15-381: Artificial Intelligence

Introduction and Overview

Course data

- All up-to-date info is on the course web page:
 - http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s07/www/
- Instructors:
 - Martial Hebert
 - Mike Lewicki
- TAs:
 - Rebecca Hutchinson
 - Gil Jones
 - Ellie Lin
 - Einat Minkov
 - Arthur Tu
- See web page for contact info, office hours, etc.

Intelligence

What is "intelligence"?

Can we emulate intelligent behavior in machines?

How far can we take it?

Brains vs computers

Brains (adult cortex)

Computers (Intel Core 2)

• surface area: 2500 cm²

• surface area: 90 mm²

squishy

crystalline

neurons: 20 billion

• transistors: 291 million

synapses: 240 trillion

neuron size: 15 um

synapse size: I um

• transistor size: 65 nm

synaptic OPS: 30 trillion

• FLOPS: 25 billion

Deep Blue: 512 processors, I TFLOP

Intelligent systems

Three key steps of a knowledge-based agent (Craik, 1943):

- I. the stimulus must be translated into an internal representation
- 2. the representation is manipulated by cognitive processes to derive new internal representations
- 3. these in turn are translated into action

Representation

All Al problems require some form of representation.

- chess board
- maze
- text
- object
- room
- sound
- visual scene

A major part Al is representing the problem space so as to allow efficient search for the best solution(s).

Sometimes the representation is the output. E.g., discovering "patterns".

Output

The output action can also be complex.

From a simple chess move to a motor sequence to grasp an object.

Russel and Norvig question 1.8

- Is Al's traditional focus on higher-level cognitive abilities misplaced?
 - Some authors have claimed that perception and motor skills are the most important part of intelligence.
 - "higher level" capacities are necessarily parasitic simple add-ons
 - Most of evolution and the brain have been devoted to perception and motor skills
 - All has found tasks such as game playing and logical inference easier than perceiving and acting in the real world.

Thinking

What do you do once you have a representation? This requires a goal.

- chess board
- maze
- text
- object
- room
- sound
- visual scene

- find best move
- shortest path
- semantic parsing
- recognition
- object localization
- speech recognition
- path navigation

Rational behavior:

choose actions that
maximize goal
achievement given
available information

The Turing Test

Strategy

What if your world includes another agent?

- strategic game play
- auctions
- modeling other agents
- uncertainty: chance and future actions

Rational behavior:

How do we choose moves/actions to win?

Or guarantee fairest outcome?

Team Play

Reasoning

Reasoning can be thought of as constructing an accurate world model.

- facts
- observations
- "wet ground"

- logical consequences
- inferences
- "it rained" or "sprinkler"?

Rational inference:

What can be logically inferred give available information?

Reasoning with uncertain information

Most facts are not concrete and are not known with certainty.

- facts
- observations
- "fever"
- "aches"
- platelet count=N

- inferences
- What disease?
- What causes?

Probabilistic inference:

How do we give the proper weight to each

observation?

What is ideal?

Learning

What if your world is changing? How do we maintain an accurate model?

- chess board
- maze
- text
- object
- room
- sound
- visual scene

Learning:

adapt internal representation so that it is as accurate as possible.

Can also adapt our models of other agents.

Where can this go?

- Robotics
- Internet search
- Scheduling
- Planing
- Logistics
- HCI
- Games
- Auction design
- Diagnosis
- General reasoning

In class, we will focus on the AI fundamentals.

Brains vs computers revisited

Brains (adult cortex)

Computers (Intel Core 2)

• surface area: 2500 cm²

squishy

• neurons: 20 billion

synapses: 240 trillion

• neuron size: 15 um

synapse size: I um

synaptic OPS: 30 trillion

power usage: I2W

• operations per joule: 2.5 trillion

• surface area: 90 mm²

crystalline

• transistors: 291 million

• transistor size: 65 nm

FLOPS: 25 billion

power usage: 60 W

• operations per joule: 0.4 billion

15-381 Artificial Intelligence

Martial Hebert Mike Lewicki

Admin.

- Instructor:
 - Martial Hebert, NSH 4101, x8-2585
- Textbook:
 - Recommended (optional) textbook: <u>Russell and Norvig's "Artificial Intelligence: A Modern Approach"</u> (2nd edition)
 - Recommended (optional) second textbook: <u>Pattern Classification (2nd Edition)</u>, Duda, Hart and Stork
- Other resources:
 - http://aima.cs.berkeley.edu/
 - http://www.autonlab.org/tutorials/
- TAs:
 - Rebecca Hutchinson (rah@cs.cmu.edu), WeH 3708, x8-8184
 - Gil Jones (egjones+@cs.cmu.edu), NSH 2201, x8-7413
 - Ellie Lin (elliel+15381@cs.cmu.edu), EDSH 223, x8-4858
 - Einat Minkov (einat@cs.cmu.edu), NSH 3612, x8-6591
- Grading:
 - Midterm, Final, 6 homeworks

Admin.

Class page:

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s07/www/

• Review sessions (look for announcements):

Tuesday 6:00pm-8:00pm in WeH 4623

Search

- For a single agent,
- Find an "optimal" sequence of states between current state and goal state

"Games"

- Multiple agents maybe competing or cooperating to achieve a task
- Capabilities for finding strategies, equilibrium between agents, auctioning, bargaining, negotiating.
- Business
- E-commerce
- Robotics
- · Investment management
-

Planning and Reasoning

- Infer statements from a knowledge base
- · Assess consistency of a knowledge base

KB =

Person ⇒ Mortal

Socrates ⇒ Person

Socrates ∧ Mortal ⇒ False

True ⇒ Socrates

If it's a person, it's a mortal

If it's Socrates, it's a person

It can't be both Socrates and Mortal

It is Socrates

Reasoning with Uncertainty

 Reason (infer, make decisions, etc.) based on uncertain models, observations, knowledge

Training data: good/bad mpg for example cars

· Automatically generate strategies to classify or predict from training examples

images of object

Classification: Is the object present in the input image, yes/no?

Applications

- Don't be fooled by the (sometimes) toyish examples used in the class. The Al techniques are used in a huge array of applications
 - Robotics
 - Scheduling
 - Diagnosis
 - HCI
 - Games
 - Data mining
 - Logistics
 -

	Date	Topic	Chapte	r Notes
	Jan. 16	Intro		
		SEARCH		
	Jan. 18	Search		3
	Jan. 23	Search		3 HW1 out
	Jan. 25	Search: Hill Climbing, Stochastic Search, Simulated Annealing	3,4	
	Jan. 30	Search: Hill Climbing, Stochastic Search, Simulated Annealing	3,4	
	Feb. 1	Constraint Satisfaction Problems		5
	Feb. 6	Constraint Satisfaction Problems		5 HW1 Due, HW2 out
	Feb. 8	Robot Motion Planning		25
		Game Theory		
	Feb. 13	Algorithms for Playing and Solving Games		6 HW2 Due, HW3 out
	Feb. 15	Games with Hidden Information		6
	Feb. 20	Non-Zero-Sum Games		6
	Feb. 22	Game Theory, continued		6
-	Feb. 27	Auctions and Negotiations		6
Tentative		SYMBOLIC REASONING		
	Mar. 1	Automated Theorem Proving with Propositional Logic	8,9	
schedule;	Mar. 6	Reasoning, Continued		11
	Mar. 8	MIDTERM		
subject to	Mar. 13	SPRING BREAK		
=	Mar. 15	SPRING BREAK		
frequent		PROBABILISTIC REASONING		
•	Mar. 20	Probability and Uncertainty		
changes	Mar. 22	Probability and Uncertainty		
Chariges	Mar. 27	Bayes Nets		14
	Mar. 29	Bayes Nets		14
	Apr. 3	Markov Decision Processes	16,17	HW4 Due, HW5 out
	Apr. 5	Markov Decision Processes	16,17	
		LEARNING		
	Apr. 10	Intro + Decision Trees		18
	Apr. 12	Decision Trees, Cont.		18
	Apr. 17	Probabilistic Learning and Naive Bayes		20 HW5 Due, HW6 out
	Apr. 19	Neural Networks		20
	Apr. 24	Cross-Validation		14
	Apr. 26	Nearest Neighbors		14
	May. 1	Reinforcement Learning		21 HW6 Due
	Мау. 3	Reinforcement Learning		21