution

$$F_1(P_1) = H_1(P_1) \times 1.1 = 561 + 7.92P_1 + 0.001562P_1^2 \ /h$$

$$F_2(P_2) = H_2(P_2) \times 1.0 = 310 + 7.85P_2 + 0.00194P_2^2 \ /h$$

$$F_3(P_3) = H_3(P_3) \times 1.0 = 78 + 7.97P_3 + 0.00482P_3^2 \ /h$$

Applying the conditions of optimum dispatch

$$\frac{dF_1}{dP_1} = 7.92 + 0.003124 P_1 = \lambda$$
$$\frac{dF_2}{dP_2} = 7.85 + 0.00388 P_2 = \lambda$$

 $\frac{dF_3}{dP_3} = 7.97 + 0.00964 P_3 = \lambda \text{ and } P_1 + P_2 + P_3 = 850 \text{ MW}$ Solving for λ , one obtains $\lambda = 9.148 \$ / *MWh* then solving for P_1, P_2, P_3 $P_1 = 393.2 \,\mathrm{MW}$ $P_2 = 334.6 \,\mathrm{MW}$ $P_3 = 122.2 \,\mathrm{MW}$ Note that all contraints are met; that is, each unit is within its high and low limit and the total output when summed over all three units meet the desired 850 MW total.

Assignment #1

1. If the coal price is reducing to 0.9\$/Mbtu, what is the economic dispatch?

2. If Unit 1 is set at maximum output and Unit 2 to the minimum output, what is the economic dispatch?

The direct solution using Lagrange multipliers only works if the generators are <u>not</u> at their limits.

Lambda-Iteration Solution Method

- Another method is the Lambda-Iteration Method
- The method requires that there to be a unique mapping from a value of lambda (marginal cost) to each generator's MW output = $P_{Gi}(\lambda)$.

Lambda-Iteration Solution Method

- For any choice of lambda (marginal cost), the generators collectively produce a total MW output.
- The method then starts with values of lambda below and above the optimal value (corresponding to too little and too much total output), then iteratively brackets the optimal value.

Lambda-Iteration: Graphical View

Smart Grid – Modeling and Control

- Draw the individual incremental cost in the same scale.
- On the vertical axis and then line them up as shown so that it will give us a value for power output for each generator assuming we are going to make the lambda the same for each generator.
- If the lambda comes below a generator's minimum we hold it at P_{min} , if above the generator's max we hold it at P_{max} .

Lambda-Iteration Method- Flow Chart

Determining Lambda Using Binary Search

Lambda max $\Delta \lambda = (\lambda_{\min} + \lambda_{\max})/2$ $\lambda_i = \lambda_{\min} + \Delta \lambda$ Lambda i+1 if $\sum_{i=1}^{N_{gen}} P_i > P_{load}$ we must reduce lambda so then Lambda i+2 $\Delta \lambda = \lambda / 2$ Lambda I starting value $\lambda_{i+1} = \lambda_i - \Delta \lambda$ Ngen if $\sum P_i < P_{load}$ we must increase lambda so then $\Delta \lambda = \lambda / 2$ $\lambda_{i+1} = \lambda_i + \Delta \lambda$ if $\left|\sum_{i=1}^{Ngen} P_i - P_{load}\right| \le$ tolerance alogirthm is done Lambda min

Lambda-Iteration Algorithm

Pick $\lambda^{L}(\min)$ and $\lambda^{H}(\max)$ such that

 $\sum P_{Gi}(\lambda^L) - P_D < 0 \qquad \sum^m P_{Gi}(\lambda^H) - P_D > 0$ i-1While $|\lambda^{H} - \lambda^{L}| > \varepsilon$ Do $\lambda^{\rm M} = (\lambda^{\rm H} + \lambda^{\rm L})/2$ If $\sum_{i=1}^{M} P_{Gi}(\lambda^M) - P_D > 0$ Then $\lambda^H = \lambda^M$ i=1Else $\lambda^{\rm L} = \lambda^{\rm M}$ End While

Example #7: Lambda-Iteration

Consider a three generator system with $IC_1(P_{G1}) = 15 + 0.02P_{G1} = \lambda$ \$/MWh $IC_2(P_{G2}) = 20 + 0.01P_{G2} = \lambda$ \$/MWh $IC_3(P_{G3}) = 18 + 0.025P_{G3} = \lambda$ \$/MWh and with constraint $P_{G1} + P_{G2} + P_{G3} = 1000$ MW Rewriting generation as a function of λ , $P_{Gi}(\lambda)$, we have

$$P_{G1}(\lambda) = \frac{\lambda - 15}{0.02}$$
$$P_{G3}(\lambda) = \frac{\lambda - 18}{0.025}$$

$$P_{G2}(\lambda) = \frac{\lambda - 20}{0.01}$$

Lambda-Iteration Example, cont'd

Pick
$$\lambda^{L}$$
 so $\sum_{i=1}^{m} P_{Gi}(\lambda^{L}) - 1000 < 0$ and
 $\sum_{i=1}^{m} P_{Gi}(\lambda^{H}) - 1000 > 0$
Try $\lambda^{L} = 20$ then $\sum_{i=1}^{m} P_{Gi}(20) - 1000 =$
 $\frac{\lambda - 15}{0.02} + \frac{\lambda - 20}{0.01} + \frac{\lambda - 18}{0.025} - 1000 = -670$ MW
Try $\lambda^{H} = 30$ then $\sum_{i=1}^{m} P_{Gi}(30) - 1000 = 1230$ MW

Pick convergence tolerance $\varepsilon = 0.05$ \$/MWh Then iterate since $\left|\lambda^{H} - \lambda^{L}\right| > 0.05$ $\lambda^M = (\lambda^H + \lambda^L)/2 = 25$ Then since $\sum_{i=1}^{M} P_{Gi}(25) - 1000 = 280$ we set $\lambda^{H} = 25$ Since |25 - 20| > 0.05 $\lambda^{M} = (25 + 20)/2 = 22.5$ $\sum P_{Gi}(22.5) - 1000 = -195$ we set $\lambda^L = 22.5$ i=1

Lambda-Iteration Example, cont'd

Continue iterating until $|\lambda^{\rm H} - \lambda^{\rm L}| < 0.05$ The solution value of λ , λ^* , is 23.53 \$/MWh Once λ^* is known we can calculate the P_{Gi} $P_{G1}(23.5) = \frac{23.53 - 15}{0.02} = 426 \text{ MW}$ $P_{G2}(23.5) = \frac{23.53 - 20}{0.01} = 353 \text{ MW}$ $P_{G3}(23.5) = \frac{23.53 - 18}{0.025} = 221 \text{ MW}$

Thirty Bus ED Example

Case is economically dispatched (without considering the incremental impact of the system losses).

Generator MW Limits

- Generators have limits on the minimum and maximum amount of power they can produce.
- Typically, the minimum limit is not zero.
- Because of varying system economics usually many generators in a system are operated at their maximum MW limits:
- Base load generators are at their maximum limits except during the off-peak.

Lambda-Iteration with Gen Limits

In the lambda-iteration method the limits are taken into account when calculating $P_{Gi}(\lambda)$: if calculated production for $P_{Gi} > P_{Gi,max}$ then set $P_{Gi}(\lambda) = P_{Gi,\max}$ if calculated production for $P_{Gi} < P_{Gi,min}$ then set $P_{Gi}(\lambda) = P_{Gi,\min}$

Example #8: Lambda-Iteration with Gen Limit

In the previous three generator example assume the same cost characteristics but also with limits $0 \le P_{G1} \le 300 \text{ MW}$ $100 \le P_{G2} \le 500 \text{ MW}$ $200 \le P_{G3} \le 600 \text{ MW}$ With limits we get: $\sum P_{Gi}(20) - 1000 = P_{G1}(20) + P_{G2}(20) + P_{G3}(20) - 1000$ i=1= 250 + 100 + 200 - 1000= -450 MW (compared to -670MW) \boldsymbol{m}

 $\sum_{i=1}^{m} P_{Gi}(30) - 1000 = 300 + 500 + 480 - 1000 = 280 \text{ MW}_{50}$

Example #8: Lambda-Iteration with Gen Limit

Again we continue iterating until the convergence condition is satisfied.

With limits the final solution of λ , is 24.43 \$/MWh

(compared to 23.53 \$/MWh without limits).

Maximum limits will always cause λ to either increase or remain the same.

Final solution is:

 $P_{G1}(24.43) = 300 \text{ MW} (at maximum limit)$ $P_{G2}(24.43) = 443 \text{ MW}$ $P_{G3}(24.43) = 257 \text{ MW}$

Smart Grid – Modeling and Control

Economic Dispatch: Piece-wise Linear Cost Functions

52

Economic Dispatch: Linear Programming

LP formulation

$$F_{i}(Pgen_{i}) = F_{i}(Pgen_{i}^{\min}) + s_{i1}Pgen_{i1} + s_{i2}Pgen_{i2} + s_{i3}Pgen_{i3}$$

Where :
$$0 \le Pgen_{ik} \le Pgen_{ik}$$
 for k = 1, 2, 3

and finally :

$$Pgen_i = Pgen_i^{\min} + Pgen_{i1} + Pgen_{i2} + Pgen_{i3}$$

and

$$s_{ik} = \frac{F_i(Pgen_{ik+1}) - F_i(Pgen_{ik})}{(Pgen_{ik+1} - Pgen_{ik})}$$
 where k = the index for segments

Minimize

$$\begin{split} \sum_{i=1}^{Ngen} (F_i(Pgen_i^{\min}) + s_{i1}Pgen_{i1} + s_{i2}Pgen_{i2} + s_{i3}Pgen_{i3}) \\ 0 \leq Pgen_{ik} \leq Pgen_{ik}^{\max} \text{ for } k = 1, 2, 3... \text{ for all generators } i = 1... \text{Ngen} \\ \text{and finally :} \end{split}$$

 $P_i = P_i^{\min} + Pgen_{i1} + Pgen_{i2} + Pgen_{i3}$ for all generators i = 1...Ngen

Subject to :

 $\sum_{i=1}^{Ngen} P_i = P_{load}$

Example #5: Solution (Using LP)

Number of	Generator	Generator	Generator	Total
Segments	1	2	3	cost
	MW	MW	MW	(\$/hr)
1	400	400	50	8227.870
2	375	350	125	8195.369
3	450	300	100	8204.105
5	400	340	110	8195.206
10	385	340	125	8194.554
50	393	335	122	8194.357
Standard solution with Lambda Search	393.2	334.6	122.2	8194.356

Find the optimum dispatch for a total demand of 310 MW.

	Costs (\$/hour)			
Power Levels (MW)				
$P_1 = P_2 = P_3$	F_1	F_2	F_3	
0	00	00	00	
50	810	750	806	
75	1355	1155	1108.5	
100	1460	1360	1411	
125	1772.5	1655	1704.5	
150	2085	1950	1998	
175	2427.5	∞	2358	
200	2760	∞	∞	
225	00	∞	∞	

Plots for Generator - 1

Cost vs. P(MW)

Incremental cost vs. P(MW)

Plots for Generator - 2

Cost vs. P(MW)

Incremental cost vs. P(MW)

Plots for Generator - 3

Cost vs. P(MW)

Incremental cost vs. P(MW)

DP Method: Dispatch Solution (Generators 1 and 2)

 $f_2 = F_1(D - P_2) + F_2(P_2)$

Where D is the "Demand" or the total power to be supplied

	$P_{2} = 0$	50 75	100	125	150	(MW)		
	$F_2(P_2) =$	<i>=</i> ∞ 750115	5 1360) 1655	5 1950	(\$/h)		
D	$F_1(D)$						f_2	P_2^*
(MW)(\$/h)						(\$/h)) (MW)
0	8	00 00	∞	∞	∞	×	00	
50	810	oo oo	∞	×0	×	8	8	
75	1355	00 00	∞	∞	8	8	00	
100	1460	∞ <u>1560</u>	00	00	00	œ	1560	50
125	1772.5	∞ 2105	1965	×	×	8	1965	75
150	2085	∞ 2210	2510	2170	∞	00	2170	100
175	2427.5	∞ 3177.5	2615	2715	2465	00	2465	125
200	2760	∞ 2834	2927.	52820	3010	2760	2760	150
225	∞	∞ 3177.5	3240	3125	3115	3305	3115	125
250	∞	∞ 3510	3582.	53445	3427	3410	3410	150
275	ŝ	oo oo	3915	3787.	53740	3722.5	3722.	5150
300	∞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×	4120	4082.5	5 <u>4025</u>	4035	150
325	8	oo oo	8	00	4415	4377.5	5 4377.	5150
350	∞	s s	×	o o	o o	<u>4710</u>	4710	150

Last of all dispatch generator 3 with the other two $f_3 = f_2(D - P_3) + F_3(P_3)$ $P_3 = 0$ 50 75 100 125 150 175 (MW) $F_3(P_3) = \infty$ 806 1108.5 1411 1704.5 1998 2358 (\$/h) D f_2

(MW) (\$/h) $f_3 P_3^*$

D	Cost	P ₃ *	P ₂ *	P ₁ *
300	4168	150	100	50
325	4463	150	125	50

Between 300 MW and 325 MW the marginal unit is Generator 2 so the solution to this dispatch is:

 $P_1 = 50, P_2 = 110, P_3 = 150$ for a total cost of 4286 \$/h

- The losses on the transmission system are a function of the generation dispatch.
- In general, using generators closer to the load results in lower losses.
- This impact on losses should be included when doing the economic dispatch.
- Losses can be included by slightly rewriting the Lagrangian:

$$L(\mathbf{P}_{G},\lambda) = \sum_{i=1}^{m} C_{i}(P_{Gi}) + \lambda \left(P_{D} + P_{L}(P_{G}) - \sum_{i=1}^{m} P_{Gi}\right)$$

Inclusion of Transmission Losses

Smart Grid – Modeling and Control

The inclusion of losses then impacts the necessary conditions for an optimal economic dispatch:

$$\mathbf{L}(\mathbf{P}_{\mathbf{G}},\lambda) = \sum_{i=1}^{m} C_i(P_{Gi}) + \lambda \left(P_D + P_L(P_G) - \sum_{i=1}^{m} P_{Gi} \right)$$

The necessary conditions for a minimum are now:

$$\frac{\partial \mathcal{L}(\mathbf{P}_{G},\lambda)}{\partial P_{Gi}} = \frac{dC_{i}(P_{Gi})}{dP_{Gi}} - \lambda \left(1 - \frac{\partial P_{L}(P_{G})}{\partial P_{Gi}}\right) = 0$$

 $P_D + P_L(P_G) - \sum_{i=1}^m P_{Gi} = 0$

Impact of Transmission Losses

Solving for λ , we get: $\frac{dC_i(P_{Gi})}{dP_{Gi}} - \lambda \left(1 - \frac{\partial P_L(P_G)}{\partial P_{Gi}}\right) = 0$ $\lambda = \frac{1}{\left(1 - \frac{\partial P_L(P_G)}{\partial P_{Gi}}\right)} \frac{dC_i(P_{Gi})}{dP_{Gi}}$ Define the penalty factor L_i for the i^{th} generator (don't confuse with Lagrangian L!!!)

$$L_{i} = \frac{1}{\left(1 - \frac{\partial P_{L}(P_{G})}{\partial P_{Gi}}\right)}$$

The penalty factor at the slack bus is always unity!

Impact of Transmission Losses

The condition for optimal dispatch with losses is then $L_1 IC_1(P_{G1}) = L_2 IC_2(P_{G2}) = L_m IC_m(P_{Gm}) = \lambda$ $L_{i} = \frac{1}{\left(1 - \frac{\partial P_{L}(P_{G})}{\partial P_{Gi}}\right)}$. So, if increasing P_{Gi} increases the losses then $\frac{\partial P_L(P_G)}{\partial P_{Gi}} > 0 \Longrightarrow L_i > 1.0$ This makes generator *i* appear to be more expensive (i.e., it is penalized). Likewise $L_i < 1.0$ makes a generator appear less expensive.

Calculation of Penalty Factors

Unfortunately, the analytic calculation of L_i is somewhat involved. The problem is a small change in the generation at P_{Gi} impacts the flows and hence the losses throughout the entire system. However, using a power flow you can approximate this function by making a small change to P_{G_i} and then seeing how the losses change:

$$\frac{\partial P_L(P_G)}{\partial P_{Gi}} \approx \frac{\Delta P_L(P_G)}{\Delta P_{Gi}} \qquad \qquad L_i \approx \frac{1}{1 - \frac{\Delta P_L(P_G)}{\Delta P_G}}$$

Smart Grid – Modeling and Control

Example #9: Two Bus Penalty Factor

Now consider losses, because of the penalty factors the generator's incremental costs are no longer identical.

Area Supply Curve

Figure 1.) The area supply curve shows the cost to produce the next MW of electricity, assuming area is economically dispatched.

- Economic dispatch determines the best way to minimize the current generator operating costs.
- The lambda-iteration method is a good approach for solving the economic dispatch problem:
 - Generator limits are easily handled
 - > Penalty factors are used to consider the impact of losses
- Economic dispatch is not concerned with determining which units to turn on/off (this is the unit commitment problem).
- Basic form of economic dispatch ignores the transmission system limitations.

Locational Marginal Price (LMP)

Generator 1	MW	Marginal Cost (\$/MWh)	Generator 2	Bid MW	Marginal Cost (\$/MWh)
Segment A	400	5.00	Segment C	200	6.50
Segment B	800	7.50	Segment D	400	8.00

Generally, LMP determines an energy **price** for each electrical node on the grid as well as the transmission congestion **price** (if any) to serve that node. For the above reason, LMP is often referred to as "**nodal pricing**".

Generator Linear Segment Cost Functions

Base dispatch with no line flow limit

Generation dispatch:

Segment	MW	Price
А	400	5.00
С	200	6.50
В	300	7.50

Note: LMP at both buses is 7.5

Dispatch with 100 MW line flow limit

Generation dispatch:

Segment	MW	Price
А	400	5.00
С	200	6.50
В	200	7.50
D	100	8.00

Note: LMP at bus 1 is 7.5; LMP at bus 2 is 8.0

Economic Dispatch & Unit Commitment

The following is the question of Economic dispatch. With a given set of units running, how of the load much should be generated at each to cover the load and losses?

Deciding Which Units to "Commit"

How does one define "economic operation?" Profit maximizing? Cost minimizing? This all depends on the market in which you are.

- We have a few generators (units) and some forecasted load.
- Besides the cost of running the units, we have additional costs and constraints:
 - Start-up cost
 - Shut-down cost
 - Spinning reserve
 - Ramp-up time... and more

with fuel

Assignment 2

Unit1 :	Min = 150 MW
	Max = 600 MW
	$H_1 = 510.0 + 7.2P_1 + 0.00142P_1^2$ MBtu/h
Unit2:	Min = 100 MW
	Max = 400 MW
	$H_2 = 310.0 + 7.85P_2 + 0.00194P_2^2$ MBtu/h
Unit3 :	Min = 50 MW
	Max = 200 MW
	$H_3 = 78.0 + 7.97P_3 + 0.00482P_3^2$ MBtu/h
costs:	
	Fuel $cost_1 = 1.1 R/MBtu$
	Fuel $cost_2 = 1.0R/MBtu$
	Fuel $cost_3 = 1.2R/MBtu$

What combination of on line units should be used to supply 550 MW?

Unit Combinations to supply 550 MW

Unit 1	Unit 2	Unit 3	Max Generation	Min Generation	P ₁	P ₂	P ₃	F1	F ₂	F ₃	Total Generation Cost
											$F_{1} + F_{2} + F_{3}$
Off	Off	Off	0	0		-	Infeasible	-	-		
Off	Off	On	200	50	-	-	-	-	Infeasible	-	-
Off	On	Off	400	100	-	-	-	-	Infeasible	-	-
Off	On	On	600	150	0	400	150	0	3760	1658	5418
On	Off	Off	600	150	550	0	0	5389	0	0	5389
On	Off	On	800	200	500	0	50	4911	0	586	5497
On	On	Off	1000	250	295	255	0	3030	2440	0	5471
On	On	On	1200	300	267	233	50	2787	2244	586	5617

Simple Peak and Valley Pattern

	Optimum Combination							
Load	Unit 1	Unit 2	Unit 3					
1200	On	On	On					
1150	On	On	On					
1100	On	On	On					
1050	On	On	On					
1000	On	On	Off					
950	On	On	Off					
900	On	On	Off					
850	On	On	Off					
800	On	On	Off					
750	On	On	Off					
700	On	On	Off					
650	On	On	Off					
600	On	Off	Off					
550	On	Off	Off					
500	On	Off	Off					

When load is above 1000 MW, run all three units; between 1000 MW and 600 MW, run units 1 and 2; below 600 MW, run only unit 1.

Unit Commitment Solution Methods

- 1. Priority-list Schemes
- 2. Dynamic Programming (DP)
- 3. Lagrange Relaxation (LR)
- 4. Integer Programming (IP)

Priority

Priority List Solution

	Full Load									
	Unit Average Production Cost (K /MWh									
	1		9.79							
	2		9.48							
	3		11.188							
ordor	Unit	K/MWh	Min MW	Max MW						
oruer	2	9.48	100	400						
	1	9.79	150	600						
	3	11.188	50	200						
]	Min MW from	Max MW						
	Combi	nation	Combination	Combination						
	2+1+	3	300	1200						
	2 + 1		250	1000						
	2		100	400						

STATES

Dynamic Programming Paths and Unit Commitment

Each state represents a combination of generating units supplying the load specified for that hour. Each state has a production cost PCOST.

FCOST is the accumulated cost to get to a state from the start through optimum path leading to that state.

TIME PERIODS

FCOST (end of path) = PCOST (start of path) + SCOST (along path) + FCOST (start of path)

Dynamic Programming Solution

State Number	Unit 1	Unit 2	Unit 3	Max Capacity				
8	1	1	1	1200	Q	\bigcirc	\bigcirc	\bigcirc
7	1	1	0	1000	\circ	$\overline{\mathbf{A}}$	\bigcirc	\bigcirc
6	1	0	1	800	\bigcirc	\circ	\bigcirc	\bigcirc
5	1	0	0	600	\bigcirc	\bigcirc	YO	0
4	0	1	1	600	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	1	0	400	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	0	1	200	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
				Time Interv	al 1	2	3	4
				Load	1000	800	500	600

Figure 2.) Schedule shown is: 111 interval 1, 110 interval 2, 100 interval 3, 101 interval 4

Path Multiplication

State Number	Unit 1	Unit 2	Unit 3	Max Capacity				
8	1	1	1	1200	Q.	- And	\bigcirc	\bigcirc
7	1	1	0	1000	G	ЩÐ	\bigcirc	\bigcirc
6	1	0	1	800			\bigcirc	\bigcirc
5	1	0	0	600			\bigcirc	\bigcirc
4	0	1	1	600			\bigcirc	\bigcirc
3	0	1	0	400			\bigcirc	\bigcirc
2	0	0	1	200			\bigcirc	\bigcirc
1	0	0	0	0)_	B	\bigcirc	\bigcirc
				Time Interval	1	2	3	
				bool	1000	800	500	

All possible paths between states in period 1 and period 2

Dynamic Programming Example

Unit	Max (MW)	Min (MW)	Incremental Heat Rate	No-Load Cost	Full-Load Ave. cost (R/mWh)	Minimum Times (h)		
			(Btu/kWh)	(R/h)		Up	Down	
1	80	25	10440	213.00	23.54	4	2	
2	250	60	900	585.62	20.34	5	3	
3	300	75	8730	684.74	19.74	5	4	
4	60	20	11900	252.00	28.00	1	1	

Unit	Hours Off-line(-) or On-line(+)	Hot (R)	Cold (R)	Cold Start (h)
1	-5	150	350	4
2	8	170	400	5
3	8	500	1100	5
4	-6	0	0.02	0

Hour	Load (MW)
1	450
2	530
3	600
4	540
5	400
6	280
7	290
8	500

Simplified Generator Cost Function

State	Unit Combination ^a				ion ^a	Maximum Net Capacity for	
						Combination	
15		1	1	1	1	690	
14		1	1	1	0	630	
13		0	1	1	1	610	
12		0	1	1	0	550	
11		1	0	1	1	440	
10		1	1	0	1	390	$a_{1-\alpha n} 0 - off$
9		1	0	1	0	380	<i>u</i> , 1–0110–011
8		0	0	1	1	360	
7		1	1	0	0	330	
6		0	1	0	1	310	
5		0	0	1	0	300	
4		0	1	0	0	250	
3		1	0	0	1	140	
2		1	0	0	0	80	
1		0	0	0	1	60	
0		0	0	0	0	0	
	Unit	1	2	3	4		

93

Case 1: Strict Priority Order

State No.	Unit Status	Capacity (MW)
5	0010	300
12	0110	550
14	1110	630
15	1111	690

Case 2: Complete Enumeration

Sample calculations for Case 1 $F_{\text{cost}}(J,K) = \min_{\{L\}} \left[P_{\text{cost}}(J,K) + S_{\text{cost}}(J-1,L;J,K) + F_{\text{cost}}(J-1,L) \right]$ Allowable states are $\{\} = \{0010, 0110, 1110, 1111\} = \{5, 12, 14, 15\}$ At hour $0\{L\} = \{12\}$, initial condition. J = 1:1st hour $\frac{K}{15}F_{\cos t}(1,15) = P_{\cos t}(1,15) + S_{\cos t}(0,12:1,15) = 9861 + 350 + 10211$ $14F_{cost}(1,14) = 9493 + 350 = 9843$ $12F_{cost}(1,12) = 9208 + 0 = 9208$ J = 1:1st hour Feasible states are $\{12, 14, 15\} = \{K\}$, so X = 3. Suppose two strategies are saved at each stage, so $N = 2, \{L\} = \{12, 14\},$ $\frac{\kappa}{15} F_{\cos t}(2,15) = \min_{\{12,14\}} \left[P_{\cos t}(2,15) + S_{\cos t}(1,L\,2,15) + F_{\cos t}(1,L) \right]$ $= 11301 + \min \left[\frac{(350 + 9208)}{(0 + 9843)} \right] = 20859$

Results

Case 3: Using Minimum Shut-Down Rules

Smart Grid – Modeling and Control

Security Constrained ED or Optimal Power Flow

- Transmission constraints often limit ability to use lower cost power.
- Such limits require deviations from what would otherwise be minimum cost dispatch in order to maintain system "security."

Security Constrained ED or Optimal Power Flow

- The goal of a security constrained ED or optimal power flow (OPF) is to determine the "best" way to instantaneously operate a power system, considering transmission limits.
- Usually "best" = minimizing operating cost, while keeping flows on transmission below limits.
- In three bus case the generation at bus 3 must be limited to avoid overloading the line from bus 3 to bus 2.

Need to dispatch to keep line from bus 3 to bus 2 from overloading.

Smart Grid – Modeling and Control

- The goal of an optimal power flow (OPF) is to determine the "best" way to instantaneously operate a power system.
- Usually "best" = minimizing operating cost.
- OPF considers the impact of the transmission system
- OPF is used as basis for real-time pricing in major US electricity markets such as Midcontinent Independent System Operator (MISO) and PJM Energy Market.

Below are some graphs associated with this two bus system. The graph on left shows the marginal cost for each of the generators. The graph on the right shows the system supply curve, assuming the system is optimally dispatched.

Real Power Markets

- Different operating regions impose constraints
 Total demand in region must equal total supply
- Transmission system imposes constraints on the market.
- Marginal costs become localized
- Requires solution by an optimal power flow

- OPF functionally combines the power flow with the economic dispatch.
- Minimizes cost function, such as operating cost, taking into account realistic equality and inequality constraints
- Equality constraints
 - Bus real and reactive power balance
 - Generator voltage set points
 - Area MW interchange

- Inequality constraints:
 - Transmission line/transformer/interface flow limits
 - Generator MW limits
 - Generator reactive power capability curves
 - Bus voltage magnitudes (not yet implemented in Simulator OPF)
- Available Controls:
 - Generator MW outputs
 - Transformer taps and phase angles

- Non-linear approach using Newton's method
 - Handles marginal losses well, but is relatively slow and has problems determining binding constraints
- Linear Programming
 - Fast and efficient in determining binding constraints, but can have difficulty with marginal losses.
 - Used in Power World Simulator

LP OPF Solution Method

- Solution iterates between
 - Solving a full ac power flow solution
 - Enforces real/reactive power balance at each bus
 - Enforces generator reactive limits
 - System controls are assumed fixed
 - Takes into account non-linearities
 - Solving a primal LP
 - Changes system controls to enforce linearized constraints while minimizing cost

Two Bus with Unconstrained Line

With the line loaded to its limit, additional load at Bus A must be supplied locally, causing the marginal costs to diverge.

Mathematical Optimization (Mathematical Optimization Problem) minimize $f_{0}(x)$ subject to $f_i(x) \leq b_i, i = 1, \dots, m$ • $x = (x_1, \dots, x_n)$: optimization variables • $f_o = R^n \rightarrow R$: Objective Function • $f_4 = R^n \rightarrow R$: i = 1, ..., m : Constraint Functions *Optimal* Solution x^*has smallest value of f_0 among all vectors that staisfy the constraints

Convex Optimization

Minimize $f_0(x)$ subject to $f_i(x) \le b_i, i = 1, ..., m$ *Objective and Constraint Functions are convex* $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$ if $\alpha + \beta = 1, \alpha \ge 0, \beta \ge 0$ includes least squares problems and linear programs as special caseses

Analytical Solution of Least-squares

A least – squares problem is an optimization problem with no constraints (ie., m = 0) and an objective which is a sum of squares of terms of the form $a_i^T x - b_i$: Here $A \in \mathbb{R}^{k \times n}$ (with $K \ge n$), a_i^T are the rows of A, and the vector $x \in \mathbb{R}^n$ is the optimization var*iable*

Linear Programming

Another Important Class of optimization problems is linear programming in which the objective and all constraints are linear.

minimize $\mathbf{C}^{\mathrm{T}}\mathbf{x}$

subject to $ai^T x \le bi$, i = 1, ..., m

Here the vectors $c_{a_1}, \dots, a_m \in R^n$ and scalars $b_1, b_2, \dots, b_m \in R$ are problem parameters that define objective function and constraint.

Smart Grid – Modeling and Control

Solving Optimization Problems

Solving Optimization Problems

UNIVERSITY of HAWAI'I* Mānoa

117

Solving Optimization Problems

Also a mature technology!

Solving Optimization Problems

Almost a mature technology!

UNIVERSITY of HAWAI'I* Mānoa

Far from a technology! (something to avoid)

UNIVERSITY of HAWAI'I' MĀNOA

Example #10: Convex Optimization in Power Flow

- On the figure, generator G1 and G2 connects to Bus1 and Bus2 respectively.
- The two buses are connected via a power line.
- At each bus, there is certain amount of load that is already known.
- We want to determine the power production in G1 and G2; so, that we could achieve the lowest cost for the overall generation cost.

UNIVERSIT

of HAWAI'I Mānoa

Convex Optimization in Power Flow

At Bus i, define power flow

into the line: $P_i = P_{Gi} - P_{Di}$, i=1,2;

Our goal is , minimize $f_1(P_1)+f_2(P_2)$, where $f_i(p_i)$ stands

for the different cost functions for each generator

We assume that the voltage magnitude at both bus 1 and bus 2 are same and constant, i.e. |V1|=|V2|=1. Also, we will ignore reactive power for now.

Minimize :

 $f_1(P1) + f_2(P2)$, with variable θ Subject to

 $P1 = g + b\sin\theta - g\cos\theta$ $P2 = g - b\sin\theta - g\cos\theta$

By observing the constraints, the linear transformation of the equations leads to an ellipse. As shown in Figure. We note the boundary of this ellipse as S.

Figure.2

- The next step is to perform optimization.
- We, however, cannot directly perform convex optimization to it, because the boundary of an ellipse is non-convex.
- Here we have to introduce a concept named convex hull, which means the smallest convex set that contains the original set.
- By obtaining the convex hull of S, we get a set that contains the both the boundary and the area within this ellipse as shown on the next slide.

Minimize : $f_1(P1) + f_2(P2)$ Subject to : $(P1, P2) \in S$ OPF problem 2 : Minimize : $f_1(P1) + f_2(P2)$ Subject to : $(P1, P2) \in S_c$

- $S_{\rm c}$ is convex and can be optimized via convex optimization.
- The idea of solving OPF problem 2 instead of OPF problem 1 is called "convexification".
- To make this analysis more practical, the upper bound of power production of each generator has to be taken into consideration.
- Therefore, we add one more constrain to achieve it.

Figure.4

We want to make sure the power need of the loads are satisfied. Hence,

 $P_{G1} + P_{G2} \ge P_{D1} + P_{D2}$ $P1 + P2 \ge 0$

By combining the two feasible sets in Figure 2. and Figure 4.

Figure.5

Convex Optimization Problem Formulation for Distribution Networks

Convex Optimization Problem Formulation for General Distribution Networks

Minimize :

$$\sum_{i,j=1}^{n} [f_i(P_i) + f_j(P_j)]$$

Subject to
$$V_i^{\min} \le |V_i| \le V_i^{\max}, i = 1, 2, ... n$$

$$P_{ij} \le P_{ij}^{\max}, i, j = 1, 2, 3... n$$

$$P_i \le P_i^{\max}, i = 1, 2, ... n$$

$$P_i = \operatorname{Re}[V_i(V_i - V_j) * y_{ij}^*]$$

$$P_j = \operatorname{Re}[V_j(V_j - V_i) * y_{ij}^*]$$

- 1. <u>http://web.stanford.edu/class/ee3920/links.html</u>
- http://www.ee.columbia.edu/~lavaei/Students_Proj ects_Power.html

Recommended Software:

http://www.ee.columbia.edu/~lavaei/Software.html

Assignment

1. By using any of the Convex Optimization toolbox/software obtain the OPF solution for IEEE 14 bus system.

2. Obtain the OPF solution for the IEEE 14 bus system with the help of any standard software say PSAT of Waterloo.

3. Compare the solution and comment on the results.

4. What are the benefits and drawbacks of the convex optimization when compared to the conventional optimization methods for solving algorithms such as OPF.

Any other data if required can be assumed.

REDLAB

Renewable Energy Design Laboratory http://manoa.hawaii.edu/me/redlab 2540 Dole St. – Holmes Hall 201 Honolulu HI, Hawaii, USA

Smart Grid – Modeling and Control