Learn by doing: less theof;y, more results

Learning C# by Developing
Games with Unity 3D

Learn the fundamentals of C# to create scripts for your
GameObjects

Beginner's Guide

Terry Norton

PUBLISHING

Learning G# by Developing Games
with Unity 3D Beginner's Guide

Learn the fundamentals of C# to create scripts for your
GameObjects

Terry Norton

PUBLISHING

BIRMINGHAM - MUMBAI

Learning C# hy Developing Games
with Unity 3D Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013
Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK..

ISBN 978-1-84969-658-6
www . packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com. au)

Author
Terry Norton

Reviewers

Gaurav Garg

Kristian Hedeholm

Acquisition Editor

James Jones

Lead Technical Editor
Dayan Hyames

Technical Editors
Ruchita Bhansali

Dylan Fernandes
Dipika Gaonkar
Monica John

Proshonjit Mitra

Project Coordinator
Apeksha Chitnis

Proofreader

Ameesha Green

Indexers
Rekha Nair

Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

Terry Norton was born and raised in California. During the Vietnam era, he served six
and half years in the US Air Force. While in the military, he was trained in electronics for
electronic counter-measures. Upon discharge, he earned his Electrical Engineering degree,
and later working for Joslyn Defense Systems in Vermont, designing and developing test
equipment for the US Navy.

When personal computers came on the scene, he took an interest in building computers, but
never quite delved deep into the programming side. It wasn't until 2004 that programming
peaked his interest. He began writing articles for 0S/2 Magazine to teach C++ programming.
Unfortunately, damaging his left hand in a snowblower accident in 2005 ended his writing for
a couple years.

IBM abandoned 0S/2, so Terry bought his first Apple computer in early 2006. He tried a
few times to learn Objective-C, but work and family always seemed to sidetrack his efforts.
It wasn't until about 2010 when he discovered Unity and the need to write scripts, that he
finally made some progress into the programming world. He began writing an online
tutorial for UnityScript titled UnityScript for Noobs. It was a basic tutorial for beginners
made available just before Unite 2011.

Since then, Terry has been learning C# for writing scripts for Unity. Packt Publishing noticed
UnityScript for Noobs and asked if he would be interested in writing a book about learning
UnityScript. He declined. He felt that C# was a better language, and his heart just wasn't into
UnityScript any longer. Two weeks later, Packt offered him the opportunity to write a book
about learning C# for Unity. He jumped on it.

| want to thank my daughter Emily Norton, the artist in the family, for
helping me with the graphic's design.

Gaurav Garg was born in Delhi. He is a Computer Applications graduate from Indira
Gandhi University and has passed his higher secondary from the CBSE Board. During his
under- graduate studies, he started his career as an indie game programmer, but didn't
gain success because of a lack of or say, no experience. After this, he learnt that passion is
not the only thing for geting success; experience matters a lot. Then he joined Isis Design
Service as a game programmer, where he published a few iOS titles and one web-based
game. He worked there for a year and a half. Then, he moved to Jump Games, Pune, and
worked on a few good game titles such as Realsteal and Dancing with the Stars. Now, he
works for Mr Manvender Shukul in Lakshya Digital Pvt Itd. and has been there since the
past year.

He hasn't reviewed a book before, but one of his articles was published in Game Coder
Magazine. The article was on Unity3D. You can download the article from his personal
website, http://gauravgarg.com/.

| would like to thanks my parents who taught me the value of hard work
and an education.

I need to thanks my friends, particularly Manjith and Vibhash, who always
took the time to listen, even when | was just complaining. They always are

my best supporters and advisors.

Finally, | would like to thank Harshit who gives me this opportunity.

Kristian Hedeholm studied Computer Science at Aarhus University and now works as a
game programmer at Serious Games Interactive in Copenhagen, Denmark. Since Kristian
joined the game industry back in 2009, he has worked on a couple of released casual games.
In addition to this, he is also the chairman of an association called Young Game Developers,
which aims to spread information about game development among children and teenagers.
In the future, Kristian will use his "computer mind" to develop artificial intelligence and
dynamic difficulty adjustment systems for computer games.

When Kristian isn't developing games, teaching others to develop games, or playing games
himself, he thinks about them a lot!

You might want to visit www . PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[ﬂ]PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

¢ Fully searchable across every book published by Packt
¢ Copy and paste, print and bookmark content

¢ Ondemand and accessible via web browser

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Tahle of Gontents

Preface 1
Chapter 1: Discovering Your Hidden Scripting Skills 7
Prerequisite knowledge for using this book 8
Dealing with scriptphobia 8
Teaching behaviors to GameObijects 9
Choosing to use C# instead of UnityScript 10
Reason 1 for choosing C# — vast amount of documentation on the Internet 10
Reason 2 for choosing C# — flexibility to use Unity scripts and regular
C# code files 10
Reason 3 for choosing C# — coding rules are specific 11
Maneuvering around Unity's documentation 11
Time for action — opening the Reference Manual documentation
for the transform Component 11
Time for action — opening the scripting reference documentation
for the transform component 12
Are we really supposed to know all that stuff? 13
What is all that information? 13
Working with C# script files 14
Time for action — create a C# script file 14
Introducing the MonoDevelop code editor 15
Syncing C# files between MonoDevelop and Unity 15
Time for action — opening LearningScript in MonoDevelop 15
Watching for a possible "gotcha" when creating script files in Unity 16
Fixing sync if it isn't working properly 16
Summary 17
Chapter 2: Introducing the Building Blocks for Unity Scripts 19
Using the term method instead of function 20
Understanding what a variable does in a script 20

Table of Contents

Naming a variable 21

A variable name is just a substitute for a value 21
Time for action — creating a variable and seeing how it works 22
Time for action — changing the number 9 to a different number 23
Using a method in a script 24
What is a method? 24
Time for action — learning how a method works 24
What's in this script file? 25
Method names are substitutes too 25
Introducing the class 27
By using a little Unity magic, a script becomes a Component 28
A more technical look at the magic 28
Even more Unity magic 29
Components communicating using the Dot Syntax 29
What's with the dots? 30
Summary 30
Chapter 3: Getting into the Details of Variables 31
Writing C# statements properly 32
Understanding Component properties in Unity's Inspector 32
Variables become Component properties 33
Unity changes script and variable names slightly 33
Changing a property's value in the Inspector panel 33
Displaying public variables in the Inspector panel 34
Time for action — making a variable private 34
Naming your variables properly 35
Begin variable names with lowercase 36
Using multi-word variable names 36
Declaring a variable and its type 37
The most common built-in variable types 38
Time for action — assigning values while declaring the variable 38
Where you declare a variable is important 39
Variable scope — determining where a variable can be used 40
Summary 42
Chapter 4: Getting into the Details of Methods 43
Ending a method definition using curly braces a4
Using methods in a script a4
Naming methods properly a4
Begin method names with an uppercase letter 45
Using multi-word names for a method 45
Parentheses are part of the method name 45

Table of Contents

Defining a method properly 45
The minimum requirements for defining a method 46
Understanding parentheses — why are they there? 47

Time for action — adding code between the parentheses 47
Specifying a method's parameters 48
How many parameters can a method have? 49

Calling a method 49
Using arguments in the parentheses of a method 49

Returning a value from a method 50

Time for action — returning a value from AddTwoNumbers() 51
Calling a method is a logic detour 54

Using Unity's Update and Start methods 54
The Start method is called one time 55
The Update method is called over and over and over... 55

Summary 56

Chapter 5: Making Decisions in Code 57

Testing conditions with an if statement 58
Testing if conditions are true or false 58

Time for action — create a couple of if statements 58
Using the NOT operator to change the condition 60
Checking many conditions in an if statement 60

Time for action — create if statements with more than one condition to check 60

Using an if-else statement to execute alternate code 63

Time for action — add "else" to the if statement 63

Making decisions based on user input 65

Storing data in an array, a List, or a Dictionary 66
Storing items in an array 66
Storing items in a List 68

Time for action — create a List of pony names 68
Storing items in a Dictionary 73

Time for action — create a dictionary of pony names and keys 73
Using a Collection Initializer to add items to a List or Dictionary 75

Time for action — adding ponies using a Collection Initializer 75

Looping though lists to make decisions 77
Using the foreach loop 77

Time for action — using foreach loops to retrieve data 77
Using the for loop 81

Time for action — selecting a pony from a List using a for loop 81
Using the while loop 84

Time for action - finding data and breakout of the while loop 84

Summary 87
Liil

Table of Contents

Chapter 6: Using Dot Syntax for Object Communication 89
Using Dot Syntax is like addressing a letter 90
Simplifying the dots in Dot Syntax 90
Using access modifiers for variables and methods 91
Working with objects is a class act 91
Using Dot Syntax in a script 93
Accessing a Component's own variables and methods 93
Time for action — accessing a variable in the current Component 94
Accessing another Component on the current GameObject 97
Time for action — communicating with another Component on the Main Camera 97
Accessing other GameObjects and their Components 101
Time for action — creating two GameObjects and a new script 102
Accessing GameObjects using drag-and-drop versus writing code 108
Time for action — trying drag-and-drop to assign a GameObject 108
Summary 109
Chapter 7: Creating the Gameplay is Just a Part of the Game 111
Applying your new coding skills to a State Machine 112
Understanding the concepts of a State Machine 112
Benefits of by using a State Machine 113
Following the State Machine logic flow 114
Delegating game control to a State 114
Switching to another State when called to do so 115
Keeping track of the active State 116
Creating Components objects and C# objects 117
Unity creates Components behind the scenes 117
Instantiate a class to create an object 117
Time for action — creating a script and a class 118
Time for action — instantiating the BeginState class 121
Specifying a file's location with a namespace declaration 122
Locating code files with a using statement 123
Introducing the C# interface 123
The State Machine and the interface guarantee 124
Time for action — implementing an interface 124
Summary 128
Chapter 8: Developing the State Machine 129
Creating four State classes 130
Time for action — modyifing BeginState and add three more States 130
Setting up the StateManager controller 132
Studying an example of inheritance 134

Enter the IStateBase interface again 136

Table of Contents

Time for action — modify StateManager 137
Adding another State 142
Time for action — modifying PlayState to add another State 142
Adding OnGUI to the StateManager class 143
Time for action — adding OnGUI() to StateManager 143
Changing the active State and controlling the Scene 144
Time for action — adding GameObjects and a button to the Scene 144
Pausing the game Scene 145
Time for action — adding code to pause the game Scene 146
Time for action — creating a timer in BeginState 147
Changing Scenes 151
Time for action — setting up another Scene 152
Changing Scenes destroys the existing GameObjects 153
Keeping GameManager between scenes 153
Time for action — adding the Awake method to StateManager 154
Changing the Scenes 155
Time for action — adding the code to change the Scenes 156
Verifying the code of your classes 157
Summary 161
Chapter 9: Start Building a Game and Get the Basic Structure Running 163
Easing into Unity's scripting documentation 164
Reading the Unity Reference Manual first 165
Finding code examples in the Scripting Reference as needed 165
Setup the State Machine and add a Player GameObject 165
Time for action — setting up nine States and three Scenes 167
Calling the Restart method of the StateManager 169
Add a Player GameObiject 170
Placing and using the Player Collider 171
Placing and using the Sphere Collider 171
Time for action - adding a Player GameObject 172
Storing game data in its own script 172
Time for action — creating a GameData script 173
Displaying the splash screens 174
Controlling the Player GameObject 179
Time for action — rotating Player in SetupState 180
Adding the Player Color option 183
Time for action — changing the color using GUI buttons 184
Adding the Lives option for Player 187
Time for action — setting the Lives for Player 187
Summary 191

Table of Contents

Chapter 10: Moving Around, Collisions, and Keeping Score 193
Visualizing the completed game 194
Switching to the first play State and playable scene 194
Loading Scenel using code 195
Adding cameras for different viewing options 196
Time for action — setting up two additional cameras in the scene 196
Attaching scripts to the new cameras 199
Time for actioning — attach the LookAtPlayer camera script 199
Time for action — attaching the FollowingPlayer camera script 200
Moving the Player using Rigidbody physics 201
Time for action — adding a Rigidbody to the Player 202
Keeping score during the game 204
Initializing the scoring system 205
Keeping score in the Scenel play State 207
Losing the game in Scenel 207
Winning the level in Scenel 208
Determining how to win or lose 210
Time for action — creating a good and bad prefab 210
Scoring for the win 210
Losing when Player crashes 211
Shooting projectiles at the orbs 212
Time for action — creating the EnergyPulse prefab 212
Shooting a single-shot EnergyPulse 214
Shooting rapid-fire EnergyPulses 214
The EnergyPulse is fired 215
Controlling EnergyPulse objects 216
Summary 219
Chapter 11: Summarizing Your New Coding Skills 221
Coding a Unity Project 222
Working with objects 222
Scratching the surface of C# programming 223
Looking at even more C# features 223
Looking at even more Unity features 224
Controlling the game with a State Machine 224
Using a State Machine is a design pattern choice 225
Using the State Machine at the GameObject level 225
Pulling all the little C# pieces together 226
Learning more after this book 226
Visit my favorite website for C# 227

Visit my favorite websites for Unity coding: 227

Summary 227

Table of Contents

Appendix A: Initial State Machine files 229
BeginState 230
SetupState 230
PlayStateScenel_1: (1 of 2 available States in Scenel) 231
PlayStateScenel_2: (2 of 2 available States in Scenel) 232
WonStateScenel 233
LostStateScenel 234
PlayStateScene2 235
WonStateScene2 236
LostStateScene2 236
StateManager 237
IStateBase 239

Appendix B: Completed code files for Chapters 9 and 10 241
BeginState 241
SetupState 242
PlayStateScenel_1: (1 of 2 available States in Scenel) 244
PlayStateScenel_2: (2 of 2 available States in Scenel) 246
WonStateScenel 247
LostStateScenel 248
PlayStateScene2 249
WonStateScene2 251
LostStateScene2 252
StateManager 253
PlayerControl 254
GameData 256
LookAtPlayer 257
FollowingPlayer 258
EnergyPulsePower 258
IStateBase 259

Appendix C: Pop Quiz Answers 261

Index 267

Unity has become one of the most popular game engines for developers, from the amateur

hobbyist to the professional working in a large studio. Unity used to be considered a 3D tool,
but with the release of Unity 4.3, it now has dedicated 2D tools. This will expand Unity's use
even more.

Developers love its object-oriented drag-and-drop user interface which makes creating a
game or interactive product so easy. Despite the visual ease of working in Unity, there is a
need to understand some basic programming to be able to write scripts for GameObjects.
For game developers that have any programming knowledge, learning how to write scripts
is quite easy. For the the artist coming to Unity, creating the visual aspects of a game is a
breeze, but writing scripts may appear to be a giant roadblock.

This book is for those with no concept of programming. | introduce the building blocks, that
is, basic concepts of programming using everyday examples you are familiar with. Also, my

approach to teaching is not what you will find in the typical programming book. In the end,
you will learn the basics of C#, but | will spoon-feed you the details as they are needed.

| will take you through the steps needed to create a simple game, with the focus not being
the game itself but on how the many separate sections of code come together to make a
working game. | will also introduce the concept of a State Machine to organize code into
simple, game controlling blocks. At the end, you will be saying "Wow! | can't believe how
easy that was!"

Chapter 1, Discovering Your Hidden Scripting Skills, explains that the very first thing you
need to do is overcome your perceived fear of writing scripts. You'll see that writing scripts
is very similar to many of your daily routines. We also have a first look at Unity's scripting
documentation. Finally, we see how to create a C# script file in Unity.

Preface

Chapter 2, Introducing the Building Blocks for Unity Scripts, explains that there are two
primary building blocks for writing code, variables and methods. This chapter introduces

the concepts of a variable and a method. With these two building blocks, we look into the
concept of a "class," a container of variables and methods used to create Unity Components.
Finally, communication between GameObjects is discussed by introducing Dot Syntax.

Chapter 3, Getting into the Details of Variables, explains using variables in detail. We see how
they're used for storing data, and how the magic works to turn variables into Component
properties which appear in the Unity Inspector panel.

Chapter 4, Getting into the Details of Methods, explains how methods perform the actions that
take place on GameObjects. We see how to create and use methods in detail. We also look into
two of Unity's most often used methods, the Start() method and the Update() method.

Chapter 5, Making Decisions in Code, explains that during gameplay, decisions have to be
made about many things, just like you do in your daily life. We look at many of the ways
choices are made and some of the common reasons for which decisions are required.

Chapter 6, Using Dot Syntax for Object Communication, shows us what Dot Syntax actually is,
a simple address format to retrieve information or send information to other Components.

Chapter 7, Creating the Gameplay is Just a Part of the Game, shows that developing the
gameplay is fun, but there are other parts needed to make a fully functional game. We look
into some of the possible parts needed and how to organize all the parts by introducing the
use of a State Machine.

Chapter 8, Developing the State Machine, creates a simple State Machine to show how it
works, and see the simplicity it brings for controlling a game. We show how to change Scenes
for a multi-level game and how to deal with GameObjects when changing to another scene.

Chapter 9, Start Building a Game and Get the Basic Structure Running, teaches us how to
access and use Unity's Scripting Reference and the Reference Manual for the features we
want. Then we begin creating a multi-level game using the state machine and three scenes.
A Player GameObject is added and we learn how to control it.

Chapter 10, Moving Around, Collisions, and Keeping Score, shows how to move the Player
around using Unity's physics system, and have cameras follow the Player's movements. We
develop a GUI scoring system, start shooting projectiles at enemy objects, and see how to
win or lose the game. Ultimately, we see how all the separate pieces of code come together
and work together.

Chapter 11, Summarizing Your New Coding Skills, reviews the main points you learned about
programming with C# and working with objects. | tell you about some of the C# and Unity
features you may want to learn now that you understand the basics of C#. | will highlight
the benefits of incorporating a state machine into your Unity projects. Finally, | present my
favorite sources for further learning.

[2]

Preface

Appendix A, Initial State machine files, shows the initial code for the classes needed
for changing States in our game. These State Machine classes are the starting point for
organizing and adding game code.

Appendix B, Completed code files for Chapters 9 and 10, shows all the class and script files
used for playing our completed game.

What you need for this hook

You need the free version of Unity located at http://unity3d.com/unity/download/.
The MonoDevelop code editor is included in the Unity installation.

Your computer will need to meet the minimum requirements for Unity as specified at
http://unity3d.com/unity/system-requirements.html.

Windows: XP SP2 or later; Mac OS X "Snow Leopard" 10.6 or later. Note that Unity was not
tested on server versions of Windows and OS X.

Graphics card with DirectX 9 level (shader model 2.0) capabilities. Any card made since 2004
should work.

If you don't know anything about programming in general, writing code, writing scripts, or
have no idea where to even begin, then this book is perfect for you. If you want to make
games and need to learn how to write C# scripts or code, then this book is ideal for you.

Conventions

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Actionl
2. Action?2
3. Action3

[3]

Preface

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple-choice questions intended to help you test your own understanding.

These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
can include other contexts through the use of the include directive."

A block of code is set as follows:

public BeginState (StateManager managerRef)

{

manager = managerRef;
if (Application.loadedLevelName != "SceneO")
Application.LoadLevel ("SceneO") ;

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

if (instanceRef == null)

{

instanceRef = this;
DontDestroyOnLoad (gameObject) ;

}
Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample

/etc/asterisk/cdr mysql.conf

[4]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
%ﬁ‘ from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files.e-mailed directly to you.

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

%j%“ Warnings or important notes appear in a box like this.

Al

Q Tips and tricks appear like this.

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub. com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

[5]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http: //www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[6]

Discovering Your Hidden
Scripting Skills

Computer programming is viewed by the average person as requiring long
periods of training to learn skills that are totally foreign, and darn near
impossible to understand. The word geek is often used to describe a person
that can write computer code. The perception is that learning to write code
takes great technical skill that is just so hard to learn. This perception is totally
unwarranted. You already have the skills needed but don't realize it. Together
we will crush this false perception you may have of yourself by refocusing, one
step at a time, the knowledge you already possess to write Unity scripts.

In this chapter we shall:

Deal with preconceived fears and concepts about scripts
See why we should use C# instead of UnityScript

Introduce Unity's documentation for scripting

* & o o

Learn how Unity and the MonoDevelop editor work together

Let's begin our journey by eliminating any anxiety about writing scripts for Unity,
and become familiar with our scripting environment.

Discovering Your Hidden Scripting Skills

Great news if you are a scripting beginner! This book is for those with absolutely no
knowledge of programming. It is devoted to teaching the basics of C# with Unity.

However, some knowledge of Unity's operation is required. | will only be covering the parts
of the Unity interface that are related to writing C# code. | am assuming that you know your
way around Unity's interface, how to work with GameObjects in your Scene, and how to
locate Components and view their Properties in the Inspector.

You've got Unity up and running, studied the interface, added some GameObjects to the
Scene. Now you're ready to have those GameObjects move around, listen, speak, pick up
other objects, shoot the bad guys, or anything else you can dream of. So you click on Play,
and nothing happens. Well darn it all anyway.

You just learned a big lesson, all those fantastic, highly detailed GameObjects are dumber
than a hammer. They don't know anything, and they sure don't know how to do anything.

So you proceed to read the Unity forums, study some scripting tutorials, maybe even copy
and paste some scripts to get some action going when you press Play. That's great, but then
you realize you don't understand anything in the scripts you've copied. Sure, you probably
recognize the words, but you fail to understand what those words do or mean in a script. It
feels like gibberish.

You look at the code, your palms get sweaty, and you think to yourself, "Geez, I'll never be
able to write scripts!" Perhaps you have scriptphobia: the fear of not being able to write
instructions (I made that up). Is that what you have?

The fear that you cannot write down instructions in a coherent manner? You may believe
you have this affliction, but you don't. You only think you do.

The basics of writing code are quite simple. In fact, you do things every day that are just like
the steps executed in a script. For example, do you know how to interact with other people?
How to operate a computer? Do you fret so much about making a baloney sandwich that
you have to go to an online forum and ask how to do it?

Of course you don't. In fact, you know these things as "every day routines", or maybe as
habits. Think for a moment, do you have to consciously think about these routines you
do every day? Probably not. After you do them over and over, they become automatic.

Chapter 1

The point is, you do things everyday following sequences of steps. Who created these steps
you follow? More than likely you did, which means you've been scripting your whole life.
You just never had to write down the steps, for your daily routines, on a piece of paper
before doing them. You could write the steps down if you really wanted to, but it takes

too much time and there's no need. But you do, in fact, know how to. Well, guess what?

To write scripts, you only have to make one small change, start writing down the steps.

Not for yourself but for the world you're creating in Unity.

So you see, you are already familiar with the concept of dealing with scripts. Most beginners
to Unity easily learn their way around the Unity interface, how to add assets, and work in
the Scene and Hierarchy windows. Their primary fear, and roadblock, is their false belief
that scripting is too hard to learn.

Relax! You now have this book. | am going to get really basic in the beginning chapters.

Call them baby-steps if you want, but you will see that scripting for Unity is similar to doing
things you already do everyday. I'm sure you will have many "Ah-Ha" moments as you learn
and overcome your unjustified fears and beliefs.

Teaching hehaviors to GameOhjects

You have Unity because you want to make a game or something interactive. You've filled your
game full of dumb GameObjects. What you have to do now is be their teacher. You have to
teach them everything they need to know to live in this make-believe world. This the part
where you have to write down the instructions so that your GameObjects can be smarter.

Here's a quote from the Unity Manual:

The behavior of GameObjects is controlled by the Components that are attached
to them... Unity allows you to create your own Components using scripts.

Notice that word, behavior. It reminds me of a parent teaching a child proper behavior.
This is exactly what we are going to do when we write scripts for our GameOQObjects, we're
teaching them the behaviors we want them to have. The best part is, Unity has provided
a big list of all the behaviors we can give to our GameObjects. This list of behaviors is
documented in the Scripting Reference.

This means we can pick and chose, from this list of behaviors anything we want a
GameObiject to do. Unity has done all the hard work of programming all these behaviors

for you. All we need to do is use a little code to tie into these behaviors. Did you catch that?
Unity has already created the behaviors, all we have to do is supply a little bit of C# code to
apply these behaviors to our GameObjects. Now really, how difficult can it be since Unity has
already done most of the programming?

Discovering Your Hidden Scripting Skills

Choosing to use G# instead of UnityScript

So why choose C# to create this code? This maybe after-the-fact information for you if
you've already acquired this book and chosen to use C#, but these are valuable points
to know anyway:

Reason 1for choosing C# - vast amount of documentation
on the Internet

Have a look at the following bullet list, it will help you understand the reason
for choosing C#:

*

C# is a well known and a heavily used programming language developed by
Microsoft for creating Windows application and web-based applications. If you
ever need to know anything about C#, simply do a search on the Internet.

UnityScript is just a scripting language designed specifically for Unity. It's similar
to JavaScript, yet it isn't. You may be able to search for JavaScript solutions on

the web, but the code may or may not work within the confines of Unity without
modification, if at all.

Why start off learning a limited scripting language, specific only to Unity, when
you can use C#, a true programming language, and find information everywhere?

Who knows, once you see how easy C# is, maybe you might decide to develop
for Windows or the Web some day. You'll already have the basics of C#.

Once you learn C#, you'll pretty much know UnityScript, too.

Reason 2 for choosing G - flexibility to use Unity scripts and
regular C# code files

*

Any C# files you have in your Unity Project folder, that are not Unity scripts,
are accessible without the need of attach them to GameObjects.

The State Machine project we will create for this book makes use of C# code
files that are not attached to any GameObject.

I'm not saying you can't create a State Machine by using UnityScript. It's just so
much easier with C#. Every UnityScript file has to be attached to a GameObject
to work and be accessible to other scripts. C# overcomes this necessity.

101

Chapter 1

Reason 3 for choosing C# — coding rules are specific
¢ C#is known as a strictly-typed language. What does this means to you?

¢ Asyou write code, Unity will catch coding errors immediately. Learning a subject
is always easier when the rules are specific, and not some fuzzy "you can if you
want to" kind of logic.

¢ UnityScript is not a strictly-typed language. You have the potential to write code
that is not valid, but Unity won't catch the errors until you press Play.

¢ Finding mistakes as you write the code is so much easier than having to deal
with them when a user has found them when they're playing the game.

¢ Please be aware, it is easy to force UnityScript to be strictly-typed, but if you're
going to do that, then you may as well be using C# anyway, which brings us back
to Reason 1.

When we begin writing scripts, we will be looking at Unity's documentation quite often,
so it's beneficial to know how to access the information we need. For an overview of a
topic we'll use the Reference Manual. For specific coding details and examples we'll use
the Scripting Reference.

When you look at the code examples in the Scripting Reference, they probably
. won't make sense to you, which is expected at this point. In the beginning
chapters, as | teach you the basics of programming, it will be necessary for me
A to use a few things in the Scripting Reference such as displaying some output
to Unity's Console. For now, just copy the code | use because you will be
learning the detail of it |ater.

Time for action - opening the Reference Manual documentation

for the transform Component

To get a feel for accessing Unity's documentation from within Unity, we'll use the Main
Camera to demonstrate. Every GameObject in a Scene has a Transform Component, so
we'll look at the documentation for Transform in the Reference Manual and the Scripting
Reference. Getting to the information is pretty easy. Click on the tiny book icon with the
question mark.

1. Inthe Hierarchy tab, select the Main Camera.

1l

Discovering Your Hidden Scripting Skills

2. Click on the book icon for the Transform.

v Cam
1B W GUILayer
v Flare Layer
(® ¥ Audio Listener

What just happened?

The web browser opened the Reference Manual showing information about Transform.

Time for action - opening the scripting reference

documentation for the transform component

From the Reference Manual, we'll now open the Scripting Reference documentation for the
Transform Component.

1. Click the link Switch to Scripting in the upper right-hand side of the browser window
as shown in the following screenshot:

Unity Gallery Asset Store | Learn | Community Company Buy Download

Tutorials Documentation Live Training Premium Support
Manual Reference Scripting
Click
RBeference Manual > Components > Transform Component > Transform Switch to Scripting
@ Previous | (Next @

Transform
The Transform component determines the Position, Rotation, and Scale of each object in the scene. Every object has a Transform.

== | © Inspector e
& [GameDbject Static []*
Tog (Unugped ¢ Laver (el 7]
¥ A Transform @,
Pasition

% (1852273 | ¥ (2566412 | Z [0.401103]]

4 Scene]
| Textured ¥ | RGE ¢ | % | & | 4 | Giames - | (orAll

[121

Chapter 1

What just happened?

The Transform page in the Scripting Reference opens in the web browser as shown in the
following screenshot:

o | | a0
Unity Gallery Asset Store Learn Community Company Buy Download
Tutorials Documentation Live Training Premium Support
Manual Reference Scripting
Scripting Reference using | c# =
’ Transform
(Q- Search
[Runtime Classes %) Description
Position, rotation and scale of an object.
AccelerationEvent
ﬁcgg:nSan} Every object in a scene has a Transfarm. It's used to stare and manipulate the position, rotation and
ADE?'%?E" L scale of the object. Every Transform can have a parent, which allows you to apply position, rotation
ADInterstitialad and scale hierarchically. This s the hierarchy seen in the Hierarchy pane. They also support
Androidinput enumerators so you can loop through children using:
AndroidJavaObject : i fyzp
AndroidJavaélass JE i) SnLyERgine; A
AndroidJavaProxy using System.Collections;
AndroidJNI
AndroidJNIHelper public class Example : MonoBehaviour {
AnimationCurve void Example() {
AnimationEvent foreach {Transform child in transform) {
Animationinfo child.position += Vector3.up * 10.0F;
AnimatorStatelnfo
AnimatorTransitioninfo 3
Application
AudioSettings >
AvatarBuilder
BitStream
BoneWeight See Also: The companent reference, Physics class.

Are we really supposed to know all that stuff?

Actually, no. The whole reason for why the Scripting Reference exist is so we can look for
information as we need it. Which will actually happen us to remember the code we do
over and over, just like our other daily routines and habits.

The previous screenshot shows a description and some sample code which probably doesn't
mean much right now. Fear not! You'll eventually be able to look at that and say, "Hey, | know
what that means!"

1131

Discovering Your Hidden Scripting Skills

Working with C# script files

Until you learn some basic programming concepts, it's too early to study how scripts work,
but we still need to know how to create one.

There are several ways to create a script file using Unity:

¢ Inthe menu navigate to Assets | Create | C# Script
Or

¢ Inthe Project tab navigate to Create | C# Script
Or

¢ Inthe Project tab right-click , from the pop-up menu navigate to Create | C# Script

% From now on, when | tell you to create a C# script, please
e use which ever method you prefer.

Time for action - create a G scriptfile

As our Unity project progresses, we will have several folders to organize and store all of
our C# files.

1. Create a new Unity project and name it as State Machine.

2. Right-click on in the Project tab and create a folder named Code.

3. Right-click on the code folder and a create a folder named Scripts.

4. Inthe scripts folder, create a C# Script.

5. Immediately rename NewBehaviourScript to LearningScript.
What just happened?

We created one of the Code subfolders, named Scripts, that we will be using to organize
our C# files. This folder will contain all of our Unity script files. Later we will create other C#
file folders.

We also used Unity to create a C# script file named LearningScript.cs.

[1a1

Chapter 1

Introducing the MonoDevelop code editor

Unity uses an external editor to edit its C# scripts. Even though Unity can create a basic
starter C# script for us, we still have to edit the script using the MonoDevelop code editor
that's included with Unity.

Syncing G# files hetween MonoDevelop and Unity

Since Unity and MonoDevelop are separate applications, Unity will keep MonoDevelop and
Unity synchronized with each other. This means that if you add, delete, or change a script
file in one application, the other application will see the changes automatically.

Time for action — opening LearningScript in MonoDevelop

Unity will synchronize with MonoDevelop the first time you tell Unity to open a file for editing.
The simplest way to do this is just double-click on LearningScript in the Scripts folder.

1. InUnity's Project tab, double-click on LearningScript:

Sclution = *|| €] LearningSeript.cs X |
B =] Solution State Machine No selection
B E Assembly-CSharp 14 |using UnitvEngine;
References 2 “|u=ing System.Collections;
= Assets 3
= Code 4[H|public class LearningScript : MonoBehaviour {
B [Scripts 2
E LearningScript.cs 7 S/ Use this for initializstion
a2H woid Start () {
a
10 ¥
11
1z A4 Update is palled once per frams
134 void Update () {
14
15 ¥
16 H
-

What just happened?

MonoDevelop started with LearningScript open, ready to edit.

1151

Discovering Your Hidden Scripting Skills

Watching for a possible "gotcha” when creating script files
in Unity

Notice line 4 in the previous screenshot:

public class LearningScript : MonoBehaviour

The class name LearningScript is the same as the file name LearningScript . cs. This
is a requirement. You probably don't know what a class is yet, that's ok. Just remember that
the file name and the class name must be the same.

When you create a C# script file in Unity, the filename, in the Project tab, is in Edit mode,
ready to be renamed. Please rename it right then and there. If you rename the script later,
the filename and the class name won't match. The filename would change, but line 4 would
be this:

public class NewBehaviourScript : MonoBehaviour

This can easily be fixed in MonoDevelop by changing NewBehaviourScript on line 4 to the
same name as the filename, but it's much simpler to do the renaming in Unity immediately.

So what happens when Murphy's Law strikes and syncing just doesn't seem to be working
correctly? Should the two apps somehow get out-of-sync as you switch back-and-forth
between the them, for whatever reason, do this:

¢ Right-click on Unity's Project window and select Sync MonoDevelop Project.
MonoDevelop will re-sync with Unity.

Pop yuiz - dealing with scripts

Q1. As a beginner, what's the biggest obstacle to be overcome to be able to write C# code?

Q2. The Scripting Reference supplies example code and a short description of what the code
does. What do you use to get full detailed descriptions of Unity's Components and features?

Q3. The Scripting Reference is a large document. How much it should you know before
attempting to write any scripts?

Q4. When creating a script file in Unity, when is the best time to name the script file?

1161

Chapter 1

Summary

This chapter tried to put you at ease about writing scripts for Unity. You do have the ability
to write down instructions which is all a script is, a sequence of instructions. We saw how
simple it is to create a new script file. You probably create files on your computer all the
time. We saw how to easily bring up Unity's documentation. Finally we had a look at the
MonoDevelop editor. None of this was complicated. In fact, you probably use apps all the
time that do similar things. Bottom line, there's nothing to fear here.

Alright, let's start off Chapter 2, Introducing the Building Blocks for Unity Scripts by having an
introductory look at the building blocks of programming we'll be using: variables, methods,
Dot Syntax, and the class. Don't let these terms scare you. The concepts behind each one of
these are similar to things you do often, perhaps every day.

111

A programming language such as C# can appear to be very complicated at
first but in reality, there are two parts that form its foundation. These parts

are variables and methods. Therefore, understanding these critical parts is a
prerequisite for learning any of the other features of C#. Being as critical as
they are, they are very simple concepts to understand. Using these variable and
method foundation pieces, we'll be introduced to the C# building blocks used to
create Unity scripts.

For those people who get sweaty palms just thinking of the word script, wipe your hands and
relax. In this chapter, I'm going to use terms that are already familiar to you to introduce the
building blocks of programming. The following are the concepts introduced in this chapter:
Using variables in a script

Using methods in a script

The class which is a container for variables and methods

Turning a script into a Component

* & 6 o o

Components communicating using the Dot Syntax

Let's have a look at these primary concepts.

Introducing the Building Blocks for Unity Scripts

You are constantly going to see the words function and method used everywhere as
you learn Unity.

The words function and method truly mean the same
L thing in Unity. They do the same thing.

Since you are studying C#, and C# is an Object-Oriented Programming (OOP) language,

| will use the word "method" throughout this book, just to be consistent with C# guidelines.
It makes sense to learn the correct terminology for C#. Also, UnityScript and Boo are OOP
languages. The authors of the Scripting Reference probably should have used the word
method instead of function in all documentation.

From now on I'm going to use the words method or methods in this book.
a When | refer to the functions shown in the Scripting Reference, I'm going to
use the word method instead, just to be consistent throughout this book.

What is a variable? Technically, it's a tiny section of your computer's memory that will hold
any information you put there. While a game runs, it keeps track of where the information
is stored, the value kept there, and the type of the value. However, for this chapter, all you
need to know is how a variable works in a script. It's very simple.

1201

Chapter 2

What's usually in a mailbox, besides air? Well, usually there's nothing but occasionally there
is something in it. Sometimes there's money (a paycheck), bills, a picture from aunt Mabel,
a spider, and so on. The point is what's in a mailbox can vary. Therefore, let's call each
mailbox a variable instead.

Using the picture of the country mailboxes, if | asked you to see what is in the mailbox, the
first thing you'd ask is which one? If | said in the Smith mailbox, or the brown mailbox, or
the round mailbox, you'd know exactly which mailbox to open to retrieve what is inside.
Similarly, in scripts, you have to name your variables with a unique name. Then | can ask
you what's in the variable named myNumber, or whatever cool name you might use.

As you write a script and make a variable, you are simply creating a placeholder or a
substitute for the actual information you want to use. Look at the following simple math
equation: 2+9=11

Simple enough. Now try the following equation: 11 + myNumber = ???

There is no answer to this yet. You can't add a number and a word. Going back to the
mailbox analogy, write the number 9 on a piece of paper. Put it in the mailbox named
myNumber. Now you can solve the equation. What's the value in myNumber? The value
is 9. So now the equation looks normal: 11 + 9 =20

The myNumber variable is nothing more than a named placeholder to store some data
(information). So anywhere you would like the number 9 to appear in your script, just
write myNumber, and the number 9 will be substituted.

Although this example might seem silly at first, variables can store all kinds of data that is
much more complex than a simple number. This is just a simple example to show you how
a variable works.

[211

Introducing the Building Blocks for Unity Scripts

Time for action - creating a variahle and seeing how it works

Let's see how this actually works in our script. Don't be concerned about the details
of how to write this, just make sure your script is the same as the script shown in the
next screenshot.

1. Inthe Unity Project panel, double-click on LearningScript.

2. In MonoDevelop, write the lines 6, 11, and 13 from the next screenshot.

3. Save thefile.

1[-|u=ing UnityEngine;
2 using System.Collections;

—||public class LearningScript : MonoBehaviour
{

public int myNumber = 9;

I T T]

S/ Use this for initialization
9= wvoid Start ()
10 i
11 Debug.Log (2 + 2):

13 Debug.Log (1l + myNumber);

/ Update is called once per

17 [= wvoid Update ()

To make this script work, it has to be attached to a GameObject. Currently, in our State
Machine project we only have one GameObject, the Main Camera. This will do nicely
since this script doesn't affect the Main Camera in any way. The script simply runs by
virtue of it being attached to a GameObject.

1. DragLearningScript onto the Main Camera.

Select Main Camera so that it appears in the Inspector panel.

Verify whether LearningScript is attached.

Open the Unity Console panel to view the output of the script.

i WN

Click on Play.

[22]

Chapter 2

The preceding steps are shown in the following screenshot:

Main Camera

(Script)

What just happened?

In the following Console panel is the result of our equations. As you can see, the equation
on line 13 worked by substituting the number 9 for the myNumber variable:

Time for action - changing the numhber 9 to a different number

Since myNumber is a variable, the value it stores can vary. If we change what is stored in it,
the answer to the equation will change too. Follow the ensuing steps:

1. Stopthe game and change 9 to 19.

2. Notice that when you restart the game, the answer will be 30.

1231

Introducing the Building Blocks for Unity Scripts

What just happened?

You learned that a variable works by simple process of substitution. There's nothing more to
it than that.

We didn't get into the details of the wording used to create myNumber, or the types of
variables you can create, but that wasn't the intent. This was just to show you how a variable
works. It just holds data so you can use that data elsewhere in your script. We'll get into the
finer details of variables in Chapter 3, Variables in Detail.

Have a go hero — changing the value of myNumber

In the Inspector panel, try changing the value of myNumber to some other value, even a
negative value. Notice the change in answer in the Console.

Methods are where the action is and where the tasks are performed. Great, that's really nice
to know but what is a method?

What is a method?

When we write a script, we are making lines of code that the computer is going to execute,
one line at a time. As we write our code, there will be things we want our game to execute
more than once. For example, we can write a code that adds two numbers. Suppose our
game needs to add the two numbers together a hundred different times during the game.
So you say, "Wow, | have to write the same code a hundred times that adds two numbers
together. There has to be a better way."

Let a method take away your typing pain. You just have to write the code to add two
numbers once, and then give this chunk of code a name, such as AddTwoNumbers ().
Now, every time our game needs to add two numbers, don't write the code over and
over, just call the AddTwoNumbers () method.

Time for action - learning how a method works

We're going to edit LearningScript again. In the following screenshot, there are a few
lines of code that look strange. We are not going to get into the details of what they mean
in this chapter. We will discuss that in Chapter 4, Getting into the Details of Methods. Right
now, | am just showing you a method's basic structure and how it works:

1. InMonoDevelop, select LearningScript for editing.

2. Edit the file so that it looks exactly like the following screenshot.

[24]

Chapter 2

3. Save the file.

1[-l|using UnityEngine;
2 using System.Collections;

—||public class LearningScript : MonoBehaviour
{

E

EH

I O Y S U

public int numberl
public int number?z

g = wvoid Start ()
10 {

4 = wvoid Update ()

5 {

6 if (Input.GetKeyUp (KeyCode .Return))

17 AddTwoNumbers () ; <#—— Calling the method

0 [=] wvold AddIwolumbers ()
1 {

2 Debug.Log (numberl 4+ number?); The Method

[L T S T - T % I %)

In the previous screenshot, lines 6 and 7 will look familiar to you; they are variables just as
you learned in the previous section. There are two of them this time. These variables store
the numbers that are going to be added.

Line 16 may look very strange to you. Don't concern yourself right now with how this works.
Just know that it's a line of code that lets the script know when the Return/Enter key is
pressed. Press the Return/Enter key when you want to add the two numbers together.

Line 17 is where the AddTwoNumbers () method gets called into action. In fact, that's
exactly how to describe it. This line of code calls the method.

Lines 20, 21, 22, and 23 make up the AddTwoNumbers () method. Don't be concerned about
the code details yet. | just want you to understand how calling a method works.

You learned that a variable is a substitute for the value it actually contains. Well, a method
is no different.

Take a look at line 20 from the previous screenshot:

void AddTwoNumbers ()

1251

Introducing the Building Blocks for Unity Scripts

The AddTwoNumbers () is the name of the method. Like a variable, AddTwoNumbers () is
nothing more than a named placeholder in the memory, but this time it stores some lines of
code instead. So anywhere we would like to use the code of this method in our script, just
write AddTwoNumbers (), and the code will be substituted.

Line 21 has an opening curly-brace and line 23 has a closing curly-brace. Everything between
the two curly-braces is the code that is executed when this method is called in
our script.

Look at line 17 from the previous screenshot:
AddTwoNumbers () ;

The method name AddTwoNumbers () is called. This means that the code between the
curly-braces is executed.

It's like having all of the code of a method right there on
s line 17.

Of course, this AddTwoNumbers () method only has one line of code to execute, but a
method could have many lines of code.

Line 22 is the action part of this method, the part between the curly-braces. This line of code
is adding the two variables together and displaying the answer to the Unity Console. Then,
follow the ensuing steps:

1. Go back to Unity and have the Console panel showing.
2. Now click on Play.

What just happened?
Oh no! Nothing happened!
Actually, as you sit there looking at the blank Console panel, the script is running perfectly,

just as we programmed it. Line 16 in the script is waiting for you to press the Return/Enter
key. Press it now.

And there you go! The following screenshot shows you the result of adding two variables
together that contain the numbers 2 and 9:

lapse €l ¢ Error pause

11
UnityEngine.Debug;iLe

1261

Chapter 2

Line 16 waited for you to press the Return/Enter key. When you do this, line 17 executes
which calls the AddTwoNumbers () method. This allows the code block of the method, line
23, to add the the values stored in the variables number1 and number2.

Have a go hero — changing the output of the method

While Unity is in the Play mode, select the Main Camera so its Components show in the
Inspector. In the Inspector panel, locate Learning Script and its two variables. Change the
values, currently 2 and 9, to different values. Make sure to click your mouse in the Game
panel so it has focus, then press the Return/Enter key again. You will see the result of the
new addition in the Console.

You just learned how a method works to allow a specific block of code to to be called to
perform a task.

We didn't get into any of the wording details of methods here, this was just to show you
fundamentally how they work. We'll get into the finer details of methods in Chapter 4,
Getting into the Details of Methods.

Introducing the class

The class plays a major role in Unity. In fact, what Unity does with a class a little piece of
magic when Unity creates Components.

You just learned about variables and methods. These two items are the building blocks used
to build Unity scripts. The term script is used everywhere in discussions and documents.
Look it up in the dictionary and it can be generally described as written text. Sure enough,
that's what we have. However, since we aren't just writing a screenplay or passing a note

to someone, we need to learn the actual terms used in programming.

Unity calls the code it creates a C# script. However, people like me have to teach you some
basic programming skills and tell you that a script is really a class.

In the previous section about methods, we created a class (script) called
LearningScript. It contained a couple of variables and a method. The
main concept or idea of a class is that it's a container of data, stored in
% variables, and methods that process that data in some fashion. Because | don't
g have to constantly write class (script), | will be using the word script most of
the time. However, | will also be using class when getting more specific with
C#. Just remember that a script is a class that is attached to a GameObject.

[211

Introducing the Building Blocks for Unity Scripts

In Chapter 7, Creating the Gameplay is Just a Part of the Game, we will be creating some
classes for a State Machine. These classes will not be attached to any GameObjects, so |
won't be calling them scripts.

By using a little Unity magic, a script hecomes
a Component

While working in Unity, we wear the following two hats:

& A Game-Creator hat

¢ A Scripting (programmer) hat

When we first wear our Game-Creator hat, we will be developing our Scene, selecting
GameObijects, and viewing Components; just about anything except writing our scripts.

When we put our Scripting hat on, our terminology changes as follows:

¢ We're writing code in scripts using MonoDevelop

¢ We're working with variables and methods

The magic happens when you put your Game-Creator hat back on and attach your script to
a GameObject. Wave the magic wand — ZAP — the script file is now called a Component,
and the public variables of the script are now the properties you can see and change in the
Inspector panel.

A script is like a blueprint or a written description. In other words, it's just a single file in a
folder on our hard drive. We can see it right there in the Projects panel. It can't do anything
just sitting there. When we tell Unity to attach it to a GameObject, we haven't created
another copy of the file, all we've done is tell Unity we want the behaviors described in

our script to be a Component of the GameObject.

When we click on the Play button, Unity loads the GameObject into the computer's
memory. Since the script is attached to a GameObject, Unity also has to make a place
in the computer's memory to store a Component as part of the GameObject. The
Component has the capabilities specified in the script (blueprint) we created.

1281

Chapter 2

Even more Unity magic

There's some more magic you need to be aware of. The scripts inherit from
MonoBehaviour.

For beginners to Unity, studying C# inheritance isn't a subject you need to learn in any great
detail, but you do need to know that each Unity script uses inheritance. We see the code in
every script that will be attached to a GameObject. In LearningScript, the code is on line 4:

public class LearningScript : MonoBehaviour

The colon and the last word of that code means that the LearningScript class is inheriting
behaviors from the MonoBehaviour class. This simply means that the MonoBehaviour

class is making few of its variables and methods available to the LearningScript class. It's

no coincidence that the variables and methods inherited look just like some of the code

we saw in the Unity Scripting Reference.

The following are the two inherited behaviors in the LearningScript:

Line 9:: void Start ()

Line 14: void Update ()

% The magic is that you don't have to call these methods, Unity calls them
A automatically. So the code you place in these methods gets executed automatically.

Have a go hero - finding Start and Update in the Scripting Reference

Try a search on the Scripting Reference for Start and Update to learn when each method is
called by Unity and how often.

Also search for MonoBehaviour. This will show you that since our script inherits from
MonoBehaviour, we are able to use the Start () and Update () methods.

Components communicating using the Dot Syntax

Our script has variables to hold data, and our script has methods to allow tasks to be
performed. | now want to introduce the concept of communicating with other GameObjects
and the Components they contain. Communication between one GameObject's Components
and another GameObject's Components using Dot Syntax is a vital part of scripting. It's

what makes interaction possible. We need to communicate with other Components or
GameObjects to be able to use the variables and methods in other Components.

1291

Introducing the Building Blocks for Unity Scripts

When you look at the code written by others, you'll see words with periods separating them.
What the heck is that? It looks complicated, doesn't it. The following is an example from the
Unity documentation:

transform.position.x

% Don't concern yourself with what the preceding code means as that comes
A later, | just want you to see the dots.

That's called the Dot Syntax. The following is another example. It's the fictitious address of
my house: USA.Vermont.Essex.22MyStreet

Looks funny, doesn't it? That's because | used the syntax (grammar) of C# instead of the post
office. However, I'll bet if you look closely, you can easily figure out how to find my house.
We'll get into much more Dot Syntax detail in Chapter 6, Using Dot Syntax for

Object Communication.

Pop quiz - knowing the G# huilding blocks

Q1. What is the purpose of a variable in a script?
Q2. What is the purpose of a method in a script?
Q3. How does a script become a Component?

Q4. What is the purpose of Dot Syntax?

This chapter introduced you to the basic concepts of variables, methods, and Dot Syntax.
These building blocks are used to create scripts and classes. Understanding how these
building blocks work is critical so you don't feel you're not getting it.

We discovered that a variable name is a substitute for the value it stores; a method name is a
substitute for a block of code; when a script or class is attached to a GameObject, it becomes
a Component. The Dot Syntax is just like an address to locate GameObjects and Components.

With these concepts under your belt, we can proceed to learn the details of the sentence
structure, the grammar, and the syntax used to work with variables, methods, and the Dot
Syntax. In the next chapter we will learn about the details of using variables.

Initially, computer programming appears difficult to beginners due to the fact
how words are used in code. It's not the actual words that cause the problem
because, for the most part, many of the words are the same words that we use
in our everyday life. C# is not a foreign language. The main problem is that the
words simply don't read like the typical sentences we are all used to. You know
how to say the words and you know how to spell the words. What you don't
know is where and why you need to put them in that crazy looking grammar,
that is, the syntax that makes up a C #statement.

In this chapter, we will learn some of the basic rules for writing a C# statement.
We will also be introduced to many of the words that C# uses and the proper
placement of these words in the C# statements when we create our variables.

In this chapter we will cover the following topics:

Writing C# statements properly

Using C# syntax to write variable statements

The GameObject Component's properties

Using public variables for the Unity Inspector panel

Naming a variable properly

® & 6 o o o

Declaring a variable for the type of data it will store

Ok, let's learn some programming grammar, otherwise known as C# syntax.

Getting into the Details of Variables

Writing C# statements properly

When you do normal writing, it's in the form of a sentence with a period used to end the
sentence. When you write a line of code, it's called a statement with a semi-colon used to
end the statement.

The reason a statement ends with a semi-colon is so that Unity knows
when the statement ends. A period can't be used because they are used in
’ the Dot Syntax.

The code for a C# statement does not have to be on a single line as shown in the
following example:

public int numberl = 2;

The statement can be on several lines. Whitespace and carriage returns are ignored, so if
you really want to, you can write it as follows:

public
int
numberl

7

But | recommend you to not write your code like this because it's terrible reading code
formatted like the preceding code. However, there will be times that you'll have to write
long statements that will be longer than one line. Unity won't care. It just needs to see the
semi-colon at the end.

Understanding Component properties in Unity's
Inspector

GameObjects have some Components that make them behave in a certain way. For instance,
select Main Camera and look at the Inspector panel. One of the Components is the Camera.
Without that Component, it will cease being a camera. It would still be a GameObject in your
scene, just no longer a functioning camera.

1321

Chapter 3

Any Component of any GameObject is just a script that defines a class, whether you wrote
the script or the Unity's programmer did. We just aren't supposed to edit the scripts that
Unity wrote. This means that all the properties we see in Inspector are just variables of
some type. They simply store data that will be used by some methods.

Unity changes script and variable names slightly

When we add our script to a GameObject, the name of our script shows up in the Inspector
panel as a Component. Unity makes a couple of small changes. You might have noticed

that when we added LearningScript to Main Camera, Unity actually showed it in the
Inspector panel as Learning Script. Unity added a space to separate the words of the name.
Unity does this modification to the variable names, too. Notice that the variable numberi1
is shown as Number 1, and number2 as Number 2. Unity capitalizes the first letter as well.
These displayed changes improve readability in Inspector.

Changing a property's value in the Inspector panel

There are two situations when you can modify a property value:

¢ During the Play mode
¢ During the development mode (not in the Play mode)
When you are in the Play mode, you will see that your changes take effect immediately in

real time. This is great when you're experimenting and want to see the results.

_ Whenyou are in the Play mode, you will see that your changes take effect
& immediately in real time. This is great when you're experimenting and want
A to see the results. Write down any changes you want to keep because when

you stop the Play mode, any changes you made will be lost.

When you are in the development mode, changes you make to the property values will be
saved by Unity. This means that if you quit Unity and restart it again, the changes will be
retained. Of course you won't see the effect of your change until you click on Play.

_ The changes you make to the property values in the Inspector panel do
% not modify your script. The only way your script can be changed is for
i you to edit it in the script editor (MonoDevelop). The values shown in the

Inspector panel override any values you had assigned in your script.

Getting into the Details of Variables

If you desire to undo the changes you've made in the Inspector panel, you can reset the values
to the default values assigned in your script. Click on the Cog icon (the gear) on the far right of
the Component script, and then select Reset as shown in the following screenshot:

(® ¥ Audio Listener W &,
¥ Learning Script (Script) W £

Reset -‘———

Remove Component

Options

Mumk

MNumber 2
&dd Component Move Up

Move Down

Copy Component

Paste Component As New

Paste Component Values

Edit Script

Displaying public variables in the Inspector panel

I'm sure you're wondering what the word public means at the beginning of
a variable statement:

public int numberl = 2;

It means that the variable will be visible and accessible. It will be visible as a property in the
Inspector panel so that you can manipulate the value stored in the variable. It also means
it can be accessed from other scripts using the Dot Syntax. You'll learn more about the Dot
Syntax in Chapter 6, Using Dot Syntax for Object Communication.

Time for action — making a variable private

Not all variables need to be public. If there's no need for a variable to be changed in
the Inspector panel nor be accessed from other scripts, it doesn't make sense to clutter the
Inspector panel with needless properties. In LearningScript, perform the following steps:

1. Change line 6 to the following:

private int numberl = 2;

1341

Chapter 3

2. Change line 7 to the following:

int number2 = 9;

3. Save thefile.

4. In Unity, select Main Camera.

What just happened?

You will notice in the Inspector panel that both properties, Number 1 and Number 2
are gone.
¢ Line6:private int numberl = 2;
The preceding line explicitly states that the number1 variable is to be private,
therefore the variable is no longer a property in the Inspector panel. It is now a
private variable to store data.
¢ Line7:int number2 = 9;
The number2 variable is no longer visible as a property either, but you didn't
specify it as private.

If you don't explicitly state whether a variable will be public or private, by default,
the variable will implicitly be private.

1
~ It is good coding practice to explicitly state whether a variable will
be publicorprivate.

So now when you click on Play, the script works exactly as it did before. You just can't
manipulate the values manually in the Inspector panel anymore.

Always use meaningful names for storing your variables. If you don't do that, six months
down the line, you will be sad. I'm going to exaggerate here a little bit to make a point.
| will name a variable as shown in the following code:

public bool theBearMakesBigPottyInTheWoods = true;

That's a descriptive name. In other words, you know what it means by just reading the
variable, and so ten years from now when you look at that name, you'll know exactly
what it means. Now suppose instead of theBearMakesBigPottyInTheWoods, | had
named this variable as shown in the following code:

public bool potty = true;

1351

Getting into the Details of Variables

Sure, you know what potty is, but would you know that it referred to a bear making a big
potty in the woods? | know right now you'll understand it because you just wrote it, but

six months down the line, after writing hundreds of other scripts for all sorts of different
projects, you'll look at that and wonder what potty meant. You'll have to read several lines
of code you wrote to try to figure it out.

You may look at the code and wonder who in their right mind would write such a terrible
code. So take the time to write a descriptive code that even a stranger can look at and know
what you mean. Believe me, in six months or probably less, you will be that stranger.

Begin variable names with lowercase

You should begin a variable name with lowercase because it helps to distinguish between
a class name and a variable name in your code. The Component names (class names)
begin with a capital letter. For example, it's easy to know that Transform s a class, and
transformis a variable.

There are of course exceptions to this general rule, and every programmer has a preferred
way to use lowercase, uppercase, and perhaps an underscore to begin a variable name. At
the end, you will have to decide upon a naming convention you like. If you read the Unity
forums, there are some heated debates on naming variables. In this book, | will show you
my preferred way, but you can use whatever is more comfortable for you.

Let's use the same example again as follows:

public bool theBearMakesBigPottyInTheWoods = true;

You can see that the variable name is actually eight words squished together. Since variable
names can be only one word, begin the first word with a lowercase, and then just capitalize
the first letter of each additional word. It greatly helps to create descriptive names and still
being able to read it. There's a word for this called camelCasing.

Have a go hero — viewing multi-word variables in the Inspector panel

| already mentioned that for public variables, Unity's Inspector will separate each word
and capitalize the first word. Go ahead, add the previous statement to LearningScript
and see what Unity does with it in the Inspector panel.

Chapter 3

Every variable we want to use in a script must be declared in a statement. What does that
mean? Well, before Unity can use a variable; we have to tell Unity about it first. Ok then,
what are we supposed to tell Unity about the variable?

There are only three absolute requirements for declaring a variable and they are as follows:

¢ We have to specify the type of data a variable can store
¢ We have to provide a name for the variable

¢ We have to end the declaration statement with a semi-colon
The following is the syntax we use for declaring a variable:
typeOfData nameOfTheVariable;

Let's use one of the LearningScript variables as an example; the following is how to
declare a variable with the bare minimum requirements:

int numberl;
The following is what we have:
¢ Requirement #1 is the type of data that number1 can store, which in this case is an
int, meaning an integer
Requirement #2 is a name which is number1
Requirement #3 is the semi-colon at the end
The second requirement of naming a variable has already been discussed. The third

requirement of ending a statement with a semi-colon has been discussed. The first
requirement of specifying the type of data will be covered next.

The following is what we know about this bare minimum declaration as far as Unity
is concerned:

¢ There's no public modifier which means it's private by default

¢ It won't appear in the Inspector panel, or be accessible from other scripts

& The value stored in number1 defaults to zero

1311

Getting into the Details of Variables

The most common huilt-in variable types

This section only shows the most common built-in types of data that C# provides for us and
that variables can store.

Just these basic types are presented here so that you understand the concept of a variable
being able to store only the type of the data you specify. The custom types of data that you
will create later will be discussed in Chapter 7, Creating the Gameplay is Just a Part of the
Game in the discussion of Dot Syntax.

The following chart shows the most common built-in types of data you will use in Unity:

Type Contents of the variable
int A simple integer, such as the number 3
float A number with a decimal, such as the number 3.14

string Characters in double quotes, such as, “Watch me go now”

bool A boolean, either true or false

There are few more built-in types of data that aren't shown in the preceding
chart. However, once you understand the most common types, you'll have no
’ problem looking up the other built-in types if you ever need to use them.

We know the minimum requirements to declare a variable. However, we can add more
information to a declaration to save our time and coding. We've already seen some examples
in LearningScript of assigning values when the variable is being declared and now we'll
see few more examples.

Time for action - assigning values while declaring the variable

Add some more variables to LearningScript using the types shown in the previous chart.
While declaring the variables, assign them values as shown in the following screenshot. See
how they are presented in the Inspector panel. These are all public variables so they will
appear in the Inspector panel:

Chapter 3

using UnityEngine;
using System.Collections;

public clas=s LearningScript : MonoBehawviour
{

1o tn b L R B

public int numberl = 2;

public float number? = 4.7f;

public string someWord=s = "How i= the time™;
public bool checkThisCut = true;

s BTe]

11 H] wvold Start ()
{

[
| oLn o L R

— vold Update ()
1 {

What just happened?

The following screenshot shows what Unity presents in the Inspector panel:

¥ Learning Script (ipt) W %,
Script LearningScript @
Mumber 1 s

Mumber Z
is the time

The variables are displayed in the Inspector panel with the values already set.

You will be declaring and using variables in many places in a script. The variables that | have
shown you so far are called member variables. They are members of the LearningScript
class, not declared within any method. These member variables are the only variables that
have the option of being displayed in the Inspector panel or being accessed by other scripts.

So where in the class should the member variables be declared? This is another subject that
can lead to heated discussions. Personally, | declare them at the top of a class file before
any methods are declared so that | see them all in one place. Other people like to declare
variables close to the point of first use in a method.

[391

Getting into the Details of Variables

Declaring your member variables at the beginning of a class may

give you a mental clue that these member variables can be used

everywhere in the script.

We will also be creating variables in methods. These variables are called as local variables
and are never displayed in the Unity's Inspector panel, nor can they be accessed by other
scripts. This brings us to another programming concept called variable scope.

Variable scope is a fancy way of saying "Where in the script does a variable exist". The
following screenshot explains you the scope of variables:

—||uzing UnityEngine;
using Sy=tem.Collections;

—||public class LearningScript : MonoBehawviour

Code Block 1.

[T Y SN VI R

ztring blockl = "Block 1 text™;

¥
I

o
a
"8
[
n
ot
[x1]
H
o

g . !
1 Debug.Log (blockl) : Code Block 2.
string blockZ = "Block 2 text";
Debug.Log (block2) ;

{ Code Block 3!

Debug.Log (blockl) ;
Debug.Log (block2)
string block3 = "Block 3 text"™;
1 Debug.Log (block3)

oo s L R

You might have noticed that the rectangular blocks start and end with curly-braces. Just
like the AddTwoNumbers () method in Chapter 2, Introducing the Building blocks for Unity
Scripts, the code between the opening curly-brace and a closing curly-brace is called a code
block. Absolutely anywhere in a code that you have an opening curly-brace, there will be a
closing curly-brace to match. All the code between the two braces is a code block.

1401

Chapter 3

Notice that the code blocks can be nested inside other code blocks.

You normally don't just create bare blocks of code with curly-braces like |
did with Code Block 3. Code blocks are usually part of other things such
@’@‘\ as if statements, looping statements, and methods. This example is just to
’ demonstrate how the scope of a variable works, and where a variable exists
and is useable.

The following is what you have:
Line 16: string block3 = "Block 3 text";

The preceding line declares a local string variable named block3. This variable exists in
the code block that is labeled Code Block 3. If you try to use the variable block3 outside of
Code Block 3, such as in Code Block 2 or Code Block 1, Unity will give you an error message
saying that variable block3 doesn't exist.

The scope of the variable block3 is the code block defined by the curly-braces of lines 13
and 18.

Now let's look at the block1l variable:
Line 6: string blockl = "Block 1 text";

The preceding line declares a string type member variable named block1. This variable
exists in the code block that is labeled Code Block 1. This code block begins on line 5 and
ends on line 20. This means the variable block1 can be used everywhere, including Code
Block 2 and Code Block 3 because, they are also within Code Block 1. The block1 variable
is used in Code Block 2 on line 10, and in Code Block 3 on line 14.

The scope of the block1 variable is the code block defined by the curly-braces between
lines 5 and 20.

Pop quiz - knowing how to declare a variable

Q1. What is the proper way to name a variable?
Q2. How do you make a variable appear in the Unity's Inspector panel?
Q3. Can all variables in a script show in the Inspector panel?

Q4. Can a variable store any type of data?

(411

Getting into the Details of Variables

Summary

We first covered how to write a C# statement, especially the semi-colon to terminate

a statement. All the Component properties shown in the Inspector panel are member
variables in the Component's class. Member variables can be shown in the Inspector panel,
or accessed by other scripts when the variable is declared as public. The type of data a
variable can store is specified when it's declared. Finally, we learned that variable scope
determines where it is allowed to be used.

Now that we've learned about variables, we're ready to learn the details of C# methods that
will use the variables we create — which is the topic of the next chapter.

[42]

In the previous chapter, you were introduced to a variable's scope—where

a variable exists and is allowed to be used. The scope is determined by the
"opening" and "closing" curly braces. The purpose of those curly braces is to act
as a container for a block of executable code, a code block. In second chapter you
saw that a method is a code block that can execute by just calling the method's
name. It's time to see the importance of code blocks and the variables used in
them. A method defines a code block which begins and ends with curly braces.

In this chapter we will cover the features of methods:

® & 6 o o o

*

Ending method definitions with curly braces
Using methods in a script

Naming methods properly

Defining a method

Calling a method

Returning a value from a method

Using Unity's Update () and Start () methods

Variables are the first major building block of C#, methods are the second, so let's dive
into methods.

Getting into the Details of Methods

Ending a method definition using curly braces

At the beginning of Chapter 3, Getting into the Details of Variables you learned about C#
statements and the requirement to end them with a semicolon. A method definition has
a different requirement.

A method definition ends with a code block between a pair of curly braces. DO NOT end
a method definition with a semicolon.

If you do accidentally place a semicolon at the end, MonoDevelop will gladly remind
you with an error message that you're not supposed to use a semicolon at the end
of a method definition.

Using methods in a script

There are two reasons for using methods in a script:

¢ To provide behavior to a GameObject

¢ To create reusable sections of code

[All of the executable code in a script is in methods.]

The first purpose of a method is to work with the member variables of the class. The
member variables store data that's needed for a Component to give a GameObject its
behavior. The whole reason for writing a script is to make a GameObject do something
interesting. A method is the place we make the behavior come to life.

The second purpose of a method is to create code blocks that will be used over and over
again. You don't want to be writing the same code over and over. Instead, you place the
code into a code block and give it a name so you can call it when needed.

Always use meaningful names for your methods. Just like | explained for variables, if you
don't use good names, then six months from now you will be sad.

Since methods make GameObject do something useful, you should give your method a
name that sounds like "action." For example, JumpOverTheFence or ClimbTheWall.
You can look at those names and know exactly what the method is going to do.

[44]

Chapter 4

Don't make them too simple. Suppose you name a method Wwiggle. Sure you know what
Wiggle means right now, but in six months you'll look at that and say "Wiggle? Wiggle
what?" It only takes a moment to be a little more precise and write WiggleMyButt.
Now when you see that method name, you'll know exactly what it's going to do.

Begin method names with an uppercase letter

Why? We do this to make it easier to tell the difference between what is a class or method,
and what is a variable. Also, Microsoft suggests beginning method names with an uppercase
letter. If someone else ever looks at your code, they will expect to see method names
beginning with an uppercase letter.

Using this example again:

void AddTwoNumbers ()

{

// Code goes here

}

You can see the name is actually three words squished together. Since method names can
only one word, the first word begins uppercase, then just capitalize the first letter of each
additional word. For example, PascalCasing.

The method name always includes a pair of parentheses on the end. The parentheses not
only let you know that the name is a method, but they do serve an important purpose of
allowing you to input some data into the method when needed.

Defining a method properly

Just like for variables, we have to let Unity know about a method before we can use it.

Depending on who you talk to, some will say we have to declare a method, others will say
we have to define a method. Which is correct? In C#, it doesn't make any difference. Use
which ever term helps you learn easier. | like to say I'm defining a method's code block,
nothing like declaring a simple variable on a one line statement.

1451

Getting into the Details of Methods

The minimum requirements for defining a method

There are three minimum requirements for defining a method:

¢ The type of information, or data, a method will return to the place where the
method was called

The name of the method should be followed by a pair of parentheses

A pair of curly braces should be present for containing the code block:

returnDataType NameOfTheMethod ()

{
}

Looking at LearningScript once again, or any Unity generated script, the Start ()
method has the three bare-bone minimum requirements for a method:

void Start ()

{
}

Here's what we have:

¢ Our first requirement is the type of data the method will return to the place in the
code that called this method. This method isn't returning any value, so instead of
specifying an actual type of data, the keyword void is used. This informs Unity that
nothing is being returned from the method.

Second requirement is the method name which is Start ().

Last requirement is the curly braces, which contains the code that defines what the
method is going to do.

This example fulfills the bare minimum requirements to be a method. However, as you can
see, there's no code in the code block, so when start () is called by Unity, it doesn't do
anything at all, but it's still a method. Normally, if we aren't going to use a method by adding
code to a skeleton method created by Unity, we can simply remove them from our script. It's
normally best to remove unused code after the script is done being written.

Here's what we know about this bare minimum method definition as far as Unity
is concerned:

¢ There's no public modifier, which means this method is private by default.
Therefore, this method cannot be called from other scripts.

¢ There's no code in the code block. Therefore, this method doesn't do anything,
so it can be removed if we wish.

1461

Chapter 4

Understanding parentheses — why are they there?

One thing for sure is that it makes easy to recognize that it's a method, but why are they part
of a method's name?

We already know that a method is a code block that is going to get called multiple times. That's
one of the reasons why a method created in the first place, so we don't have to write the same
code over and over. Remember the AddTwoNumbers () method back in Chapter 2. It was very
simple method used to explain the concept of a method and how to call it. Now it's time to
take the next step and learn the usefulness of the parentheses.

Time for action - adding code hetween the parentheses

We're going to modify LearningScript to send some information to the
AddTwoNumbers () method to make it much more useful.

Why would we need to send information to a method?

A script may need to add two numbers several times, but they probably won't always be
the same two numbers. We could possibly have hundreds of different combinations of "two
numbers" to add together. This means that we need to let the method know, which two
numbers need to be added together at the moment when we call the method.

1-|uwsing UnityEngine;
2 u=ing System.Collections;

—||public class LearningScript @ MonoBehaviour
{
int numberl

[¥]
e

1 o s LA

int number?
int number3

o
-1 LA

100 7 veid Start () .,
11 {

12 AddTwoNumbers (numberl, numberl);
13 2ddTwoNumbers (numberl, number3):
AddTwolNumbers (number2, number3);

17[= woid Update ()
18 {

20 } yd // ’// /
21 ¥ » P/
22 = woid AddTwoMNumbers (int firstMHumber, int secondNumber)
23 {

int result = firstNumber + secondHumber:
Debug.Log (resualt) ;

[41]

Getting into the Details of Methods

Using the preceding screenshot, perform the following steps:

1. OpenLearningScript in MonoDevelop to modify it.

2. Addlines 6, 7, and 8 to declare three integer variables.
3. Add lines 22 to 26 to define the AddTwoNumbers () method with parameters.
4. Addlines 12, 13, and 14 to call the AddTwoNumbers () three times.
5. Savethefile.
6. Click on Play in Unity.
What just happened?

As this script executes, the AddTwoNumbers () method is called three times on lines 12,
13, and 14. The method's code block adds two numbers and displays the result in the Unity
Console (see the yellow arrows in the following screenshot):

Project B«
Clear Collapse €

5o
UnityEngine.Debug:Log

Error Pause

o 5 —

UnityEngine.Debug:Log
10 -——
UnityEngine.Debug:L

Those parentheses are like a cubbyhole. When we call AddTwoNumbers () a couple of
numbers are stuffed into the cubbyhole. When the code block executes, it takes those
two numbers held in the cubbyhole and uses them on line 24.

There's a special name for that information between the parentheses of a method
definition, such as line 22—the code is called the method parameters.

If you look up the word parameters in the dictionary, your brain will probably seize up. All it
means is that the method has to be able to use the information you send it, so you simply
have to specify the type of data the method is allowed to use. That's it, it's very simple.

In the earlier screenshot, on line 22 the red arrows pointed to the type of the declared
variables firstNumber and secondNumber. The type is int, or integer. Now notice the
red arrow pointing to the variables number1, number2, and number3. They are also of the
type int. These variables have to be of type int since they store the numbers that will be
added in the method, which the parameters specify will be of type int.

Chapter 4

So now go look in the dictionary again. You will probably see the word limit in there
somewhere. That's what you did when you specified the type of data, an integer, that the
method will use. You set some limits on what's allowed.

Ok, so you're setting parameters, or limits, on the type of data the method can use, but
what exactly is a parameter? Well, the first parameter is called £irstNumber, and what is
firstNumber doing? It's storing a value that will be used in the code block on line 24. What
do we call things that store data? That's right, variables. Variables are used everywhere.

% Remember, a variable is just a substitute name for the
s value it actually stores.

As you can see on line 22 of the code block, those variables are being added together.

How many parameters can a method have?

We can have as many as you need to make the method work properly. Whether we write our
own custom methods, or you use the methods of the scripting reference, the parameters
that are defined are what the method will require to be able to perform its specified task.

In the earlier screenshot, look at lines 12 and 22. Do you notice anything different?
They sure don't look the same, do they? The variable names, which the blue arrows
point to, are different.

If you are looking at that code and saying "What the heck?" then don't feel bad. When | was
first learning the concept of calling methods, | had one heck of time understanding how the
code worked. It is, in fact, very simple, but | fought with this for days before the lights came

on. | consulted all the programming books | had, written by all the experts, and not a single

one had the decency to explain how the code worked. All those book authors just assumed

I'd "get it" because after all, they were experts.

I had to figure it out myself with trial and error testing. After many days, | finally had my
"Ah-Ha" moment.

Arguments?? Who dreams up these words? We all know what an argument is. Every one of
us has been involved in an argument at some time. Well, someone decided this would be a
good word to mean something in programming. Sure enough, look it up in a dictionary and
you'll probably see something like this: "A value or address passed to a procedure or function
at the time of call."

1491

Getting into the Details of Methods

Yup, that explains it totally, right? Ok, let's really learn what arguments are, and what they do
in code. In the previous screenshot, look at line 12:

AddTwoNumbers (numberl, number2) ;

Between the parentheses are the variables, number1 and number2. Those two variables
are called the arguments that are being passed to the method. In simple terms, the values
stored in these two variables, 2 and 3, are placed in the cubbyhole.

On line 22, the method defines that it takes in two parameters called firstNumber and
secondNumber. This means, of course, that somewhere in this process these parameters
will have to have values assigned them.

Here's the secret | finally discovered on my own. Behind the scenes, where you can't see,
the values 2 and 3, that are in the cubbyhole, are now assigned to the variables
firstNumber and secondNumber.

You don't see this code, but if you could see it, what happens with arguments and
parameters looks just like this:

firstNumber = numberl;
secondNumber = number2;

¢ Since the argument number1 contained the value 2, now the parameter
firstNumber contains the value 2

¢ Since the argument number2 contained the value 3, now the parameter
secondNumber contains the value 3

Now the code block is executed and the value 5 is displayed in the Unity Console.

As you can now see, the names of the arguments and the names of the parameters don't

need to be the same. They're just names of variables used in different places in your code.
They're just substitutes for the actual values each contain, and it's the value that's getting
transferred from the method call to the method code block.

Returning a value from a method

Now it's time to discover the "power" feature of using a method. This usually means sending
data to the method, which you just learned to do, then have the method return a value back.
Previously, all you had the AddTwoNumbers () method do was take the result of adding two
numbers and display it to Unity's Console.

Now, instead of displaying the result directly, you're going to modify AddTwoNumbers ()
to return the result of the addition back to the place the method was called.

Chapter 4

4 Remember, | told you that when you call a method, it's just a substitute

for the code block that will be executed. It's like taking all the code in the
g method's code block and placing it right there where the method was called.

The next screenshot is still very simple, but it shows how this substitution works and
how returning a value from a method works.

Time for action - returning a value from AddTwoNumhbers()

Modify LearningScript to call the AddTwoNumbers () method twice and get a grand
total. Also create another method whose sole purpose is to display the grand total result.

1. OpenLearningScript in MonoDevelop to modify it.

On line 12, declare the answer variable (this statement is on 3 lines).

On lines 19 to 23, redefine the AddTwoNumbers () method with a return type.

On lines 25 to 28, define the DisplayResult () method.
Save the file.

DU ANWN

Click on Play in Unity.

1[-/|using UnityEngine;
using System.Collections;

—||public class LearningScript : MonoBehaviour
{

int numberl

int number2

8 int number3 1

1 & otnob L
o

LR X

10 [H woid Start ()

11 { Motice this single statementis on 3 lines.
12 int answer =

AddTwoNumbers (numberl, number?) +
AddTwoNumbers (numberl, number3):

DisplayResult (answer) ;

g =] int AddTwolNumbers (int firstNumber, int secondNumber)

int result = firstNumber + secondNumber:
return result;

—] wolid DisplayResult (int total)
{

- T IS

Debug.Log ("The grand total i=s: ™ 4+ total):

B B3 R B3 ORI ORI R B3 BRI R
=

511

Getting into the Details of Methods

What just happened?

As you can see in the following screenshot, the result is 14. However, the main concept
to learn from this example is this:

¢ When a method returns a value, it's a type of data just like a variable would store

¢ Infact, the value returned from a method could easily be stored in a variable

Analysis of the code is as follows:

¢ The code on line 10 and its description is as follows:
void Start ()

Unity calls the start () method once only.

¢ The code on lines 12 to 14 and its description is as follows: (Note: | have put this
single statement on three lines for a better screenshot.)

int answer =
AddTwoNumbers (numberl, number2) +
AddTwoNumbers (numberl, number3) ;

All this line does is add two numbers and store the result in a variable

named "answer".

First there is a call to AddTwoNumbers (numberl, number2) on line 19.

The arguments number1 and number2 send the integers 2 and 3 to the method

parameters on line 19.

¢ The code on line 19 and its description is as follows:
int AddTwoNumbers (int firstNumber, int secondNumber) ;

The integers 2 and 3 are assigned to the parameter variables firstNumber
and secondNumber .

¢ The code on line 21 and its description is as follows:

int result = firstNumber + secondNumber;

The numbers 2 and 3 are added and stored in the declared variable result.

521

Chapter 4

¢ The code on line 22 and its description is as follows:

return result;

The integer 5, stored in the variable result, is returned back to line 12, where the
method was called.
¢ Back to the code on line 12 with its description:

Where you see AddTwoNumbers (numberl, number2), now sits the integer 5.
The substitution has taken place.

Now, line 12 continues its execution with another call to:
AddTwoNumbers (numberl, number3) on line 19

The only difference is that the arguments have changed.
The arguments number1 and number3 send the integers 2 and 7 to the method
parameters on line 19.

¢ Back to the code on line 19 again with its explanation:
The integers 2 and 7 are assigned to the parameter variables firstNumber
and secondNumber.

¢ The code on line 21 and its description:

2 and 7 are added and stored in result.

¢ The code on line 22 with its description:
The integer 9, stored in result, is returned back to line 12, where the method
was called.

¢ Backto the code on line 12 again with its description:

Where you see AddTwoNumbers (numberl, number3), now sits the integer 9.
The substitution has taken place.

Now line 12 continues its execution. There is a plus sign between the two method
calls which means 5 and 9 are added together and the resultant integer 14 is now
stored in the variable answer.

The start () method code block now continues execution on line 16.

¢ The code on line 16 and its description is as follows:

DisplayResult (answer) ;

This is calling the DisplayResult () method on line 25.

It takes one argument. The argument used is the variable answer which stores
a value of type int.

The argument answer sends the integer 14 to the method parameter on line 25.

[531

Getting into the Details of Methods

¢ The code on line 25 with its descripton:
void DisplayResult (int total)

The integer 14 is assigned to the parameter variable total.

¢ The code on line 27 and its description:
Debug.Log ("The grand total is: " + total);

This output to the Unity Console includes a little peek into the next chapter.
Some text is displayed as well as the value stored in the variable total.
The Unity Console displays The grand total is: 14.

The start () method is done executing its code. Since there is no further code
in LearningScript to execute, the script is done.

Have a go hero — add two more numbers together

Try modifying line 12 to add the numbers together that are stored in the variables number2
and number3. You will have to include an additional call to AddTwoNumbers (). The result in
the Console should be The grand total is: 24.

As you can see by following the code analysis, code is executed one step at a time. However,
calling a method does send code execution on a detour. The method is then executed one
line at a time until the end of the method is reached. If the method return type is void,

then execution restarts from the point where the method was called. If the method returns
a value, then the value returned is substituted at the place the method was called, then
execution restarts from the point of substitution.

Using Unity's Update and Start methods

Every time you create a script in Unity, these two skeleton methods are included. That's
because they are rather important. These are the most commonly used MonoBehaviour
methods, see the next screenshot for others. I like to call these Unity's magic methods
because you don't call these methods, Unity does. It's usually important that at least one
MonoBehaviour method is included in a Unity script to cause the script to execute. | say
usually because other methods in the script may be called from another script or class.

How do | know these two methods are called by Unity and that they are MonoBehaviour
methods? Here, the Unity Scripting Reference is your friend.

541

Chapter 4

Here's just a portion of the methods Unity can call in a script. This is from the Scripting
Reference. Just search for MonoBehavior:

Overridable Functions
Update

LateUpdate
FixedUpdate

Awake

Start

Look at line 4 of LearningScript:

public class LearningScript : MonoBehaviour

This line says that LearningScript inherits from MonoBehaviour. Any script that inherits
from MonoBehaviour will automatically call the methods Update () and Start () if they are
in the script. Therefore, if you want, you can create a script in MonoDevelop instead of Unity,
just have it inherit from MonoBehavior by adding:: MonoBehaviour after the class name.

[Please notice the colon that needs to be included.]

The Start method is called one time

Unity calls this method only one time. When the GameObject your script is attached to is
first used in your scene, the Start () method is called. This method is primarily used to
initialize, or setup, the member variables in your script. This allows everything in your script
to be ready to go before Update () is called for the first time.

You've probably noticed that many of the examples | used in LearningScript are making
use of Start (). These examples weren't initializing any code, | was just taking advantage
of the fact that since start () is only called once, displaying output to the Console would,
therefore, only be displayed once, which just made it easier to see the output displayed.

The Undate method is called over and over and over...

As you study the sample code in the Scripting Reference, you will notice that a vast majority
of the code is in the Update () method. As your game runs, the Scene is displayed many
times per second. This is called Frames per Second, or FPS. After each frame is displayed,
the Update () method is called by Unity to run your code.

Getting into the Details of Methods

Since Update () is called every frame, it allows your game to detect input, such as mouse
clicks and key presses, every frame. User input is one of the topics we are about to cover in
the next chapter.

Pop quiz - understanding method operation

Q1. What are the minimum requirements for defining a method?
Q2. What is the purpose of the parentheses at the end of the method's name?
Q3. What does void mean in a method definition?

Q4. In a Unity script, how is the Update () called?

Summary

In this chapter, we learned that a method definition ends with a code block between two
curly braces, not with a semicolon. The parentheses are part of a method's name. We also
learned how to call a method into action, how to use data returned from a method, and
that Unity calls some methods automatically, such as the Start () and Update () methods,
when the script inherits from the MonoBehaviour class.

You now know the two major building blocks of scripting, variables and methods. From now
on, everything else you do will just be making use of variables and methods. Now that you
understand these two building blocks, you are ready for the next chapter that deals with
making decisions in your code.

One of the primary duties of a computer is controlling what happens next
when certain conditions are met. That's what computers do whether the code
is controlling an application or a game. We write scripts to make GameObjects
behave a certain way one moment, then the behavior should change when the
conditions change. A script has to detect when the conditions change, then
make the appropriate code execute based on the new conditions. This chapter
looks at some examples of the ways that conditions can change, and the code
to detect these changes. This in turn determines which code in the script is
executed next.

In this chapter we will discuss:

If statement decisions
Checking for many conditions
If-else statement decisions

User's input condition changes

* & O o o

Looping though data in an Array, List, or Dictionary

Let's begin...

Making Decisions in Code

Testing conditions with an if statement

If, if, if. 1f | do this... if | do that... What happens if...

Certainly you've had to make decisions about all kinds of things in your life every day. We all
do it all the time without actually giving the process of making a decision much thought, if
any. As we make daily decisions, most of the time we just do the decision processing in our
head. Unity doesn't have that human luxury, so we have to write it out so Unity can know
the conditions that lead to certain choices. Having to write the logic is the strange part of
writing code for beginners, simply because people usually make the vast majority of decision
without writing anything down first. However, it is very simple to do.

An if statement is the most common way GameObjects make decisions. Data used to make
these decisions is the information usually stored in some variables. For an if statement it's as
easy as saying "If my condition is met, then execute my code block."

Testing if conditions are true or false

A sampling of conditions that can be true or false:

The user pressed a button
The temperature is cold

The character died

* & o o

The bear made big potty in the woods

General questions like these are answered by humans, usually, with either a yes or no. For
Unity, the answers will be either true or false. For example: "the bear made big potty in the
woods" is either true, or false.

Time for action - create a couple of if statements

The if statements work by determining whether a condition inside a pair of parentheses is
true or false.

1. Modify LearningScript as shown in the next screenshot.
2. Save thefile.
3. In Unity, click on Play.

Chapter 5

—||uzing UnitvEngine;
using System.Collections;

[P S

—||public class LearningScript : MonoBehaviour
{
= woid Startc ()
{

1 oot

bool theBearMadeBigPottyInTheWoods = true;

e lTe]

10 —p if (theBearMadeBigPottyInTheWoads)
11 {
Debug.Log ("Thi= is true, and it's =stinky, too."):

I
[F S

}

theBearMadeBigPottyInTheWoods = false:

oo s

~ A
1 9 if (le theBearMadeBigPottyInTheWoods)

Debug.Log ("Of course WNOT, it's a polar bear.™):

=

DR R RS e

VR
E

What just happened?

Here's the output in the Unity Console:

Errar Pause

Code analysis:

¢ The code on line 8 is as follows:

bool theBearMadeBigPottyInTheWoods = true;

This Boolean variable is declared and assigned the value of true.
¢ The code on line 10 and its description:

if (theBearMadeBigPottyInTheWoods)

An if statement to test if the condition between the parenthesis is true or false.

The variable theBearMadeBigPottyInTheWoods is storing a value true,
therefore.The code block on lines 11 to 13 is executed, as shown in the
Console screenshot.

Making Decisions in Code

Using the NOT operator to change the condition

Here's a little curveball to wrap your mind around, the NOT logical operator. It's written in
code using an exclamation mark. This makes a true condition false, or a false condition true.

¢ The code on line 15 along with its description:

theBearMadeBigPottyInTheWoods = false;
Assigns the value false to theBearMadeBigPottyInTheWoods.

¢ The code on line 17 with its description is as follows:
if(! theBearMadeBigPottyInTheWoods)

Another if statement, but this time theBearMadeBigPottyInTheWoods is false.

However, there's a NOT logical operator in front of the variable. See the exclamation
mark in the red circle shown in the previous screenshot.

This means the if statement condition is NOT false, which is the same as saying
true. Therefore the code block on lines 18 to 20 will be executed, as shown in
the Console screenshot

The code block on lines 18 to 20 will be executed, as shown in the Console screenshot

| can already hear your question, why not just check for true? As you will discover when
writing if statements, you need to be able to make decisions based on whether a condition
is true, or if the condition is false. You want the option to execute a code block for either of
these two conditions. For example, you may want to execute some code based on whether
a user didn't press a button at a particular time. If the user did not press the button, then
execute the code block.

Checking many conditions in an if statement

Sometimes you will want your if statements to check many conditions before any code block
is executed. This is very easy to do. There are two more logical operators that you can use:

¢ AND: Itis used by putting && between the conditions being checked.
¢ OR:ltis used by putting | | between the conditions being checked.

Time for action - create if statements with more than one

condition to check

1. Modify LearningScript as shown in the next screenshot.
2. Save thefile.
3. In Unity, click on Play.

Chapter 5

—||u=ing UnityEngine;
using System.Collections;

[S

—||public class LearningScript : MonoBehaviour

oo

1 {

B ORY
oowom

5 {
6 [— wvoid Start ()
7 {
8 bool theBearMadeBigPottyInTheWoods = true;
] int temperature = 40:
10 d
11 if (temperature >= 55{&&)tHEEEEIHadEBigFottyInTheWoodsJ
12 {)
13 Debug.Log ("Both conditions are true.");
14 } -
1 -~

if (temperature »>= SS{J|>the3earHadEBigFottyInTheWoodsJ

Debug.Log ("Cnly takes one of these conditions to ke true.™):

% Notice line 11 is using the AND operator, and line 16 is
A using the OR operator.

What just happened?

Here is the output you get in the Unity Console:

Code analysis:

¢ The code on line 8 and its description:
bool theBearMadeBigPottyInTheWoods = true;

A bool variable is declared and assigned the value of true.

¢ The code on line 9 with its description:

int temperature = 40;

An int variable is declared and assigned the value 40.

[61l

Making Decisions in Code

*

The code on line 11 with its description:

if (temperature >= 35 && theBearMadeBigPottyInTheWoods)

An if statement to test if both conditions are true.

The first test is checking if the temperature is greater then, or equal to, 35.

The value stored in temperature is 40, so this condition is true.

The value stored in theBearMadeBigPottyInTheWoods is true. Therefore the first

condition and the second condition are true, so the code block executes.

The code on line 16 with its description:

if (temperature >= 35 || theBearMadeBigPottyInTheWoods)

An if statement to test if either of the conditions are true.

We already know that both the conditions are true, and either the first condition
or the second condition needs to be true. Therefore the code block will execute.

Have a go hero — change the value assigned to temperature

Try changing temperature to a lower value such as 30. Only one of the if statements will

be true:

Error Pause

5 to be true,

The following is the analysis of code:

*

The code on line 11 and its description is as follows:

if (temperature >= 35 && theBearMadeBigPottyInTheWoods)

Only one of the conditions is now true, as 30 is not greater then, or equal to, 35.

Therefore the first condition is false. Since both conditions have to be true, the
code block does not execute.

1621

Chapter 5

¢ The code on line 16 and its description:

if (temperature >= 35 || theBearMadeBigPottyInTheWoods)

Only one of the conditions is now true.
30 is not greater then or equal to 35, therefore the first condition is false.
The second condition is true.

Since only one of the two conditions has to be true, doesn't make any difference
which one, the code block executes.

Have a go hero — change theBearMadeBigPottyinTheWoods to false

Now change theBearMadeBigPottyInTheWoods to false as well. Now you see that
neither of the if statements will execute their code blocks.

Using an if-else statement to execute alternate code

So far, the if statements have needed certain conditions to be true for the code block to
execute. There is an option that allows you to have an alternate code block execute when
the if statement conditions are false.

¢ If my conditions are met, execute the following code block, else execute the
alternate code block

This is very simple concept, just like a little kid saying: "If you give me an ice
A cream cone, I'll be nice, else I'm going to be naughty."

Time for action - add "else” to the if statement

if-else statements are just like regular if statements with the else option added.

1. Modify LearningScript as shown in the next screenshot.
2. Save thefile.

[631

Making Decisions in Code

3. In Unity, click on Play.

using UnicyEngine;
using System.Collections;

public class LearningScript : MonoBehaviour

{

[Y-S VR S T

wolid Stcartc ()
i

bool theBearMadeBigPottyInTheWoods = false;

=]

if (theBearMadeBigPottyInTheWoods)
i

Debug.Log ("This is executed because the condition is true™):;

e g8 a——
i

[R Y S I S

Debug.Log ("This is executed because the condition is false™);

e

Line 14 shows how else, and its code block is simply added after the i £ code block.

What just happened?

The analysis of code is as follows:

¢ The code on line 8 and its description:

bool theBearMadeBigPottyInTheWoods = false;
The variable theBearMadeBigPottyInTheWoods is assigned the value of false.

¢ The code on line 10 and its description:
if (theBearMadeBigPottyInTheWoods)

Since the condition is false, the code block on lines 11 to 13 is not executed, and the
script continues to line 14 of the if-else statement.

Therefore, the code block on lines 15 to 17 is executed instead:

64l

Chapter 5

Pop quiz - understanding if statements

Q1. Humans can answer questions with a yes or no. What do C# if statements need
as answers?

Q2. What logical operator can turn a true condition into false, or a false condition
into true?

Q3. If two conditions have to be true to make an if statement's code execute, what logical
operator would you use to join the conditions?

Q4. If only one of two conditions needed to be true to make an if statement's code execute,
what logical operator would you use to join the two conditions?

Decisions always have to be made when the user provides input. In Chapter 2, Introducing
the Building Blocks for Unity Scripts, we used an example where the user had to press the
Return/Enter key to call the AddTwoNumbers () method:

if (Input.GetKeyUp (Keycode.Return))
AddTwoNumbers () ;

The if statement condition becomes true only when the Return key is released after being
pressed down. Here's a partial screenshot of the GetKeyUp () method as shown in the
Scripting Reference:

Input.GetKeyUp
static@'g_lKeyUp(KeyCode key);

Description , —
Heturnsuring the frame the user releases the key identified by the key KeyCode enum parameter.

After the Return key is released, AddTwoNumbers () is executed.

Notice that the code, AddTwoNumbers (), isn't between two curly braces.
% When there is only one line of code to execute for an if or an else, you have
g the option to not use the curly braces.

Making Decisions in Code

Storing data in an array, a List, or a Dictionary

There are times that many items need to be stored in some type of list. Perhaps a selection of
weapons that a character may use. An example used later in this book is a list of splashscreens
for the State Machine project we will build.

There are basically two ways to access items in a list:

¢ Direct retrieval: The location of an item in the list is already known, so code is
written to access it directly, or

¢ Loop retrieval: The location of an item in the list is not known, it's just in there
somewhere, so code is written to loop through the list until the item desired is found.

First though, we need a list of items before we can select anything from the list. An example
of collecting items into a list, then looping through the list, is shown in the Scripting
Reference under the Get Components () method:

public Hingedoint [] hingeJoints;
void Example () {
hingeJoints = gameObject.GetComponents<HingeJoints> () ;

All the HingeJoints in a GameObject are collected into an array (list). Once all the
HingeJoints are in the array, it's up to us to decide which HingeJoints we want to
work with in our code.

So bottom line, what are we talking about here? We know that a variable stores a single
item. For instance, we could store a single weapon in a variable. That's great as long as we
only have one weapon. Suppose we have the option of using many different weapons. To
store these weapons we would need a separate variable for each one. A better option would
be to store all the weapons in some sort of super-variable that can store many items, that
way they're all stored in one place, not in a whole bunch of different variables.

That's what an array, a List, or a Dictionary is, a variable with the ability to store many items.
Like a super-variable divided into many cubbyholes.

Storing items in an array

Looking at the GetComponents () example on the Scripting Reference, let's see how an
array is created:

Chapter 5

¢ Asperthecodeonline 1: public HingeJoint[] hingeJoints;

o public means this array will appear in the Inspector. Also the array is
accessible from other scripts.

0 HingeJdoint [] is the type of variable being created. It's going to be a
HingeJoint type (HingeJoint is a class in the Scripting Reference).

o The square brackets specify that the variable created is going to be an array,
a variable with many cubby-holes to store several HingeJoint objects, and
only HingeJoint objects.

o hingeJoint is the name of the array being created.

That was easy enough. It's just like creating any other variable. The only difference
was the addition of the square brackets to specify that the type of variable being
declared is actually going to be an array.

Now that the array is created, the Get Component () method retrieves all the
HingeJoints on the GameObject and stores each of them into the array:

¢ Asperthe codeonline 3: hingeJoints = gameObject.
GetComponents<HingeJoints> () ;

o hingeJoints isthe array

o GameObject is the variable that stores the GameObject this script is
attached to

0 GetComponents<HingeJoints () is the method used to find every
HingeJoint object on this GameObject

As each HingeJoint object is found, it is stored into one of the cubbyholes of the array.
These cubbyholes actually have a real name called an element. These elements actually
have a specific location inside the hingeJoint array. Each element is given an index
number. The first HingeJoint found would be stored in the element at index 0, the
second one found is stored in the element at index 1. The third at index 2, and on and
on until all the HingeJoints are found on the GameObject.

So if we knew exactly, which HingeJoint in the array we wanted to work with, perhaps
the second HingeJoint which is stored in the element at index 1, we can simply retrieve
it directly by saying it's stored in the variable:

hingeJoint [1]

Once again we use the square brackets because the variable is actually an array, and also to
specify the index number.

611

Making Decisions in Code

. Please notice that the very first index number starts with zero. This is called
% zero indexed. It's just something you will have to remember. Many things in
s programming are zero indexed, and it creates coding errors when you forget,
especially for beginners.

That's all | want to say about using arrays to store objects because | want to discuss using
a List instead. It's like an array with extra benefits.

Storing items in a List

Using a List instead of an array can be so much easier to work with in a script. Look at
some forum sites related to C#, and Unity, and you'll discover that a great deal of
programmers simply don't use an array unless they have to, they prefer to use a List.

Here are the basics of why a List is better, and easier, to use than an array:

An array is a fixed size and unchangeable
The size of a List is adjustable

You can easily add to, and remove elements from a List

* 6 o o

To mimic adding a new element to an array, we would need to create a whole
new array with the desired number of elements, then copy over the old elements

The first thing to understand is that a List has the ability to store any type of object,

just like an array. Also, just like an array, we must specify, which type of object you want

a particular List to store. This means that if you want a List of integers, of the int type,
then you can create a List that will store only the int type. Want a List of pony names?
Then create a List that will store only the string type.

Time for action - create a List of pony names

Create a List that stores the names of some ponies. Since they are names, use
the string type.

1. Modify LearningScript as shown in the next screenshot.
2. Notice the change on line 2.
3. Save thefile.

Chapter 5

4. n Unity, click on Play.

1[-|/|using UnityEngine;

2 using System.Collections.Generic;

4 [=[|public class LearningScript @ MonoBehaviour

5 {

&= wvoid Start ()

7 {

8 List<string> myFavoritePonies = new List<string>():

] -~

10 myFavoritePonies.Rdd‘t"P:"_:cess Cadence™) ;

11 myFavoritePonies.Add ("Fluttershy")

12 myFavoritePonies.Add ("Hightmare Moon™); /

14 Debug.Log ("This Li=st has " + myFavoritePonies.Count + " ponies."):
1& Debug.Log ("The pony's name at index 1 is " + myFavoIitePonieaL]]:
17 Debug.Log ("The por =2 name at index 2 is " + myFavoritePonies[2]):
18 Debug.Log ("The por 3 name at index 0 is " + myFavoritePonies[0]):
19 }

20 }

What just happened?

The following screenshot is the Console output. Notice the first output tells you there is a
total of 3 elements in the List:

Making Decisions in Code

Please notice that your code is using dot syntax, which will be discussed in
more detail in the next chapter. The main concepts | want you to focus on
g here are the features of a List.

The analysis of code is as follows:

¢ The code on line 2 is as follows:

Using System.Collections.Generic;
To be able to use a List, this tells Unity where to find the necessary C# code files
for using a List.

Change the using statement to using System.Collections.Generic;.

¢ The code on line 8 is as fololws:

List<string> myFavoritePonies = new List<strings() ;

This statement creates an empty List object.

First thing to notice is that List<string> specifies that you are creatinga List
of type string.

The name of the List ismyFavoritePonies.

Everything on the left side of the assignment operator (=) is creating a variable,
declaring the type and the name.

Everything on the right side is just like assigning a value to a variable, therefore
new List<string() isa method called to create a new List object in computer
memory, and give that memory location the name of myFavoritePonies.

* What is different here is that List is an object that itself can store data in

elements. Imagine an egg carton as an object that can store the egg type.
g Creating objects will be discussed more in the next chapter about dot syntax.

701

Chapter 5

¢ The code between lines 10 to 12:
myFavoritePonies.Add ("Princess Cadence") ;
These three lines of code are adding strings, the pony names, to the
myFavoritePonies List.

Just like an array, each pony name string added is given an index number for
the element that each pony name is stored in:

myFavoritePonies
Princess Nightmare
Fl h
Cadence uttershy Moon
Index O Index 1 Index 2

¢ The code on line 14 is as follows:

Debug.Log("This List has " + myFavoritePonies.Count + " ponies");
myFavoritePonies.Count retrieves the number of elements in the List.

¢ The code between lines 16 and 18:
Debug.Log ("The pony's name at index 1 is " + myFavoritePonies[1]) ;

Here you see the index number inside square brackets. Just like an array, this is how
to directly retrieve the data in an element at a specific index.

Like the array, the first elementin a List is at index 0.

Inl

Making Decisions in Code

Have a go hero — add another pony to the List

Add another pony to the List, then display it's name. Also, in the Console, display the
number of elements in the List after adding the fourth pony.

1[-l|using UnityEngine;

2 using System.Collections.Generic;

4[| public class LearningScript : MonoBehaviour

=] {

& [woid Startc ()

7 {

8 List<=string> myFavoritePonies = new List<string>():

10 myFavoritePonies.Add ("Princes=s Cadence™):

11 myFavoritePonies.add ("Fluttershy™);

12 myFavoritePonies.Add ("Nightmare Moon™) ;

14 Debug.Log ("This List has " + myFavoritePonies.Count 4+ " ponies.™):
16 Debug.Log ("The pony's name at index 1 i= " 4+ myFavoritePonies[1]):
17 Debug.Log ("The po at index 2 i= " 4 myFavoritePonies[2]):
18 Debug.Log ("The pony at index 0 i= " 4+ myFavoritePonies[0]):
20 myFavoritePonies.Add ("Rainbow Dash");
21
22 Debug.Log ("The pony's name at index 3 i= " 4+ myFavoritePonies[3]):
23
24 Debug.Log ("This List now has " + myFawvoritePonies.Count + " ponies.™);
25
26

Froje

Clear Collapse Clearan Play Error Pause

% Adding an element to the Li st shows the flexibility it has over an array.
L This is impossible to do using an array.

121

Chapter 5

Storing items in a Dictionary

A dictionary has a Key/Value pair. The Key is just like an index in an array or list, it's associated
with a particular value. The big benefit of a dictionary is that we can specify what the key is
going to be. We have to specify the type and the name of the key that will be associated with
the value stored.

A real world example you're familiar with is a collection of customers and their ID number.
Just by knowing the customer's ID, you could retrieve the customer's information.

Time for action - create a dictionary of pony names and keys

Create a Dictionary using type int for the keys.

1. Modify LearningScript as shown in the next screenshot.
2. Save thefile.
3. In Unity, click on Play.

1[-|/|u=ing UnityEngine;
2 using System.Collections.Generic;

4[-||public class LearningScript : MonoBehaviour
5 {

6= wvoid Start)

7 {

8 Dictionary<int, string> myFavoritePonies = new Dictionary<int,string>():

10 myFavoritePonies.Add (10, "Princess Cadence™):

2 ways to add to a Dictionary
11 myFavoritePonies.Add (20, "Fluttershy"); -4 -

12 myFavoritePonies[30] = "Nightmare Moon™: S

]

Debug.Log ("The pony's name for
15 Debug.Log ("The pony's name for E
Debug.Log ("The pony's name for E

" + myFavoritePonies[10]):
" 4+ myFavoritePonies[20]):
" 4+ myFavoritePonies[30]):

1

myFavoritePonies[40] = "Rainbow Dash"™;

Debug.Log ("The pony's name for EKey 40 i=s " + myFavoritePonies[40]):

Debug.Log ("Thi=s Dictionary has " + myFavoritePonies.Count + " ponie=s.");

Fi R K3 RS RS
[SA

131

Making Decisions in Code

What just happened?

Here is the output to Unity's Console.

Error Pause

LnityEng

The analysis of code is as follows:

¢ The code on line 8 is as follows:

Dictionary<int, string> myFavoritePonies = new Dictionary<int,
strings> () ;

Declaring a Dictionary is very similar to declaring a List.
A Dictionary requires you to specify the type for the Key.

This example used integers for the keys.

¢ The code onlines 10 and 11 is as follows:

myFavoritePonies.Add (10, "Princess Cadence") ;
myFavoritePonies.Add (20, "Fluttershy");

Here you added two ponies using Add, just like you did for a List.

¢ The code on lines 12 and 18 with its description is as follows:

myFavoritePonies [30] = "Nightmare Moon";
myFavoritePonies [40] = "Rainbow Dash";

Here you added ponies by assigning the pony name to a particular dictionary key.

(11

Chapter 5

Using a Collection Initializer to add items to a List or Dictionary

There is another way to add elements to a List or Dictionary. So far you have declared and
created a new empty List and Dictionary, then added ponies to them on separate lines of
code. You can add the ponies at the same time you declare the List or Dictionary with a
Collection Initializer.

Time for action - adding ponies using a Collection Initializer

If we know the items to add ahead of time, we can add them when we create the List
orDictionary.

1. Modify LearningScript as shown in the next screenshot.
2. Save thefile.
3. In Unity, click on Play.

1-/|using UnityEngine;
2 u=ing System.Collections.Generic;

3 [=|| public class LearningScript : MonoBehaviour

5 {
&= wvold Start ()
7 {

List<string>» myFawvoritePonies = new List<string>|()

{"Prince=s Cadence", "Fluttershy"}:

1 -~ b
11 Debug.Log ("The pony's name at index 0 is " + myFavoritcePonies[0]):
12 Debug.Log ("The pony's name at index 1 is " 4+ myFavoritePonies[1]):

4 Dictionary<int, string> ponyDictionary = new Dictionary<int, s=string>()
5 {{10, "Nightmare Moon™}, {20, "Rainbow Dash"}}:

16 -~ s

17 Debug.Log ("The pony's name at Eey 10 i= " + ponyDictionary[10]):

18 Debug.Log ("The pony's name at Eey 20 i= " + ponyDictionary[20]):

1751

Making Decisions in Code

What just happened?

Here's the Console output:

nityEn

0 The pony' is Rainbow Dash
UnityEn]

The analysis of the code is as follows:

¢ The code on lines 8 and 9 with its description:

List<string> myFavoritePonies = new List<string>() {"Princess
Cadence", Fluttershy"};

This is actually a single statement. It's on two lines to make it fit the screenshot.

Line 9 shows the Collection Initializer that's been added to the usual
List declaration.

Notice the pony names are between two curly braces. This is not a code block.
This is another use of curly braces.

This List Collection Initializer is the two curly braces and the strings, the pony
names, that are between them.

Notice there is a semicolon after the last curly brace. This ends the List
declaration statement.

¢ The code between lines 14 and 15:
Dictionary<int, string> ponyDictionary = new Dictionary<int,
string>() {{10, "Nightmare Moon"}, {20, "Rainbow Dash"}};
This is a single statement. It's on two lines to make it fit the screenshot.

Line 15 shows the Collection Initializer that's been added to the usual
Dictionary declaration.

Each key and value pony name is between two curly braces, then all the
key/value pair combinations being initialized are between two curly braces.

1761

Chapter 5

Pop quiz - understanding an array and a List

Q1. In an array or a List, what is an element?

Q2. In an array or a List, what is the index number of the first element?
Q3. Can a single array, or a single List, store different types of data?

Q4. How can you add more elements to an array to make room for more data?

Looping though lists to make decisions

These previous array, List, and Dictionary examples showed how to get data into them,
and how they store data. It's now time to learn how to loop through the data to retrieve
the needed data.

Here are some common ways to perform loops:

¢ foreach loop
¢ forloop

¢ whileloop

When working with Collections such as an array, a list or dictionary, the preferred way to
cycle through the elements and retrieve data is to use the foreach loop.

Time for action - using foreach loops to retrieve tata

We're going to create an array, a list and a dictionary, then loop through each one to retrieve
the desired data from each one by using foreach loops.

1. Modify LearningScript as shown in the next screenshot.
2. Save thefile.

[l

Making Decisions in Code

3. In Unity, click on Play.

1-llusing UnityEngine;

2 “using System.Collections.Generic;

3

4-]|public class LearningScript : MonoBehaviour

514

6

7 void Start ()

8 {

9 string[] ponyArray = new string[]
10 {"Appledack", "Rarity"};
11
12 foreach(string pony in ponyArray)
13
14 if(pony == "Rarity")
15 Debug.Log("I was looking for " + pony);
16 }
17

18 List<string= ponyList = new List<string=()

19 {"Princess Cadence", "Fluttershy"};

20

21 foreach(string pony in ponylList)

22

23 if(pony == "Fluttershy")

24 Debug.Log("I was looking for " + pony);

25 }

26

27 Dictionary<int, string> ponyDictionary = new Dictionary<int, string=()
28 {{1@, "Nightmare Moon"}, {2@, "Rainbow Dash"}};
29

30 foreach(KeyValuePair<int, string> pony in ponyDictionary)
31 {

32 if(pony.Key == 20)

33 Debug.Log("I was looking for " + pony.Value);
34 }

35 }

36 - }

What just happened?

As we looped through each list, we decided which data to display to the Console:

17181

Chapter 5

The analysis of the code is as follows:

For each list we created, we populated them using a Collection Initializer.

*

The code between lines 9 and 10 with its description:
string[] ponyArray = new string[] {"AppleJack", "Rarity"};

A string array named ponyArray is declared and two strings are added.

The code on line 12 with its description is as follows:

foreach(string pony in ponyArray)

A foreach loop is used to retrieve one element, a pony name string, stored

INn ponyArray.

A variable is declared named pony to hold the retrieved pony name.

Once a pony name is retrieved, the foreach code block, lines 13 to 16, is executed.
This looping continues until each element in ponyArray has been retrieved and

tested in the code block.

The code on line 14 with its description is as follows:
if (pony == "Rarity");
If the retrieved string stored in pony is equal to "Rarity", then line 15 executes.

The code on line 15 with its description is as follows:

Debug.Log ("I was looking for " + pony) ;

The string | was looking for plus the string value stored in pony is displayed in
the Console.

The code between lines 18 and 19 with its description:

List<string> ponyList = new List<string>() {"Princess Cadence",

"Fluttershy"};

A List named ponyList is declared that will store the string type, and two
strings are added.

The code on line 21 with its description is as follows:

foreach(string pony in ponyList)

A foreach loop is used to retrieve one element, a pony name string, stored
in ponyList.

A variable is declared named pony to hold the retrieved pony name.

191

Making Decisions in Code

Once a pony name is retrieved, the foreach code block (that is, lines 22 to 25)
is executed.

This looping continues until each element in ponyList has been retrieved and
tested in the code block.

¢ The code on line 23 with its description is as follows:
if (pony == "Fluttershy")
If the retrieved string stored in pony is equal to "Fluttershy", then line
24 executes.

¢ The code on line 24 with its description is as follows:

Debug.Log ("I was looking for " + pony) ;

The string | was looking for plus the string value stored in pony is displayed
in the Console.

¢ The code between lines 27 and 28 with its description:

Dictionary<int, strings> ponyDictionary = new Dictionary<int,
string>() {{10, "Nightmare Moon"}, {20, "Rainbow Dash"}};

A Dictionary named ponyDictionary is declared with key and value of type
<int, strings, and two key/value pairs are added.

¢ The code on line 30 with its description is as follows:
foreach (KeyValuePair<int, string> pony in ponyDictionary)
A foreach loop is used to retrieve one KeyValuePair, a key and value, stored in
ponyDictionary.
A variable is declared named pony to hold the retrieved KeyvaluePair.

Once a key value and a pony name string are retrieved, the foreach code block
(that is, lines 31 to 34) is executed.

This looping continues until each KeyValuePair in ponyDictionary has been
retrieved and tested in the code block.

¢ The code on lines32 with its description is as follows:

if (pony.Key == 20)
If the retrieved Key stored in pony is equal to 20, then line 33 executes.

¢ The code on line 33 with its description is as follows:

Debug.Log ("I was looking for " + pony.Value) ;

The string T was looking for plus the string value stored in pony.Key is
displayed in the Console.

Chapter 5

The best description I've found for a for loop: "Allows a code block to be executed a specific
number of times."

The syntax of a for loop:

for (initializer; condition; iterator)

{

code block

% Notice the three parts inside the parentheses are
i separated by semicolons, not commas.

Time for action - selecting a pony from a List using a for loop

Let's add four pony names to a List. Retrieve and display the number of elements in the
List. Then use a for loop to display each pony name, and select one of them:

1. Modify LearningScript as shown in the next screenshot.
2. Save thefile.
3. In Unity, click on Play.

1l-lusing UnityEngine;

2 “using System.Collections.Generic;

3

4=/ public class LearningScript : MonoBehaviour

5[4

6= void Start ()

7 {

8 List<string> ponyList = new List<string>()

g {"Princess Cadence", "Fluttershy", "Rainbow Dash", "Rarity"};
1@

11 Debug.Log("Number of elements in ponylList: "™ + ponyList.Count);
12

13 for(int i = @; i < ponyList.Count; i++)

14 {

15 Debug.Log(ponyList[il);

16

17 if(ponyList[i] == "Fluttershy")

18 Debug.Log("I was looking for " + ponyList[i]);
19 }
20 }
21 4|}

(81l

Making Decisions in Code

What just happened?

The following screenshot shows the number of elements in ponyList, the names of the
ponies we added to ponyList, and the pony we were looking for:

Rarity
UnityEngine.Debuc

The analysis of the code is as follows:

¢ The code between lines 8 and 9 with its description:

List<string> ponylList = new List<string>() {"Princess
Cadence", "Fluttershy", "Rainbow Dash", "Rarity"};

A List named ponyList is declared that will store the string type.

Four strings are added of the pony names.

¢ The code on line 11 with its description is as follows:

Debug.Log ("Number of elements in ponyList: " + ponyList.Count) ;
The string Number of elements in ponyList: plusthe number of elements
used in ponyList is displayed in the Console.

ponyList .Count is using dot syntax to access the Count property, a variable
that stores the number of elementsin a List.

Four names were added to ponyList, so it has four elements to store the
string names.

1821

Chapter 5

¢ The code on line 13 with its description is as follows:
for(int 1 = 0; i < ponyList.Count; i++)
The for loop is created.
The initializer is simply a declared variable that's assigned a value.
We declared a variable i of type int, and assigned it the a value of 0. Why?
The first index number in a List is 0.

The condition is checked for true before the code block, lines 14 to 19, is allowed
to be executed.

When our for loop first begins, the variable i is equal to 0, and ponyList.Count
is equal to 4, therefore 0 is less than 4, which is t rue. Therefore the for loop code
block is allowed to execute.

The iterator, i++, now adds 1 to i, making i now equal to 1.

i++ isthe same thing as writingi = i + 1, which means that you are taking the
value in 1 and adding 1, then assigning that to 1.

The loop repeats until the condition becomes false.

After four times through the loop, i is now equal to 4, therefore the condition is
now false because i is not less than 4, so the loop is finished.

* The letter "i" is typically used as the variable name in a for loop. It's tradition. If

you happen to have nested for loops, then the variable names used will be the
’ letters j, k, |, and so on, as needed.

¢ The code on lines 15 with its description is as follows:
Debug.Log (ponyList [1]) ;

The elements in ponyList are being access using the index number.
As the for loop is executed for the first time, i is equal to 0, therefore
ponyList [i] is actually ponyList [0], the element at index O.

The element at index 0 is storing Princess Cadence.

After each iteration through the for loop, 1is added to i, therefore the next trip
through the for loop, i will be 1.

ponyList [1] will actually be ponyList [1], the next element at index 1.

The result is all four ponies will be accessed and displayed in the Console.

[831

Making Decisions in Code

¢ The code on lines 17 with its description is as follows:
if (ponyList [i] == "Fluttershy")

During each iteration through the code block, this if statement is checking to see if
the name retrieved from ponyList is equal to "Fluttershy".

When it is, line 18 is executed.
¢ The code on lines 18 with its description is as follows:
Debug.Log ("I was looking for " + ponyList[i]);

The string I was looking for plusthe name Fluttershy is displayed in
the Console.

The while loop executes a code block until a specified expression evaluates to false.

A while loop is very similar to a for loop. It's like breaking the for loop into component parts:

The syntax of a while loop:
initializer
while (condition)
{
code block
iterator

Time for action - finding data and breakout of the while loop

We're going to do something a little different in this loop. Once we find the pony we want,
we'll breakout of the while loop. This is handy when looping through a large list of objects.
When the desired data is found, there's no sense in continuing to loop through the rest of
the list:

1. Modify LearningScript as shown in the next screenshot.

2. Save thefile.

3. In Unity, click on Play.

184l

Chapter 5

1-llusing UnityEngine;
2 ~using System.Collections.Generic;
3
4=l public class LearningScript : MonoBehaviour
5 4
6= void Start ()
7 {
8 List<string> ponyList = new List<string>()
g {"Princess Cadence", "Fluttershy", "Rainbow Dash", "Rarity"};
10
11 int i = @;
12 while(i < ponyList.Count)
13 {
14 Debug.Log(ponyList([il]);
15
16 if(ponyList[i] == "Rainbow Dash")
17 {
18 Debug.Log("Stop. I was looking for " + ponyList[il);
19 break;
20 }
21 i++;
22 ¥
23 }
24 -}
What just happened?

If we have been searching for Fluttershy instead of Rainbow Dash, and not included the
break keyword on line 19, the output would have been exactly the same as the for loop
example. In fact, the break keyword could have also have been used to breakout of the

for loop.

Making Decisions in Code

I will skip explaining lines of code that are identical in the for loop example.
The analysis of the code is as follows:

¢ The code on line 11 with its description is as follows:

int 1 = 0;
The initializer is declared and assigned the value of 1.

¢ The code on line 12 with its description is as follows:

while (i < ponyList.Count)

The while loop is declared with the condition.
Since i is 0, it is less than ponyList . Count, which is 4, the condition is true.

The while loop code block (that is, lines 13 to 22), is executed.

¢ The code on line 16 with its description is as follows:
if (ponyList [i] == "Rainbow Dash")
During each iteration through the code block, this i f statement is checking to
see if the name retrieved from ponyList is equal to Rainbow Dash.
When it is, the code block of lines 17 to 20 is executed.

When it isn't, line 21 is the next line that is executed.

¢ The code on line 21 with its description is as follows:
i++;
The iterator i is incremented by 1 and the loop repeats back to line 12 to check
the condition again.
The loop repeats until 1 is equal to 4, making the condition false which exits
the loop.

¢ The code on line 18 with its description is as follows:

Debug.Log("Stop. I was looking for " + ponyList[i]);

The string Stop. I was looking for plusthe name Rainbow Dash is
displayed in the Console.

Chapter 5

¢ The code on line 19 with its description is as follows:

break;

break is a C# keyword that alters code flow.

Code execution immediately leaves this while loop code block and continues to the
first statement following the code block.

There is no statement following the while loop, the script is finished.

Have a go hero — changing the pony name heing searched

On line 16, change the pony name being searched and observe how it changes the number
of pony names displayed in the Console before stopping.

Summary

There are unlimited ways to make decisions in code, however, we covered many of the
common ways. The if statement is how the majority of decisions are made, including the
if-else statements. Then we covered some of the sources that require making decisions, like
user input, and using loops to evaluate data stored in arrays, lists and dictionaries. None of
this is complicated. It's just a process of simple, logical steps.

Now that we've learned about the fundamentals of programming for writing scripts, it's time
to dig into the world of objects. Since everything in Unity is an object, you need to know how
to access the Components of an object, and how to communication between objects, by
using dot syntax. You have seen some dot syntax used already in the examples we've coded.
In next chapter, you will see how those dots work.

811

Using Dot Syntax for Object
Communication

Scripts do many things by accessing the features built into Unity and third-party
plugins. The Unity Scripting Reference is our link to the built-in Unity features.
The thing is, exactly how do we invoke all of those Unity features?

So far all we've covered is basic C# programming. Granted, the example code
we've seen has included some Dot Syntax, such as Debug.Log() to send output
to Unity's Console. This is one of those Unity features. In the last chapter, we
even saw some more Dot Syntax, pony.Key and pony.Value, which has nothing
to do with Unity. These are just C# OOP (Object Oriented Programming)
related features.

In both cases, there's some type of communication taking place to access
methods and data to make things happen. To the beginner, those dots maybe
odd looking and confusing, and they may ask, "What's the deal with all those
darn dots between words?" Well, if you've been using the Internet and paid any
attention at all, you've been using those dots, probably for years, and didn't
pay much attention to them.

We see how to access the power of Dot Syntax as we cover the following sections:

* ¢ o o

Dot Syntax being just an address

Working with objects

Using Dot Syntax in a script

Accessing GameObjects using drag-and-drop versus writing code

So let's get on with it...

Using Dot Syntax for Object Communication

Using Dot Syntax is like addressing a letter
Ever seen something like this?

www.unity3d.com

That's right, a web address. Gee, | wonder why it's called a web address?

Here is a fictitious mailing address:
Terry Norton

22 myStreet

Essex, VT

You've understood how to read an address like this since you were a kid. Let's take a look at
it again using a different format:

Post Office Syntax

Terry Norton Specific

22 myStreet

Essex, VT General
Dot Syntax
Essex, VT . 22 myStreet . Terry Norton
General » Specific

Looking at that, Dot Syntax isn't so confusing. It's just an address in a different format, in a
way to locate things. Here's an example: imagine we met in Europe somewhere, and | ask
you to get my sunglasses using only this information:

USA.Vermont.Essex.22 myStreet.2ndFloor.office.desk.center drawer.sunglasses

Would you have any problem locating them?

Chapter 6

| could foresee one big issue trying to retrieve my sunglasses. My house isn't open to
the public; it's a private residence, so the door is locked. This means you don't have access
to the sunglasses.

The same rules of access apply to member variables and methods of a class or script.

In C#, when we create a member variable or method in a script, it is private by default.
We can also explicitly specify that it's private.

Here, private means:

¢ Avariable will not show in the Inspector as a Component property

¢ The variable or method will not be accessible from other scripts
We can specify a variable or method to be public.
Here, public means:

¢ Avariable will show in the Inspector as a Component property

¢ The variable or method will be accessible from other scripts

Dot Syntax is the system used to locate and communicate with a variable or method in an
object. To understand how to use Dot Syntax, we have to know the relationship between
a class and its objects.

% A script always has access to its own member variable and methods whether
A they're private or public.

Working with objects is a class act

I'm throwing the word object around like you were born with the knowledge of what an
object is. Actually you do know what it means. The coffee cup you may have in your hand
is an object, a real one. That UFO flying around at night is an object; even if you can't
identify it. In Unity, you may have a flying saucer in your Scene, but it's obviously not a real
flying saucer, it's a virtual one. However, in the virtual world of gaming, most people would
consider things they can see on the screen as objects.

If you can expand your mind just a little bit more, perhaps you can accept that not all objects
in Unity have to be something you can see in a game Scene. In fact, the vast majority of
objects in Unity are not visually in the Scene.

[91l

Using Dot Syntax for Object Communication

In a computer, an object is just a small section of your computer's memory that acts like a
container. The container can have some data stored in variables and some methods to work
with the data.

The best example | can show you is the object you've been using since you started this book.

In MonoDevelop, we've been working with the script called LearningScript. In Unity we
use the general term Script, but it's actually a class, which means it's a definition of a type of
container. Look at line 4 of the file:

public class LearningScript : MonoBehaviour

See that second word? That means that LearningScript is a class. In this class, we defined
its member variables and methods. Any variable not declared in a method is a member
variable of the class.

In Chapter 2, Introducing the Building Blocks for Unity Scripts | told you about the magic that
happens when we attach the script (class) to a GameObject. Shazam!! The script becomes a
Component object, a type of container for the GameObject that we defined as having some
variables to store data and some methods to work that that data.

Besides the visual mesh in the Scene, can you visualize in your mind that a GameObject is
just a bunch of different types of Component objects assembled together to construct that
GameObject?

Each of those individual Components shown in the Inspector will become an object in our
computer's memory when we click on the Play button.

Select any GameObject in the Scene, then look at the Inspector. For example, select

the Main Camera GameObject. There are several Components on the Main Camera
GameObiject. Look at each of those defined Components. Every one of those Components
started off as a class file in Unity, defining a type of container of variables and methods.
We don't see or modify those Unity class files, but they're in Unity somewhere.

¢ The name of the class is also known as the object type of the object that will be
created in memory from that class, when the Play button is clicked.

¢ Justlike an int, or a stringis a type of data, the name of a class is also a type
of data.

¢ This means that when we declare a variable and specify the type of data it will store,
it can just as easily store a reference to an object of the LearningScript type, as
shown in the following line of code:

LearningScript myVariable;

1921

Chapter 6

¢ Storing a reference to an object in a variable does not mean we are storing the
actual object. It means we are storing the location in memory of that object. It's
just a reference that points to the object in memory so that the computer knows
where to access the object's data and methods.This means we can have several
variables storing a reference to the same object, but there's still only one actual
object in memory.

. Ascriptis just a file on your hard drive, and there's only ever one file. The class
% file simply defines a type of container of variables and methods that will become
A a Component object in the memory when you click on Play. You can attach the

script to many GameObjects, but there's still only one file on your hard drive.

Attaching a Script to a GameObject is like placing a sticky-note on the GameObject. When
we click on the Play button, Unity looks at our GameObject, sees the sticky-note which says,
"This GameObject is supposed to have a Component of type LearningScript. Make some
room in the computer's memory to hold this object of variables and methods as described in
the LearningScript class file."

If we were to attach LearningScript to 1000 GameObjects, and click on Play, there will
be 1000 separate sections created in your computer's memory that each stores an object
of type LearningScript. Each one has its own set of variables and methods, as described
by the script file. Each one of those 1000 sections of computer memory is a separate
Component object of its respective GameObject.

R Even though the object created from a class is called a Component by
% Unity; in more general C# terms, each object that gets created from a
A class is called an instance object. A Component object and an instance

object are the same thing.

Using Dot Syntax in a script

Now that you know that each Component object resides in computer memory, storing data
in variables, it's time to use Dot Syntax to access those Component variables and methods.

Dot Syntax can be used to access any pubic variable or method on any Component on any
GameObiject. Even though a Component always has access to its own variables and methods,
we can still use Dot Syntax if we want.

[931

Using Dot Syntax for Object Communication

In order to have access to a variable or method, we have to know its location. Let's start by
looking in LearningScript.

Here's an overview of how to access a variable or method from within the current Component:

1
variable or method(‘e

2
this CE variable or method
°

Time for action — accessing a variahle in the current Component

Let's look at accessing a variable in LearningScript from inside LearningScript.

1. Modify LearningScript as shown in the following figure:

—||using UnityvEngine:
uzing System.Collections.Generic:

[PRI % I

public class LearningScript : MonoBehaviour
{

&N s

string myString = "Access the wvariable ";
— vold Start ()

{
10 Debug.Log("Pre=z=s the Beturn kev."):

s B e & +]

[}
[PRI % I

— vold Update ()
14 {

if (Input.GetKeyDown (KeyCode.Return))
{
1 Debug.Log (myString + "the normal way."):

Debug.Log(thiz.my5tring + "using 'this'" keyword.™):
_,,ff’”A'—Debug.LngtGetCnmpnnent<LearningScript>t}.myString

=
1 ¬n

[T s]

2 this keyword + "using GetComponent™}):

21 *

22 Debug.Log(this) ;

23 Debug.Log (GetComponent<LearningScript>())
24 ¥

25 ¥

26 H

Chapter 6

2. Save thefile.
3. In Unity, click on Play.

What just happened?

Here are the outputs in the Console:

An analysis of the code shown in the previous code screenshot is as follows:
Line 6: string myString = "Access the variable ";

¢ myStringis the variable that will be accessed
¢ Notice thatit's private by default, yet it can still be accessed
Line 17: Debug.Log (myString + "the normal way.");
¢ Thisis how we have been accessing the value stored in a variable, by just using
the variable name

¢ The stringvalueinmyString, Accessing this variable, is substituted
for the variable name

¢ myStringis being accessed without using Dot Syntax or Get Component (),
because a script always has access to its own variables and methods

Line 18: Debug.Log (this.myString + "using 'this' keyword.");

myString is being accessed using Dot Syntax

The this keyword refers to the current instance of the class,
the current Component

Using Dot Syntax for Object Communication

Line 19: Debug. Log (GetComponent<LearningScripts> () .myString + "using
GetComponent.") ;

myString is being accessed using Dot Syntax again

¢ This time, the generic GetComponent<T> () method is retrieving the
LearningScript Component

Line 22: Debug.Log (this) ;

¢ Using this, the Component is sent to the Console so we can see that this is the
current LearningScript Component object

Line 23: Debug.Log (GetComponent<LearningScript>()) ;

¢ Using GetComponent<LearningScripts (), the Component is sent to the
Console, so we can see this also is the current LearningScript Component object

¢ The this keyword and GetComponent<LearningScripts () are both retrieving
the same LearningScript Component object

Whoa!! What's with line 18?

Notice item 1 in the graphic under the section, Accessing a Component's own variables and
methods? This is the usual way we will access variables and methods in the current script;
no Dot Syntax required. This is how we've been doing it from the beginning of this book. It's
how we will probably continue to access them. However, we do have the option of accessing
the variables and methods in the current Component object using Dot Syntax.

As you can see from the output of lines 17 and 18, the value stored in myString is
substituted no matter how we access myString.

So if we really wanted to, we could use the Get Component () method to retrieve the
current Component object of the LearningScript class in memory, then use Dot Syntax to
access myString. However, C# provides a shortcut to get the current Component object by
using the this keyword.

Item 2 in the graphic is the syntax used in line 18. In this example, the keyword this simply
means the current instance object of the LearningScript class, the current Component.

Why do | even mention using this at this time? Later on when we get

into the State Machine, we will be using this. | want you to be aware of
’ what this is, a substitute for the current instance object of a class.

Chapter 6

Now we start to just touch on the real power of Dot Syntax, communicating with other
objects to access variable data and methods. We will now communicate with another
Component on the same GameObject, the Main Camera. Remember, LearningScript is
attached to the Main Camera already. The following diagram will explain how this is done:

Component i

4
Component variable or metth

Time for action - communicating with another Component on
the Main Camera

Let's create another script with a variable and a method, and attach it to the Main Camera,
then have LearningScript communicate with it:

1. In Unity, create another C# Script and name it TalkToMe.

. Make apublic string variable named hereItIs.

Assign some text to hereItIs.
Make a public method named MakeMeTalk ().

Have MakeMeTalk () output some text to the Console.

QLA WN

Attach MakeMeTalk () to the Main Camera. Now the code should look something
like this:

using UnityEngine;
using System.Collections;

public class TalkToMe : MonoBEehaviour

{

1 n N b L R
|

public string hereltIs = "This iz the TalkToMe wariable™;

8 = public wvoid MakeMeTalk ()
9 {
10 Debug.Log ("This iz the TalkToMe method™);

1971

Using Dot Syntax for Object Communication

7. Modify LearningScript to retrieve the TalkToMe Component.
8. Modify LearningScript to retrieve the data in hereItIs.

9. Modify LearningScript to call the MakeMeTalk () method. Now the code
snippet should look as follows:

=||using UnityEngine;
using System.Collections.Generic;

—|| public class LearningScript : MonoBehaviour
{

[T, TS PV S

TalkToMe otherComponent;

-1

= wold Start ()
i
10 otherComponent = GetComponent<TalkToMe>():

e

Debug.Log ("Press the Return kev."):
H

= wvold Update ()

i
1 if (Input.GetKeyDown (KeyCode.Return))
{

f R I S PV

o

Debug.Log ("This is the TalkToMe Component: " + otherComponent);
Debug.Log (otherComponent .hereItIs) ;
otherComponent .MakeMeTalk () ;

B B3 PR3 R R
B Ry O
.

10. save your scripts.
11. Click on Play in Unity.

What just happened?

Here's the output:

The LearningScript Component code retrieved a variable and called a method on
the TalkToMe Component. Let's follow the code flow with these two Components.

Chapter 6

An analysis of the code shown in the previous code screenshot is as follows:
On LearningScript:

Line 6: TalkToMe otherComponent ;

Line 10:

*

Line 19:

Line 20:

*

A variable otherComponent is declared to store a value of type TalkToMe
A TalkToMe Component object will be created and stored in the variable
otherComponent

otherComponent = GetComponent<TalkToMesx () ;

Remember, this is in the Start () method which Unity calls only once to
initialize variables.

The generic version of the Get Component<T> () method is called to retrieve a
reference to the TalkToMe Component object. This is item 3 on the previous graphic
under the section, Accessing another Component on the current GameObject.

The <T> part is the type of Component, the class name, that the method
will return.

This reference is stored in the variable otherComponent. Why?So that every
time we need to use the TalkToMe Component with Dot Syntax, we can

just use the reference stored in otherComponent instead of having to use
GetComponent<TalkToMes> () each time.

Debug.Log ("This is the TalkToMe Component: " + otherComponent) ;

This line of code sends the value stored in otherComponent to the Unity Console
so we can see the reference that's pointing to the TalkToMe Component object

Debug.Log (otherComponent .hereItIs) ;

Dot Syntax is used to locate and retrieve the value stored in the variable hereItIs
of the TalkToMe Component object. This is item 4 in the graphic under the section,
Accessing another Component on the current GameObject.

The hereItIs variable is declared on line 6 of the TalkToMe class.
Notice that hereItIs is public so that it can be accessed from other scripts.

If we didn't use otherComponent, we would have written the Dot Syntax
expression like the following line of code:

GetComponent<TalkToMe> () .hereItIs

The following is a screenshot of the Scripting Reference example:

Using Dot Syntax for Object Communication

M At the time of this writing, Unity was updating its documentation. The page
Q was not complete. The following screenshot is the old page; however, the
code is still valid.

GameObject.GetComponent

function GetComponent (type : Type) : Component

Description
Returns the component of Type type if the game object has one attached, null if it doesn't. You can access
both builtin compaonents or scripts with this function.

GetComponent is the primary way of accessing other components. From javascript the type of a script is
always the name of the script as seen in the project view. Example:

C# -

using UnityEngine;
using System.Collections;

public class example : MonoBehaviour {
void Start() {
Transform curTransform;
curTransform = gameObject.GetComponent<Transform>(); 4—
curTransform = gameObject.transform;

}
void Update() {
ScriptName other = gameObject.GetComponent<ScriptName=>(); #—
other.DoSomething(); —
other.someVariable = 5;
I
}

function GetComponent.<T= () : T/ Click the link for more info

Description
Generic version. See the Generic Functions page for more details.

Line 21: otherComponent .MakeMeTalk () ;

¢ Dot Syntax is used to locate and call the MakeMeTalk () method of the TalkToMe
Component object

¢ Code flow now jumps over to the TalkToMe class. This is also item 4 in the graphic
under the section, Accessing another Component on the current GameObject.

11001

Chapter 6

On TalkToMe:
Line 8: public void MakeMeTalk ()

¢ TheMakeMeTalk () method is public so that it can be called from other scripts
¢ Its code block simply sends a string of text to the Unity Console

¢ The code block ends and code flow returns to the LearningScript class
On LearningScript:
Line 22: }

¢ Code flow has now reached the end of the if statement which began on line 17,
and is waiting to detect if we press the Return key again

M Before you proceed further with the next section, remove the TalkToMe
Q Component from the Main Camera. We are done with this script so there's
no sense in having any of its Components hanging around.

You just learned to access Components on the same GameObject. Now it's time to access
other Gameobjects, and their Components using Dot Syntax.

GameObject q

6
GameObject Component q

GameObject Component d
° °

1011

Using Dot Syntax for Object Communication

Time for action - creating two GameObjects and a new script

| want you to create one script that will be attached to two GameObjects. The script will have
two methods that will cause the GameObijects to rotate left and right. This will show you that
from a single script file, two separate Component objects will be created in the memory. Each
Component object is a separate instance object with no absolutely knowledge of the other.

1. Inyour Scene, create two GameObjects, Capsule and Cube.

2. Add a Directional Light to the Scene so you can easily see the GameObjects.
3. Here's my Scene as an example:

4. Create a new C# Script and name it Spinner.

5. Code the script as shown in the following screenshot:

using UnityEngine;
using System.Collections;

public class Spinner : MonoBehaviour

1 o o L) B

[T R

{
public volid SpinLeft ()
{

This means: 1 per second
|
Y

transform.Rotate (0,0, 60 *[Iime.deltaTimd]:

H

¥-axis

public woid SpinRight ()
{

y-axis Z-axis

transform.Rotate (0,0,-60 * Time.deltaTime) ;

[102]1

Chapter 6

6. Attach the Spinner script to the Capsule and the Cube GameObjects.

7. Modify LeaningScript as shown in the following screenshot:

1-l|using TnictyEngine;
2 u=sing System.Collections.Generic;
4 [-|l|public clas=s LearningScript : MonoBehaviour
5 {
& GameCbject capsuleG0:
7) Spinner cubeComp:
S [vold Start ()
10 { _
11 capsule:0 = GameObject.Find("Capsule™) ; -f— ’5‘
12 Debug.Log (capsulelR0) ; -
13 ‘6‘ —p cubeConp = GameCbhject.Find("Cuke") .GetComponent<Spinner> ()
14 - Debug.Log (cubeComp) ;
15 H
i
17 = vold Update ()
18 {
19 if (Input.GetEey (KeyCode.Leftirrow))
20 {
21 capsuleG0.GetComponent<Spinner> () .Spinkeft () ;
22 H
23
24 if (Input.GetKey (KeyCode . .RightArrow))
25 {
26 capsuleGO.GetComponent<Spinner>() . SpinRight () ; «—
27 H
28
29 if (Input.GetKey (KeyCode . UpArrow))
30 {
31 cubeComp . SpinLeft () ;
32 H
34 if (Input.GetEey (KeyCode.DownlAirrow))
35 {
36 cubeComp . SpinRight () ;7
37 H
38 T
39 }

8. Save thefile.
9. In Unity, click on Play.

11031

Using Dot Syntax for Object Communication

What just happened?

Here's the output to the Console:

nPlay Error Pause

ner)
e.Debugilog{Object)

Now press the left and right arrow keys to make the Capsule spin, and the up and down
arrow keys to make the Cube spin.

You created one script named Spinner, then attached the script to two separate
GameObjects. When you click on Play, two separate Spinner Component objects are
created in the computer memory. This is an example of how the Spinner class is just
a blueprint, a description, of what each Component object created will be.

To access each Spinner Component from the LearningScript Component, you need

to know about each GameObject that the Spinner Component is attached to.

This code is just a simple demonstration to show how Dot Syntax works.
s In real life, you may have each Component detect user input. On the
% other hand, perhaps you may want a class dedicated to processing user
’ input. That's the neat thing about writing code, there are a zillion ways to
accomplish a task.

An analysis of the code shown in the previous code screenshot is as follows:
On LearningScript:
Line 6: GameObject capsuleGO;

¢ Avariable of type GameObject is declared

¢ The value this will store is a reference to the Capsule in the Scene
Line 7: Spinner cubeComp;

¢ Avariable of type Spinner is declared

¢ The value this will store is a reference to a Spinner Component object created from
the Spinner class

11041

Chapter 6

Line 9: void Start ()

L 2
*

Line 11:

Line 12:

*

Line 13:

*

Line 14:

*

Line 19:

*

*

Line 21:

*

The start () method is used to allow the two variables to be initialized

Remember, this method is called only once
capsuleGO = GameObject.Find("Capsule") ;

The Find () method of the GameObject class locates a GameObject in our Scene
The reference to the Capsule GameObject is assigned to the variable capsuleGo

This is item 5 in the previous graphic and also on the previous code screenshot
Debug.Log (capsuleGO) ;

This line was added just to show that the Capsule GameObject is in fact referenced
in the variable capsuleGo

cubeComp = GameObject.Find ("Cube") .GetComponent<Spinners () ;

This line shows how to retrieve a Component on a GameObject

This retrieved reference to the Spinner Component object is on the
Cube GameObject

This is item 6 on the previous graphic and also on the previous code screenshot
Debug. Log (cubeComp) ;

This line was added just to show that the Spinner Component is part of the Cube
GameObiject, and is in fact referenced in the variable cubeComp

if (Input.GetKey (KeyCode.LeftArrow)

This if statement checks to see if the user has pressed the left arrow key
If pressed, Line 21 of the code block is executed
capsuleGO.GetComponent<Spinners () .SpinLeft () ;

This line shows using Dot Syntax to locate a method in a Component of
another GameObject.

The CapsuleGO variable substitutes the reference to the Capsule GameObject
The spinner Component object is located on the Capsule GameObject

The SpinLeft () method is called in the Spinner Component of the
Capsule GameObject

Code flow now jumps to the Spinner Component object

11051

Using Dot Syntax for Object Communication

Spinner (on the Capsule):

Line 6: public void SpinLeft ()

*
L 2

This is the SpinLeft () method called from the LearningScript object

Line 8 in the code block is executed

Line 8: transform.Rotate (0, 0, 60 * Time.deltaTime) ;

*

The Rotate () method on the Transform Component object is called which causes
the Capsule to spin around the z-axis

Notice though, that the variable named transform s used in the Dot Syntax
statement instead of the Get Component<Transforms () method

Unity has several built-in Components, such as the Transform Component class

Find the GameObject class in the Scripting Reference and notice that one of the
variables is named transform

Instead of having to use the Get Component () method on a GameObject,
Unity has provided a convenient variable already assigned the value of the
Transform Component

The following screenshot shows the transform variable described in the
Scripting Reference:

GameObject
Inherits from Object

Base class for all entities in Unity scenes.

See Also: Component.

Variables
isStatic Editor only AP that specifies if a game object is static.
transform -—— The Transform attached to this GameQObject. (null if there is none attached).
rigidbody The Rigidbody attached to this GameObject (Read Only). (null if there is none attached).
camera The Camera attached to this GameObject (Read Only). (null if there is none attached).
light The Light attached to this GameQbject (Read Only). (null if there is none attached).
animation The Animation attached to this GameObject (Read Only). (null if there is none attached).
constantForce The ConstantForce attached to this GameObject (Read Only). (null if there is none
allached)

¢ TheRotate () method shows 3 arguments being sent to the method.

¢ Inthis example, the Capsule is rotating 60 degrees per second on the z-axis.

¢ Code flow now returns to the LearningScript object.

11061

Chapter 6

On LearningScript:
Line 24: if (Input.GetKey (KeyCode .RightArrow)

¢ This if statement checks if the user has pressed the right arrow key

¢ If pressed, line 26 of the code block is executed
Line 26: capsuleGO.GetComponent<Spinners> () .SpinRight () ;

¢ Thisis almost an exact repeat of line 21, except the SpinRight () method
is being called

Line 29: if (Input.GetKey (KeyCode .UpArrow)

This if statement checks if the user has pressed the up arrow key

If pressed, line 31 of the code block is executed
Line 31: cubeComp.SpinLeft () ;

This is different than lines 21 and 26

Refer back to line 13. The cubeComp variable already stores the reference to the
Cube GameObject and the Spinner Component object, thereforelust the variable
cubeComp is needed in the Dot Syntax to call the SpinLeft () method on the
Cube GameObject

¢ Code flow is similar to line 8, except that the Cube rotates now
Line 34: if (Input.GetKey (KeyCode .DownArrow)

This if statement checks to see if the user has pressed the down arrow key

If pressed, line 36 of the code block is executed, spinning the Cube right

Have a go hero — creating and using a new variable named capsuleComp

In LearningScript, lines 21 and 31 perform the same functionality of calling the
SpinLeft () method on their Spinner Components. Yet the code on each line is very
different. The difference is that cubeComp already stores a reference to the Cube's Spinner
Component. There is no capsuleComp variable to store a reference to the Capsule's
Spinner Component.

Try creating a capsuleComp variable and store a reference to the Capsule's Spinner
Component. Then change lines 21 and 26 to use capsuleComp.

11071

Using Dot Syntax for Object Communication

Accessing GameOhjects using drag-and-drop versus
writing code

Unity has a rather neat feature that allows us to assign GameObijects to variables without
writing the code. It definitely has its uses, however, if it's not really necessary, | recommend
assigning GameObijects in code. Why?

Six months from now, when you are the stranger looking at your own code,
M you may look at it and wonder why your code looks incomplete. It's your
Q game though, so you can create it anyway you please. I'm just saying, don't
go hog wild with drag-and-drop and then later wonder what it was you were
trying to accomplish.

Time for action - trying drag-and-drop to assign a GameOhject

Let's change a few lines of code in LearningScript to show how to assign the Capsule
GameObiject to the variable capsuleGo using drag-and-drop.

1. Either comment out line 11 using 2 forward slashes (//), or remove it.

2. Online 6, add the access modifier public like this: public
GameObject capsuleGO;

3. Save thefile.
4. In Unity, select the Main Camera GameObject.

5. Dragthe Capsule to the Capsule GO field in the Inspector. The
following screenshot shows how this is done.

6. Click on Play.

(o [I=T [t o]

11081

Chapter 6

What just happened?

The Capsule GameObject is now assigned to the capsuleGo variable. We didn't have to
write the code because Unity has done the assignment internally for us. Also, this doesn't
change LearningScript in any way.

Pop quiz - understanding communication hetween objects

Q1. What is Dot Syntax, and what does it allow you to do?
Q2. When an object is assigned to a variable, what is actually stored in the variable?
Q3. Are there any limits to using Dot Syntax when trying to access variables and methods?

Q4. What is another way to assign GameObijects to variables besides writing code?

| hope you have discovered that Dot Syntax is actually a simple process for accessing other
objects. It's this ability to communicate between objects that make OOP so powerful. Data is
kept in objects, and methods are called on an object to get things done. Dot Syntax is just an
address to easily access data and methods on objects.

All right, we've covered the very basics of C# scripting for Unity. Congratulations!

In the next chapter, I'm going to take you through a combination of Unity coding and general
C# coding to actually apply your new knowledge. We will start looking at a State Machine to
work with Unity. Yes, it's going to be a simple state machine to show the concepts. You've
just barely learned C# scripting, so I'm going to ease you into some game creation which will
help you see how to apply the concepts that you've just learned. Besides, bet you're darn
sick and tired of constantly modifying, or completely changing LearningScript.

11091

