

Game Coding
Complete,

Fourth Edition

Mike “MrMike” McShaffry and David “Rez” Graham

Course Technology PTR

A part of Cengage Learning

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Game Coding Complete,

Fourth Edition

Mike “MrMike” McShaffry and

David “Rez” Graham

Publisher and General Manager,

Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Manager of Editorial Services:

Heather Talbot

Senior Marketing Manager:

Mark Hughes

Acquisitions Editor: Heather Hurley

Project and Copy Editor:

Marta Justak

Technical Reviewers: James Leitch

and Sascha Friedmann

Interior Layout Tech: MPS Limited, a

Macmillan Company

Cover Designer: Tre Ziemann

Cartoon Artist: Steph Laberis

Indexer: Kelly Talbot

Proofreader: Gene Redding

© 2013 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright

herein may be reproduced, transmitted, stored, or used in any form or by

any means graphic, electronic, or mechanical, including but not limited to

photocopying, recording, scanning, digitizing, taping, Web distribution,

information networks, or information storage and retrieval systems,

except as permitted under Section 107 or 108 of the 1976 United States

Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to

permissionrequest@cengage.com

Microsoft, Microsoft Windows, Visual Studio, Internet Explorer, Xbox,

Xbox360, and DirectX are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

3ds Max and Maya are either registered trademarks or trademarks of

Autodesk, Inc. in the United States and/or other countries.

Gamecube and Wii are trademarks of Nintendo Company, Ltd. in the

United States and/or other countries.

PlayStation, PlayStation 2, and PlayStation 3 are either registered trade-

marks or trademarks of Sony Corporation in the United States and/or

other countries.

Photoshop is a registered trademark of Adobe Systems Incorporated in

the United States and/or other countries.

Ultima and Ultima Online are either registered trademarks or trademarks of

Electronic Arts, Inc. in the United States and/or other countries

All other trademarks are the property of their respective owners.

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2012930785

ISBN-13: 978-1-133-77657-4

ISBN-10: 1-133-77657-4

Course Technology, a part of Cengage Learning

20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions

with office locations around the globe, including Singapore, the United

Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office

at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson

Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America

1 2 3 4 5 6 7 13 12

eISBN-10: 1-133-77658-2

www.cengage.com/permissions

This page intentionally left blank

Dedication from Mike McShaffry

This book and my life are dedicated to my wife and my
best friend, Robin

Dedication from David Graham

This book is dedicated to my grandfather, William Chace
The potion was just sugar water after all

Foreword

For Mike McShaffry

Let me start by admitting a couple of things. First, I’ve never written a foreword for a
book before. I’ve written books but never a foreword. Honestly, I usually skip right
over these things when I’m reading a book, so odds are that no one is ever going to
read what I’m writing here anyway. That makes it safe for me to move on to admis-
sion number two: I’m not a programmer. Never have been, and I fear, never will be,
despite some valiant efforts on my part (if I do say so myself). I’ve done okay despite
not knowing a blessed thing about programming. I’m not looking for sympathy or
anything, but I am here to tell you that a day doesn’t go by when I don’t think,
“Damn, if only I knew my z-buffers from my BSP trees!” If you’re already a program-
mer, you’ve got a huge leg up on me when I tried to get into the electronic game biz!
(And if you’re not a programmer, do as I say and not as I do—learn to program
ASAP. Mike has some advice about how to do that in the pages that follow. Pay
attention.)

Okay, so with those two confessions out of the way, I figure there’s a fair chance any
credibility I might have had is pretty well shot. Luckily for you folks, the guy who
wrote this book has credibility to burn. Mike McShaffry (or “Mr. Mike” as he’s
known to most everyone in the game biz) is the real deal. Mike is a genuine survivor.
He is a guy who can talk the talk because, Lord knows, he’s walked the walk enough
times to earn some talking time.

Mike’s experience of game development runs the gamut in a pretty remarkable
way. He was there when teams were a dozen folks, and he’s been around in the era
of 20, 30, and 50-person teams. He’s done the startup thing, worked for the biggest

by Warren Spector

vi

publishers in the business, worked on “traditional” games and decidedly untraditional
ones—everything from Ultima to Blackjack, single player, multiplayer, online and off,
and just about everything else you can imagine. When it comes to PC games, he
speaks with the authority of someone who’s worn just about every hat it’s possible
to wear—programmer, designer, project leader, director of development, studio
head….

And I’ve had the privilege of watching him learn and grow with each new project
and each new role. I was there when Mike got his first game job. I was one of the
folks at Origin who interviewed him back in the Bone Ages, back in the 20th century,
way back in 1990, when he applied for a programming job at Origin. (Seems like
forever, doesn’t it, Mike? Whew!)

He started out as “just” a programmer on Martian Dreams, a game I produced for
Origin, but by the end of the project, he was the engine that drove that game to the
finish line. The game wouldn’t have happened without Mike. His drive, dedication,
love of games, knack for on-the-fly design, natural leadership skills, and ability to
combine right brain and left brain (to say nothing of his willingness to work crazy
hours) drove all of us to work that much harder and ensured that the game ended
up something special (at least to those of us who worked on it together—it sure
didn’t sell many copies!).

I honestly don’t even remember if I ever gave Mike the title “Lead Programmer” offi-
cially on Martian Dreams, but he sure deserved it. The guy was a machine, working
longer hours than most people I’ve worked with (and that’s saying something in the
game business). He also managed to do more and better work in those hours than
any human being should be allowed to. It just ain’t fair to the rest of us mere mor-
tals. When Mike was on, there was no touching him. And he was almost always on—
after Martian Dreams, Mike did it again and again, on Ultima VII, VIII, IX, and a
bunch of others. Scary really.

In retrospect, all those hours and all the hard work that seemed so necessary back in
the days when we were all younger and more foolish than we are now was probably
an indication that Mike, like the rest of us, didn’t have a clue about software devel-
opment or game design or much anything else. (Okay, we had a pretty good handle
on the effects of sugar and caffeine on the human body, but that’s about it.) We had
to work so long and so hard just to have a chance in hell of ending up with some-
thing worthwhile.

Reading this book, I couldn’t help but marvel at how much Mike’s learned over the
years and wonder how much more Mike—and the rest of us—would have gotten
done, how much better our games might have been, if we’d had the benefit of the

Foreword vii

kind of information in the pages that follow. There just wasn’t anyone around back
then who knew enough about games, programming practices, and software develop-
ment. We were making it up as we went along.

Today, there are plenty of books out there that can teach you the typing part of pro-
gramming. There are even some books that go a bit further and teach you what
makes game coding different from coding a word processing program or a billing
system for your local health care providers (or, as we used to call ’em, “doctors”).
But even now, there just aren’t many books that combine hard-core game program-
ming advice with equally hard-core development processes, debugging, and team-
building information.

Development process? Team building? Who cares about all that? You just want to
write code, right? If you’re like a lot of programmers I know, that’s just what you’re
thinking. And, man, are you wrong. There might have been a time when coders
could just close their doors and type, not caring about how their work fit into the
bigger picture of a game’s development. Maybe that was true 10 years ago or more
(probably not, but maybe). Well, it sure isn’t true anymore. With teams getting big-
ger all the time, with timelines stretching and budgets bloating, process and team
issues are everyone’s concern nowadays.

Mike gets that, something that becomes clear in the very first chapter, when he says,
“Being the best developer you can be requires that you have intimate knowledge
about the real demands of the industry.” Amen, brother. That, in a nutshell, is what
makes this book special. Most people think enthusiasm and talent are enough to get
them into the game business and to ensure success once they land that all-important
first gig. “I play games all the time,” they say, “and I’m a kickass coder, so what more
is there to know? Sign me up!”

Well, I’m here to tell you that there’s plenty more to know, and that’s probably the
single most valuable lesson this book has to offer. Games are insanely complex, and
their creation involves a unique combination of art and science (some call it “magic,”
and they’re not far wrong). Game development is demanding in a way that can only
be appreciated after a stint in the trenches. At least, I used to think that was the case,
but that’s where Mike comes in. Having been in the trenches, he can save you the
trouble and pain and scars and relationship breakups and company failures that all
too often go along with game development. No matter what you may think, it isn’t all
glory, fame, wealth, and intense personal satisfaction (though there is a better than
fair share of that last item).

There’s a ton of great stuff in Mike’s book. And I love all the insider bits found in
Mike’s “Tales from the Pixel Mines.”

viii Foreword

Of course, there’s plenty of nuts-and-bolts stuff for folks who are already program-
mers but want to know what makes game programming so special (and believe me, it
is). But even programmers will benefit from the other ton of stuff that often gets
short shrift in the typical programming book—all that Big Picture stuff that doesn’t
involve code samples.

These areas are critical for being the most effective developer you can be, whether
you’re a programmer or not. This is all stuff you can’t get just anywhere. You have
to have lived through the process (and the pain!) a bunch of times. Or you have to
find a mentor and spend years sucking his or her brain dry. Or you can stop reading
this foreword and start reading this book.

What are you waiting for?

—Warren Spector,

Founder of Junction Point Studios

Foreword ix

Foreword

For David “Rez” Graham

Rez has done a lot of really cool things in his career and met a lot of great people
along the way. Therefore, I was very honored when he asked me to write the fore-
word for this book.

I think he picked me because I’m one of the keepers of his Origin story. Origin stor-
ies are fun—no matter how many bad guys Spider-Man defeats, the fans still want to
hear about how he was bitten by a radioactive spider—and they are also instructive.
If you are reading this, you too may be thinking about how to craft your own Origin
story that culminates in an exciting career in video game programming. You can
learn a lot from Rez’s story.

I met Rez in 2005 when he came to interview at a little company I was running called
Super-Ego Games. We were convinced back then that people needed an interactive
situation comedy playable on consoles, and we were going to give it to them. (How
we got there and what happened next is an interesting and cautionary tale in and of
itself for another time.) At the time of Rez’s interview, we had convinced a publisher
of the same thing and were ramping up a team of very talented individuals.

Believe it or not, Rez came to us not as an engineering prospect but as a quality
assurance lead with an interest in game design. When Rez walked into our office,
the first thing we noticed wasn’t his height, though he’s very tall, nor his combat
boots, vintage black army jacket, or faded black combat fatigues, but rather his 10-inch
blue mohawk.

by Bo Lasater

x

The next thing we noticed was the ease with which he spoke to the four or five of us
in the room interviewing him. This was a bigger deal than it sounds, because all of us
were more experienced, had bigger degrees from fancier colleges, and were mohawk-
less. And, it was an interview for heaven’s sake!

The third thing we noticed was his passion and knowledge of games. More than just
playing a lot of games, he was extraordinarily thoughtful and articulate about what he
liked and why.

The fourth thing we noticed was Farmer Bill’s Almond Farm. This was a demo game
that Rez had built to teach himself game programming. It had simple graphics and a
crude interface for sure, but it was full of original ideas well realized and lots of fun,
nonetheless. We were smart enough to see that a singular talent lay behind it. (If we
were really smart, we would have published the game on Facebook a couple of years
before Farmville came out.)

As you have guessed by now since I’m writing this, we hired Rez. Before I go on
about the next stage, I’d like to call out some things for those of you who are inter-
ested in breaking in to the industry.

First of all, QA is a great way to get into games. The entry hurdles are typically lower
than other positions, and the skills you gain can prepare you well for many disci-
plines in game development—programming, design, project management, and
production.

Second, being able to explain a point of view on what makes games fun is very
important. Many game companies go deep here in interviews for almost any position.
Not only is it to determine if you have the passion to fuel the drive and determina-
tion to make it in games, but more importantly, to see if you “get” the product. A
game studio pulls off this incredible choreography of many and varied talents to cre-
ate a product that is itself a choreography of sounds and pictures, whose purpose is
to engage and delight its user. Decisions made by almost anyone can affect the final
experience of the product. People have to work autonomously, often with limited
oversight and supervision. The best insurance that mistakes don’t get made is making
sure that all of the employees share the same vision and alignment. We’re knowledge
workers, after all. Making smart decisions is what we do.

Getting a product doesn’t mean preferring it or even liking it. Rez and I have made
games for male and female, young and old. We don’t have the luxury or curse of
being all of those things at once, but we can put ourselves in the mindset of our
players and learn what they want. The ability to understand and articulate why a
game will delight its audience is a big part of “getting” a product.

Foreword xi

Third, mohawks are cool in the games industry. We’re creative types by and large
and self-expression is welcome.

Finally, showing up with something you built is awesome. It demonstrates passion,
competence, and vision much better than words alone can. Moreover, making a
demo actually gives you competence and vision and confidence. (By the way, this
book will help you build the demo that will give you real confidence.)

Rez started in QA with a promise from us to make him a designer when he proved
himself a bit. The proving didn’t take long at all. Rez was a diligent checker with lots
of great input. When he took on a nasty group of bugs around our UtilEcon AI sys-
tem, I quickly realized that he should be tweaking the parameters directly instead of
telling us about them. Voilà, he was now a designer. Very soon, he started imple-
menting tools to help us visualize and manage the system’s data more easily. Before
long, he had taken over a lot of the coding on the core system itself.

Rez then faced a decision point. He could go down the design path or the engineer-
ing path. In spite of Rez’s keen fashion sense and artistic leanings, he followed his
inner child and became an engineer. Looking back, I realize Rez had figured out
what pros like Sid Meier of Civilization fame knows. Anyone in a game company
can have design input if he has good ideas, but only a programmer gets to tell the
machine exactly what to do without any middle men.

Rez took up coding fulltime, and a star was born! In the months that followed, Rez
integrated himself into many of our key systems like graphics, animation, story
events, and user interface. His hunger to learn was insatiable, he was a pleasure to
work with, and he did what had to be done to get his projects done.

After Super-Ego Games, Rez spent a year at Planet Moon. He worked on a DS game
called Brain Quest, which was a small kid’s game. After that he worked on the AI,
animation, and save game systems for Drawn to Life: The Next Chapter for the Wii.
His next stop was at Slipgate where he worked on an MMO doing client program-
ming and some UI work. Next was Play First where he worked on Diner Dash for the
iPad before it shipped and on Wedding Dash for the iPhone 4. Rez’s latest stop is at
EA where he has worked on AI for the Sims Medieval and the Pirates & Noble
expansion. He is currently the AI programmer for a new unannounced Sims
project.

Anyone who has worked with Rez has the same impression. He has more energy
than anyone has a right to have, and is upbeat and funny even in the grimmest
hours of a project or a company’s life cycle. His enthusiasm is infectious. Hanging
out with him, you realize that game coding is the highest and best calling a human
can have and is definitely the most fun. If you ask Rez to explain his latest project,

xii Foreword

make sure you had a good night’s sleep the night before and drink a lot of coffee,
because it will be a torrent of words and ideas.

Luckily, you can absorb his thoughts at a more leisurely pace through the pages of
this book. It will give you the benefit of years of interesting and challenging work in
the heart of game development, filtered and focused by a first-class intellect and
guided by a personality who wants nothing more than to share the thrill of this excit-
ing field.

Enjoy!

—Bo Lasater,

Executive Producer at Kixeye

Foreword xiii

Acknowledgments

Mike’s Acknowledgments

Mom and Grandma Hawker

Thanks for never saying I’d never amount to anything playing games all the time;
you believed in me, and it paid off.

Dad and Lynn

Thanks for showing me I should never be afraid of hard work.

Phil Hawker

Thanks for giving me a sense of humor—I think I put it to good use here.

Warren Spector and Richard Garriott

Thanks for believing a geeky college kid could help make the games I loved to play.

Fourth Edition Beta Testers

James Leitch and Sascha Friedmann

Cover Artist

The cover was created by Tre Ziemann. He is currently a 3D Artist at King’s Isle in
Austin, Texas.

Fourth Edition Editors

Thanks to Heather Hurley, acquisitions editor, for picking up the book for a fourth
edition.

Thanks to my editor Marta Justak for making me look like a writer.

xiv

Rez’s Acknowledgments

My Father, Robin Graham

Thanks for giving me my first programming book, my very own computer, and
introducing me to science fiction.

My Mother, Susan Angelos

Thanks for letting me walk my own path in life and for never telling me to quit ruin-
ing my life playing video games.

Bo Lasater and Steve Matthews

Thanks for hiring a passionate kid with no degree and no experience. I owe a lot of
my success to your willingness to take a chance on me.

Steph Laberis

Thank you for supporting yet another project that consumed so much of my time.

Cartoons

The cartoon inserts were created by Steph Laberis. She is currently an illustrator and
character designer living in Berkeley, California.

Last but not least, Robin McShaffry

Thank you for letting Mike come out to play.

Acknowledgments xv

About the Authors

Mike McShaffry , aka “Mr. Mike,” started programming games as soon as he
could tap a keyboard—in fact, he somehow skipped seventh grade math entirely in
favor of writing games in BASIC on an ancient Commodore Pet. In his single-
minded pursuit of programming knowledge, he signed up for an extended stay at
the University of Houston. To his surprise and the Dean of Mathematics, he actually
graduated five and one-half years later. Shortly after graduation, he entered the boot
camp of the computer game industry: Origin Systems. He worked for Warren Spec-
tor and Richard Garriott, aka “Lord British,” on Martian Dreams, Ultima VII: The
Black Gate, Ultima VIII: Pagan, Ultima IX: Ascension, and Ultima Online.

Exactly seven years from the day he was hired, Mike arranged his escape, and in
1997 formed his first company, Tornado Alley. Tornado Alley was a garage startup
whose goal was to create No Grownups Allowed, a massively multiplayer world for
children—something that was sure to land Mike and anyone else at Tornado Alley
front and center of a Congressional hearing. While No Grownups never left the tar-
mac, a kid’s activity program called Magnadoodle by Mattel Media did, and in record
development time.

The entrepreneurial bug, a ravenous and insatiable beast, finally devoured enough of
Mike’s remaining EA stock to motivate him to take a steady gig at Glass Eye Enter-
tainment, working for his friend Monty Kerr, where he produced Microsoft Casino.
Ten short months later, Monty asked Mike and his newly assembled team to start
their own company called Compulsive Development, which worked exclusively with
Microsoft on casual casino and card games.

xvi

Mike served as the primary coffee brewmaster and head of studio, and together with
the rest of the Compulsive folks, 20 great people in all, produced three more casual
titles for Microsoft until August 2002. Compulsive was acquired by Glass Eye Enter-
tainment to continue work on Glass Eye’s growing online casual games business.

Mike was hungry for AAA console work, and in 2003 he got what he wanted: Ion
Storm’s Thief: Deadly Shadows team called Mike in to create their third-person cam-
era technology and to work on fine-tuning character movement at the 11th hour.
What started as a two-week contract turned into almost a year of labor working
side-by-side with programmers who used to call Mike “boss.”

While it was great to be “one of the boys” again, it couldn’t last forever. Mike was
recruited to start an Austin studio for Maryland-based BreakAway Games. Break-
Away Austin’s focus was AAA console development and high-end simulations for the
U.S. military and DoD contractors. Mike and three of the BreakAway Austin team
actually visited the USS Harry S. Truman, one of the U.S. Navy’s CVN class Nuclear
Aircraft Carriers. They flew out, landed on the carrier, spent four days and nights
with the officers and crew, and got launched to go back home. Afterward, they cre-
ated 24 Blue, a training simulator that mimics the insane environment of the deck of
the carrier, jets and everything.

After BreakAway Austin, Mike founded a consulting company called MrMike. He
figured that nearly 18 years in the gaming industry was enough to firmly establish
that as a good identity for the company. For nearly two years, he helped small
game companies choose their game technology, firm up their production practices,
and pitch game ideas to industry publishers like Microsoft, EA, THQ, and others.
One of his clients, Red Fly Studio, made him an offer he couldn’t refuse, and he
jumped back into a full-time gig.

Mike took the position of Executive Producer and helped ship Mushroom Men: The
Spore Wars. He still works at Red Fly Studio as their Director of Product Develop-
ment and sometime coffee maker. He still makes coffee and tries to give good advice
to the programmers, artists, designers, audio guys, and producers working for him.

He still writes code when he can—most recently working with the Unity game
engine, playing around in C#, and writing mad improvements to the GameCode4
engine.

If Mike’s fingers aren’t tapping away at a keyboard, he’s probably either “down-
hilling” on his mountain bike or enjoying good times with his friends in Austin,
Texas.

About the Authors xvii

David “Rez” Graham is a self-taught programmer and has been an avid
gamer ever since he could pick up a video game controller. He’s always been fasci-
nated with games and in 1996, his father gave him his very first programming book.
Rez devoured that book with passion and immediately began attempting to write his
very own game. Six months and 5500 lines of code later, Farmer Bill’s Almond Farm
was born. This was a very simple adventure game with crude graphics written for
DOS 6.2. Rez never stopped and kept on writing games.

In 1998, he managed to break into the video games industry as a game tester working
on Sim City 3000 before going to Microprose to work for its tech support team. After
the studio shut down in late 1999, Rez worked outside of the industry at Kodak man-
aging a team of IT professionals to keep their tech support group running.

In late 2005, the time was right to return to the video games industry, and Rez
landed a job at Super-Ego Games, first working on their source control systems as a
QA engineer and quickly moving into design and engineering. In less than a month,
Rez was working on the AI code for RatRace. He spent over two years there and
shipped a kid’s game called Barbie Diaries: High School Mystery, where he worked
on several minigames and expanded the AI systems. The rest of the time, Rez worked
on a variety of systems for Rat Race for the PlayStation 3. In early 2008, Rez left
Super-Ego Games and spent a year working at Planet Moon, where he worked on a
small kid’s game for the Gameboy DS called Brain Quest. After that, Rez worked on
Drawn to Life: The Next Chapter for the Wii doing AI, animation, and game saving.

In 2009, Rez moved to a company called Slipgate, which was a part of Gazillion,
where he worked on the client for an MMO. After leaving Slipgate, Rez went to
work on casual iPhone and iPad games for a company called PlayFirst. He shipped
Diner Dash: Grillin’ Green for the iPad and was the lead engineer for Wedding Dash
for the iPhone 4.

Today, Rez is working at EA as the lead AI programmer for an upcoming Sims game.
He has been at EA since mid-2010, and the last project he shipped was The Sims
Medieval and the Pirates & Nobles Adventure Pack. Rez has spoken at The Game
Developer’s Conference on several occasions and frequently talks to high-school and
college students about how to break into the game industry.

In his spare time, Rez enjoys running table-top RPGs, playing a little music, drawing,
and working on various side projects and AI experiments.

xviii About the Authors

Contents

Introduction . xxxiii

Chapter 1 What Is Game Programming Really Like? 1

The Good .2

The Job . 2

The Gamers . 3

Your Coworkers . 4

The Tools—Software Development Kits (SDKs) . 7

The Hardware . 8

The Platforms . 8

The Show . 13

The Hard Work. 14

Game Programming Is Freaking Hard. 14

Bits and Pieces . 15

That’s Not a Bug—That’s a Feature . 15

The Tools . 17

The Dark Side. 17

Hitting a Moving Target. 18

Crunch Mode (and Crunch Meals). 19

Bah Humbug . 20

Operating System Hell . 21

Fluid Nature of Employment . 22

It’s All Worth It, Right?. 23

Chapter 2 What’s in a Game? . 25

Game Architecture . 26

xix

Applying the Game Architecture . 28

Application Layer . 31

Reading Input. 31

File Systems and Resource Caching . 31

Managing Memory. 33

Initialization, the Main Loop, and Shutdown . 33

Other Application Layer Code . 34

Game Logic . 35

Game State and Data Structures. 36

Physics and Collision . 37

Events. 38

Process Manager . 39

Command Interpreter. 40

Game View for the Human Player . 41

Graphics Display . 41

Audio . 43

User Interface Presentation . 44

Process Manager . 44

Options . 45

Multiplayer Games . 45

Game Views for AI Agents . 45

Networked Game Architecture . 46

Remote Game View . 47

Remote Game Logic . 47

Do I Have to Use DirectX? . 49

Design Philosophy of DirectX . 49

Direct3D or OpenGL . 50

DirectSound or What? . 50

DirectInput or Roll Your Own. 51

Other Bits and Pieces . 51

Further Reading . 52

Chapter 3 Coding Tidbits and Style That Saved Me 53

General Coding Styles. 54

Bracing . 55

Consistency. 56

Smart Code Design Practices . 58

Avoiding Hidden Code and Nontrivial Operations 59

Class Hierarchies: Keep Them Flat. 60

Inheritance Versus Composition . 61

Virtual Functions Gone Bad . 61

xx Contents

Use Interface Classes. 64

Consider Using Factories. 65

Encapsulate Components That Change. 66

Use Streams to Initialize Objects. 67

Smart Pointers and Naked Pointers . 68

Reference Counting . 69

C++’s shared_ptr . 71

Using Memory Correctly . 75

Understanding the Different Kinds of Memory . 75

Optimizing Memory Access. 78

Memory Alignment . 80

Virtual Memory . 81

Writing Your Own Memory Manager. 82

Grab Bag of Useful Stuff . 84

An Excellent Random Number Generator . 85

Pseudo-Random Traversal of a Set . 87

Memory Pools . 88

Developing the Style That’s Right for You . 95

Further Reading . 95

Chapter 4 Building Your Game . 97

A Little Motivation . 98

Creating a Project. 99

Build Configurations. 99

Create a Bullet-Proof Directory Structure . 100

Where to Put Your Game Engine and Tools . 103

Setting Visual Studio Build Options . 104

Multiplatform Projects . 108

Source Code Repositories and Version Control . 110

A Little History—Visual SourceSafe from Microsoft 111

Subversion and TortoiseSVN . 112

Perforce by Perforce Software . 113

AlienBrain from Avid . 114

Using Source Control Branches . 115

Building the Game: A Black Art? . 118

Automate Your Builds . 120

The Build Machine . 120

Automated Build Scripts . 121

Creating Build Scripts . 122

Normal Build . 123

Milestone Build . 124

Contents xxi

Multiple Projects and Shared Code. 127

Some Parting Advice . 128

Chapter 5 Game Initialization and Shutdown . 129

Initialization 101. 130

Some C++ Initialization Pitfalls . 130

The Game’s Application Layer . 133

WinMain: The Windows Entry Point . 133

The Application Layer: GameCodeApp . 135

InitInstance(): Checking System Resources . 136

Checking for Multiple Instances of Your Game. 137

Checking Hard Drive Space. 138

Checking Memory . 139

Calculating CPU Speed . 140

Do You Have a Dirtbag on Your Hands? . 141

Initialize Your Resource Cache . 141

Loading Text Strings. 142

Your Script Manager and the Events System . 144

Initialize DirectX and Create Your Window . 145

Create Your Game Logic and Game View. 145

Set Your Save Game Directory . 146

Preload Selected Resources from the Cache . 147

Stick the Landing: A Nice Clean Exit . 147

How Do I Get Out of Here? . 148

Forcing Modal Dialog Boxes to Close . 150

Shutting Down the Game . 151

What About Consoles? . 152

Getting In and Getting Out . 153

Chapter 6 Game Actors and Component Architecture 155

A First Attempt at Building Game Actors . 155

Component Architecture . 159

Creating Actors and Components . 160

Defining Actors and Components . 165

Storing and Accessing Actors . 168

Putting It All Together . 170

Data Sharing . 171

Direct Access. 172

Events. 173

The Best of Both Worlds. 173

xxii Contents

Chapter 7 Controlling the Main Loop . 175

Organizing the Main Loop . 175

Hard-Coded Updates . 176

Multithreaded Main Loops . 176

A Hybrid Technique . 178

A Simple Cooperative Multitasker . 180

Very Simple Process Example: DelayProcess . 186

More Uses of Process Derivatives . 187

Playing Nicely with the OS . 188

Using the DirectX 11 Framework . 189

Rendering and Presenting the Display . 190

Your Callback Functions for Updating and Rendering 191

Can I Make a Game Yet? . 193

Chapter 8 Loading and Caching Game Data . 195

Game Resources: Formats and Storage Requirements. 197

3D Object Meshes and Environments . 197

Animation Data . 200

Map/Level Data . 202

Texture Data . 202

Bitmap Color Depth . 202

Sound and Music Data . 205

Video and Prerendered Cinematics . 206

Resource Files . 209

Packaging Resources into a Single File . 211

Other Benefits of Packaging Resources. 211

Data Compression and Performance. 212

Zlib: Open Source Compression . 213

The Resource Cache . 218

IResourceFile Interface . 222

ResHandle: Tracking Loaded Resources. 222

IResourceLoader Interface and the DefaultResourceLoader 224

ResCache: A Simple Resource Cache . 225

Caching Resources into DirectX et al. 233

World Design and Cache Prediction . 233

I’m Out of Cache . 237

Chapter 9 Programming Input Devices . 239

Getting the Device State . 240

Using XInput or DirectInput . 243

A Few Safety Tips . 245

Working with Two-Axis Controls . 249

Contents xxiii

Capturing the Mouse on Desktops . 249

Making a Mouse Drag Work . 252

Working with a Game Controller . 255

Dead Zones . 256

Normalizing Input . 259

One Stick, Two Stick, Red Stick, Blue Stick . 261

Ramping Control Values . 261

Working with the Keyboard. 262

Mike’s Keyboard Snooper. 262

GetAsyncKeyState() and Other Evils . 267

Handling the Alt Key Under Windows . 267

What, No Dance Pad?. 267

Chapter 10 User Interface Programming. 269

DirectX’s Text Helper and Dialog Resource Manager 270

The Human’s Game View . 271

A WASD Movement Controller. 281

Screen Elements . 283

A Custom MessageBox Dialog . 286

Modal Dialog Boxes . 292

Controls . 297

Control Identification . 298

Hit Testing and Focus Order . 300

Control State . 301

More Control Properties . 302

Hot Keys. 303

Tooltips . 303

Context-Sensitive Help . 304

Dragging . 304

Sounds and Animation . 304

Some Final User Interface Tips . 304

Chapter 11 Game Event Management . 307

Game Events . 308

Events and Event Data . 309

The Event Listener Delegates . 313

The Event Manager . 314

Example: Bringing It All Together. 323

What Game Events Are Important? . 324

Distinguishing Events from Processes . 326

Further Reading . 327

xxiv Contents

Chapter 12 Scripting with Lua . 329

A Brief History of Game Programming Languages . 330

Assembly Language . 331

C/C++ . 331

Scripting Languages . 334

Using a Scripting Language . 334

Rapid Prototyping . 334

Design Focused. 335

Speed and Memory Costs . 336

Where’s the Line?. 336

Scripting Language Integration Strategies . 337

Writing Your Own . 337

Using an Existing Language . 337

Choosing a Scripting Language . 338

Python . 338

Lua . 339

A Crash Course in Lua . 340

Comments . 340

Variables . 340

Functions . 342

Tables. 343

Flow Control. 346

Operators . 348

What’s Next? . 349

Object-Oriented Programming in Lua. 349

Metatables . 351

Creating a Simple Class Abstraction . 353

Memory Management . 356

Binding Lua to C++. 356

The Lua C API . 356

tolua++. 357

luabind. 357

LuaPlus . 357

A Crash Course in LuaPlus . 358

LuaState . 358

LuaObject . 358

Tables. 360

Globals . 361

Functions . 363

Calling C++ Functions from Lua . 363

Contents xxv

Bringing It All Together . 366

Managing the Lua State . 367

Script Exports . 368

Process System . 370

Event System . 380

Script Component. 387

Lua Development and Debugging . 389

Final Thoughts . 389

Further Reading . 390

Chapter 13 Game Audio . 391

How Sound Works . 392

Digital Recording and Reproduction. 393

Sound Files . 395

A Quick Word About Threads and Synchronization 396

Game Sound System Architecture. 397

Sound Resources and Handles . 398

IAudioBuffer Interface and AudioBuffer Class 409

IAudio Interface and Audio Class . 411

DirectSound Implementations. 414

Sound Processes . 426

Launching Sound Effects . 431

Other Technical Hurdles . 432

Sounds and Game Objects . 432

Timing and Synchronization . 432

Mixing Issues . 434

Some Random Notes . 437

Data-Driven Sound Settings . 437

Background Ambient Sounds and Music. 438

Speech . 439

The Last Dance . 441

Chapter 14 3D Graphics Basics . 443

3D Graphics Pipeline. 444

3D Math 101 . 445

Coordinates and Coordinate Systems . 446

Vector Mathematics . 449

C++ Math Classes . 456

Vector Classes . 456

Matrix Mathematics . 458

Quaternion Mathematics . 469

Transformations . 478

xxvi Contents

Geometry . 481

Lighting, Normals, and Color . 482

Materials . 484

Textured Vertices . 487

Texturing . 487

Subsampling . 488

Mip-Mapping . 490

Introducing ID3D11Device and ID3D11DeviceContext 491

Loading Textures in D3D11. 491

Triangle Meshes . 494

Still with Me? . 497

Chapter 15 3D Vertex and Pixel Shaders . 499

The Vertex Shader and Shader Syntax . 501

Compiling the Vertex Shader . 505

C++ Helper Class for the Vertex Shader . 507

The Pixel Shader. 515

C++ Helper Class for the Pixel Shader. 516

Rendering with the Shader Helper Classes . 520

Shaders—It’s Just the Beginning. 521

Further Reading . 521

Chapter 16 3D Scenes. 523

Scene Graph Basics . 523

ISceneNode Interface Class . 524

SceneNodeProperties and RenderPass . 526

SceneNode—It All Starts Here . 529

The Scene Class . 536

Special Scene Graph Nodes. 545

Implementing Separate Render Passes . 545

A Simple Camera . 548

Putting Lights in Your Scene . 551

Rendering the Sky . 554

Using Meshes in Your Scene. 560

What’s Missing? . 565

Still Hungry?. 565

Further Reading . 565

Chapter 17 Collision and Simple Physics . 567

Mathematics for Physics Refresher . 569

Meters, Feet, Cubits, or Kellicams? . 569

Distance, Velocity, and Acceleration . 569

Contents xxvii

Mass, Acceleration, and Force. 571

Rotational Inertia, Angular Velocity, and Torque 574

Distance Calculations and Intersections. 575

Choosing a Physics SDK . 576

Object Properties . 578

Collision Hulls . 580

Requirements of Good Collision Geometry . 581

Visible Geometry Versus Collision Geometry. 582

Collision Hulls for Human Characters . 583

Special Objects: Stairs, Doorways, and Trees . 585

Using a Collision System . 586

Integrating a Physics SDK . 588

Components of the Bullet SDK . 593

Initialization . 594

Shutdown. 595

Updating the Physics System . 596

Creating a Simple Physics Object . 599

Creating a Convex Mesh. 601

Creating a Trigger . 602

Applying Force and Torque . 603

The Physics Debug Renderer. 604

Receiving Collision Events. 606

A Final Word on Integrating Physics SDKs . 609

But Wait, There’s So Much More . 610

Chapter 18 An Introduction to Game AI . 611

AI Techniques . 612

Hard-Coded AI . 612

Randomization . 614

Weighted Randoms . 616

Finite State Machines . 616

Decision Trees. 622

Fuzzy Logic. 627

Utility Theory . 630

Goal-Oriented Action Planning. 635

PathFinding . 636

A* (A-Star) . 638

Dynamic Avoidance . 640

Further Reading . 641

Chapter 19 Network Programming for Multiplayer Games. 643

How the Internet Works. 644

xxviii Contents

Winsock or Berkeley? . 645

Internet Addresses . 646

The Domain Name System . 648

Useful Programs and Files. 649

Sockets API . 650

Sockets Utility Functions . 651

Domain Name Service (DNS) Functions . 653

Sockets Initialization and Shutdown. 654

Creating Sockets and Setting Socket Options . 655

Server Functions . 660

Socket Reading and Writing . 663

Making a Multiplayer Game with Sockets . 663

Packet Classes . 665

Core Socket Classes. 666

A Socket Class for Listening . 673

A Socket Manager Class . 675

Core Client-Side Classes . 683

Core Server-Side Classes . 684

Wiring Sockets into the Event System. 686

Gosh, if It’s That Easy . 692

Chapter 20 Introduction to Multiprogramming. 693

What Multiprogramming Does. 693

Creating Threads . 696

Process Synchronization . 698

Test and Set, the Semaphore, and the Mutex. 699

The Windows Critical Section . 700

Interesting Threading Problems . 702

Thread Safety . 704

Multithreading Classes in GameCode4 . 704

The RealtimeProcess Class . 705

Sending Events from Real-Time Processes . 708

Receiving Events in Real-Time Processes . 711

Background Decompression of a Zip File . 713

Further Work . 715

About the Hardware . 717

About the Future . 718

Further Reading . 718

Chapter 21 A Game of Teapot Wars! . 719

Making a Game . 720

Creating the Core Classes . 722

Contents xxix

The Teapot Wars Application Layer . 722

The Game Logic . 723

The Game View for a Human Player. 733

Game Events . 737

Gameplay . 737

Loading the Level. 737

The Actor Manager . 739

Sending and Receiving Events . 741

Processes . 743

An Exercise Left to the Reader . 745

Chapter 22 A Simple Game Editor in C# . 747

Why C#?. 747

How the Editor Is Put Together . 748

The Editor Architecture . 748

The Application Layer. 749

The Editor’s Logic Class. 750

The Editor View . 751

Functions to Access the Game Engine. 753

Creating the DLL . 763

Wrapping Up the Editor Architecture. 764

The C# Editor Application. 765

Differences Between Managed Code and Unmanaged Code 766

NativeMethods Class. 767

Program Class . 768

MessageHandler Class . 769

The C# Editor User Interface. 772

The EditorForm Class . 772

The ActorComponentEditor Class . 784

Future Work. 795

Further Reading . 796

Chapter 23 Debugging and Profiling Your Game . 797

The Art of Handling Failure . 798

Debugging Basics . 800

Using the Debugger . 803

Installing Windows Symbol Files . 805

Debugging Full-Screen Games . 807

Remote Debugging . 808

Debugging Minidumps . 810

Graphics and Shader Debugging . 812

Debugging Techniques . 813

xxx Contents

Debugging Is an Experiment . 813

Reproducing the Bug . 817

Eliminating Complexity. 817

Setting the Next Statement . 818

Assembly Level Debugging. 820

Peppering the Code . 822

Draw Debug Information . 823

Lint and Other Code Analyzers. 824

Nu-Mega’s BoundsChecker and Runtime Analyzers 825

Disappearing Bugs . 825

Tweaking Values . 825

Caveman Debugging . 826

When All Else Fails . 827

Building an Error Logging System . 828

Different Kinds of Bugs . 835

Memory Leaks and Heap Corruption . 835

Game Data Corruption . 839

Stack Corruption. 841

Cut and Paste Bugs. 842

Running Out of Space . 842

Release Mode Only Bugs . 843

Multithreading Gone Bad. 843

Weird Ones . 844

Profiling . 846

Measuring Performance . 846

Optimizing Code . 847

Tradeoffs . 848

Over-Optimization . 849

Parting Thoughts . 849

Further Reading . 850

Chapter 24 Driving to the Finish. 851

Finishing Issues . 852

Quality . 852

Code. 857

Content . 862

Dealing with Big Trouble . 864

Projects Seriously Behind Schedule . 865

Personnel-Related Problems . 872

Your Competition Beats You to the Punch . 874

Contents xxxi

There’s No Way Out—or Is There? . 875

One Last Word—Don’t Panic . 876

The Light—It’s Not a Train After All . 876

Test the Archive . 877

The Patch Build or the Product Demo . 878

The Postmortem . 878

What to Do with Your Time. 879

Index . 881

xxxii Contents

Introduction

Welcome to the Fourth Edition

The first edition of this book was published in the summer of 2003, just as I was
making some big transitions of my own. The first edition gave me a chance to
stand back and show programmers what really goes on in the world of game devel-
opment. Writing the book was a challenge, but the rewards were many. I heard from
programmers all around the world who enjoyed the book and found the stories,
insight, and programming tips to be helpful. The second edition was almost a com-
plete rewrite. The book went from around 700 pages to 1,110, and it was more pop-
ular than the first edition. In 2009, the third edition added AI, multiprogramming,
Lua, and C# with the help of my friends James Clarendon, Jeff Lake, Quoc Tran,
and David “Rez” Graham.

Three years later, I made a call to my publisher, Cengage Learning, and asked if a
fourth edition would be a good idea. They said yes, and somehow I had to figure
out how to find time to write it.

One of my friends, the co-author from the AI chapter of the third edition, and the
only person second to me in posting threads on the book’s website, Rez, was a natu-
ral choice to help me. I called him, but I didn’t get the answer I expected. He not
only wanted to help, but he wanted to do half the book with me and become
partners.

What you hold in your hands is the result.

by Mike McShaffry

xxxiii

Where Is the Code? Must I Actually Type?

Shortly after the publication of the first edition of this book, I made a website to pro-
vide resources and helpful information for readers. This site also became a great place
for downloading the book’s source code examples and all manner of interesting stuff.
The site has really grown since the first edition, and now it has become quite a
resource center. So if you are looking for additional help, the source code, or you
want to share your thoughts with other game programmers, point your browser to
one of these two places:

www.mcshaffry.com/GameCode/

www.courseptr.com/downloads

The book has never included a CD because the source code will get fixed and
tweaked even as this book goes to press and long thereafter. Good suggestions and
fixes even come from readers like you. Grab the code from the GameCode website
(or the publisher’s), and you’ll be assured of getting the latest source code and
information.

How This Book Is Organized

The book is organized into four parts:

n Game Programming Fundamentals (Chapters 1–4): Exposes some stuff that
you’ll want in your game programming toolbox, like a good random-number
generator. It also introduces the major components of games and how they
interact. After you read the chapters in this part, you’ll have a good working
knowledge of the real architecture that game developers use.

n Get Your Game Running (Chapters 8–9): It’s now time to learn how to get all
of the main building blocks of your game together, including the initialization
and shutdown code, the main loop, game actors, user interfaces, and input
device code. You’ll find your first meaty game code examples. Often, many
programming books just gloss over this stuff and jump right into the cool 3D
code. But, in reality, this is the stuff you really need to know to create a suc-
cessful game, no matter what type of game you want to build.

n Core Game Technologies (Chapters 10–18): The tougher code examples are in
this section, such as 3D programming, scripting with Lua, game audio, physics,
and AI programming.

n Advanced Topics and Bringing It All Together (Chapters 19–24): In this sec-
tion, you’ll find chapters on networking, programming with threads, creating

xxxiv Introduction

www.mcshaffry.com/GameCode/
www.courseptr.com/downloads

tools in C#, and bringing all the code in the book together to make a little game.
You’ll also see some great debugging tricks and an entire chapter on how it feels
to be there when you release a commercial game.

Throughout the book, you’ll see a few insets that are identified by the following
cartoons:

A “Gotcha” is something to watch out for, most likely because either Rez or I
have already made the mistake for you, and you can avoid it.

Best practices have been figured out through years of hard-won lessons.
Follow these “Best Practice” lessons, and you’ll be happier for it.

Both Rez and I have tons of stories won from hard
work and late nights working on real games. We like
to interrupt each other a lot, so you can recognize our
stories by these cartoons.

Introduction xxxv

What You’ll Need

If you’re a programmer and you’ve had some game programming experience, you’ll
be able to follow along nicely. Take a moment to flip through the pages, and you’ll
see this book is written for programmers. Nonprogrammers could probably get
something from the book, too, but there is more code in this book than noncode.

The code is written in C++, Lua, and C#. If you don’t know these languages, you’ll
probably struggle a little with the code samples, but I’ll bet you can get enough from
the comments and the explanations to get your money’s worth.

All of the code in this book works under Visual Studio 2010, or at least it did when it
was copied into Microsoft Word, which is how Rez and I wrote the book. Apologies
ahead of time for making no attempt whatsoever to make sure the code worked in
other compilers like CodeWarrior or GNU C++. I hope you’ll forgive us. We figured
our time would be better spent by covering as much technical ground as possible,
instead of working on multicompiler–compatible code.

The Lua code was written using the Decoda IDE. Since Lua isn’t a compiled lan-
guage, you don’t have to use any special editor; Notepad will work just fine. However,
there is a DEPROJ file included with the Lua scripts so if you happen to use Decoda,
the project is all laid out for you.

The code in this book also has a heavy Windows bias. I’m a Windows programmer,
and I was a DOS programmer before that. I’ve had some brief forays into UNIX on
the Ultima Online server code, but I’m hardly an expert. Much of the code in this
book assumes that you are using Windows, and I didn’t change the code to support
cross-compiling into other operating systems for much the same reason as I chose a
single compiler. It was simply better for me to cover lots of technical issues than for
me to check my code under LINUX.

As far as graphics APIs are concerned, I assume you’ll use DirectX 11 or later. The
code supports both Direct3D 9 and Direct3D 11, but only Direct3D 11 is covered in
the book. I don’t have anything against OpenGL, of course, but I’m just not an expert
in the nuances of it. Basically, if you have a good working knowledge in C++, C#,
Windows, and a passing knowledge of DirectX, you’ll be fine. You don’t have to be
godlike in your skill, but you should be pretty comfortable coding in these areas.

If you are a complete newbie and perhaps only know a little C++, don’t feel dejected
and don’t return this book! I have a plan for you. Throughout this book, I’ll refer to
other tomes of knowledge that helped me learn how to program. They can help you,
too, and you can use them in conjunction with the humble collection of knowledge
you hold in your hands. With a little concentration, you can bootstrap yourself into

xxxvi Introduction

programming prowess. I learned more about programming in C++, DirectX, and
Windows by looking at working code, of which there is plenty included in these
pages for you to enjoy.

Third-Party Libraries

This book uses STL for common data structures. If you don’t know anything about
STL, you’ll see some good examples in this book, and I’m sure you’ll be able to follow
the code. I’m not attempting to teach you STL, which is something that is beyond the
scope of this book. Instead, go read The C++ Standard Library: A Tutorial and Ref-
erence by Nicolai M. Josuttis. After you get your bearings, go read Scott Meyer’s
books on STL because both books are fantastic.

STL is a body of code that is extremely well tested, has a widely understood API, and
is available on almost every development platform. If you haven’t seen it yet, stop
reading right now and do a little research. You’ll never have to write code for com-
mon data structures like linked lists, resizable arrays, and trees ever again. I’ve saved
hours of grief using <list>, <vector>, and <map>.

Whatever happens, don’t get caught writing your own linked-list class or tree when
STL would have worked. All implementations are extremely well tested. Every bug or
implementation oddity has already been exposed and discussed on the Internet. Your
own code, on the other hand, is not.

Source Code and Coding Standards

I despise technical books that include source code that doesn’t compile. I cursed the
name of every author and editor who created those books, filled with errors and bro-
ken code. I’m now doomed to join their ranks.

Microsoft Word just doesn’t handle C++ source code very well. Since this book is
printed in black and white, the code highlighting has to be turned off. I understand
now why so many programming books are crawling with errors. I apologize to every
author and editor I maligned. Until I wrote this book, I had no idea how difficult it
was, and now Rez feels exactly the same way. Enough groveling! Rez and I will make
a valiant effort to check and recheck the source code in this book, and we’ll do what
we can to set anything right if anything is broken.

Now that my conscience is at ease, you should know something about how to read
the source code in this book.

Introduction xxxvii

Where the Code Comes From

Every line of source code has its beginning in an actual game. Of course, the code is
not 100 percent verbatim. My front door would be knocked down by a wave of law-
yers from Microsoft, Electronic Arts, Mattel, Eidos, and who knows what else. You
should see the agreements from EA that Rez had to sign before working on this
project! Instead, the code has been sufficiently tweaked to protect my intellectual
property and everyone else who was crazy enough to employ Rez and me. The origi-
nal code is much harder to read anyway. It usually contained optimizations and
external references that I couldn’t easily include in any form. Since they came from
over 30 years of combined coding experience, you can imagine the wide variety of
style and structure. If you want to make your own game, the source code in this
book should give you a head start. You’ll find some great skeletal work on which
you can hang your own code. I’m even hoping that some of the code in here will
save you some headaches so you can concentrate on your game.

The code in this book was written and tested on the Windows platform under Visual
Studio 2010 using the DirectX 9 and 11 applications framework. Console program-
ming is a different beast, and where it makes sense, these differences are pointed out.
If you’re looking to use this code on a Windows box but want to know how pro-
gramming the same thing on the Xbox 360, PS3, or the Wii is different, you’re hold-
ing the right book.

The source code is covered under the GNU Lesser General Public License. You can
read about this license here: http://www.gnu.org/licenses/lgpl.html, but basically it
means that you can do what you like with the code as long as you give Rez and me
credit. If you are crazy enough, you can even use this code in a commercial game.
But don’t say Rez and I didn’t warn you.

Coding Standards and Style

Source code standards are important. I’m not necessarily a standards dictator. I can
find room for other opinions on code style, and I’m happy to adopt reasonable stan-
dards when and where I must. I look at it like trying to learn a bit of the local lan-
guage if you travel abroad. The locals will appreciate it, and you might even learn
something.

Origin Systems didn’t have company-wide coding standards. I was part of no less
than three standards committees while I was there, to no avail. Every time we
attempted to discuss C++ bracing style, the meeting simply broke down into a
screaming match. There were many programmers at Origin who simply wouldn’t
adapt to anyone else’s style. It got so bad that somebody wrote a little utility that

xxxviii Introduction

http://www.gnu.org/licenses/lgpl.html

would parse a source file and change the bracing style from one to the other.
Madness!

Your coding standards and style exist solely to communicate useful information to
other programmers and sometimes a future version of yourself.

Rez and I use a coding style in this book extremely similar to what we use profes-
sionally. The only departures are those that make the code simpler to read. For
example, the source code in the book frequently eliminates obvious error detection
and handling. If we used every line of source code exactly as it appeared in real pro-
jects, this book would have to be twice as long. It was a tough trade-off, but it’s better
to have more examples and leave the obvious stuff out of the book.

Using Prefixes

Modern IDEs like Visual Studio expose the type of an identifier with a tooltip, so
programmers don’t have to clutter the prefix with redundant information. Instead,
the prefixes show scope, primarily. Here they are:

n g: Use with global variables—g_Counter

n m: Use with member variables—m_Counter

n p: Use with pointer variables—m_pActor

n V: Use with virtual functions—VDraw()

n I: Use with Interface classes—class IDrawable

I’ve seen some crazy use of prefixes that attach three or more characters to the front
of any identifier. It must be hard to program in Hungary. The problem with this style
is that every identifier that has the same prefix looks exactly alike. That’s why the
prefix should be as small as possible and separated from the identifier with an under-
score—it conveys useful information without overpowering the identity of the vari-
able name. In your own code, feel free to add more prefixes to this list as you find
good use for them. Just don’t go overboard!

Prefixing variables for scope is an excellent use for prefixes. Programmers who
change the value of something with global scope need to be slapped in the face so
they can take proper precautions. Class member variables have a different scope
than local variables. The “m” prefix is a clean way to differentiate locals and members
when they are used in the same method, such as constructors.

Introduction xxxix

Virtual functions are powerful, and therefore dangerous when used to evil ends. A
prefix on virtual functions reminds programmers that they should call the parent’s
overloaded virtual function, and that the cost of calling the function is high.

I find it useful to apply a prefix to interface classes, ones that only define pure virtual
functions and no data members, so programmers feel safe multiply inheriting from
them. I avoid multiple inheritance of noninterface classes, and I advise you to do
the same. The resulting code can be very confusing and hard to maintain.

Capitalization

I use capitalization to distinguish different classes of identifiers and make identifiers
easier to read.

n Variables and Parameters: Always start with lowercase and use a capital letter
for each compound word—g_BufferLength, m_BufferLength,
returnValue.

n Classes, Functions, Typedefs, and Methods: Always start with uppercase and
capitalize each compound word—SoundResource, MemoryFile.

n Macros & Constants: Use all capitals and separate compound words with
underscores—SAFE_DELETE, MAX_PATH.

The first two capitalization styles help programmers distinguish between definitions
of class and instances of those classes:

SoundResource soundResource;

MemoryFile memoryFile;

Macros, a source of frequent pain and suffering, should boldly state their existence in
all capitals. If you want to find the definition of a macro, it’s easy to search for the
#define MACRO_NAME. This sets them apart from functions or methods.

Const Correct Code

I try my best to make code const correct, and the code in this book is no exception.
I’m sure some of you hard-core const correct programmers will be able to throw a
few thousand const keywords in where I’ve forgotten them. Const correctness is a
pain, but it’s important. Adding const to member variables, function returns, poin-
ters, and references communicates important information to other programmers.

xl Introduction

Strings and Localization

If you make your game for English speakers only, you’re slashing your sales. Europe
and Asia, especially mainland China, are hungry for quality games. Most players will
put up with English, but they’d rather get their hands on a good translation in their
native language. Good localization technique deserves an entire book and a master’s
degree in foreign cultures.

I tend to use std::string and std::wstring throughout the book. It is an
incredibly useful string class, and while not everyone agrees, it’s the one I’m most
comfortable with.

One final note about strings in real game code: Debug strings or names for objects
are fine as literals. You can declare them at will:

if (impossibleError == true)

{

OutputDebugString(_T("Someone enabled the impossible error flag!"));

}

Commenting

Really good code comments itself, and I’m hoping the code in this book does exactly
that. Good variable names and logic should obviate the need for wordy explanations.
In this book, I’ll sprinkle comments in the code where I think they do some good,
but you’ll usually find some meaty explanation immediately after the code sample.

In a real game, the meaty explanation should be inserted into the code, perhaps at
the beginning of the file, so that other programmers can figure out what’s going on.
What seems obvious the moment you type the code degrades linearly with time to a
confusing mess. For me, total confusion sets in approximately three months after I
write the code. How could I possibly expect anyone else to understand it if I’m
completely lost in something I wrote myself?

I always start projects with the intention of putting good comments in my code. I
always end projects disappointed in other programmers and myself—we just didn’t
have enough time. That happens. Projects under pressure will see comments disap-
pear because the programmers are spending 100 percent of their time coding like
mad. The best policy is to start with a lean, light commenting policy and keep it up
as long as you can. If there comes a point in the project where comments are dwin-
dling, try to make a good effort to go back in the code base after the project releases
to document the code. A good friend of mine at Microsoft told me that shipping the
product was a good feature. I agree.

Introduction xli

Error Handling

There is very little error handling code in this book, so little that when I look at it, I
cringe. The fact is that robust error code gets a little wordy, and I wanted to spend
time on the lines of code that will teach you about making games. You can use any
form of error checking you want, and I talk about some different options in the
chapter on debugging.

Every hard exit in your game should have an error message that is presented to the
player: “Bummer – your game is hosed because of some bug in objectdata.cpp, line
6502”. Use FILE and LINE to identify the offending code. Unique error codes are a
hassle to maintain. This data can be invaluable for the development team and cus-
tomer service after the game ships. Many a patch or workaround traces its roots to
a few hundred telephone calls and emails that finger a particular error code.

Most games create their own assert() macros and error logging system, and this
book is no different. Throughout the code in the book, you’ll see GCC_ASSERT(),
which replaces the typical CRT assert() macro. It functionally behaves in the
same way. You may also see GCC_ERROR() and GCC_LOG(). The first will display
an error message, while the second will log the string to the debugger, assuming
you have the correct tag enabled. This is described in detail in Chapter 23, “Debug-
ging and Profiling Your Game.”

Memory Leak Detection

Most everywhere in the source code, you will see memory allocations use GCC_NEW:

m_PCMBuffer = GCC_NEW char[bytes];

GCC_NEW is defined in debug builds as:

#define GCC_NEW new(_NORMAL_BLOCK,__FILE__, __LINE__)

You’ll learn more about this in Chapter 23, but suffice it to say for now that doing
this helps you find memory leaks.

GOTO: NOT JUST A BAD IDEA—IT WAS NONEXISTENT!

At Origin Systems, a particular programmer on Martian Dreams used goto at
a frequency you’d find unpleasantly surprising. The new version of the Borland
compiler was on everyone’s desks, fresh from the presses. He’d just finished
installing it and went to lunch. I went to his machine and edited the
compiler executable. I changed the keyword goto to goat. When he came
back from lunch, three or four of us were poring over the Borland docs in my
office. We told him that Borland’s software engineers decided to eliminate goto
from their implementation of C. He didn’t believe us until he compiled a

xlii Introduction

small test program in his newly installed compiler and received “unexpected identifier or keyword: goto”
message for his trouble. We told him the truth before he reached someone at Borland’s customer service
department.

Companion Website Downloads

Visit the companion website for this book at http://www.mcshaffry.com/GameCode/,
where you can find the most up-to-date resources for this book, especially the source
code.

The source code for this book is hosted by Google Code at this address:
http://code.google.com/p/gamecode4/

You may download the companion website files from www.courseptr.com/downloads.
Please note that you will be redirected to the Cengage Learning site.

Introduction xliii

http://www.mcshaffry.com/GameCode/
http://code.google.com/p/gamecode4/
www.courseptr.com/downloads

This page intentionally left blank

Chapter 1

by Mike McShaffry

What Is Game Programming

Really Like?

Programming games can be very different from other kinds of programming. Some
of the good aspects of game programming have to do with the bleeding edge chal-
lenges you run across and the fact that sometimes you actually see your name scroll
across a credits screen. Games are cool, and everybody loves them. If you meet a fan
at a computer game store, that person is usually really happy to meet you. You get to
play with some great technology from manufacturers like Nintendo, Microsoft, Sony,
Apple, and others. Software development kits from companies like Unity, Havok,
Epic, Valve, and others are also a lot of fun to play with. They can give you a real
boost in game development and can bootstrap your game from nothing to something
cool in record time.

The not-so-cool side of professional game programming involves the inherent
unknowns that come with your work. The sweaty underbelly of this industry can be
blamed mostly on insane deadlines and work hours, project management problems,
ever-changing SDKs, hardware and operating systems, the tricky problem of creating
“fun,” and intense competition from other game developers. Hopefully, this book can
give you some perspective on the industry and at the same time show you the fun
and not-so-fun aspects of game development. I’ll try to point out some things that
I’ve learned over the past few years. Read this chapter, and you might be able to
dodge a few of these problems.

1

The Good

Programming jobs in the games industry change fast. In fact, they’ve even changed
with each new edition of this book. Programming used to be a really broad activity
because there were so many problems to solve and there were so few good and expe-
rienced game programmers out there who could solve them. In the real early days,
game programmers did everything: code, art, sound, and game design. Now you
tend to see very specialized game programmers for niche areas of game technology:
Character movement, network communications, database, physics, and audio are just
a few. When I accepted my first job in the computer game industry, my second
choice was a job with American General Life Insurance. They wore ties. Their
employees took drug tests. I would have had the distinct privilege of working on a
beta version of Microsoft’s C++ compiler, programming little sales tools for insur-
ance agents. Did I make the right decision or what?

Face it—most programming jobs are downright boring. If you know where to look,
you can still find really interesting ones even outside the games industry. They might
be jobs you can’t talk about, working on ultra high budget simulations and control
software, finding cures for disease through molecular protein folding analysis, and
games. Everything else falls quickly into the “Did you put a cover sheet on your
TPS report?” category.

The Games Industry Is More Secretive Than the Pentagon

In 2010 I was approached by Electronic Arts to work at their Sims studio on
“a brand new Sims game.” That was all they would tell me. It wasn’t until I
went into the on-site interview and signed a non-disclosure agreement that
they told me this new game was The Sims Medieval. The project I’m
working on as of the writing of this book is even more secretive. We don’t
tell potential candidates anything at all except that it’s a Sims game, even
after signing a non-disclosure agreement.

The Job

Here’s my bottom line: Games are great to work on because they are as much about
art as they are science. When I wrote the first edition of this book, I put a lot of
thought into why I found game programming immensely satisfying even with all of
the pressures and challenges. I came to the following conclusion—I like blending the
artsy side of my left brain and the engineering side of my right brain, especially when
I’m in new territory. When I was on Thief: Deadly Shadows, I got to work on charac-
ter movement—talk about a tweak fest. I had to look carefully at the character move-
ment and understand why it “felt” wrong. I played tons of Splinter Cell to see how

2 Chapter 1 n What Is Game Programming Really Like?

they solved some sticky problems. The “art” involved understanding how character
movement was supposed to “feel.” Once I had a clue, I had to convert that feeling
to a piece of code that fixed the problem—that was science, mostly math. Two sides
of your brain working together can solve some really cool problems. Even if you
understand the science, sometimes it’s up to you to tweak it, like an artist tweaks a
smile on a portrait.

It’s great to take a game design discussion with you to lunch. You can have a heated
debate on whether the master zombie characters came from outer space or originated
here on Earth—the result of some tragic experiment. You get the weirdest looks, as
someone screams, “Damn it, everyone knows that it’s better for the zombies to come
from space!”

I have the most fun coding, especially when things are going well. Game code can be
pretty difficult stuff, and you frequently have to break some new ground here and
there. This is especially true when you are playing with new hardware like the latest
console development kits. When working at Red Fly Studio on Thor 3DS, no one had
worked on stereoscopic 3D rendering before, and it was both fun and tricky to figure
out how to do it right. Sometimes you can break new ground when you figure out
how to implement a customized version of a classic algorithm so that it runs fast
enough to be in a game instead of a textbook.

Probably the best part of game coding is starting from scratch and allowing every-
thing in your libraries to be refreshed and rewritten if necessary. While you are fin-
ishing, you can’t make drastic changes, and you are forced to live with some
annoying hacks and hastily designed objects. When the project is done and you are
starting the next one, there’s nothing better than throwing off those shackles. Refac-
toring, reorganizing, and rewriting an older system so that it really shines is
extremely rewarding. Games probably offer more freedom than other types of pro-
gramming projects because game code can have a very short shelf life. Of course, I
say that knowing full well that some of my code might very well still be alive in
Ultima Online, 10 years after it went live. Still, the state of the art moves pretty fast,
and as a game developer you’ll be pedaling as fast as you can.

The Gamers

If you work in the games industry, people want to know about your company and
your projects. They talk to you about your job because it’s high profile. They want
to know when they can play your game. Depending on the company you work for
and what game you are working on, you may not be able to say a single word
about it. (Secrecy can be very important when working with companies like Nintendo

The Good 3

or LucasArts.) Every now and then, you’ll find someone who played a game you
worked on and enjoyed it. It’s great when fans get a buzz going about a game that’s
still in the design phase, or they start talking about the next version before you’re
back from vacation. They set up websites devoted to your game and argue endlessly
about stuff that even the development team finds minor.

Another category of people you come into contact with is the hopeful would-be game
programmer. I enjoy these folks, and I do everything I can for anyone who has talent
and is willing to increase his or her skills—if I didn’t, you wouldn’t be reading this
book! With today’s independent development scene and increasingly savvy hobbyists,
there is also an increase in amateur developers. These developers are taking things a
step beyond the more casual hobbyist level to create things that are intensely interest-
ing. Some even graduate to cult status, or better yet, to the professional ranks. With
iTunes, the Android Marketplace, Xbox Live Arcade, Steam, and Facebook, anyone
can make his own game, actually sell it, and potentially make a living. The best
revenge is being able to tell your parents that playing all those games actually did
you some good.

A Demo Is Better Than a Resume

One of the best programmers I ever worked with started out as a dedicated
amateur. This guy was so dedicated that he rewrote a large portion of Ultima
VII on his own time and actually made a fantastic graphics engine that had
Z-sprites before I even knew what they were. He showed us a demo that
simply blew the minds of the Ultima programming team. We hired him.

Your Coworkers

The best people are those closest to you—the development team. By the end of a project,
they’re like your family. Certainly you’ve seen themmore than your family, and I’ve even
seen teammates become family. Programmers, artists, animators, designers, audio
engineers, composers, testers, and project managers make an odd mix of people.
You wouldn’t think that these people could all hang out and get along. But they do,
mostly anyway.

Most of your interactions in game programming are with other programmers. One
big difference between the game industry and other more traditional programming
jobs is that there’s a significant portion of programmers who are self-taught in
games. I believe that game programmers as a whole look more to a person’s skill
than a university diploma. That’s not to say that self-taught coders are slackers by
any shake of the stick. Instead, they tend to be absolutely brilliant. One difference

4 Chapter 1 n What Is Game Programming Really Like?

between the self-taught hackers and the programmer with formal training is that
hackers tend to design and code things before they realize that someone has already
solved the problem. Sometimes, you’ll catch them describing a cool data structure
they just came up with, and you’ll realize they are talking about a B+ tree. Their
strength comes from their amazing ability to see right to the heart of a problem
and fearlessly begin to solve it. One of the most brilliant programmers I ever met
never graduated high school.

The creative insight that artists conjure up makes working with them so fantastic.
Probably the weirdest thing about working with artists on computer games is that
you realize that artists and programmers are the same kind of people working with
different sides of their brain. Artists can push you hard to achieve the look they are
going for. Sometimes on a busy day, your first reaction to them asking crazy things
of you is to brush them off. Instead, take a moment to visualize their goal and see if
there’s a way to make it happen. At Red Fly Studio, artists ruled the roost (the CEO
was an artist), and our games always benefited from programmers trying hard to
make the artists happy. One bit of advice, though—artists find it very difficult to
remember that not every texture needs to be 2048 × 2048, and they will sometimes
create assets that couldn’t run on an army of computers, much less one that a normal
person owns. When that happens, try to be patient and give them gentle reminders.

Animators have intense relationships with programmers, because getting a character
to act in the game as the animator intends can be pretty tricky. The programmer
working with a character animator has to constantly balance how good the character
looks with how responsive the character feels. Take jumping, for example. When
players press the jump button, they want the character to jump immediately, but in
practice that looks a little goofy, since there’s no time for the character to “wind up”
to the jump as a real person would. Detecting the character’s surroundings and ani-
mating to make him react properly to it can also be a challenge. Finally, animators
love to change animations to make them better, but the problems of changing some-
thing critical, like jump distance, can have a drastic effect on level design—making
easy things impossible or vice versa. Again, gentle corrections and good communica-
tion are key.

Game designers are a truly special breed of people. Almost every other discipline in
game development has easy access to work in other industries—programmers, artists,
composers, even producers can work using the same tools and thought processes as
they do making games. Game designers, however, tend to transform into writers,
playwrights, movie directors, historians, teachers, philosophers, poets, and any num-
ber of other things. Great game designers bring an amazing understanding of what

The Good 5

drives human behavior and what fantasies humans would like to have. All this, as
you might expect, can create some very interesting personalities—from the collabora-
tive inspirer to the egomaniacal dictator. As a programmer working among designers,
being able to understand their vision and help them create it is likely one of the most
important skills you can have beyond the technical ones.

I’ve always enjoyed working with audio engineers and composers. One thing I can
pass on is that the last content that gets tweaked or made in games is generally
audio. Story is usually told through voice-over, sometimes with well-known actors.
Final sound effects can’t really be perfected until all the animations and particle
effects are completely and absolutely final. What this means to you is that anytime
something you are working on runs a little behind, you basically steal a little time
from the guys who work last, which tends to be audio. Even so, you’ll never find a
more laidback and fun group of people. How they can be so pressed and keep a bet-
ter attitude than almost everyone else on the whole team I’ll never know.

I’ve tried very hard to have a great relationship with game testers. They can be every-
thing from a high school kid working part-time to a real test engineer formally
trained in software quality assurance. Either way, they are your last, best hope to
release a game that will be fun to play and free of game-stopping defects. They can
sometimes be frustrated game designers, but most of the time they are just game
enthusiasts who really know the difference between fun and “meh.” Listen to them,
try to be patient when they keep telling you your code is broken, again, and they’ll
save you from introducing some bug that gets mentioned in a Metacritic review.

Producers, or project managers, I know the best because I’ve spent probably as much
if not most of my career managing as I have coding. They are typically obsessive-
compulsive organizers, energetic, gregarious, and team cheerleaders. They can also
be like that guy in Office Space asking you where your weekly report is, which never
goes over very well. Best advice I can give you is to put yourself in their shoes—play-
ing a live action resource allocation game and trying to get thousands or even mil-
lions of creative works all completed in the right order and the right time, hopefully
without asking everyone on the team to work every weekend for the next two years.
Most producers want the best game possible without killing the team, and with any
luck, they want to see that the team has some fun while doing it. Remember that, and
you’ll see their pesky questions in a new light.

All told, this group of people brings an incredible amount of talent and diversity to a
team—and that is something you just can’t get in many other jobs.

6 Chapter 1 n What Is Game Programming Really Like?

The Tools—Software Development Kits (SDKs)

One of the most popular SDKs is DirectX from Microsoft. It provides APIs useful for
creating game software, albeit only on devices that run Microsoft operating systems.
There are many more: SDKs for physics, SDKs for rendering 3D graphics, SDKs for
audio, networking, even AI. You probably could make a professional game without
using any of them, but I wouldn’t recommend it. You don’t need all of them, but
most certainly you’ll use one or two. They boost your development schedule and
give you some confidence that your graphics or audio system has been well tested
and might even be well known by other programmers that will help you make your
game.

When I first started writing this section, it was in “The Dark Side” section at the end
of this chapter. I felt a little guilty about giving SDKs such a bad rap. After all, if they
are really useless, why do I use them on every project? The truth is that SDKs give
you a huge leg up. The source code that accompanies this book could never have
been written or maintained without them. That said, they can also be a huge pain
in the butt. SDKs are widely used, so they can’t appeal to the odd needs of every
project. Some of the expensive ones come with source code as you see with open
source SDKs, which is critical for debugging problems. You can even make changes
and recompile the SDK, but any customizations you perform might be invalidated by
their next version. Most of the time, you have to be satisfied with begging and plead-
ing the company that created it to add your wacky feature or just support the custom
mod yourself. Perhaps the SDK engineers will find your idea interesting and add
your idea to the mix.

The real hassle comes when you grab their latest version. You’ll usually find that the
new version isn’t compatible with your code base, and you’ll spend hours or days
getting your game to compile again. In writing the fourth edition of this book, this
happened to me—many SDKs needed some code changes to become functional again
or to take advantage of new features and capabilities. Basically, if you don’t have to
upgrade for some compelling reason, don’t bother. Spend the time making your game
better. As they say, “If it ain’t broke, don’t fix it.”

Do yourself a favor and try to find SDKs that that are widely used or are from com-
panies that commit to support earlier APIs or have become stable enough that you
only have to change your code to utilize new additions, rather than random changes
to old APIs. Anything else is madness.

The Good 7

Self-Inflicted Wounds

Red Fly used TRI’s Infernal Engine for all our games until about 2011. During
that time, the programmers at Red Fly were improving the engine almost at
the same speed as the TRI programmers—but not in the same way or even
with the same programming philosophy. Ultimately, the two engines had to
be brought back together because the Gen3 version of the engine had
platform support for Sony PlayStation 3 and Nintendo 3DS. It took one
programmer almost six months to reintegrate tens of thousands of individual
changes so Red Fly could have the best of both worlds.

The Hardware

Games run on cool hardware. Well, most games do. At Red Fly, the Thor project was
one of the first games released on Nintendo’s 3DS system, featuring stereoscopic 3D
rendering. Thief: Deadly Shadows used the very latest in audio and video hardware
for the PC, especially the new 5.0 EAX environmental audio system from Creative,
and it also ran on the fairly new Xbox. Way back in the day, the Ultima games
from Origin Systems pushed hardware so hard that players would usually buy a
new computer every time an Ultima came out. At the time, this was like spending
$2,500 on a new game. Many of the big-budget PC titles are created on hardware
that has yet to reach any serious market penetration, which means that the hardware
manufacturers are constantly sending game developers the latest greatest stuff and
even a T-shirt every now and then. An established developer can still call any hard-
ware company out there and get on their developer program. You don’t exactly get
free hardware anymore, but you do get access to the developer forums, news about
updates, and other things you’ll find useful. That can save your day if you find
that your game crashes on the hottest video card or with one of the latest new
controllers—you can’t fix the bug just by hoping it goes away.

The developer programs offered by hardware manufacturers are a great resource.
Most of them have special developer websites and prerelease hardware programs.
They also have dedicated engineers who can help you with a specific problem. An
engineer at ATI verified a particular bug on one of the Microsoft projects I worked
on, and they had a new driver ready in a few days. Of course, I was happy to have
the big gorilla named Microsoft standing behind us, but most hardware companies
are really responsive when it comes to diagnosing weird driver problems.

The Platforms

There is a wide variety of gaming platforms, and they never stop growing. For many
years, we only had to deal with consoles and desktops. Since 2001, games have

8 Chapter 1 n What Is Game Programming Really Like?

popped up on handheld devices like the Nintendo 3DS, Sony’s Vita, the iPhone/iPad,
Android devices, and many others. The biggest growth in gaming from the third edi-
tion of this book to the fourth edition by far is Web-based gaming, especially Face-
book and Google+.

At the time of this writing, the big consoles on the market are the Wii from Nin-
tendo, the Xbox 360 from Microsoft, and the PlayStation 3 from Sony. At first, the
battle seemed to sway to Nintendo, which came in third place during the PS2/Game-
cube/Xbox era. Late in the cycle, Microsoft and Sony seem to be winning. Since the
1950s and the very first computers, it was always software that sold the hardware,
which is a fact that will never change. PlayStation 2 won the last time because it
had the best games, period. The Wii came out strong because of its wide appeal to
gamers of all ages. But due to the fact that Microsoft and Sony strongly support all
their developers, not just their internal teams, they have gained ground, and it looks
like the Wii is fading. Still, if it weren’t for Nintendo taking a big risk on the Wii
motion controls, we probably wouldn’t have seen them from the much more conser-
vative Microsoft or Sony. Fading or not, they are still influential, and the games
industry is used to surprises from Nintendo.

My Nephew Makes Mushroom Men Better

One thing most games go through is something called blind playtesting.
This is when you let someone who has never seen the game come in and
give it a try. Usually, this happens with some developers watching and
cringing, as they see a new player have trouble with something they
designed. My then 10-year-old nephew, Sam, was a blind playtester for
Mushroom Men: The Spore Wars and actually found a pretty important
bug. It turned out that the special weapons Pax could build could only
be used while standing in one place—and my nephew immediately
noticed this. One of the programmers, Kain, was able to fix the bug and
show Sam how his comments made the game better.

The best part of developing for consoles is the fact that you’ll never have to worry
about supporting a hellish grid of operating system and hardware configurations
that are guaranteed to change at least twice during your development cycle. You do
have to deal with standards compliance with the console manufacturers, which can
be quite difficult if you’ve never had the experience.

Tables 1.1 and 1.2 list the various platforms on the market and their hardware
specifications.

The Good 9

There’s a serious leap in capability from that first table to the second, isn’t there? The
change from the PS2 to the PS3 is nothing short of remarkable. But hardware capa-
bility doesn’t mean you’ll sell more—a great lesson that sometimes less is more.

When I wrote the second edition in 2004, I had a line about desktop hardware that
said: “After all, you can’t find CPUs topping 2GHz in the console world….” Funny
how times change—today that statement is completely wrong. A few years after this
edition is published, it will be wrong again! I also wrote that consoles were always
lacking behind desktops for raw processing and graphics power. That statement
isn’t as true in the PS3/Xbox360 era and certainly won’t remain true when their suc-
cessors start to emerge.

Desktops are still ahead when it comes to memory and hard drive storage, but they
are falling behind in cool controllers, like you see with the Wii. With all the consoles
being Internet-capable and having space on their hard drives, consoles even get to
send updates. The lines are definitely blurring. But the cool controllers aren’t driving
the popularity of PC games anymore; instead, it is social gaming on sites like

Table 1.1 Capabilities of Last Generation Consoles

Platform Xbox PS2 GameCube

CPU 733MHz 294.9MHz 485MHz

Graphics Processor 250MHz 147.5MHz 162MHz

Maximum Resolution 1920 × 1080 1280 × 1024 Up to HDTV

Memory 64MB RAM 40MB RAM 43MB RAM

Controller Ports 4 2 (4 optional) 4

Media 4x DVD-ROM 5x DVD-ROM 3x DVD-ROM

(3.2–6.4GB) (3.2–6.4GB) (1.5GB)

Digital Sound Dolby 5.1 DTS in
gameplay

Dolby Pro Logic II Dolby 5.1 for DVDs

Hardware Audio
Channels

64 48 64

Hard Disk Yes—8GB Add-on No

Internet 10/100 Ethernet
port

Optional modem/
broadband

Optional modem/
broadband

DVD Movies Yes Yes No

10 Chapter 1 n What Is Game Programming Really Like?

Facebook and Google+. Those games begin as free to play, but very quickly they
begin to ask you to spend small amounts of money on more energy. Even more
insidious, these games ask you to use your social network to “help” you play, thus
using you as a way to spread the word about their game while they take your
money at the same time. Brilliant. A little disgusting maybe, but brilliant.

Still, the dizzying array of hardware and operating system combinations on desktops
makes compatibility a serious problem. You’ll spend a serious amount of time

Table 1.2 Capabilities of Next-Generation Consoles

Platform Xbox360 PS3 Wii

CPU 3.2GHz PowerPC
Xenon with three
cores

3.2GHz cell—Also
has seven single-
threaded special
purpose processors
(SPEs)

729MHz IBM
Broadway

Graphics Processor 500MHz ATI 550MHz NVIDIA 243MHz ATI

Maximum Resolution Up to 1080p HDTV Up to 1080p HDTV Up to 480p

Memory 512MB RAM 256MB RAM 60MB RAM

@ 22.4Gbps @ 25.6Gbps @ 1.9Gbps

HDMI Yes Yes No

Controller Ports 4 (wired and
wireless)

7 (wired and
wireless)

4

Media 12x DVD-ROM Blu-ray Proprietary DVD

(3.2–6.4GB) (3.2–6.4GB) (1.5GB)

Digital Sound Dolby 5.1 DTS Dolby 5.1 DTS Dolby 5.1 for DVDs

Hardware Audio
Channels

n/a 320 hardware, no
limit with software

64

Hard Disk Yes—20–120GB Yes—20–120GB No

Internet 100Mbs Ethernet Gigabit Ethernet Built-in wireless

DVD Movies Yes Yes No

Blu-ray Movies No Yes No

The Good 11

chasing down some crazy bug that only happens on some archaic version of Win-
dows or on some rare video card. What a hassle!

Take a look at Table 1.3 and compare it to Table 1.2. You’ll see pretty quickly that
what was sitting under your TV will be in your pocket in just a few years. Not only
that, but the input/output of these devices has all kinds of fun things to play with—
GPS, front-and-back facing cameras, accelerometers, multi-touch screens, Bluetooth
local networking, and fast Internet connections. just to name a few. Some of the
best innovation in game design comes from having new ways to interact with the
virtual universe, simulated by the device and other humans playing the game. One
of the most innovative things I’ve seen recently is experiments in augmented reality,
where you can use a pad or a phone as virtual goggles into the real world, with game
characters seemingly moving about on your desktop, living room floor, or on top of
someone’s head in the subway. This kind of creativity and genuine fun in game
development is one of those things that makes me want to get up every day and go
to work. I never know how the day will turn out or what new things I’ll see.

On desktops and even handhelds, like phones and pads, you might find it useful to
find ways to support older legacy hardware while you make your game look good on
the bleeding-edge gear. The CPU delta on PCs can be nearly 10:1, and the graphics
delta is worse. People who play casual games hold on to their computers a long time,

Table 1.3 Capabilities of Latest Handheld Devices

Platform iPad2 Droid Bionic Sony Vita

CPU 1GHz Apple A5 1GHz ARM9 (dual
core)

1GHz ARM9 (quad
core)

Graphics Processor 200MHz PowerVR
SGX535

GeForce Tregra 2 PowerVR SGX543

Maximum Resolution 1024 × 768 HDTV 960 × 540 960 × 544

Memory 16–64GB RAM 16GB RAMSD adds
32GB RAM

512MB RAM
128MB VRAM

HDMI Yes No No

I/O Touch screen, front
and back cameras,
GPS

Touch screen, front
and back cameras,
GPS

Touch screen,
playstation
controls, front and
back cameras

Internet 3.1Mbps 3G WiFi
802.11 a/b/g/n

3.1Mbps 3G WiFi
802.11 b/g/n

WiFi 802.11 b/g/n

12 Chapter 1 n What Is Game Programming Really Like?

so you’ll probably still find video cards out there that don’t support shaders for that
type of gamer. A good game will configure itself to create the best experience it can
on the hardware. If you have a hard-core audience, make sure that your options
screen lets them tweak every setting possible. Let the flamethrowers turn on multi-
channel MP3 decompression, full dynamic lighting and shadows, full-screen graphics
effects like motion blur and bloom, ultra-high texture and model density, stereo
1600 × 1200 × 32 displays, and quasi-telepathic AI. Each of these options deserves
separate testing paths on all the hardware configurations.

It makes you glad you can send patches over the Internet.

The Show

The game industry throws awesome tradeshows and parties. Find out for yourself
and register for the Electronic Entertainment Expo (E3), usually held in Los Angeles
in May. E3 requires you to be part of the industry to get registered, so if you don’t
have a game job, then launch a game review website and call yourself “press.” Every-
body else does. When you get there, play every game you can and dork around with
the latest console gear. The show floor is where the game companies pull out all the
stops to attract attention. You’ve got to go see for yourself. It’s unbelievable.

Sneaking Around Is Definitely a Best Practice

Throughout this book, I’ll be including a number of “best practice” tips from
my years of experience as a developer. I couldn’t resist including this one for
your first “best practice” dose. It can be a lot of fun to snag party invitations
from the in-crowd and talk your way into the “by invitation only” areas. A
friend of mine who worked for Dell was able to get into virtually every private
area of the show just by showing up, flashing his Dell credentials, and talking
like he was someone important. Almost everyone bought it. It’s all good fun.

If you want to learn about game development, go to the Game Developer’s Confer-
ence in San Francisco, which is held in March. It’s brutally expensive, but you’ll find
the cream of the game development crop telling willing crowds some of their secrets.
Before you sign up for any of the workshops, roundtables, or sessions, it’s a good idea
to do a Google search on the speakers and get an idea of what they’ve worked on
recently. Choose the sessions that have speakers with the most game industry experi-
ence and subject matter you’re ready to hear—some of them are fairly advanced. If
you find yourself short of the cash to register, sign up to volunteer. Sure you have to
work the show, but you will get some time for yourself, and even just an hour or two
will be worth it.

The Good 13

The Hard Work

Every job has its good parts and parts you just have to slog through. Game program-
ming is no different. First, game programming can be extremely frustrating at times.
Many before me have argued that programming games is the most challenging form
of programming there is. Bad things are a matter of perspective; some people find
these things challenging, while others find them burdensome. You’ll have to judge for
yourself.

Game Programming Is Freaking Hard

It’s not uncommon for a game programmer to do something completely new and try
to hit a deadline at the same time. I’m not talking about a modification of a data
structure to fit a certain problem; I’m talking about applying experimental and theo-
retical designs to a production system that meets deadlines. On Ultima VII, one
programmer wrote a 32-bit memory management system that was based on a little-
known Intel 486 processor flag and hand-coded assembly, since there were no
32-bit compilers or operating systems we could use. On Ultima VIII, one of the
low-level engineers wrote a multithreaded real-time multitasker two years before
Win32 went beta. On Ultima IX, the graphics programmer figured out how to
make a software rasterizer appear to pump 32,000 textured polygons per second on
a first generation Pentium. Everyone knows what Ultima Online did—found a way to
get every Ultima fan playing in Britannia all at the same time. I can’t even begin to
talk about the innovation that had to happen there just to get this system to work.

It would be one thing if this stuff were all research, where results come when they
may and the pressure is bearable as long as the funding for your project is there. A
game project is different because the schedule is relentless. For all the media press
about how late games are, I’m surprised that you see some of them at all, given the
fact that so much technology has to be created and somehow the game has to be fun
all at the same time.

Richard Garriott Uses Jedi Mind Tricks

Technology isn’t the only thing that makes game programming hard. Game
designers will push you farther than you ever thought you could go. I
remember very well a conversation the senior staff at Origin had with Richard
Garriott about the world design for Ultima IX. The team was pushing for a
simple design that was reminiscent of the old Ultima games—the outdoor
map was separate from the city maps. This was a simple design because each
map could be loaded at once, and no complicated map streaming would be
required. Richard didn’t go for it. He wanted a seamless map like Ultima VII.
This was a much harder problem. We knew going into the meeting that if we

14 Chapter 1 n What Is Game Programming Really Like?

couldn’t convince Richard to use a simpler world design we’d have a hard time making our deadlines. We
steeled ourselves with resolve, and armed with our charts and graphs and grim schedule predictions, we
entered the conference room. Two hours later, we all walked out of the room completely convinced that
Richard was right, a seamless map was the way to go. I wish I knew how he does that!

Bits and Pieces

Games are built from more than code. Go find any PC game you bought recently and
take a look at the directory where you installed it. You’ll find the expected EXE and
DLL files, with a few INIs or TXT files, too. You’ll also find gigabytes of other stuff
with file extensions that don’t necessarily map to any program you’ve ever seen.
These other files hold art, models, levels, sounds, music, scripts, and game data.
This data didn’t just fall out of the ether. Every texture was once a PNG or TIF file.
Every sound was once a WAV, probably converted to MP3 or OGG. Each model and
game level had its own file, too, perhaps stored in a 3ds Max file. Even a small game
will collect hundreds, if not thousands, of these bits and pieces, all of which need to
be catalogued and organized into a manageable database of sorts.

Very few software projects share this problem. The only thing that comes close is a
website, and there just aren’t that many assets. After all, they have to get sent over
the Internet, so there can’t be that many—certainly not enough to fill up a Blu-ray
disc, and a compressed one at that.

Losing Files Is Easier Than You Think

Logistically, these things can be a nightmare to manage. I worked on a
project where an artist wiped every file he’d worked on without even
knowing it. Art files would get changed on the network, but wouldn’t
get copied into the build, or even worse, the artist would change the
name of a file, and it would get lost forever. When you have thousands
of files to look though, it’s sometimes easier to just repaint it. Luckily,
there are tools like Perforce, Subversion, or Git to help manage this
problem. The situation is certainly better than when I started, where I
think our best file management scheme was a pad of paper.

That’s Not a Bug—That’s a Feature

Actual bug: I was walking along and the trees turned into shovels and my character
turned into a pair of boots and then the game crashed.

You certainly won’t see a bug report like that working on a database application.
Seriously, some of these reports convince you beyond any shadow of doubt that the

The Hard Work 15

testers are certifiably crazy. Or your code could be crazy. My bet is on the code being
crazy.

You might wonder why I put something so amusing in the “hard” section of working
on games. There are plenty of funny bugs; stuff goes wrong in a game and has a
bizarre result. Luckily, Quality Assurance (QA) should find it because it will be fun-
nier for you as a developer than it will be for players whose crashed game destroyed
their save files and ruined all their progress, forcing them to start again from the
beginning. Trust me, most players will “rage quit” at that moment.

Beyond the funny bugs, there’s a dark side.

One bad thing is just the sheer volume of bugs. Games tend to be rushed into testing,
and the QA department does what they are paid to do and writes up every problem
they observe. I think they hope that eventually the producers will get the point and
stop sending proto-ware into the test department. They hope in vain because the
pressure to call the game “testable” is usually too much for the project management
to bear. It’s too bad that there tends to be no solid definition of “testable” unless you
work in QA. From their point of view, it’s pretty obvious.

The heavy bug volume weighs on everyone, developers and testers alike. They end up
creating a logistical nightmare. The graphical reports that get spit out by the bug
database are watched like the stock market; only this time, a steep upward curve
tends to have a negative effect on team morale. The worst part by far is what happens
when the team can’t quite keep the bug count under control, which typically happens
when they are still focused on finishing the game’s content and features. To stay
ahead, the project leadership gathers together and does “triage”—a process where
they kill off bugs without the team ever really seeing it. The bug simply becomes a
feature, maybe a weird screwed-up annoying feature, but a feature all the same.

You Won’t Be Able to Fix Every Bug

There’s nothing like having the rug pulled out from underneath you
because a bug that you intended to fix is marked “won’t fix” by the
team leadership. You might even have the code fixed on your machine,
ready to check in for the next build. Instead, you get to undo the
change. The final straw is when some critic on the Internet bashes the
programmers for writing buggy code and even points out the very bug
that you intended to fix. Most programmers I know are perfectionists
and take a lot of pride in their work, and because of that they lose
sleep over bugs. As evil as this seems, making those decisions is as
tough as knowing your code has a bug that you aren’t allowed to fix.
Believe me, I’ve done that a few thousand times.

16 Chapter 1 n What Is Game Programming Really Like?

The Tools

Richard Garriott, aka Lord British and creator of the Ultima RPG series, once said
that the computer game industry is a lot like the movie industry. He also said that
at the beginning of every game project we start by inventing new cameras, film and
processing techniques, and projectors. He said that 10 years ago, and while there is
great middleware out there for sound and graphics and even complete turnkey game
engines like Unreal 3, many game projects end up writing their own development
tools from scratch.

Before We Made the Game, We Made the Tools

Most games have level or mission editors. When we developed the Ultima
games, we spent the first year or so of development writing the game
editor—a tool that could import graphics, sounds, and models from all the
art and modeling software like Photoshop, LightWave, 3ds Max, Maya, and
others. Ultima IX’s level editor was fully networked and used TCP/IP to
communicate peer-to-peer to all the designers and programmers running it.
They could even edit the same map at the same time, since smaller portions
of the map could be locked out for changes. The editor could launch into
game mode at the press of a button, so the designers could test their work.
Ultima Online’s editor was much more like the game than Ultima IX. UO
already had a client/server system up and running, and it used a special god
client to change the map levels and add new assets to the game.

Other games use a simpler strategy, a wise choice if you don’t need 20 people build-
ing seamless maps and levels. The basic game level is assembled in a modeling tool
like 3ds Max. A special editing tool usually loads that level and drops in special
actions, dynamic object generators, and characters, almost as if you were playing
the game. If you are developing a smaller game with a small team, there’s no need
to have a complicated, multiperson-aware tool. In fact, with a little work you can
make 3ds Max act like your level editor—just don’t try this on an AAA title.

There are a number of game engines on the market from Unity, Epic, Crytek, Valve,
Trinigy, and others. The days of creating custom level and mission editors may be
over, but you’ll still have to write quite a bit of custom tools and code to make your
game unique. So, worry not, the job of the game programmer is safe for a long time.

The Dark Side

There are plenty of factors that make game coding a fluid and unpredictable task.
The design of the game can change drastically during development, motivated by
many factors inside and outside the development team. Mounting schedule slippage

The Dark Side 17

and production pressure leads to the legendary “crunch mode” so prevalent on many
game projects. Dependant software tools like console SDKs and your licensed game
engine change constantly, challenging software teams to keep up. Unlike many soft-
ware projects, games frequently must support a wide variety of operating systems,
graphics APIs, and platforms.

Hitting a Moving Target

Most industry software projects are carefully designed and planned. Systems analysts
study customer requirements, case studies of previous versions of the software, and
prospective architectures for months before the first line of code is ever written.
Ultima VIII’s architecture was planned by seven programmers in a single afternoon
on a whiteboard.

Architecture notwithstanding, you can’t design “fun.” Fun is a “tweakable” thing, not
something that exists in a design document. You hope like hell that the original
design will result in a fun game, but the first playable version frequently leaves you
with the distinct impression that the game needs some more chili powder and a little
more time on the stove.

Sometimes, the entire design is reworked. Ultima IX’s architecture and game design
changed no less than three times in development. I was there for two of them and
didn’t stick around for the third. When a game is in development for multiple
years, it’s easy for new hardware technology to blaze past you. In Ultima IX’s case,
3D accelerated video cards were just coming into their own as we were putting the
finishing touches on what had to be the finest software rasterizer anyone ever wrote.
It never saw the light of day.

Sometimes Your Game Is Just Plain Boring

Ultima VIII ’s map design had a hub-and-spoke model. The hub was an
underground dungeon that connected every other map. We released the
game to QA, and word came back that it was completely boring. The
culprit was a sparse central map that wasn’t much more than an
underground maze with a few bad guys hanging out here and there. It
wasn’t good enough. Two designers worked day and night to rework
the central map. Puzzles, traps, monsters, and other trickery finally
added a little spice. The central map ended up being one of the best
parts of the whole game.

18 Chapter 1 n What Is Game Programming Really Like?

Crunch Mode (and Crunch Meals)

Every now and then you end up at a technological dead-end and have to start
completely over. I was brought into the late stages of a Mattel project that was sup-
posed to be in the test phase in about two weeks. I took one look at the code and
realized, to my horror, that the entire graphics engine was using Windows GDI.
Unless someone out there knew something I didn’t, the GDI in 1999 couldn’t texture
map polygons. In less than five weeks, the entire project was rebuilt from scratch,
including a basic 2D vector animation tool.

Those five weeks were really more like fifteen weeks. The tiny development team
worked late into each night and dragged themselves back each morning. There were
no weekends. There were no days off. I’d estimate that we worked 90-hour work-
weeks on that project. You might think that unreasonable, and that nobody should
have to work like that. That project was only five weeks. It was nothing compared
to the pixel mines of Origin Systems circa 1992. Back then, Origin had something
called the “100 Club.” The price of entry was working 100 hours in a single work-
week. The last time I counted, there were only 168 hours in seven days, so the folks
in the 100 Club were either working or sleeping.

The Infamous Origin Hostel

To facilitate a grueling schedule, the teams built bunk beds in the kitchen.
Company kitchens are no place for bedding. My office was unfortunately
located right across the hall, and I observed the kitchen/bedroom getting
higher occupancy than the homeless shelter in downtown Austin. After
about a week, I began to detect an odor emanating from across the hall. It
seemed that the brilliant organizers of Hotel Origin never hired a maid
service, and that an unplanned biology experiment was reporting its initial
results via colorless but odorous gasses. Origin management soon liquidated
the experiment.

It’s not uncommon for companies insisting on long hours from salaried employees to
provide meals. These “crunch meals” are usually ordered out and delivered to the team.
Origin was able to get a local deli to bill them instead of requiring a credit card, so they
began to order from them almost every night. Months went by, and everyone on the
development team knew every item on themenu by heart and knew exactly which bits of
food were most likely to survive delivery intact. Fifteen years later, I can still tell you
what’s on the menu at Jason’s Deli, and even though the food is good, I rarely eat there.

At the ripe old age of 38, I signed on to full-fledged crunch mode at Ion Storm to
help finish Thief: Deadly Shadows. Let me tell you something—the older you get,

The Dark Side 19

the harder it is to stay awake and code. I actually cheated a little and came in early,
but the long hours still were pretty tiring, especially after the fourth month.

At Red Fly, things were better, but crunch mode was still a reality. The simple fact
was that publishers’ budgets and deadlines never allowed a game to be developed in a
manner that allowed 40-hour workweeks. For those of you who have heard of EA
spouse, the scandal that supposedly changed the games industry, I’m here to tell
you that the long hours were simply outsourced to third-party developers. To stay
alive, Red Fly had to work harder and faster than everyone else—and even then we
still had layoffs.

Good grief—when will this industry ever learn?

The Centinal

Sometimes there’s a badge of honor attached to working late hours. My old
boss at PlayFirst called it “The Centinal,” which was a special club reserved
for those who had worked over 100 hours in a single week. Basic math will
tell you that there are only 168 hours in an Earth week. Mike and I are both
long-standing members of this not-so-exclusive club. That having been said,
there’s an interesting camaraderie that gets forged when you spend that
much time with a group of people. We all come together to make
something great because we believe in the project and refuse to ship
something that’s not fun. When it gets to be 3 a.m. on a Tuesday night and
you know that tomorrow night is going to be even longer, the walls of social
etiquette come tumbling down.

Bah Humbug

Computer games are a seasonal business. They sell like crap in the summer, and
profits soar at Christmas time. Of course, they only soar for your project if you’re
not still working on it. This puts a significant amount of pressure on development
teams. Sometimes, the pressure begins before the team starts working. If you work
on downloadable titles, you can’t earn money until you ship the game, so getting it
done before the holiday rush is important. If you are working on a retail title, things
are more difficult because of the time it takes to get your game on store shelves.

This lead time varies from publisher to publisher. A big company like Microsoft has
a huge manufacturing pipeline that includes everything from the latest version of
Halo to their latest version of Office. I once worked on a game that shipped the
same month as Windows XP. I’ll bet that if you were standing on the assembly line,
you’d be hard pressed to notice the brief flash of dark green as 50,000 boxes of my
game whizzed by. You shouldn’t be surprised to see that a publisher like Microsoft

20 Chapter 1 n What Is Game Programming Really Like?

requires you to finish your title by September or even August in order to make the
shelves by the holiday season.

Other publishers are more nimble, and they might be more accommodating if you’ve
got a AAA title coming in hot and steep as late as November. You won’t get the best
sales if you release after Thanksgiving, but even getting out the week before Christ-
mas is better than missing the season altogether. It’s always best to have everything in
the can before October if you want to see your game under Christmas trees.

Basically, Christmas is only merry if your game is done.

Operating System Hell

Microsoft Excel doesn’t need to support full-screen modes, and it certainly doesn’t
need to worry about whether the installed video card has the latest shaders. That’s
one of the reasons that games get some special dispensations from Microsoft to qual-
ify for logo compliance. Logo compliance means that your game exposes certain fea-
tures and passes quality assurance tests from Microsoft. When your game passes
muster, you are allowed to display the Windows logo on the box—something that is
good for any game but especially important for mass-market games.

One Microsoft game I worked on had to pass QA testing for Windows 98, Windows
ME, Windows 2000, and all versions of Windows XP. By 2002, Microsoft wasn’t sup-
porting Windows 95 anymore, which was a good thing. It was hard enough building
an old box for our Windows 98 test machine. The OS that required the most tweak-
ing was Windows XP, mostly because of the new requirement that the Program Files
directory was essentially read only for nonadministrator accounts. Most games store
their dynamic data files close to the executable, which will fail under Windows
XP Home. These drastic changes to Windows XP motivated many game companies
to drop support for all Windows 9x platforms by the end of 2004. For a big
company, Microsoft can move pretty fast, and as a game programmer, you have to
keep up.

The hell doesn’t even stop there—some games choose to write graphics engines that
work under DirectX and OpenGL. Some graphics middleware supports this natively,
so you don’t have to worry about it. Why would you bother? Performance.

Most video cards have DirectX and OpenGL drivers, but it’s not guaranteed that
you’ll achieve equal performance or graphics quality under both. The performance
differences are directly proportional to the effort put into the drivers, and there are
cases where the OpenGL driver beats DirectX soundly. Of course, there are mirror
cases as well, where DirectX is the way to go. Even better, the quality of the drivers
changes from operating system to operating system. The result of all this is a huge

The Dark Side 21

increase in effort on your side. Even if you choose one particular graphics API, you
still have to support a wide array of operating systems. This increase in effort simply
widens the market for your game. It doesn’t make your game fun or provide a deeper
experience. It just keeps it from misbehaving on someone’s computer.

I almost forgot—what about iOS and Android? If you are writing games for these
platforms, you still have to deal with the differences between OS releases: Android
2.0 is different than 2.1 or 2.2. iOS is the same way. If you decide to support a wide
variety of platforms and operating systems, I highly suggest you consider using a
game engine like Unity, which hides a lot of these problems and simply lets you
make your game. Doing it yourself is a big problem, and to be honest, not one that
makes any financial sense.

Moving games to very dissimilar platforms can be nigh impossible, such as a direct
port of a PC game to a handheld device. The lack of a keyboard or game controller,
different screen resolution, radically difference graphics performance, and smaller
secondary storage preclude some games from being directly portable even if the oper-
ating system is the same. That doesn’t even begin to address the inherent design con-
cerns that differ sharply from handhelds to desktops—the players on these devices
simply want different things out of gaming.

Fluid Nature of Employment

The game industry, for all its size and billions of dollars of annual revenue, is not the
most stable employment opportunity out there. You can almost guarantee that if you
get a job in the industry you’ll be working with a completely different set of people
every two years or so, and perhaps even more often than that.

Every year at the Origin Christmas party, employees were asked to stand up as a
group. Everyone who had worked there less than a year was asked to sit down, fol-
lowed by second and third year employees. This process was repeated until only a
handful of people were left. This was usually by the fourth or fifth year. In my sixth
year, I became the twelfth most senior person in the company by time of service, and
Origin had hundreds of employees. This can be fairly common throughout the indus-
try—but you can find some companies that are different by the nature of their prod-
uct or culture. They are just harder to find, unfortunately.

The stresses of incredibly short schedules and cancelled projects have chased many of
my friends out of the industry altogether. Whole studios, including two of my own,
take root for a while and then evaporate or get bought. Your boss today will not be
your boss tomorrow, especially if your boss attempts to do something crazy, like start

22 Chapter 1 n What Is Game Programming Really Like?

his own game studio! Weirder yet, the boss you have today might actually be work-
ing for you tomorrow, or vice versa. I’ve had that happen more than once!

I Remember You!

The longest job I’ve ever had in the video games industry was just over two
years. If you look at all the companies I’ve worked for, only about half of them
still exist. It’s very rare to find any kind of stability in this industry. One
interesting side effect of this is how often you run into the same people.
There’s a UI designer at EA who I’ve worked with at three separate
companies. Mike and I live in different states, and we still find people we’ve
both worked with. For example, the lead gameplay programmer at Slipgate
was hired into the industry several years ago by Mike. This just goes to show
you that if you’re difficult to work with, you won’t last long. We all know each
other.

It’s All Worth It, Right?

There’s something odd about human psychology. After a particularly scary or painful
experience, some of us will say to ourselves, “Hey, that wasn’t so bad. Let’s do it
again!” People who make games do this all the time. The job is incredibly difficult
and can drive you completely mad. Your tools and supported operating systems
change more often than you’d like. Some days you delete more code than you write.

Taking three steps forward and five steps back is a good recipe for long hours, and
you’ll get an “all you can eat” buffet of overtime. It will get so bad that you’ll feel
guilty when you leave work before 7 p.m. on a Sunday night. When crunch mode is
over, and you get back to a normal 60-hour workweek, you’ll wonder what to do
with all the extra time on your hands.

Why bother? Is it possible that that boring job at American General Life Insurance
was a better option for me? Not a chance. There are plenty of good things, many of
which I mentioned at the beginning of this chapter, but there’s one I’ve held for last
that beats them all: After all the work, lost weekends, and screaming matches with
producers and testers, your game finally appears on the retail shelves somewhere. A
few weeks after it ships, you start looking. You make excuses to go to Wal-Mart,
GameStop, and Best Buy and wander the software section. Eventually, you see it.
Your game. In a box. On the shelf.

There’s nothing like it. As you hold it in your hands, someone walks up to you and
says, “Hey, I was thinking of buying that game. Is it any good?” You smile and hand
him the box saying, “Yeah, it’s damn good.”

It’s All Worth It, Right? 23

This page intentionally left blank

Chapter 2

by Mike McShaffry

What’s in a Game?

There are tons of reasons programmers get attracted to games: graphics, physics, AI,
networking, and more. Looking at all of the awesome games that have been released
over the past few years, such as Halo, Grand Theft Auto, Gears of War, and others,
you might first think that all of the major technology advances have been in the area
of graphics or physics programming. There is certainly more than meets the eye, and
after seeing for myself how some games are architected, I often wonder how they
even function.

When building a game, programmers will typically start with a DirectX sample,
import some of their own miserable programmer art, put an environment map or a
bump map on everything in sight, and shout “Eureka! The graphics system is fin-
ished! We’ll be shipping our game by next weekend!”

By the time the next weekend rolls around, the same newbie game programmers will
have a long laundry list of things that need to be done, and there are a number of
subtle things that they will have completely missed—like how to manage memory
and game processes properly. These hidden systems are usually the heart of every
game, and you’re never aware of them when you play games because you’re not sup-
posed to be aware of them.

This book is about more than just the visible parts. It is primarily about how to glue
all these parts together in a way that won’t drive you and your programming
colleagues insane. This chapter takes the first step, and it shows you a high-level
view of how commercial games are (or should be) architected.

25

After you finish this chapter, you’ll have a good understanding of the main compo-
nents of game code and how they fit together. The rest of this book digs into the
details of these systems and how they work.

The important lesson to learn here is that you’ll be able to build much better games if
you really understand the architecture, the components, and how everything fits
together. In other words, think and plan before you start coding, because a great
foundation can hold a big game, where a crappy one simply can’t hold up to the
strain. We all hear this good advice over and over, but it’s easy to neglect because it
takes a lot longer to get something up and running. Think of this like you would
approach building a house. Don’t be like the guy down the street who just starts put-
ting up walls without really thinking through how big his house needs to be, whether
it needs a second floor, and how he wants to live in it.

Game Architecture

There are as many ways to assemble the subsystems of a game as there are game
programmers. Being a game programmer, I’ll give you my opinion of what the sub-
systems are, what they do, and how they communicate. You may do things differ-
ently, and that’s perfectly fine by me, especially since what I’m going to present is
geared toward understandability, not necessarily efficiency. Once you understand
something, you can find your own path to making it run pegged at 60Hz or better,
but you sure can’t get something to run that fast if you have no idea what’s going on.

I can’t say this enough—you don’t have to do things my way—but since my way is
the easiest for me to describe, it makes some sense that I’ll preach a little of my own
opinions. As you read this chapter, think first about what problems I’m solving with
this system and at least grab hold of the subsystems and what they do on their own.
If you come up with a better way to build this mousetrap, call me, and I’ll hire you.

Let’s start at the top level and work our way down. You can take every subsystem in
a game and classify it as belonging to one of three primary categories: the application
layer, the game logic layer, and the game view layer (see Figure 2.1). The application
layer deals with the hardware and the operating system. The game logic layer man-
ages your game state and how it changes over time. The game view layer presents the
game state with graphics and sound.

If you think this architecture sounds familiar (and you’re familiar with MFC’s docu-
ment/view architecture), you’re exactly right, but don’t burn this book in disgust just
yet. While I loathe programming in MFC as much as the next person, there is amaz-
ing flexibility in separating a game into these three independent systems. Another
popular design pattern, the Model-View-Controller, seeks to separate the logic of a

26 Chapter 2 n What’s in a Game?

system from the interface used to present or request changes to data. The architec-
ture I propose encapsulates that and adds a layer for hardware or operating system–

specific subsystems.

The application layer concerns itself with the machine your game runs on. If you
were going to port your game from Windows to iOS or Android, or from the
PlayStation 3 to Xbox 360, you would rewrite most of the code in the application
layer, but hopefully not much else. In this area, you’ll find code that deals with hard-
ware devices like the mouse or a gamepad, operating system services such as network
communications or threading, and operations such as initialization and shutdown of
your game.

The game logic layer is your game, completely separated from the machine your
game runs on or how it is presented to the player. In a perfect world, you could sim-
ply recompile all the source code related to your game logic, and it would run on any
platform or operating system. In this area, you’ll find subsystems for managing your
game’s world state, communicating state changes to other systems, and accepting
input commands from other systems. You’ll also find systems that enforce rules of
your game system’s universe. A good example of this is a physics system, which is
the authority on how game objects move and interact.

The third and last system component is the game view. This system is responsible for
presenting the game state and translating input into game commands that are then
sent to the game logic. What’s interesting about the game view is that it can have
different implementations, and you can have as many views attached to your game
as your computer can handle. One type of game view is for your players; it draws
the game state on the screen, sends audio to the speakers, and accepts input through
the user interface. Another type is the view for the artificial intelligence (AI) agent,

Figure 2.1
High-level game architecture.

Game Architecture 27

and a third might be a view for a remote player over a network. They all get the same
state changes from the game logic—they just do different things.

Applying the Game Architecture

It might seem weird to you at first that the code for the AI would communicate
through the same pathways and in exactly the same manner as a human being. Let
me give you a more concrete example. Let’s design a racing game using the game
logic and game view architecture, and we’ll also create two views: one for a human
player and one for an AI driver who will race with you on the track.

The game logic for a racing game will have the data that describes cars and tracks
and all the minute properties of each. For the car, you’ll have data that describes
how weight is distributed, engine performance, tire performance, fuel efficiency, and
things like that. The track will have data that describes its shape and the properties of
the surface all along the route. You’ll also have a physics system that can calculate
what happens to cars in various states of acceleration and steering, how they respond
to the track, change in input controls, or even collisions with each other.

For inputs, the game logic cares about only four things for each car: steering, acceler-
ation, braking, and perhaps the emergency brake. If your cars have guns on them, like
we all wish, you would also have an input for whether the fire trigger is down. That’s
it; the game logic needs nothing else as input to get the cars moving around the track.

Outputs from the game logic will be state changes and events. This includes each
car’s position and orientation and the position and orientation of the wheels in rela-
tion to the car’s body. If the game supports damage, you’ll also have damage statistics
as an output. If your cars have guns, a state change could also be whether the weapon
is firing and how much ammo is left. Another important game state, especially the
way I play racing games, is collision events. Every time a collision happens, the
game logic sends an event with all the collision data. Events and state changes are
sent to game views.

The game view for the human has a lot of work to do to present the view of the game
state. It has to draw the scene from the player’s selected point of view, send audio to
the speakers, spawn particle effects—especially when bad drivers like myself are
scraping down the guardrails—and rumble the force feedback controls. The view
also reads the state of the game controller and translates that into game logic com-
mands. A good example of this is to notice the right trigger pressed to full throttle,
and it sends the “Accelerator at 100%” command to the game view or changes in the
left thumbstick to “Steer left at 50%.” These commands are sent back to the game
logic. Take a look at Figure 2.2 to see what I mean:

28 Chapter 2 n What’s in a Game?

Imagine what happens when a player mashes the A button on the controller—the
normal control for the emergency brake in my favorite Xbox 360 racing game. The
human view interprets this as a request to hit the emergency brake on my Ferrari and
sends a message to the game logic. The game logic evaluates the request, sets
m_bIsEmergencyBrakeOn to true, and sends a state update back to the human
view. The human view responds to this message by playing a sound effect or maybe
showing something on the screen. Another example is the throttle setting. The con-
troller sends a message to the game view that the right trigger is pressed 82%. The
view interprets this as a command to set the accelerator to 82% and sends a request
to the game logic. The game logic determines that the rear tires have broken loose by
looking at the car, its weight, the tires, the track condition, and other factors. It sends
a message back to the game view that the rear tires are spinning, and the game view
can then respond by playing a sound effect.

You can see that the game controller’s thumbstick or button state doesn’t affect the
game state directly. Instead, the controller’s state is interpreted by the game view and
converted into commands, which are sent to the game logic by an event. The game
logic receives events generated by the view and uses those commands, along with its
physics simulation, to figure out what is happening in the game universe. The state
changes in the game world get sent back to the view, so it can draw polygons, play
sound effects, and rumble the controller.

The game view for the AI is a little different. It will receive the same game state
events received by the human game view, such as which track the race is occurring
on, the weather conditions, and the constantly updated positions, orientations, and
velocity of cars on the track. It will take this information and recalculate what com-
mands to send into the game logic. For example, in response to the “Go” event from
the game logic, the AI might send an “Accelerator at 100%” command back to the
game logic. While negotiating a turn, it might send “Steer left at 50%” to the game
logic.

Figure 2.2
A closer look at the application layer.

Applying the Game Architecture 29

Did you notice that the commands sent from the human view and the AI view to the
game logic are exactly the same? While it might take a little more thinking to con-
vince yourself that the inputs to the game view, namely the game status and game
events, are exactly the same, I assure you it is true.

I mentioned before that this game architecture is flexible. You’ve probably already
surmised that a particular game logic can have any number of views, both human
and AI. If the interfaces for the human and AI views are exactly the same, it is a
trivial matter to swap a human player, or even all human players, with AI players.
But wait, it gets better.

You could create a special DVR game view that does nothing but record game events
into a buffer and play them back. In a sense, the game logic is entirely short circuited,
but since the game state changes and events are exactly the same, they can be pre-
sented in the DVR view with very little recoding. Of course, if you want a “rewind”
feature, you’ve got some extra work to do because the game events don’t necessarily
go equally back in time as they go forward!

You could also create a special game view that forwards game status and events to a
remote player across the Internet. Think about that: The game logic doesn’t have to
care whether the players are local or separated by thousands of miles. The remote
view should be pretty smart about collecting game states and events, compressing
them into as few bytes as possible, and shipping them via TCP or UDP to the remote
player. The game commands received from the remote player should go through a
verification filter, of course. You can never be too sure about remote players, or
remote game logics, for that matter.

One thing to note—players with different views can be advantaged or disadvan-
taged. For example, those who play on 4:3 screens can’t see quite as much as
those playing on 16:9 screens. Taken a step further, you can easily see that any dif-
ferences in view definitions can give any consumer of that view a huge edge or take
it away. Be cautious with your view definitions, whether it has to do with some-
thing obvious like screen size or the types of events the view receives from the game
logic.

I hope I’ve convinced you that this architecture is a good way to go. I’ll be quite hon-
est and tell you that it isn’t an easy architecture to code, especially at first. You’ll go
through a phase where you are sure there is an easier way, and you’ll want to aban-
don this event-driven architecture where game logic is completely separate from the
view. Please be patient and resist the urge. Given some time, you’ll never go back to a
simpler, but less flexible design.

30 Chapter 2 n What’s in a Game?

Make It So, Number 1!

One day, while working on a Sims project as an AI programmer, the lead
engineer came up to me with some AI tasks related to a new object the
designers wanted to get into the game. They wanted special Sim behavior
for this object. After explaining the designs, he guessed that it would take
a couple of weeks to implement. I smiled and shook my head. “It’ll take
two or three days, tops.” That’s the difference between good architecture
and bad architecture. Good architecture is flexible and easy to change.

Application Layer

The contents of the application layer are divided further into different areas that deal
with devices, the operating system, and your game’s lifetime (refer to Figure 2.2).

Reading Input

Games have an amazing variety of user input devices: keyboard, mouse, gamepad,
joystick, dance pad, steering wheel, cameras, accelerometers, GPS, and my personal
favorite, the guitar. Reading these devices is almost always completely dependent on
calls to the operating system and device drivers. The state of these devices should
always be translated into game commands. Some of these commands might be sent
back to the game logic, such as “fire missile,” while others might be handled by the
game view, such as “show me my inventory.” Either way, you’ll likely write an entire
subsystem to read these devices and interpret them as commands.

This same system should also be configurable. I play console shooters with an
inverted Y-axis, but many people like it the other way around, even though I’ll
never understand why. If you have a system that reads devices as input and sends
game commands as output, you can create the system to read a configuration file to
match controls with commands. Then all you have to do is modify this data file, and
you’ll have completely configurable controls.

One thing is critical: You can’t simply change the game state directly when you read
user input. Every bit of game sample code out there does this; you can see where
games make direct changes to data simply because the W key was pressed. This is a
vastly inflexible system and will haunt you later, I guarantee it.

File Systems and Resource Caching

File systems read from and write data to storage systems such as DVD-ROM, hard
disk, and SD cards. Code in this subsystem will generally be responsible for manag-
ing game resource files and loading and saving the game state. Managing resource

Application Layer 31

files can be pretty complicated—much more so than simply opening a JPG or an
MP3 file.

A resource cache is one of those hidden systems I told you about. An open world
game like Grand Theft Auto has gigabytes of art and sound, and the system only
has a fraction of the memory needed to load everything. Let me explain why a
resource cache is important with a little metaphor. Imagine the problem of getting a
crowd of people out of a burning building. Left to their own devices, the crowd will
panic, attempt to force themselves through every available exit, and only a small frac-
tion of the people will escape alive.

Now imagine another scenario, where the evacuation is completely organized. The
crowd would divide themselves into single file lines, each line going out the nearest
exit. If the lines don’t cross, people could almost run. It would be very likely that
even a large building could be completely evacuated.

This analogy also works well for game resources. The burning building is your slow
optical media, and the doors are the limited bandwidth you have for streaming this
media. The bits in your resource file represent the crowd. Your job is to figure out a
way to get as many of the bits from the optical media into memory in the shortest
possible time. That’s not the entire problem, though. A resource cache is exactly what
the name implies—commonly used assets like the graphics for the HUD are always
in memory, and rarely used assets like the cinematic endgame are only in memory
while it’s playing, and most likely only a piece of it at that.

The resource cache manages assets like these in a way that fools the game into think-
ing that they are always in memory. If everything works well, the game will never
have to wait for anything, since the resource cache should be smart enough to predict
which assets will be used and load them before they are needed.

Every now and then, the cache might miscalculate and suffer a cache miss. Depend-
ing on the resource, the game might be able to continue without it until it has been
loaded, such as the graphics for an object in the far distance. In that case, the
graphic can fade in once it is safely in memory. In other cases, the game isn’t so
lucky, such as a missing audio file for a character’s lines. Since they are synched to
the facial animations, the game has to wait until the audio is loaded before the char-
acter can begin speaking. If it does that, players will notice a slight pause or “hitch”
in the game.

So it’s not enough to write a little cache that knows whether resources exist in
memory at the moment they are needed. It has to be clever, predicting the future
to some extent and even providing the game with a backup in case the cache suffers
a miss.

32 Chapter 2 n What’s in a Game?

Luckily, I’ve included an entire chapter on the subject of file systems and the resource
cache. This just might be one of the most under-discussed topics in game development.

Managing Memory

Managing memory is a critical system for games, but it is largely ignored by most
game developers until they run out of it. Simply put, the default memory manager
that comes with the default C-runtime libraries is completely unsuitable for most
game applications. Many game data structures are relatively tiny things, and they
belong in different areas of memory, such as RAM or video memory. A general
memory manager tries to be all things to all applications, where you will know
every detail about how your game needs and uses memory. Generally, you’ll write
your own memory manager to handle allocations of various sizes and persistence
and more importantly to track budgets.

Virtual Memory—Can Be Good, Can Be Bad

Windows can use virtual memory, and when a game runs out of physical
memory, the OS will automatically begin to use virtual memory. Sometimes,
Windows games can get away with this, but it is a little like playing Russian
roulette—at some point, the game will slow to a crawl. A console game is
completely different. For example, if your game allocates a single byte larger
than the available memory, it will crash. Every game programmer should be as
careful about memory as console programmers. Your game will run faster and
will simply be more fun. Create some way to track every byte of memory,
which subsystem is using it, and when any one of these areas exceeds its
memory budget. Your game will be better for it.

Initialization, the Main Loop, and Shutdown

Most software waits for the user to do something before any code is executed. If the
mouse isn’t moving and the keyboard isn’t being hammered, an application like
Microsoft Excel is completely idle. This is good because you can have a bunch of
applications up and running without a large CPU overhead. Games are completely
different. Games are simulations that have a life of their own. Without player input,
they’ll happily send some horrific creature over to start pounding on your character’s
skull. That will probably motivate a few button presses.

The system that controls this ongoing activity is the main loop, and it has three
major components: grabbing and queuing player input, ticking the game logic, and
presenting the game state to all the game views, which means rendering the screen,
playing sounds, or sending game state changes over the Internet.

Application Layer 33

At the highest level, your game application layer creates and loads your game logic,
creates and attaches game views to that logic, and then gives all these systems
some CPU time so they can do their jobs. You’ll learn more about this in
Chapter 5, “Game Initialization and Shutdown,” and Chapter 7, “Controlling the
Main Loop.”

Other Application Layer Code

There are lots of other important subsystems in the application layer, including the
following:

n The system clock

n String handling

n Dynamically loaded libraries (DLLs)

n Threads and thread synchronization

n Network communications

n Initialization

n Main loop

n Shutdown

The system clock is critical for games. Without it, you have no way to synchronize
game animations and audio, move objects at a known speed, or simply be able to
time your credits so that people have enough time to read them. Almost every
game subsystem will care about time: physics, animations, user interface, sound, and
so on. Some systems have multiple methods of getting access to the system clock,
each with different levels of resolution or precision. If you choose one that has poor
precision, such as the Windows WM_TIMER message, your game will suffer from jit-
tery animations, bad synchronization between animations and audio, and other
problems.

Game programming becomes more global year after year, and generally games that
sell well in one language will also sell well if they are translated or localized. If you
structure your game correctly and factor all language-specific files, such as strings
into separate files, you’ll find it a lot easier to translate your game into a similar lan-
guage. Note that I said “similar language.” Although it is possible to structure a game
to be in completely different languages like English and Japanese, remember that you
don’t just have a technology barrier to multilingual gaming. You also have a cultural
barrier—not every game is one that can cross cultures easily.

34 Chapter 2 n What’s in a Game?

Most operating systems have a way to dynamically swap code in and out of memory
at runtime. This is critical for conserving valuable memory space or replacing a sub-
system entirely. You might use a DLL to swap a DirectX for an OpenGL renderer, for
example.

Today’s multicore desktops and consoles make multithreaded and multicore pro-
gramming a must. I actually remember a time when games didn’t use threads—
instead everything ran in a single execution path. It was easier in some ways, but
harder in others. Threads are used for audio streaming data, AI, and if you are clever,
even physics. I’ve read in other places that shall remain nameless that suggest you
can use threads for everything. Don’t believe this for a minute; if every subsystem
used separate threads, it could be extremely difficult to manage thread synchroniza-
tion, and I guarantee the system would be challenging to debug.

Network communications is another service provided by the operating system. This
network code will generally provide your game with a way to make a network con-
nection with another computer and a way to read and write data from the network
stream. The definition of what actually gets sent and how received data is interpreted
is actually coded in the game view and game logic layer. I’ll talk more about that
shortly.

The last group in the application layer is responsible for your game’s life cycle: ini-
tialization, the main loop, and shutdown. I’ve also included in this group your core
libraries that standardize basic data structures and templates, as well as your script
interpreter.

Initialization can be something of a nightmare. Many game subsystems have compli-
cated interrelations, and they tend to depend on one another. We’ll discuss details of
the initialization sequence in Chapter 5.

Most games use scripting languages. Whether it is UnrealScript, Python, Lua, or
something a game team creates from scratch, these systems and the scripts they
run are critical components for today’s commercial game development. You’ll learn
more about scripting languages, and Lua in particular, in Chapter 12, “Scripting
with Lua.”

Game Logic

The game logic (see Figure 2.3) is the heart and soul of your game. It defines the
game universe, what things are in the universe, and how they interact. It also defines
how the game state can be changed by external stimulus, such as a human player
pressing a gamepad key or an AI process taking action to kill you. Let’s take a closer
look at all of the components of the game logic system.

Game Logic 35

Game State and Data Structures

Every game will have a container for game objects. Simple games can use a list
structure, but more complicated games will need something more flexible and opti-
mized for quick local searching or streaming. Your game engine must be able to
traverse the object data structures quickly to change an object’s state, and yet it
must be able to hold a flexible array of properties for each object. These two
requirements are frequently at odds with each other; one is quick to search, the
other is easy to extend.

Ultima used a simple two-dimensional array of object lists. It was easy to find objects
within a given range of a map location, and each grid square was small enough to
have a quickly traversable list of objects. Thief: Deadly Shadows, on the other hand,
used a simple list of objects, but it was heavily tangled by internal pointers. If two
objects needed to know about each other, such as an elevator button and the elevator
door, they were linked by the game editor. This solution actually worked quite well
and is commonly used.

Object properties, such as hit points, engine horsepower, and wacky things like that
tend to be stored in custom data structures whose efficiency can be anything from
fantastic to dismal. Ultima Online used text strings to define properties on objects,
which had the benefit of easy and flexible development at some cost in memory stor-
age. Thief: Deadly Shadows had an extremely complicated property system that was
actually object oriented; you could define object properties for an archetype, like a
barrel, but overload existing properties or even create totally new ones for a particu-
lar barrel that was placed only once in the game universe. The system was memory
efficient since it never copied property data, but it ran at some extra cost in CPU
time because the property system was essentially a tree structure. There are trade-
offs no matter how you do it.

Figure 2.3
Game logic and its subsystems.

36 Chapter 2 n What’s in a Game?

It’s easy to confuse the game logic representation of an object with the visual repre-
sentation of an object. The game logic holds the object state, such as the amount of
damage an object has—probably stored in an integer. The visual representation, man-
aged by the game view, holds model data and textures that convey the state visually
to the player, such as a bloody arm stump. A bloody arm stump texture is completely
different from m_damage = 30.

You might feel that it would be better to store all of these things in a single C++
object—how much damage had been done and whether the arm texture is healthy
or bloody. In a way you are right—but maybe not in exactly the way you think.
Most modern games create special objects that contain all of the various definitions
that make that game object unique. Some of the classes in the collection belong to the
game view, such as the skeletal mesh object used by the renderer to display the actor.
Others might belong to the game logic, such as data that tells the physics system how
heavy the actor is and how it will collide with other physical objects in the game.
Other objects might describe game specific data, such as a character’s hit points;
this too would belong to the game logic. When any game logic data changes, the
game logic broadcasts an event. In the previous example, when damage is increased
on the actor, the game logic sends a special event informing all of the game subsys-
tems. The renderer reacts to this event by changing the texture. More on this later.

I wish I had more time in this book to go exhaustively over low-level game data
structures, but to be honest, they are extremely custom and are finely tuned to suit
the requirements of a particular game. My suggestion to you is to make sure that you
have an excellent knowledge of classic data structures such as linked lists, hash lists,
trees, B-trees, and all those other things you learn in classic data structures texts.
Games absolutely use these structures, or perhaps abuse them, to get the results
they need.

Physics and Collision

Physics falls under the general category of “rules of your game universe” and is sol-
idly a member of your game logic. It defines everything from how actors move when
they fall under gravity to what they do when they tumble around and come into con-
tact with other actors.

You certainly don’t need a complicated physics system to have a fun game, but you can
bet your bottom dollar that a bad physics system will completely remove the fun from
any game. There’s a great game concept that says that when something is completely
abstract, it’s easy to ignore unrealistic representations of things. When you inject reality
into a game, even small errors create complaints from your players. You can prove this

Game Logic 37

to yourself by looking at the movements of a stick figure on one of those old Flash
games on the Internet and comparing it to the best human animations in a game like
Battlefield 3. You’ll forgive the stick figure for moving in weird ways because it is so
abstract, but you’ll be upset with the Battlefield character for the smallest mistake in
facial animation—(one of the hardest things to animate, by the way)—because the char-
acter looks so realistic we find it difficult to accept when it does anything unrealistic.

This concept has to do with human psychology and how we observe things. It comes
into serious play when you create any game technology that approaches reality, as
physics systems do. You’ll spend a staggering amount of time making the tiniest
tweaks to your system to remove the smallest movement problems, because that
tiny mistake in reality is glaring.

Events

When the game logic makes changes in the game state, such as creating or moving
an actor, a number of game systems will respond. Here’s an example. Imagine that
one actor in your game is a portable radio. The graphics system will need to create
polygons and textures so you can see the radio. The sound system will create a sound
effect so your radio will play some great music—perhaps a little Jimi Hendrix. AI
processes might respond to the presence of the actor. In this case, they might just
chill out and enjoy the sublime guitar from our boy Jimi. All three of these subsys-
tems—the graphics system, the audio system, and even the AI system—need to know
that this radio exists and what it is doing. These systems are notified through events.
Just like a Windows application hears about a WM_MOUSEMOVE event, your game sys-
tems can listen and react to a game event for practically any change in game state or
input from a player. There are also global game events, such as events to inform sub-
systems that a new level has been loaded or the game is being saved.

Many games create an event system that defines these events and the data that
accompanies them. Different subsystems register with the Event Manager to listen
for events that they’ll react to. A good example of this is the sound system; it might
register to listen for object collision events so that it can play the appropriate sound
effect when two objects are smashed together.

Event-based architectures tend to make your game system clean and efficient. Instead
of making API calls to four or five subsystems when an object collision is detected,
the code simply sends an event to the Event Manager, and all the subsystems that
registered to receive event notifications of this type will get notified in turn.

The event code is the glue that holds this entire game architecture together. The
application layer holds the event registry, subsystems register to listen to events they

38 Chapter 2 n What’s in a Game?

care about, and other subsystems send events as needed. These events get sent to only
the subsystems that have subscribed to them.

Chapter 11, “Game Event Management,” will dig into this system and show you how
it works.

Process Manager

Any simulation of a game world is usually composed of discrete bits of very simple
code, such as a bit of code to move an actor along a linear path or parse a Lua script.
Acting on a single game object has the effect of combining these simple state changes
into something more complex. These bits of code are usually organized into classes,
and they can be instantiated for any game object. If you were to create a “move along
this path” class and a “run Lua script” class and instantiate them both on one object,
you’d create an interesting and complicated interaction from two simple pieces of code.

This is the heart of another important game subsystem: the Process Manager. It
keeps a list of processes and gives each one a little CPU time by calling it once
every game loop. A great example of this is a pathfind process. It acts to move an
actor from one place to another, and when the destination is reached, it simply ter-
minates and ceases acting on the actor.

Learning Our Lessons from Ultima VII

After Ultima VII, all of the programmers met in the courtyard of Origin Systems
with a plan to redesign the Ultima technology for Ultima VIII. We had a nice
sunny day, a whiteboard, and real motivation to make a much better system.
We realized that any code that operated on an actor or group of actors for a
period of time could be encapsulated in a cooperative process, and it could
even be responsible for its own lifetime. When its job was done, it would kill
itself off. The best thing of all was that the entire thing could be managed
from a single class that contained a list of every running process. This
technology eventually evolved to become almost as useful and complex as a
simple operating system, managing both cooperative and real-time processes.

On Ultima, we found it very useful to allow processes to have dependencies on one
another, where one process would wait for another to complete before starting. A
good example of this is something you might use for a Molotov cocktail: One process
tracks the parabolic movement of any game object until it collides with something,
and another process manages a fireball explosion. Your game can string these pro-
cesses together to create some amazingly cool effects.

You’ll learn more about this system in Chapter 7.

Game Logic 39

Command Interpreter

A game logic needs to respond to external commands. For a human playing a racing
game, these commands will send input to the game logic’s representation of the car:
acceleration, braking, and steering. An AI process will do exactly the same thing.
External entities, such as a human holding a gamepad or an AI process using a
command-based interface, can communicate to the game logic with exactly the same
commands.

You might ask why this is necessary. In any racing game, there should be someplace
in the code that says “If button A is down, set emergency brake” or something like
that. I know it seems like a lot of extra work, but that breaks the separation between
game logic and game views that I have found to be so important when creating
games.

What should happen is this: The game view presents an interface to the human
player that changes the “Button A is pressed” state into a game command, “Set
Emergency Brake.” That game command is then sent to the game logic, but here’s
the rub: The code that actually sets the emergency brake state on the data structure
representing the car is actually in the game logic. This code only sets the emergency
brake in response to a command—not through a direct tweak to the m_bIsEmer-

gencyBrakeOn member of a class somewhere.

I can hear you whining about this, and I’m not even sitting near you. Let me try to
show you how cool this is before you call me a complete freak.

If your game logic can accept commands through an event-based interface instead of
direct API calls to game logic classes, you can create a programming language for
your own game, just like you see in so many games that have heavy mod hooks like
Unreal. The command interpreter you use for your game will probably have an ultra-
efficient low level, but there’s nothing keeping you from coding a higher level inter-
face that accepts console input. Then you could actually type something that would
get sent right to the scripting interpreter, such as SetCarProperty(2, E_BRAKE_

PROPERTY, true), and guess what will happen? Car two will lock up the tires and
go spinning out of control, all at your command.

Unreal’s Command Console

Ion Storm’s core code base was basically Unreal Warfare, a modified version
of Unreal 2, and thus had an amazing console command system that could
be used to control almost anything. You could add or remove properties,
move actors, make AIs blind, deaf, dumb, or even all three. The console
system could even take input from a file, creating a weird meta-
programming language for the game. Believe me, it was nice to have—

40 Chapter 2 n What’s in a Game?

because even if your game doesn’t have a rigorous separation between game logic and game view, you
can still create a command interpreter that provides a very low-level way to tweak your game while it is
running.

Game View for the Human Player

A game view is a collection of systems that communicates with the game logic to
present the game to a particular kind of observer. This observer can be a human
being with a controller of some kind, like a keyboard or a plastic drum set, but it
can also be an AI agent, whose view of the game state will determine the AI process’s
next course of action.

The game view for a human being has a lot of work to do (see Figure 2.4). It must
respond to game events and figure out how to draw the scene, send output to the
speakers, translate controller input into game commands, and more. Let’s look at
the main areas.

Graphics Display

The display renders the objects that make up a game scene, the user interface layer
on top of the scene, and perhaps even streaming video. The renderer should draw the
screen as fast as it possibly can. The display can be one of the biggest suckers of CPU
budget in a game and should therefore scale well with the capabilities of a wide range
of CPUs and GPUs (graphic processing units). For PC or handheld games, it should
also perform well under different hardware configurations and operating system
releases. Generally, the game engine will disable expensive but nonessential features,
such as full screen effects, in order to run at the best frame rate they can.

Video cards will draw all the polygons you stuff into the GPU, even if it takes them
forever. Forever, by the way, is defined as anything more than 50ms, giving you a
frame rate of 20fps, even if that’s all your game does. The real problem a 3D engine
has is choosing which polygons to draw to make the most compelling scene.

Figure 2.4
Subsystems that create a game view for a human player.

Game View for the Human Player 41

Consider the problem of a flight simulator like Microsoft Flight Simulator X. When the
plane is on the ground, the display looks a lot like every other 3D game out there. You see
a few buildings, a few other planes, and a runway. Youmight also see some scenery in the
distance, such as a mountain range or a city skyline (see Figure 2.5).

Once the plane is up in the air, you have a different story altogether. You’ve
increased the viewable surface by a few orders of magnitude, and therefore you’ve
increased the potential viewable set of polygons. Players who attempt a naive
approach of simply drawing all the polygons will learn quickly that they can’t get
their plane more than 150 feet off the ground. The frame rate will fall in inverse geo-
metric proportion to the altitude of the plane because that’s how many more poly-
gons you have to draw to achieve a realistic look.

The actual approach to this problem uses different levels of detail to draw areas of
terrain and objects, depending on their distance from the viewer. On some flight
simulators, you can catch this happening. Simply begin a slow descent and watch as
the terrain suddenly becomes better looking; the green patches will increase in detail
and eventually become individual trees until you crash into them. One of the trickier
parts of most 3D engines is getting the levels of detail to transition smoothly, avoid-
ing the “popping” effect.

Figure 2.5
Microsoft Flight Simulator X.

42 Chapter 2 n What’s in a Game?

Another problem is avoiding overdraw. If your game is in a complex interior envi-
ronment or deep in the concrete canyons of New York City, you’ll achieve the fastest
frame rate if you only draw the polygons that you can see. Again the naive approach
is to simply draw all of the polygons in the view frustum, omitting any that are facing
away from the camera. This solution will most likely result in a disastrous frame rate
in certain areas but not others, even if the camera is pointed straight at an interior
wall. When the game is bogging down like this, it is drawing an enormous number of
polygons behind the wall, only to be covered up by the bigger polygons close to the
camera. What a waste!

You’ll need some advanced tools to help you analyze your level and calculate what
areas can be seen given a particular viewing location. Umbra Software (www.umbra-
software.com) has developed sophisticated PVS (potentially visible set) and portal
technologies to do this either offline or on the fly, but many games can use a simple
portal or occlusion culling technique. Competitive games are all pushing the envelope
for the illusion of extremely complicated worlds. The trick is to create these worlds so
that your environments behave well with whatever culling technique is best for your
renderer. Add to that mix of technology some nice levels of detail, and you can get a
game that looks good when objects are close up or far away.

Since 3D engines are only capable of drawing so much scenery per frame, an amaz-
ing amount of effort must go into creating the right level of design. Any environment
that is too dense must be fixed, or the frame rate will suffer along with your reviews.

Your Artists Need to Know What Your Engine Can Do

The most common mistake made on 3D games is not communicating with
the artists about what the graphics engine can and can’t do. Remember that
the world environment is just a backdrop, and you’ll still need to add
interactive objects, characters, special effects, and a little bit of user
interface before you can call it a day. All these things, especially the
characters, will drag your performance into the ground if the background
art is too aggressive. Try to establish CPU budgets for drawing the
background, objects, characters, and special effects early on and hold your
environment artists and level designers to it like glue. Measure the CPU time
spent preparing and rendering these objects and display it for all to see.

Audio

Audio is one of my favorite areas of game development, and I’ve been lucky enough to
work with some of the best audio engineers and composers in the business. Game
audio can generally be split up into three major areas: sound effects, music, and speech.

Game View for the Human Player 43

www.umbra-software.com
www.umbra-software.com

Sound effects are pretty easy things to get running in a game. You simply load a
WAV file and send it into DirectX with volume and looping parameters. Almost
every sound system is capable of simulating the 3D position of the object relative to
the listener. You just provide the position of the object, and the 3D sound system will
do the rest.

Music can be really easy or really hard. Technically, it’s not really different from
sound effects unless you want to get into complicated mixing of different tunes to
reflect what’s going on in the game. Anyone who’s played Halo knows how effective
this can be; the distinctive combat music tells you you’d better reload your shotgun.

Speech is much trickier—not just technically, but keeping track of all the bits and pieces
recorded in the studio and matching them with a 3D lip-synched character. This usually
involves anything from a total hack to a carefully hand-tweaked database of mouth
positions for each speech file to a tool that can automatically generate this data.

You’ll see a good introduction to game audio in Chapter 13, “Game Audio.”

User Interface Presentation

The user interface for a game doesn’t look like something drawn by the Windows
GDI. Game interfaces have a creative flair, and they should. This means that the
user interface needs to be baked fresh every time, especially since every health meter
and HUD are different for every game.

The irony of this is that games still need things like a button control, so players can
easily click OK for whatever thing the game is asking about. These controls aren’t
hard to write, but if you’re like me, you hate rewriting something that already exists
and is well understood by both coders and players. You’ll probably roll your own and
hopefully keep that code around from game to game so you won’t have to rewrite it
ever again. Another option is licensing Iggy from RAD Game Tools or Scale-
Form GFx, which lets your artists create your entire UI in Flash and import the
results directly into your game.

I’ll cover these topics more in Chapter 10, “User Interface Programming.”

Process Manager

Having a little déjà vu? You aren’t crazy, because you saw this same heading under
the game logic group just a few pages back. It turns out that game views can use their
own process manager to handle everything from button animations to streaming
audio and video. Keep this in the back of your mind as you read about the Process
Manager in Chapter 7. You’ll use it all over your game.

44 Chapter 2 n What’s in a Game?

Options

Most games have some user-configurable options like sound effects volume, whether
your controls are Y-inverted or not, and whether you like to run your game in 4:3 or
in 16:9 widescreen. These options are useful to stick in something simple like an
XML file so that anyone can easily tweak them, especially during development.

Multiplayer Games

One thing you might not have considered—this event-based, logic/view architecture
makes it simple to have a multiplayer game. All you need to do is attach more
human views to the same game logic. Okay, I’ll come clean. It’s a little more trouble
than that because each view needs to share what is likely a single display from the
application layer, figure out how to iterate the additional controls, and so on. That
stuff is fairly easy compared to getting the overall architecture built to support multi-
ple players, especially if it wasn’t designed to do so from the very beginning.

Game Views for AI Agents

A great argument for the harsh breakdown between game logic and game views is
that humans and AI processes can interact with the game logic through exactly the
same event-based interface. An AI agent’s view of a game generally has the compo-
nents shown in Figure 2.6.

The stimulus interpreter receives the same events that all other game views receive:
object movement, collisions, and so on. It’s up to the AI programmer to determine
how the AI will react to each event the AI agent receives. It would be easy enough for
an AI process to ignore certain events or react to events that are filtered by the
human view, and this would certainly affect what the AI process would do.

For example, AI agents might react to sound effects, which are the result of game
events such as objects colliding, footsteps, or noisy objects like radios being activated.
If an AI is supposed to be deaf, it merely filters the sound events. If an AI is

Figure 2.6
An AI agent’s view of the game.

Game Views for AI Agents 45

supposed to be blind, it filters any event about the visible state of an object. You can
set the nature of an AI agent’s behavior completely by controlling what stimuli the AI
agent receives.

The second part of an AI view is the decision system. This is a completely custom
written subsystem that translates stimuli into actions. Your AI agent might be able
to send commands into the game your human can’t, giving it extra abilities such as
opening locked doors. The reverse is also true, and the combination of AI stimulus
filters and command sets can have a great effect on how smart your AI agents are.

If your AI needs to solve difficult problems, such as how to navigate a complicated
environment or make the next move in a chess match, then you might need a process
manager just as in the game logic and game view. You might use this to have AI
spread its evaluation of stimuli and decisions over time, amortizing the cost of these
expensive calculations over many frames.

Finally, you’ll certainly want a list of AI options that you can tweak through a simple
text file. The stimulus filter and decision set options are certainly enough to warrant
a large options file, but more importantly, your AI options can be extremely useful
for AI tuning during development. Even if you eventually hard code the AI para-
meters, you’ll certainly want an instantly “tweakable” version while your game is in
development.

Networked Game Architecture

If you implement the game architecture that I’ve been beating you with since the
beginning of this chapter, you can write two additional classes and transform your
single-player game into a networked, multiplayer game. That might seem like an
insane boast, but it is completely true. Well, nearly completely true. Look at
Figure 2.7 to get another look at how game views interact with the game logic.

Figure 2.7
Client/server networked game architecture.

46 Chapter 2 n What’s in a Game?

You’ll see the same game logic/game view architecture, but there is a new implementa-
tion of the game logic and a new implementation of the game view. Both are needed to
create remote versions of their single-player brethren.

Remote Game View

On the server machine, the remote player should appear just like an AI agent. The
remote view receives game events from the game logic and responds with commands
back to the game logic. What happens inside the remote view is completely different
from the AI agent view or the human view.

Game events received from the game logic are packaged up and sent via TCP or
UDP to a client computer across the network. Since game events on a local machine
can be somewhat bloated, there should be some processing of the event data before it
is sent out. First, redundant messages should be removed from the message stream. It
makes no sense to send two “Object Move” events when the only one that matters is
the last one. Second, multiple events should be sent together as one packet. If the
packet is large enough, it should be compressed to save bandwidth.

The remote game view also receives IP traffic from the remote machine, namely the
game commands that result from the controller input. One difference in the remote
game view is that it should never trust this command data entirely. The game logic
should be smart enough to do some sanity checking on impossible commands, but
the remote view can take a front-line approach and attempt to short-circuit any
hacking attempts, such as detecting badly formed packets or packets that come in
with an unusual frequency. Once the game commands have gone through some
kind of anti-hacking filter, they are sent on to the game logic.

Remote Game Logic

In this model, the game logic is an authoritative server; its game state is the final
word on what is happening in the game. Of course, the client machines need a
copy of the game state and a way to manage delays in Internet traffic. This is the
job of the remote game logic.

The remote game logic is quite similar to the authoritative game logic. It contains
everything it needs to simulate the game, even code that can simulate decisions
when it must. It has two components that the authoritative game logic doesn’t have:
something to predict authoritative decisions, and something to handle corrections in
those decisions. This is easier to see with a concrete example.

Networked Game Architecture 47

Imagine playing Halo, and imagine you are about to shoot an RPG at your best
friend. If your friend is playing over the Internet and has a bad lag, your friend’s
machine might not get the message that you fired the RPG until a few hundred milli-
seconds after you fired it. If you could watch both screens at the same time, you’d see
your RPG rocketing over to blow up your friend, but your friend wouldn’t see any-
thing at all, for just a short time.

Some 500ms later, your friend’s machine gets the message that you fired an RPG.
Since there was no way to predict this message, it must show the fired RPG but
begin to move the rocket fast enough to “catch up” to the rocket on the authoritative
server, or host.

That’s why playing shooter games is impossible when you have bad lag and you’re
not running the host! That’s also why no one will play with you when you run the
host over a slow connection, because it gives you an unfair advantage. The remote
machines simply don’t get the messages fast enough.

What this means to the remote game logic is that it has to make corrections in its
game state, perhaps breaking the “rules” in order to get things back in sync. In the
previous example, the rule that had to be bent a bit was the acceleration and speed of
an RPG. If you’ve ever seen an RPG turn a corner and kill you dead, you’ve experi-
enced this firsthand.

Other than that, the remote game logic interacts with the game view in pretty much
exactly the same way as the authoritative view; it sends the game view events and
changes in game state and accepts game commands from the view. Those commands
are then packaged and forwarded on to the server machine, specifically the remote
game view mentioned in the previous section.

You Need Multiplayer? Give Me a Few Hours…

We designed our last card game for Microsoft using a rigorous
implementation of the game logic/game view system. When we started
working on the game, Microsoft wanted us to code it such that we could
create a multiplayer version of the game in as short a time as possible even
though we weren’t shipping a multiplayer game. Believe me, it wasn’t easy,
and all the programmers had to take some time to learn how to deal with this
very different architecture. After we shipped the project, I was curious how
well we’d done in creating something that was multiplayer-aware, even
though we’d never actually used the feature. One of our programmers spent
about two days and had our card game playing over the Internet. If that’s not
proof, I don’t know what is.

48 Chapter 2 n What’s in a Game?

Do I Have to Use DirectX?

If your platform of choice is the PC, you have to consider whether to use DirectX in
your game or try an alternative API for graphics, sound, and input.

Just to be perfectly clear, this section has nothing to do with how to draw a shaded
polygon under Direct3D. This section is going to enlighten you about why you would
choose something like OpenGL over Direct3D. Believe it or not, the choice isn’t clear
cut no matter what your religious beliefs.

All Roads Lead to Rome

It’s not possible for me to be more tired of the religious nature of the OpenGL/
DirectX debate. Any good programmer should understand what’s under the
hood of every API if you have to make a choice between them. Disregarding
DirectX simply because Microsoft made it is asinine.

Design Philosophy of DirectX

DirectX was designed to sit between the application and the hardware. If the hard-
ware was capable of performing an action itself, DirectX would call the driver and be
done with it. If the hardware wasn’t there, DirectX would emulate the call in soft-
ware. Clearly, that would be much slower.

One thing that was gained by this design philosophy was a single API for every hard-
ware combination that supported DirectX. Back in the old days (that would be the
early 1990s), programmers weren’t so lucky. A great example was all the work that
needed to be done for sound systems. Origin supported Adlib, Roland, and Sound-
Blaster with separate bits of code. Graphics were similar; the old EGA graphics stan-
dard was completely different than Hercules. Yes, there was a graphics system called
Hercules. It was a pain to support all this stuff!

Of course, DirectX isn’t the simplest API to learn. COM is a weird thing to look at if
you aren’t used to it. It also seems weird to have 50 lines of code to initialize a 3D
rendering surface when OpenGL does it so much easier. Herein lies one basis for
religious argument: old-time C versus newfangled COM. Get over it long enough to
understand it and then make an informed choice.

DirectX exposes a lot more about what the hardware is capable of doing. Those
CAPS bits can tell you if your video card can support nothing, hardware transform
and lighting (T&L), or the latest shaders. Perhaps that means you’ll load up denser
geometry or simply bring up a dialog box telling some loser that he needs a better

Do I Have to Use DirectX? 49

video card. Your customer service people will thank you if you decide to leave the
word “loser” out of the error message.

Direct3D or OpenGL

I’m not going to preach to you about why DirectX is unusable and why OpenGL is
God’s gift. Instead, I hope to give you enough knowledge about how and why you
would judge one against the other with the goal of making the best choice for your
game, your team, and the good people who will throw money at you to play your
latest game. I’m sure to get lovely emails about this section. Bring it on. I’m going
to take a weirder tack on this argument anyway. Both APIs will get you a nice-
looking game. There are plenty of middleware rendering engines that support both.
What does that tell you? It tells me that while there may be interesting bits and
pieces here and there that are unique, the basic job of pushing triangles to the video
card is essentially equivalent.

There was a time when there were marked differences in quality between OpenGL
and DirectX drivers, but those days are thankfully gone. Given that, perhaps the
best choice you can make is to go with the API that you and your fellow coders are
most comfortable with. Learning a new graphics system can be a special kind of
“fun” for some, but it is probably best to spend the time making your game fun
rather than sweating over learning DirectX if you happen to be an OpenGL guru.

DirectSound or What?

For years, I never looked farther than RAD Game Tools, Inc., for sound and video
technology. The Miles Sound System includes full source code, has a flat license fee,
and works on every platform in existence today. The Bink Video tools are cross plat-
form and support all the latest consoles, Win32, and Macintosh. Check out the latest
at www.radgametools.com. It doesn’t hurt that RAD has been in business since 1988
and has licensed their technology for thousands of games. They are probably the
most used middleware company in the industry.

Miles can use DirectSound as a lower layer. This is quite convenient if you want to
do some odd thing that Miles can’t. One nail in the coffin for DirectSound is that it
doesn’t include the ability to decode MP3 files. Part of your license fee for Miles pays
for a license to decode MP3s, which are a fantastic alternative to storing bloated
WAV files or weird-sounding MIDIs. You could use OGG files, which are completely
open source and unencumbered by an expensive license—in fact, the audio chapter
shows you how to do this. There is one great thing Miles gets you—and that’s
streaming. You don’t have to load the entire sound file in memory at once if you

50 Chapter 2 n What’s in a Game?

www.radgametools.com

don’t want to, and believe me, Miles makes this easy. Bottom line, do yourself a favor
and get Miles for your game.

Other audio technologies, like FMod or WWise, take playing sound buffers to the
next step and allow tighter control over sound in your game: how sounds are
mixed, which sounds have higher priority, and what tunable parameters your game
can tweak to make different effects in real time. WWise is more expensive than
Miles, but it is more capable. The audio team used by Red Fly Studios, GL33k, swears
by WWise, and they make the best sounds in the game industry. FMod is a good
choice since it is free for noncommercial software development.

DirectInput or Roll Your Own

DirectInput encapsulates the translation of hardware-generated messages to some-
thing your game can use directly. This mapping isn’t exactly rocket science, and
most programmers can code the most used portions of DirectInput with their eyes
closed. The weirder input devices, like the force feedback joysticks that look like an
implement of torture, plug right into DirectInput. DirectInput also abstracts the
device so that you can write one body of code for your game, whether or not your
players have the weirdest joystick on the block.

Other Bits and Pieces

There are tons of other bits and pieces to coding games, many of which you’ll dis-
cover throughout this book. These things defy classification, but they are every bit as
important to games as a good random number generator.

Beyond that, you’ll find some things important to game coding such as how to con-
vince Microsoft Windows to become a good platform for your game—a more diffi-
cult task than you’d think. Microsoft makes almost all of its income from the sales of
business software like Microsoft Office, and the operating system reflects that. Sure,
DirectX is supposed to be the hard-core interface for game coders, but you’ll find
that it’s something of a black sheep even within Microsoft. Don’t get me wrong, it
works and works surprisingly well, but you can’t ever forget that you are forcing a
primarily business software platform to become a game platform, and sometimes
you’ll run into dead-ends.

Debugging games is much more difficult than other software, mostly because there’s
a lot going on in real time, and there are gigabytes of data files that can harbor nasty
bugs. Combine that with the menagerie of game hardware like video cards, audio
cards, user input devices, and even operating systems, and it’s a wonder that games

Other Bits and Pieces 51

work as well as they do. It’s no secret that games are considered to be the most
unstable software on the market, and it reflects the difficulty of the problem.

Now that you know what’s in a game, let’s discuss how game code needs a certain
style.

Further Reading

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma,
Richard Helm, and Ralph E. Johnson

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis, William H.
Brown, Raphael C. Malveau, and Hays W. “Skip” McCormick

Modern C++ Design: Applied Generic and Design Patterns, Andrei Alexandrescu

52 Chapter 2 n What’s in a Game?

Chapter 3

by David “Rez” Graham

Coding Tidbits and Style

That Saved Me

On December 5, 2005, I walked onto the fifth floor of an old office building in down-
town San Francisco. There was a door near the elevator with a simple piece of paper
taped to it that said “Super-Ego Games.” The entire office held less than a dozen peo-
ple, almost all of them programmers. This was my first day as a professional video
game programmer. I had been making my own games for about nine years at that
point so I figured I had a major leg up. I was completely wrong. Being able to render
3D models on the screen, play sound effects, read input devices, and implement
gameplay features are all extremely important parts of making video games, but
there’s another more subtle beast lurking in the shadows that is just as important:
architecture.

Architecture refers to the structure of your game code and how all of the little pieces
fit together. An engine with good architecture can be reused over and over to make
games that are somewhat similar to the games that came before it. There are certain
problems that every game faces, such as loading assets from the hard drive and ren-
dering objects onto the screen efficiently. These problems are often tailored to the
specific type of game you’re making. For example, culling out objects from render-
ing in a scene efficiently often requires different techniques, depending on how your
level geometry is laid out. Worlds that are mostly indoors tend to use different tech-
niques from worlds that are mostly outdoors. Most of the time, different engines
tailor their architecture toward a specific type of game. If you grew up in the 80s
and 90s, you might remember the old Sierra adventure games when they started
using the point-and-click interface. There have been dozens of games that have

53

used that same game engine. The engineers didn’t have to worry about how things
were rendered or how to display a text box, they just used the tools in the engine to
make it work.

I’ve been an engineer in the video games industry for nearly seven years as of the
writing of this book. I’ve worked on a number of different games, from tiny iPhone
apps with only a few people to huge triple-A games with nearly 200 people, each
using a number of different game engines. Some of those games used a commercially
available engine as the core, while others were developed from scratch. All of these
different game engines had their strengths and weaknesses. Over the years, I’ve
found a number of universal patterns, both good and bad, that have cropped up in
nearly every game I’ve worked on. Before we dig into the meat of rendering, sound
effects, AI, and other juicy game development topics, I’d like to provide a foundation
of core architectural principles. These are the things to keep in mind when you are
developing large systems. Trust me, they’ll save your butt in the end.

One thing worth noting is that are as many ways of doing things as there are pro-
grammers. The techniques and philosophies presented in this chapter are the
result of my own experiences. You will probably find things in this chapter (and
book, for that matter) that you disagree with. That’s great! It just means you’re a
programmer. You and I can debate endlessly on the Internet about the best ways
of doing things. Just remember, neither of us is wrong—just different and
opinionated.

Let’s start by looking at design practices that you should consider when writing a
game, and then we’ll move on and look at specific programming techniques such as
working with pointers, memory management, how to avoid memory leaks, and other
goodies. In the last part of this chapter, I’ll provide you with a few coding tools taken
from my own personal toolbox.

General Coding Styles

If you walk into a room full of programmers and ask them about how they name
their variables or where to place braces, you’ll find the conversation soon turning
into an all-out holy war. Programmers are very opinionated about coding style. It
makes sense—we spend the vast majority of our time staring at code. In the end,
there is little difference between all the various styles you see. I have a particular
style I use for my own projects that works very well for me. You might hate how I
name my variables or how I use camel-casing for function and class names, and
that’s just fine. You should do whatever works for you; however, there are a few pit-
falls I’ve come across that I’d like to share with you.

54 Chapter 3 n Coding Tidbits and Style That Saved Me

Bracing

Bracing is one of those things I do feel strongly about. I have fixed actual logic bugs
due to poor bracing on more than one occasion. There are three styles I’ve run into
in the past. The first is lining up all the braces:

void FindObject (unsigned int id, std::list& found)

{

for (int i = 0; i < m_max; ++i)

{

if (m_map[i].id == id)

{

found.push_back(m_map[i]);

GCC_LOG(“Objects”, “Found”);

}

else

{

GCC_LOG(“Objects”, “Not Found”);

}

}

GCC_LOG(“Objects”, “Next”);

}

The second is called K&R bracing:

void FindObject (unsigned int id, std::list& found) {

for (int i = 0; i < m_max; ++i) {

if (m_map[i].id == id) {

found.push_back(m_map[i]);

GCC_LOG(“Objects”, “Found”);

}

else {

GCC_LOG(“Objects”, “Not Found”);

}

}

GCC_LOG(“Objects”, “Next”);

}

The third is just arbitrarily placing braces where they make sense at the time:

void FindObject (unsigned int id, std::list& found)

{

for (int i = 0; i < m_max; ++i)

{

if (m_map[i].id == id)

{

General Coding Styles 55

found.push_back(m_map[i]);

GCC_LOG(“Objects”, “Found”);

}

else { GCC_LOG(“Objects”, “Not Found”);

}

}

GCC_LOG(“Objects”, “Next”);

}

Which one is the most readable? In my opinion, the first style is much more readable
than the other two. The second style is preferred by some programmers I know
because it saves space and creates more compact code, and they feel that K&R brac-
ing is just as readable. I strongly disagree with this and have fixed a couple of bugs
due to braces getting out of alignment in K&R bracing. By contrast, I have never
fixed a bug due to bad bracing using the first method. Still, it’s considered to be a
valid style at some companies. The most important thing here is that you never,
ever use the third method. Arbitrarily placing braces and tabs is a sure-fire ticket to
creating incredibly hard-to-read code.

5,000 Lines of Pure Horror

During development of Barbie Diaries, there were a number of complaints
about the architecture of the camera code. The original author had left the
company, so once the game shipped, I was tasked with refactoring that
whole system before we started production on the next game. When I
opened up SeCameraMgr.cpp, I was horrified to find that the entire camera
system was a series of nested switch/case statements with completely
arbitrary indentation and bracing. This complete lack of style and
organization made the code pretty much unusable. I spent about an hour
just lining up the braces and tabbing so I could even read the code, much
less refactor it. It took me two weeks to refactor the camera system into
something usable and extendable.

Consistency

Which of these function names is best?

Action* FindBestAction(void);

Action* findBestAction (void);

Action* find_best_action(void);

Honestly, it doesn’t really matter. I prefer the first one, but that’s just my opinion. It
makes very little difference how you handle capitalization, whether you put a space
between the identifiers and braces, whether you use underscores, and so on. The key

56 Chapter 3 n Coding Tidbits and Style That Saved Me

is that you’re consistent. If you choose method #1, I should never see a function in
your code base that doesn’t conform to that style. You might think it’s a relatively
minor topic, but when you have a code base with millions of lines of code written
by dozens of different people, consistency becomes extremely important.

One important exception to this is when integrating code written by a third party.
You don’t want to change every single line to match your style because every
time you update that code, you’ll have to make those changes all over again. Make
sure that all such code is isolated from your main code base. If you look at the source
code for this book, you can see a really good way of doing this. All third-party
code and libraries live in the Source/GCC4/3rdParty directory.

Another very important place to be consistent is in general API and function naming
conventions. For example, if you have a number of classes that require an update
every frame, the update function should be named the same thing across all of
these classes and probably have the same signature. For example, here’s the signature
for the update function in the Process class you’ll see later:

virtual void VOnUpdate(const int deltaMilliseconds);

Here’s the update for the HumanView class:

virtual void VOnUpdate(const int deltaMilliseconds);

The function signatures are exactly the same even though the two classes are not
related in any way. This can be important when you’re in a large code base and look-
ing at a class you’ve never seen before. This kind of consistency lets you be reason-
ably sure of what a function does. At Super-Ego Games, all trivial getter functions
started with the word “Get,” while non-trivial getters started with the word “Find.”
It was a simple mechanism that alerted the programmer to a possible performance
hit on what might seem like a simple operation.

You can see a good example of this kind of consistency by looking at the interface for
the STL. Ordered containers use push_back() to append an object to the container.
You can be reasonably certain that any ordered container that supports appending
will use a function named push_back(). Notice how unordered containers like
std::map or std::set name their function insert(). Since these containers
make no guarantees as to which order the objects exist in the container, the behavior
is fundamentally different than it is for ordered containers. This is a good paradigm
to follow in your own code.

Consistency goes beyond naming conventions; it also applies to class layout and code
organization. For example, I prefer to put all of the member variables of a class at the
top, followed by initialization and destruction functions like the constructor and

General Coding Styles 57

destructor. After that, I have my public interface followed by protected and private
internal function definitions. You don’t have to follow my scheme, of course, but
you should come up with something that you like and stick with it.

Smart Code Design Practices

One of the keys to writing good software is designing robust systems that can stand
the test of time. Game programming is extremely volatile. A designer can change the
whole game out from under you, requiring you to rewrite large chunks of your game.
There’s no way around this, because it’s simply the nature of the beast. You can mit-
igate the effect of these kinds of changes by having a strong, flexible architecture.

Isaac Asimov’s Foundation series invented an interesting discipline called psycho-
history, a social science that could predict societal trends and macro events with
great certainty. Each historian in the story was required to contribute new formulas
and extend the science. As a programmer, your job is similar. Every new module or
class that you create gives you the opportunity to extend the capabilities and useful-
ness of the code base. But to do this effectively, you must learn how to think ahead
and design code with the goal of keeping it in use for many projects and many years.

Designing good code in an object-oriented language can be more difficult than in a
procedural language such as C or PASCAL. The power and flexibility of an object-
oriented language like C++, for example, allows you to create extremely complicated
systems that look quite simple. This is both good and bad. Simplicity is good, but the
down side is that it’s easy to get yourself into trouble without realizing it. A great
example of this is the C++ constructor. Some programmers create code in a con-
structor that can fail—maybe they tried to read data from an initialization file, and
the file doesn’t exist. A failed constructor doesn’t return any kind of error code,
so the badly constructed object still exists and might get used. While you can use
structured exception handling to catch a failure in a constructor, it is a much better
practice to write constructors that can’t fail. Another example is the misuse of virtual
functions. For example, a naive programmer might make every method in the class
virtual, thinking that future expandability for everything was good. Well, he’d be
wrong. On some platforms, virtual functions can be very expensive. A well thought
through design is more important than blind application of object-oriented program-
ming constructs.

You can make your work much more efficient by improving how you design your
software. With a few keystrokes, you can create interesting adaptations of existing
systems. There’s nothing like having such command and control over a body of
code. It makes you more of an artist than a programmer.

58 Chapter 3 n Coding Tidbits and Style That Saved Me

A different programmer might view your masterpiece entirely differently, however.
For example, intricate relationships inside a class hierarchy could be difficult or
impossible to understand without your personal guidance. Documentation, usually
written in haste, is almost always inadequate or even misleading.

To help you avoid some of the common design practice pitfalls, I’m going to spend
some time in this chapter up-front discussing how you can do the following:

n Avoid hidden code that performs nontrivial operations.

n Keep your class hierarchies as flat as possible.

n Be aware of the difference between inheritance and composition.

n Avoid abusing virtual functions.

n Use interface classes and factories.

n Encapsulate the components of your system that are most likely to change.

n Use streams in addition to constructors to initialize objects.

Avoiding Hidden Code and Nontrivial Operations

Copy constructors, operator overloads, and destructors are all party to the “nasty”
hidden code problems that plague game developers. This kind of code can cause
you a lot of problems when you least expect. The best example is a destructor
because you never actually call it explicitly. It is called when the memory for an
object is being deallocated or the object goes out of scope. If you do something really
crazy in a destructor, like attach it to a remote computer and download a few mega-
bytes of MP3 files, your teammates are going to have you drawn and quartered.

My advice is that you should try to avoid copy constructors and operator overloads
that perform nontrivial operations. If something looks simple, it should be simple
and not deceptive. For example, most programmers would assume that if they
encountered some code that contained a simple equals sign or multiplication symbol
that it would not invoke a complicated formula, like a Taylor series. They would
assume that the code under the hood would be as straightforward as it looked—a
basic assignment or calculation between similar data types like floats or doubles.

Game programmers love playing with neat technology, and sometimes their sense of
elegance drives them to push nontrivial algorithms and calculations into C++ con-
structs, such as copy constructors or overloaded operators. They like it because the
high-level code performs complicated actions in a few lines of code, and on the sur-
face, it seems like the right design choice. Don’t be fooled.

Smart Code Design Practices 59

Any operation with some meat to it should be called explicitly. This might annoy your
sense of cleanliness if you are the kind of programmer who likes to use C++ con-
structs at each and every opportunity. Of course, there are exceptions. One is when
every operation on a particular class is comparatively expensive, such as a 4 × 4
matrix class. Overloaded operators are perfectly fine for classes like this because the
clarity of the resulting code is especially important and useful.

One thing to watch out for is that the C++ compiler will magically generate functions
in your class. It will silently generate a copy constructor, copy assignment operator,
and destructor for you if you don’t create them yourself. If you don’t create any con-
structors, it will also generate a default constructor. These will all be public functions.
This can cause unintended side effects if you’re not aware of what’s happening under
the covers. To get around this, you can make copy constructors and assignment
operators private, which keeps programmers from assuming the object can be dupli-
cated in the system. A good example of this is an object in your resource cache, such
as an ambient sound track that could be tens of megabytes. You clearly want to dis-
able making blind copies of this thing, because an unwary programmer might believe
all he’s doing is copying a tiny sound buffer.

A recurring theme throughout this book is that you should always try to avoid sur-
prises. Most programmers don’t like surprises because most surprises are bad ones.
Don’t add to the problem by tucking some crazy piece of code away in a destructor
or similar mechanism. It’s important to remember that you’re not writing code for
the compiler, you’re writing code for other programmers. The compiler will be just
as happy with clean code as it will with sloppy code. The same is not true for another
programmer.

Class Hierarchies: Keep Them Flat

One of the most common mistakes game programmers make is that they either over-
design or underdesign their classes and class hierarchies. Getting your class structure
well designed for your particular needs takes real practice.

A good rule of thumb is that each class should have a single responsibility in your
code base and should have inheritance trees that are no more than two or three levels
deep. As with anything, there are always exceptions to this rule, but you should strive
to flatten your hierarchy as much as possible.

On the opposite end of the spectrum, a common problem found in C++ programs is
the Blob class, as described in the excellent book Antipatterns by Brown et al. This is
a class that has a little bit of everything in it and comes from the reluctance on the
programmer’s part to make new, tightly focused classes. In the source code that

60 Chapter 3 n Coding Tidbits and Style That Saved Me

accompanies this book, the GameCodeApp class is probably the one that comes clos-
est to this, but if you study it a bit you can find some easy ways to factor it.

When I was working on The Sims Medieval, there was a class that fell very neatly into
the Blob category. Our Sim class became a dumping ground for every little extra
timer, variable, and tracking bit that could be remotely tied to a Sim. Entire systems
would be written inside this one class. By the end of the project, the Sim.cs file was
11,491 lines of code, and it was nearly impossible to find anything.

I try always to use a flat class hierarchy. Whenever possible, it starts with an interface
class and has at most two or three levels of inheritance. This class design is usually
much easier to work with and understand. Any change in the base class propagates
to a smaller number of child classes, and the entire architecture is something normal
humans can follow.

Try to learn from my mistakes. Good class architecture is not like a Swiss Army
knife; it should be more like a well-balanced throwing knife.

Inheritance Versus Composition

Game programmers love to debate the topics of inheritance and composition. Inheritance
is used when an object has evolved from another object, or when a child object is a ver-
sion of the parent object. Composition is used when an object is composed of multiple
discrete components, or when an aggregate object has a version of the contained object.

A good example of this relationship is found in user interface code. You might have a
base control class to handle things like mouse and keyboard events, positioning, and
anything else that all controls need to know how to do. When you create a control
such as a button or check box, you will inherit from this control. A check box is a
control. Then you might create a window that can contain a bunch of these controls.
The window has a control or, in this case, many controls. You window is most likely
a valid UI control as well, so it might be fair to say that that your window is a con-
trol, too. When you make a choice about inheritance or composition, your goal is to
communicate the right message to other programmers. The resulting assembly code
is almost exactly the same, barring the oddities of virtual function tables. This means
that the CPU doesn’t give a damn if you inherit or compose. Your fellow program-
mers will care, so try to be careful and clear.

Virtual Functions Gone Bad

Virtual functions are powerful creatures that are often abused. Programmers often
create virtual functions when they don’t need them, or they create long chains of

Smart Code Design Practices 61

overloaded virtual functions that make it difficult to maintain base classes. I did this
for a while when I first learned how to program with C++.

Take a look at MFC’s class hierarchy. Most of the classes in the hierarchy contain
virtual functions, which are overloaded by inherited classes or by new classes created
by application programmers. Imagine for a moment the massive effort involved if
some assumptions at the top of the hierarchy were changed. This isn’t a problem
for MFC because it’s a stable code base, but your game code isn’t a stable code
base. Not yet.

An insidious bug is often one that is created innocently by a programmer mucking
around in a base class. A seemingly benign change to a virtual function can have
unexpected results. Some programmers might count on the oddities of the behavior
of the base class that, if they were fixed, would actually break any child classes.
Maybe one of these days someone will write an IDE that graphically shows the code
that will be affected by any change to a virtual function. Without this aid, any pro-
grammer changing a base class must learn (the hard way) for himself what hell he is
about to unleash. One of the best examples of this is by changing the parameter list
of a virtual function. If you’re unlucky enough to change only an inherited class and
not the base class, the compiler won’t bother to warn you at all; it will simply break
the virtual chain, and you’ll have a brand new virtual function. It won’t ever be called
by anything, of course.

If you’re using Visual Studio 2010 or above, you can take advantage of the keywords
override and sealed. The override keyword tells the compiler that you are over-
riding a virtual function from the base class. It will generate an error if it can’t find
that function. The sealed keyword tells the compiler that subclasses aren’t allowed
to override the virtual function anymore. If you have a subclass that attempts to over-
ride it, it will generate an error. Here’s a quick example of their usage:

class Base

{

public:

virtual void Go(void);

};

class Sub1 : public Base

{

public:

// If Base didn’t declare this function with this exact signature,

// the compiler would kick out an error.

virtual void Go(void) override;

};

62 Chapter 3 n Coding Tidbits and Style That Saved Me

class Sub2 : public Sub1

{

public:

// If you create a new subclass inheriting from Sub2 and attempt

// to override this method, the compiler will kick out an error.

virtual void Go(void) sealed;

};

C# and other languages have been doing this for a long time now. I’m happy to see
C++ starting to do the same.

Let the Compiler Help You

If you ever change the nature of anything that is currently in wide use, virtual
functions included, I suggest you actually change its name. The compiler will
find each and every use of the code, and you’ll be forced to look at how the
original was put to use. It’s up to you if you want to keep the new name.
I suggest you do, even if it means changing every source file.

When you decide to make a function virtual, what you are communicating to other
programmers is that you intend for your class to be inherited from by other classes.
The virtual functions serve as an interface for what other programmers can change.
By overriding your virtual functions and choosing whether or not to call your imple-
mentations, they are changing the behavior of your class. Sometimes this is exactly
what you intend. The Process class you’ll see in Chapter 7, “Controlling the Main
Loop,” has a virtual VOnUpdate() method that is meant to be overridden to allow
you to define the behavior of your specific process.

Oftentimes, making an Update() function virtual is not the best way of doing
things. For example, say you have a class that processes a creature. You have an
update function that runs some AI, moves the creature, and then processes colli-
sions. Instead of making your update function virtual, you could make three sepa-
rate protected virtual functions: one for AI, one for movement, and one for
collision processing, each with a default implementation. The subclass can over-
ride one or more of these functions, but not the update function. So subclasses
can’t change the order of operations, they can only change what happens at each
step. This is called the template method design pattern and is very handy. In fact, I
used it recently at work to allow subclasses to redefine how interactions are cho-
sen and scored.

If you’re on the other side and trying to extend a class by deriving a subclass from it
and overriding some virtual functions, you should make sure that you’re doing it for
the right reasons. If you find yourself significantly altering its behavior, you should

Smart Code Design Practices 63

step back and consider if inheritance is the right solution. One solution might be
composition, where you write a new class that has the other class as a member.

Try to look at classes and their relationships like appliances and electrical cords.
Always seek to minimize the length of the extension cords, minimize the appliances
that plug into one another, and don’t make a nasty tangle that you have to figure out
every time you want to turn something on. This metaphor is put into practice with a
flat class hierarchy—one where you don’t have to open 12 source files to see all the
code for a particular class.

Use Interface Classes

Interface classes are those that contain nothing but pure virtual functions. They form
the top level in any class hierarchy. Here’s an example:

class IAnimation

{

public:

virtual void VAdvance(const int deltaMilliseconds) = 0;

virtual bool const VAtEnd() const = 0;

virtual int const VGetPosition() const = 0;

};

typedef std::list<IAnimation *> AnimationList;

This sample interface class defines simple behavior that is common for a timed ani-
mation. You could add other methods, such as one to tell how long the animation
will run or whether the animation loops; that’s purely up to you. The point is that
any system that contains a list of objects inheriting and implementing the IAnima-

tion interface can animate them with a few lines of code:

AnimationList::iterator end = animList.end();

for(AnimationList::iterator itr = animList.begin(); itr != end; ++itr)

{

(*itr).VAdvance(delta);

}

Whenever possible, you should have systems depend on these interfaces instead of
the implementation classes. Two different systems should never know about each
other’s implementation classes. Interface classes act like a gate into a particular sys-
tem in the engine. Outsiders are only able to call the interface functions to interact
with the system; they don’t know or care how it gets done.

64 Chapter 3 n Coding Tidbits and Style That Saved Me

Rewriting Your Graphics Engine Without Killing Your Game

When I was at Super-Ego Games, we landed a deal with Sony to make Rat
Race on the then-unreleased PlayStation 3. None of us had ever made a
console game, and the engine was very PC-centric. We devised a scheme
we called the Render Skin. This was a layer of abstraction where all
graphics and sound functionality would live. The entire thing was made up
of a series of interface classes that wrapped some piece of functionality.
The appropriate implementation classes were instantiated at runtime based
on compiler flags. Once we got this system working, we were able to
replace our old DirectX rendering system with a new rendering system that
worked on the PS3 without keeping the designers or gameplay programmers
blocked. None of the code that called into the Render Skin knew or cared
which engine it was using, so the graphics programmers could port
everything over without stepping on anyone’s toes.

Another great benefit of using interface classes is they reduce compile time depen-
dencies. The interfaces can be defined in a single #include file, or a very small
number of them, and because they hide all the disgusting guts of implementation
classes, there’s very little for the compiler to do but register the class and move on.

Consider Using Factories

Games tend to build complex objects, such as controls or sprites, and store them in
lists or other collections. A common way to do this is to have the constructor of one
object, say a certain implementation of a screen class, “new up” all the sprites and
controls. In many cases, many types of screens are used in a game, all having differ-
ent objects inheriting from the same parents.

In the book Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma et al., one of the object creation patterns is called a factory. An abstract fac-
tory can define the interface for creating objects. Different implementations of the
abstract factory carry out the concrete tasks of constructing objects with multiple
parts. Think of it this way—a constructor creates a single object. A factory creates
and assembles these objects into a working mechanism.

Imagine an abstract factory that builds screens. The fictional game engine in this
example could define screens as components that have screen elements, a back-
ground, and a logic class that accepts control messages. Here’s an example:

class SaveGameScreenFactory : public IScreenFactory

{

public:

SaveGameScreenFactory();

Smart Code Design Practices 65

virtual IScreenElements * const BuildScreenElements() const;

virtual ScreenBackground * const BuildScreenBackground() const;

virtual IScreenLogic * const BuildScreenLogic() const;

};

The code that builds screens will call the methods of the IScreenFactory interface,
each one returning the different objects that make the screen, including screen ele-
ments like controls, a background, or the logic that runs the screen. As all interface
classes tend to enforce design standards, factories tend to enforce orderly construc-
tion of complicated objects. Factories are great for screens, animations, AI, or any
nontrivial game object.

What’s more, factories can help you construct these mechanisms at the right time.
One of the neatest things about the factory design pattern is a delayed instantiation
feature. You could create factory objects, push them into a queue, and delay calling
the BuildXYZ() methods until you were ready. In the screen example, you might
not have enough memory to instantiate a screen object until the active one was
destroyed. The factory object is tiny, perhaps a few tens of bytes, and can easily
exist in memory until you are ready to fire it.

Factories and interfaces work hand-in-hand. In the previous example, each of the
objects being returned by the factory is an interface, so the calling code is decoupled
from the implementation of these objects. In other words, the system that’s using the
IScreenElements object doesn’t need to know which specific screen element is
being instantiated. All it needs to know is what the interface is. You can freely swap
this with any other object that comforms to the same interface.

Encapsulate Components That Change

Whenever I’m designing a new system, I’m always looking for the parts that are the
most likely to change. I try to isolate those pieces as much as I can so that when they
change, it has little or no effect on the rest of the engine. Your goal is make it easy to
modify and extend functionality so that when a designer comes to you and says “let’s
change this feature so that it does something else instead,” you don’t go insane
rewriting huge chunks of your game.

For example, let’s say I want to build an AI system. I want to create a number of dif-
ferent creatures with different behaviors. I could simply write all of these bahaviors in
a big hard-coded function, or I could encapsulate these different behaviors into objects
that can be reused on different creatures. Each creature can have some set of behaviors
that defines its overall AI. Since you have your behaviors separate from each other,
you can modify each one without worrying about how it will affect the other ones.

66 Chapter 3 n Coding Tidbits and Style That Saved Me

You can take this concept a step further and separate the code that chooses which
behavior to run next. Not only can you mix and match behaviors, but you can also
mix and match the transitions between those behaviors. Any of these components
can change without affecting any other component in your system. This is exactly
what I did on Drawn to Life for the enemy AI.

Another thing that often changes is your rendering system. We’ve chosen to use
Direct3D in this book because of its accessibility, but that doesn’t mean you can’t
use OpenGL. In a real game engine, you typically have multiple build configurations
for different platforms, each with a different renderer. That’s exactly what we did for
The Sims Medieval. It used DirectX for the PC build and OpenGL for the Mac build.

Learning to spot the things that are likely to change is something that comes with
experience. In general, any major system you build should be as decoupled as possi-
ble from every other major system. Interfaces, factories, and other techniques are the
tools to enable you to do this.

There is an amazing book called Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma et al., which I mentioned previously in this chap-
ter. Many of these design patterns, such as the Observer pattern and the Strategy pat-
tern, are aimed at decoupling different components in software. I highly recommend
that you check this book out. It’s one of those books that should be on every pro-
grammer’s bookshelf.

Use Streams to Initialize Objects

Any persistent object in your game should implement a method that takes a stream
as a parameter and reads the stream to initialize the object. If the game is loaded
from a file, objects can use the stream as a source of parameters. Here’s an example
to consider:

class AnimationPath

{

public:

AnimationPath();

Initialize (std::vector<AnimationPathPoint> const & srcPath);

Initialize (InputStream & stream);

//Of course, lots more code follows.

};

This class has a default constructor and two ways to initialize it. The first is through a
classic parameter list, in this case, a list of AnimationPathPoints. The second
initializes the class through a stream object. This is cool because you can initialize

Smart Code Design Practices 67

objects from a disk, a memory stream, or even the network. If you want to load game
objects from a disk, as you would in a save game, this is exactly how you do it.

Some programmers try to do stream initialization inside an object’s constructor:

AnimationPath (InputStream & stream);

Here’s why this is a bad idea—a bad stream will cause your constructor to fail, and
you’ll end up with a bad object. You can never trust the content of a stream. It could
be coming from a bad disk file or hacked network packets. Ergo, construct objects
with a default constructor you can rely on and create initialization methods for
streams.

Exercise Your Load/Save System

Test your stream initializers by loading and saving your game automatically in
the DEBUG build at regular intervals. It will have the added side effect of
making sure that programmers keep the load/save code pretty fast.

Smart Pointers and Naked Pointers

All smart pointers wear clothing.

If you declare a pointer to another object, you’ve just used a naked pointer. Pointers
are used to refer to another object, but they don’t convey enough information. Any-
thing declared on the heap must be referenced by at least one other object, or it can
never be freed, causing a memory leak. It is common for an object on the heap to be
referred to multiple times by other objects in the code. A good example of this is a
game object like a clock. A pointer to the clock will exist in the game object list, the
physics system, the graphics system, and even the sound system.

If you use naked pointers, you must remember which objects implicitly own other
objects. An object that owns other objects controls their existence. Imagine a ship
object that owns everything on the ship. When the ship sinks, everything else is
destroyed along with it. If you use naked pointers to create these relationships, you
have to remember who owns who. Depending on the system, this might be perfectly
reasonable or nearly impossible. If you choose to use a naked pointer, make sure that
you know exactly who can access it and when, or you’ll quickly find yourself going
down with the ship.

Smart pointers, on the other hand, hold extra information along with the address of
the distant object. This information can count references, record permanent or tem-
porary ownership, or perform other useful tasks. In a sense, an object controlled by a
smart pointer “knows” about every reference to itself.

68 Chapter 3 n Coding Tidbits and Style That Saved Me

Why not use smart pointers for everything? There are two major pitfalls to using
smart pointers. First, maintaining those internal reference counts adds a small mem-
ory and CPU overhead. This is rarely noticeable, but if you have thousands of objects
to manage and want to process them each frame, it can really start to add up. The
other problem is that smart pointers tend to take away some of your control over the
memory. For example, you may not have a clear understanding of which systems
could be holding a reference to any particular game object. When you “destroy”
that object by removing the reference, another reference may keep the object alive
longer than you intended. If I had a dollar for every smart pointer bug I fixed over
the years, I’d be a rich man.

So which one do you choose? It depends on the purpose. If you have a pointer to an
object that is not visible outside of the owner, a naked pointer is just fine. An exam-
ple of this is the m_pProcessManager member of BaseGameLogic. This pointer is
never accessed outside of the class or its children so there’s no risk for another sys-
tem to hold onto it. It can safely be destroyed without affecting any other systems.
Notice that the only access to this pointer is through the BaseGameLogic::

AttachProcess() method. This is a great pattern to follow because it means that
no one outside of the BaseGameLogic even has any idea that the ProcessManager
class exists. You could create multiple ProcessManager classes or remove it entirely
without having to touch any other code.

By contrast, if you look at the event system, all events are stored as smart pointers.
This is because it’s never clear who might be hanging on to a reference to these
objects. This is by design; the event receiver can hold on to the event without fear
of it being destroyed, or it cannot hold on to it and the event will be happily
destroyed after the event is handled.

Reference Counting

Reference counting stores an integer value that counts how many other objects are
currently referring to the object in question. Reference counting is a common mech-
anism in memory management. DirectX objects implement the COM-based IUn-

known interface, which uses reference counting. Two methods that are central to
this task are AddRef() and Release(). The following code shows how this works:

MySound *sound = new MySound;

sound->AddRef(); // reference count is now 1

After you construct a reference-counted object, you call the AddRef() method to
increase the integer reference counter by one. When the pointer variable goes out of
scope, by normal scoping rules or by the destruction of the container class, you must
call Release(). Release() will decrement the reference counter and destroy the

Smart Pointers and Naked Pointers 69

object if the counter drops to zero. A shared object can have multiple references safely
without fear of the object being destroyed, leaving bad pointers all over the place.

Use AddRef() and Release() with Caution

Good reference counting mechanisms automatically delete the object when the
reference count becomes zero. If the API leaves the explicit destruction of the
object to you, it’s easy to create memory leaks—all you have to do is forget to
call Release(). You can also cause problems if you forget to call AddRef()
when you create the object. It’s likely that the object will get destroyed
unexpectedly, not having enough reference counts.

Any time you assign a pointer variable to the address of the reference-counted object,
you’ll do the same thing. This includes any calls inside a local loop:

for (int i=0; i<m_howMany; ++i)

{

MySound *s = GoGrabASoundPointer(i);

s->AddRef();

DangerousFunction();

if (s->IsPlaying())

{

DoSomethingElse();

}

s->Release();

}

This kind of code exists all over the place in games. The call to DangerousFunc-

tion() goes deep and performs some game logic that might attempt to destroy the
instance of the MySound object. Don’t forget that in a release build the deallocated
memory retains the same values until it is reused. It’s quite possible that the loop will
work just fine even though the MySound pointer is pointing to unallocated memory.
What’s more likely to occur is a terrible corruption of memory, which can be
extremely difficult to track down.

Reference counting keeps the sound object around until Release() is called at the
bottom of the loop. If there was only one reference to the sound before the loop
started, the call to AddRef() will add one to the sound’s reference count, making
two references. DangerousFunction() does something that destroys the sound,
but through a call to Release(). As far as DangerousFunction() is concerned,
the sound is gone forever. It still exists because one more reference to it, through
MySound *s, kept the reference count from dropping to zero inside the loop. The
final call to Release() causes the destruction of the sound.

70 Chapter 3 n Coding Tidbits and Style That Saved Me

C++’s shared_ptr

If you think calling AddRef() and Release() all over the place might be a serious
pain in the rear, you’re right. It’s really easy to forget an AddRef() or a Release()
call, and your memory leak will be almost impossible to find. It turns out that there
are plenty of C++ templates out there that implement reference counting in a way
that handles the counter manipulation automatically. One of the best examples is
the shared_ptr template class in the standard TR1 C++ library.

Here’s an example of how to use this template:

#include <memory>

using std::tr1::shared_ptr;

class IPrintable

{

public:

virtual void VPrint()=0;

};

class CPrintable : public IPrintable

{

char *m_Name;

public:

CPrintable(char *name) { m_Name = name; printf(“create %s\n”,m_Name); }

virtual ˜CPrintable() { printf(“delete %s\n”,m_Name); }

void VPrint() { printf(“print %s\n”,m_Name); }

};

shared_ptr<CPrintable> CreateAnObject(char *name)

{

return shared_ptr<CPrintable>(new CPrintable(name));

}

void ProcessObject(shared_ptr<CPrintable> o)

{

printf(“(print from a function) ”);

o->VPrint();

}

void TestSharedPointers(void)

{

shared_ptr<CPrintable> ptr1(new CPrintable(“1”)); // create object 1

shared_ptr<CPrintable> ptr2(new CPrintable(“2”)); // create object 2

Smart Pointers and Naked Pointers 71

ptr1 = ptr2; // destroy object 1

ptr2 = CreateAnObject(“3”); // used as a return value

ProcessObject(ptr1); // call a function

// BAD USAGE EXAMPLES....

//

CPrintable o1(“bad”);

//ptr1 = &o1; // Syntax error! It’s on the stack….

//

CPrintable *o2 = new CPrintable(“bad2”);

//ptr1 = o2; // Syntax error! Use the next line to do this…

ptr1 = shared_ptr<CPrintable>(o2);

// You can even use shared_ptr on ints!

shared_ptr<int> a(new int);

shared_ptr<int> b(new int);

*a = 5;

*b = 6;

const int *q = a.get(); // use this for reading in multithreaded code

// this is especially cool - you can also use it in lists.

std::list< shared_ptr<int> > intList;

std::list< shared_ptr<IPrintable> > printableList;

for (int i=0; i<100; ++i)

{

intList.push_back(shared_ptr<int>(new int(rand())));

printableList.push_back(shared_ptr<IPrintable>(new CPrintable(“list”)));

}

// No leaks!!!! Isn’t that cool...

}

The template classes use overloaded assignment operators and copy operators to keep
track of how many references point to the allocated data. As long as the
shared_ptr object is in scope and you behave yourself by avoiding the bad usage
cases, you won’t leak memory, and you won’t have to worry about objects getting
destroyed while you are still referencing them from somewhere else.

This smart pointer even works in multithreaded environments, as long as you follow
a few rules. First, don’t write directly to the data. You can access the data through
const operations such as the .get() method. As you can also see, the template
works fine even if it is inside an STL container such as std::list.

72 Chapter 3 n Coding Tidbits and Style That Saved Me

Be Careful Using Threads and Sharing Memory

Don’t ignore multithreaded access to shared memory blocks. You might think
that the chances of two threads accessing the shared data are exceedingly low
and convince yourself that you don’t need to go to the trouble of adding
multithreaded protection. You’d be wrong every time.

There are a couple of safety tips with smart pointers.

n You can’t have two different objects manage smart pointers for each other.

n When you create a smart pointer, you have to make sure it is created straight
from a raw pointer new operator.

I’ll show you examples of each of these abuses. If two objects have smart pointers to
each other, neither one will ever be destroyed. It may take your brain a moment to
get this, since each one has a reference to the other.

class Jelly;

class PeanutButter

{

public:

shared_ptr<Jelly> m_pJelly;

˜PeanutButter(void) { cout << “PeanutButter destructor\n”; }

};

class Jelly

{

public:

shared_ptr<PeanutButter> m_pPeanutButter;

˜Jelly(void) { cout << “Jelly destructor\n”; }

};

void PleaseLeakMyMemory(void)

{

shared_ptr<PeanutButter> pPeanutButter(new PeanutButter);

shared_ptr<Jelly> pJelly(new Jelly);

pPeanutButter->m_pJelly = pJelly;

pJelly->m_pPeanutButter = pPeanutButter;

// Both objects are leaked here….

}

If you copied this code into the compiler, you would never see the messages printed
out in the destructors. Following the code, you’ll find that Jelly has a reference to
PeanutButter and PeanutButter has a reference to Jelly. Since they both point

Smart Pointers and Naked Pointers 73

to each other, neither one can ever have its reference count decremented. Basically,
because they point to each other, it’s almost like two stubborn gentlemen saying,
“No, sir, after you” and “Please, I insist” when trying to go through a single door—
because they point to each other, they will never be destroyed.

The solution to this is usually some kind of “owned” pointer or “weak referenced”
pointer, where one object is deemed the de facto owner and therefore won’t use the
multiply referenced shared_ptr mechanism. The weak_ptr template is used
exactly for this purpose:

class Jelly;

class PeanutButter

{

public:

shared_ptr<Jelly> m_pJelly;

˜PeanutButter(void) { cout << “PeanutButter destructor\n”; }

};

class Jelly

{

public:

weak_ptr<PeanutButter> m_pPeanutButter; // this is a weak pointer now!

˜Jelly(void) { cout << “Jelly destructor\n”; }

};

void PleaseDontLeakMyMemory(void)

{

shared_ptr<PeanutButter> pPeanutButter(new PeanutButter);

shared_ptr<Jelly> pJelly(new Jelly);

pPeanutButter->m_pJelly = pJelly;

pJelly->m_pPeanutButter = pPeanutButter;

// No memory is leaked!

}

In this version of the code, PeanutButter is the owner, and Jelly has a weak ref-
erence back to PeanutButter. If you execute this code, both objects will be
destroyed, and you will see the destructor messages printed in the console.

The other gotcha is constructing two smart pointers to manage a single object:

int *z = new int;

shared_ptr<int> bad1(z);

shared_ptr<int> bad2(z);

74 Chapter 3 n Coding Tidbits and Style That Saved Me

Remember that smart pointers work with a reference count, and each of the smart
pointer objects only has one reference. If either of them goes out of scope, the mem-
ory for the object will be deallocated, and the other smart pointer will point to
garbage.

Using Memory Correctly

Did you ever hear the joke about the programmer trying to beat the devil in a coding
contest? Part of his solution involved overcoming a memory limitation by storing a
few bytes in a chain of sound waves between the microphone and the speaker. That’s
an interesting idea, and I’ll bet there’s someone out there who has already done it.

Memory comes in very different shapes, sizes, and speeds. If you know what you’re
doing, you can write programs that make efficient use of these different memory
blocks. If you believe that it doesn’t matter how you use memory, you’re in for a real
shock. This includes assuming that the standard memory manager for your operating
system is efficient; it usually isn’t, and you’ll have to think about writing your own.

Understanding the Different Kinds of Memory

The system RAM is the main warehouse for storage, as long as the system has power.
Video RAM (or VRAM) is usually much smaller and is specifically used for storing
objects that will be used by the video card. Some platforms, such as Xbox and
Xbox360, have a unified memory architecture that makes no distinctions between
RAM and VRAM. Desktop PCs run operating systems like Windows 7 and have vir-
tual memory that mimics much larger memory space by swapping blocks of little-
used RAM to your hard disk. If you’re not careful, a simple memcpy() could cause
the hard drive to seek, which to a computer is like waiting for the sun to cool off.

System RAM

Your system RAM is a series of memory sticks that are installed on the motherboard.
Memory is actually stored in nine bits per byte, with the extra bit used to catch mem-
ory parity errors. Depending on the OS, you get to play with a certain addressable
range of memory. The operating system keeps some to itself. Of the parts you get
to play with, it is divided into three parts when your application loads:

n Global memory: This memory never changes size. It is allocated when your
program loads and stores global variables, text strings, and virtual function
tables.

n Stack: This memory grows as your code calls deeper into core code, and it
shrinks as the code returns. The stack is used for parameters in function calls

Using Memory Correctly 75

and local variables. The stack has a fixed size that can be changed with compiler
settings.

n Heap: This memory grows and shrinks with dynamic memory allocation. It is
used for persistent objects and dynamic data structures.

Old-timers used to call global memory the DATA segment, harkening back to the
days when there used to be near memory and far memory. It was called that because
programmers used different pointers to get to it. What a disgusting practice! Every-
thing is much cleaner these days because each pointer is a full 32 or 64 bits. (Don’t
worry, I’m not going to bore you with the “When I went to school I only had 640k of
memory to play with” story.)

Your compiler and linker will attempt to optimize the location of anything you put
into the global memory space based on the type of variable. This includes constant
text strings. Many compilers, including Visual Studio, will attempt to store text
strings only once to save space:

const char *error1 = “Error”;

const char *error2 = “Error”;

int main()

{

printf (“%x\n”, (int)error1);

// How quaint. A printf.

printf (“%x\n”, (int)error2);

return 0;

}

This code yields interesting results. You’ll notice that under Visual C++, the two
pointers point to the same text string in the global address space. Even better, the
text string is one that was already global and stuck in the CRT libraries. It’s as if we
wasted our time typing “Error.” This trick only works for constant text strings, since
the compiler knows they can never change. Everything else gets its own space. If you
want the compiler to consolidate equivalent text strings, they must be constant text
strings.

Don’t make the mistake of counting on some kind of rational order to the global
addresses. You can’t count on anything the compiler or linker will do, especially if
you are considering crossing platforms.

On most operating systems, the stack starts at high addresses and grows toward lower
addresses. C and C++ parameters get pushed onto the stack from right to left—the

76 Chapter 3 n Coding Tidbits and Style That Saved Me

last parameter is the first to get pushed onto the stack in a function call. Local para-
meters get pushed onto the stack in their order of appearance:

void testStack(int x, int y)

{

int a = 1;

int b = 2;

printf(“&x= %-10x &y= %-10x\n”, &x, &y);

printf(“&a= %-10x &b= %-10x\n”, &a, &b);

}

This code produces the following output:

&x= 12fdf0 &y= 12fdf4

&a= 12fde0 &b= 12fdd4

Stack addresses grow downward to smaller memory addresses. Thus, it should be
clear that the order in which the parameters and local variables were pushed was: y,
x, a, and b, which turns out to be exactly the order in which you read them—a good
mnemonic. The next time you’re debugging some assembler code, you’ll be glad to
understand this, especially if you are setting your instruction pointer by hand.

C++ allows a high degree of control over the local scope. Every time you enclose
code in a set of braces, you open a local scope with its own local variables:

int main()

{

int a = 0;

{ // start a local scope here…

int a = 1;

printf(“%d\n”, a);

}

printf(“%d\n”, a);

}

This code compiles and runs just fine. The two integer variables are completely sepa-
rate entities. I’ve written this example to make a clear point, but I’d never actually
write code like this. Doing something like this is likely to get you shot. The real use-
fulness of this kind of code is for use with C++ objects that perform useful tasks
when they are destroyed—you can control the exact moment a destructor is called
by closing a local scope.

Using Memory Correctly 77

Video Memory (VRAM)

Video RAM is the memory installed on your video card, unless we’re talking about an
Xbox. Xbox hardware has unified memory architecture (or UMI), so there’s no differ-
ence between system RAM and VRAM. It would be nice if the rest of the world
worked that way. Other hardware, such as the Intel architecture, must send any data
between VRAM and system RAM over a bus. The PS3 has even more different kinds
of memory. There are quite a few bus architectures and speeds out there, and it is wise
to understand how reading and writing data across the bus affects your game’s speed.

As long as the CPU doesn’t have to read from VRAM, everything clicks along pretty
fast. If you need to grab a piece of VRAM for something, the bits have to be sent
across the bus to system RAM. Depending on your architecture, your CPU and
GPU must argue for a moment about timing, stream the bits, and go their separate
ways. While this painful process is occurring, your game has come to a complete halt.

This problem was pretty horrific back in the days of fixed function pipelines when
anything not supported by the video card had to be done with the CPU, such as
the first attempts at motion blur. With programmable pipelines, you can create shad-
ers that can run directly on the bits stored in VRAM, making this kind of graphical
effect extremely efficient.

The hard disk can’t write straight to VRAM, so every time a new texture is needed,
you’ll need to stop the presses, so to speak. The smart approach is to limit any com-
munication needed between the CPU and the video card. If you are going to send
anything to it, it is best to send it in batches.

If you’ve been paying attention, you’ll realize that the GPU in your video card is sim-
ply painting the screen using the components in VRAM. If it ever has to stop and ask
system RAM for something, your game won’t run as fast as it could.

Optimizing Memory Access

Every access to system RAM uses a CPU cache. If the desired memory location is
already in the cache, the contents of the memory location are presented to the CPU
extremely quickly. If, on the other hand, the memory is not in the cache, a new block
of system RAM must be fetched into the cache. This takes a lot longer than you’d
think.

A good test bed for this problem uses multidimensional arrays. C++ defines its arrays
in row major order. This ordering puts the members of the right-most index next to
each other in memory.

TestData[0][0][0] and TestData[0][0][1] are stored in adjacent memory
locations.

78 Chapter 3 n Coding Tidbits and Style That Saved Me

Row Order or Column Order?

Not every language defines arrays in row order. Some versions of PASCAL
define arrays in column order. Don’t make assumptions unless you like
writing slow code.

If you access an array in the wrong order, it will create a worst-case CPU cache
scenario. Here’s an example of two functions that access the same array and do the
same task. One will run much faster than the other:

const int g_n = 500;

float TestData[g_n][g_n][g_n];

inline void column_ordered()

{

for (int k=0; k<g_n; k++) // K

for (int j=0; j<g_n; j++) // J

for (int i=0; i<g_n; i++) // I

TestData[i][j][k] = 0.0f;

}

inline void row_ordered()

{

for (int i=0; i<g_n; i++) // I

for (int j=0; j<g_n; j++) // J

for (int k=0; k<g_n; k++) // K

TestData[i][j][k] = 0.0f;

}

The timed output of running both functions on my test machine showed that acces-
sing the array in row order was over 10 times faster:

Column Ordered: 3531 ms

Row Ordered: 297 ms

Delta: 3234 ms

Any code that accesses any largish data structure can benefit from this technique. If
you have a multistep process that affects a large data set, try to arrange your code to
perform as much work as possible in smaller memory blocks. You’ll optimize the use
of the L2 cache and make a much faster piece of code. While you surely won’t have
any piece of runtime game code do something this crazy, you might very well have a
game editor or production tool that does.

Using Memory Correctly 79

Memory Alignment

The CPU reads and writes memory-aligned data much faster than other data. Any
N-byte data type is memory aligned if the starting address is evenly divisible by N.
For example, a 32-bit integer is memory aligned on a 32-bit architecture if the start-
ing address is 0x04000000. The same 32-bit integer is unaligned if the starting
address is 0x04000002, since the memory address is not evenly divisible by 4 bytes.

You can perform a little experiment in memory alignment and how it affects access
time by using example code like this:

#pragma pack(push, 1)

struct ReallySlowStruct

{

char c : 6;

__int64 d : 64;

int b : 32;

char a : 8;

};

struct SlowStruct

{

char c;

__int64 d;

int b;

char a;

};

struct FastStruct

{

__int64 d;

int b;

char a;

char c;

char unused[2];

};

#pragma pack(pop)

I wrote a piece of code to perform some operations on the member variables in each
structure. The difference in times is as follows:

Really Slow: 609 ms

Slow: 422 ms

Fast: 406 ms

80 Chapter 3 n Coding Tidbits and Style That Saved Me

Your penalty for using the SlowStruct over FastStruct is about 5 percent on my test
machine. The penalty for using ReallySlowStruct is code that runs 1.5 times as slowly.

The first structure isn’t even aligned properly on bit boundaries, hence the name
ReallySlowStruct. The definition of the 6-bit char variable throws the entire
structure out of alignment. The second structure, SlowStruct, is also out of align-
ment, but at least the byte boundaries are aligned. The last structure, FastStruct, is
completely aligned for each member. The last member, unused, ensures that the struc-
ture fills out to an 8-byte boundary in case someone declares an array of FastStruct.

Notice the #pragma pack(push, 1) at the top of the source example? It’s accompa-
nied by a #pragma pack(pop) at the bottom. Without them, the compiler, depend-
ing on your project settings, will choose to spread out the member variables and
place each one on an optimal byte boundary. When the member variables are spread
out like that, the CPU can access each member quickly, but all that unused space can
add up. If the compiler were left to optimize SlowStruct by adding unused bytes,
each structure would be 24 bytes instead of just 14. Seven extra bytes are padded after
the first char variable, and the remaining bytes are added at the end. This ensures
that the entire structure always starts on an 8-byte boundary. That’s about 40 percent
of wasted space, all due to a careless ordering of member variables.

Don’t let the compiler waste precious memory space. Put some of your brain cells to
work and align your own member variables. You don’t get many opportunities to
save memory and optimize CPU at the same time.

Virtual Memory

Virtual memory increases the addressable memory space by caching unused memory
blocks to the hard disk. The scheme depends on the fact that even though you might
have a 500MB data structure, you aren’t going to be playing with the whole thing at
the same time. The unused bits are saved off to your hard disk until you need them
again. You should be cheering and wincing at the same time. Cheering because every
programmer likes having a big memory playground, and wincing because anything
involving the hard disk wastes a lot of time.

Cache Misses Can Cost You Dearly

Any time a cache is used inefficiently, you can degrade the overall performance
of your game by many orders of magnitude. This is commonly called
“thrashing the cache,” and it is your worst nightmare. If your game is
thrashing cache, you might be able to solve the problem by reordering some
code, but most likely you will need to reduce the size of the data.

Using Memory Correctly 81

Try not to rely on virtual memory systems. Game consoles typically don’t have
any kind of virtual memory, so you’re stuck with the amount of memory the sys-
tem gives you. If you allocate one byte more, the system crashes. This can be espe-
cially deadly if you’re allocating and deallocating a lot during runtime because it
will be nearly impossible to determine your peak memory usage for any given
situation.

Memory Insurance

When I worked at Planet Moon, we made an educational game for the Gameboy DS called Brain Quest.
The DS only has 4MB of RAM, and toward the end of the project, we were running right up against that
limit. When the final assets came in and were added to the package, we were just over the 4MB limit.
One of the engineers grinned and walked over to his computer. He opened up main.cpp and commented
out the following line:

unsigned char insurance[10240];

Writing Your Own Memory Manager

Most games extend the provided memory management system. The biggest reasons to
do this are performance, efficiency, and improved debugging. Default memory man-
agers in the C runtime are designed to run fairly well in a wide range of memory allo-
cation scenarios. They tend to break down under the load of computer games, where
allocations and deallocations of relatively tiny memory blocks can be fast and furious.

A standard memory manager, like the one in the C runtime, must support multi-
threading. Each time the memory manager’s data structures are accessed or changed,
they must be protected with critical sections, allowing only one thread to allocate or
deallocate memory at a time. All this extra code is time consuming, especially if you
use malloc() and free() very frequently. Most games are multithreaded but
don’t necessarily need a multithreaded memory manager for every part of the
game. A single-threaded memory manager that you write yourself might be a good
solution.

Simple memory managers can use a doubly linked list as the basis for keeping track
of allocated and free memory blocks. The C runtime uses a more complicated system
to reduce the algorithmic complexity of searching through the allocated and free
blocks that could be as small as a single byte. Your memory blocks might be either
more regularly shaped, fewer in number, or both. This creates an opportunity to
design a simpler, more efficient system.

Default memory managers must assume that deallocations happen approximately
as often as allocations, and they might happen in any order and at any time.

82 Chapter 3 n Coding Tidbits and Style That Saved Me

Their data structures have to keep track of a large number of blocks of available
and used memory. Any time a piece of memory changes state from used to avail-
able, the data structures must be traversed quickly. When blocks become available
again, the memory manager must detect adjacent available blocks and merge them
to make a larger block. Finding free memory of an appropriate size to minimize
wasted space can be extremely tricky. Since default memory managers solve these
problems to a large extent, their performance isn’t as high as another memory
manager that can make more assumptions about how and when memory alloca-
tions occur.

If your game can allocate and deallocate most of its dynamic memory space at once,
you can write a memory manager based on a data structure no more complicated
than a singly linked list. You’d never use something this simple in a more general
case, of course, because a singly linked list has O(n) algorithmic complexity. That
would cripple any memory management system used in the general case.

A good reason to extend a memory manager is to add some debugging features. Two
features that are common include adding additional bytes before and after the alloca-
tion to track memory corruption or to track memory leaks. The C runtime adds only
one byte before and after an allocated block, which might be fine to catch those pesky
x+1 and x-1 errors but doesn’t help for much else. If the memory corruption seems
pretty random, and most of them sure seem that way, you can increase your odds of
catching the culprit by writing a custom manager that adds more bytes to the begin-
ning and ending of each block. In practice, the extra space is set to a small number,
even one byte, in the release build.

Different Build Options Will Change Runtime Behavior

Anything you do differently from the debug and release builds can change the
behavior of bugs from one build target to another. Murphy’s Law dictates that
the bug will only appear in the build target that is hardest, or even impossible,
to debug.

Another common extension to memory managers is leak detection. It is a common
practice to redefine the new operator to add __FILE__ and __LINE__ information
to each allocated memory block in debug mode. When the memory manager is shut
down, all the unfreed blocks are printed out in the output window in the debugger.
This should give you a good place to start when you need to track down a memory
leak.

Using Memory Correctly 83

If you decide to write your own memory manager, keep the following points in mind:

n Data structures: Choose the data structure that matches your memory alloca-
tion scenario. If you traverse a large number of free and available blocks very
frequently, choose a hash table or tree-based structure. If you hardly ever tra-
verse it to find free blocks, you could get away with a list. Store the data struc-
ture separately from the memory pool; any corruption will keep your memory
manager’s data structure intact.

n Single/multithreaded access: Don’t forget to add appropriate code to protect
your memory manager from multithreaded access if you need it. Eliminate the
protections if you are sure that access to the memory manager will only happen
from a single thread, and you’ll gain some performance.

n Debug and testing: Allocate a little additional memory before and after the
block to detect memory corruption. Add caller information to the debug mem-
ory blocks; at a minimum, you should use __FILE__ and __LINE__ to track
where the allocation occurred.

One of the best reasons to extend the C runtime memory manager is to write a better
system to manage small memory blocks. The memory managers supplied in the C
runtime or MFC library are not meant for tiny allocations. You can prove it to your-
self by allocating two integers and subtracting their memory addresses as shown here:

int *a = new int;

int *b = new int;

int delta1 = ((int)b - (int)a) - sizeof(int);

The wasted space for the C runtime library was 28 bytes for a release build and 60 bytes
for the debug build under Visual Studio. Even with the release build, an integer takes
eight times as much memory space as it would if it weren’t dynamically allocated.

Most games overload the new operator to allocate small blocks of memory from a
reserved pool set aside for smaller allocations. Memory allocations that are larger
than a set number of bytes can still use the C runtime. I recommend that you start
with 128 bytes as the largest block your small allocator will handle and tweak the size
until you are happy with the performance. I’ll show you a simple memory pool class
later in this chapter in the “Memory Pools” section.

Grab Bag of Useful Stuff

Every programmer I know has a collection of gems that they use in nearly every
project. As you grow in your programming abilities, you’ll find yourself doing the
same thing. I want to share a few of the ones I’ve found or developed over the

84 Chapter 3 n Coding Tidbits and Style That Saved Me

years to hopefully give you a head start on making your own. First, I’ll show you a
cool random number generator, and then I’ll show you a neat algorithm to traverse
any set in random order without visiting the same member twice. Finally we’ll end
with a memory pool class I wrote a while back.

An Excellent Random Number Generator

There are as many good algorithms for generating random numbers as there are
pages in this book. Most programmers will soon discover that the ANSI rand()

function is completely inadequate because it can only generate a single stream of ran-
dom numbers. Most games need multiple discrete streams of random numbers.

Unless your game comes with a little piece of hardware that uses the radioactive
decay of cesium to generate random numbers, your random number generator is
only pseudo random. A pseudo-random number sequence can certainly appear ran-
dom, achieving a relatively flat distribution curve over the generation of billions of
numbers mapped to a small domain, like the set of numbers between 1 and 100.
Given the same starting assumption, commonly called a seed, the sequence will be
exactly the same. A truly random sequence could never repeat like that.

This might seem bad because you might feel that a hacker could manipulate the seed
to affect the outcome of the game. In practice, all you have to do is regenerate the seed
every now and then using some random element that would be difficult or impossible
to duplicate. In truth, a completely predictable random number generator is some-
thing you will give your left leg for when writing test tools or a game replay system.

Even Old Code Can Be Useful

Every Ultima from Ultima I to Ultima VIII used the same random number
generator, originally written in 6502 assembler. In 1997, this generator was
the oldest piece of continuously used code at Origin Systems. Finally, this
RNG showed its age and had to be replaced. Kudos to Richard Garriott (aka
Lord British) for making the longest-lived piece of code Origin ever used.

Here’s a cool little class to keep track of your random numbers. You’ll want to make
sure you save this code and stuff it into your own toolbox. The RNG core is called a
Mersenne Twister pseudorandom number generator, and it was originally developed
by Takuji Nishimura and Makoto Matsumoto:

class GCCRandom

{

Grab Bag of Useful Stuff 85

private:

// DATA

unsigned int rseed;

unsigned int rseed_sp;

unsigned long mt[CMATH_N]; /* the array for the state vector */

int mti; /* mti==N+1 means mt[N] is not initialized */

// FUNCTIONS

public:

GCCRandom(void);

unsigned int Random(unsigned int n);

float Random();

void SetRandomSeed(unsigned int n);

unsigned int GetRandomSeed(void);

void Randomize(void);

};

The original code has been modified to include a few useful bits, one of which was to
allow this class to save and reload its random number seed, which can be used to
replay random number sequences by simply storing the seed. Here’s an example of
how you can use the class:

GCCRandom r;

r.Randomize();

unsigned int num = r.Random(100); // returns a number from 0-99, inclusive

You should use a few instantiations of this class in your game, each one generating
random numbers for a different part of your game. Here’s why: Let’s say you want to
generate some random taunts from AI characters. If you use a different random
number sequence from the sequence that generates the contents of treasure chests,
you can be sure that if the player turns off character audio, the same RNG sequence
will result for the treasure chests, which nicely compartmentalizes your game. In
other words, your game becomes predictable and testable.

Your Random Number Generator Can Break Automation

I was working on an automation system for some Microsoft games, and the
thing would just not work right. The goal of the system was to be able to
record game sessions and play them back. The system was great for testers
and programmers alike. It’s hard, and boring, to play a few million hands of
blackjack. Our programming team realized that since the same RNG was
being called for every system of the game, small aberrations would occur
as calls to the RNG went out of sync. This was especially true for random
character audio, since the timing of character audio was completely

86 Chapter 3 n Coding Tidbits and Style That Saved Me

dependent on another thread, which was impossible to synchronize. When we used one CRandom class
for each subsystem of the game, the problem disappeared.

Pseudo-Random Traversal of a Set

Have you ever wondered how the “random” button on your CD player works? It will
play every song on your CD randomly without playing the same song twice. That’s a
really useful solution for making sure players in your games see the widest variety of
features like objects, effects, or characters before they have the chance of seeing the
same ones over again.

The following code uses a mathematical feature of prime numbers and quadratic
equations. The algorithm requires a prime number larger than the ordinal value of
the set you want to traverse. If your set had 10 members, your prime number
would be 11. Of course, the algorithm doesn’t generate prime numbers; instead, it
just keeps a select set of prime numbers around in a lookup table. If you need bigger
primes, there’s a convenient website for you to check out.

Here’s how it works. A skip value is calculated by choosing three random values
greater than zero. These values become the coefficients of the quadratic, and the
domain value (x) is set to the ordinal value of the set:

Skip = RandomA * (members * members) + (RandomB * members) + RandomC

Armed with this skip value, you can use this piece of code to traverse the entire set
exactly once, in a pseudo-random order:

nextMember += skip;

nextMember %= prime;

The value of skip is so much larger than the number of members of your set that the
chosen value seems to skip around at random. Of course, this code is inside a while
loop to catch the case where the value chosen is larger than your set but still smaller
than the prime number. Here’s the class definition:

class PrimeSearch

{

static int prime_array[];

int skip;

int currentPosition;

int maxElements;

int *currentPrime;

int searches;

Grab Bag of Useful Stuff 87

public:
PrimeSearch(int elements);

int GetNext(bool restart=false);

bool Done() { return (searches==*currentPrime); }

void Restart() { currentPosition=0; searches=0; }

};

I’ll show you a trivial example to make a point.

void FadeToBlack(Screen *screen)

{

int w = screen.GetWidth();

int h = screen.GetHeight();

int pixels = w * h;

PrimeSearch search(pixels);

int p;

while((p=search.GetNext())!=-1)

{

int x = p % w;

int y = h / p;

screen.SetPixel(x, y, BLACK);

}

}

The example sets random pixels to black until the entire screen is erased. I should
warn you now that this code is completely stupid, for two reasons. First, you
wouldn’t set one pixel at a time. Second, you would likely use a pixel shader to do
this. I told you the example was trivial: use PrimeSearch for other cool things like
spawning creatures, weapons, and other random stuff.

Memory Pools

I mentioned memory pools earlier in this chapter when I covered different types of
memory management. They are incredibly useful for frequent, small allocations and
deallocations because they are lightning fast. The idea is that you allocate a large
block of memory up front, which is then divided into chunks of even sizes. Each
chunk has a small header that points to the next element. This creates a singly linked
list of memory chunks, as shown in Figure 3.1.

When an allocation request comes in, it simply removes the chunk at the front of the
list and returns it, making the next chunk the making the next chunk the new front
(see Figure 3.2).

88 Chapter 3 n Coding Tidbits and Style That Saved Me

When a chunk of memory is destroyed, it simply returns it to the list. It may seem
like an unnecessarily complex system to use this linked list, but it’s not. You can’t
guarantee the order in which things will be freed, so having this linked list structure
allows you to find the next free chunk in constant time. It also allows for dealloca-
tion in constant time since the chunks are returned to the front of the list. After a
while, your nice clean array will start to look a bit messy with chunks being
requested and freed all the time. Figure 3.3 shows what your block might end up
looking like.

Figure 3.2
Memory pool chunk allocated.

Figure 3.1
Memory pool block.

Figure 3.3
Memory pool usage.

Grab Bag of Useful Stuff 89

This is perfectly fine and has absolutely no effect on the performance of the system.
Now that you have an understanding of what a memory pool is, let’s take a look at
the implementation of the MemoryPool class:

class MemoryPool

{

unsigned char** m_ppRawMemoryArray; // an array of memory blocks, each

// split up into chunks

unsigned char* m_pHead; // the front of the memory chunk linked list

unsigned int m_chunkSize, m_numChunks; // the size of each chunk and

// number of chunks per array

unsigned int m_memArraySize; // the number elements in the memory array

bool m_toAllowResize; // true if we resize the memory pool when it fills

public:

// construction

MemoryPool(void);

˜MemoryPool(void);

bool Init(unsigned int chunkSize, unsigned int numChunks);

void Destroy(void);

// allocation functions

void* Alloc(void);

void Free(void* pMem);

unsigned int GetChunkSize(void) const { return m_chunkSize; }

// settings

void SetAllowResize(bool toAllowResize)

{

m_toAllowResize = toAllowResize;

}

private:

// resets internal vars

void Reset(void);

// internal memory allocation helpers

bool GrowMemoryArray(void);

unsigned char* AllocateNewMemoryBlock(void);

// internal linked list management

unsigned char* GetNext(unsigned char* pBlock);

void SetNext(unsigned char* pBlockToChange, unsigned char* pNewNext);

// don’t allow copy constructor

MemoryPool(const MemoryPool& memPool) {}

};

90 Chapter 3 n Coding Tidbits and Style That Saved Me

To use this class, instantiate it and call the Init() function. The chunkSize is the
size of each atomic memory chunk, and numChunks is the number of chunks that are
created for each set of chunks. Collectively, this set of chunks is called a block. If you
go over your limit of memory chunks, the memory pool will allocate another block for
you. This isn’t catastrophic, but you don’t want to make a habit of going over your
limit because it’s very time consuming to set up a new memory block. If Init()
returns true, your memory pool is ready to go! You can call Alloc() and Free()

to allocate and free a chunk, respectively.

The Init() function just sets some member variables and calls the GrowMemor-

yArray() function to allocate the new block of memory. Let’s take a look inside
GrowMemoryArray() to see how the magic happens:

bool MemoryPool::GrowMemoryArray(void)

{

// allocate a new array

size_t allocationSize = sizeof(unsigned char*) * (m_memArraySize + 1);

unsigned char** ppNewMemArray = (unsigned char**)malloc(allocationSize);

// make sure the allocation succeeded

if (!ppNewMemArray)

return false;

// copy any existing memory pointers over

for (unsigned int i = 0; i < m_memArraySize; ++i)

{

ppNewMemArray[i] = m_ppRawMemoryArray[i];

}

// Allocate a new block of memory. Indexing m_memArraySize here is

// safe because we haven’t incremented it yet to reflect the new size

ppNewMemArray[m_memArraySize] = AllocateNewMemoryBlock();

// attach the block to the end of the current memory list

if (m_pHead)

{

unsigned char* pCurr = m_pHead;

unsigned char* pNext = GetNext(m_pHead);

while (pNext)

{

pCurr = pNext;

pNext = GetNext(pNext);

}

SetNext(pCurr, ppNewMemArray[m_memArraySize]);

}

Grab Bag of Useful Stuff 91

else

{

m_pHead = ppNewMemArray[m_memArraySize];

}

// destroy the old memory array

if (m_ppRawMemoryArray)

free(m_ppRawMemoryArray);

// assign the new memory array and increment the size count

m_ppRawMemoryArray = ppNewMemArray;

++m_memArraySize;

return true;

}

unsigned char* MemoryPool::AllocateNewMemoryBlock(void)

{

// calculate the size of each block and the size of the

// actual memory allocation

size_t blockSize = m_chunkSize + CHUNK_HEADER_SIZE; // chunk + linked list

// overhead

size_t trueSize = blockSize * m_numChunks;

// allocate the memory

unsigned char* pNewMem = (unsigned char*)malloc(trueSize);

if (!pNewMem)

return NULL;

// turn the memory into a linked list of chunks

unsigned char* pEnd = pNewMem + trueSize;

unsigned char* pCurr = pNewMem;

while (pCurr < pEnd)

{

// calculate the next pointer position

unsigned char* pNext = pCurr + blockSize;

// set the next pointer

unsigned char** ppChunkHeader = (unsigned char**)pCurr;

ppChunkHeader[0] = (pNext < pEnd ? pNext : NULL);

// move to the next block

pCurr += blockSize;

}

return pNewMem;

}

92 Chapter 3 n Coding Tidbits and Style That Saved Me

This function starts by allocating a new array of pointers. This array will hold all of
the blocks of memory chunks that are allocated. It starts with only one element and
adds more if the memory pool needs to grow. After that, it copies any existing blocks
to the new array. Now that the array is in order, a new block of memory is allocated
by calling AllocateNewMemoryBlock() and assigned to the end of the array.
Inside AllocateNewMemoryBlock(), a new block of memory is allocated. Notice
that the true size of each chunk is the size requested, plus the CHUNK_HEADER_SIZE,
which is defined as follows:

const static size_t CHUNK_HEADER_SIZE = (sizeof(unsigned char*));

This is the header data that will point to the next element. After the block has been
allocated, the function walks through each chunk in the block and points the header
to the next block. This sets up the singly linked list. After that, you’re ready to go,
and the new block is returned to GrowMemoryArray().

Now that the GrowMemoryArray() function has the newly constructed block, it
checks to see if m_pHead is valid. This is the pointer to the front of the list. If it’s
valid, it must walk through the list of chunks to find the end and append it there. If
not, the new block can be attached right there. Currently, GrowMemoryArray() is
only called when you’re initializing the memory pool or when you’ve run out of
chunks. In both of these cases, m_pHead will be NULL. The extra clause is there in
case you want the ability to grow the memory at any time.

That’s pretty much it. Once GrowMemoryArray() returns, you’ll have a brand new
block of memory ready to be dished out. Now that all the heavy lifting is done, the
Alloc() and Free() functions become very simple:

void* MemoryPool::Alloc(void)

{

// If we’re out of memory chunks, grow the pool. This is very expensive.

if (!m_pHead)

{

// if we don’t allow resizes, return NULL

if (!m_toAllowResize)

return NULL;

// attempt to grow the pool

if (!GrowMemoryArray())

return NULL; // couldn’t allocate anymore memory

}

// grab the first chunk from the list and move to the next chunks

unsigned char* pRet = m_pHead;

Grab Bag of Useful Stuff 93

m_pHead = GetNext(m_pHead);

return (pRet + CHUNK_HEADER_SIZE); // make sure we return a pointer to

// the data section only

}

void MemoryPool::Free(void* pMem)

{

// Calling Free() on a NULL pointer is perfectly valid C++ so

// we have to check for it.

if (pMem != NULL)

{

// The pointer we get back is just to the data section of

// the chunk. This gets us the full chunk.

unsigned char* pBlock =

((unsigned char*)pMem) - CHUNK_HEADER_SIZE;

// push the chunk to the front of the list

SetNext(pBlock, m_pHead);

m_pHead = pBlock;

}

}

The first thing the Alloc() function checks is whether or not the block has been
fully allocated. If it has, it has to allocate a new block. You can disallow this by set-
ting m_toAllowResize to false. This is handy for games that have a limited
memory budget, like console or mobile games. After that, it returns the front of the
list:

return (pRet + CHUNK_HEADER_SIZE);

Notice how it adds the CHUNK_HEADER_SIZE? This is necessary because you only
want to return the actual data section and not include the header section.

The Free() function is pretty much the reverse. If the chunk is valid, the function
subtracts CHUNK_HEADER_SIZE to get the full chunk, including the header. Then it
sets the header to point to the current front of the list and assigns the m_pHead

pointer to itself. This pushes the freed chunk to the front of the list.

In practice, the best way to use this memory pool is to figure out which objects you’ll
be constructing and destroying extremely often and make them use a memory pool.
The best way to do this is to override the new and delete operators for that class so
that they call into the memory pool for allocation and deallocation. This keeps it nice
and contained within the class so that the calling code doesn’t have to know anything
about whether the class is pooled or not—it just calls new and delete as normal.

94 Chapter 3 n Coding Tidbits and Style That Saved Me

There are a number of ways you can add to this memory system. For example, you
might want to create a simple distributor that creates a number of memory pools of
different sizes and routes memory allocation requests through it. It can return mem-
ory chunks for anything smaller than the size of the largest pool and default to the
global new operator for everything larger. This is exactly what we did on BrainQuest.

Another improvement would be to create a series of macros that would generate the
necessary code required to have a class use a memory pool. That way, you could have
a class use a memory pool with only a couple of lines of code. This is exactly what I
did for the sample code. If you look in MemoryMacros.h, you’ll see the macro defi-
nitions. An example of their use is in Pathing.h where I pool all of the pathing
nodes. I’ll talk more about this in Chapter 18, “An Introduction to Game AI.”

Developing the Style That’s Right for You

Throughout this chapter, I’ve tried to point out a number of coding techniques and
pitfalls that I’ve learned over the years. I’ve tried to focus on the ones that seem to
cause the most problems and offer the best results. Of course, keep in mind that
there is no single best approach or one magic solution for writing a game.

I wish I had more pages because there are tons of gems out there. Most of them
you’ll beg or borrow from your colleagues. Some of them you’ll create for yourself
after you solve a challenging problem.

However you find them, don’t forget to share.

Further Reading

C++ Templates: The Complete Guide, Nicolai M. Josuttis and David Vandevoorde

Effective C++, Scott Meyers

More Effective C++, Scott Meyers

Effective STL, Scott Meyers

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma et al.

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, William
Brown et al.

Game Programming Gems series, various authors

Thinking in C++ Vol. 1, Bruce Eckel

Thinking in C++ Vol. 2, Bruce Eckel and Chuck Allison

Further Reading 95

This page intentionally left blank

Chapter 4

by Mike McShaffry

Building Your Game

Do you ever freeze up just before starting a new project? I do, and I’m not afraid to
admit it. I get hung up thinking about the perfect directory structure, where the art
and sound data should be stored, how the build process should work, and mostly
how I will keep my new game from becoming a horrible mess. By the end of a proj-
ect, it usually turns out to be a mess anyway! So I’m always thankful I plan out a
directory structure, employ good version control tools, and incorporate automation
scripts that all keep entropy just low enough for a human like me to be able to
keep track of what I’m doing.

In this chapter, I’m going to tell you everything you need to know to get your game
projects organized from the start and how to configure project files and use version
control tools effectively. This is an area where many game developers try to cut cor-
ners, so my advice is to invest a little time and ensure that your projects go together
smoothly and stay that way. Hopefully, they’ll stay organized right to the day you
ship.

As you read through this chapter, you might feel that you are getting an education in
software engineering. Try not to feel overwhelmed. These techniques are very critical
to the process of successfully developing games, and they are used by real game
developers on teams that are big, small, and even single developers.

97

A Little Motivation

Games are much more than source code. A typical game includes raw and optimized
art and sound data, map levels, event scripts, test tools, and more. Don’t forget the
project documentation—both the docs that ship with your project, such as the user
guide, and the internal documents, such as the technical design document (TDD),
general design document (GDD), and test plans.

There are two essential problems that all these files create. First, the sheer number
of game files for art, sound, music, and other assets need to have some rational
organization—there can be hundreds of thousands of these files. Games like Age of
Empires Online and Battlefield 3 easily have many hundreds of thousands of asset
files in production. Some online games like Star Wars: The Old Republic may have
breached one million asset files. With this many files, it can be really easy to lose
track of one, or a few hundred. The second problem is the difficulty of ensuring
that sensitive debug builds and other internal files are kept separate from the stuff
that will be shipped to consumers. The last thing you need is to release your debug
build, with all its symbols, to the public at large. The best setup lets you segregate
your release files from everything else so you can burn a single directory tree to a
DVD without worrying about culling a weird list of files. Over the last few years,
I’ve settled on a project organization that solves these two problems.

The process of building a project should be as automatic as possible. You should be
able to automatically build your game every night so that you can check your latest
work. A game that can’t build every day is in big trouble. If you want an easy way to
get a project cancelled, just make it impossible to fulfill a build request at a moment’s
notice.

The directory structure, project settings, and development scripts you use should
make building, publishing, and rebuilding any previously published build a snap. If
your source code repository supports branching, like SVN or Perforce do, you’ll be
ahead of the game because you can support multiple lines of development simulta-
neously. For those of you who haven’t used source code repositories, they are
server-based archives files that can be checked out to developers like a person might
check out a book from a library. When the developer is finished with that file, he
checks the file back into the server, and it makes the most recent version available
to everyone. Unlike a library, source code repositories are good at allowing the same
file to be modified by multiple developers and allowing all their changes to merge
together when they are done. Branches are “copies” of groups of these files, typically
meant for developers to sequester them as a group for a specific purpose, such as
walling them off from rapid changes or doing research without affecting other

98 Chapter 4 n Building Your Game

programmers. Branches can even be merged together, such as when mass changes in
one branch need to be brought to another—this might be done after installing a new
physics system or renderer. There’s a whole section about this later in this chapter
called “Source Code Repositories and Version Control.”

Everyone does things differently, but the project organization, build scripts, and build
process you’ll learn in this chapter are hard to beat. I figure that if they’re good
enough for Microsoft, and they got our projects out the door on time, I’ll keep
them.

Creating a Project

This might sound a little hokey, but every project I work on has its own code word. I
picked this up from Microsoft, and I love it. You should let your project team choose
the code word, but try to make sure that the name chosen is somewhat cryptic. It’s
actually really convenient if you end up at the bar with a bunch of software develo-
pers from other companies. You can talk all day about finishing a build for “Slick-
rock” or that “Rainman” needs another programmer. Cloak and dagger aside,
there’s a real utilitarian reason to use short code words for projects.

You can use this code word for your top-level project directory and the Visual Studio
solution file (SLN file) that builds your game and tools. It is an easy step from there
to create a standard build script that can find your key project files, build the game,
and even test it. If you work in a studio with multiple projects, a master build server
can easily build every project in development every night and take very little mainte-
nance to add or remove projects.

Beyond that, a code word for a project has one other use. If you end up making mul-
tiple versions of the same product, you can use different code words to refer to them
instead of version numbers. You are ready to start your project, so choose a code
word and create your top-level directory. May whatever gods you believe in have
mercy on your soul:

mkdir <codeword>

Build Configurations

Every project should have two build targets at a minimum: debug and release. The
release build will enable optimizations critical for a product the customer will actually
use. Many projects also have a profile build, which usually disables enough optimiza-
tions to allow for debugging but disables code inside #ifdef DEBUG constructs to
allow it to actually run in real time. It’s a good idea to have all three targets because

Creating a Project 99

they serve different purposes. Mostly, programmers will run and develop with a pro-
file build target, and they will use the debug target only when something really nasty
is in their bug list.

Don’t Go Too Long Between Builds

Try to keep all your build targets alive and working every day. If you ignore any
build configuration, especially the release build, it could take a very long time
to figure out why it’s not working properly. Build it nightly, if you can, and
make sure any problems get handled the very next day.

Create a Bullet-Proof Directory Structure

Over the years of developing complex projects, I’ve experimented with different direc-
tory structures trying to find the ideal structure. I’ve learned that it is important to have
a good working directory structure from the start. It will help you work your way
through all the stages of developing a project—from writing your first lines of source
code to testing and debugging your project. You also need to keep in mind that you’ll
likely need to share aspects of your project with others during the development pro-
cess, even if you are the only one writing all the source code. For example, you might
need to hire an independent testing team to work over your game. If you organize your
project well, you’ll be able to share files when necessary with a minimum of hassle.

Keeping all of this in mind, here is my recommended directory structure where you
should store each project you develop, including your game engine:

n Docs

n Assets

n Source

n Temp

n Lib

n Game

The Docs directory is a reference for the development team. It should have an orga-
nized hierarchy to store both design documents and technical specifications. I always
put a copy of the contract exhibits and milestone acceptance criteria in it for my
team, since these documents specify our obligations to the publisher or investor.
(You don’t want to ever forget who is paying the bills!) While I’m developing a proj-
ect, it’s not unusual to find detailed character scripts, initial user interface designs,
and other works in progress in the Docs directory.

100 Chapter 4 n Building Your Game

The Assets directory is going to store all your art, animation, and sound assets in
their raw, naked form. This directory is likely going to get huge, so make sure the
source control system is configured to filter it out for people who don’t care about
it. I say “raw” and “naked” not just because I enjoy putting it in print—these assets
are those not used by the game directly, but those that are used by artists, designers,
or sound engineers while they are working on them. Think of it as the same kind of
directory that programmers use for their code. When the assets get imported or
packed into game files that are used by the game directly, they’ll be inside the Game
directory where all the distributable stuff lives. One more thing—the Assets directory
will be a huge, complicated hierarchy that will most likely be created to appease the
whims of artists or sound engineers, so don’t expect to have much control over it.

The source code lives in the Source directory. It should be organized by the program-
mers in whatever manner they see fit. The project’s solution file or makefile should also
reside in the Source directory and be named according to the code word for the project.
The rest of the source code should be organized into other directories below Source.

When a project is being built, each build target will place temporary files into the
Temp directory.

Each build project, building configuration, and platform can be segregated into their
own directories underneath Temp. For example, the OBJ and other temporary files
for the Debug configuration of the GameCode4 project compiled with Visual Studio
2010 for Win32 can be stored in Temp\GameCode4_2010Win32Debug. Doing it this
way makes it very easy to create a directory structure that supports multiple compiled
targets, multiple compilers, multiple platforms, and multiple build configurations. If
you think you might not need this, think about building a project for both Android
and iOS—because being able to store the results of a build on a server might be very
convenient, and if you don’t give each build flavor a safe place to live, they might
overwrite each other.

Visual Studio Defaults Aren’t Always So Great

Visual Studio does a really bad thing by assuming that software engineers want
their build targets to clutter up the Source directory. I find this annoying, since I
don’t want a single byte of the Source directory to change when I build my
project. Why, you ask? First, I like to be able to copy the entire Source
directory for publishing or backup without worrying about large temporary
files. Second, I can compare two different Source directories from version to
version to see only the deltas in the source code, instead of wading through
hundreds of useless .OBJ, .SBR, and other files. Third, I know I can always
delete files in the Temp directory to force a new build of the entire project, a
particular platform, or a particular build configuration of all platforms. I also
know that I never have to back up or publish the Temp directory.

Creating a Project 101

The Game directory should hold the release build and every game data file your game
needs to run and anything that will get distributed to your players. You should be
able to send the contents of the Game directory to a separate testing group or to
someone in the press, and they’d have everything they would need to run and test
the game. You also want to ensure that they don’t get anything you want to keep to
yourself, such as confidential project documentation or your crown jewels—the
source code. Generally, you’ll place release executables and DLLs in Game and store
all your game data and config files in Game/Data. If you take the time to set up a
directory that stores the files that you may be providing to others from time to
time, you’ll likely avoid sending out your source code or internal project design docu-
ments. Documentation that will get sent to your players on disc or downloaded, like
help files, also should be stored here. Printed documentation should be stored sepa-
rately; I’d suggest in its own hierarchy inside the Assets directory.

The Test directory should hold special files only for the test team. It usually contains
test scripts, files that unlock cheats, and test utilities. Some games have a logging feature
that writes diagnostic, warning, and error messages to a text file—the Test directory is a
great place for them. Most importantly, it should contain the release notes for the latest
build. The release notes are a list of features that work, or don’t work, in the latest build.
They also contain quick instructions about anything the test team needs to know, such
as how to expose a certain feature or a part of your game that needs special attention.
As you are developing your project, I strongly encourage you to keep the release notes
up-to-date. If you hand your game over to a testing team, they won’t have to pull out
their hair trying to figure out how to get your project to work. You’ll discover that
Visual Studio has to be convinced to use this directory structure, and it takes a little
work to create projects under this standard. Visual Studio assumes that everything in
the project lives underneath the directory that stores the solution file. It may be a pain
to get Visual Studio to conform to this structure, but trust me, it is worth it.

C# Projects Are Tougher to Reorganize

While you can tweak the directory structure of C++ projects under Visual Studio,
C# projects are tougher. There is a way to reconfigure the solution files to make
my recommended directory structure work, but it isn’t exactly supported by
Microsoft. Perhaps Microsoft will in their great wisdom figure this out
someday, but don’t hold your breath. For more on this topic, visit the
companion website for this book.

The directory structure I propose is useful because it caters to all the different people
and groups that need access to your game development files. The development team
gets access to the whole thing. Executives and press looking for the odd demo can

102 Chapter 4 n Building Your Game

copy the Game directory whenever they want. The test group grabs Game and Test,
and they have everything they need.

If you store the build targets in the Source directory, like Visual Studio wants you to,
you’ll have to write complicated batch files to extract the build target, clean tempo-
rary files, and match game data with executables. Those batch files are a pain to
maintain and are a frequent source of bad builds. If you pound Visual Studio for a
little while to get a better directory structure started, you won’t have to worry about a
nasty batch file during the life of your product.

Where to Put Your Game Engine and Tools

In case it wasn’t clear, your game engine should get its own directory, with the same
directory structure in parallel with your game. On one project I worked on, our game
engine had a pretty uncreative code name: Engine. It was stored in an Engine direc-
tory with Source, Docs, Temp, and Lib instead of Game, since the output of the build
was a library. There was some debate about separating the #include files into an
Inc directory at the top level. That’s a winner of an idea because it allows the game
engine to be published with only the #include files and the library. The source code
would remain safely in our hands. The source code that is a companion to this book
is divided into GameCode4, which can be considered the engine, and Teapot Wars,
the game that uses this engine. GameCode4 compiles into a library, which is linked to
game-specific files to create the final executable, so the final result of a complete
rebuild is stored in Game. You could have the engine compile itself into a DLL, in
which case a post-build step would copy the DLL into the Game directory. To play
the game, you should be able to copy only the contents of the Game directory to a
player’s computer, and the game should run as expected.

Tools can be a little fuzzier and depend somewhat on whether the tool in question is
one that is a custom tool for the project or something that everyone on every project
uses. As you might expect, a tool for one project would go into the source tree for the
project, and one that everyone uses would go into the same directory hierarchy as
your shared game engine. If neither seems to fit, such as a one-off tool to convert
some wacky file format to another, and it would never need to change or undergo
any further development, perhaps you should install it into a special directory tree
for those oddballs. Basically, the rule of thumb is that any directory tree should be
under the same kind of development: rapid, slow, or completely static.

If your game needs any open source or third-party libraries to build, I suggest putting
them in a 3rdParty directory inside your Source directory. This makes it easy to keep
all the right versions of each library with your code base, and it is convenient for

Creating a Project 103

other programmers who need to grab your code and work with it. After all, it might
be tough to find an old version of something if your source code requires it.

One thing I’d suggest is to massage the output targets of third-party libraries and
SDKs, especially the PDB files that are used for debugging. Most third-party libraries
are pretty good at having directory structures that support a vast array of compiler
versions, operating systems, and platforms. They typically do this by naming their
LIB files using the library name, platform, and configuration. Some libraries, how-
ever, do not do that and keep exactly the same name no matter what platform or
build target is being used. This can cause all manner of confusion and make it diffi-
cult to debug a project where important PDB files from different libraries all have the
same name, causing one or more of them to be overwritten. In reorganizing the
source code for the fourth edition of this book, I had to wrestle with this very prob-
lem, and I wanted a solution that minimized any changes to the build scripts of the
third-party libraries.

Here’s the solution I settled on to clean up this mess. First, I made sure that I only
changed the third-party builds to create PDB files that were named exactly the same
as the LIB file in question. BulletCollision.LIB would have a companion
BulletCollision.PDB. The default PDB filename in most Visual Studio build targets is
vc100.PDB, which can’t be used if another library is doing that too! Next, I created a
small batch file inside the 3rdParty directory to run through all the build targets and
platform-specific versions to copy them into a special Lib directory. Inside the Lib
directory, I created platform and configuration specific spots where all the 3rdParty
targets could live in harmony, without stepping on one another (see Figure 4.1).

One important suggestion I can give you: Don’t bother putting all the different LIB
files into the solution settings; instead, use #pragma comment (lib, “foo.lib”)

in the source files that will be needing them and surround the #pragmas with #if
defined blocks that can include the right LIB file for your target and platform. This
is a Microsoftian thing, I know, but it is convenient because you don’t have to sweat
over setting each build target and platform’s library dependencies. Keeping the proj-
ect build settings from diverging drastically can save you a ton of headaches down
the road.

Setting Visual Studio Build Options

I mentioned that you have to coax Visual Studio to move its intermediate and output
files outside the directory that stores the solution file. To do this, open your solution,
right-click the solution in your solution explorer, and select Properties. Click the

104 Chapter 4 n Building Your Game

General group under Configuration Properties (see Figure 4.2), and you’ll be able to
select the Output and Intermediate directories.

The Intermediate directory is set to where you want all of your OBJ and other inter-
mediate build files to be saved. Visual Studio has defined the macro $(Configuration-
Name) to separate intermediate files in directories with the configuration name, such
as Debug or Release, but there’s an important improvement. I also like to add the
macro $(ProjectName)$(PlatformName)$(Configuration) to separate the compile
results of each project, platform, and configuration.

Include The Compiler Version In Your Project File Names

Since this book has been in constant publication since 2003, I also like to name the Visual Studio
projects to include the compiler version, such as GameCode4_2008 for Visual Studio 2008 or
GameCode4_2010 for Visual Studio 2010. That enables me to use the same directory structure to hold
simultaneous builds from multiple compilers, which can be extremely convenient if you are making
engine code.

Figure 4.1
How to manage third-party build targets.

Creating a Project 105

In these property settings, you can use the $(IntDir) macro to identify the entire path
defined in the Intermediate directory setting, which makes it useful for placing other
build-specific files, such as your build log.

The Output directory is where the linked result, such as your EXE file will go. You
should set that to your Game directory for the release configuration and the Test
directory for other configurations. There is one alternative suggestion I like as well,
which stores the final build result in a directory named for the build configuration
and platform. You do have to set the working directory for debugging, and you
might want to create a post-build step for your release build so that your Game direc-
tory always has what it needs to be instantly published, but that’s a minor inconve-
nience. The $(OutDir) macro can then be used to store any build output file you
want to live in your Output directories.

Figure 4.2
Visual Studio 2010 configuration properties.

106 Chapter 4 n Building Your Game

Since you store the final build result in separate directories for each platform and
build configuration, you can set the output filename in the linker settings to
$(OutDir)/$(TargetName)$(TargetExt) for all build configurations and all platforms.

Rename Your Build Targets So They Exist in the Same Directory

You can distinguish the debug, profile, and release files by adding a “d” or a “p” to the end of any final
build target. You could also use the $(ConfigurationName) macro if you wanted absolute clarity. If for
any reason the files need to coexist in the same directory, you don’t have to worry about copying them
or creating temporary names.

With the target directories set right, Visual Studio has some macros you can use in
your project settings.

n $(IntDir): The path to intermediate files

n $(OutDir): The path to the output directory

n $(TargetDir): The path to the primary output file

n $(TargetName): The name of the primary output file of the build without the
extension

n $(TargetPath): The fully qualified path and filename for the output file

n $(Configuration): Set to the name of your current configuration, such as Debug
or Release

Use these macros for the following settings for all build configurations:

n Debugging/Debugging Command: $(TargetPath) will call the right executable
for each build target

n Debugging/Working Directory: Should be set to your Game directory

n C/C++/Precompiled Headers/Precompiled Header File:

$(IntDir)$(TargetName).pch

n C/C++/Output Files: $(IntDir) for the ASM list location, object filename, and
program database filename

n Linker/Debug Settings/Generate Program Database File:

$(TargetDir)$(TargetName).pdb

n Linker/Debug Settings/Map File: $(TargetDir)$(TargetName).map

Creating a Project 107

Some Notes About Changing Default Directories in Visual Studio

There are plenty of third-party tools that work with Visual Studio. Most of them
make the same assumptions about project default directories that Visual Studio
does. They’ll still work with my suggested directory structure, but you’ll have to
tweak the search directories for source code and symbol files.

The macros also help to keep the differences between the build targets to a
minimum. For example, $(IntDir) can stand for ..\Temp\x64Debug or ..\Temp
\Win32Release because they are the same in all build targets, and they don’t
disappear when you choose All Configurations in the project settings dialog.

Multiplatform Projects

If you happen to be lucky enough, or unlucky enough, to work on a multiplatform
project, you’ll see that the previous strategy works great for multiplatform projects.
Multiplatform projects usually have files that are common to all platforms and
platform-specific files, too. The general idea is to keep all the common files together
and create parallel directories for the platform-dependent stuff.

You’ll need to install the platform-specific SDK before Visual Studio will recognize
the new project platform. Your platform SDK will usually have instructions for this
if it is compatible with Visual Studio, but most of the console manufacturers have
SDKs that are compatible, so even if you are working on the Nintendo Wii you can
still use Visual Studio to do your work.

Once the platform SDK is installed, you can add the platform to your solution by
opening the Configuration Manager from the Build menu. Then for each project,
drop down the platform choice and choose New. You should be able to select the
new platform (see Figure 4.3).

Figure 4.3
Adding a new platform configuration to your project.

108 Chapter 4 n Building Your Game

You can use the $(PlatformName) macro in your properties settings to keep platform-
specific intermediate and output files nice and neat.

As far as how you should change your directory structure, Figure 4.4 shows how to
set up a Win32/Xbox360/Wii multiplatform structure.

Take a look at Figure 4.4. The project root is C:\Projects\GameCode4\Dev. That
directory stores the familiar Game, Assets, Source, and Test directories I mentioned
earlier. There are two accommodations for platform-dependent files and directories.
First, there is a special platform-dependent directory for each platform. These
directories will hold executables and DLLs. The Game directory holds both the com-
mon files and platform-dependent files, named for what they contain.
GameCode4.zip stores cooked game assets common to all platforms, and there are
platform-specific files as well. Basically, you follow the same rules as before—make
it easy to find and filter your files based on what you want—in this case, by
platform.

Figure 4.4
Platform Directory V2.

Creating a Project 109

During development you’ll want the convenience of having all the platforms side-
by-side, which keeps you from making tons of copies of the common files for every
platform. You’ll need to make a small change to your deployment script, in order to
strip unwanted platform files from platform-specific builds, such as those that would
get burned to an installation disk. After all, there’s no reason to have a Win32 ver-
sion of your game on the Wii, is there?

Source Code Repositories and Version Control

In comparing game development with other kinds of software development projects,
what really stands out is the sheer number of parts required. Even for a small game,
you may have many tens of thousands of source files for code, sound, art, world lay-
out, scripts, and more. You may also have to cook files for your game engine or plat-
form. Most sound effects come from a source WAV and are usually converted to
OGG or MP3. Textures may have a source PSD if they were created in Photoshop
and have a companion JPG or PNG after it’s been flattened and compressed. Models
have a MAX file (if you use 3ds Max) and have multiple source textures. You might
also have HTML files for online help or strategy guides. The list goes on and on.
Even small games have hundreds, if not thousands, of individual files that all have
to be created, checked, fixed, rechecked, tracked, and installed into the game. Big
games will frequently have hundreds of thousands of files, or even millions

Back in the old days, the source files for a big project were typically spread all over
the place. Some files were stored on a network (if you knew where to look), but most
were scattered in various places on desktop computers, never to be seen again after
the project finished. Unfortunately, these files were frequently lost or destroyed while
the project was in production. The artist or programmer would have to grudgingly
re-create his work, a hateful task at best.

The Flame

When I first arrived at Origin Systems, I noticed some odd labels taped to
people’s monitors. One said, “The Flame of the Map” and another “The
Flame of Conversation.” I thought these phrases were Origin’s version of
Employee of the Month, but I was wrong. This was source control in the
days of “sneaker net,” when Origin didn’t even have a local area network.
If someone wanted to work on something, he physically walked to the
machine that was the “Flame of Such and Such” and copied the relevant
files onto a floppy disk, stole the flame label, and went back to his
machine. Then he became the “Flame.” When a build was assembled for
QA, everyone carried his floppy disks to the build computer and copied all
the flames to one place. Believe it or not, this system worked fairly well.

110 Chapter 4 n Building Your Game

Many years later, I was working on a small project, and one afternoon a panicked teammate informed
me that our development server went down and no one could work. We were only two days away from
a milestone, and the team thought we were doomed. “Nonsense!” I said, as I created a full list of our
development files and posted them outside my office. I reintroduced our team to SneakerNet—and they
used a pencil to “check out” a file from the list and a diskette to move the latest copy of the file from
my desktop to theirs where they could work on it.

We made our milestone, and no files were lost or destroyed. Sometimes an old way of doing something
isn’t so bad after all.

Source control management is a common process used by game development teams
everywhere. Game development is simply too hard and too risky to manage without
it. Nonprogrammers find source control systems unwieldy and will complain for a
while, but they will get used to it pretty quickly. Even 3ds Max has plug-ins for
source control systems so everyone on the team can use it.

Outside of source control, many companies choose to track these bits and pieces with
the help of a database, showing what state the asset is in and whether it is ready to be
installed in the game. Source control repositories can help you manage who is work-
ing on something, but they aren’t that good at tracking whether something is “good
enough” to be in the game. For that, you don’t need anything more than an Excel
spreadsheet to keep a list of each file, who touched it last, what’s in the file, and
why it is important to your game. You could also write a little PHP/MySQL portal
site and put a complete content management intranet up on your local network to
track files.

To help you put your own version control process in place, I’ll introduce you to some
of the more popular version control tools that professional game developers use in
their practices, I’ll also tell you which ones to avoid. Of course, keep in mind that
there is no perfect, one-size-fits-all tool or solution. The important thing is that you
put some type of process together and that you do it at the beginning of any project.

A Little History—Visual SourceSafe from Microsoft

Visual SourceSafe is the source repository that was distributed with Microsoft’s
Visual Studio until the 2010 release, and it is an excellent example of “You get what
you pay for.” What attracted most people to this product was an easy-to-use GUI
interface and an extremely simple setup. You can be up and running on SourceSafe
in 10 minutes if you don’t type slowly.

The biggest problem with SourceSafe is how it stores the source repository. If you
dig a bit into the shared files where the repository is stored, you’ll find a data
directory with a huge tree of files with odd names like AAAAAAAB.AAA and

Source Code Repositories and Version Control 111

AAACCCAA.AAB. The contents of these files are clear text, or nearly, so this wacky
naming scheme couldn’t have been for security reasons. If anyone out there knows
why they did it this way, drop me an email. I’m completely stumped.

Each file stores information of how the file changed from revision to revision. Specif-
ically, the information was in “reverse delta” form, so that if you had the most recent
file, you could apply the next most recent reverse delta to re-create the previous revi-
sion. Every revision of a file will create a new SourceSafe file with one of those wacky
names. For those of you paying attention, you’ll remember that many of these files
will be pretty small, given that some source changes could be as simple as a single
character change. The amount of network drive space taken up by SourceSafe is
pretty unacceptable in my humble opinion.

There’s also a serious problem with speed. Even small projects get to be a few hundred
files in size, and large projects can be tens or even hundreds of thousands of files.
Because SourceSafe stores its data files in the repository directory structure, access
time for opening and closing all these files is quite long, and programmers can wait
forever while simply checking to see if they have the most recent files. Source-Safe
doesn’t support branching (see my discussion on branching a little later) unless you
make a complete copy of the entire tree you are branching. Ludicrous!

Forget attempting to access SourceSafe remotely. Searching thousands of files over a
pokey Internet connection is murder. Don’t even try it over a high-bandwidth line.
Finally, SourceSafe’s file index database can break down, and even the little analyzer
utility will throw up its hands and tell you to start over. I’ve finished projects under a
corrupted database before, but it just happened that the corruption was affecting a
previous version of a file that I didn’t need. I was lucky.

SourceSafe also has a habit of corrupting itself, making your entire repository a use-
less pile of unfathomable files. This is especially true when you store large binary
assets like sounds, textures, and video.

If I haven’t convinced you to try something other than SourceSafe, let me just say it:
Don’t use it. I’ve heard rumors that Microsoft doesn’t use it, so why should you?

Subversion and TortoiseSVN

Subversion is a free source repository available at http://subversion.tigris.org. It uses a
command-line interface, which can give some nonprogrammers heartburn when
using it. Luckily, you can also download TortoiseSVN, a GUI that integrates with
Windows Explorer. It is available at http://tortoisesvn.tigris.org. Both are free, easy
to set up and administer, and a great choice for a development team on a budget.

112 Chapter 4 n Building Your Game

http://subversion.tigris.org
http://tortoisesvn.tigris.org

The system stores the file state on the local machine, which makes it trivial to work
on files even if you have no network access. You just work on them and tell the Sub-
version server when you are ready to commit them to the server. If anyone else made
modifications with you in parallel, the system will let you merge the changes so that
everyone’s changes will be present in the file, preserving everyone’s work. This is typ-
ically done automatically when the changes are far apart in the file, but a special edi-
tor can be used to see all the changes in parallel so that conflicting changes can be
integrated by hand.

Complaints about the system generally fall into the speed and scalability category. If
you are working on a large game with a huge directory structure and tens of thou-
sands of assets, you would be wise to consider something else, such as Perforce.

I developed this edition of the book, and all the source code in it, under Subversion.
So if you are reading this now and can play with the source code, I guess Subversion
worked just fine. Google Code also uses Subversion—and they store plenty.

Perforce by Perforce Software

My favorite commercial product in this category is Perforce. I’ve used this product
for years, and it’s never let me down. For any of you lucky enough to move from
SourceSafe to Perforce, the first thing you’ll notice is its speed. It’s damn fast.

Perforce uses a client/server architecture and a Btrieve-based database for storing the
repository. Btrieve is an extremely efficient data storage and retrieval engine that
powers Pervasive’s SQL software. That architecture simply blows the pants off any-
thing that uses the network directory hierarchy. More than storing the current status
of each version of each file, it even stores the status of each file for everyone who has
a client connection. That’s why most SourceSafe slaves freak out when they use Per-
force the first time; it’s so fast they don’t believe it’s actually doing anything. Of
course, this makes remote access as fast as it can possibly be.

Don’t Forget to Ask Perforce’s Permission

Since Perforce “knows” the status of any file on your system, you have to be
careful if you change a file while you are away from your network connection
and you can’t connect to the Perforce server to “check out” a file. Since
Perforce knows nothing of the change, it will simply complain later that a
local file is marked read/write, so while it won’t blow away your changes, it
also doesn’t go out of its way to remind you that you’ve done anything.
SourceSafe actually does local data/time comparisons, so it will tell you that
the local file is different than the network copy. Subversion stores your local
file status locally, so it is much faster than SourceSafe.

Source Code Repositories and Version Control 113

Perforce has a nice GUI for anyone who doesn’t want to use the command line. The
GUI will perform about 99 percent of the tasks you ever need to perform, so you can
leave the command line to someone who knows what they’re doing. Even better, Per-
force integrates with Windows Explorer, and you can edit and submit files just by
right-clicking them. Artists love that kind of thing.

The branching mechanisms are extremely efficient. When you create a branch from
your main line of development to a test line, Perforce only keeps the deltas from the
original branch to the new branch. Network space is saved, and merging branches is
also very fast. Subversion and others make a completely new copy of the branch, tak-
ing up enormous network storage space.

You’ll find almost as many third-party tools that work with Perforce as with some of
the free repositories. Free downloads are available, including tools that perform
graphical merges, C++ APIs, conversion tools from other products like SourceSafe,
Subversion, and tons of others.

Perforce + Visual SourceSafe = Chaos

When I worked for Ion Storm, the programmers used Perforce, but everyone
else used Visual SourceSafe. What a fiasco! The content tree that stored art,
game levels, and sounds would always be a little “off” from the source code
in Perforce. If you even had to check in a change that required a parallel
change to content, you had to practically halt the entire team and tell
everyone to do this massive refresh from the network. This was simply
horrible and wasted an amazing amount of time. Don’t screw around—make
sure that you get source code control licenses for everyone on your
development team: Programmers, artists, and everyone else who touches
your game should all use the same source control software

AlienBrain from Avid

For those of you with really serious asset tracking problems and equally serious bud-
gets, there’s a pretty good solution out there that will track your source code and
other assets: AlienBrain from Avid. They have a huge client list that looks like a
who’s who of the computer game industry. Their software integrates with nearly
every tool out there: CodeWarrior, Visual Studio, 3ds Max, Maya, Photoshop, and
many others.

AlienBrain is somewhat more expensive than Perforce, but it has some features Per-
force doesn’t have. AlienBrain is used by game developers, filmmakers, and big iron
simulation developers who have to track much more than source code. They’ve also
made some serious strides in the last few versions to improve performance and bring

114 Chapter 4 n Building Your Game

better branching to their software that better matches other software. They also have
some excellent production pipeline helpers in their software, so files can be reviewed
and approved after they are checked in.

Programmers and “build gurus” will like the fact that AlienBrain has sophisticated
branching and pinning mechanisms just like the more advanced source code reposi-
tories on the market. (I’ll discuss the importance of branching in the next section.)
Artists and other contributors will actually use this product, unlike others that are
mainly designed to integrate well with Visual Studio and not creative applications
such as Photoshop and 3D Studio Max. One of the big drawbacks of other products
is their rather naive treatment of nontext files. AlienBrain was written with these files
in mind. They have some great features to track peer review in art files, for example.

Using Source Control Branches

I freely admit that up until 2001 I didn’t use branching. I also admit that I didn’t
really know what it was for, but it also wasn’t my fault. I blame Microsoft. Their
Visual SourceSafe tool is distributed with Visual Studio, and some engineers use it
without question, as I did for many years. Microsoft software, like Office, has hun-
dreds of thousands of source files and many hundreds of engineers. It turns out that
SourceSafe was never designed to handle repositories of that size and certainly wasn’t
designed to account for the tricky problem of trying to get each one of those engi-
neers and the files they changed every day to be ready at a moment’s notice to build
the entire, massive project without any errors caused by incompatibilities. Those
readers who have worked on even a modest-size project will know that, on any
given morning, when you grab the latest code from everyone’s work the previous
day, more often than not it doesn’t even compile, much less link and run. This prob-
lem is compounded when the test department needs a build to test and needs it right
away. Luckily, there’s a solution.

Branching is a process where an entire source code repository is copied so that paral-
lel development can proceed unhindered on both copies simultaneously. Sometimes
the copies are merged back into one tree. It is equally possible that after being
branched, the branched versions diverge entirely and are never merged. Why is
branching so important? Branches of any code imply a fundamental change in the
development of that code. You might branch source code to create a new game.
You might also branch source code to perform some heavy research where your
changes won’t affect anyone else’s. Sometimes a fundamental change, such as swap-
ping out one rendering engine for another or coding a new object culling mechanism,
is too dangerous to attempt where everyone else is working. If you make a new
branch, you’ll wall off your precious main code line, usually called the “trunk.”

Source Code Repositories and Version Control 115

You’ll have a nice sandbox to play in and get the benefits of source control for every
source file.

SourceSafe’s branching mechanism, and I use that term loosely, makes a complete
copy of the entire source tree. That’s slow and fat. Most decent repositories keep
track of only the deltas from branch to branch. This approach is much faster, and it
doesn’t penalize you for branching the code.

Here are the branches I use and why:

n Trunk: Normal development branch

n Sandbox: A “playground” branch where anything goes, including trashing it
entirely—the branch typically includes the name of the person or team that
owns it—so you might see Sandbox-MrMike or Sandbox-NewPhysicsEngine

n Gold: The branch submitted for milestone approvals or release

The Sandbox and Gold branches originate from the Trunk branch. Changes in these
branches may or may not be merged with the Trunk branch, depending on what
happens to the code. The Trunk branch supports the main development effort;
almost all of your development effort will happen in the Trunk branch.

The Sandbox branch supports experimental efforts. It’s a great place to make some
core API changes, swap in new middleware, or make any other crazy change without
damaging the Trunk or slowing development there. The Gold branch is the stable
branch that has your last, or next, milestone submission. Programmers can code
fast and furious in the Trunk, while minor tweaks and bug fixes needed for milestone
approval are tucked into the Gold branch.

Perhaps the best evidence for branching code can be found in how a team works
under research and release scenarios. Consider a programming team about to reach
a major milestone. The milestone is attached to a big chunk of cash, which is only
paid out if the milestone is approved. Say this team is old-fashioned and doesn’t
know anything about branching.

Just before the build, the lead programmer runs around and makes everyone on the
team promise not to check on any code while the build is compiling. Everyone pro-
mises to keep their work to themselves, and everyone continues to work on their own
machines.

Most likely the build doesn’t even compile the first time. One of the programmers
might have forgotten to check in some new files or simply gotten sloppy and checked
in work that didn’t compile. By the time the lead programmer figures out who can fix
the build, the programmer at fault may have already started work on other things,

116 Chapter 4 n Building Your Game

which now may have to be reverted to get the build working again. This is a big
waste of time. While all of this is going on, another programmer is frustrated because
he can’t begin making major changes to the AI code since it might need a tweak to
make the build work, too. Getting the build to become stable with everyone working
in one branch basically shuts everyone down until the build is complete, which can
take more than a day in some cases.

But the problems don’t stop there. Let’s assume the completed build is going to be
tested by a remote test team, and the build takes hours to upload to their FTP site.
By the time the build is uploaded and then grabbed by the test team, it could be two
days. If the test team finds a problem that halts testing, the whole process starts
again, with the whole development team hobbled until testing gives the green light.
This whole process could take two to three days or more.

If you don’t think this is that bad, you are probably working without branches and
have trained yourself to enjoy this little hellish scenario. You’ve probably developed
coping mechanisms that you call “process” instead of what they are, which is crazy. I
used to do the same thing because I thought branches were too much trouble and too
confusing. Until I tried them myself.

Let’s look at the same scenario from the perspective of a team that uses branches.

The lead programmer walks around and makes sure the team has all the milestone
changes checked in. She goes to the build machine and launches a milestone build.
The first thing that happens is the Gold branch gets refreshed with the very latest of
everything in the Trunk branch. The build finishes with the same failure as before—
compile errors due to missing files. The programmer responsible simply checks the
missing files into both the Trunk branch and the Gold branch, and everything con-
tinues without delay. The AI programmer mentioned previously continues working
without worry, since all of his changes will happen in the Trunk branch, safely
away from the Gold branch.

The finished build is checked and sent to the testing group via the same FTP site, and
it still takes almost eight hours. When the build gets just as hosed as before, the lead
programmer makes a small tweak directly in the Gold branch to get it working, and
she uploads a small patch. The test team gets to work and reports a few issues, which
are then fixed directly in the Gold branch and merged back into the Trunk branch.
When the milestone is approved, the Gold branch has the latest and greatest version
of the game, and the development team never lost a second during the entire process.
They even have the bug fixes that were made in the Gold branch.

Every minute of lost development time means your game is a little less fun or a little
less polished than it could be. Given the above—which team do you think is going to

Source Code Repositories and Version Control 117

make the best game? My money and Metacritic are going with the team that used
branches.

Silver, Gold, and Live

A friend of mine who worked at Microsoft was in the build lab for Microsoft
Office. At the time, they used three branches: a Trunk, a Silver, and a Gold.
The teams would publish from Trunk to Silver when a milestone was about to
be delivered, but because of the vast number and speed of changes that
happened even in the Silver branch, they also published Silver to Gold when
a real “version” was ready to go into final testing.

This same strategy is also used by my friends working on online games—they
usually have three branches, too: Trunk, Gold, and Live. Sometimes you have
to make a change directly in the Live branch to fix a critical issue right on the
live servers and then propagate that change back to the Gold and Trunk
branches.

Sandbox Development

In the Sims division at EA, we all work out of sandboxes. This means that all engineers have their own
branches that they do major development in. When you complete a feature, you begin the process of
integrating up to the main development line. First, you publish a code review
that shows the diff of every file you modified and allows other engineers on
the team to comment on your work and identify potential issues. Once
you’ve been approved to check in, you grab “the lychee,” which is
essentially a mutex that keeps anyone else from being able to check in. You
can only have one person checking in at a time. Then you run the various
unit tests followed by a smoke test, which is a series of in-game tests to
ensure that you didn’t break some core functionality inadvertently. (I’d be a
rich man if I had a dollar for every time someone accidentally broke Sim
autonomy.) Finally, you can actually submit your changes into the
development line and release the lychee. This might seem like an overly
complex system, but breaking the build on a Sims game means you’ve just
stopped the productivity of 180+ people. Working sandboxes also allow multiple programmers to
collaborate in their own little world and have QA run vigorous testing without worrying about affecting
the rest of the team.

Building the Game: A Black Art?

You can’t build a testable version of your game by simply grabbing the latest source
code and launching the compiler. Most games have multiple gigabytes of data, install
programs, multiple languages, game editors, special tools, and all manner of compo-
nents that have nothing at all to do with the executable. All of these components
come together in one way or another during the build. Every shred of code and

118 Chapter 4 n Building Your Game

data must make it onto the install image on one or more discs or on the network for
the test team. Frequently, these components don’t come together without a fight. On
some teams, building the game is something of a black art, assigned to the most
senior code shamans. There is a much better and safer way, which you’ll learn
shortly.

Ultima VIII had a build process that was truly insane. It went something like this:

1. Grab the latest source code: editor, game, and game scripts.

2. Build the game editor.

3. Run the game editor and execute a special command that nukes the local game
data files and grab the latest ones from the shared network drive.

4. Build the game.

5. Run the UNK compiler (Ultima’s game scripting language) to compile and link
the game scripts for English. Don’t ask me what UNK stands for, I really can’t
remember….

6. Run the UNK compiler twice more and compile the French and German game
scripts.

7. Run the game and test it. Watch it break and loop back to Step 1 until the game
finally works.

8. Copy the game and all the game data into a Temp directory.

9. Compress the game data files.

10. Build the install program.

11. Copy the English, French, and German install images to 24 floppy disks.

12. Copy the CD-ROM image to the network. (The only CD burner was on the first
floor, and I worked on the third floor.)

13. Go to the first floor media lab and make three copies of each install: 72 floppy
disks and three CDs. And hope like hell there are enough floppy disks.

Before you ask, I’ll just tell you that the fact that the build process for Ultima VIII
had 13 steps never sat very well with me. Each step generally failed at least twice
for some dumb reason, which made building Ultima VIII no less than a four-hour
process—on a good day.

The build was actually fairly automated with batch files. The game editor even
accepted command-line parameters to perform the task of grabbing the latest map
and other game data. Even so, building Ultima VIII was so difficult and fraught

Building the Game: A Black Art? 119

with error that I was the only person who ever successfully built a testable version of
the game. That wasn’t an accomplishment, it was a failure.

On one of my trips to Microsoft, I learned something about how they build Office.
The build process is completely automatic. The build lab for Office has a fleet of ser-
vers that build every version of Office in every language, and they never stop. The
moment a build is complete, they start again, constantly looking for compile errors
introduced by someone in the last few minutes. If they find an error, the programmer
is contacted via email by the build machine. Once the build is complete, automated
testing begins, and if any of the automated tests fail, the build system emails the pro-
grammer responsible for the errant check-in. Office is a huge piece of software. If
Microsoft can automate a build as big and complex as this, surely you can automate
yours.

Automate Your Builds

My experience has taught me that every project can and should have an automatic
build. No exceptions. It’s far easier (and safer) to maintain build scripts that auto-
mate the process instead of relying on a build master, whose knowledge is so arcane
he might better be called a witch doctor. My suggestion is that you should try to cre-
ate Microsoft’s build lab in miniature on your own project. Here is what’s needed:

n A build machine, or even multiple machines, if your project is big enough

n Good tools for automatic building, both from third-party sources or made on
your own

n Time invested creating and maintaining automation scripts

The Build Machine

Don’t try to save a buck and use a programmer’s development box as your build
machine. Programmers are always downloading funky software, making operating
system patches, and installing third-party development tools that suit their needs
and style. A build machine should be a pristine environment that has known versions
and updates for each piece of software: the operating system, compiler, internal tools,
SDKs, install program, and anything else used to build the game.

After You Go Gold, Back Up Your Build Machine

A complete backup of the build machine is good insurance. The physical machine itself, preserved for
eternity, is even better. If you need to build an old project, the backup of the build machine will have
the right versions of the compiler, operating system, and other tools. New versions and patches come
out often, and even a project just 12 months old can be impossible to build, even if the source code is

120 Chapter 4 n Building Your Game

readily available in the source code repository. Just try to build something 10 or 12 years old, and you’ll
see what I mean. If anyone out there has a good copy of Turbo Pascal and IBM DOS 3.3, let me know!

The build machine should be extremely fast, have loads of RAM, and have a high
performance hard disk, preferably multiple hard disks with high RPM and configured
with at least RAID 0 for ultimate speed. Compiling is RAM- and hard-disk–intensive,
so try to get the penny-pinchers to buy a nice system. If you ever used the argument
about how much money your company could save by buying fast computers for the
programmers, imagine how easy it would be to buy a nice build machine. The entire
test team might have to wait on a build. How much is that worth?

Automated Build Scripts

Automated builds have been around as long as there have been makefiles and
command-line compilers. I admit that I’ve never been good at the cryptic syntax of
makefiles, which is one reason I put off automating builds. If you use Visual Studio,
you might consider using the prebuild or postbuild settings to run some custom
batch files or makefiles. I wouldn’t, and here’s why: You’ll force your programmers
to run the build scripts every time they build. That’s probably wasteful at best,
completely incorrect at worst.

Prebuild and postbuild steps should run batch files, makefiles, or other utilities that
are required every time the project is built. Build scripts tend to be a little different
and skew toward getting the build ready for the test department or burning to disc.
As an example, the build script will always grab the latest code from the source
repository and rebuild the entire project from scratch. If you forced your program-
mers to do that for every compile, they’d lynch you.

Batch files and makefiles are perfectly fine solutions for any build script you need.
You can also write great batch files or shell scripts, since Visual Studio builds can
be run from the command line. There are some better tools for those who like
GUIs, such as Visual Build Pro from Kinook Software (see Figure 4.5).

This tool is better than batch files or makefiles. The clean GUI helps you understand
and maintain a complicated build process with multiple tools and failure steps. The
build script is hierarchical, each group possibly taking different steps if a component
of the build fails. Visual Build also integrates cleanly with a wide variety of develop-
ment tools and source code repositories.

Every internal tool you create should have a command-line interface. Whether the
tool creates radiosity maps for your levels, calculates visibility sets, analyzes map

Building the Game: A Black Art? 121

data, or runs a proprietary compression technology, it must be able to take input
from the command line, or you won’t be able to automate your build process.

Another clever piece of software I’ve used at multiple companies is called Incredi-
build by Xoreax Software. It takes the long process of a build and distributes it to
idle machines across your network. It can take some time to set up, but you can
often get up to a 20-fold decrease in your build times!

Creating Build Scripts

You’ll want to create a few build scripts for your project. Most builds will simply grab
the latest code, build it, and copy the results somewhere on the network. The mile-
stone build is a little more complicated and involves branching and merging the
source code repository.

Figure 4.5
Visual Build from Kinook software.

122 Chapter 4 n Building Your Game

Normal Build

The normal build script builds a clean version of the game and copies the results
somewhere useful. It is run as a part of the milestone build process, but it can also
run automatically at regular intervals. I suggest you run a normal build at least once
per day, preferably in the wee hours of the morning, to check the code on the net-
work for any errors. The normal build script is also useful for building ad-hoc ver-
sions of the game for the test team.

The normal build script performs the following steps:

n Clean the build machine. If you use the directory structure I suggested at the
beginning of this chapter, you can just delete the Temp directory.

n Get the latest source code and game media. I used to recommend cleaning
everything and starting from nothing, but on most games this simply takes too
long. Just grab the recent files.

n Grab the latest version number and label the build. You can decide when to
change the version number—each build or even each night. You can use the
version number to specify the ultimate destination on your build server, so every
build you’ve ever made can be available. Visual Build Pro has a utility to grab or
even change the version number of Visual Studio resource files, but it’s pretty
easy to write one yourself. At Red Fly, the build number was increased every day
and even included the changelist number of the last check-in. Bugs that are
found in a particular build can be entered into the bug database, and even if a
programmer sees it days later, he can know fairly reliably if the bug is a new one
or the fix just didn’t make it into the latest build.

n Compile and link every build target: debug, profile, and release. The project
settings will make sure that everything goes into the right place.

n Run automatic test scripts. If you have automated testing, have the build
machine run the test scripts to see if the build is a good one. This is more reli-
able than a bleary-eyed programmer attempting to test the game at 4 a.m.

n Process and copy the build results. The destination directory should use the
code name of the project and the version number to distinguish it from other
projects or other versions of the same project. For example, version 2.0.8.25 of
the Rainman project might go into E:\Builds\Rainman\2.0.8.25. The nightly
build of the same project might go into E:\Builds\Rainman\Nightly. If you have
multiple platforms to worry about, stick them in directories that are easy to find
—\E:\Builds\Rainman\Nightly\3DS.

Creating Build Scripts 123

Scripts Can’t Update Themselves While They Are Running

If you’re paying attention, you’ll realize that the build scripts themselves should
be checked to make sure they haven’t changed. If the build script is running,
how can it clean itself off the build machine and get itself from the source code
repository? It can’t, at least not easily. If you standardize your projects with a
single directory structure, it’s better to create a master build script that works
for any project. Project-specific build commands are put into a special build
script that lives in the same directory as the project files. The master build
script should only change when the build process for every project is changed
—something that should be extremely rare.

A nightly build process is actually trivial to set up if you have your automated build
working—just set up a scheduled task on the build machine. For Windows, you can
create a scheduled task by going into the Control Panel, run Administrative Tools,
and run the Task Scheduler. The wizard will take you through the steps of defining
when and how often to run it. If you happen to be a Linux person, look up the cron
command. Usually, it’s a good idea to copy the results of the build to your network
where everyone can grab it.

Milestone Build

Milestone builds add more steps to the beginning and end of the build since they
involve branching the code. They also involve an approval process that takes days
or weeks instead of minutes, so the build process has an “open,” a “create,” and a
“close” script to manage the branches and make sure that any changes that happen
during approval get back into the Trunk branch.

No Build Automation = Madness

At Origin Systems, we didn’t do anything special for milestone builds on the
Ultima projects. Some unlucky programmer, usually me, launched the build on
his desktop machine, and after plenty of cursing and a few hours, the new
version was ready to test. The other programmers kept adding features and
bugs as fast as the test team could sign off old features. New code and
features would break existing code—stuff the test team approved. The bugs
would pile up, and it was difficult to figure out if the project was making any
progress. To minimize the pain of this process, it was usually done in the
middle of the night when most of the developers had gone home.

The projects I’ve been on since then were entirely different, mostly due to
ditching SourceSafe and using branches. Our source code repository, Perforce, had excellent branching
and merging capabilities. The programming team resisted at first, but they quickly saw that milestone
builds were linked directly to their paychecks. A few milestones later, everyone wondered how we ever
developed projects without branching.

124 Chapter 4 n Building Your Game

Every project should have a Trunk branch and a Gold branch. Every source code
repository does this a little differently. When a milestone build is launched, the first
thing that happens is the Gold branch gets a fresh copy of the Main branch. The
branches are synchronized without merging, which means that the entire Main
branch is simply copied to the Gold branch, making them identical. Make sure that
the Gold branch doesn’t have any unintegrated changes you want to keep! That usu-
ally requires a little human supervision—that is one bit that you probably shouldn’t
automate. The build machine runs the build scripts from the Gold branch to make
the milestone build. This implies that the Trunk and Gold branches can exist on the
same machine at the same time. This is true.

Most source code repositories allow a greater degree of freedom for each client to
configure how it views the contents of the repository. It’s pretty easy to configure
the client to put all the Trunk branches of the Rainman project into a D:\Projects\
Rainman\Trunk directory and all the Gold branches into D:\Projects\Rainman
\Gold. The build scripts can even use a branch macro to figure out which branch
needs building.

After the milestone build is assembled, it should be packaged and sent to testing. In
our case, this meant ZIPing up the entire build and putting it on our FTP site so
Microsoft’s test department could grab it.

Old Advice Turned Out to Be Dumb Advice

In the first and second editions of this book, I advised readers to use
monolithic ZIP or RAR files to package their entire build and FTP that one
file. This turns out to be a horrible idea. I was working on a project that
had to upload a multigigabyte file, and when the FTP failed seven hours
into the upload, we had to start all over. Contrary to intelligence, some top
20 publishers use old-fashioned FTP systems with no ability to restart bad
transfers. Instead of monolithic files, use volumed RAR/PAR files. Most RAR
tools can split a monolithic RAR file into smaller volumes, each of which may
only be a few hundred megabytes. The PAR files can be used to actually
rebuild a corrupted file on the receiving end, saving both parties a ton of
time.

Teams almost never submit milestone builds that are approved with no changes.
Most of the time, testing will require some changes, both major and minor. Any of
these changes should happen in your Gold branch. You can then rebuild the Gold
branch and resubmit it to your testing group. This process continues until the test
team is satisfied. The Gold branch is then merged to the Trunk branch. This is usu-
ally an automatic process, but sometimes merge conflicts force a human to stare at
the changes and merge them.

Creating Build Scripts 125

The two additional scripts you’ll need to build and manage your changes in a multi-
branch environment are Open and Close. Here’s an outline of what you’ll want in the
Open script:

n Get the latest files in the Trunk branch.

n Unlock the Gold branch and revert any modified files.

n Force-integrate from Trunk to Gold.

n Submit the Gold branch.

You may notice a command to unlock the Gold branch. More on that in a moment.
Take a look at the Close script:

n Get the latest files in the Gold branch.

n Integrate from Gold to Trunk.

n Resolve all changes.

n Submit the Trunk branch and the Gold branch.

n Lock the Gold branch from all changes.

The integration commands are expected, but if you look at the last two lines of the Close
phase, you’ll see that the Gold branch is locked so that no one can change it. The Open
phase unlocks the files and reverts any changes. Why bother? This makes absolutely
sure that the Gold branch is only open for changes during milestone approval. If no
milestone build is in test, there should be no reason to change the Gold branch.

This has an added side effect: Anyone who wants the latest approved milestone build
can simply grab the code in the Gold branch and build the game. This is especially
useful if the odd executive or representative of the press wants to see a demo. Even if
the last build is missing from the network, you can always re-create it by building the
Gold branch.

Builds Were Tough on Thief: Deadly Shadows

On Thief: Deadly Shadows, there was an unfortunate problem in the build
process that no automation could possibly fix. Since the project was really
large, and there was no automated testing, the test team would only get
new builds every couple of days. It would take them that long just to be
sure they could send the latest version to the entire test team. The problem
was that the new build was launched at fairly random times, and the
development team was never given much if any notice.

Now, I know what you’re thinking. If every submission to the source repository
were individually checked, then a new build should be able to launch at any

126 Chapter 4 n Building Your Game

time without error. Wrong! The builds took days to perform because there was little, if any, integration
testing on the part of programmers—mostly because doing so really took a very long time, and not every
programmer had an Xbox development kit to test with. They simply tested their own stuff in quick,
isolated tests on whichever platform they had handy. This rarely caught the odd problems due to
integration flaws, and these problems accumulated between builds. The solution? Give the developers a
little notice—at least a few hours—and get them to run some more serious integration tests of their own
before the build. That, and for goodness sake, create some automated testing and run it nightly.

Multiple Projects and Shared Code

It’s difficult to share code between multiple projects if the shared code is still under
rapid development. Two different teams will eventually be in different stages of
development because it is unlikely they both will have the same project schedule.
Eventually, one team will need to make a change to the shared code that no one else
wants.

There are a couple of different cases you should consider:

n One team needs to put a “hack” in the shared code to make a milestone quickly,
and the other team wants to code the “real” solution.

n One team is close to shipping and has started a total code lockdown. No one can
change anything. The other team needs to make modifications to the shared
code to continue development.

How do you deal with this sticky problem? Branching, of course.

In the case of the scenario where two project teams need to share a common game
engine, the game engine has three branches:

n Trunk: The normal development branch

n Gold_Project_A: The Gold branch for the first project

n Gold_Project_B: The Gold branch for the second project

While both projects are in normal development, they both make changes to the
shared engine code in the Trunk branch. If either project goes into a milestone
approval phase, they fix milestone blockers in the Gold branch for their project.
Since they each get their own Gold branch, both projects can be in approval simulta-
neously without worrying about each other. If they happen to be broken in exactly
the same way, you can always make the change in the Trunk branch and integrate
that single change forward to both Gold branches—it’s totally up to you. After their
milestone has been approved, the changes get merged back into the Trunk. When

Multiple Projects and Shared Code 127

either project hits code lockdown, meaning that only a few high-priority changes are
being made to the code, the project stays in the Gold branch until it ships.

All this work assumes the two teams are motivated to share the game engine and
continually contribute to its improvement. There might be a case for one project per-
manently branching the shared code, in which case it should get its own code line
apart from the Trunk branch of the original shared code. If the changes are minor,
and they should be, it’s trivial to merge any two arbitrary code lines, as long as they
originated from an original source. Even if you got unlucky and the changes were
overhauls, the difficulty of the merge is preferable to making huge changes in your
Trunk while trying to satisfy a milestone. Best to leave this activity in its own
branch.

Some Parting Advice

This chapter has likely shown you that there is a lot of drudgery on any software
project, and games are no exception. Back in the dark ages, I built game projects by
typing in commands at the command prompt and checking boxes on a sheet of
paper. Since most of this work happened way after midnight, I made tons of mis-
takes. Some of these mistakes wasted time in heroic amounts—mostly because the
test team had a broken build on their hands, courtesy of a decaffeinated or just
exhausted Mike McShaffry.

Without using branching techniques, the whole development team had to tiptoe
around their changes during a build. Moving targets are much harder to hit. Every
game developer takes a long time to get in a good zone. If you break anyone’s con-
centration by halting progress to do a build, you lose valuable time.

My parting advice: Always automate the monkey work, give the test team a good
build every time, and never ever get in the way of a developer in the zone.

128 Chapter 4 n Building Your Game

Chapter 5

by Mike McShaffry

Game Initialization and

Shutdown

There are a million little details about writing games that no one talks about. Lots of
books and websites can teach you how to draw textured polygons in Direct3D. But
when it comes to figuring out your initialization sequence, you’ll find little discussion.
Most programmers hack something together over time that eventually turns into a
horrible mess.

I’ve written this chapter to show you the ins and outs of the entire initialization and
shutdown sequence. As you check out the code in this chapter, keep in mind that
every game is different and may require a different initialization sequence. Hopefully,
you’ll gain an understanding of the approach presented here and be able to adapt it
to your particular situation. Truly elegant solutions and algorithms rarely just fall out
of the sky. They usually come to you after seeing some code that is close to what you
need, and you push it the rest of the way yourself.

Every piece of software, including games, has initialization, the core or main loop,
and shutdown. Initialization prepares your canvas for painting pixels. The main
loop accepts and translates user input, changes the game state, and renders the
game state until the loop is broken. This loop is broken by a user quitting the game
or some other kind of failure. The cleanup code releases key system resources, closes
files, and exits back to the operating system.

This chapter deals with initialization and shutdown. Chapter 7, “Controlling the
Main Loop,” will dig a little deeper and show you how to control the main loop of
your game.

129

Initialization 101

Initializing games involves performing setup tasks in a particular order, especially on
Windows platforms. Initialization tasks for Windows games are a superset of console
games due to more unpredictable hardware and OS configuration. Of course, every
platform will be different, and to cover even a few of them is beyond the scope of
this book. If you see how this is done in a more complicated system such as Win-
dows, you’ll have a jump start on doing this for other platforms.

There are some tasks you must perform before creating your window, and others that
must have a valid window handle (or HWND) and therefore happen after you create
your window. Initialization tasks for a Windows game should happen in this order:

n Check system resources: hard drive space, memory, input and output devices.

n Check the CPU speed.

n Initialize your main random number generator (this was covered in Chapter 3).

n Load programmer’s options for debugging purposes.

n Initialize your memory cache.

n Create your window.

n Initialize the audio system.

n Load the player’s game options and saved game files.

n Create your drawing surface.

n Perform initialization for game systems: physics, AI, and so on.

Some C++ Initialization Pitfalls

Before we work through our initialization checklist, let’s get some critical initializa-
tion pitfalls out of the way, starting with the misuse of C++ constructors. I’ve heard
that power corrupts, and absolute power corrupts absolutely. You might get some
disagreement from Activision’s executives on this point. I’ll prove it to you by show-
ing you some problems with going too far using C++ constructors to perform initiali-
zation. It turns out that C++ constructors are horrible at initializing game objects,
especially if you declare your C++ objects globally.

Programming in C++ gives you plenty of options for initializing objects and subsys-
tems. Since the constructor runs when an object comes into scope, you might believe
that you can write your initialization code like this:

// Main.cpp – initialization using globals

//

130 Chapter 5 n Game Initialization and Shutdown

DataFiles g_DataFiles;

AudioSystem g_AudioSystem;

VideoSystem g_VideoSystem;

int main(void)

{

bool done = false;

while (! done)

{

// imagine a cool main loop here

}

return 0;

}

The global objects in this source code example are all complicated objects that could
encapsulate some game subsystems. The fledgling game programmer might briefly
enjoy the elegant look of this code, but that love affair will be quite short lived. When
any of these initialization tasks fail, and they will, there’s no easy way to recover.

I’m not talking about using exception handling as a recovery mechanism. Rather, I’m
suggesting that any problem with initialization should give the player a chance to do
something about it, such as wiping the peanut butter off the DVD. To do this, you
need a user interface of some kind, and depending on where the failure happens,
your user interface might not be initialized yet.

Global objects under C++ are initialized before the entry point, in this case main(void).
One problem with this is ordering; you can’t control the order in which global
objects are instantiated. Sometimes the objects are instantiated in the order of the
link, but you can’t count on that being the case with all compilers, and even if it
were predictable, you shouldn’t count on it. What makes this problem worse is that
since C++ constructors have no return value, you are forced to do something ugly to
find out if anything went wrong. The wise programmer will inform his game players
about what has gone wrong so they can have some possibility of fixing the problem.
The simpler alternative of failing and dropping back to the operating system with
some lame error message is sure to provoke a strong reaction.

If you want to inform the player, you might want to do it with a simple dialog box.
This assumes that you’ve already initialized the systems that make the dialog box
function: video, user interface, data files that contain the button art, font system,
and so on. This is certainly not always possible. What if your nosey game player
hacked into the art data files and screwed them up? You won’t have any button art
to display your nice dialog box telling hackers they’ve screwed themselves. You have

Some C++ Initialization Pitfalls 131

no choice but to use the system UI, such as the standard message box under Win-
dows. It’s better than nothing.

Initialize Your String Subsystem Early

Initialize your text cache, or whatever you use to store text strings, very early.
You can present any errors about initialization failures in the right language. If
the initialization of the text cache fails, present an error with a number. It’s
easier for foreign language speakers almost anywhere in the world to use the
number to find a solution from a customer service person or a website.

Global object pointers are much better than global objects. Singleton objects, such as
the instantiation of the class that handles the audio system or perhaps your applica-
tion object, are naturally global, and if you’re like me, you hate passing pointers or
references to these objects in every single method call from your entry point to the
lowest-level code. Declare global pointers to these objects, initialize them when you’re
good and ready, and free them under your complete control. Here’s an example of a
more secure way to initialize:

// Main.cpp – initialization using pointers to global objects

//

// A useful macro

#define SAFE_DELETE(p) { if (p) { delete (p); (p)=NULL; } }

DataFiles *gp_DataFiles = NULL;

AudioSystem *gp_AudioSystem = NULL;

VideoSystem *gp_VideoSystem = NULL;

int main(void)

{

gp_DataFiles = new DataFiles();

if ((NULL==gp_DataFiles) jj (!gp_DataFiles->Initialized()))

{

printf(“The data files are somehow screwed.“);

return 1;

}

gp_AudioSystem = new AudioSystem();

if ((NULL==gp_AudioSystem) jj (!gp_AudioSystem ->Initialized()))

{

printf(“The audio system is somehow screwed.”)

return 1;

}

gp_VideoSystem = new VideoSystem();

if ((NULL==gp_VideoSystem) jj (!gp_VideoSystem ->Initialized()))

{

132 Chapter 5 n Game Initialization and Shutdown

printf(“The video system is screwed.“);

return 1;

}

bool done = false;

while (! done)

{

// imagine a cool main loop here

}

SAFE_DELETE(gp_VideoSystem); // AVOID DEADLOCK!!!

SAFE_DELETE(gp_AudioSystem);

SAFE_DELETE(gp_DataFiles);

return 0;

}

Note that the objects are released in the reverse order in which they were instanti-
ated. This is no mistake, and it is a great practice whenever you need to grab a
bunch of resources of different kinds in order to do something. In multithreaded oper-
ating systems with limited resources, deadlock occurs when two threads can’t do their
work because each has a resource the other needs. You can avoid deadlock by allocating
and deallocating your resources in this way. You’ll learn more about deadlock in Chap-
ter 20, “Introduction to Multiprogramming.” Computers are very patient and will hap-
pily wait until the sun explodes. Get in the habit of programming with that problem in
mind, even if your code will never run on an operating system where that will be a
problem. It’s a great habit, and you’ll avoid some nasty bugs.

The Game’s Application Layer

We’re now ready to work our way through the initialization checklist. We’ll create
the class for your application layer, a very Windows-specific thing. The application
layer would be completely rewritten for different operating systems, such as Linux,
or consoles like the Wii. The application layer class is instantiated as a global single-
ton object and is referred to throughout your code through a pointer. It is con-
structed globally, too, since it has to be there from the entry point to the program
termination.

WinMain: The Windows Entry Point

The GameCode4 framework sets its Windows entry point to the function below; this is
the code that will begin executing after any global constructor code is finishing running.
It sets up calls for DirectX to work properly, runs the initialization sequence, enters the
main loop, and runs any shutdown code after the main loop exits.

The Game’s Application Layer 133

I’ve decided to use the DirectX Framework for rendering, mostly because it handles
all of the pain and suffering of dealing with running a DirectX-based application
under Windows, especially drawing fonts and dialog boxes. Take a quick look at the
code in one of the source files in the DirectX Framework, DXUT.cpp, sometime, and
you’ll see exactly what I mean! The following code can be found in Source\
GameCode.cpp:

INT WINAPI GameCode4(HINSTANCE hInstance,

HINSTANCE hPrevInstance,

LPWSTR lpCmdLine,

int nCmdShow)

{

// Set up checks for memory leaks.

int tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

// always perform a leak check just before app exits.

tmpDbgFlag j= _CRTDBG_LEAK_CHECK_DF;

_CrtSetDbgFlag(tmpDbgFlag);

Logger::Init(“logging.xml”);

g_pApp->m_Options.Init(“PlayerOptions.xml”, lpCmdLine);

DXUTSetCallbackD3D11DeviceAcceptable(GameCodeApp::IsD3D11DeviceAcceptable);

DXUTSetCallbackD3D11DeviceCreated(GameCodeApp::OnD3D11CreateDevice);

DXUTSetCallbackD3D11SwapChainResized(GameCodeApp::OnD3D11ResizedSwapChain);

DXUTSetCallbackD3D11SwapChainReleasing(

GameCodeApp::OnD3D11ReleasingSwapChain);

DXUTSetCallbackD3D11DeviceDestroyed(GameCodeApp::OnD3D11DestroyDevice);

DXUTSetCallbackD3D11FrameRender(GameCodeApp::OnD3D11FrameRender);

// Show the cursor and clip it when in full screen

DXUTSetCursorSettings(true, true);

// Perform application initialization

if (!g_pApp->InitInstance (hInstance, lpCmdLine, 0,

g_pApp->m_Options.m_ScreenSize.x,

g_pApp->m_Options.m_ScreenSize.y))

{

return FALSE;

}

DXUTMainLoop();

DXUTShutdown();

//_CRTDBG_LEAK_CHECK_DF is used at program initialization

// to force a leak check just before program exit. This

134 Chapter 5 n Game Initialization and Shutdown

// is important because some classes may dynamically

// allocate memory in globally constructed objects.

//

//_CrtDumpMemoryLeaks(); // Reports leaks to stderr

// Destroy the logging system at the last possible moment

Logger::Destroy();

return g_pApp->GetExitCode();

}

These calls to the DXUTSetCallbackEtc functions allow the DirectX Framework to
notify the application about device changes, user input, and Windows messages. You
should always handle the callbacks for device reset/lost, or your game won’t be able
to withstand things like fast user task switching under Windows.

The calls to the CrtDumpMemory functions set up your game to detect memory
leaks, something discussed at length in Chapter 23, “Debugging Your Game.”

Player options are stored in an XML file and are loaded into the GameOptions class.
This class can store whatever you like, but in this example it simply stores the desired
screen width and height of the game window. Extensions of this class could store
sound volume settings, how many players the game supports, and other important
data.

g_pApp points to a global object that stores the game’s application layer. Let’s take a
look at the base class, GameCodeApp.

The Application Layer: GameCodeApp

The game’s application layer handles operating system–specific tasks, including inter-
facing with the hardware and operating system, handling the application life cycle
including initialization, managing access to localized strings, and initializing the game
logic. This class is meant to be inherited by a game-specific application class that will
extend it and define some game-specific things, such as title, but also implementations
for creating the game logic and game views and loading the initial state of the game.

The class acts as a container for other important members that manage the applica-
tion layer:

n A handle to the text resource, which is initialized with an XML file. It contains
all of the user-presented strings, such as “Do you want to quit?,” so the game
can easily be localized into other languages.

n The game logic implementation.

n A data structure that holds game options, usually read from an XML file.

The Game’s Application Layer 135

n The resource cache, which is responsible for loading textures, meshes, and
sounds from a resource file.

n The main Event Manager, which allows all the different game subsystems to
communicate with each other.

n The network communications manager.

All of these members are initialized in GameCodeApp::InitInstance().

InitInstance(): Checking System Resources

Checking system resources is especially important for Windows games, but console
developers don’t get off scot-free. Permanent storage, whether it is a hard disk or a
memory card, should be checked for enough space to store game data before the
player begins. Windows and console games that support special hardware, like steer-
ing wheels or other input devices, must check for their existence and fall back to
another option, like the gamepad, if nothing is found. Checking system RAM and
calculating the CPU speed can be important, too, even if the platform isn’t Windows.

The code inside InitInstance() is particularly sensitive to order, so be careful if
you decide to change this method. You should also keep your shutdown code in sync,
or rather reverse sync, with the order of initialization. Always release systems and
resources in the reverse order in which you requested or created them.

Here’s what this method does:

n Detects multiple instances of the application.

n Checks secondary storage space and memory.

n Calculates the CPU speed.

n Loads the game’s resource cache.

n Loads strings that will be presented to the player.

n Creates the LUA script manager.

n Creates the game’s Event Manager.

n Uses the script manager to load initial game options.

n Initializes DirectX, the application’s window, and the D3D device.

n Creates the game logic and game views.

n Sets the directory for save games and other temporary files.

n Preloads selected resources from the resource cache.

136 Chapter 5 n Game Initialization and Shutdown

m_screenSize = CPoint(screenWidth, screenHeight);

DXUTCreateDevice(D3D_FEATURE_LEVEL_10_1, true, screenWidth, screenHeight);

m_Renderer = shared_ptr<IRenderer>(GCC_NEW D3DRenderer11());

m_Renderer->VSetBackgroundColor(255, 20, 20, 200);

m_Renderer->VOnRestore();

m_pGame = VCreateGameAndView();

if (!m_pGame)

return false;

// now that all the major systems are initialized, preload resources

m_ResCache->Preload(“*.ogg”, NULL);

m_ResCache->Preload(“*.dds”, NULL);

m_ResCache->Preload(“*.jpg”, NULL);

m_ResCache->Preload(“*.sdkmesh”, NULL);

You have to make sure that everything is initialized before some other subsystem
needs it to exist. Inevitably, you’ll find yourself in a catch-22 situation, and you’ll
see that two subsystems depend on each other’s existence. The way out is to create
one in a hobbled state, initialize the other, and then notify the first that the other
exists. It may seem a little weird, but you’ll probably run into this more than once.

The next sections tell you more about how to do these tasks and why each is
important.

Checking for Multiple Instances of Your Game

If your game takes a moment to get around to creating a window, a player might get
a little impatient and double-click the game’s icon a few times. If you don’t take the
precaution of handling this problem, you’ll find that users can quickly create a few
dozen instances of your game, none of which will properly initialize. You should cre-
ate a splash screen to help minimize this problem, but it’s still a good idea to detect
an existing instance of your game.

bool IsOnlyInstance(LPCTSTR gameTitle)

{

// Find the window. If active, set and return false

// Only one game instance may have this mutex at a time...

HANDLE handle = CreateMutex(NULL, TRUE, gameTitle);

// Does anyone else think ‘ERROR_SUCCESS’ is a bit of an oxymoron?

if (GetLastError() != ERROR_SUCCESS)

{

HWND hWnd = FindWindow(gameTitle, NULL);

if (hWnd)

{

The Game’s Application Layer 137

// An instance of your game is already running.

ShowWindow(hWnd, SW_SHOWNORMAL);

SetFocus(hWnd);

SetForegroundWindow(hWnd);

SetActiveWindow(hWnd);

return false;

}

}

return true;

}

The Windows CreateMutex() API is used to gate only one instance of your game
to the window detection code, the FindWindow() API. You call it with your game’s
title, which uniquely identifies your game. A mutex is a process synchronization
mechanism and is common to any multitasking operating system. It is guaranteed
to create one mutex with the identifier gameTitle for all processes running on the
system. If it can’t be created, then another process has already created it. You’ll learn
more about these in Chapter 20.

Checking Hard Drive Space

Most games need a bit of free secondary storage space for saving games, caching data
from the DVD-ROM drive, and other temporary needs. Here’s a bit of code you can
use to find out if your player has enough storage space for those tasks:

bool CheckStorage(const DWORDLONG diskSpaceNeeded)

{

// Check for enough free disk space on the current disk.

int const drive = _getdrive();

struct _diskfree_t diskfree;

_getdiskfree(drive, &diskfree);

unsigned __int64 const neededClusters =

diskSpaceNeeded /

(diskfree.sectors_per_cluster * diskfree.bytes_per_sector);

if (diskfree.avail_clusters < neededClusters)

{

// if you get here you don’t have enough disk space!

GCC_ERROR(“CheckStorage Failure: Not enough physical storage.”);

return false;

}

return true;

}

138 Chapter 5 n Game Initialization and Shutdown

If you want to check free disk space, you’ll use the _getdrive() and
_getdiskfree() utility functions, which work on any ANSI-compatible system.
The return value from the _getdiskfree() function is in clusters, not in bytes,
so you have to do a little math on the results.

Checking Memory

Checking for system RAM under Windows is a little trickier; sadly, you need to leave
ANSI compatibility behind. You should check the total physical memory installed, as
well as the available virtual memory, using Windows calls. Virtual memory is a great
thing to have on your side as long as you use it wisely. You’ll learn more about caching
in Chapter 8, “Loading and Caching Game Data,” but until then you can think of it as
having a near infinite bank account with a very slow bank. If your game uses virtual
memory in the wrong way, it will slow to a crawl. You might as well grab a pencil
and sketch a storyboard of the next few minutes of your game; you’ll see it faster.

bool CheckMemory(

const DWORDLONG physicalRAMNeeded, const DWORDLONG virtualRAMNeeded)

{

MEMORYSTATUSEX status;

GlobalMemoryStatusEx(&status);

if (status.ullTotalPhys < physicalRAMNeeded)

{

// you don’t have enough physical memory. Tell the player to go get a

// real computer and give this one to his mother.

GCC_ERROR(“CheckMemory Failure: Not enough physical memory.”);

return false;

}

// Check for enough free memory.

if (status.ullAvailVirtual < virtualRAMNeeded)

{

// you don’t have enough virtual memory available.

// Tell the player to shut down the copy of Visual Studio running in the

// background, or whatever seems to be sucking the memory dry.

GCC_ERROR(“CheckMemory Failure: Not enough virtual memory.”);

return false;

}

char *buff = GCC_NEW char[virtualRAMNeeded];

if (buff)

delete[] buff;

else

{

The Game’s Application Layer 139

// even though there is enough memory, it isn’t available in one

// block, which can be critical for games that manage their own memory

GCC_ERROR(“CheckMemory Failure: Not enough contiguous memory.”);

return false;

}

}

This function relies on the GlobalMemoryStatusEx() function, which returns the
current state of the physical and virtual memory system. In addition, this function
allocates and immediately releases a huge block of memory. This has the effect of
making Windows clean up any garbage that has accumulated in the memory man-
ager and double-checks that you can allocate a contiguous block as large as you
need. If the call succeeds, you’ve essentially run the equivalent of a Zamboni machine
through your system’s memory, getting it ready for your game to hit the ice. Console
programmers should nuke that bit of code—it simply isn’t needed in a system that
only runs one application at a time.

Calculating CPU Speed

Since Windows XP, the CPU speed can be read from the system registry with this
code:

DWORD ReadCPUSpeed()

{

DWORD BufSize = sizeof(DWORD);

DWORD dwMHz = 0;

DWORD type = REG_DWORD;

HKEY hKey;

// open the key where the proc speed is hidden:

long lError = RegOpenKeyEx(HKEY_LOCAL_MACHINE,

L“HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0”,

0, KEY_READ, &hKey);

if(lError == ERROR_SUCCESS)

{

// query the key:

RegQueryValueEx(hKey, L“˜MHz”, NULL, &type, (LPBYTE) &dwMHz, &BufSize);

}

return dwMHz;

}

If you want to calculate the CPU speed, there’s a great bit of code written by Michael
Lyons at Microsoft that does the job nicely. You can find it in the companion source
code to this book in Dev\Source\GCC4\Mainloop\CPUSpeed.cpp.

140 Chapter 5 n Game Initialization and Shutdown

Do You Have a Dirtbag on Your Hands?

If you are lucky (or probably unlucky) enough to be working on a mass-market title,
or even a title that will be distributed worldwide, you should support computers and
devices that have a wide range of capabilities. Everyone wants a game to look really
good, but when you have to support devices that don’t support the right graphics
system, something has to give. Choose a benchmark for your game that makes
sense to determine what makes a computer a dirtbag and what doesn’t. Whatever
you use, it is important to set your standards and determine if the computer the
player is using is at the shallow end of the hardware pool.

What to Do with Your Dirtbag

Once you figure out that the computer is at the bottom end, you should set your
game defaults for new players accordingly. A good start would be to turn off
any CPU-intensive activities like decompressing MP3 streams, scaling back
skeletal detail, animations, and physics, or reducing the cycles you spend on
AI. If the player decides to bring up the options screen and turn some of these
features back on, my suggestion is to let him do it if it’s possible. Maybe he’ll
be inclined to retire his old machine.

Initialize Your Resource Cache

You read about general memory management in Chapter 3 and resource caching is
covered in Chapter 8. Initializing the resource cache will be a gateway to getting your
game data from the media into memory. The size of your resource cache is totally up
to your game design and the bottom-end hardware you intend to support. It’s a good
idea to figure out if your player’s computer is a dirtbag or flamethrower and set your
resource cache memory accordingly.

No Room Even for the Basics?

You can’t impress a player with fantastic graphics until you reserve a nice spot
in system and video memory for your textures, models, and animations. If your
resource cache allocation fails, you can’t even bring up a nice dialog box telling
a loser player he is low on memory. The game should fail as elegantly as
possible and maybe print out a coupon for some memory sticks.

In this book, we’ll use Zip files to store game resources. It’s reasonably speedy, especially if
no decompression is necessary. Here’s the code to initialize the resource cache:

new ResCache(50, new ResourceZipFile(_T(“Assets.zip”)));

if (!m_ResCache->Init())

{

The Game’s Application Layer 141

GCC_ERROR(“Failed to initialize resource cache! Are your paths set up

correctly?”);

return false;

}

m_ResCache->RegisterLoader(CreateWAVResourceLoader());

m_ResCache->RegisterLoader(CreateOGGResourceLoader());

m_ResCache->RegisterLoader(CreateDDSResourceLoader());

// Note a few more loaders continue past here...

This code creates the ResCache object and initializes the resource cache to 50 mega-
bytes. It also creates an object that implements the IResource interface.

Choosing the size of your resource cache has everything to do with what kind of
computer you expect your players to have. Players of the latest game from Crytek
are going to have way more memory than my mother-in-law’s computer—an old
laptop I gave her about four years ago. After you choose the size of your cache, you
should be cautious about how that memory is being used as you stuff in more tex-
tures, sounds, animations, and everything else. Once you run out, your game will
stop performing like it should as it suffers cache misses. Console programmers have
a harsher climate—if they run one byte over, their game will simply crash.

You’ll notice the calls to RegisterLoader(). A resource cache can contain many
different types of resources, such as sounds, music, textures, and more. The resource
cache needs to know how each one of these files types is read and converted into
something the game engine can use directly. The process of registering a loader
associates a specific loader class with a file type. You’ll learn more about how that
works in the Chapter 8 and see how each of these loaders is coded throughout the
book.

How Much Longer?!?

It seems like every game I work on has the same cycle when it comes to load
optimization. At first, things are just fine because we’re loading small sets of
artwork and parsing small XML files. As artists and designers add content to
the game, the load times start to grind to a halt, and before too long, our
game is taking 5–10 minutes just to load the test level! Some programmers
usually spend a few days optimizing the data loading to get it to a decent
time again, but it will inevitably creep back up. It’s an interesting dance.

Loading Text Strings

Text strings that are presented to the player should never be hardcoded. Whatever
language you speak, there are more people out there who speak other languages!
This is handled easily by putting all your text strings into a data file that is easy to

142 Chapter 5 n Game Initialization and Shutdown

edit and load. In this case, the data format is XML, read easily by the TinyXML SDK,
available freely under the zlib license. Here’s an example of what this might look like:

<?xml version=“1.0” encoding=“UTF-8”?>

<strings>

<string value=“Alert” id=“IDS_ALERT”/>

<string value=“Question” id=“IDS_QUESTION”/>

<string value=“Initializing” id=“IDS_INITIALIZING”/>

<string value=“Ok” id=“IDS_OK”/>

<string value=“Yes” id=“IDS_YES” hotkey=“Y”/>

</strings>

One note: the identifier should be representative of what the string stands for and
named to group strings together into categories. For example, if you had a string
“You are out of hard drive space,” you could define that as IDS_INITCHECK_
LOW_DISK_SPACE.

Reading this file is a piece of cake. First, an STL map is declared that will map a
string key to the actual string resource:

std::map<std::wstring,std::wstring> m_textResource;

Then two methods are defined—the first to load the strings from the XML file from
the resource cache and the next to access the string given the key value:

bool GameCodeApp::LoadStrings(std::string language)

{

std::string languageFile = “Strings\\”;

languageFile += language;

languageFile += “.xml”;

TiXmlElement* pRoot =

XmlResourceLoader::LoadAndReturnRootXmlElement(languageFile.c_str());

if (!pRoot)

{

GCC_ERROR(“Strings are missing.”);

return false;

}

// Loop through each child element and load the component

for (TiXmlElement* pElem = pRoot->FirstChildElement(); pElem; pElem =

pElem->NextSiblingElement())

{

const char *pKey=pElem->Attribute(“id”);

const char *pText=pElem->Attribute(“value”);

if (pKey && pText)

{

The Game’s Application Layer 143

wchar_t wideKey[64];

wchar_t wideText[1024];

AnsiToWideCch(wideKey, pKey, 64);

AnsiToWideCch(wideText, pText, 1024);

m_textResource[std::wstring(wideKey)] = std::wstring(wideText);

}

}

return true;

}

std::wstring GameCodeApp::GetString(std::wstring sID)

{

auto localizedString = m_textResource.find(sID);

if(localizedString == m_textResource.end())

{

GCC_ASSERT(0 && “String not found!”);

return L“”;

}

return localizedString->second;

}

Your Script Manager and the Events System

The next section of the initialization sequence creates the script parser and event sys-
tem. The GameCode4 code base uses Lua, which is fairly easy to learn and popular.

if (!LuaStateManager::Create())

{

GCC_ERROR(“Failed to initialize Lua”);

return false;

}

// Register functions exported from C++

ScriptExports::Register();

ScriptProcess::RegisterScriptClass();

Once it is created, you could actually use a Lua initialization script to control the rest
of the initialization sequence. This can be a fantastic idea, as the script doesn’t add
very much additional time to the initialization sequence. What the programmer gets
in return is the capability to change the initialization sequence without recompiling
the game. The only other way to do this would be to throw some crazy options on
the command line, which can be unwieldy, even in a trivial case. A Lua script has
control mechanisms for evaluating expressions and looping—something you’ll come
to enjoy very quickly.

144 Chapter 5 n Game Initialization and Shutdown

The Event Manager is initialized next with these few lines of code:

m_pEventManager = GCC_NEW EventManager(“GameCodeApp Event Mgr”, true);

if (!m_pEventManager)

return false;

Initialize DirectX and Create Your Window

Windows programmers can’t put off the task of creating their window any longer.
Creating a game window is easy enough, especially since the DirectX Framework
does the whole thing for you. Here’s the code that does this job inside
InitInstance():

DXUTInit(true, true, lpCmdLine, true);

DXUTCreateWindow(VGetGameTitle(), hInstance, VGetIcon());

if (!GetHwnd())

return FALSE;

SetWindowText(GetHwnd(), VGetGameTitle());

Notice the calls to the virtual methods VGetGameTitle() and VGetIcon(). They
are overloaded to provide this game-specific information to the GameCodeApp base
class. You’ll see exactly how to do this in Chapter 21, “A Game of Teapot Wars,”
when we create a game of Teapot Wars with this code.

Since this code is using the DirectX Framework, the next line of code creates the
Direct3D device:

DXUTCreateDevice(D3D_FEATURE_LEVEL_10_1, true, screenWidth, screenHeight);

The constant, D3D_FEATURE_LEVEL_10_1, will be discussed more in the 3D chap-
ters, but basically it sets the minimum 3D feature level required by your game.

Create Your Game Logic and Game View

After the game window is ready, you can create the game logic and all the views that
attach to the game logic. This is done by calling VCreateGameAndView(), which is
a pure virtual function in the GameCodeApp class. Here’s an example of what it
might look like in the inherited class:

BaseGameLogic *TeapotWarsApp::VCreateGameAndView()

{

BaseGameLogic *game = GCC_NEW TeapotWarsLogic();

shared_ptr<IGameView> gameView(GCC_NEW TeapotWarsHumanView());

game->VAddView(gameView);

return game;

}

The Game’s Application Layer 145

Set Your Save Game Directory

Finding the right directory for user-settable game options used to be easy. A program-
mer would simply store user data files close to the EXE and use the GetModuleFile-
Name() API. Starting with Windows XP Home, the Program Files directory is off
limits by default, and applications are nevermore allowed to write directly to this direc-
tory tree. Instead, applications must write user data to the C:\Documents and Settings
\{User name}\Application Data directory for XP, C:\Users\{User Name}\Application
Data directory for Vista, and C:\Users\{User Name}\AppData for Windows 7. Not only
can this directory be completely different from one version of Windows to another, but
some users also store these on a drive other than the C: drive. You can use a special API
to deal with this problem: SHGetSpecialFolderPath().

If you open Windows Explorer to your application data directory, you’ll see plenty of
companies who play by the rules, writing application data in the spot that will keep
Windows XP from freaking out. Usually, a software developer will create a hierarchy,
starting with his company name, maybe adding his division, then the product, and
finally the version. A Microsoft product I worked on used this path:

GAME_APP_DIRECTORY = “Microsoft\\Microsoft Games\\Bicycle Casino\\2.0”;

GAME_APP_DIRECTORY = Your Registry Key

The value for your GAME_APP_DIRECTORY is also a great value for a registry key. Don’t forget to add
the version number at the end. You might as well hope for a gravy train: 2.0, 3.0, 4.0, and so on.

It’s up to you to make sure you create the directory if it doesn’t exist. This is made
easier with a call to SHCreateDirectoryEx(), which will create the entire direc-
tory hierarchy if it doesn’t already exist:

const TCHAR *GetSaveGameDirectory(HWND hWnd, const TCHAR *gameAppDirectory)

{

HRESULT hr;

static TCHAR m_SaveGameDirectory[MAX_PATH];

TCHAR userDataPath[MAX_PATH];

hr = SHGetSpecialFolderPath(hWnd, userDataPath, CSIDL_APPDATA, true);

_tcscpy_s(m_SaveGameDirectory, userDataPath);

_tcscat_s(m_SaveGameDirectory, _T(“\\”));

_tcscat_s(m_SaveGameDirectory, gameAppDirectory);

// Does our directory exist?

if (0xffffffff == GetFileAttributes(m_SaveGameDirectory))

{

146 Chapter 5 n Game Initialization and Shutdown

if (SHCreateDirectoryEx(hWnd, m_SaveGameDirectory, NULL)

!= ERROR_SUCCESS)

return false;

}

_tcscat_s(m_SaveGameDirectory, _T(“\\”));

return m_SaveGameDirectory;

}

Developers Have Different Needs Than Your Players

Make sure that you have two different game option files—one for users and
one for developers. For example, it can be very convenient to have some way
to override the full-screen option in the user settings to open in window mode
for a debug session. Debugging a full-screen application with a single monitor
is sure to send you on a killing spree. While you are at it, make sure that you
allow gamers to set which monitor your game will be displayed on in a
multimonitor configuration, which is becoming much more common.

Preload Selected Resources from the Cache

Most games preload much, if not all, of the resources they’ll need during the game, or
at the very least the level that is currently loaded. Even open world games will typi-
cally preload as much of the game as makes sense, given the player’s current location
in the game world. The resource cache has methods that you can call to preload
resources, based on file type:

m_ResCache->Preload(“*.ogg”, NULL);

m_ResCache->Preload(“*.dds”, NULL);

m_ResCache->Preload(“*.jpg”, NULL);

m_ResCache->Preload(“*.sdkmesh”, NULL);

Preloading these resources will take some time, but players expect a pause during
game initialization. What they don’t expect is a big hitch right after they fire a
weapon, which might happen if the sound effect for the weapon isn’t loaded yet.

Stick the Landing: A Nice Clean Exit

Your game won’t run forever. Even the best games will take a back seat to food and
water. There may be a temptation to simply call exit(0) and be done with it. This
isn’t a wise choice because your DirectX drivers might be left in a bad state, and it
could be difficult to tell if your game is leaking resources.

If you don’t have a decent exit mechanism, you’ll also find it impossible to determine
where your game is leaking memory or other resources. After all, a hard exit is

Stick the Landing: A Nice Clean Exit 147

basically a huge memory leak, even though the operating system cleans it up. A tight
exit mechanism will show you a single byte of leaked memory before returning con-
trol to the operating system. This is important for all games, Windows or console.

Always Fix Leaks, Fast

Games should never leak memory. Period. The reality of it is that some
Windows API calls leak resources, and you just have to live with it. That’s
no reason your game code should be sloppy; hold yourself to a higher
standard, and you won’t get a reputation for crappy software.

How Do I Get Out of Here?

There are two ways to stop a game from executing without yanking the power cord:

n The player quits the game on purpose.

n The operating system shuts the application down.

If the player chooses to stop playing, the first thing you should do is ask the player if he
wants to save his game. The last thing someone needs is to lose six hours of progress only
to hit the wrong button by accident. One standard detects if the current state of the game
has changed since the last time the user saved, and only if the state is different does the
system ask if the player wants to save his game. It is equally annoying to save your game,
select quit, and have the idiot application ask if the game needs saving all over again.

Console programmers can stop here and simply run their exit code, destroying all the
game systems generally in the reverse order in which they were created. Windows
programmers, as usual, don’t get off nearly that easy.

When Windows decides your game has to shut down, it sends a different message.
Windows apps should intercept the WM_SYSCOMMAND message and look for
SC_CLOSE in the wParam. This is what Windows sends to applications that are
being closed, perhaps against their will. This can happen if the machine is shut
down, runs low on battery power, or if the player hits Alt-F4.

The problem with this message is that Alt-F4 should act just like your normal exit,
asking you if you want to quit. If you can save to a temporary location and load that
state the next time the player starts, your players will thank you. Most likely, they
were just getting to the boss encounter, and the batteries on their laptop finally ran
out of motivated electrons.

You have to double-check for multiple entries into this code with a Boolean variable.
If your players hit Alt-F4 and bring up a dialog box in your game asking if they want

148 Chapter 5 n Game Initialization and Shutdown

to quit, nothing is keeping them from hitting Alt-F4 again. If your players are like the
folks at Microsoft’s test labs, they’ll hit it about 50 times. Your game is still pumping
messages, so the WM_SYSCOMMAND will get through every time a player presses Alt-
F4. Make sure you handle that by filtering it out.

If your game is minimized, you have to do something to catch the player’s attention.
If your game runs in full-screen mode and you’ve tabbed away to another app, your
game will act just as if it is minimized. If your player uses the system menu by right-
clicking on the game in the Start bar, your game should exhibit standard Windows
behavior and flash. This is what well-behaved Windows applications do when they
are minimized but require some attention from a human being.

void GameCodeApp::FlashWhileMinimized()

{

// Flash the application on the taskbar

// until it’s restored.

if (! GetHwnd())

return;

// Blink the application if we are minimized,

// waiting until we are no longer minimized

if (IsIconic(GetHwnd()))

{

// Make sure the app is up when creating a new screen

// this should be the case most of the time, but when

// we close the app down, minimized, and a confirmation

// dialog appears, we need to restore

DWORD now = timeGetTime();

DWORD then = now;

MSG msg;

FlashWindow(GetHwnd(), true);

while (true)

{

if (PeekMessage(&msg, NULL, 0, 0, 0))

{

if (msg.message != WM_SYSCOMMAND jj msg.wParam != SC_CLOSE)

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

// Are we done?

if (! IsIconic(GetHwnd()))

Stick the Landing: A Nice Clean Exit 149

{

FlashWindow(GetHwnd(), false);

break;

}

}

else

{

now = timeGetTime();

DWORD timeSpan = now > then ? (now - then) : (then - now);

if (timeSpan > 1000)

{

then = now;

FlashWindow(GetHwnd(), true);

}

}

}

}

}

Doing this is a little tricky. You basically have to run your own message pump in a
tight loop and swallow the WM_SYSCOMMAND and SC_CLOSE messages until your
game isn’t minimized anymore, all the while calling FlashWindow() at regular time
intervals.

Forcing Modal Dialog Boxes to Close

When your game is closed by something external, such as a power down due to a low
battery condition, you might have some tricky cleanup to do if you are inside one of
your modal dialogs we’ll be discussing in Chapter 9, “Programming Input Devices.”
Since you are running a special version of the message pump, the “real” message
pump won’t get the message.

The solution lies in forcing the modal dialog to close with its default answer and then
resending the WM_SYSCOMMAND with the SC_CLOSE parameter back into the message
pump. If you happen to have nested dialogs up, this will still work because each dia-
log will get a forced close until the normal message pump can process the close
message.

Here’s the pseudo-code for the code inside the SC_CLOSE message handler:

If (you want to prompt the user)

{

If (m_bQuitRequested)

Return early – user is spamming Alt-F4

150 Chapter 5 n Game Initialization and Shutdown

Set your m_bQuitRequested = true

Call the model dialog box: “Are you sure you want to quit?”

If (user said no)

{

Abort the quit request – return here.

}

}

// By here we are quitting the game, by request or by force.

Set you m_bQutting = true

If (a modal dialog box is up)

{

Force the dialog to close with a default answer

Repost the WM_SYSCOMMAND message again to close the game

Set m_bQuitRequested = false

}

You’ll want to take a closer look at the source code to see more, but this code will
allow the game to bring up a quit dialog even if the player presses Alt-F4 or another
app, like an install program, and attempts to shut down your game by force.

Shutting Down the Game

With some exceptions, you should shut down or deallocate game systems in the
reverse order of which they were created. This is a good rule of thumb to use when-
ever you are grabbing and releasing multiple resources that depend on each other.
Each data structure should be traversed and freed. Take care that any code that is
run inside destructors has the resources it needs to execute properly. It’s pretty easy
to imagine a situation where the careless programmer has uninitialized something in
the wrong order and a destructor somewhere fails catastrophically. Be extremely
aware of your dependencies, and where multiple dependencies exist, lean on a refer-
ence counting mechanism, such as smart pointers, to hold on to resources until they
really aren’t needed anymore.

The message pump, GameCodeApp::MsgProc, will receive a WM_CLOSE message
when it is time for you to shut down your game, and you’ll handle it by calling the
nonstatic GameCodeApp::OnClose method:

case WM_CLOSE:

{

result = g_pApp->OnClose();

break;

}

Stick the Landing: A Nice Clean Exit 151

The application layer will delete things in the reverse order in which they were cre-
ated. The creation order was resource cache first, the game window second, and the
game logic object third. We’ll release them in the reverse order.

LRESULT GameCodeApp::OnClose()

{

// release all the game systems in reverse order from which they

// were created

SAFE_DELETE(m_pGame);

DestroyWindow(GetHwnd());

VDestroyNetworkEventForwarder();

SAFE_DELETE(m_pBaseSocketManager);

SAFE_DELETE(m_pEventManager);

ScriptExports::Unregister();

LuaStateManager::Destroy();

SAFE_DELETE(m_ResCache);

return 0;

}

If you extended the GameCodeApp application layer into your own class, you’ll want
to do exactly the same thing with the custom objects there and release them in the
reverse order. When the game logic is deleted, it will run a destructor that releases its
objects, including its process manager and all the views attached to it.

After the WM_CLOSE message is processed, the main message pump exits, and control
will eventually return to the WinMain function, which calls DXUTShutdown() to
release the DirectX Framework.

What About Consoles?

This book has a decidedly Windows bend, mostly because Windows is a very acces-
sible programming platform. But that doesn’t mean you can’t be exposed to some
discussion about how to perform certain tasks with the constraints imposed by con-
sole and mobile platforms—and shutdown is no exception.

Consoles run one program at a time and essentially don’t have to worry about being
left in a weird state. The shutdown solution used on Thief: Deadly Shadows could
have been documented in a single page—we simply rebooted the machine. Is this a
good idea or not?

From the player’s point of view, it’s a great idea. Shutdown doesn’t have to take any
time whatsoever, simply unrolling the data structures and cleaning up allocated
memory. It just exits—and BAM!—you are back to the launch window.

152 Chapter 5 n Game Initialization and Shutdown

From a programmer’s point of view, it is easier, but you don’t have to clean up your
mess, so to speak. A lazy programmer can create systems that are so entangled they
can’t be torn down in an orderly manner, and that can be a bad thing. If something
can’t be torn down during runtime, you have no choice but to allow it to exist
whether it is being actively used or not, and console resources are so tight you still
want every byte. Also, if you ever want to be able to load a new level into memory,
something has to exist in your codebase to remove all the resources in that level and
return the system to a pristine state.

I propose a dual solution—the release build should reboot, exit the game all at once,
and take as little time as possible. This is for the player’s convenience. The debug
build should attempt a clean exit, and any problems with a clean exit should be
addressed before they become a cancer in the rest of your system—especially memory
leaks.

Getting In and Getting Out

Games have a lot of moving parts and use every bit of hardware in the system. Get-
ting all the green lights turned on in the right order can be a real pain, as you saw in
initialization. It’s really easy to have dependent systems, so much so that you have
“chicken and egg” problems—where more than one system has to be first in the ini-
tialization chain. I don’t think I’ve ever worked on a game where we didn’t have to
hack something horribly to make initialization work correctly. Start with a good
organization, and hopefully your problems in this area will be minimal at best.

Shutting down cleanly is critical under any multitasking operating system like Win-
dows, not only to make sure system resources like video memory are released, but it
also helps the engineering team to know that the underlying technologies can be torn
down in an orderly manner. It doesn’t guarantee good technology, but it is a good
sign of clean code.

Getting In and Getting Out 153

This page intentionally left blank

Chapter 6

by David “Rez” Graham

Game Actors and Component

Architecture

Games are full of objects that bring your world to life. A World War II game might
be full of tanks and planes, while a futuristic science fiction game might have robots
and starships. Like actors on a stage, these objects are at the heart of the gameplay. It
seems fitting that we call them “game actors” because that’s exactly what they are.

A game actor is an object that represents a single entity in your game world. It could
be an ammo pickup, a tank, a couch, an NPC, or anything you can think of. In some
cases, the world itself might even be an actor. It’s important to define the parameters
of game actors and to ensure that they are as flexible and reusable as possible.

There are as many ways for defining a game actor as there are games. Like everything
else in computer programming, there is rarely a perfect solution.

A First Attempt at Building Game Actors

A common approach to building game actors is to start with an Actor base class
that defines things that every actor needs to know, which could just be an ID and a
position.

class Actor

{

ActorId m_id;

protected:

Vec3 m_position;

155

public:

const Vec3& GetPosition(void) const { return m_position; }

const ActorId GetId(void) const { return m_id; }

};

Then you define subclasses for specific actor types. Each subclass adds some new
piece of functionality that builds on the last. For example, you might have a subclass
for actors that could be rendered:

class RenderableActor : public Actor

{

Model* m_pModel;

Texture* m_pTexture;

public:

virtual bool VDraw(void);

};

Underneath that, you could have a subclass for actors that requires physics, pickups,
characters, and so on. Eventually, you’d probably end up with a big inheritance tree
like the one in Figure 6.1.

Figure 6.1
A possible actor inheritance tree.

156 Chapter 6 n Game Actors and Component Architecture

The arrows show inheritance, so RenderableActor inherits from Actor. On the
surface, this looks okay. You can instantiate an object from anywhere in this tree to
provide the functionality you want. If you just need a boulder to fall on the player, it
can be a PhysicsActor object. If you want a new type of pickup, you just write a
new subclass and instantiate that. It’s perfect, right?

Nope, it’s not perfect by any stretch of the imagination. If you recall my advice from
Chapter 3, “Coding Tidbits and Style That Saved Me,” looking at this diagram should
raise a red flag. I spoke about keeping class hierarchies nice and flat, which this fails
at completely. Why does it matter?

Let’s say you build the previous system for your first-person shooter game. It would
probably work just fine for a while. Now let’s say the designer comes up to you and
asks you to make a new kind of pickup, a mana pickup that has an animation. You
can’t derive from Pickup since it doesn’t include any of the animation code, and you
can’t derive from AnimatingActor since that doesn’t include any of the functional-
ity needed for pickups.

One option would be to derive from both classes via multiple inheritance, but that
would be disastrous. You would have to use a virtual base class to avoid the dreaded
diamond of death, as shown in Figure 6.2.

The problem with the diamond of death is that it’s not clear what happens when
members are inherited from the base class. Let’s say you have the following declara-
tion for the previous diagram:

class BaseClass

{

protected:

Figure 6.2
The diamond of death.

A First Attempt at Building Game Actors 157

int m_num;

explicit BaseClass(int num)

{

m_num = num;

}

};

class SubClassA : public BaseClass

{

public:

explicit SubClassA(void) : BaseClass(1) { }

};

class SubClassB : public BaseClass

{

public:

explicit SubClassB(void) : BaseClass(2) { }

};

class SubClassC : public SubClassA, public SubClassB

{

public:

void Print(void)

{

cout << m_num << endl;

}

};

In this example, the Print() function can’t even be called because the code won’t
get past the compiler. Visual Studio 2010 generates the following error:

error C2385: ambiguous access of ‘m_num’

The problem is that both SubClassA and SubClassB inherit the m_num member,
so SubClassC has two copies of m_num, and the compiler doesn’t know which one
you’re referring to. You could solve the issue by explicitly choosing one like this:

cout << SubClassA::m_num << endl;

Of course you still have the problem of an unused SubClassB::m_num variable
floating around just asking for trouble. Someone is bound to accidentally access that
particular m_num. This duplication is made even worse when you realize that in our
use case for the actor tree, you’d be doubling up on the PhysicsActor class. That
means potentially duplicating large objects.

158 Chapter 6 n Game Actors and Component Architecture

Multiple Inheritance Is Evil

If at all possible, try to never use multiple inheritance unless every base class
you’re deriving from has nothing but pure virtual functions. You can have
one exception to this and inherit from a single base class with data
members, but every other base class should only contain pure virtual
functions. This is so important that some languages, like Java, actually
enforce it.

Clearly, this is not an option. Another possibility is to shuffle around the hierarchy
and make Pickup inherit from AnimatingActor. This would solve the problem,
but it means that all pickups have to carry around the weight of the animation sys-
tem, which is most likely nontrivial. What about if you want to have a ghost charac-
ter that ignores physics? They still need to animate and render, but you don’t want
the physics system to even have to know about them.

These kinds of problems give rise to the dreaded blob class. You keep shuffling
around functionality until it all ends up living in one or two gigantic classes. Each
change you make is like trying to untangle a web. You’ll be lucky if you can make
any of these changes without breaking half of the actors in the game. Obviously,
this kind of architecture is fundamentally flawed.

Component Architecture

Go back and take a look at Figure 6.1 again and notice how all of those subclasses
are really just trying to add a new feature to the actor. If you can encapsulate each of
those features into a component and compose a final object made up of those com-
ponents, you can get the same functionality as the old class hierarchy but still have
the flexibility to make changes. The Actor class becomes nothing more than a place
to store components. What’s even better is that these components are built up at
runtime, so you can add and remove them during the course of the game. You
can’t do that with the old inheritance model!

The components have a base class that the actor maintains a reference to as well as a
subclass interface that represents the responsibility of that component. Each subclass
of that interface is an implementation of that responsibility. For example, you might
have one interface class called AiComponent, which has several different implemen-
tations for different kinds of AI. The important thing to note is that each component
interface has a unique identifier, and each actor is only allowed to have one class of a
particular responsibility. That means you could have two AiComponent subclasses,
but you could replace an existing one with a new one, allowing you to change the
actor’s behavior at runtime.

Component Architecture 159

Figure 6.3 highlights the new class diagram, showing how these components interact.

In this model, the actor owns a bunch of components (as represented by the dia-
mond), which in turn serves as the base class for the component interfaces. When-
ever a system needs access to a component, it asks the actor for that interface and
gets a pointer to the appropriate interface object. The lowest level of the tree defines
the behavior for that component. It’s important to note that no outside system ever
gets a pointer directly to the concrete class. You would never have a system know
about Ammo or Health directly. You’ll learn more about this in Chapter 11, “Game
Event Management,” when you see the event system.

Blobs Can Exist Anywhere

I mentioned earlier how having a deep class hierarchy for game objects can
create blob classes and how components can help mitigate that. Components
are the answer to all of your problems, and it’s really easy to create blob
components. At SuperEgo Games, we had a component called SeClump,
which was a class that contained all the rendering info, geometry, textures,
shaders, effects, and positioning for an actor. This really should have been
split into several different components that had the ability to work together.
Not all things with position need to be rendered, and not everything that
needs to be rendered needs a shader. Try to have each component handle
exactly one thing.

Figure 6.3
The actor component system.

Creating Actors and Components

All actors are created using a factory. The factory’s job is to take an XML resource,
parse it, and return a fully initialized actor complete with all the appropriate compo-
nents. It’s important to understand how actors are built, so let’s take a look at this
process before diving into the Actor and ActorComponent classes.

160 Chapter 6 n Game Actors and Component Architecture

All actors are defined with an XML data file. This data file allows you to define a
component configuration and any default values for that component. Here’s some
sample XML for an actor:

<Actor>

<CubePhysicsComponent>

<InitialTransform>

<Position x=“0” y=“5” z=“0”/>

<Orientation degrees=“-90”/>

</InitialTransform>

<Shape>

<Dimensions x=“1” y=“1” z=“1”/>

</Shape>

<Density>castIron</Density>

<PhysicsMaterial>Normal</PhysicsMaterial>

</CubePhysicsComponent>

<TeapotRenderComponent>

<Color r=“0” g=“0” b=“1.0” a=“1.0”/>

</TeapotRenderComponent>

</Actor>

This XML file defines an actor with two components, a CubePhysicsComponent

and a TeapotRenderComponent. If you decide later on that the density of the
physics material needs to change, you can do that right here. If you decide that this
actor needs to have a brain, you can easily add an AI component without changing a
single line of code. That’s the power of data-driven development.

Keep in mind that these actor XML files define the template for a type of actor, not a
specific actor instance. There can be many instances of this actor running around, each
with completely different sets of data within their components. The XML file only
defines the definition. You can think of it as defining a class for this type of actor.

Now that you’ve seen how to define types of actors, let’s take a look at the factory
class that’s responsible for parsing this data and creating the actor instance.

typedef ActorComponent *(*ActorComponentCreator)(void);

typedef std::map<std::string, ActorComponentCreator> ActorComponentCreatorMap;

// some actor typedefs to make our life easier

typdef unsigned long ActorId;

typedef shared_ptr<Actor> StrongActorPtr;

typedef shared_ptr<ActorComponent> StrongActorComponentPtr;

class ActorFactory

{

ActorId m_lastActorId;

Creating Actors and Components 161

protected:

ActorComponentCreatorMap m_actorComponentCreators;

public:

ActorFactory(void);

StrongActorPtr CreateActor(const char* actorResource);

protected:

virtual StrongActorComponentPtr CreateComponent(TiXmlElement* pData);

private:

ActorId GetNextActorId(void) { ++m_lastActorId; return m_lastActorId; }

};

The typedef at the very top defines the function pointer signature for instantiating
component objects. These functions are stored in the m_actorComponentCrea-

tors map, which is keyed by the string name of the component. This string comes
from the XML.

Everything starts with the CreateActor() function, which is the only public
method.

StrongActorPtr ActorFactory::CreateActor(const char* actorResource)

{

// Grab the root XML node

TiXmlElement* pRoot =

XmlResourceLoader::LoadAndReturnRootXmlElement(actorResource);

if (!pRoot)

{

GCC_ERROR(“Failed to create actor from resource: ” +

std::string(actorResource));

return StrongActorPtr();

}

// create the actor instance

StrongActorPtr pActor(GCC_NEW Actor(GetNextActorId()));

if (!pActor->Init(pRoot))

{

GCC_ERROR(“Failed to initialize actor: ” + std::string(actorResource));

return StrongActorPtr();

}

// Loop through each child element and load the component

for (TiXmlElement* pNode = pRoot->FirstChildElement(); pNode;

pNode = pNode->NextSiblingElement())

162 Chapter 6 n Game Actors and Component Architecture

{

StrongActorComponentPtr pComponent(CreateComponent(pNode));

if (pComponent)

{

pActor->AddComponent(pComponent);

pComponent->SetOwner(pActor);

}

else

{

return StrongActorPtr();

}

}

// Now that the actor has been fully created, run the post init phase

pActor->PostInit();

return pActor;

}

First, this function loads the resource, gets the root XML node, and does a little error
checking. Then it instantiates the actor object, generating and passing in the next
actor ID. The actor ID is important because it allows you to represent the actor
uniquely as a single primitive value (in this case, an unsigned long). It’s generally fas-
ter and easier to pass this value around, especially when you start dealing with other
systems and languages. You’ll see this ID used quite a bit in Chapter 12, “Scripting
with Lua.” Lua doesn’t have to know anything about the internals of the actor sys-
tem; it just knows that it has a value it can use to tell the actor system to do some-
thing with a specific actor.

The actor’s Init() function is called to do any base-level initialization before adding
components. If this succeeds, the next step is to loop through all the components
defined in the XML file and load each one. This is done by calling the CreateCom-
ponent() function, passing in the XML node for that component. The component
returned is then added to the actor’s component map, and the component is told of
its new owner. If this process fails, the function aborts. Having no actor is better than
having a partially constructed one. Once the components have all been added, the
actor’s PostInit() function is run. The PostInit() function takes care of any
initialization that needs to occur after the actor and all components have been fully
created. That’s it, the newly composed actor is returned to the caller.

The CreateComponent() function is relatively simple.

StrongActorComponentPtr ActorFactory::CreateComponent(TiXmlElement* pData)

{

Creating Actors and Components 163

std::string name(pData->Value());

StrongActorComponentPtr pComponent;

auto findIt = m_actorComponentCreators.find(name);

if (findIt != m_actorComponentCreators.end())

{

ActorComponentCreator creator = findIt->second;

pComponent.reset(creator());

}

else

{

GCC_ERROR(“Couldn’t find ActorComponent named ” + name);

return StrongActorComponentPtr(); // fail

}

// initialize the component if we found one

if (pComponent)

{

if (!pComponent->Init(pData))

{

GCC_ERROR(“Component failed to initialize: ” + name);

return StrongActorComponentPtr();

}

}

// pComponent will be NULL if the component wasn’t found. This isn’t

// necessarily an error since you might have a custom CreateComponent()

// function in a subclass.

return pComponent;

}

C++0x/C++ 11 Redefines the auto Keyword

What is the auto keyword doing in that function? There’s a new standard
being published called C++0x, or C++ 11. This new standard adds a huge
amount of really cool features to the C++ language, some of which were
covered in Chapter 3. If you have Visual Studio 2010, you can take
advantage of a few of them.

One of these features is the newly overloaded auto keyword. The original
usage of this keyword was to declare the variable in the automatic storage
class. In other words, make the variable behave normally. This made it the
single most useless (and redundant) keyword in the C++ language. In C++0x,
the auto keyword now defines a variable whose type can be deduced at
compile time. In the above code, I use it to declare an iterator so that if the

164 Chapter 6 n Game Actors and Component Architecture

data structure changes in the future, I don’t have to update this code. It also makes the code a bit easier
to read. Since the variable type is deduced statically (at compile time), there’s no runtime cost at all.
In fact, if you hover over the variable itself in Visual Studio 2010, a tooltip will even tell you what the
type is.

First, this function grabs the name of the component from the XML node passed in.
Then it searches the component creator map to find the specific creator function and
calls it to instantiate the component. If it can’t find the creator, it tosses up an error
message and returns in disgrace. The creator functions are trivially simple. They just
return the appropriate instantiated object.

ActorComponent* CreateCubePhysicsComponent()

{

return GCC_NEW BoxPhysicsComponent;

}

Back to the CreateComponent() function, the newly created component is then
initialized by calling its Init() function. Assuming this succeeds, the newly initial-
ized component is returned back to the CreateActor() function.

And there you have it! That’s the process for creating and initializing an actor from a
data file.

Defining Actors and Components

Now that you have an understanding of how actors get into the game, it’s time to
show you what an actor really looks like. Here’s the Actor class:

class Actor

{

friend class ActorFactory;

typedef std::map<ComponentId, StrongActorComponentPtr> ActorComponents;

ActorId m_id; // unique id for the actor

ActorComponents m_components; // all components this actor has

public:

explicit Actor(ActorId id);

˜Actor(void);

bool Init(TiXmlElement* pData);

void PostInit(void);

void Destroy(void);

Defining Actors and Components 165

void Update(int deltaMs);

// accessors

ActorId GetId(void) const { return m_id; }

// template function for retrieving components

template <class ComponentType>

weak_ptr<ComponentType> GetComponent(ComponentId id)

{

ActorComponents::iterator findIt = m_components.find(id);

if (findIt != m_components.end())

{

StrongActorComponentPtr pBase(findIt->second);

// cast to subclass version of the pointer

shared_ptr<ComponentType> pSub(

std::tr1::static_pointer_cast<ComponentType>(pBase));

weak_ptr<ComponentType> pWeakSub(pSub); // convert strong pointer

// to weak pointer

return pWeakSub; // return the weak pointer

}

else

{

return weak_ptr<ComponentType>();

}

}

private:

// This is called by the ActorFactory; no one else should be

// adding components.

void AddComponent(StrongActorComponentPtr pComponent);

};

The m_components member is the map of all components that this actor has.
Notice that they’re keyed off the component ID. This ID is unique for each compo-
nent interface.

The Init() and PostInit() functions are called by the factory as the actor is
being created and were covered in the CreateActor() function previously.

The Destroy() function is called when you want to destroy the actor. The actor
holds onto strong references to each of its components, but the components also
need to hold onto strong references to the actor. If you recall from my peanut butter
and jelly example in Chapter 3, having a circular reference can potentially cause
memory leaks. It’s not easily avoided since some components may still need to access
the actor during destruction time. If weak pointers were used instead, it would cause

166 Chapter 6 n Game Actors and Component Architecture

a crash whenever the component destructor tried to access the actor. The actor gets
destroyed when all strong references are released, which means all weak references
are immediately made invalid. The result is that the component’s weak reference to
the actor is no longer valid and can’t be used. Since both references need to be strong
references, the circular reference chain has to be explicitly broken. The Destroy()

function takes care of this by explicitly clearing out the component map.

The Update() function is called every time the game updates. You’ll see how this
works in Chapter 7, “Controlling the Main Loop,” when you learn about the main
game loop.

GetComponent() is a template function that enables you to get any component by
passing in the component ID. It takes care of the smart pointer casting and returns a
weak reference to the component, which allows the caller to safely store this pointer
while still allowing the component to be destroyed. Just be sure to check the validity
of the pointer before using it.

Looking back at the class declaration, you might notice something a bit odd. There
are no virtual functions whatsoever, because this class is not meant to be subclassed.
All the variation comes from the components you attach to this actor. That’s called
composition, which is in action here (see Chapter 3).

Another key thing to notice is that the Actor class does absolutely nothing by itself.
Its entire purpose in life is to manage and maintain components. An actor without
components is just an empty box.

Simple Functions Can Be More Expensive Than You Think

The GetComponent() function is extremely simple—it just searches a map that’s
typically very small and returns a value. By itself, this is certainly fast enough, but
this function has the possibility of being called hundreds or even thousands of times
each frame. It’s important to make sure that functions like this are lightning fast. The
previous implementation is the simplest way but not the fastest.

On The Sims Medieval, our component maps for actors are laid out in a
contiguous block of memory and are accessed by offset. When a system asks
for a component, it’s a simple pointer add to find the correct component.
Another solution could be to cache certain components. One project I worked
on had a transform component that was so commonly accessed, we just had a
pointer to it directly on the Actor class.

Here’s a look at the ActorComponent base class:

class ActorComponent

{

friend class ActorFactory;

Defining Actors and Components 167

protected:

StrongActorPtr m_pOwner;

public:

virtual ˜ActorComponent(void) { }

// These functions are meant to be overridden by the implementation

// classes of the components.

virtual bool VInit(TiXmlElement* pData) = 0;

virtual void VPostInit(void) { }

virtual void VUpdate(int deltaMs) { }

// This function should be overridden by the interface class.

virtual ComponentId VGetComponentId(void) const = 0;

private:

void SetOwner(StrongActorPtr pOwner) { m_pOwner = pOwner; }

};

This is the interface for all components. The m_pOwner member is the link back to
the actor, which is necessary to allow components to communicate with each other.
Other than that, there are no member variables. The rest of the class serves as an
interface for individual components to override and implement.

You already saw the VInit() and VPostInit() functions in the factory’s Create-
Component() method. The VUpdate() function is called by the actor’s Update()
function. The VGetComponentId() function is overridden by the component inter-
face classes that derive from this class. Every component interface has a unique ID,
and this accessor is used to retrieve it. A component must have an ID, which is why
this is a pure virtual function.

Storing and Accessing Actors

There are a number of ways to store actors and even components. The method used
in this book is an STL map where the key is the actor ID.

typedef std::map<ActorId, StrongActorPtr> ActorMap;

ActorMap m_actors;

Maps allow for relatively fast lookups, insertions, and removals (which, for the mathemat-
ically inclined, are all O(log n)). All actors live in this map on the BaseGameLogic

class, which has a public API for retrieving actors.

virtual weak_ptr<Actor> VGetActor(const ActorId id);

168 Chapter 6 n Game Actors and Component Architecture

Note that VGetActor() returns a weak pointer to the actor so that systems can hold
on to this pointer for as long as they want without keeping the actor from being
destroyed. In fact, the only thing that should maintain a strong pointer to the actor
is the m_actors map and the m_pOwner pointer on components owned by the
actor. Having only two strong pointers to the actor ensures that an actor is truly
destroyed when you call its Destroy() method.

Having this direct control over the lifetime of actors (or really any object) is very
important. Actors are used to represent complex objects like characters. A character
has geometry information, textures, shaders, scripts, maybe an inventory that links to
even more actors, and so on. All of these things together amount to a ton of
data, which means a ton of memory. You need to have the ability to destroy these
actor objects at any time to free up memory. If you allowed other systems to
hold onto strong pointers to actors, you’d have a tough time ensuring that the actor
was destroyed at all. Even worse, since actors are composites of multiple objects,
you could get actors that lie around in completely broken states. Fixing these types
of issues was my fulltime job for about a month toward the end of The Sims
Medieval.

There are many other ways of storing actors. You could put them all in a single STL
vector and have the index be the ID. This could be very wasteful if you’re often delet-
ing actors, unless you account for the reuse of actor IDs. The advantage here is in the
ultra-fast lookups, which are O(1), or constant time. It’s lightning fast because you
can just index into an array. This type of data structure would work well on a game
where your actors tend to stick around, like an adventure game. It wouldn’t work as
well in an FPS due to the constant deletions.

Another possible solution is to break up your game world into chunks where each
chunk represents some part of the world. If your whole world is a grid of chunks, it
becomes trivial to find out which actors belong to what chunks by taking their posi-
tion and dividing it by the width and height of the grid cells. This kind of spatial
partitioning is crucial in FPS or RTS games. Let’s say I throw a grenade that explodes
in a 15-foot radius. Which actors are affected? With the implementation above, you’d
have to loop through the entire map to find your actor. If you had a cell-based par-
titioning system, you could figure out which cells were affected by the grenade and
just loop through the actors in those cells.

Looping through the entire map isn’t a big deal when you have a couple dozen
actors. When you have hundreds or even thousands of actors, it becomes way too
costly. Spatial partitioning gives you a way to cut down the number of actors you
have to consider.

Storing and Accessing Actors 169

This is just the tip of the iceberg in how to store actors. I could probably write an
entire book on the subject! The simple STL map solution we use here makes for a
good starting point, but just keep in mind that you’ll have some work to do when
you start thinking about taking this engine to the next level and making a real game.

Putting It All Together

Now that you’ve seen how actors are built up with components and you understand
the definitions for the Actor and ActorComponent classes, it’s time to see how it
all works together with a simple example showing you how to implement a simple
component for different kinds of pickups in the game. First, we need to define the
pickup interface that all pickups will derive from.

class PickupInterface : public ActorComponent

{

public:

const static ComponentId COMPONENT_ID; // unique ID for this component type

virtual ComponentId VGetComponentId(void) const

{

return COMPONENT_ID;

}

// Pickup interface

virtual void VApply(WeakActorPtr pActor) = 0;

};

At the top is the ID that must be unique for all component interfaces, as well as the
override for the VGetComponentId() function. This is the bare-minimum require-
ment for all components. Then the pickup interface itself is defined with declaring
the VApply() pure virtual function. All pickup implementations must override and
define this function.

Now let’s write the actual implementation classes. This example will use an ammo
pickup and a health pickup.

class AmmoPickup : public PickupInterface

{

public:

virtual bool VInit(TiXmlElement* pData);

virtual void VApply(WeakActorPtr pActor);

};

class HealthPickup : public PickupInterface

{

170 Chapter 6 n Game Actors and Component Architecture

public:

virtual bool VInit(TiXmlElement* pData);

virtual void VApply(WeakActorPtr pActor);

};

The next thing to do is to define new creator factory methods:

ActorComponent* CreateAmmoPickup()

{

return GCC_NEW AmmoPickup;

}

ActorComponent* CreateHealthPickup()

{

return GCC_NEW HealthPickup;

}

These methods need to be added to the creator map, so the following lines need to be
added to the ActorFactory constructor:

m_actorComponentCreators[“AmmoPickup”] = CreateAmmoPickup;

m_actorComponentCreators[“HealthPickup”] = CreateHealthPickup;

That’s it! Now you can create ammo and health pickup definitions in the XML and
create them by calling the actor factory CreateActor() method.

Data Sharing

Inevitably, components are going to need to talk to each other. You may have a com-
ponent that stores and manipulates the position of an actor. Your AI component will
need to know this position in order to determine where it is, and your render com-
ponent will need to know where to draw the actor. There are two main ways to do
this, and many games use a combination of both.

Who Owns the Transform?

The component system at Planet Moon tried to minimize communication
between components by having each component cache important
information about other components. One such piece of information was the
transform, which described the position, orientation, and scaling of the actor.
There were no less than three transforms for any given actor: one for the
render component, one for the game logic component, and the other for the
physics component. These three transforms all had to be kept in sync with
each other. If something got out of sync, you’d see very strange behavior,
where the actor might get rendered in a different position from its physical
transform.

Data Sharing 171

One common debugging practice was to set a breakpoint on the actor’s update function and examine all
three transforms to see if they were all correct. Another common practice was to force a call to the sync
function to ensure that everything was in sync during a given code path. These were all terrible practices
and didn’t really work in the long run. One engineer was fed up with it; by the end of the project, he
refactored the whole system to use only a single transform for each actor, which had the interesting
side effect of providing a decent performance boost since we didn’t have all those sync calls
everywhere.

Direct Access

The first way to share data is by directly accessing the component interface. Each
component stores a pointer back to the owning actor, so it’s a simple matter of ask-
ing the actor for the component.

weak_ptr<Pickup> pWeakPickup =

pActor->GetComponent<Pickup>(Pickup::COMPONENT_ID);

shared_ptr<Pickup> pPickup = MakeStrongPtr(pWeakPickup);

pPickup will now either contain a strong reference to the Pickup component for
pActor or it will be empty. If it’s empty, it means pActor doesn’t have a Pickup

component. It’s important to always run this check and never make assumptions.

Notice the extra step in there to convert the weak_ptr returned by GetComponent()

into a shared_ptr by calling MakeStrongPtr(). The reason for this is that a
weak_ptr cannot be dereferenced directly; it must always be converted to a
shared_ptr before being used. MakeStrongPtr() is a helper function I wrote to
handle dead weak_ptrs.

template <class Type>

shared_ptr<Type> MakeStrongPtr(weak_ptr<Type> pWeakPtr)

{

if (!pWeakPtr.expired())

return shared_ptr<Type>(pWeakPtr);

else

return shared_ptr<Type>();

}

It’s important to note that systems should never hold onto this shared_ptr longer
than they have to because it keeps that component from getting destroyed when the
actor is destroyed. You can hold onto weak_ptr as long as you want, however. A
common strategy is to get a weak_ptr to the component you need and hold onto
it so that you don’t have to look it up every frame. Just make sure you test and that
the component is still valid. If it becomes invalid, it means the actor was destroyed,
and you need to handle that.

172 Chapter 6 n Game Actors and Component Architecture

The advantage of this method is that it’s very easy to access the component you want:
You just grab the pointer, test it, and go. The disadvantage is that you can begin to
couple multiple components tightly together. After a while, you’ll realize that every
actor needs to have a position somewhere because every other component asks for
it. As long as you make sure to always gracefully handle the case where no compo-
nent exists, this scenario shouldn’t be too bad.

Events

If you really want to decouple your components, another method is to use an event
system. The actor acts as a messaging service that its components (and other sys-
tems) can use to post messages about important events. Each component registers
which events it cares about, and when the actor receives a message, it distributes it
to the appropriate components.

For example, let’s say the AI component wants to move the actor. It just posts a mes-
sage requesting the move to a new position, and the actor tells the appropriate com-
ponents. The AI component doesn’t have to know, nor does it care, which
components receive the message.

This situation certainly keeps components from being decoupled from one another,
but it also raises a few concerns. Sometimes it’s important to know which component
is answering the message and in which order. Say you post a move message, and the
renderable component receives it first. It updates its internal positions, and everything
is fine. Then the physics component receives the new position and detects it as being
invalid. Now what? The physics system could send an event to disregard the old posi-
tion and give the new position, but this could cause an oscillation where the AI com-
ponent and physics component are battling each other trying to move the actor. The
actor will mostly appear to vibrate, jumping back and forth between two positions.

There are certainly ways around this issue. You could (and probably should) have all
message registration defined in data, which allows a great deal of control on a per-
actor basis.

Game events are covered in detail in Chapter 11.

The Best of Both Worlds

The best solution to these problems is to use a mixture of the two communication
methods. Events are great for broadcasting things that other components may or
may not care about, and direct access is great when you need to directly tell some-
thing to a specific component. Why not use both? Many games do.

Data Sharing 173

In the sample game of Teapot Wars, I’ve chosen to use the first method of directly
accessing components because it’s a lot more readable and easier to understand
exactly what’s happening. If you were take this actor system to the next level so it
could be used in a professional game, you would want to apply the concepts from
Chapter 11 and add a simple messaging system as I described in the previous section.
Other than that, this component system is very similar to the one we used on Rat
Race at Super-Ego Games.

174 Chapter 6 n Game Actors and Component Architecture

Chapter 7

by David “Rez” Graham

Controlling the Main Loop

Every game has a series of operations that run over and over to present and update
the game to the player. This is the heartbeat that lets you know the game is alive.
Games are unlike many forms of software in that even if the player does absolutely
nothing, the game still needs to be constantly thinking and processing. A typical
main loop may receive and process player input, run creature AI, update animations,
update the physics system, run any world simulation that needs to happen, render
the scene, and play music and sound effects. Every main loop is different and tailored
for each individual game. All of these operations occur in one giant loop that can’t
take longer than 33ms per iteration (or 30 iterations per second) at a minimum.
When you exit the main loop, your game shuts down

This is very different than your typical Windows program. Most Windows programs
run a message pump designed to sit there doing nothing until the application receives
an event. It does absolutely no processing until the user triggers something. This
won’t work for a game, which will happily go about processing and rendering regard-
less of player input. Even a chess game needs to be allowed to run its AI while the
player is considering his move.

Organizing the Main Loop

There are many ways to organize the main loop, and each game has its own tech-
nique. In this chapter, we’ll look at a number of different possibilities.

175

Hard-Coded Updates
The easiest way to create a main loop is to simply update every system once each
frame, as shown in Figure 7.1.

This is the easiest method to actually write since all you need to do is directly call a
bunch of update functions, but it tends to be very inflexible. What happens if you
want the AI to update at a different frequency? On Rat Race, we used a complex
heuristic utility function to determine what action an NPC wanted to do next. We
had code in there to ensure that it only ran once every second. At EA, we have
even more complex timing functions to determine which Sim gets to run AI, for
how long, and at what level of detail. Conversely, you’ll want to render as quickly
as humanly possible to avoid hitches in the visual presentation of the game.

As inflexible as this method is, it’s still certainly valid. Early games from the Stone
Age (for example, the late 80s and early 90s) all used this method. Some games still
do. I worked at a game company called PlayFirst on casual iPhone and iPad games
for a time. They all used this hard-coded method.

Multithreaded Main Loops

Another method of building the main loop is to divide your update into major sec-
tions that can run concurrently. The classic split is between game logic and

Figure 7.1
A simple main loop.

176 Chapter 7 n Controlling the Main Loop

rendering. One problem with rendering is that on modern hardware, your CPU
spends most of its time waiting for the video card to process what it just sent. By
putting the rendering system on another thread, you free up the CPU while the
GPU is working its magic (see Figure 7.2).

This is a great technique for squeezing more out of your processor, especially consid-
ering that modern processors aren’t really getting faster clock cycles, they’re getting
more cores.

Why not put everything on its own thread? You could have an architecture like the
one in Figure 7.3, where every system gets its own separate thread of execution.

One problem with using a multithreaded architecture is communication between
threads. When you have multiple threads all running at the same time and trying to
communicate with each other, you have to take steps to ensure thread safety. Fur-
thermore, threads tend to be pretty heavyweight objects, so it’s inefficient to use
threads for everything.

I’m not going to get too deep into the details here, since multithreaded architecture is
beyond the scope of this chapter. You’ll learn more about these exact issues and how
you can work around them in Chapter 19, “An Introduction to Game AI.”

Figure 7.2
A multithreaded main loop.

Organizing the Main Loop 177

A Hybrid Technique

What if we take the idea of putting multiple systems in their own discrete execution
modules but throw away all the problems with true concurrent execution? This gives
us the best of both worlds, keeping all of our different systems nice and decoupled
from each other and allowing them the illusion of being run simultaneously while
avoiding race conditions and other nasty threading issues. This technique is called
cooperative multitasking.

Cooperative multitasking is a mechanism where each process gets a little CPU time
in a round-robin fashion. It’s called cooperative because each process is responsible
for releasing control back to the calling entity. If a process goes into an infinite
loop, the entire system will hang. The trade-off for that weakness is that the system
is simple to design and extremely efficient.

Imagine a simple base class called Process with a single virtual method, VOnUpdate():

class Process

{

public:

virtual void VOnUpdate(unsigned long deltaMs) = 0;

};

You could create objects inheriting from this class and stick them in a master process list.
Every game loop, your code could traverse this list and call VOnUpdate() for each object:

typedef std::list<Process*> ProcessList;

ProcessList g_processList;

Figure 7.3
A cooperative multithreaded main loop.

178 Chapter 7 n Controlling the Main Loop

void UpdateProcesses(unsigned long deltaMs)

{

ProcessList::iterator i = m_processList.begin();

ProcessList::iterator end = m_processList.end();

while (i != end)

{

Process* pProcess = *i;

pProcess->VOnUpdate(deltaMs);

++i;

}

}

The contents of the VOnUpdate() overload could be anything. It could move the
object on a spline, it could monitor the contents of a buffer stream and update it
accordingly, and it could run some AI code. It could monitor user interface objects
like screens and buttons. If everything in your game were run by a process, you could
actually get away with a main function that looked like this:

void main()

{

if (CreateProcesses())

{

RunProcesses();

}

ShutdownProcesses();

}

It may sound crazy, but Ultima VIII’s main loop looked almost exactly like that, give
or take a few lines.

Think Like a Sim

On The Sims Medieval, every Sim had two processes that were constantly
running. One process handled the AI and ran any interactions on the Sim
(like eating, sword fighting, and so on). The other thread was the
SimUpdate, which mostly dealt with the simulation of the Sim itself. This
process took care of things like decaying commodities, moods, and any
other noninteraction updates the Sim needed to make. This system worked
remarkably well. You could actually Ctrl-Alt-Shift-click on a Sim and break
the execution of its specific interaction process! This made debugging the
internals of a particular Sim a lot easier.

There are a few wrinkles to this wonderful design that you should know. If creating a
system to handle your main loop were as easy as all that, I wouldn’t bother devoting
so much time to it. The first big problem comes when one process’s VOnUpdate()

Organizing the Main Loop 179

can destroy other processes, or even worse cause a recursive call to indirectly cause
itself to be destroyed. Think of the likely code for a hand grenade exploding. The
VOnUpdate() would likely query the game object lists for every object in a certain
range, and then cause all those objects to be destroyed in a nice fireball. The grenade
object would be included in the list of objects in range, wouldn’t it?

The solution to this problem involves some kind of reference counting system or
maybe a smart pointer. The shared_ptr template class in Chapter 3, “Coding Tid-
bits and Style That Saved Me,” solves this problem well, and it will be used in the
next section.

A Simple Cooperative Multitasker

A good process class should contain some additional data members and methods to
make it interesting and flexible. There are as many ways to create this class as there
are programmers, but this should give you a good start. There are two classes in this
nugget of code:

n class Process: A base class for processes. You’ll inherit from this class and
redefine the VOnUpdate() method.

n class ProcessManager: This is a container and manager for running all
your cooperative processes.

Here’s the definition for Process:

// some smart pointer typedef’s

class Process;

typedef shared_ptr<Process> StrongProcessPtr;

typedef weak_ptr<Process> WeakProcessPtr;

class Process

{

friend class ProcessManager;

public:

enum State

{

// Processes that are neither dead nor alive

UNINITIALIZED = 0, // created but not running

REMOVED, // removed from the process list but not destroyed; this can

// happen when a process that is already running is parented

// to another process.

// Living processes

RUNNING, // initialized and running

180 Chapter 7 n Controlling the Main Loop

PAUSED, // initialized but paused

// Dead processes

SUCCEEDED, // completed successfully

FAILED, // failed to complete

ABORTED, // aborted; may not have started

};

private:

State m_state; // the current state of the process

StrongProcessPtr m_pChild; // the child process, if any

public:

// construction

Process(void);

virtual ˜Process(void);

protected:

// interface; these functions should be overridden by the subclass as needed

virtual void VOnInit(void) { m_state = RUNNING; }

virtual void VOnUpdate(unsigned long deltaMs) = 0;

virtual void VOnSuccess(void) { }

virtual void VOnFail(void) { }

virtual void VOnAbort(void) { }

public:

// Functions for ending the process.

inline void Succeed(void);

inline void Fail(void);

// pause

inline void Pause(void);

inline void UnPause(void);

// accessors

State GetState(void) const { return m_state; }

bool IsAlive(void) const {return (m_state == RUNNING || m_state == PAUSED);}

bool IsDead(void) const

{

return (m_state == SUCCEEDED || m_state == FAILED || m_state == ABORTED);

}

bool IsRemoved(void) const { return (m_state == REMOVED); }

bool IsPaused(void) const { return m_state == PAUSED; }

// child functions

inline void AttachChild(StrongProcessPtr pChild);

StrongProcessPtr RemoveChild(void); // releases ownership of the child

StrongProcessPtr PeekChild(void) { return m_pChild; } // doesn’t release

// ownership of child

Organizing the Main Loop 181

private:

void SetState(State newState) { m_state = newState; }

};

At the very top of this class is the State enum. There are a number of different
states a process could potentially be in. Its current state determines how the
ProcessManager handles it during the update loop. Processes start in the
UNINITIALIZED state.

Along with its state, every process can have a child process (the m_pChild member).
The child is a suspended process that’s attached to this process. If this process com-
pletes successfully, the ProcessManager will attach the child and process it in the
next frame. This is a very simple yet powerful technique, allowing you to create
chains of processes. For example, if you wanted an NPC to walk to the water cooler
and take a drink, you could create one process for path finding and another for run-
ning an animation. You would then instantiate the path-finding process and attach
the animation process as a child. When you ran it, the character would path up to
the water cooler and run the animation. This was exactly how Rat Race worked.
Actions were built up by the AI and then pushed as a single-chained process.

There are five virtual functions that subclasses are allowed to override. The only
function you have to override is VOnUpdate() since that’s where the magic happens.
This function defines what your process does and gets run once every loop. The only
parameter is the delta time between this frame and the last.

VOnInit() is called once during the very first update. All of your process initializa-
tion should go here. It’s important to remember to call the base class version of this
function at the top of your override to ensure that the process state correctly gets set
to RUNNING.

VOnSuccess(), VOnFail(), and VOnAbort() are exit functions. One of them is
called when your process ends, depending on how it ended. The Succeed() and
Fail() public member functions are used to end a process and tell it if it succeeded
or failed. A process is typically only aborted due to an internal issue. It is perfectly
valid to call Succeed() or Fail() from inside VOnInit(). This is a fairly com-
mon case since initialization can fail. If this happens, the process will never have its
VOnUpdate() function called.

If a process is successful and it has a child process attached, that child will be pro-
moted into the ProcessManager’s list. It will get initialized and run the next frame.
If a process fails or is aborted, the child will not get promoted.

Note the use of the StrongProcessPtr typedef throughout. This is an excellent
example of using smart pointers in a class that uses an STL list. Any reference to a

182 Chapter 7 n Controlling the Main Loop

StrongProcessPtr is managed by the smart pointer class, ensuring that the pro-
cess object will remain in memory as long as there is a valid reference to it. The
moment the last reference is cleared or reassigned, the process memory is finally
freed. That’s why the ProcessManager has a list of StrongProcessPtr’s instead
of a list of Process pointers.

A Seriously Nasty Bug on Ultima VIII

One of the trickiest bugs I ever had to find had to do with a special kind of
process in Ultima VIII. Ultima VIII processes could attach their OnUpdate()
calls to a real-time interrupt, which was pretty cool. Animations and other
events could happen smoothly without worrying about the exact CPU speed
of the machine. The process table was getting corrupted somehow, and no
one was sure how to find it as the bug occurred completely randomly—or so
we thought. After tons of QA time and late nights, we eventually found that
jumping from map to map made the problem happen relatively frequently. We
were able to track the bug down to the code that removed processes from the
main process list. It turned out that the real-time processes were accessing the
process list at the same moment that the list was being changed. Thank
goodness, we weren’t on multiple processors; we never would have found it.

Here is the definition of the ProcessManager class:

class ProcessManager

{

typedef std::list<StrongProcessPtr> ProcessList;

ProcessList m_processList;

public:

// construction

˜ProcessManager(void);

// interface

unsigned int UpdateProcesses(unsigned long deltaMs);

WeakProcessPtr AttachProcess(StrongProcessPtr pProcess);

void AbortAllProcesses(bool immediate);

// accessors

unsigned int GetProcessCount(void) const { return m_processList.size(); }

private:

void ClearAllProcesses(void); // should only be called by the destructor

};

Organizing the Main Loop 183

The ProcessManager class is pretty small. At the very top is a typedef for a list of
pointers to Process objects. Note how they are all StrongProcessPtr types, which
in turn are of type shared_ptr<Process>. This allows you to create a process and
safely hold on to your own reference without worrying about when the object is actually
destroyed. It will be destroyed when the final strong reference is removed.

When you want to run a new process, you instantiate the specific Process subclass
you want and then call AttachProcess() to attach it to the Process Manager.
This queues it up to be initialized and run the next time the Process Manager
updates.

To update the Process Manager, you call UpdateProcesses(). Let’s take a look at
that function:

unsigned int ProcessManager::UpdateProcesses(unsigned long deltaMs)

{

unsigned short int successCount = 0;

unsigned short int failCount = 0;

ProcessList::iterator it = m_processList.begin();

while (it != m_processList.end())

{

// grab the next process

StrongProcessPtr pCurrProcess = (*it);

// save the iterator and increment the old one in case we need to remove

// this process from the list

ProcessList::iterator thisIt = it;

++it;

// process is uninitialized, so initialize it

if (pCurrProcess->GetState() == Process::UNINITIALIZED)

pCurrProcess->VOnInit();

// give the process an update tick if it’s running

if (pCurrProcess->GetState() == Process::RUNNING)

pCurrProcess->VOnUpdate(deltaMs);

// check to see if the process is dead

if (pCurrProcess->IsDead())

{

// run the appropriate exit function

switch (pCurrProcess->GetState())

{

case Process::SUCCEEDED :

184 Chapter 7 n Controlling the Main Loop

{

pCurrProcess->VOnSuccess();

StrongProcessPtr pChild = pCurrProcess->RemoveChild();

if (pChild)

AttachProcess(pChild);

else

++successCount; // only counts if the whole chain completed

break;

}

case Process::FAILED :

{

pCurrProcess->VOnFail();

++failCount;

break;

}

case Process::ABORTED :

{

pCurrProcess->VOnAbort();

++failCount;

break;

}

}

// remove the process and destroy it

m_processList.erase(thisIt);

}

}

return ((successCount << 16) | failCount);

}

This function loops through every process in the list. If the process is in the
UNINITIALIZED state, it calls VOnInit() on the process. Then, if the process is in
the RUNNING state, it calls VOnUpdate(). Note that VOnInit() typically sets the
state to RUNNING, so the process will get initialized and run its first update in the
same frame, assuming VOnInit() succeeded.

The next block checks to see if the process has died. If so, it checks the exact state and
calls the appropriate exit function, allowing the process to perform any exit logic. A
successful process will have its child attached to the process list before being removed.
Failed processes will simply be removed, causing their children to be destroyed.

Recall that nearly 100 percent of the game code could be inside various overloads of
Process::VOnUpdate(). This game code can, and will, cause game processes and
objects to be deleted, all the more reason that this system uses smart pointers.

Organizing the Main Loop 185

Round Robin Scheduling Gone Bad

This system was used extensively to control the login servers of Ultima Online.
When it was initially deployed, customer service began to receive complaints
that some users were waiting more than five minutes for the login process to
finish, and that didn’t agree with the login server metrics, which measured
over 2,000 logins per minute and an average login time of 15 seconds or so.
The problem was identified after a little digging. I had bailed early from serving
all the processes in the list in an attempt to poll network sockets and database
activity, and in so doing, I left a few processes at the end of the list completely
out in the cold.

Very Simple Process Example: DelayProcess

A very simple example of a useful process using this cooperative design is a delay
process. This process is useful for inserting timed delays, such as the fuse on an
explosive. Here’s how it works:

class DelayProcess : public Process

{

unsigned long m_timeToDelay;

unsigned long m_timeDelayedSoFar;

public:

explicit DelayProcess(unsigned long timeToDelay);

protected:

virtual void OnUpdate(unsigned long deltaMs);

};

DelayProcess::DelayProcess(unsigned long timeToDelay)

{

m_timeToDelay = timeToDelay;

m_timeDelayedSoFar = 0;

}

void DelayProcess::OnUpdate(unsigned long deltaMs)

{

m_timeDelayedSoFar += deltaMs;

if (m_timeDelayedSoFar >= m_timeToDelay)

Succeed();

}

Here’s how you create an instance of DelayProcess:

StrongProcessPtr pDelay(new DelayProcess(3000)); // delay for 3 seconds

processManager.AttachProcess(pDelay);

186 Chapter 7 n Controlling the Main Loop

Take note of two things. First, you don’t just “new up” a DelayProcess and attach
it to the ProcessManager. You have to use the StrongProcessPtr typedef (or
the shared_ptr template directly) to manage Process objects. This fixes problems
when processes get deleted, but other objects may still point to them. Second, you
must call the Attach() method of ProcessManager to attach the new process to
the Process Manager.

As the main loop is processed and ProcessManager::UpdateProcesses() is
called, the DelayProcess counts the elapsed time, and once it has passed the wait
period, it calls Succeed(). By itself, it’s a little underwhelming—it just uses up a
little CPU time and goes away. But if you define another process, such as Kaboom-
Process, things get a little more interesting. You can then create a nuclear explosion
with a three-second fuse without a physics degree:

// The delay process will stay alive for three seconds

StrongProcessPtr pDelay(new DelayProcess(3000));

processManager.AttachProcess(pDelay);

// The KaboomProcess will wait for the DelayProcess

// Note – kaboom will be attached automatically

StrongProcessPtr pKaboom(new KaboomProcess());

pDelay->AttachChild(pKaboom);

The Process::AttachChild() method sets up a simple dependency between the
DelayProcess and the KaboomProcess. KaboomProcess will remain inactive
until the DelayProcess succeeds. If the DelayProcess fails or is aborted for
some reason (maybe the level ended before it finished), then the KaboomProcess

is simply removed and never actually updates.

Data-Driven Processes

If you plan on using processes as the core of your game, you should have a
data format that lets you define chains of processes and dependencies. At
Super-Ego Games, we used XML to define our process chains and how they
all fit together. It allowed us to set up complex game logic without having to
touch a single line of code. An even better way would be to use a visual editor
so designers would be able to move around nodes and create complex game
logic without involving engineers at all. This is basically what the quest system
did in The Sims Medieval.

More Uses of Process Derivatives

Every updatable game object can inherit from Process. User interface objects such
as buttons, edit boxes, or menus can inherit from Process. Audio objects such as

Organizing the Main Loop 187

sound effects, speech, or music make great use of this design because of the depen-
dency and timing features.

Playing Nicely with the OS

Now that we’ve seen what goes on inside the main loop and some techniques for
managing your various processes, let’s take a step out of that and look at how the
game loop fits into the operating system. This is especially important if you’re mak-
ing a game for a multitasking platform like Windows. You need to learn how to play
nicely with the operating system and the other applications running on it. For exam-
ple, this code would cause Windows to think your program has stalled:

while (true)

{

RunLogic();

RenderScene();

}

The problem here is that the code is completely ignoring all messages being sent to it.
You can’t click the X button at the top right, because none of the mouse messages get
through, and Windows considers the program to be unresponsive. It will eventually
say “not responding” next to your app in the Task Manager. It’s important to
respond to messages being sent from the operating system, even if you just pass
them through to the default handler:

return DefWindowProc(hwnd, msg, wparam, lparam);

Another problem with working on a multitasking platform like Windows is that you
sometimes have to yield resources to those applications. For example, games typically
acquire exclusive access to system resources like the video card, which allows them to
render in full screen at custom resolutions. If the user Alt-tabs, you will lose that
exclusive control and need to be able to handle that situation. You’ll learn more
about this later in this chapter when we talk about the DirectX 11 Framework.

On Windows, you typically have a message pump like this:

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpCmdLine, int nCmdShow)

{

MSG msg;

while(GetMessage(&msg, NULL, 0, 0) > 0)

{

TranslateMessage(&msg);

DispatchMessage(&msg);

188 Chapter 7 n Controlling the Main Loop

}

return msg.wParam;

}

The GetMessage() function will block execution until the application has at least
one message pending, and then it will run the inner block of the while loop. This
in turn calls the Windows procedure callback function you registered when creating
the window. If that function blocks the execution of GetMessage() by locking the
application in a loop, it won’t receive any messages. Have you ever clicked on a Win-
dows program and had it gray itself out, followed by a message saying something like
“this program is not responding”? What’s happening is that the program is never
getting back to the GetMessage() call.

The problem here is that we can’t stop execution if there are no messages pending,
nor can we ignore messages that come in. The solution here is the PeekMessage()
function, which is just like GetMessage() except that it doesn’t block execution.
That leaves us with the following loop:

while (msg.message != WM_QUIT)

{

if (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

else

{

MainGameLoop();

}

}

This is much better! First, if the application receives a quit message, it breaks out of
the loop. Then it checks to see if there’s a Windows message. If there is, it handles it
in the usual way. If not, it allows the game loop to process one iteration.

Using the DirectX 11 Framework

The code in this chapter is written to integrate with the DirectX Framework, which
handles many nasty problems, such as detecting when a player switches screen reso-
lutions or Alt-tabs to another full-screen application. If you code on other platforms,
you’ll likely be spared these issues. Windows can run multiple applications simulta-
neously, and the user can change hardware configurations, like screen size, while
your game is running. On consoles you can’t do that, and you avoid all of those hell-
ish little problems.

Using the DirectX 11 Framework 189

Rendering and Presenting the Display

The DirectX 11 Framework provides a pretty good routine to render and present the
display. It is called from the DXUTMainLoop() function when the game is not pro-
cessing messages, in exactly the way the MainGameLoop() function was mentioned
earlier. The function is DXUTRender3DEnvironment11() inside Source\GCC4
\3rdParty\DX11\Core\DXUT.cpp around line 3816. Let’s pick it apart so you can
understand what’s going on. Since I don’t have permission to reprint this method,
you should launch Visual Studio and load either a DirectX sample or the Game Cod-
ing Complete 4 source code and follow along.

The first thing you should notice about this function is how much can go wrong, and
that it can pretty much go wrong after nearly every single line of code. The reason for
this is a quirk of Windows games—players have an annoying tendency to actually
have other applications up, like Firefox or something, while playing your game! Any
kind of task switching, or user switching under XP or later, can cause DirectX to lose
its devices.

After getting a bunch of a DirectX objects and making sure they still exist, the func-
tion checks to see if rendering is paused, if the window is occluded, or if it’s inactive.
If any of these conditions is true, it calls Sleep() to relinquish time back to other
applications. This is just part of being a nice Windows application, and even silly
Windows tools that have similar message pumps should do this. You might decide
to tweak the amount of time you sleep. Your mileage with the sleep values in the
framework could vary from game to game.

After all that, the code handles issues related to timers and timing. This is the section
of code that starts with DXUTGetGlobalTimer()->GetTimeValues(). Almost
every game needs to track how many milliseconds have elapsed since the last frame
so that animations and object movement can be kept in sync with reality. The alter-
native is to ignore time altogether and just render things based on each frame that
renders, but that would mean that faster computers would literally play the game
faster—not in the “gamer” sense but in an actual sense. If you keep track of time,
then objects on faster computers will still fall to the ground at the same rate as slower
computers, but the faster computers will look smooth as silk.

The next section of code retrieves and calls the application’s frame move callback func-
tion. This callback is set to GameCodeApp::OnUpdateGame(), which controls the
game logic and how the game state changes over each pass of the main loop. Control
passes to the game logic’s VOnUpdate() method, which will update all the running
game processes and send updates to all the game views attached to the game logic.

190 Chapter 7 n Controlling the Main Loop

The next bit of code retrieves and calls the application’s frame render callback, which
will call VOnRender() methods of views attached to the game. After the rendering is
complete, the screen must be presented, which is when things can go awry. Back in
the good old days, this was called “slamming” because the back buffer was copied
byte-by-byte to the front buffer in one memory copy. Now this is handled by a sim-
ple pointer change in the video hardware and is generally called “flipping” because
nothing is really copied at all.

The call to Present() will cause the scene to actually be presented onto the moni-
tor. The next step is to check the return code from this function because there may
be more work to do. The user might have to change video modes, requiring that the
device be reset, or perhaps it was removed or the window became fully occluded.
These edge cases must all be handled gracefully.

After all that, the frame counter is updated, and a little status bit is checked to see if
the game should exit after one frame. This is actually a quite handy thing to have,
whether you write your own frame counter or use the one in the framework, because
you can use it to smoke test your game. An amazing amount of code runs when you
initialize, update, and render your game, and any problems during this process could
be written out to a log file for later analysis. This is a great thing to do, and it can be
an important part of a simple smoke test where you can be somewhat sure that the
game can at least get to the first frame.

Your Callback Functions for Updating and Rendering

Luckily, the DirectX Framework has done most of the major work for you, even to
the point of splitting updates in your game logic from the rendering of the game.
This matches well with the architecture I’m pushing in this book. If you recall the
_tWinMain() implementation from the previous chapter, among the code were
these two calls:

DXUTSetCallbackD3D11FrameMove(GameCodeApp::OnUpdateGame);

DXUTSetCallbackD3D11FrameRender(GameCodeApp::OnRender);

The first is a callback where you can update your game, and the second is a callback where
your game can render. Let’s take a look at the implementation of those two methods:

void CALLBACK GameCodeApp::OnUpdateGame(double fTime, float fElapsedTime,

void* pUserContext)

{

if (g_pApp->HasModalDialog())

{

// don’t update the game if a modal dialog is up.

Using the DirectX 11 Framework 191

return;

}

if (g_pApp->m_bQuitting)

{

PostMessage(g_pApp->GetHwnd(), WM_CLOSE, 0, 0);

}

if (g_pApp->m_pGame)

{

// allow event queue to process for up to 20 ms

IEventManager::Get()->VTick(20);

if (g_pApp->m_pBaseSocketManager)

g_pApp->m_pBaseSocketManager->DoSelect(0); // pause 0 microseconds

g_pApp->m_pGame->VOnUpdate(float(fTime), fElapsedTime);

}

}

This method updates your game logic, but only if there isn’t a modal dialog box up
and if the application isn’t quitting.

This code implies that you shouldn’t perform any quit mechanism while you are
pumping messages. Quitting takes a good amount of time, and a player worried
about getting caught playing your game while he is supposed to be doing something
else can press Alt-F4 to close your game about 20 times in a single second. If you
send all those quit messages into the message pump, you’ve got to filter them out,
which is why you check to see if you’re actually quitting so you can post a WM_CLOSE
message. The user interface control that receives the quit button click event or the
hot key event should simply set a Boolean variable to true, which will be checked
after the last message in the queue has been handled.

This function is a member of GameCodeApp, but since this method is a callback, it
must be declared static, which means that you have to use the global g_pApp

pointer to get to the instance of the GameCodeApp class. The same is true for the
GameCodeApp::OnRender call:

void CALLBACK GameCodeApp::OnD3D11FrameRender(ID3D11Device* pd3dDevice,

ID3D11DeviceContext* pd3dImmediateContext, double fTime,

float fElapsedTime, void* pUserContext)

{

BaseGameLogic *pGame = g_pApp->m_pGame;

for(GameViewList::iterator i=pGame->m_gameViews.begin(),

end=pGame->m_gameViews.end(); i!=end; ++i)

{

(*i)->VOnRender(fTime, fElapsedTime);

192 Chapter 7 n Controlling the Main Loop

}

g_pApp->m_pGame->VRenderDiagnostics();

}

This method simply iterates through all the views attached to the game logic, g_pApp-
>m_pGame, and calls VOnRender() for each one. After that, the game logic calls a
special method for rendering debug information, VRenderDiagnostics(). This is a
convenience for programmers who would rather not adhere to the separation between
logic and view just to draw some debug lines on the screen.

A good example of how I use VRenderDiagnostics() is drawing physics informa-
tion, such as mesh wireframe of any objects moving on the screen. The physics sys-
tem is purely a game logic object, and the renderer really belongs to the game view. If
you wanted to religiously follow the separation of game logic and game view, you’d
have to do something like have the game logic create special “line” objects and send
messages to the game view that it needs to draw these lines.

That’s just dumb, in my opinion. A game logic should be able to use the application
layer—in this case, DirectX’s renderer—to draw debug data onto the screen. Yes, it
breaks the rules, but yes, you should do it.

Can I Make a Game Yet?

By now you’ve learned a lot about some of the hidden superstructure of game code,
most notably about GameCodeApp, BaseGameLogic, Process, and Process

Manager. You’ve probably figured out that most of the subsystems discussed so far
can benefit from cooperative multitasking: animated objects, user interface code, and
more. If you’re like me, you’ve already played with writing your own games, and
you’re itching to put everything together in a tight little game engine. At this point,
you know just enough to be dangerous and could probably strike out on your own to
write a few very simple games. However, there are still quite a few important bits and
pieces you should know if you want to take it to the next level.

For example, you probably never thought about how game engines stuff a few giga-
bytes of game art and sounds through a much smaller memory space. Read the next
chapter and find out.

Can I Make a Game Yet? 193

This page intentionally left blank

Chapter 8

by Mike McShaffry

Loading and Caching Game

Data

Once you get a nice 3D model or sound, how do you actually get it into your game?
Most game books present code examples where the game loads X, WAV, or MP3
files directly. This doesn’t work in real games. Real games have tens of thousands of
these files and other bits of data. They might not fit into memory at the same time,
either. When you see a detailed environment in Gears of War, you can bet that it fills
memory nearly to the last bit, and the act of walking into another room or building
needs some way of kicking out unused assets and bringing in the new, and doing it in
a way that seems completely transparent to the player. So how does this really work?
Take a look at Figure 8.1.

Games usually pack selected bits of game data into a small number of files, often
called a resource file. By the way, just in case I haven’t mentioned it, I tend to use
the terms game assets and game resources to mean the same thing—they are all
game data. Art, animations, sounds, 3D meshes, and map levels are all game assets.
These files usually map one-to-one with an entire game level. When you see a load-
ing screen, you are likely witnessing the game reading just enough of the resource
files to begin playing the game.

Each game resource you use must be converted to the smallest possible format that is
supported by the hardware, taking care to keep the quality at the right level. This is
pretty easy for sounds, since you can easily predict the quality and size delta of a
44KHz stereo WAV versus an 11KHz mono WAV stream. Textures are trickier to

195

work with, on the other hand, because the best storage format is completely depen-
dent on its use in the game and what it looks like.

These conversions are also dependent on the hardware platform. You can count on
the fact that the Sony PS3 and the Microsoft Xbox360 will want sounds and textures
presented in two completely different formats. This process will result in different
resource files for each platform you support.

Most everyone is familiar with the Zip file, originally created back in 1989 by Phil
Katz, first implemented in PKWARE’s PKZIP utility. There might be better compres-
sion and storage formats for storing particular bits of game data, but for our pur-
poses it will do nicely as a general-purpose resource file. Later in this chapter, I’ll
show you how this is implemented in code, packing all your game assets into one
neat file format.

If your game is more of an open world design, your technology has to be more com-
plicated and manage resources streaming from disc into memory and being released
as the player moves through the game world.

More likely than not, you’ll be streaming resources not from disc, but from the Web.
The concepts are exactly the same, but the bandwidth can be extremely variable and

Figure 8.1
This is how data flows from game resource files to your game subsystems.

196 Chapter 8 n Loading and Caching Game Data

certainly less than grabbing resources from the local hardware. Predicting what the
player needs, and finding ways to stream those bits, is a key part of any nontrivial
game that runs over the Web.

Both of those subjects are beyond the scope of this book to present detailed solutions,
but you will be introduced to basic ideas behind resource caching so you can become
familiar with the basic concepts.

Game Resources: Formats and Storage

Requirements

Modern games have gigabytes of data. A single-layer DVD can hold 4.7GB, and a
single layer of a Blu-ray disc can hold up to 25GB. For PC games, you can browse
the install directories and get an idea of what they store and how much storage they
need. I’ll go over the big stuff and give you an idea of how the data is stored, what
formats you can use, how you can compress it, and what that does to the final prod-
uct. I’ll cover the following game data file types:

n 3D Object Meshes and Environments: This usually requires a few tens of
megabytes and stores all the geometry for your game.

n 3D Mesh/Object Animation Data: This is much smaller than you’d think, but
lots of in-game cinematics can blow this up to many tens of megabytes.

n Map/Level Data: This is a catchall for components like trigger events, object
types, scripts, and others. Together, they take up very little space and are usually
easy to compress.

n Sprite and Texture Data: These get pretty big very fast and can take many
hundreds of megabytes, even on a Wii game.

n Sound, Music, and Recorded Dialogue: Recorded dialogue usually takes more
space on games than any other data category, especially when the games have a
strong story component.

n Video and Prerendered Cinematics: Minute-per-minute, these components
take up the most space, so they are used sparingly in most games. They are
essentially the combination of sprite animation and stereo sound.

3D Object Meshes and Environments

3D object and environment geometry takes up a lot less space than you’d think. A
3D mesh, whether it is for an object, a character, or an environment, is a collection

Game Resources: Formats and Storage Requirements 197

of points in 3D space with accompanying data that describes how these points are
organized into polygons and how the polygons should be rendered.

The points in 3D space are called vertices. They are stored as three floating-point
numbers that represent the location of the point (X,Y,Z) from the origin. Individual
triangles in this mesh are defined by three or more indices into the point list. Here’s
an example of the mesh for a cube that has been pushed around so that it isn’t sym-
metrical in any axis (a useful object you’ll use later in the 3D graphics chapter):

Vec3 TestObject::g_SquashedCubeVerts[] =

{

Vec3(0.5,0.5,-0.25), // Vertex 0.

Vec3(-0.5,0.5,-0.25), // Vertex 1.

Vec3(-0.5,0.5,0.5), // And so on.

Vec3(0.75,0.5,0.5),

Vec3(0.75,-0.5,-0.5),

Vec3(-0.5,-0.5,-0.5),

Vec3(-0.5,-0.3,0.5),

Vec3(0.5,-0.3,0.5)

};

WORD TestObject::g_TestObjectIndices[][3] =

{

{ 0,1,2 }, { 0,2,3 }, { 0,4,5 },

{ 0,5,1 }, { 1,5,6 }, { 1,6,2 },

{ 2,6,7 }, { 2,7,3 }, { 3,7,4 },

{ 3,4,0 }, { 4,7,6 }, { 4,6,5 }

};

Feel free to plot it out on graph paper if you want, or you can take my word for it.
The eight vertices are stored in an array, and the triangles are defined by groups of
three indices into that array. A cube has eight points in space and six faces, but those
faces are each comprised of two triangles. Twelve groups of three indices each are
needed to define twelve triangles that make a cube.

If you have some experience with 3D programming, you might know that there are
ways to save some space here. Instead of storing each triangle as a group of three
points, you can store a list of connected triangles with fewer indices. These data
structures are called triangle lists or triangle fans. Either of these stores the first trian-
gle with three indices and each following triangle with only one additional index.
This technique is a little like drawing a shape without picking up your pencil, since
each extra triangle requires only one additional vertex rather than an entire set of

198 Chapter 8 n Loading and Caching Game Data

three vertices. This way you can store n triangles with only n + 2 indices instead of
n*3 vertices—quite a savings.

Let’s assume you have an object with 2,000 vertices: 300 triangles stored in 100 trian-
gle groups. Take a look at Table 8.1 to see how much space this data takes.

It looks like you can store the raw geometry in about 82KB. But wait, there’s a little
more data to consider. The data doesn’t tell you anything about how to texture the
object. Renderers will assume that each triangle group has the same material and tex-
tures. For each group, you’ll need to store some additional data.

A material describing the diffuse map is going to define the color of an object and
how it reflects light. The size of the material can vary, depending on what the gra-
phics chip and renderer can handle. The renderer can also apply one or more tex-
tures to the object. This data can vary in size. If the object is unaffected by lighting
and has a solid color, it will require only a few bytes. If the object is affected by light-
ing and has a base texture, a decal texture, a normal map, a specular map, an envi-
ronment map, and stores color information for ambient, diffuse, and specular
lighting, then it could require almost 100 bytes per vertex. This information is stored
for each index in each triangle group.

Let’s look at two cases, shown in Table 8.2. The first has a simple textured, colored
object, and the second has an additional 64 bytes per index in each triangle group to
store material and lighting data.

Notice the staggering difference. The more complicated object is quite a bit larger,
but it also looks amazing. So what have you learned? The complexity of the geometry
can be made much smaller if your 3D models make good use of triangle strips and
fans, but most of the savings comes from being frugal with complicated material

Table 8.1 Raw Geometry Sizes

Object Members Size

Vertices 2,000 points @ (3 floating-point
numbers x 4 bytes each).

24,000 bytes

Each triangle group 300 triangles @ (302 indices x
2 bytes each).

604 bytes

All triangle groups 100 groups @ 604 bytes = 60,400
bytes. Vertices @ 24,000 bytes +
Triangles @ 60,400 bytes.

84,400 bytes

Game Resources: Formats and Storage Requirements 199

models. This savings comes at a cost to the visual fidelity of the object, which affects
the player’s gameplay experience.

One thing you should note: The actual textures are stored separately from the mesh
data, and we haven’t even talked about those yet. They are orders of magnitude
larger, too.

Animation Data

Animations are stored as changes in position and orientation over time. You already
know that a position in 3D space takes 12 bytes—4 bytes each for X, Y, and Z coor-
dinates. Orientation is usually stored as a 12-byte or 16-byte data structure, depend-
ing on the rendering engine. This is the difference between storing the orientation as
angles of yaw, pitch, and roll (Euler angles) or a mathematical entity known as a qua-
ternion, which is a 4-vector (X, Y, Z, W). (You’ll learn all about the quaternion in
Chapter 14, “3D Graphics Basics.”) For now, we’ll assume the orientation takes
12 bytes.

One way to store animations is by recording a stream of position and orientation
data at fast intervals, say 30 times per second. For each second and each object, you
have the following:

12 bytes for position + 12 bytes for orientation = 24 bytes per sample

30 samples per second × 24 bytes per sample = 720 bytes/second

An object like a character is represented by a lot of discrete objects. Assuming you
have a very simple character with only 30 separate movable parts (called bones),
this gets pretty big very fast:

720 bytes/second × 30 bones = 21,600 bytes per second

Of course, there are ways to cheat. Games never store this much data for animations—it
is like storing an uncompressed TGA file for every frame of an entire movie. First, most

Table 8.2 Storing Simple versus Complicated Objects

Object Members Size

Simple textured and lit object
(30 bytes per vertex):

302 indices per group x 100
groups @ 30 bytes

906,000 bytes

Complicated material info
(80 bytes per vertex):

302 indices per group x 100
groups @ 80 bytes

2,416,000 bytes

200 Chapter 8 n Loading and Caching Game Data

motions don’t need 30 samples per second to look good. Actually, even complicated
motions can usually get by with 15 samples per second or less, and not every bone is
typically in motion at the same time, at maximum speed. Your mileage may vary with
different motions, so your code might need to store different motions sampled at differ-
ent rates. One thing you can be sure of, not every animation can look good with the
same sampling rate, so your engine should be sophisticated enough to use animation
data at different sampling rates.

Sometimes objects don’t need to change position and orientation every frame. This
implies you could store a stream of changes in position or orientation when they
happen and store nothing at all but a time delay when the object or bone is still.
Starting in the middle of or reversing an animation can be a little tricky, since you
have to start at a known position and reapply the position and orientation deltas
until you get to the position you want—something like finding the right spot in a
track on a DJ’s turntable. Every second or so, you should store the full position and
orientation information. These snapshots are usually called keyframes. They can be
very useful for jumping quickly to somewhere in the middle of an animation, and
they can also reduce small errors that can accumulate.

Finally, since the position and orientation changes are small, you can usually get
away with storing them in something other than floating-point numbers. You can
convert them to 2-byte integers, for example. The Unreal Engine does exactly this—
storing Euler angles as mapped values from 0 to 65536. You might wonder if this is a
good idea, but think about how humans perceive angles. I’d defy most people to dis-
cern the difference between a 127-degree angle and a 128-degree one—and that’s just
1/360th of a circle. Take those deltas down to 1/65536th of a circle, and you’ll see the
Unreal engineers were pretty clever indeed. These compression techniques can dra-
matically reduce the size of animation data down to a few tens of kilobytes per sec-
ond for an animated character. For example, the animation data for a main character
like Garrett in Thief: Deadly Shadows, who can use different weapons, climb on walls,
crouch, crawl, and perform other activities, should be in the 5MB to 7MB range. The
size of these animations increases linearly with the number of bones and the nature
of their movement, so as characters get more complicated and active, the size of the
animations increases, too.

Assuming that your game has a big storyline and you want to store lots of in-game cine-
matics, you can estimate the size of your in-game movies, minus the audio, like this:

n Assume the average of two characters moving simultaneously per cinematic

n Each cinematic averages 30 seconds

n 50KB per second (25KB per character per second) × 30 seconds = 1.53MB

Game Resources: Formats and Storage Requirements 201

Don’t get too excited yet; the animation data is the least of your problems. Just wait
until you see how much storage your digital audio is going to take.

Map/Level Data

Most game object data is stored in a proprietary format, which is often determined
by the type of data and the whim of the programmer. There is no standard format
for storing game object data, AI scripts, dialogue, and other components. This data is
usually packed in a binary format for the game, but during development it is usually
stored in a format that is easy to work with, such as XML. There’s a good public
domain XML parser called TinyXML, and it is included as a part of the third-party
SDKs with the companion source code.

Either way, this data is usually the least of your problems as far as storage is concerned.
Your textures, audio, and animation data will overshadow this stuff by a long, long way.

Texture Data

Left to their own devices, artists would hand you every texture they create in a TIF or
TGA file. The uncompressed 32-bit art would look exactly like the artist envisioned.
When you consider that a raw 32-bit 1024 × 768 bitmap tips the scales at just over
3MB, you’ll quickly decide to use a more efficient format when your artists are
demanding a few thousand of these.

As always, you’ll generally need to trade quality for size. Load time will also need to
be considered. The best games choose the right format and size for each asset. You’ll
be better at doing this if you understand how bitmaps, textures, and audio files are
stored and processed and what happens to them under different compression
scenarios.

Bitmap Color Depth

Different bitmap formats allocate a certain number of bits for red, green, blue, and
alpha channels. Some formats are indexed, meaning that the pixel data is actually
an index into a color table that stores the actual RGBA values. Here’s a list of the
most common formats:

n 32-bit (8888 RGBA): The least compact way to store bitmaps, but retains the
most information.

n 24-bit (888 RGB): This format is common for storing backgrounds that have
too much color data to be represented in either 8-bit indexed or 16-bit formats
and have no need for an alpha channel.

202 Chapter 8 n Loading and Caching Game Data

n 24-bit (565 RGB, 8 A): This format is great for making nice-looking bitmaps
with a good alpha channel. Green gets an extra bit because the human eye is
more sensitive to changes in green than red or blue.

n 16-bit (565 RGB): This compact format is used for storing bitmaps with more
varieties of color and no alpha channel.

n 16-bit (555 RGB, 1 A): This compact format leaves one bit for translucency,
which is essentially a chroma key.

n 8-bit indexed: A compact way to store bitmaps that have large areas of subtly
shaded colors; some of the indexes can be reserved for different levels of
translucency.

Many renderers, including DirectX, support a wide variety of pixel depth in each red,
blue, green, and alpha channel.

Support Tools Your Content Creators Will Actually Use

Avoid writing oddball tools to try to save a few bits here and there. Try to
write your game so that your content creators, such as artists, can use the
same art formats used by popular art tools like Photoshop. They will be able
to easily manipulate their work in a common and well-known tool, and your
game will look exactly the way the artists intended it to look. You’ll also be
able to find artists who can work on your game if you stick to the standard
formats and tools. If you must, you can write some great compression
methods to process the results into something really small.

Which Is Better: 24-, 16-, or 8-Bit Art?

It’s virtually impossible to choose a single format to store every bitmap in your game
and have all your bitmaps come through looking great. In fact, I can assure you that
some of your bitmaps will end up looking like they should be in your laundry pile.

Figure 8.2 shows three different bitmaps that were created by drawing a grayscale
image in Photoshop. The bitmap on the far left uses 8 bits per channel, the center
bitmap is stored using 5 bits per channel, while the one on the right is stored using
4 bits. If you attempt to store a subtly shaded image using too few colors, you’ll see
results closer to the right bitmap, which looks crummy.

If you can use 8 bits for each channel, you’ll see the best result, but you’ll trade this
quality for a much larger size. Needless to say, if your artist storms into your office
and wonders why her beautiful bitmaps are banded all to hell, you’ve likely forced
them into a bad color space. If your artists can choose the format that reproduces
the image reliably in the best possible compression, great! But you’ll tend to find

Game Resources: Formats and Storage Requirements 203

that artists will choose the biggest format every time, so some gentle incentives might
be needed to get them to optimize their art along the way. Just like programmers,
artists tend to be perfectionists in their craft.

Using Lossy Compression

A discussion of art storage wouldn’t be complete without taking a look at the effects
of using a lossy compression scheme such as JPG. The compression algorithm tweaks
some values in the original art to achieve a higher compression ratio, hence the term
“lossy.” It’s not a mistake that if you spell-check the word lossy you get “lousy” as
one of your choices. Beyond a certain threshold, the art degrades too much to get
past your QA department, and it certainly won’t get past the artist who spent so
much time creating it.

Perhaps the best approach is to get artists to decide how they’ll save their own bit-
maps using the highest lossiness they can stand. It still won’t be enough, I guarantee
you, because they are much more sensitive to subtle differences than a consumer, but
it’s a start.

Data Sizes for Textures

Texture storage is one of the big budget areas for games. They take up the most space
second only to audio and streaming video. Character textures for high-definition
console games like Gears of War can be as large as 2048 × 2048. They also have mul-
tiple layered maps for specular and emissive effects that weigh in at 512 × 512 or
1024 × 1024. This starts to add up extremely quickly.

An uncompressed 1024 × 1024 texture is going to take 2MB to 4MB in memory,
depending on whether it is a 16-bit or 32-bit texture. Most of your level geometry

Figure 8.2
Grayscale banding patterns for 24-bit, 16-bit, and 8-bit depths.

204 Chapter 8 n Loading and Caching Game Data

and game objects won’t need that kind of density; they’ll usually use different textures
in layers to create interesting effects.

A single object, such as a wall, might have a 16-bit 512 × 512 texture on it taking
1MB of memory, but add to that a couple of 128 × 128 decals and a 128 × 128
normal map and you start eating up some memory. This one object with these
three textures will take almost 2MB of texture memory. Your game might have a
few hundred objects of various detail, eating your memory faster than you expect.
The Nintendo Wii only has 64MB in the first place, which means you have to budget
your textures more than almost any other game asset.

Even the best video cards don’t perform well when you have to swap textures in and
out of video memory. If your game is expected to run well on a 512MB video card,
you’d better be careful and take that into account when building levels. A few hun-
dred objects and 10 unique characters will chew up that 512MB in a real hurry, and
you’ll have to scramble to fix the problem. Believe me, you won’t be able to ask your
customers to simply buy new video cards, unless of course you are Valve and are
publishing the latest Half-Life.

Finally, most textures need some additional storage for their mip-maps. A textured
object with a mip-map will look good no matter how far away the viewer is from
the textured object. If you’ve ever seen a really cheap 3D game where the object tex-
tures flashed or scintillated all the time, it’s because the game didn’t use mip-mapped
textures. A mip-map precalculates the image of a texture at different distances. For
example, a 128 × 128 texture that is fully mip-mapped has a 64 × 64, 32 × 32, 16 ×
16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1 version of itself. The renderer will choose one or
even blend more than one of these mip-maps to render the final pixels on the poly-
gon. This creates a smooth textured effect, no matter how the viewpoint is moving.

A full mip-map for a texture takes 33 percent more space than the texture does by
itself. So don’t forget to save that texture space for your mip-maps. One interesting
bit—games almost always pregenerate their mip-maps and store them in the resource
file rather than generating them on the fly. There are two reasons for this. First, a
good mip-map takes a long time to generate, and the second reason is that even a
crappy mip-map takes longer to generate on the fly than it takes to load from disc.
Improving loading speed can be a much bigger problem than media storage.

Sound and Music Data

Sound formats in digital audio are commonly stored in either mono or stereo, sam-
pled at different frequencies, and accurate to either 8 or 16 bits per sample. The effect
of mono or stereo on the resulting playback and storage size is obvious. Stereo sound

Game Resources: Formats and Storage Requirements 205

takes twice as much space to store but provides left and right channel waveforms.
The different frequencies and bit depths have an interesting and quite drastic effect
on the sound.

Digital audio is created by sampling a waveform and converting it into discrete 8- or
16-bit values that approximate the original waveform. This works because the human
ear has a relatively narrow range of sensitivity: 20Hz to 20,000Hz. It’s no surprise
that the common frequencies for storing WAV files are 44KHz, 22KHz, and
11KHz.

It turns out that telephone conversations are 8-bit values sampled at 8KHz, after the
original waveform has been filtered to remove frequencies higher than 3.4MHz.
Music on CDs is first filtered to remove sounds higher than 22KHz and then sam-
pled at 16-bit 44KHz. Just to summarize, Table 8.3 shows how you would use the
different frequencies in digital audio.

Use lower sampling rates for digital audio in your game to simulate telephone con-
versations or talking over shortwave radio.

Video and Prerendered Cinematics

Animated sequences in games go as far back as Pac Man, where after every few levels
you’d see a little cartoon featuring the little yellow guy and his friends. The cartoons
had little or nothing to do with the game mechanics, but they were fun to watch and
gave players a reward and a short break. One of the first companies to use large
amounts of video footage in games was Origin Systems in the Wing Commander
series. More than giving players a reward, they actually told a story. Epic cinematics
are not only common in today’s big-budget games, but they are also expected.

There are two techniques worth considering for incorporating cinematic sequences.
Some games like Wing Commander III will shoot live video segments and simply

Table 8.3 Using Different Audio Frequencies with Digital Formats

Format Quality Size per Second Size per Minute

44.1KHz 16-bit stereo WAV CD quality 172KB/second 10MB/minute

128Kbps stereo MP3 Near CD quality 17KB/second 1MB/minute

22.05KHz 16-bit stereo WAV FM Radio 86KB/second 5MB/minute

64Kbps stereo MP3 FM Radio 9KB/second 540KB/minute

11.025KHz 16-bit mono WAV AM Radio 43KB/second 2.5MB/minute

11.025KHz 8-bit mono WAV Telephone 21KB/second 1.25MB/minute

206 Chapter 8 n Loading and Caching Game Data

play them back. The file is usually an enormous AVI file that would fill up a good
portion of your optical media. That file is usually compressed into something more
usable by the game.

The second approach uses the game engine itself. Most games create their animated
sequences in 3ds Max or Maya and export the animations and camera motion. The
animations can be played back by loading a relatively tiny animation file and pump-
ing the animations through the rendering engine. The only media you have to store
beyond that is the sound and 3D models for the characters and environment. If you
have tons of cinematic sequences, doing them in-game like this is the way to go. Lots
of story-heavy games are going this direction because it is more efficient than storing
that much prerendered video.

The biggest difference your players will notice is in the look of the cinematic. If an
animation uses the engine, your players won’t be mentally pulled out of the game
world. The in-game cut-scenes will also flow perfectly between the action and the
narrative, as compared to the prerendered cut-scenes, which usually force some sort
of slight delay and interruption as the game engine switches back and forth between
in-game action and retrieving the cut-scene from the disc or hard drive. If the player
has customized the look of his character, that customization is still visible in the cin-
ematic because it is being rendered on the fly. As a technologist, the biggest differ-
ence you’ll notice is the smaller resulting cinematic data files. The animation data is
tiny compared to digital video. One bit of advice: You should make sure the AI char-
acters hold for the cinematic moment and attack you only after it is over!

Motion Comics in Thor: The God of Thunder Were a Good Idea, but…

Everyone knows that licensed movie tie-in titles tend to get the short shrift from
a budget and schedule perspective—and the games tend to suffer in the
40 Metacritic zone as a result. On Thor, we had hoped to save some money
and increase quality at the same time by doing all of the cinematic sequences
as motion comics. After all, wouldn’t it be cheaper to draw some 3D graphic
panels, slide them around, and add a few particle effects? It turned out that
they cost about the same per minute as typical in-game cinematics. Ah well—
they didn’t save us any money or time, but they looked super cool.

Sometimes you’ll want to show a cinematic that simply can’t be rendered in real time
by your graphics engine—perhaps something you need Maya to chew on for a few
hours in a huge render farm. In that case, you’ll need to understand a little about
streaming video and compression.

Game Resources: Formats and Storage Requirements 207

Streaming Video and Compression

Each video frame in your cinematic should pass through compression only once. Every
compression pass will degrade the art quality. Prove this to yourself by compressing a
piece of video two or three times, and you’ll see how bad it gets even with the second pass.

USB Hard Drives and FedEx

If you need to move a large data set like uncompressed video from one
network to another, use a stand-alone Ethernet or high-speed USB-capable
hard drive. It might make security-conscious IT guys freak out, but it’s a
useful alternative to burning a stack of DVDs or worse, trying to send a few
hundred gigabytes over the Internet. This is modern day “Sneakernet.”

Don’t waste your time backing up uncompressed video files. Instead, make
sure that you have everything you need to re-create them, such as a 3ds
Max scene file or even raw videotape. Make sure the source is backed up
and the final compressed files are backed up. If you need to regenerate
them, just press the “animate” button and wait a few hours.

Compression settings for streaming video can get complicated. Predicting how a set-
ting will change the output is also tricky. Getting a grasp of how it works will help
you understand which settings will work best for your footage. Video compression
uses two main strategies to take a 5GB two-minute uncompressed movie and boil it
down into a 10MB or so file. Just because the resolution drops doesn’t mean you
have to watch a postage stamp-sized piece of video. Most playback APIs will allow
a stretching parameter for the height, width, or both.

The first strategy for compressing video is to simply remove unneeded information by
reducing the resolution or interlacing the video. Reducing resolution from 800 × 600
to 400 × 300 would shave 3GB from a 4GB movie, a savings of 75 percent. An inter-
laced video alternates drawing the even and odd scanlines every other frame. This is
exactly how television works; the electron gun completes a round trip from the top of
the screen to the bottom and back at 60Hz, but it only draws every other scanline.
The activated phosphors on the inside of a CRT persist longer than 1/30th of a second
after they’ve been hit with the electron gun and can therefore be refreshed or changed
at that rate without noticeable degradation in the picture. Modern displays aren’t so
forgiving, but remember that the human eye generally perceives continuous move-
ment between 30 and 60fps, but since human vision is not frame based, this is highly
dependent on the content being reproduced. As always, removing data will result in a
degradation of perceived quality. Interlacing the video will drop the data set down to
one-half of its original size. Using interlacing and resolution reduction can make a
huge difference in your video size, even before the compression system kicks in.

208 Chapter 8 n Loading and Caching Game Data

Video compression can be lossless, but in practice you should always take advantage
of the compression ratios even a small amount of lossiness can give you. If you’re
planning on streaming the video from optical media, you’ll probably be forced to
accept some lossiness simply to get your peak and average data rates down low
enough for your needs, whether that be streaming from the Web or disc. In any
case, you’ll want to check the maximum bit rate you can live with. Most compression
utilities give you the option of entering your maximum bit rate. The resulting com-
pression will attempt to satisfy your bit-rate limitations while keeping the resulting
video as accurate to the original as possible. Table 8.4 shows the ideal bit rate that
should be used for different CD-ROM, DVD, and Blu-ray speeds. Web streaming
speeds are too unpredictable to list, but from the table you can get a general idea.
At least on the Web, you can vary the content; it’s hard to get the player to install a
new Blu-ray player for a specific cinematic.

Save Video Compression Settings—They’re Hard to Remember!

Getting the video compression settings just right can be a black art and very
time consuming to reproduce later. Make sure that you record these settings in
a convenient place so you can get to them again. When the writers change the
dialogue, or the Hollywood actor featured in your game decides his cheekbones
aren’t prominent enough, you’ll be happy these settings are at your fingertips.

Resource Files

When I wrote the first edition of this book in 2003, many hard disks rotated as fast
as 7,200rpm. By the second edition, the fast drives were already up to 15,000rpm. At
the writing of the third edition, there was talk of a 20,000rpm hard disk. By the

Table 8.4 Matching Bit Rates with CD-ROM/DVD Speeds

Technology Bit Rate

1x CD 150 Kbps

1x DVD 1,385 Kbps

32x CD 4,800 Kbps

16x DVD 2.21 Mbps

1x Blu-ray 36 Mbps

8x Blu-ray 288 Mbps

Resource Files 209

fourth edition, storing games in memory rather than hard disk was becoming more
popular. That’s fine with me because I don’t want anything sitting in my lap spinning
at 20,000rpm. For a 15,000rpm device, the CPU must wait an average of 2ms for a
desired piece of data to be located in the right position to be read, assuming the read/
write head doesn’t have to seek to a new track. For a modern day processor operating
at 3GHz or more, this time is interminable. It’s a good thing processors aren’t con-
scious because they’d go mad waiting for hard disks all the time. Seeking time is
much slower. The read/write head must accelerate, move, stop, and become stable
enough to accurately read the magnetic media. For a CPU, that wait is an eternity.

Optical media is even worse. Their physical organization is a continuous spiral from
the inside of the disc to the outside, and the read laser must traverse this spiral at a
constant linear velocity. This means that not only does the laser read head have to
seek an approximate location instead of an exact location, but also the rotational
velocity of the disc must change to the right speed before reading can begin. If the
approximate location was wrong, the head will re-seek. All this mechanical move-
ment makes optical media much slower that their magnetic brethren.

The only thing slower than reading data from a hard drive or optical media is to have
an intern actually type the data in manually from the keyboard.

Needless to say, you want to treat data in your files like I treat baubles in stores like
Pier One. I do everything in my power to stay away from these establishments (my
wife loves them) until I have a big list of things to buy. When I can’t put it off any
longer, I make my shopping trip a surgical strike. I go in, get my stuff, and get out as
fast as I can, avoiding as many candles as possible. When your game needs to grab
data from the hard drive or optical media, it should follow the same philosophy.

The best solution would completely compartmentalize game assets into a single block
of data that could be read in one operation with a minimum of movement of the
read/write head. Everything needed for a screen or a level would be completely cov-
ered by this single read. This is usually impractical because some common data
would have to be duplicated in each block. A fine compromise factors the common
data in one block and the data specific to each level or screen in their own blocks.
When the game loads, it is likely you’ll notice two seeks—one for the common data
block and one for the level-specific block. Once the common data is in memory, you
leave it there and only load data for new levels or streamed areas as needed.

Know Your Hardware

Knowing how hardware works is critical to writing any kind of software. You don’t have to be a guru
writing device drivers to crack the books and learn exactly how everything works and how you can take
advantage of it. This same lesson applies to the operating system and how the hardware APIs work

210 Chapter 8 n Loading and Caching Game Data

under the hood. Learn about the memory and how it is organized. See how the secondary storage works.
Get a basic clue about the graphics chipset. Most importantly, learn how data flows to and from all
these systems, and how it can be stalled. This knowledge can turn a hobbyist into a professional.

Packaging Resources into a Single File

It’s a serious mistake to store every game asset, such as a texture or sound effect, in
its own file. Separating thousands of assets in their own files wastes valuable storage
space and makes it impossible to get your load times faster.

Hard drives are logically organized into blocks or clusters that have surprisingly large
sizes. Most hard drives in the gigabit range have cluster sizes of 16KB–32KB. File
systems like FAT32 and NTFS were written to store a maximum of one file per clus-
ter to enable optimal storage of the directory structure. This means that if you have
500 sound effect files, each ½-second long and recorded at 44KHz mono, you’ll have
5.13MB of wasted space on the hard disk:

0.5 seconds * 44KHz mono = 22,000 bytes

32,768 bytes minimum cluster size –22,000 bytes in each file = 10,768 bytes wasted per file

10,768 bytes wasted in each file * 500 files = 5.13MB wasted space

You can easily get around this problem by packing your game assets into a single file.
If you’ve ever played with DOOM level editors, you’re familiar with WAD files; they
are a perfect example of this technique. These packed file formats are file systems in
miniature, although most are read only. Ultima VIII and Ultima IX had a read/write
version (FLX files) that had multiuser locking capabilities for development. Almost
every game on the market uses some custom packing scheme for more reasons than
saving hard drive space.

Other Benefits of Packaging Resources

The biggest advantage of combining your resources by far is load time optimization.
Opening files is an extremely slow operation on most operating systems. The full file-
name must be parsed, the directory structure traversed, the hardware must locate and
read a number of blocks into the operating system read cache, and more. This can
cause multiple seeks, depending on the organization of the media. Another advantage
is security. You can use a proprietary logical organization of the file that will hamper
armchair hackers from getting to your art and sounds. While this security is quite
light, and serious hackers will usually break it before the sun sets the first day your
game is on the shelves, it’s better than nothing. Of course, you can always publish the
format of your files and get the mod community going. Either way, it is your choice.

Resource Files 211

Hard Drive Ticking? Maybe You Should Listen

During development on any platform with a hard drive or optical disc, keep your ear tuned to the sounds
your drive makes while you play your game. At worst, you should hear it seek or “tick” every few
seconds or so as new data is cached in. This would be common in an open world game, where the
player could walk anywhere on an enormous outdoor map. At best, your game will have a level design
that grabs all the data in one read, and you’ll play an entire level without going back to the disc.

A great trick is to keep indexes or file headers in memory while the resource file is open. These are
usually placed at the beginning or end of a file, and on large files the index might be a considerable
physical distance away from your data. Read the index once and keep it around to save yourself that
extra, and very time consuming, media seek.

Data Compression and Performance

Compression is a double-edged sword. Every game scrambles to store as much con-
tent on the distribution media and secondary storage as possible. Compression can
achieve some impressive space ratios for storing text, graphics, and sound at the
cost of increasing the load on the CPU and your RAM budget to decompress every-
thing. The actual compression ratios you’ll get from using different utilities are
completely dependent on the algorithm and the data to be compressed. Use algo-
rithms like Zlib or LZH for general compression that can’t afford lossiness. Use
JPG, OGG, or MPEG compression for anything that can stand lossiness, such as gra-
phics and sound.

Consider the cost of decompressing MP3 files for music, speech, or sound effects. On
the upper end, each stream of 128KB stereo MP3 can suck about 25MHz from your
CPU budget, depending on your processor. If you design your audio system to han-
dle 16 simultaneous streams, a 2GHz desktop will only have 1.6GHz left, losing
400MHz to decompressing audio. Of course, you can be clever about decompressing
them only when needed and trade some memory for CPU time.

Keep an Eye on Your Message Queue During Callbacks

If you are working on a Windows game and your decompressor API uses a
callback, it is quite likely that the decompression will forward Windows system
messages into your message pump. This can create a real nightmare since
mouse clicks or hot keys can cause new art and sounds to be recursively sent
into the decompression system. Callbacks are necessary for providing user
feedback like a progress bar, but they can also wreak havoc with your
message pump. If this is happening to your application, trap the offending
messages and hold them in a temporary queue until the primary
decompression is finished.

212 Chapter 8 n Loading and Caching Game Data

Zlib: Open Source Compression

If you need a lossless compression/decompression system for your game, a good
choice that has stood the test of time is Zlib, which can be found at www.zlib.net.
It’s free, open source, legally unencumbered, and simple to integrate into almost
any platform or compiler. Typical compression ratios with Zlib are 2:1 to 5:1,
depending on the data stream.

Zlib was written by Jean-Loup Gailly and Mark Adler and is an abstraction of the
DEFLATE compression algorithm. A Zip file uses Zlib to compress many files into
a single file. An overview of the basic structure of a Zip file is shown in Figure 8.3.
I’ll show you the basic structure first, and then we’ll look at the code that can read it.

Zip files store their table of contents, or file directory, at the end of the file. If you
read the file, the TZipDirHeader at the very end of the file contains data members
such as a special signature and the number of files stored in the Zip file. Just before
the TZipDirHeader, there is an array of structures, one for each file, which stores
data members such as the name of the file, the type of compression, and the size of

Figure 8.3
The internal structure of a Zip file.

Resource Files 213

www.zlib.net

the file before and after compression. Each file in the Zip file has a local header
stored just before the compressed file data. It stores much of the same data as the
TZipDirFileHeader structure.

One fine example of reading a Zip file comes from Javier Arevalo. I’ve modified it
only slightly to work well with the rest of the source code in this book. The basic
premise of the solution is to open a Zip file, read the directory into memory, and
use it to index the rest of the file. Here is the definition for the ZipFile class:

// This maps a path to a zip content id

typedef std::map<std::string, int> ZipContentsMap;

class ZipFile

{

public:

ZipFile() { m_nEntries=0; m_pFile=NULL; m_pDirData=NULL; }

Virtual ~ZipFile() { End(); fclose(m_pFile); }

bool Init(const std::wstring &resFileName);

void End();

int GetNumFiles()const { return m_nEntries; }

std::string GetFilename(int i) const;

int GetFileLen(int i) const;

bool ReadFile(int i, void *pBuf);

// Added to show multi-threaded decompression

bool ReadLargeFile(int i, void *pBuf, void (*progressCallback)(int, bool &));

optional<int> Find(const std::string &path) const;

ZipContentsMap m_ZipContentsMap;

private:

struct TZipDirHeader;

struct TZipDirFileHeader;

struct TZipLocalHeader;

FILE *m_pFile; // Zip file

char *m_pDirData; // Raw data buffer.

int m_nEntries; // Number of entries.

// Pointers to the dir entries in pDirData.

const TZipDirFileHeader **m_papDir;

};

214 Chapter 8 n Loading and Caching Game Data

// -———

// Basic types.

// -———

typedef unsigned long dword;

typedef unsigned short word;

typedef unsigned char byte;

// -———

// ZIP file structures. Note these have to be packed.

// -———

#pragma pack(1)

// -———

struct ZipFile::TZipLocalHeader

{

enum

{

SIGNATURE = 0x04034b50

};

dword sig;

word version;

word flag;

word compression; // COMP_xxxx

word modTime;

word modDate;

dword crc32;

dword cSize;

dword ucSize;

word fnameLen; // Filename string follows header.

word xtraLen; // Extra field follows filename.

};

struct ZipFile::TZipDirHeader

{

enum { SIGNATURE = 0x06054b50 };

dword sig;

word nDisk;

word nStartDisk;

word nDirEntries;

word totalDirEntries;

dword dirSize;

dword dirOffset;

word cmntLen;

};

Resource Files 215

// -———

struct ZipFile::TZipDirFileHeader

{

enum { SIGNATURE = 0x02014b50 };

dword sig;

word verMade;

word verNeeded;

word flag;

word compression; // COMP_xxxx

word modTime;

word modDate;

dword crc32;

dword cSize; // Compressed size

dword ucSize; // Uncompressed size

word fnameLen; // Filename string follows header.

word xtraLen; // Extra field follows filename.

word cmntLen; // Comment field follows extra field.

word diskStart;

word intAttr;

dword extAttr;

dword hdrOffset;

char *GetName () const { return (char *)(this + 1); }

char *GetExtra () const { return GetName() + fnameLen; }

char *GetComment() const { return GetExtra() + xtraLen; }

};

// -———

#pragma pack()

You should notice a couple of interesting things about the definition of these struc-
tures. First, there is a #pragma pack around the code. This disables anything the C++
compiler might do to optimize the memory speed of these structures, usually by
spreading them out so that each member variable starts on a 4-byte boundary. Any-
time you define a structure that will be stored onto a disk or in a stream, you should
pack them. Another thing is the definition of a special signature for each structure.
The sig member of each structure is set to a known, constant value, and it is written
out to disk. When it is read back in, if the signatures don’t match the known con-
stant value, you can be sure that you have a corrupted file. It won’t catch everything,
but it is a good defense.

When a Zip file is opened, the class reads the TZipDirHeader structure at the end
of the file. If the signatures match, the file position is set to the beginning of the array

216 Chapter 8 n Loading and Caching Game Data

of TZipDirFileHeader structures. Note that there is a length of this array already
stored in the TZipDirHeader. This is important because there’s actually a little
extra data stored in between each TZipDirFileHeader. It is variable length data
and contains the filename, comments, and other extras.

Enough memory is allocated to store the directory, and it is read in one chunk. The
data is then processed a bit. All the signatures are checked, the UNIX slashes are
converted to backslashes, and the pointers to each entry in the directory are set for
quick access. The filenames are also stored in an STL map for quick lookup. The
ReadFile method takes the index number of the file you want to read and a pointer
to the memory you’ve preallocated. Prior to calling this method, you’ll call GetFileLen
to find the size of the buffer and allocate enough memory to hold the file. It reads and
decompresses the entire file at once in a blocking call, which could be bad if you have a
large compressed file inside the Zip file. If you want to decompress something larger,
use the ReadLargeFile method. It has the same parameters as ReadFile has, and
it adds a function pointer to a callback method. This lets you show a progress bar as
the file is loaded, and it also allows a cancel button to stop the decompression
midstream.

One thing is a matter of taste for Windows programmers: Under UNIX operating
systems, filenames are case sensitive, which means that you could have two filenames
in the same directory that differ only in case. The same thing is true of Zip files, and
while it is not exactly perfect form to convert all filenames to lowercase before you
compare names, it sure makes it easier on you and the development team. An artist
might name a file Allbricks.bmp, and a programmer might expect it to be named
Allbricks.bmp. If you don’t force the names to lowercase, the class will think the file
doesn’t exist.

With this class, you can iterate through all of the files packed in the Zip, find their
names, read and decompress the file data, and use the data in your game. Here’s an
example:

char *buffer = NULL;

ZipFile zipFile;

if (zipFile.Init(resFileName))

{

optional<int> index = zipFile.Find(path);

if (index.valid())

{

int size = zipFile->GetFileLen(*index);

buffer = new char[size];

Resource Files 217

if (buffer)

{

zipFile.ReadFile(*index, buffer);

}

}

}

return buffer;

This is about as easy as it gets. After the Zip file is initialized, you find the index to
the name of the file inside the Zip, grab the size, allocate the memory buffer, and
read the bits.

Zip files are a good choice for the base file type of a general purpose resource file—
something you can open once and read sounds, textures, meshes, and pretty much
everything else. It’s a common practice to load all of the resources you’ll use for a
given level in a single Zip file. Even doing this, you might soon discover that the
Zip file for any one level is much bigger than your available memory. Some
resources, like the sounds for your character’s footsteps, will need to be in memory
all the time. Others are used more rarely, like a special sound effect for a machine
that is only activated once.

This problem calls for a cache, and luckily you’re about to find out how one works.

The Resource Cache

If your game has a modest set of graphics and sounds small enough to exist
completely in memory for the life of your game, you don’t need a cache. It’s still a
good idea to use resource files to pack everything into one file; you’ll save disk space
and speed up your game’s load time.

Most games are bigger. If your game is going to ship on optical media, you’ll have
almost five gigabytes on a DVD and over 25GB on Blu-ray. Optical media will be
larger than the RAM you have. You almost certainly won’t have enough memory to
load this all at once, but even if you do, you don’t want players to wait while the
entire thing is streamed in. What you need is a resource cache—a piece of technology
that will sit on top of your resource files and manage the memory and the process of
loading resources when you need them. Even better, a resource cache should be able
to predict resource requirements before you need them.

Resource caches work on similar principles as any other memory cache. Most of the
bits you’ll need to display the next frame or play the next set of sounds are probably
ones you’ve used recently. As the game progresses from one state to the next, new
resources are cached in. They might be needed, for example, to play sound effects

218 Chapter 8 n Loading and Caching Game Data

for the first time. Since memory isn’t available in infinite quantities, eventually your
game will run out of memory, and you’ll have to throw something out of the cache.

A cache miss occurs when a game asks for the data associated with a resource and it
isn’t there. The game has to wait while the hard drive or the optical media wakes up
and reads the data. Cache misses can come in three types, as categorized by Mark
Hill, professor of Computer Sciences at the University of Wisconsin. The first is a
compulsory miss, one that happens when the desired data is first requested and
now has its first opportunity to load. The second is a capacity miss, which happens
when the cache is out of space and must throw something out to load in the desired
data. A conflict miss is the third type, which is a miss that could have been avoided,
but the system was given hints that the data was no longer needed, and it was pre-
emptively thrown out. Thrashing is a worst-case condition when the data required
from the cache in a single game loop is larger than the cache can store and the
resource cache gets into a state where it is constantly trying to make room for more
data. Thrashing, as you might expect, is fatal for your frame rate, and you must either
make your cache bigger or you must optimize or reduce your data.

Cache thrashing occurs when your game consistently needs more resource data than
can fit in the available memory space. The cache is forced to throw out resources that
are still frequently referenced by the game. The disk drives spin up and run con-
stantly, and your game goes into semi-permanent hibernation.

The only way to avoid thrashing is to decrease the memory needed or increase the
memory requirements. On console platforms, you don’t get to ask for more RAM—it
is what it is. On PC projects, it’s rare that you’ll get the go-ahead to increase the
memory requirements, so you’re left with slimming down the game data. You’ll prob-
ably have to use smaller textures, fewer sounds, or break up your levels into smaller
sections to get things to fit.

Most of the interesting work in resource cache systems involves predictive analysis of
your game data in an attempt to avoid cache misses. There are some tricks to reduce
this problem, some of which reach into your level design by adding pinch points
such as doors, elevators, or elbow hallways. Some games with open maps, like flight
simulators, can’t do this and have to work a lot harder. I’ll show you a very simple
resource cache so you can get your bearings. Then I’ll discuss why this problem gen-
erally gets its own programmer—and a good one.

For the sake of simplicity, I’m going to assume that the cache only handles one
resource file. It’s easy enough to make the modifications to track resources across
multiple files. You’ll need to attach a file identifier of some sort to each resource to
track which resources came from which file. There’s no need to create a monolithic

The Resource Cache 219

file that holds all the game assets. You should just break them up into manageable
chunks. Perhaps you’ll put assets for a given level into one resource file and assets
common to all levels in another. It’s totally up to you.

Resources might not exist in memory if they’ve never been loaded or if they’ve been
thrown out to make room for other resources. You need a way to reference them
whether they are loaded or not, and these references need to uniquely identify each
resource. This resource reference enables the cache to match a particular resource
identifier with its data. For our simple resource system, an easy assumption is to sim-
ply use the filename of the original resource—it is easy to read in code and guaranteed
to be unique. Some games might use something that doesn’t require parsing a file path
—a typical scheme uses unique identifiers like const char *ART_TEXTURE_

GRID_DDS = “art\\grid.dds” in a header file. This can work, but it is something
of a hassle because you’ll need a place to define the constants or GUIDs, and this file
will probably change constantly and be referenced throughout your game code. The
recompiles this solution causes on even modest sized teams can bring programmers
to a crawl. The trade-off is a little processor time during resource loads as opposed to
a ton of convenience during development, which ultimately makes for a better game.

You Might Have Multiple Resource Caches in Your Game

Different assets in your game require different resource caching. Level data, such
as object geometry and textures, should be loaded in one chunk when the level
is loaded. Audio and cinematics can be streamed in as needed. Most user
interface screens should be loaded before they are needed, since you don’t
want players to wait while you cache something in. If you are going to load
something, make sure that you load it when the player isn’t going to notice.
Some games just load everything they need when you begin playing and never
hit the disk for anything else at all, so a resource cache isn’t something every
game uses.

The resource cache needs a way to define the identifier of each resource in a unique
way. As discussed previously, a good solution is to just use the name of the file that
points to the resource in the Zip file:

class Resource

{

public:

std::string m_name;

Resource(const std::string &name)

{

220 Chapter 8 n Loading and Caching Game Data

m_name=name;
std::transform(m_name.begin(), m_name.end(),

m_name.begin(), (int(*)(int)) std::tolower);

}

};

You might wonder why a string-based identifier is used here rather than some kind of
defined ID. The reason is that game assets tend to change incredibly fast during devel-
opment, and you don’t want to have a huge list of IDs that will be changing constantly,
perhaps forcing a recompile of your game every time an artist adds a new texture.
Speed is typically not a big problem here, since string lookups will likely not happen
that often after a resource is loaded, which you can control. In short, this is one of
those cases where a little CPU time is traded for a huge development convenience.

Another quick nod to development convenience is to convert the resource name to
lowercase. Doing so keeps you from having to set up rules for artists and other con-
tent providers that they probably won’t remember to follow anyway!

Two phases are involved in using a resource cache: creating the resource and using it.
When you create a resource, you are simply creating an identifier for the resource. It
doesn’t really do much of anything. The heavy lifting happens when you send the
resource into the resource cache to gain access to the bits or a resource handle. Han-
dles should always be managed by a shared_ptr so the bits are guaranteed to be
good as long as you need them. Here’s an example of how to use the Resource

class to grab a handle and get to the bits:

Resource resource(“Brick.bmp”);

shared_ptr<ResHandle> texture = g_pApp->m_ResCache->GetHandle(&resource);

int size = texture->GetSize();

char *brickBitmap = (char *) texture->Buffer();

If the resource is already loaded in the cache, these lines of code execute extremely
quickly. If the resource is not loaded, you have a cache miss on your hands, and the
resource cache will make room if necessary, allocate memory for the resource, and
finally load the resource from the resource file. The bits are available as long as the
ResHandle remains in scope, since it is managed by a shared_ptr. Once the
ResHandle structure goes out of scope, the resource cache may retain the bits if
there’s room to keep them.

Now you’re ready to see how the resource cache is coded. You’ve already seen how a
resource is defined through the Resource structure. There are a few other parts of a
resource cache, and I’ll go over each one in detail:

n IResourceFile interface and ResourceZipFile, the resource file

The Resource Cache 221

n ResHandle, a handle to track loaded resources

n ResCache, a simple resource cache

IResourceFile Interface

A resource file should be able to be opened and closed and provide the application
programmer access to resources. Here’s a simple interface that defines just that:

class IResourceFile

{

public:

virtual bool VOpen()=0;

virtual int VGetRawResourceSize(const Resource &r)=0;

virtual int VGetRawResource(const Resource &r, char *buffer)=0;

virtual int VGetNumResources() const = 0;

virtual std::string VGetResourceName(int num) const = 0;

virtual ~IResourceFile() { }

};

There are only five pure virtual functions to implement. I told you it was simple. The
implementation of VOpen() should open the file and return success or failure based
on the file’s existence and integrity. VGetRawResourceSize() should return the
size of the resource based on the name of the resource, and VGetRawResource()

should read the resource from the file. The VGetNumResources() method should
tell you how many resources are in the file, and the VGetResourceName() method
should tell you the name of the nth resource. The last two methods enable you to
iterate through every resource by number or by name.

The accompanying source code implements the IResourceFile interface with a
ZipFile implementation. This is a convenient file format since it is supported by
so many off-the-shelf and open source tools on many platforms. This is a great
example of using interfaces to hide the technical implementation of something
while maintaining a consistent API. If you wanted to, you could implement this
interface using a completely different file structure, like CAB or WAD.

ResHandle: Tracking Loaded Resources

For the cache to do its work, it must keep track of all the loaded resources. A useful
class, ResHandle, encapsulates the resource identifier with the loaded resource data:

class ResHandle

{

222 Chapter 8 n Loading and Caching Game Data

friend class ResCache;

protected:

Resource m_resource;

char *m_buffer;

unsigned int m_size;

shared_ptr<IResourceExtraData> m_extra;

ResCache *m_pResCache;

public:

ResHandle (Resource & resource,

char *buffer,

unsigned int size,

ResCache *pResCache);

virtual ~ResHandle();

unsigned int Size() const { return m_size; }

char *Buffer() const { return m_buffer; }

char *WritableBuffer() { return m_buffer; }

shared_ptr<IResourceExtraData> GetExtra() { return m_extra; }

void SetExtra(shared_ptr<IResourceExtraData> extra) { m_extra = extra; }

};

ResHandle::ResHandle(

Resource & resource, char *buffer, unsigned int size, ResCache *pResCache)

: m_resource(resource)

{

m_buffer = buffer;

m_size = size;

m_extra = NULL;

m_pResCache = pResCache;

}

ResHandle::~ResHandle()

{

SAFE_DELETE_ARRAY(m_buffer);

m_pResCache->MemoryHasBeenFreed(m_size);

}

When the cache loads a resource, it dynamically creates a ResHandle, allocates a
buffer of the right size, and reads the resource from the resource file. The ResHandle

class exists in memory as long as the resource caches it in, or as long as any
consumer of the bits keeps a shared_ptr to a ResHandle object. The ResHandle

The Resource Cache 223

also tracks the size of the memory block. If the resource cache gets full, the resource
handle is discarded and removed from the resource cache.

The destructor of ResHandle makes a call to a ResCache member, MemoryHas-
BeenFreed(). ResHandle objects are always managed through a shared_ptr

and can therefore be actively in use at the moment the cache tries to free them.
This is fine, but when the ResHandle object goes out of scope, it needs to inform
the resource cache that it is time to adjust the amount of memory actually in use.

There’s a useful side effect of holding a pointer to the resource cache in the ResHan-
dle: it is possible to have multiple resource caches in your game. One may control a
specific type of resource, such as sound effects, whereas another may control level
geometry and textures.

Most resources can be used exactly as they exist in the Zip file; they can be loaded
into memory and sent to whatever game subsystem needs them. Other resources
need to be processed when they are loaded. A resource might need a special decom-
pression method or processing to extract some important data from it. A good exam-
ple of this might be to store the length and format of a sound file. This is the reason
that the resource file defines loaders—classes that implement the IResourceLoader
interface.

IResourceLoader Interface and the DefaultResourceLoader

Here’s the definition of the IResourceLoader interface:

class IResourceLoader

{

public:

virtual std::string VGetPattern()=0;

virtual bool VUseRawFile()=0;

virtual unsigned int VGetLoadedResourceSize(

char *rawBuffer, unsigned int rawSize)=0;

virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize,

shared_ptr<ResHandle> handle)=0;

};

The first method returns a wildcard pattern that the resource cache uses to distin-
guish which loaders are used with which files. You might define a loader for all
OGG files, if you wanted to decompress the music file, or all XML files, to parse
the XML data as the resource was loaded. The next method, VUseRawFile()

returns true if the resource loader can use the bits stored in the raw file, no extra
processing needed. The next two methods define the size of the loaded resource if it

224 Chapter 8 n Loading and Caching Game Data

is different from the size stored in the file, and then how the resource is actually
loaded from the file.

Many resources in the Zip file require no processing at all, so it is convenient to load
them exactly as-is. This requires the definition of a DefaultResourceLoader.

class DefaultResourceLoader : public IResourceLoader

{

public:

virtual bool VUseRawFile() { return true; }

virtual unsigned int VGetLoadedResourceSize(char *rawBuffer, unsigned int rawSize) {

return rawSize; }

virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize, shared_ptr<Re-

sHandle> handle) { return true; }

virtual std::string VGetPattern() { return “*”; }

};

There’s not much to this class. Since the resource is loaded exactly as it exists in the
file, there’s not really anything to do. The IResourceFile interface has already
loaded the bits into memory, and the ResHandle already stores those bits. You’ll
see a more interesting implementation of the IResourceLoader interface in Chap-
ter 13, “Game Audio,” which loads WAV and OGG files.

ResCache: A Simple Resource Cache

Since most of the players are already on the stage, it’s time to bring out the
ResCache class, an ultra-simple resource cache.

First, a few type definitions. While the resource is in memory, a pointer to the
ResHandle exists in two data structures. The first, a linked list, is managed such
that the nodes appear in the order in which the resource was last used. Every time
a resource is used, it is moved to the front of the list, so you can find the most and
least recently used resources.

The second data structure, an STL map, provides a way to quickly find resource data
with the unique resource identifier. The third defines a map to store the resource
loaders.

typedef std::list< shared_ptr <ResHandle > > ResHandleList;

typedef std::map<std::string, shared_ptr < ResHandle > > ResHandleMap;

typedef std::list< shared_ptr < IResourceLoader > > ResourceLoaders;

class ResCache

{

The Resource Cache 225

protected:

ResHandleList m_lru; // LRU (least recently used) list

ResHandleMap m_resources; // STL map for fast resource lookup

ResourceLoaders m_resourceLoaders;

IResourceFile *m_file; // Object that implements IResourceFile

unsigned int m_cacheSize; // total memory size

unsigned int m_allocated; // total memory allocated

shared_ptr<ResHandle> Find(Resource * r);

const void *Update(shared_ptr<ResHandle> handle);

shared_ptr<ResHandle> Load(Resource * r);

void Free(shared_ptr<ResHandle> gonner);

bool MakeRoom(unsigned int size);

char *Allocate(unsigned int size);

void FreeOneResource();

void MemoryHasBeenFreed(unsigned int size);

public:

ResCache(const unsigned int sizeInMb, IResourceFile *resFile);

~ResCache();

bool Init();

void RegisterLoader(shared_ptr<IResourceLoader> loader);

shared_ptr<ResHandle> GetHandle(Resource * r);

int Preload(const std::string pattern, void (*progressCallback)(int, bool &));

void Flush(void);

};

The first three members of the class have already been introduced. They are the least
recently used (LRU) list to track which resources are less frequently used than others,
the STL map, which is used to quickly find resources by name, and another STL list
of the resource loaders that match resource types with the loader that can process
them. There is a pointer to the resource file and two unsigned integers that track
the maximum size of the cache and the current size of the cache.

The m_file member points to an object that implements the IResourceFile

interface.

The two unsigned integers, m_cacheSize and m_allocated, keep track of the
cache size and how much of it is currently being used.

226 Chapter 8 n Loading and Caching Game Data

The constructor is pretty basic. It simply sets a few member variables. The destructor
frees every resource in the cache by making repeated calls to FreeOneResource

until there’s nothing left in the cache.

ResCache::ResCache(const unsigned int sizeInMb, IResourceFile *resFile)

{

m_cacheSize = sizeInMb * 1024 * 1024; // total memory size

m_allocated = 0; // total memory allocated

m_file = resFile;

}

ResCache::˜ResCache()

{

while (!m_lru.empty())

{

FreeOneResource();

}

SAFE_DELETE(m_file);

}

To initialize the resource cache, call the Init() method:

bool ResCache::Init()

{

bool retValue = false;

if (m_file->VOpen())

{

RegisterLoader(shared_ptr<IResourceLoader>(GCC_NEW DefaultResourceLoader()));

retValue = true;

}

return retValue;

}

Besides opening the resource file, a default resource loader is created and registered.
The RegisterLoader method simply pushes the loader onto the front of the loader
list. The idea is that the most generic loaders come last in the list and the most spe-
cific loaders come first. This scheme allows you to define a specific loader for a given
file but still use another loader of other files with the same extension.

To get the bits for a resource, you call GetHandle():

shared_ptr<ResHandle> ResCache::GetHandle(Resource * r)

{

shared_ptr<ResHandle> handle(Find(r));

if (handle==NULL)

handle = Load(r);

The Resource Cache 227

else

Update(handle);

return handle;

}

ResCache::GetHandle() is brain-dead simple. If the resource is already loaded in
the cache, update it. If it’s not there, you have to take a cache miss and load the
resource from the file.

The process of finding, updating, and loading resources is easy.

n ResCache::Find() uses an STL map, m_resources, to locate the right
ResHandle given a Resource.

n ResCache::Update() removes a ResHandle from the LRU list and promotes
it to the front, making sure that the LRU is always sorted properly.

n ResCache::Free() finds a resource by its handle and removes it from the
cache.

The other members, Load(), Allocate(), MakeRoom(), and FreeOneResource(),
are the core of how the cache works:

shared_ptr<ResHandle> ResCache::Load(Resource *r)

{

shared_ptr<IResourceLoader> loader;

shared_ptr<ResHandle> handle;

for (ResourceLoaders::iterator it = m_resourceLoaders.begin();

it != m_resourceLoaders.end(); ++it)

{

shared_ptr<IResourceLoader> testLoader = *it;

if (WildcardMatch(testLoader->VGetPattern().c_str(), r->m_name.c_str()))

{

loader = testLoader;

break;

}

}

if (!loader)

{

assert(loader && _T(“Default resource loader not found!”));

return handle; // Resource not loaded!

}

unsigned int rawSize = m_file->VGetRawResourceSize(*r);

228 Chapter 8 n Loading and Caching Game Data

char *rawBuffer = loader->VUseRawFile() ?

Allocate(rawSize) : GCC_NEW char[rawSize];

if (rawBuffer==NULL)

{

// resource cache out of memory

return shared_ptr<ResHandle>();

}

m_file->VGetRawResource(*r, rawBuffer);

char *buffer = NULL;

unsigned int size = 0;

if (loader->VUseRawFile())

{

buffer = rawBuffer;

handle = shared_ptr<ResHandle>(

GCC_NEW ResHandle(*r, buffer, rawSize, this));

}

else

{

size = loader->VGetLoadedResourceSize(rawBuffer, rawSize);

buffer = Allocate(size);

if (rawBuffer==NULL || buffer==NULL)

{

// resource cache out of memory

return shared_ptr<ResHandle>();

}

handle = shared_ptr<ResHandle>(

GCC_NEW ResHandle(*r, buffer, size, this));

bool success = loader->VLoadResource(rawBuffer, rawSize, handle);

SAFE_DELETE_ARRAY(rawBuffer);

if (!success)

{

// resource cache out of memory

return shared_ptr<ResHandle>();

}

}

if (handle)

{

m_lru.push_front(handle);

m_resources[r->m_name] = handle;

The Resource Cache 229

}

assert(loader && _T(“Default resource loader not found!”));

return handle; // ResCache is out of memory!

}

The first thing that happens in Load() is the right resource loader is located in the
STL list. The utility function WildcardMatch() returns true if the loader’s pattern
matches the resource name. WildcardMatch() uses the same matching rules as the
CMD window in Microsoft Windows, so * matches everything, *.JPG matches all
JPG files, and so on. If a loader isn’t found, an empty ResHandle is returned.
Then the method grabs the size of the raw resource from the resource file and allo-
cates memory for the raw resource. If the resource doesn’t need any processing, the
memory is allocated from the cache through the Allocate() method; otherwise, a
temporary buffer is created. If the memory allocation is successful, the raw resource
bits are loaded with the call to VGetRawResource(). If no further processing of the
resource is needed, a ResHandle object is created using the pointers to the raw bits
and the raw resource size.

Other resources need processing and might even be a different size after they are
loaded. This is the job of a specially defined resource loader, which loads the raw
bits from the resource file, calculates the final size of the processed resource, allocates
the right amount of memory in the cache, and finally copies the processed resource
into the new buffer. You’ll learn more about this in Chapter 13, which discusses
using the resource system to create sound resources.

After the resource is loaded, the newly created ResHandle is pushed onto the LRU
list, and the resource name is entered into the resource name map.

Next up is the Allocate() method, which makes more room in the cache when it
is needed.

char *ResCache::Allocate(unsigned int size)

{

if (!MakeRoom(size))

return NULL;

char *mem = GCC_NEW char[size];

if (mem)

m_allocated += size;

return mem;

}

230 Chapter 8 n Loading and Caching Game Data

Allocate() is called from the Load() method when a resource is loaded. It calls
MakeRoom() if there isn’t enough room in the cache and updates the member vari-
able to keep track of all the allocated resources.

bool ResCache::MakeRoom(unsigned int size)

{

if (size > m_cacheSize)

{

return false;

}

// return null if there’s no possible way to allocate the memory

while (size > (m_cacheSize - m_allocated))

{

// The cache is empty, and there’s still not enough room.

if (m_lru.empty())

return false;

FreeOneResource();

}

return true;

}

After the initial sanity check, the while loop in MakeRoom() performs the work of
removing enough resources from the cache to load the new resource by calling
FreeOneResource(). If there’s already enough room, the loop is skipped.

void ResCache::FreeOneResource()

{

ResHandleList::iterator gonner = m_lru.end();

gonner--;

shared_ptr<ResHandle> handle = *gonner;

m_lru.pop_back();

m_resources.erase(handle->m_resource.m_name);

}

ResCache::FreeOneResource() removes the oldest resource and updates the
cache data members. Note that the memory used by the cache isn’t actually modified
here—that’s because any active shared_ptr<ResHandle> in use will need the bits
until it actually goes out of scope.

The Resource Cache 231

Here’s an example of how this class is used. You construct the cache with a size in
mind, in our case 50MB, and an object that implements the IResourceFile inter-
face. You then call Init() to allocate the cache and open the file.

ResourceZipFile zipFile(“Assets.zip”);

ResCache resCache (50, zipFile);

if (m_ResCache.Init())

{

Resource resource(“art\\brick.bmp”);

shared_ptr<ResHandle> texture = g_pApp->m_ResCache->GetHandle(&resource);

int size = texture->GetSize();

char *brickBitmap = (char *) texture->Buffer();

// do something cool with brickBitmap !

}

If you want to use this in a real game, you’ve got more work to do. First, there’s
hardly a line of defensive or debugging code in ResCache. Resource caches are a
significant source of bugs and other mayhem. Data corruption from buggy cache
code or something else trashing the cache internals will cause your game to simply
freak out.

A functional cache will need to be aware of more than one resource file. It’s not rea-
sonable to assume that a game can stuff every resource into a single file, especially
since it makes it inconvenient for teams. If every resource were stuffed into a single
file, then even the change of a minor texture in the options screen would cause every
person on the team to grab a new copy of the entire resource file for the game, which
could be multiple gigabytes. Break your game up into some reasonable number of
resource files, and you’ll be happier for it.

Write a Custom Memory Manager

Consider implementing your own memory allocator. Many resource caches
allocate one contiguous block of memory when they initialize and manage
the block internally. Some even have garbage collection, where the
resources are moved around as the internal block becomes fragmented. A
garbage collection scheme is an interesting problem, but it is extremely
difficult to implement a good one that doesn’t make the game stutter.
Ultima VIII used a scheme like this.

That brings us to the idea of making the cache multithreading compliant. Why not
have the cache defrag itself if there’s some extra time in the main loop, or perhaps
allow a reader in a different thread to fill the cache with resources that might be used
in the near future? With high-definition consoles like the PS3 and Xbox360, this area
of game programming is getting a lot of attention. The new multiprocessor systems

232 Chapter 8 n Loading and Caching Game Data

have tons of CPU horsepower, and resource management can certainly get its own
thread. The problem is going to be synchronization and keeping all the CPUs from
stalling.

Caching Resources into DirectX et al.

Luckily for you, DirectX objects such as sound effects, textures, and even meshes can
all load from a memory stream. For example, you can load a DirectX texture using
the D3DXCreateTextureFromFileInMemory() API, which means loading a tex-
ture from your resource cache is pretty easy:

Resource resource(m_params.m_Texture);

shared_ptr<ResHandle> texture = g_pApp->m_ResCache->GetHandle(&resource);

if (FAILED (

D3DXCreateTextureFromFileInMemory(

DXUTGetD3D9Device(),

texture->Buffer(),

texture->Size(),

&m_pTexture)))

{

return E_FAIL;

}

There are some SDKs out there that don’t let you do this. They require you to send
filenames into their APIs, and they take complete control of loading their own data.
While it’s unfortunate, it simply means that you can’t use the resource cache for
those parts of your game.

World Design and Cache Prediction

Perhaps you’ve just finished a supercharged version of ResCache—good for you.
You’re not done yet. If you load resources the moment you need them, you’ll proba-
bly suffer a wildly fluctuating frame rate. The moment your game asks for resources
outside of the cache, your game will suffer a major stutter—even a few tens of milli-
seconds in a platformer or first-person shooter can frustrate a player.

First, classify your game design into one of the following categories:

n Load Everything at Once: This is for any game that caches resources on a screen-
by-screen basis or level-by-level. Each screen of Myst is a good example, as well as
Grim Fandango. Most fighting games work under this model for each event.

n Load Only at Pinch Points: Almost every shooter utilizes this design, where
resources are cached in during elevator rides or in small barren hallways.

The Resource Cache 233

n Load Constantly: This is for open-map games where players can go anywhere
they like. Examples include flight simulators, racing games, massively multi-
player games, and action/adventure games like Rockstar’s Red Dead Redemption.

The first scheme trades one huge loading pause for lightning fast action during the
game. These games have small levels or arenas that can fit entirely in memory. Thus,
there’s never a cache miss. The game designers can count on every CPU cycle being
spent on the game world instead of loading resources. The downside is that, since
your entire playing area has to fit entirely in memory, it can’t be that big.

Shooters like Halo on the Xbox360 load resources at pinch points. The designers add
buffer zones in between the action when relatively little is happening in the game.
Elevators and hallways with a few elbow turns are perfect examples of this technique.
The CPU spends almost no time rendering the tiny environment in these areas, and
it uses the leftover cycles to load the next hot zone. In elevators, players can’t change
their minds in the middle of the trip until the elevator gets to the right floor, which
happens to be timed to open exactly when the next area is loaded. Elbow hallways are
constructed so that the loading time will always be less than the maximum running
speed of the player. The more loading is needed, the longer the hallway will be.

One thing you may notice is that with each of these designs, the ResCache needs to
load in the background while the rest of the game continues to run. This turns out to
be pretty tricky stuff.

Buffer Zones in Your Game Affect Pacing and Player Tension

These buffer zones will exist in many places throughout the game, providing
the player with a brief moment to load weapons and rest happy trigger
fingers. The designers at Bungie took advantage of this and placed a few
surprise encounters in these buffer zones, something that always made me
freak out when I was playing Halo.

Even better, the folks at Bungie were wise enough to use the hallways to set
the tone for the next fight with Covenant forces or the Flood. Sometimes it
was as simple as painting the walls with enemy blood or playing some
gruesome sound effects.

Gamers Don’t Want to Read, They Want to Play

Don’t make the player read a bunch of text in between levels just to give yourself time to cache
resources. Players figure this out right away and want to click past the text they’ve read five or six
times. They won’t be able to do so since you’ve got to spend a few more seconds loading resources,
and they’ll click like mad and curse your name. If you’re lucky, the worst thing they’ll do is return your
game. Don’t open any suspicious packages you receive in the mail.

234 Chapter 8 n Loading and Caching Game Data

Open-mapped games such as flight simulators, fantasy role-playing games, or action/
adventure games have a much tougher problem. The maps are huge and relatively
open, and the game designers have little or no control over where the player will go
next. Players also expect an incredible level of detail in these games. They want to
read the headlines in newspapers or see individual leaves on the trees, while tall
buildings across the river are in plain view. Players like that alternate reality. One of
the best games that uses this open world design is Grand Theft Auto.

Modern operating systems have more options for multithreading, especially for cach-
ing in game areas while the CPU has some extra time. They use the player’s direction
of travel to predict the most likely areas that will be needed shortly and add those
resources to a list that is loaded on an ad hoc basis as the cache gets some time to
do extra work. This is especially beneficial if the game designers can give the cache
some hints, such as the destination of a path or the existence of pinch points, such as
a tunnel. These map elements almost serve as pinch points, similar to the hallways in
Halo, although players can always turn around and go the other direction.

Batch Your Cache Reads if You Can

Create your cache to load multiple resources at one time and sort your cache
reads in the order in which they appear in the file. This will minimize any
seeking activity on the part of the drive’s read head. If your resource file is
organized properly, the resources used together will appear next to each
other in the file. It will then be probable that resource loads will be
accomplished in a single read block with as few seeks as possible.

A good example of this is to use a method to preload resources into your cache:

int ResCache::Preload(const std::string pattern,

void (*progressCallback)(int, bool &))

{

if (m_file==NULL)

return 0;

int numFiles = m_file->VGetNumResources();

int loaded = 0;

bool cancel = false;

for (int i=0; i<numFiles; ++i)

{

Resource resource(m_file->VGetResourceName(i));

if (WildcardMatch(pattern.c_str(), resource.m_name.c_str()))

{

The Resource Cache 235

shared_ptr<ResHandle> handle =

g_pApp->m_ResCache->GetHandle(&resource);

++loaded;

}

if (progressCallback != NULL)

{

progressCallback(i * 100/numFiles, cancel);

}

}

return loaded;

}

This method uses a simple scheme of wildcard pattern matching that you’ve seen previ-
ously. The resources are iterated as they are ordered in the file, and if they match the
pattern, they are loaded. During the load, a progress callback function can be called to
animate a progress bar, or it can be set to NULL and ignored. With this method, you
could preload a number of resources based on a wildcard pattern, which could be set to
a named area or room of a level, for example. If all the resources were very small, this
method could be used to load resources asynchronously.

If you want to find out how your resources are being used, you should instrument your
build. That means you should create a debug build with special code that creates a log
file every time a resource is used. Use this log as a secondary data file to your resource
file creator, and you’ll be able to sequence the file to your game’s best advantage.

In open world games, the maximum map density should always leave a little CPU
time to perform some cache chores. Denser areas will spend most of their CPU
time on game tasks for rendering, sound, and AI. Sparse areas will spend more time
preparing the cache for denser areas about to reach the display. The trick is to bal-
ance these areas carefully, guiding the player through pinch points where it’s possible,
and never overloading the cache.

If the CPU can’t keep up with cache requests and other game tasks, you’ll probably
suffer a cache miss and risk the player detecting a stutter in the game. Not all is lost,
however, since a cache miss is a good opportunity to catch up on the entire list of
resources that will be needed all at once. This should be considered a worst-case sce-
nario, because if your game does this all the time, it will frustrate players. If you do
this in a first-person shooter, you’ll end up with a lot of bad reviews.

A better solution is a fallback mechanism for some resources that suffer a cache miss.
Flight simulators and other open architecture games can sometimes get away with
keeping the uncached resource hidden until the cache can load it. Imagine a flight

236 Chapter 8 n Loading and Caching Game Data

simulator game that caches in architecture as the plane gets close. If the game attempts
to draw a building that hasn’t been cached in, then the building simply won’t show up.
Think for a moment what is more important to the player: a piece of architecture that
will likely show up in 100ms or so anyway, or a frustrating pause in the action?

Not All Resources Are Equally Important

It’s a good idea to associate a priority with each resource. Some resources
are so important to the game that it must suffer a cache miss rather than fail
to render it. This is critical for sound effects, which must often be timed
exactly with visual events, such as explosions.

The really tough open-map problems are those games that add a level of detail on
top of an open-map design. This approach is common with flight simulators and
action adventure games. Each map segment has multiple levels of detail for static
and dynamic objects. It’s not a horrible problem to figure out how to create different
levels of detail for each segment. The problem is how to switch from one level of
detail to another without the player noticing. This is much easier in action/adventure
games where the player is on the ground and most objects are obscured from view
when they flip to a new level of detail.

Flight simulators don’t have that luxury. Players want the experience of flying high
enough to see the mountains on the horizon and diving low enough to see individual
trees and ground clutter whiz by at Mach 1. This requires a delicate balance between the
resource cache and the renderer, and it is one of the most difficult problems in modern
flight simulators that provide a truly realistic experience with supersonic aircraft.

This subject is way beyond the scope of this book, but I won’t leave you hanging.
There is some amazing work done in this area, not the least of which was published
in Level of Detail for 3D Graphics by D. Luebke, M. Reddy, J. Cohen, A. Varshney, B.
Watson, and R. Huebner. They also have a website at http://lodbook.com.

I’m Out of Cache

Smart game programmers realize early on that some problems are harder than
others. If you thought that creating a good flight simulator was a piece of cake, I’d
tell you that the hard part isn’t simulating the airplane but simulating the ground
and everything on it. The newbie game programmer could spend all his time creating
a great flight model, and when he started the enormous task of representing undulat-
ing terrain with smooth detail levels, he would fold like laundry.

I’m Out of Cache 237

http://lodbook.com

Games need enormous amounts of data to suspend disbelief on the part of players.
No one, not even Epic, can set their system RAM requirements to hold the entire
contents of even one disk of current day optical media. It’s also not enough to simply
assume that a game will load resources as needed, and the game designers can do
what they want. That is a tragic road traveled by many games that never shipped
and a few that have. Most games that suffer frame stutter issues ignored their cache
constraints.

It’s up to programmers to code the best cache they can and figure out a way to get
game level designers, artists, and sound engineers to plan the density of game areas
carefully. If everyone succeeds in his task, you get a smooth game that plays well. If
you succeed, you’ll get a game that can almost predict the future.

238 Chapter 8 n Loading and Caching Game Data

Chapter 9

by Mike McShaffry

Programming Input Devices

Even though user interface programming seems easy, it’s actually quite tricky, which
is ironic since most game companies assign the user interface code to their greenest
programmers. It’s a simple matter under almost any platform to read a keyboard,
mouse, or gamepad. Most programmers take this input, like the X,Y coordinate of a
mouse, and use it to directly modify the game state, such as where the player is look-
ing in a first-person shooter. This technique works all too well until you want to do
something like switch out that mouse for a USB gamepad or perhaps change how the
controls are interpreted by the game. Maybe your player wants to switch the
up/down or Y-axis of the camera controls from normal to inverted, like I prefer.

The framework presented in this book puts reading the hardware input devices
squarely inside the application layer, which is the layer that handles any and all oper-
ating system or machine-dependent code. Once the application layer handles the raw
input, it is handed off to the game view layer, usually a game view written specifically
for a human player, to interpret the raw input and translate it into a command for
your game. This chapter deals with the hardware and the raw messages, and you’ll
learn how these messages are handled in a game view in the next chapter, on user
interface programming.

Because input devices are typically very hardware specific, this chapter has a decid-
edly Windows feel to it. While that is true, the concepts used in the chapter regarding
what you do with the data coming from those devices are universal. While it can be a
big headache to rewrite a hardware support layer for a new platform, it falls into the

239

“mind numbing” category a bit more than “interesting.” For that reason, I focus on
Windows since it is an easy platform to own and experiment with.

First, we’ll play with the hardware.

Getting the Device State

No matter what platform you are on or what type of device you use—keyboard,
mouse, joystick, and so on—you’ll need to understand the techniques and subtleties
of getting and controlling the state of your input devices. We’ll start by working at
the lowest level, and then we’ll work our way up the input device food chain. The
interfaces to input devices are completely dependent on the platforms you use and
to some extent any middleware you might be using. Many 3D graphics engines also
provide APIs to all the input hardware. Regardless of the API used or devices they
control, there are two schemes for processing user input:

n Polling: This method minimizes the layers of code between you and the hard-
ware, and it requires an application to query each device to find out its state.
Your code should react to the state accordingly, usually comparing it against a
previous state and calling an input handler if anything changed. The APIs to
accomplish this are typically unique to the hardware.

n Callbacks or messages: This method is more common in advanced game
engines that handle the low level stuff for you. Here you just register input
device callbacks based on which devices you care about, and when they change
state, your callback will get control. They poll at the low level just like DirectX
would, but state changes are detected for you, which launches your callback.

Meaningful changes in hardware state should be translated into a game event,
whether you use a polling method or callback method. With a little work you can
structure your code to do this.

Of course, every platform operates a little differently, but the code looks very similar;
mouse buttons still go up and down, and the entire device moves on a two-
dimensional plane. It’s not crazy to assume that most device-handling code reflects
the nature of the specific device.

n Buttons: They will have up and down states. The down state might have an analog
component. Most game controllers support button pressure as an 8-bit value.

n One-axis controllers: They will have a single analog state, with zero represent-
ing the unpressed state. Game controllers usually have analog triggers for use in
features such as accelerators in driving games.

240 Chapter 9 n Programming Input Devices

n Two-axis controllers: A mouse and joystick are 2D controllers. Their status can
be represented as integers or floating-point numbers. When using these devices,
you shouldn’t assume anything about their coordinate space. The coordinate
(0,0) might represent the upper left-hand corner of the screen, or it might
represent the device center.

n Three-axis controllers: This would be typical of an accelerometer in a Wii-style
controller or smart phone. The status is typically represented as a three-
dimensional vector of floating-point numbers.

n Others: There are more controllers and input devices out there, such as
gyrometers, microphones, cameras, multitouch screens, GPS devices, and more.

Game controllers, even complicated ones, are typically built from assemblies of these
component types. The tricked-out joysticks that the flight simulator fans go for are
simply buttons and triggers attached to a 2D controller. A Wii Remote has multiple
buttons, a trigger, and an accelerometer. To support these devices, you need to write
a custom handler function for each component. Depending on the way your handler
functions get the device status, you might have to factor the device status for each
component out of a larger data structure. Eventually, you’ll call your handler func-
tions and change the game state.

Choose Controls with Fidelity in Mind

When you choose a control scheme for your game, be mindful of the fidelity
of each control. For example, a gamepad thumbstick has a low fidelity
because the entire movement from one extreme to another is only a few
centimeters. The mouse, on the other hand, has a very high fidelity since its
movement is perhaps 10 times as far. This is a fundamental difference
between games that use the gamepad, where targets are large and few in
number, versus games that require a mouse, where targets require speed
and precision, such as a headshot.

If you attempt to force a gamepad thumbstick into the same role as a
mouse control, your players will be extremely frustrated and likely will stop
playing your game. For games that are gamepad based, the players using
gamepads will certainly need a little help aiming, as do most console shooters such as Halo. The
players still need a high degree of skill, and its design cleverly balances the movement of the AI, the
aiming help, and the control scheme to be fun. Also, don’t think for a second that a game that requires
the precision of a mouse can work on a tablet like the iPad—the typical human finger is far from pixel
accurate.

You can create some interface classes for each kind of device that takes as input
the translated events that you received from messages, callbacks, or even polling.

Getting the Device State 241

You can write these any way you want, but here are some examples to help you get
started:

class IKeyboardHandler

{

virtual bool VOnKeyDown(unsigned int const kcode)=0;

virtual bool VOnKeyUp(unsigned int const kcode)=0;

};

class IPointerHandler

{

public:

virtual bool VOnPointerMove(const CPoint &mousePos)=0;

virtual bool VOnPointerButtonDown(const CPoint &mousePos,

const std::string &buttonName)=0;

virtual bool VOnPointerButtonUp(const CPoint &mousePos,

const std::string &buttonName)=0;

virtual int VGetPointerRadius()=0;

};

class IJoystickHandler

{

virtual bool VOnButtonDown(const std::string &buttonName,

int const pressure)=0;

virtual bool VOnButtonUp(const std::string &buttonName)=0;

virtual bool VOnJoystick(float const x, float const y)=0;

};

class IGamepadHandler

{

virtual bool VOnTrigger(const std::string &triggerName,

float const pressure)=0;

virtual bool VOnButtonDown(const std::string &buttonName,

int const pressure)=0;

virtual bool VOnButtonUp(const std::string &buttonName)=0;

virtual bool VOnDirectionalPad(const std::string &direction)=0;

virtual bool VOnThumbstick(const std::string &stickName,

float const x, float const y)=0;

};

Most functions represent an action taken by a control when something happens to an
input device, such as when a button is pressed or a thumbstick is moved. Here’s how
the return values work: If the message is handled, the functions return true; other-
wise, they return false.

242 Chapter 9 n Programming Input Devices

You’ll implement these interfaces in control classes to convert input from devices to
commands that can change the game state. Control objects in your game are guaran-
teed to receive device input in a standard and predictable way. Thus, it should be a
simple matter to modify and change the interface of your game by attaching new
control objects that care about any device you’ve installed.

The interface classes described previously are simple examples, and they should be
coded to fit the unique needs of your game. You can easily remove or add functions
at will, and not every game will use input exactly the same way.

Map Controls Directly to Controlled Objects

Don’t add parameters to distinguish between multiple joysticks or gamepads. A better solution is to
create controls that map directly to the object they are controlling. For example, if multiple gamepads
control multiple human drivers, the control code shouldn’t need to be aware of any other driver but the
one it is controlling. You could set all this up in a factory that creates the driver and the controller and
informs the input device code where to send the input from each gamepad.

If you follow a modular design, your game objects can be controlled via the same
interface, whether the source of that control is a gamepad or an AI character. For
example, the AI character could send commands like “brake 75%” or “steer 45%”
into a car controller, where the human player touches a few gamepad keys, generating
translated events that eventually result in exactly the same calls but to a different car.

This design should always exist in any game where AI characters and humans are
essentially interchangeable. If humans and AI characters use completely different
interfaces to game objects, it becomes difficult to port a single-player game to multi-
player. You’ll soon discover that none of the “plugs” fit.

You’ll see in Chapter 10, “User Interface Programming,” how to attach a mouse han-
dler and keyboard handler to a game view class, and you’ll also see in Chapter 14,
“3D Graphics Basics,” how to implement a user interface using both the mouse and
the keyboard to move about a 3D scene.

Using XInput or DirectInput

DirectInput was the de facto DirectX API for input devices such as the mouse, key-
board, joystick, game controllers, and force-feedback devices. It hasn’t seen any major
development since DirectX 8, however. DirectX sits in between your application and
a physical device like a gamepad, video card, or sound card. For video and sound
systems, many things are handled directly by the hardware, such as a video card’s
ability to texture map a polygon. If the hardware doesn’t have that feature, it is sim-
ulated in software. This architecture is usually called a hardware abstraction layer, or

Using XInput or DirectInput 243

HAL. While there is nothing for DirectInput to hardware accelerate, it does provide
an important service, which is to expose the capabilities of the user input hardware.
For example, a USB game controller might have a rumble or force-feedback feature.
If it does, DirectInput will give your game a way to detect it and use it to make your
game more interesting.

XInput is Microsoft’s answer to DirectInput, but it is a simpler and somewhat less capa-
ble system. It has a few limitations that DirectInput never had, such as only supporting
certain controllers, a four controller limit, limited support for force feedback, no support
for keyboards or mice, and others. While I’m certainly for simplification of APIs, I
never like to lose functionality, even if I have to dig into the lower layers a bit more.

Windows can certainly grab user input with DirectInput or XInput. Mouse and key-
board messages are well understood by a Win32 programmer the moment he creates
his first Win32 application. You might not be aware that the Win32 Multimedia Plat-
form SDK has everything you need to accept messages from your joystick. You don’t
even need DirectInput for that, so why bother? Straight Win32 code does not expose
every feature of all varieties of joysticks or PC game controller pads. For example, you
can grab input from a Logitech PC gamepad without DirectInput with this code:

bool CheckForJoystick(HWND hWnd)

{

JOYINFO joyinfo;

UINT wNumDevs, wDeviceID;

BOOL bDev1Attached, bDev2Attached;

if((wNumDevs = joyGetNumDevs()) == 0)

return false;

bDev1Attached = joyGetPos(JOYSTICKID1,&joyinfo) != JOYERR_UNPLUGGED;

bDev2Attached = joyGetPos(JOYSTICKID2,&joyinfo) != JOYERR_UNPLUGGED;

if(bDev1Attached)

joySetCapture(hWnd, JOYSTICKID1, 1000/30, true);

if (bDev2Attached)

joySetCapture(hWnd, JOYSTICKID2, 1000/30, true);

return true;

}

After this code runs, Windows will begin sending messages to your game such as
MM_JOY1MOVE and MM_JOY2BUTTONDOWN. You might feel that this simple code is
preferable to the much larger initialization and required polling needed by DirectInput,
but DirectInput gives you access to the entire device—all the buttons, the rumble, force
feedback, and so on. The Windows Multimedia Platform SDK only gives you the most
basic access to joystick messages.

244 Chapter 9 n Programming Input Devices

Beyond this, another feature of DirectInput that’s pretty useful is called action map-
ping. This is a concept that binds actions to virtual controls. Instead of looking at the
X-axis of the joystick to find the direction of a car’s steering wheel, DirectInput can
map the action of steering the car to a virtual control. The actual controls can be
mapped to the virtual controls at the whim of the player and are the basis for provid-
ing a completely configurable control system. Some gamers really love this. Direct-
Input isn’t the only way to make that work, however, but it does buy you a few
other things like a standard way to tweak the force-feedback system.

Remappable Controls Are Expected by Your Players

Whether you use DirectInput or not, this action-mapping idea is something every
game should have, even if you have to code it yourself. If you can easily switch
your controls from right-handed to left-handed or from normal camera
movement to inverted camera movement, you’ll automatically get more people
to play your game. Actually, you’ll keep people from throwing your game in the
garbage. Most players expect a customizable interface, and you’ll find more
players giving your game great reviews if they can adopt a control scheme
they are comfortable with. Even more importantly, PC gamepads from different
manufacturers may map input completely differently—for example, one may
switch the thumbsticks from left-handed to right-handed or give you negative
values when you expect positive values. A configurable input scheme lets you
easily remap these wacky values to a standard your game will use.

Mass market games that don’t use any advanced features of joysticks or don’t have
insanely configurable controls can work just fine with Windows messages and the
Windows Multimedia Platform SDK. You don’t have to learn to use DirectInput to
make games, and Windows messages are easy and familiar. There are plenty of
DirectInput samples in the DirectX SDK for you to look at, so I’m not going to
waste your time or any trees on the subject. What I want to work on is the fact that
there’s plenty to talk about in terms of user interface code, regardless of the API you
use or on what platform your game ships.

A Few Safety Tips

I’ve probably spent more of my programming time on user interface tasks than
almost anything else. The design for the early Ultima games loaded tons of control
on the mouse—the idea being that the player could play the whole game without ever
touching the keyboard. As good an idea as it seemed at the time, this was a horrible
idea because it ignored simple physiology and the nature of the hardware. Remember
that any input scheme should be designed around how players physically manipulate
the device, and that they tend to do this for hours at a time.

A Few Safety Tips 245

There are plenty of standard conventions for input devices, from Microsoft Windows
to first-person shooters on the PC. When you sit down to write your interface code,
consider your control scheme carefully and make a conscious decision whether you
want to stay with a well-known convention or go in a totally new direction. You take
a risk with going rogue on user interface controls, but it can pay off, too. After all,
before the shooter-style game was popular, how many games used the mouse as a
model for a human neck? This idea worked well in a case like this for two reasons:
It solved a new problem, and the solution was intuitive.

If It Ain’t Broke, Don’t Fix It

If you’re solving an interface problem that has a standard solution and you
choose a radically different approach, you take a risk of annoying players. If
you think their annoyance will transition into wonder and words of praise as
they discover (and figure out) your novel solution, then by all means give it a
try. Make sure that you test your idea first with some people you trust. They’ll
tell you if your idea belongs on the garbage heap.

After them, try the idea out on real players you’ve never met. Be careful with
interfaces, though. A friend of mine once judged the many entrants into the
Indie Games Festival (www.indiegames.com), and he said the biggest mistake
he saw that killed promising entrants was poor interface controls. He was
amazed to see entries with incredible 3D graphics not make the cut because
they were simply too hard to control.

What’s worse, even game professionals get caught in this problem. The big retail buyers will give your
game just a few minutes, and if they can’t figure out your control scheme, they won’t buy your game.
Believe me, if someone like Walmart or Best Buy doesn’t buy your game, you are destined for the
unemployment line. In short, don’t be afraid to use a good idea just because it’s already been done.

Be cautious with overloading simple controls with complicated results. Context
sensitivity in controls can be tough to deal with as a player. It’s easy to make the mis-
take of loading too much control onto too little a device. The Ultima games generally
went a little too far, I think, in how they used the mouse. A design goal for the games
was to have every conceivable action be possible from the mouse, so every click and
double-click was used for something. In fact, the same command would do different
things if you clicked on a person, a door, or a monster. I’m sometimes surprised that
we never implemented a special action for the “shave and a haircut, two bits” click.

Give the player some feedback. One thing I think the Ultima games did well, and many
others since, was how they used the cursor, or reticle image. As it floated over different
objects, it would change shape to give the player feedback about what things were and
whether they could be activated by a button press. This is especially useful when your
screens are very densely populated. When the reticle changes shape to signify that the

246 Chapter 9 n Programming Input Devices

www.indiegames.com

player can perform an action, players immediately understand that they can use it to
explore the screen. In Thief: Deadly Shadows, the gamepad controls did very different
things when the player was shooting an arrow or picking a lock. The very first tutorial
mission exposed these differences with specific tasks the player had to complete during
the tutorial mission, and the screens were very different for both modes. On Mushroom
Men: The Spore Wars for the Wii, the changing icon told the player what special power
was possible on any object being pointed to by the Wii Remote.

Players won’t use it if they don’t know about it. A great term in games is
“discoverability.” It describes how easy it is for a player to figure things out on his
own. Power-user moves are sometimes hidden on purpose, such as a special button
combo in a fighting game, and that’s a fine thing to hide. A special shortcut to page
through equipped weapons is different—it is something that more advanced players
will use to shorten the time between their desire to do something and having it actu-
ally happening. Make sure that you expose anything like this in a tutorial or in hints
during loading screens. Documenting it isn’t good enough since players almost never
read documentation.

Watch and learn. When you finish any work on any kind of interface, bring some
people in and watch them try to use it. Stand behind them and give them a task to
perform, but don’t give them any hints. An interface should be self evident to players,
and they should be able to figure it out in 30 seconds or less on their own. A really
good tip: Watch what your impromptu testers do first, and most likely they’ll all do
something similar. If they struggle with your solution, consider carefully whether you
should consider changing your design.

Avoid pixel perfect accuracy. It’s a serious mistake to assume that players of all ages
can target a screen area with pixel perfect accuracy. Even with a high-fidelity control
like a mouse, this task is very difficult; on a very low-fidelity control like the Wii
Remote or pad touch controls, this is simply impossible. An example of this might
be a small click target on an item or a small drop point on the screen. High require-
ments for accuracy can create tons of player frustration, even with a high-fidelity
input device like a mouse. Instead, consider creating a sloppy buffer zone that effec-
tively widens the active target area. On Thief: Deadly Shadows, these “sloppy” target-
ing areas would sometimes overlap on-screen, and the code had to choose which
item was the most likely one targeted. The solution was to choose the closest one to
the viewer, but that doesn’t necessarily work all the time.

Anyone who has attempted to cast spells in the original version of Ultima VIII will
agree. The reagents that made some of the spells work had to be placed exactly. This
requirement made spell casting frustrating and arbitrary. Even though the QA

A Few Safety Tips 247

department complained about it early on, after some time they learned how to cast
spells with no problem. But real players are not hired to deal with your bad interface,
so don’t expect them to just tolerate it until they finally learn it.

Targeting Is Always a Little Sloppy

The Ultima VII mouse code detected objects on the screen by performing pixel
collision testing with the mouse (X,Y) position and the images that made up the
objects in the world. Most of these sprites were chroma keyed and therefore
had spots of the transparent color all through them. This was especially true
of objects like jail cell bars and fences. Ultima VII’s pixel collision code ignored
the transparent color, allowing players to click through fences and jail cell bars
to examine objects on the other side. That was a good feature, and it was used
in many places to advance the story. The problem it created, however, was that
sometimes the transparent colored pixels actually made it harder for players to
click on an object. For example, double-clicking the door of the jail cell was
difficult. If you use an approach like this, take some care in designing which
objects are active and which are simply scenery, and make sure you make this
clear to your players.

This is an extremely important issue with casual games or kids’ games. Very young
players or older gamers find games with forgiving interfaces much easier to play.
Making your game easier to play tends to broaden the appeal of the game, but it
also narrows the skill gap between first-time players and elite players. This balance
is sometimes hard to gauge. The best advice I can give you on that front is try to
know your audience. If the game is something families of all ages will play, make
the game fairly forgiving. If the game is targeted more toward a hard-core audience,
ramp up the difficulty quickly and give the elite players something that will challenge
them. It isn’t impossible, but typically you can’t do both.

A Fine Use of a Piece of Tape

With Ultima VIII, the left mouse button served as the “walk/run” button. As
long as you held it down, the avatar character would run in the direction of
the mouse pointer. Ultima games require a lot of running; your character
will run across an entire continent only to discover that the thingamajig
that will open the gate of whosiz is back in the city you just left, so you
go running off again. By the time I’d played through the game the
umpteenth time, my index finger was so tired of running I started using
tape to hold the mouse button down. One thing people do in a lot of FPS
games when playing online is set them to “always run” mode. I wish we’d
done that with Ultima VIII.

248 Chapter 9 n Programming Input Devices

Accelerometers Sometimes Don’t Know Which Way Is Up

Being at Red Fly for a few years gave me a special appreciation for coders
who had to deal with motion controls, especially those on the Wii
Remote. All of our games, most recently including Star Wars: The Force
Unleashed II and Thor: God of Thunder on the Wii had quick-time
sequences where you finished off bosses with a slam to the left, right,
up, or down. If you play these games, you’ll quickly realize that left and
right are equivalent, as are up and down. The reason why we did this has
to do with how different players move the Wii Remote.

Watch someone when he performs a “slam left” movement, and you’ll
see that more often than not, he’ll begin with a slight leftward motion,
then go toward the right as he builds up speed, and end with a big slam
back to the left. This creates quite a bit of madness for the coder trying to recognize this motion,
especially since not all players will do it the same way. It turned out that the best course of action was
to simply watch the left-right accelerometer and just register the slam correctly if they didn’t move it
(much) in a vertical direction and did so within the time limit.

Working with Two-Axis Controls

Two-axis controls include the mouse, touch screen, or joystick. I’m not going to talk
about basic topics like grabbing WM_MOUSEMOVE and pulling screen coordinates out
of the LPARAM. Many books have been written to cover these programming techni-
ques. If you need a primer on Win32 and GDI, I suggest you read Charles Petzold’s
classic book Programming Windows: The Definitive Guide to the Win32 API. Instead,
what follows are things you’ll need to do after you get those coordinates.

Capturing the Mouse on Desktops

I’m always surprised that programming documentation doesn’t make inside jokes
about capturing the mouse. At least we can still laugh at it. If you’ve never pro-
grammed a user interface before, you probably don’t know what capturing the
mouse means or why any programmer in his right mind would want to do this.
Catching a mouse isn’t probably something that’s high on your list.

To see what you’ve been missing, go to a desktop machine right now and bring up a
dialog box. A Windows or Mac will do. Move the mouse over a button, hopefully not
one that will erase your hard drive, and click the mouse button that will activate the
button and hold it down. You should see the button graphic depress. Move the
mouse pointer away from the button, and you’ll notice the button graphic pop back
up again. Until you release the mouse button, you can move the mouse all you want,
but only the button on the dialog will get the messages. If you don’t believe me, open

Working with Two-Axis Controls 249

up Microsoft Spy++ on a Windows desktop and see for yourself. Microsoft Spy++ is
a tool that you use to figure out which Windows messages are going to which win-
dow, and it’s a great debugging tool if you are coding a standard GDI-based applica-
tion. Here’s a quick tutorial:

1. If you are running Visual Studio, select Spy++ from the Tools menu. You can
also launch it from the Tools section of the Visual Studio area of your Start menu.

2. Close the open default window and select Find Window from the main menu or
press Ctrl-F.

3. You’ll then see a little dialog box that looks like the one shown in Figure 9.1.

4. Click and drag the little finder tool to the window or button you are interested
in and then click the Messages radio button at the bottom of the dialog. You’ll
get a new window in Spy++ that shows you every message sent to the object.

Perform the previous experiment again, but this time use Spy++ to monitor the Win-
dows messages sent to the button. You’ll find that as soon as you click on the button,
every mouse action will be displayed, even if the pointer is far away from the button
in question. That might be interesting, but why is it important? If a user interface
uses the boundaries of an object like a button to determine whether it should receive
mouse events, capturing the mouse is critical. Imagine a scenario where you can’t
capture mouse events:

1. The mouse button goes down over an active button.

2. The button receives the event and draws itself in the down position.

Figure 9.1
The Find window with Spy++.

250 Chapter 9 n Programming Input Devices

3. The mouse moves away from the button, outside its border.

4. The button stops receiving any events from the mouse since the mouse isn’t
directly over the button.

5. The mouse button is released.

The result is that the button will still be drawn in the down position, awaiting a but-
ton release event that will never happen. If the mouse events are captured, the button
will continue to receive mouse events until the button is released.

To better understand this, take a look at a code snippet that shows some code you
can use to capture the mouse and draw lines:

LRESULT APIENTRY MainWndProc(HWND hwndMain, UINT uMsg, WPARAM wParam,

LPARAM lParam)

{

static POINTS ptsBegin; // beginning point

switch (uMsg)

{

case WM_LBUTTONDOWN:

// Capture mouse input.

SetCapture(hwndMain);

bIsCaptured = true;

ptsBegin = MAKEPOINTS(lParam);

return 0;

case WM_MOUSEMOVE:

// When moving the mouse, the user must hold down

// the left mouse button to draw lines.

if (wParam & MK_LBUTTON)

{

// imaginary code – you write this function

pseudocode::ErasePreviousLine();

// Convert the current cursor coordinates to a

// POINTS structure, and then draw a new line.

ptsEnd = MAKEPOINTS(lParam);

// also imaginary

pseudocode::DrawLine(ptsEnd.x, ptsEnd.y);

}

break;

Working with Two-Axis Controls 251

case WM_LBUTTONUP:

// The user has finished drawing the line. Reset the

// previous line flag, release the mouse cursor, and

// release the mouse capture.

fPrevLine = FALSE;

bIsCaptured = false;

ReleaseCapture();

break;

}

case WM_ACTIVATEAPP:

{

if (wParam == TRUE)

{

// got focus again – regain our mouse capture

if (bIsCaptured)

SetCapture(hwndMain);

}

break;

}

return 0;

}

If you were to write functions for erasing and drawing lines, you’d have a nice rubber
band line-drawing mechanism, which mouse capturing makes possible. By using it,
your lines will continue to follow the mouse, even if you leave the window’s client
area.

One thing to note: If your application loses focus, you’ll also lose the mouse capture,
which can be handled easily by listening to the WM_ACTIVATEAPP message.

Making a Mouse Drag Work

You might wonder why a mouse drag is so important. Drags are important because
they are prerequisites to much of the user interface code in a lot of PC games. When
you select a group of combatants in RTS games like good old Command & Conquer,
for example, you drag out a rectangle. When you play Freecell in Windows, you use
the mouse to drag cards around. It is quite likely that you’ll have to code a mouse
drag at some point.

Dragging the mouse adds a little complexity to the process of capturing it. Most user
interface code distinguishes a single-click, double-click, and drag as three separate
actions, and therefore will call different game code. Dragging also relates to the

252 Chapter 9 n Programming Input Devices

notion of legality; it’s not always possible that anything in your game can be dragged
to anywhere. If a drag fails, you’ll need a way to set things back to the way they were.
This issue might seem moot when you consider that dragging usually affects the look
of the game—the dragged object needs to appear like it is really moving around, and
it shouldn’t leave a copy of itself in its original location. That might confuse the
player big-time.

The code to support dragging requires three phases:

n Detect and initiate a drag event.

n Handle the mouse movement and draw objects accordingly.

n Detect the release and finalize the drag.

The actions that define a drag are typically a mouse press (button down) followed by
a mouse movement, but life in the mouse drag game is not always that simple. Also,
during a double-click event, a slight amount of mouse movement might occur, per-
haps only a single pixel coordinate. Your code must interpret these different cases.

In Windows, a drag event is only allowed on objects that are already selected, which
is why drags usually follow on the second “click and hold” of the mouse button. The
first click of the left mouse button always selects objects. Many games differ from
that standard, but it’s one of the easier actions to code since only selected objects are
draggable.

Since a drag event involves multiple trips around the main loop, you must assume
that every mouse button down event could be the beginning of a drag event. I guess
an event is assumed draggable until proven innocent. In your mouse button down
handler, you need to look at the mouse coordinates and determine if they are over
a draggable object. If the object is draggable, you must create a temporary reference
to it that you can find a few game loops later. Since this is the first button down
event, you can’t tell if it’s a bona fide drag event just yet.

The only thing that will make the drag event real is the movement of the mouse, but
only movement outside of a tiny buffer zone. On most screen resolutions, a good
choice is five pixels in either the X or Y coordinate. This is large enough to indicate
that the drag was real, but small enough that small shakes in the mouse during a
double-click won’t unintentionally initiate a drag. If you were to create a drag on a
Wii game, you’d want a much sloppier buffer zone since the Wii Remote pointer can
shake quite a bit. If you can set this buffer size while the game is running, like with a
hack or a cheat, you’ll be able to tune this to suit a majority of players quickly.

Working with Two-Axis Controls 253

Here’s the code that performs this dirty work of the drag:

// Place this code at the top of your mouse movement handler

if (m_aboutToDrag)

{

CPoint offset = currentPoint - dragStartingPoint;

if (abs(offset.x) > DRAG_THRESHOLD || abs(offset.y) > DRAG_THRESHOLD)

{

// We have a real drag event!

bool dragOK =

pseudocode::InitiateDrag(draggedObject, dragStartingPoint);

SetCapture(GetWindow()->m_hWnd);

m_dragging = TRUE;

}

}

The call to pseudocode::InitiateDrag() is something you write yourself. Its
job is to set the game state to remove the original object from the display and draw
the dragged object in some obvious form, such as a transparent ghost object.

Until the mouse button is released, the mouse movement handler will continue to get
mouse movement commands, even those that are outside the client area of your win-
dow if you are running in windowed mode. Make sure that your draw routines don’t
freak out when they see these odd coordinates.

While the drag is active, you must direct all the mouse input to the control that ini-
tiated the drag. Other controls should essentially ignore the input. The best way to do
this is to keep a pointer to the control that initiated the drag and send all input
directly to it, essentially bypassing any code that sends messages to your control list.
It’s a little like masking all the controls in your control list, rendering them deaf to all
incoming messages until the drag is complete.

What must go down must finally come up again. When the mouse button is released,
your drag is complete, but the drag location might not be in a legal spot, so you
might have to reset your game back to the state before the drag started, like this:

// Place this code at the top of your mouse button up handler

if (m_dragging)

{

ReleaseCapture();

m_bDragging = false;

if (!pseudocode::FinishDrag(point))

{

254 Chapter 9 n Programming Input Devices

pseudocode::AbortDrag(dragStartingPoint);

}

}

This bit of code would exist in your handler for a mouse button up event. The call to
ReleaseCapture() makes sure that mouse events get sent to all their normal
places again. pseudocode::FinishDrag() is a function you’d write yourself. It
should detect if the destination of the drag was legal and perform the right game
state manipulations to make it so. If the drag is illegal, the object has to snap back
to its previous location as if the drag never occurred. This function can be trickier to
write than you’d think, since you can’t necessarily use game state information to send
the object back to where it came from.

Game Editors Are All Powerful

In Ultima VII and Ultima VIII, we created a complicated system to keep track of
object movement, specifically whether or not an object could legally move from
one place to another. It was possible for a game designer to use the all-
powerful game editor to force objects into any location, whether it was legal
or not. If these objects were dragged to another illegal location by the player,
the object had to be forced back into place. Otherwise, the object would exist
in limbo. What we learned was that the drag code could access the game state
at a low enough level to run the abort code.

You can have exactly the same problem with modern games that use modern
physics systems. These days when you place an actor like a candle inside a
table or something, the physics system can’t solve for a legal place for the
candle to exist. It’s best course of action is to remove the candle completely from the collision detector,
causing it to fall through the table and plummet downward, perhaps forever. It may just fall to the floor,
but either way the candle won’t stay on the table when the physics simulator begins running on the
candle, which usually happens when it is moved. This can make dragging objects with real physics
somewhat painful. The best course of action is to require the world editor to place dynamic objects in
proper positions where they can be moved by the player later. This means the physics system is actually
solving for legal support under the candle when it is placed.

Working with a Game Controller

Working on Ion Storm’s Thief: Deadly Shadows game was my first experience with
console development and my first experience with writing code for a gamepad. It
was much more of an eye-opener than I thought it would be. Until I actually had
one of these things in my hot little hands and the code saturating my overcaffeinated
brain, I thought these devices were little more than a collection of buttons and joy-
sticks. Boy, was I wrong!

Working with a Game Controller 255

Having played tons of console games, I already had a pretty good feel for a good
control scheme, but I’d never had the chance to write one myself. The basics of the
gamepad interface code are really quite the same as a mouse, keyboard, or joystick,
but subtle differences between interface design and interpreting the device inputs
warrant some additional explanation. I’ll talk a little about dead zones, normalizing
input, input acceleration, and the design impact of one-stick versus two-stick control
schemes.

Dead Zones

A dead zone is any area of a control interface that has no input effect. This keeps
small errors in hand movement from adversely affecting game input. You know you
need a dead zone in a control when you watch players make mistakes because the
controls were too sensitive and interpreted their input in a way that they didn’t
expect.

A great example of this was on the Thief: Deadly Shadows camera control for the
Xbox gamepad. It used a two-stick control scheme like Halo or Splinter Cell, which
meant that the character moved with the left thumbstick and the camera moved with
the right thumbstick.

The first iteration of the camera movement code was pretty simple; the right thumb-
stick controlled the camera. Up/down movement caused the camera to pitch, and
left/right movement caused the camera to yaw. The speed of movement was coded
directly to how far the thumbstick was moved. But when I went to QA and watched
them play, I noticed something really strange happening. As the QA person would
spin the camera left or right, the camera would also pitch a few degrees up or
down. This happened every time in QA, but not with me as I tested the code.

I watched QA play more to try to figure out what was happening, and I realized that
when they were actually playing the game, they’d jam the left thumbstick left or right
to see if something was behind them, and it was a pretty fast movement. Once the
thumbstick hit the extreme position, it would stop, of course, but it would usually
also be in a slightly up or down angle as well as all the way left or right. In my
tests, I wasn’t jamming the controller, and thus I never had the slight up/down posi-
tion. Even though it was small, the up/down error in the thumbstick movement
always resulted in the camera pitching up/down, just as I wrote the code.

Figure 9.2 shows the movement area of a thumbstick controller on a gamepad. By
convention, gamepads, joysticks, and other two-axis controllers usually have raw out-
put ranges from [−1.0f, 1.0f], and the neutral position returns a raw output value of
(0.0f, 0.0f). Every now and then, you might find a control device returning odd

256 Chapter 9 n Programming Input Devices

values, like integers from [0, 255] or something like that. If you ever see this happen-
ing, it’s a good idea to remap the output range back to [−1.0f, 1.0f]. Standardizing
these ranges helps keep the code that interprets these values nice and clean.

If the thumbstick were positioned at the location of the black spot, you’d expect an X,
Y value of (−0.80, 0.15) or thereabouts. That small positive Y input would be the
cause of my previous trouble; the camera would slowly pitch until it was looking
straight up or down, depending on the control scheme.

You might not think this is a serious problem—until you watch players play the
game. Many first-person shooter players like to twitch-look—where they snap the
thumbstick quickly to the left or right and pause for a second or two. If there’s no
dead zone, the camera will always begin to pitch a little up or down, depending on
how the player is holding the gamepad. At some point, the player has to stop and
correct the camera pitch, usually with a snort of disgust. Many players and game
critics complain about bad cameras, but it seems that what they are really complain-
ing about is bad camera control.

The answer to my problem, and yours if you are coding thumbstick controls, is a
dead zone for pitch control. The dead zone is represented by the darkened area in
Figure 9.2. Inside this area, all Y values are forced to zero. The values of our block
spot become (−0.80, 0.0), and our camera pitch stays mercifully still.

You might be wondering why the dead zone has a bowtie shape instead of just a
simple dead area all the way across the middle of the circle. There’s a really good
reason: When the thumbstick is close to the center and being moved about with a
fine degree of control, the player is probably doing something like aiming a sniper
rifle. A dead zone in this situation would be really annoying, since any up/down

Figure 9.2
Dealing with a dead zone for pitch control.

Working with a Game Controller 257

movement would require the player to push the thumbstick all the way out of the
dead zone. That would make it almost impossible to aim properly.

The dead zone shape also doesn’t have to be exactly what you see in Figure 9.2.
Depending on your game and how people play it, you might change the shape by
making the angle shallower or even pull the left and right dead areas away from the
center, giving the player complete control over camera pitch until the thumbstick
is closer to the extreme right or left side. The only way to figure out the perfect
shape is by watching a lot of people play your game and seeing what they do that
frustrates them. Controls that are too sensitive or too sluggish will frustrate players,
and you’ll want to find a middle ground that pleases a majority of people.

There’s one additional trick to this solution. Think about what happens when the
thumbstick moves away from the dead zone into the active, clear zone. One thing
players expect in all control schemes is continuous, predictive movement. This
means that you can’t just force the Y value to zero in the dead zone and use regular
values everywhere else; you have to smoothly interpolate the Y values outside of the
dead zone from 0.0 to 1.0, or the player will notice a pop in the movement of the
camera pitch. The code to do this is not nearly as bad as you might think:

float Interpolate(float normalizedValue, float begin, float end)

{

// first check input values

assert(normalizedValue>=0.0f);

assert(normalizedValue<=1.0f);

assert(end>begin);

return (normalizedValue * (end - begin)) + begin;

}

void MapYDeadZone(Vec3 &input, float deadZone)

{

if (deadZone>=1.0f)

return;

// The dead zone is assumed to be zero close to the origin

// so we have to interpolate to find the right dead zone for

// our current value of X.

float actualDeadZone = Interpolate(fabs(input.x), 0.0f, deadZone);

if (fabs(input.y) < actualDeadZone)

{

258 Chapter 9 n Programming Input Devices

input.y = 0.0f;

return;

}

// Y is outside of the dead zone, but we still need to

// interpolate it so we don’t see any popping.

// Map Y values [actualDeadZone, 1.0f] to [0.0f, 1.0f]

float normalizedY = (input.y - actualDeadZone) / (1.0f - actualDeadZone);

input.y = normalizedY;

}

Normalizing Input

Even though the game controller thumbsticks have a circular area of movement, the
inputs for X and Y only reach 1.0 at the very top, bottom, left, and right of the circle.
In other words, X and Y are mapped to a Cartesian space, not a circular space. Take
a look at Figure 9.3, and you’ll see what I mean.

Imagine what happens when a player pushes a control diagonally up and to the left.
On some controllers, you’ll get values for X and Y that are close to their maximum
range and probably look something like (−0.95f, 0.95). The reason for this is how the

Figure 9.3
Normalized input from a two-axis controller.

Working with a Game Controller 259

controllers are built. Remember the two-axis controller I mentioned earlier? X and Y
are both analog electrical devices called potentiometers. They measure electrical resis-
tance along an analog dial and are used for things like volume controls on stereos
and, of course, joysticks and thumbsticks. On two-axis controllers like these, you
have two potentiometers: one for each axis.

You can see from Figure 9.3 that the Y potentiometer can reach 1.0 or −1.0 if you
push the controller all the way up or down. You can get the same values for the X
potentiometer. You might think that all you need to do to calculate the input speed is
find the length of the combined vector. That’s just classic geometry, the Pythagorean
Theorem.

a2 þ b2 ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 þ 1

2
p

¼ �
ffiffiffi
2

p
¼ �1:414

This length is represented by the gray arrow in Figure 9.3. The problem is that the
new input vector is 1.414f units long, and if you feed it right into the game, you’ll be
able to move diagonally quite a bit faster than in the cardinal directions. The direc-
tion of the new vector is correct, but it is too long.

For character movement, the forward/back motion of the character is mapped to the
up/down movement of the thumbstick, and the left/right motion of the character is
mapped to the left/right movement of the thumbstick. Usually, the speed of the char-
acter is controlled by how far the thumbstick is pushed. If you push the thumbstick
all the way forward, the character will run forward as fast as it can.

But look at what happens when you want the character to run and turn left at the
same time, as Figure 9.3 would suggest. Since I have to move the controller to the
left, I automatically increase the length of the X input while the Y value stays at
1.0f, and the character begins to run too fast.

The solution to this problem is actually pretty simple: The speed of the character is
mapped to the length of the X/Y 2D vector, not the value of the Y control alone, and
you have to cap the speed at 1.0f. All you do is take the capped length and multiply it
by the maximum speed:

int speed = maxSpeed * min(1.0f, sqrt((x * x) + (y * y)));

Of course, you may have different maximum speeds for going forward and backward,
or even side to side.

You might not realize it, but you also want to use this normalizing scheme on key-
board input. Consider the classic WASD scheme used by most first-person shooters
on the PC. W and S move the player forward and back. A and D strafe the player

260 Chapter 9 n Programming Input Devices

from side to side. If you press W and A together, your character should move diago-
nally forward and to the left. If you don’t normalize the input, your character will
move faster diagonally than in the cardinal directions, because the combined forward
and left inputs add together to create a longer vector, just as it does on the gamepad.

One Stick, Two Stick, Red Stick, Blue Stick

It’s never a bad thing to invoke Dr. Seuss, is it? One of the huge design decisions
you’ll make in your game is whether to follow a one-stick or two-stick control
scheme. You’ll attract different players for either one, and depending on your level
design, you might be much better off going with one over the other.

A one-stick design lets the player control the character movement with one thumb-
stick, and the camera is usually controlled completely by the computer. There might
be a camera control, but it is usually relegated to the D-pad instead of the other
thumbstick. Lots of games do this, such as racing games like Project Gotham 4 on
the Xbox360 and Mario Galaxies on the Wii. It’s generally seen by game designers
and players as the easiest interface to control.

The two-stick design puts complete control of camera movement in the other thumb-
stick. This is done in games like Halo, Thief: Deadly Shadows, and Gears of War. This
control scheme is harder to learn and is generally reserved for a hard-core audience.

How do you decide which one to use for your game? The best thing to do in my
mind is try to compare your game design to others that have succeeded with a par-
ticular control scheme. We chose the control scheme in Thief by looking at Halo and
Splinter Cell and decided that the gameplay was quite close to those two products.
We also realized that because the game was first and third person, the same control
interface would work exactly the same way in both modes.

Ramping Control Values

Ramping is another way of saying accelerating. The raw control values are usually not
sent directly into things like camera rotation because the movement can be quite jar-
ring. You can jam a thumbstick control from the center to the edge of the control
area extremely quickly, perhaps less than 80ms. If you take a little extra time to accel-
erate the movement of whatever it is you are controlling, you’ll get a smoother accel-
eration, which adds a finer degree of control and looks much better to boot.

The input parameters for this calculation are the current elapsed time, the current
speed, the maximum speed, and the number of seconds you want to accelerate.

Working with a Game Controller 261

// Ramp the acceleration by the elapsed time.

float numberOfSeconds = 2.0f;

m_currentSpeed += m_maxSpeed * ((elapsedTime*elapsedTime) / numberOfSeconds);

if (m_currentSpeed > m_maxSpeed)

m_currentSpeed = m_maxSpeed;

The elapsed time should be a floating-point number measuring the number of sec-
onds it has been since the last time this code was called. It turns out that humans
have a keen sense of how things should accelerate, probably because we watch things
fall under the acceleration of gravity all the time. If those things are coconuts and we
happen to be standing beneath them, this skill becomes quite life saving. Whenever
you accelerate anything related to a control in your game, always accelerate it with a
time-squared component so that it will “feel” more natural.

Working with the Keyboard

There are many ways to grab keyboard input from Win32. They each have their good
and bad points, and to make the right choice, you need to know how deep you need
to pry into keyboard input data. Before we discuss these various approaches, let’s get
a few vocabulary words out of the way so that we’re talking the same language:

n Character code: Describes the ASCII or UNICODE character that is the return
value of the C function, getchar().

n Virtual scan code: Macros defined in Winuser.h that describe the components
of data sent in the wParam value of WM_CHAR, WM_KEYDOWN, and WM_KEYUP

messages.

n OEM scan code: The scan codes provided by OEMs. They are useless unless you
care about coding something specific for a particular keyboard manufacturer.

Those definitions will resonate even more once you’ve seen some data, so let’s pry
open the keyboard and do a little snooping.

Mike’s Keyboard Snooper

I wrote a small program to break out all the different values for Windows keyboard
messages, and as you’ll see shortly, this tool really uncovers some weird things that
take place with Windows. Taken with the definitions we just discussed, however,
you’ll soon see that the different values will make a little more sense. Each line in
the tables below contains the values of wParam and lParam for Windows keyboard
messages. I typed the following sequence of keys: 1 2 a b, to produce the first table.

262 Chapter 9 n Programming Input Devices

Look closely at the different values that are produced for the different Windows
messages:

WM_KEYDOWN, WM_CHAR, WM_KEYUP, and so on:

WM_KEYDOWN Code:49 ‘1’ Repeat:1 Oem: 2 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:49 ‘1’ Repeat:1 Oem: 2 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:49 ‘1’ Repeat:1 Oem: 2 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:50 ‘2’ Repeat:1 Oem: 3 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:50 ‘2’ Repeat:1 Oem: 3 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:50 ‘2’ Repeat:1 Oem: 3 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:97 ‘a’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:66 ‘B’ Repeat:1 Oem:48 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:98 ‘b’ Repeat:1 Oem:48 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:66 ‘B’ Repeat:1 Oem:48 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

You’ll first notice that the message pipe gets the sequence of WM_KEYDOWN, WM_CHAR,
and WM_KEYUP for each key pressed and released. The next thing you’ll notice is that
the code returned by WM_CHAR is different from the other messages when characters
are lowercase.

This should give you a clue that you can use WM_CHAR for simple character input
when all you care about is getting the right character code. What happens if a key
is held down? Let’s find out. The next table shows the output I received by first press-
ing and holding an “a” and then the left Shift key:

WM_KEYDOWN Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_CHAR Code:97 ‘a’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_CHAR Code:97 ‘a’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_CHAR Code:97 ‘a’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_CHAR Code:97 ‘a’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_CHAR Code:97 ‘a’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYUP Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYUP Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

Working with the Keyboard 263

It seems that I can’t count on the repeat value as shown here. It is completely depen-
dent on your equipment manufacturer and keyboard driver software. You may get
repeat values and you may not. You need to make sure your code will work either
way.

For the next sequence, I held the left Shift key and typed the same original sequence—
1 2 a b:

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:49 ‘1’ Repeat:1 Oem: 2 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:33 ‘!’ Repeat:1 Oem: 2 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:49 ‘1’ Repeat:1 Oem: 2 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:50 ‘2’ Repeat:1 Oem: 3 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:64 ‘@’ Repeat:1 Oem: 3 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:50 ‘2’ Repeat:1 Oem: 3 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:65 ‘A’ Repeat:1 Oem:30 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:66 ‘B’ Repeat:1 Oem:48 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:66 ‘B’ Repeat:1 Oem:48 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:66 ‘B’ Repeat:1 Oem:48 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYUP Code:16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

There’s nothing too surprising here; the Shift key will repeat until the next key is
pressed. Note that the repeats on the Shift key don’t continue. Just as in the first
sequence, only the WM_CHAR message gives you your expected character.

You should realize by now that if you want to use keys on the keyboard for hot keys,
you can use the WM_KEYDOWN message and you won’t have to care if the Shift key (or
even the Caps Lock key) is pressed. Pressing the Caps Lock key gives you this output:

WM_KEYDOWN Code: 20 ‘_’ Repeat:1 Oem:58 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code: 20 ‘_’ Repeat:1 Oem:58 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

The messages that come through for WM_CHAR will operate as if the Shift key were
pressed down.

Let’s try some function keys, including F1, F2, F3, and the shifted versions also:

WM_KEYDOWN Code:112 ‘p’ Repeat:1 Oem:59 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:112 ‘p’ Repeat:1 Oem:59 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:113 ‘q’ Repeat:1 Oem:60 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

264 Chapter 9 n Programming Input Devices

WM_KEYUP Code:113 ‘q’ Repeat:1 Oem:60 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:114 ‘r’ Repeat:1 Oem:61 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:114 ‘r’ Repeat:1 Oem:61 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code: 16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYDOWN Code:112 ‘p’ Repeat:1 Oem:59 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:112 ‘p’ Repeat:1 Oem:59 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:113 ‘q’ Repeat:1 Oem:60 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:113 ‘q’ Repeat:1 Oem:60 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code:114 ‘r’ Repeat:1 Oem:61 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code:114 ‘r’ Repeat:1 Oem:61 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYUP Code: 16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

There’s a distinct lack of WM_CHAR messages, isn’t there? Also, notice that the code
returned by the F1 key is the same as the lowercase “p” character. So, what does
“p” look like?

WM_KEYDOWN Code: 80 ‘P’ Repeat:1 Oem:25 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_CHAR Code:112 ‘p’ Repeat:1 Oem:25 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code: 80 ‘P’ Repeat:1 Oem:25 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

Isn’t that interesting? The virtual scan code for “p” as encoded for WM_CHAR is
exactly the same as the code for WM_KEYUP and WM_KEYDOWN. This funky design
leads to some buggy misinterpretations of these two messages if you are looking at
nothing but the virtual scan code. I’ve seen some games where you could use the
function keys to enter your character name!

Function Keys Require Special Handling

You can’t use WM_CHAR to grab function key input or any other keyboard key
not associated with a typeable character. It is confusing that the ASCII value for
the lowercase “p” character is also the VK_F1. If you were beginning to
suspect that you couldn’t use the wParam value from all these messages in
the same way, you’re right.

If you want to figure out the difference between keys, you should use the OEM scan
code. There’s a Windows helper function to translate it into something useful:

// grab bits 16-23 from LPARAM

unsigned int oemScan = int(lParam & (0xff << 16))>>16;

UINT vk = MapVirtualKey(oemScan, 1);

if (vk == VK_F1)

{

// we’ve got someone pressing the F1 key!

}

Working with the Keyboard 265

The VK_F1 is a #define in WinUser.h, where you’ll find definitions for every
other virtual key you’ll need: VK_ESCAPE, VK_TAB, VK_SPACE, and so on.

Processing different keyboard inputs seems messy, doesn’t it? Hold on, it gets better. The
next sequence shows the left Shift key, right Shift key, left Ctrl key, and right Ctrl key:

WM_KEYDOWN Code: 16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code: 16 ‘_’ Repeat:1 Oem:42 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code: 16 ‘_’ Repeat:1 Oem:54 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code: 16 ‘_’ Repeat:1 Oem:54 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code: 17 ‘_’ Repeat:1 Oem:29 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code: 17 ‘_’ Repeat:1 Oem:29 Ext’d:0 IsAlt:0 WasDown:0 Rel’d:1

WM_KEYDOWN Code: 17 ‘_’ Repeat:1 Oem:29 Ext’d:1 IsAlt:0 WasDown:0 Rel’d:0

WM_KEYUP Code: 17 ‘_’ Repeat:1 Oem:29 Ext’d:1 IsAlt:0 WasDown:0 Rel’d:1

The only way to distinguish the left Shift key from the right Shift key is to look at the
OEM scan code. On the other hand, the only way to distinguish the left Ctrl key
from the right Ctrl key is to look at the extended key bit to see if it is set for the
right Ctrl key. This insane cobbler of aggregate design is the best example of what
happens if you have a mandate to create new technology while supporting stuff as
old as my high school diploma (or is that my grade school one?).

You Might Need Your Own Keyboard Handler

To get around the problems of processing keyboard inputs that look the same
as I’ve outlined in this section, you’ll want to write your own handler for
accepting the WM_KEYDOWN and WM_KEYUP messages. If your game is going
to have a complicated enough interface to distinguish between left and right
Ctrl or Shift keys and will use these keys in combination with others, you’ve
got an interesting road ahead. My best advice is to try to keep things as
simple as possible. It’s a bad idea to assign different actions to both Ctrl or
Shift keys anyway. If your game only needs some hot keys and no fancy
combinations, WM_KEYDOWN will work fine all by itself.

Here’s a summary of how to get the right data out of these keyboard messages:

n WM_CHAR: Use this message only if your game cares about printable characters:
no function keys, Ctrl keys, or Shift keys as a single input.

n WM_KEYDOWN/WM_KEYUP: Grabs each key as you press it, but makes no distinction
between upper- and lowercase characters. Use this to grab function key input and
compare the OEM scan codes with MapVirtualKey(). You won’t get upper-
and lowercase characters without tracking the status of the Shift keys yourself.

It’s almost like this system was engineered by a congressional conference committee.

266 Chapter 9 n Programming Input Devices

GetAsyncKeyState() and Other Evils

There’s a Windows function that will return the status of any key. It’s tempting to
use, especially given the morass of weirdness you have to deal with going a more tra-
ditional route with Windows keyboard messages. Unfortunately, there’s a dark side to
these functions and other functions that poll the state of device hardware outside of
the message loop.

Most testing scripts or replay features pump recorded messages into the normal mes-
sage pump, making sure that actual hardware messages are shunted away. Polling
functions like GetAsyncKeyState() aren’t easily trapped in the same way. They
also make debugging and testing more difficult, since timing of keyboard input
could be crucial to re-creating a weird bug.

There are other polled functions that can cause the same issues. One of them is the
polled device status functions in DirectInput, such as IDirectInputDevice::

GetDeviceState(). The only way I’d consider using these functions is if I wrote
my own mini-message pump, where polled device status was converted into messages
sent into my game logic. That, of course, is a lot more work.

Handling the Alt Key Under Windows

If I use the same program to monitor keyboard messages related to pressing the right
and left Alt keys, I get nothing. No output at all. Windows keeps the Alt key for itself
and uses it to send special commands to your application. You should listen to
WM_SYSCOMMAND to find out what’s going on. You could use the polling functions
to find out if the Alt keys have been pressed, but not only does that go against
some recent advice, it’s not considered “polite” Windows behavior. Microsoft has
guidelines that well-behaved applications should follow, including games. The Alt
key is reserved for commands sent to Windows. Users will not expect your game to
launch missiles when all they want to do is switch over to Excel and try to look busy
for the boss.

What, No Dance Pad?

I freely admit that I’m still a Dance Dance Revolution junkie, and anyone who knows
me is probably wondering why I didn’t spend a few pages on dance pad controls. At
first blush, you might say that the dance pad is programmed exactly the same way as
the game controller—it has buttons that get pressed just like the controller you hold
in your hand.

Now that you’ve read this chapter, you probably realize that the programming for a
dance pad is quite different, simply because the player is using his feet and not his

What, No Dance Pad? 267

hands. You still use the same code to get button down and up messages. But think
for a moment about how your feet are different from your hands. They move slower,
for one thing—at least mine do. You have two feet moving on four buttons, which is
different than a handheld controller where only your right thumb can press those
four buttons. Tuning for timing is probably really different, too, especially since
there is a vast skill difference between people like my Mom and the kids in the
arcades who can move so fast you can’t even see their feet.

Input devices are physiological, and you can’t ever forget that when defining how
your game gets mouse movement events or thumbstick events. One is controlled
with the arm and wrist, the other the thumb. This one fact is a key issue when work-
ing with input devices.

Here’s my best example. Why do you think the WASD control scheme became so
popular in first-person shooters on the PC? I’ll take an educated guess—fine move-
ments like aiming, firing, and looking are mapped to the mouse, which are usually in
a player’s right hand. The movement keys, which are W, A, S, and D, are easily con-
trollable with the player’s left hand. The physical nature of the keyboard and the
mouse and the fact that most people are right-handed made this interface so popular.

One thing deserves mentioning more than any other—even though it is more geared
toward game design than the technology that makes games possible. Players interact
with your game through the hardware—whether it is a plastic guitar, a touch screen,
or a Wii Remote. Designing your control systems can create an intense sense of
“being there” more than almost anything else. This is one of the reasons why Guitar
Hero, Rock Band, and Wii Sports were so incredibly popular. It is also one of the
reasons the iPhone was so revolutionary: It simplified the physical interaction
between human and machine, leaving nothing more than the experience of interact-
ing with the software. Think about this as you make your game and try to find that
perfect “touch” that players will love.

268 Chapter 9 n Programming Input Devices

Chapter 10

by Mike McShaffry

User Interface Programming

After exploring input devices in the previous chapter, we’re ready to move a little
deeper and see what happens when the raw input messages are passed from the
application layer to your game.

Games usually have a small set of user interface components, and they are almost
always custom coded. Games don’t use the operating system’s native user interface
API, like Windows GDI, to create their menus, dialogs, or radar screens. These spe-
cial controls are almost always home grown. Sure, the number of controls you can
attach to dialog boxes and screens is overwhelming, but most games don’t need rich
text editors, grid controls, tree controls, property pages, and so on. Rather, the lack of
control over position, animation, and sounds usually compels game programmers to
roll their own simple user interface or perhaps layer on a Flash-based one.

If you roll your own, a simple interface breaks the job into two parts: controls and
containers for controls. Some user interface designs, such as Windows, don’t distin-
guish between controls and control containers. Everything in the Win32 GDI has an
HWND, which is a handle for a window. This might seem a little weird because it
would be unlikely that a button in your game would have other little buttons
attached to it, but it does standardize how these structures are referenced.

Instead of proposing any specific design, it’s best to discuss some of the implementa-
tion issues and features any game will need in a user interface. I’ll talk about the
human game view, screens, and dialog boxes and end up with a discussion about
controls.

269

DirectX’s Text Helper and Dialog Resource

Manager

Since the low level details of implementing user interface objects like a button, slider,
or font renderer are beyond the scope of this book, I’m going to cheat and use some
DirectX utility classes.

If you’ve seen any of DirectX Foundation, found in the Samples\C++\DXUT11 direc-
tory in the DirectX SDK, you’ve probably noticed that Microsoft implemented an
entire GUI system that uses the DirectX rendering pipeline and yet has most of the
functionality of traditional Windows controls. This is a nice place to start, but it does
have its drawbacks. I’ll show you how you can integrate this GUI system with the
game logic/game view architecture in this book, and I will suggest some future direc-
tions. First, there’s a wrapper class I’ll use to manage the life and access of these two
helpers. It uses the Direct3D 11 renderer to draw, which you’ll learn more about in
the 3D chapter. There’s a little more to this class that you see here, but for now these
members are all you need to see to get your user interface working:

class D3DRenderer11

{

public:

// You should leave this global - it does wacky things otherwise.

static CDXUTDialogResourceManager g_DialogResourceManager;

static CDXUTTextHelper* g_pTextHelper;

virtual HRESULT VOnRestore()

virtual ˜D3DRenderer11() { SAFE_DELETE(g_pTextHelper); }

virtual bool VPreRender(); // more on this later!

virtual bool VPostRender(); // more on this later!

};

// You should leave this global - it does wacky things otherwise.

CDXUTDialogResourceManager D3DRenderer::g_DialogResourceManager;

CDXUTTextHelper *D3DRenderer::g_pTextHelper = NULL;

HRESULT D3DRenderer11::VOnRestore()

{

HRESULT hr;

V_RETURN (D3DRenderer::VOnRestore());

SAFE_DELETE(D3DRenderer::g_pTextHelper);

D3DRenderer::g_pTextHelper = GCC_NEW CDXUTTextHelper(

DXUTGetD3D11Device(), DXUTGetD3D11DeviceContext(),

&g_DialogResourceManager, 15);

return S_OK;

}

270 Chapter 10 n User Interface Programming

The CDXUTDialogResourceManager is a class that helps you draw all of the UI
gizmos you need—buttons, sliders, text boxes, and so on. Later in this chapter, you
will see calls to this class to create and place them on the screen. The CDXUT-

TextHelper class is nearly indispensable to those programmers who want to draw
text on a Direct3D 11 screen.

The reason for this is that Direct3D 11 does not support the very easy-to-use ID3DX-
Font interface you may have seen before. Instead, Microsoft is pushing Direct-

Write, which pushes font rendering or glyph rendering to new levels of complexity.
When writing this book, I nearly panicked thinking how I was going to condense this
huge subject into this chapter, until I found that the CDXUTTextHelper class essen-
tially hid all that complexity from me. Thank goodness!

The Human’s Game View

Recall from Chapter 2, “What’s in a Game?,” that the game interface should be
completely separate from the game logic. A game view receives game events, such
as “object was created” or “object was moved,” and does whatever it needs to present
this new game state. In return, the view is responsible for interpreting inputs from
controllers and other hardware into commands that will get sent back to the game
logic, such as “request throw grenade.” It would be up to the game logic to determine
whether this was a valid request.

I’m about to show you a base class that creates a game view for a human player. As
you might expect, it’s pretty heavy on user interface. I think it’s a good idea to take
somewhat of a top-down approach, showing you major components and how they fit
together.

As you might expect, a class that implements the game view for a human player is
going to be tied very closely to how input devices are read and how the view is actu-
ally presented to the player. This crossroads is a great intersection between the oper-
ating system, which will let you get the state of the input devices, and the graphics
system, which will draw the game world. Oh, and I can’t forget the audio system
either, which is a renderer in its own right—one for the player’s ears. I could abstract
all this into platform-independent classes with the right interfaces, etc., but in the
interest of making things a little easier for me to present and for you to understand,
I’ll leave that improvement as an exercise for you. OK, enough excuses—here’s the
class definition for the HumanView.

typedef std::list<shared_ptr<IScreenElement> > ScreenElementList;

The Human’s Game View 271

class HumanView : public IGameView

{

protected:

GameViewId m_ViewId;

ActorId m_ActorId;

// this ProcessManager is for things like button animations, etc.

ProcessManager *m_pProcessManager;

DWORD m_currTick; // time right now

DWORD m_lastDraw; // last time the game rendered

bool m_runFullSpeed; // set to true if you want to run full speed

virtual void VRenderText() { };

public:

bool LoadGame(TiXmlElement* pLevelData);

protected:

virtual bool VLoadGameDelegate(TiXmlElement* pLevelData) { return true; }

public:

// Implement the IGameView interface

virtual HRESULT VOnRestore();

virtual void VOnRender(double fTime, float fElapsedTime);

virtual void VOnLostDevice();

virtual GameViewType VGetType() { return GameView_Human; }

virtual GameViewId VGetId() const { return m_ViewId; }

virtual void VOnAttach(GameViewId vid, optional<ActorId> aid)

{

m_ViewId = vid;

m_ActorId = aid;

}

virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg);

virtual void VOnUpdate(int deltaMilliseconds);

// Virtual methods to control the layering of interface elements

virtual void VPushElement(shared_ptr<IScreenElement> pElement);

virtual void VRemoveElement(shared_ptr<IScreenElement> pElement);

void TogglePause(bool active);

˜HumanView();

HumanView(D3DCOLOR background);

ScreenElementList m_ScreenElements;

272 Chapter 10 n User Interface Programming

// Interface sensitive objects

shared_ptr<IPointerHandler> m_PointerHandler;

int m_pointerRadius;

shared_ptr<IKeyboardHandler> m_KeyboardHandler;

// Audio

bool InitAudio();

//Camera adjustments.

virtual void VSetCameraOffset(const Vec4 & camOffset) { }

protected:

virtual bool VLoadGameDelegate(TiXmlElement* pLevelData) { return true; }

};

Let’s take a quick look at the data members of this class. The first two members store
the view ID and the actor ID, if it exists. This makes it easy for the game logic to
determine if a view is attached to a particular actor in the game universe.

The ProcessManager was presented in Chapter 7, “Controlling the Main Loop.”
This class is a convenient manager for anything that takes multiple game loops to
accomplish, such as playing a sound effect or running an animation.

The next four members deal with drawing the frame. The first three keep track of
when the view was rendered last and whether or not to limit the frame rate. It is
typically a good idea to set your game to a constant frame rate, typically 60 frames
per second, leaving the rest of the time for other operations like AI, physics, and
other game-specific things. The last member stores the background color the view is
cleared to every frame. If your game is guaranteed to draw every pixel each frame,
you could set the color to RGB 255,0,255, and if for some reason some pixels were
missed, you would see a hot pink flash. In the release build, you could save a few
cycles by simply not clearing the frame at all. It’s totally up to you.

The next member, VRenderText(), is stubbed out. This member, once overloaded
in an inherited class, is what is called when text-specific elements need to be drawn
by the view. In a DirectX supported game, this would eventually wind up in calls to
the CDXUTTextHelper class. I’m sure all you OpenGL fans can easily swap in your
own equivalents if you like.

The next two methods, LoadGame() and the protected VLoadGameDelegate(),
are called when the game loads. LoadGame() is responsible for creating view-
specific elements from an XML file that defines all the elements in the game. This
might include a background music track, something that could be appreciated by
the human playing but is inconsequential for the game logic.

The Human’s Game View 273

The next set of virtual methods starting with VOnRestore() and ending with VOnUp-

date() completes the implementation of the IGameView interface originally discussed
back in Chapter 2. You’ll see what each of these methods is responsible for shortly.

The next two virtual methods, VPushElement() and VRemoveElement(), control
the ordering and layering of screen interface elements.

The next data member is an STL list of pointers to objects that implement the
IScreenElement interface. A screen element is a strictly user interface thing and
is a container for user interface controls like buttons and text edit boxes. You could
have a number of these components attached to do different things, and because they
are separate entities, you could hide or show them individually. A good example of
this kind of behavior is modular toolbars in the Window GUI.

The next two members are a generic pointer handler and a keyboard handler. You’ll
create pointer and keyboard handlers to interpret device messages into game com-
mands. Notice the member m_pointerRadius? Even on Windows games, you
can’t count on the pointer device having pixel perfect accuracy anymore. With tablet
computers and cameras detecting human input in the place of a mouse, it makes sense
for your pointer interface to also keep track of a pointer radius along with its location.
This way you can do hit detection with an area instead of a single X,Y coordinate.

The next member is InitAudio(), which does exactly what is says—initializes the
audio system. After that is a stubbed utility method for setting the camera offset,
which will be implemented by a child class in Chapter 21, “A Game of Teapot
Wars,” at the end of the book.

Let’s take a look at some of the more interesting bits of the HumanView class, starting
with the VOnRender() method. The render method is responsible for rendering the
view at either a clamped maximum refresh rate or at full speed, depending on the
value of the local variables.

void HumanView::VOnRender(double fTime, float fElapsedTime)

{

m_currTick = timeGetTime();

// early out – we’ve already drawn in this tick

if (m_currTick == m_lastDraw)

return;

HRESULT hr;

// It is time to draw ?

if(m_runFullSpeed ||

((m_currTick - m_lastDraw) > SCREEN_REFRESH_RATE))

274 Chapter 10 n User Interface Programming

{

// Render the scene

if(g_pApp->m_Renderer->VPreRender())

{

VRenderText();

m_ScreenElements.sort(

SortBy_SharedPtr_Content<IScreenElement>());

for(ScreenElementList::iterator i=m_ScreenElements.begin();

i!=m_ScreenElements.end(); ++i)

{

if ((*i)->VIsVisible())

{

(*i)->VOnRender(fTime, fElapsedTime);

}

}

// record the last successful paint

m_lastDraw = m_currTick;

}

g_pApp->m_Renderer->VPostRender();

}

}

If the view is ready to draw, it calls the application renderer’s VPreRender()

method, which is called to get the Direct3D 11 device ready for rendering. The
VRenderText() method is next, which will render any text applied directly to the
screen. In this class, the method has a null implementation. In Chapter 21, a human
view class will overload this to display some debug text.

The for loop iterates through the screen layers one-by-one, and if it is visible, it calls
IScreenElement::VOnRender(). This implies that the only thing the view really
draws for itself is the text in VRenderText(), and that’s exactly correct. Everything
else should be drawn because it belongs to the list of screens. The last thing that hap-
pens is a call to the renderer’s VPostRender() method, which finalizes the render
and presents the screen to the viewer.

Notice that the screen list is drawn from the beginning of the list to the end of the
list. That’s important because screens can draw on top of one another in layers, such
as when a modal dialog box draws on top of everything else in your game.

HRESULT HumanView::VOnRestore()

{

HRESULT hr;

for(ScreenElementList::iterator i=m_ScreenElements.begin();

The Human’s Game View 275

i!=m_ScreenElements.end(); ++i)

{

V_RETURN ((*i)->VOnRestore());

}

return hr;

}

void HumanView::VOnLostDevice()

{

HRESULT hr;

for(ScreenElementList::iterator i=m_ScreenElements.begin();

i!=m_ScreenElements.end(); ++i)

{

V_RETURN ((*i)->VOnLostDevice());

}

}

The HumanView::VOnRestore() method is responsible for re-creating anything
that might be lost while the game is running. This kind of thing typically happens
as a result of the operating system responding to something application wide, such
as restoring the application from a sleep mode or changing the screen resolution
while the game is running. Also remember that VOnRestore() gets called just
after the class is instantiated, so this method is just as useful for initialization as it is
for restoring lost objects. These objects include all of the attached screens. The
HumanView::VOnLostDevice() method will be called prior to VOnRestore(),
so it is used to chain the “on lost device” event to other objects or simply release
the objects so they’ll be re-created in the call to VOnRestore(). This is a common
theme in DirectX applications on the PC, since any number of things can get in the
way of a game, such as a change of video resolution or even Alt-Tabbing away to
another application that makes exclusive use of DirectX objects. Being able to reini-
tialize your UI could come in extremely handy, no matter what operating system or
platform your game uses. For example, smart phone and tablet games might need to
completely change their UI layout when players reorient their devices from a land-
scape format to a portrait style format.

The view is called once per frame by the application layer so that it can perform non-
rendering update tasks. The VOnUpdate() chain is called as quickly as the game
loops and is used to update any object attached to the human view. In this case, the
Process Manager is updated, as well as any of the screen elements attached to
the human view. As you will see in Chapter 16, “3D Scenes,” this includes updating
the objects in the 3D scene, which is itself a screen element.

276 Chapter 10 n User Interface Programming

void HumanView::VOnUpdate(int deltaMilliseconds)

{

m_pProcessManager->UpdateProcesses(deltaMilliseconds);

for(ScreenElementList::iterator i=m_ScreenElements.begin();

i!=m_ScreenElements.end(); ++i)

{

(*i)->VOnUpdate(deltaMilliseconds);

}

}

This code deserves a little clarity, perhaps, since there are a number of potentially
confusing things about it. A game object that exists in the game universe and is
affected by game rules, like physics, belongs to the game logic. Whenever the game object
moves or changes state, events are generated that eventually make their way to the game
views, where they update their internal representations of these objects. A good example
of this are the ever-present crates in games like Thief: Deadly Shadows—you can knock
them downstairs and break them open.

There is a different set of objects that only exist visually and have no real effect on
the world themselves, such as particle effects. The VOnUpdate() that belongs to the
human view is what updates these objects. Since the game logic knows nothing about
them, they are completely contained in the human view and need some way to be
updated if they are animating.

Another example of something the human perceives but the game logic does not is
the audio system. Background music and ambient sound effects have no effect on the
game logic per se and therefore can safely belong to the human view. The audio system
is actually managed as a Process object that is attached to the ProcessManager

contained in the human view.

But wait—you might ask, didn’t Thief: Deadly Shadows have systems that allowed the
AI characters to respond to sounds? Well, yes and no. The AI in Thief didn’t respond
directly to what was being sent out of the sound card, but rather it responded to col-
lision events detected by the game logic. These collision events were sent by the game
logic and were separately consumed by both the sound manager and the AI manager.
The sound manager looked at the type of collision and determined which sound
effect was most suitable. The AI manager looked at the proximity and severity of
the collision to determine if it was inside the AI’s motivational threshold. So the
AIs actually responded to collision events, not sounds.

The real meat of the human view is processing device messages from the application
layer. Somewhere in the application layer of all Windows games is the main message
processor, where you get WM_CHAR, WM_MOUSEMOVE, and all those messages. Any

The Human’s Game View 277

conceivable message that the game views would want to see should be translated into
the generic message form and passed on to all the game views. The following is a code
fragment from GameCodeApp::MsgProc(), which is the main message handling call-
back that was set up with DXUTSetCallbackMsgProc(GameCodeApp::MsgProc):

switch (uMsg)

{

case WM_KEYDOWN:

case WM_KEYUP:

case WM_MOUSEMOVE:

case WM_LBUTTONDOWN:

case WM_LBUTTONUP:

case WM_RBUTTONDOWN:

case WM_RBUTTONUP:

case MM_JOY1BUTTONDOWN:

case MM_JOY1BUTTONUP:

case MM_JOY1MOVE:

case MM_JOY1ZMOVE:

case MM_JOY2BUTTONDOWN:

case MM_JOY2BUTTONUP:

case MM_JOY2MOVE:

case MM_JOY2ZMOVE:

{

// translate the Windows message into the ‘generic’ message.

AppMsg msg;

msg.m_hWnd = hWnd;

msg.m_uMsg = uMsg;

msg.m_wParam = wParam;

msg.m_lParam = lParam;

for (GameViewList::reverse_iterator i=m_gameViews.rbegin();

i!=m_gameViews.rend(); ++i)

{

if ((*i)->VOnMsgProc(msg))

{

return true;

}

}

}

break;

}

I completely admit that I’m cheating by taking the Windows message parameters and
sticking them into a structure. Call me lazy and unable to be truly platform agnostic;
I can live with that. It is a valuable exercise for you to generalize these messages into

278 Chapter 10 n User Interface Programming

something that will work on many platforms. If a game view returns true from
VOnMsgProc(), it means that it has completely consumed the message, and no
other view should see it.

This architecture will still work with a multiple player, split-screen type of game—
here’s how. The HumanView class can contain multiple screens, but instead of being
layered, they will sit side by side. The HumanView class will still grab input from all
the devices and translate it into game commands, just as you are about to see, but in
this case, each device will be treated as input for a different player.

Back to the implementation of HumanView::VOnMsgProc(). Its job is to iterate
through the list of screens attached to it, forward the message on to the visible
ones, and if they don’t eat the message, then ask the pointer and keyboard handler
if they can consume it.

LRESULT CALLBACK HumanView::VOnMsgProc(AppMsg msg)

{

// Iterate through the screen layers first

// In reverse order since we’ll send input messages to the

// screen on top

for(ScreenElementList::reverse_iterator i=m_ScreenElements.rbegin();

i!=m_ScreenElements.rend(); ++i)

{

if ((*i)->VIsVisible())

{

if ((*i)->VOnMsgProc(msg))

{

return 1;

}

}

}

LRESULT result = 0;

switch (msg.m_uMsg)

{

case WM_KEYDOWN:

if (m_KeyboardHandler)

{

result = m_KeyboardHandler->VOnKeyDown(

static_cast<const BYTE>(msg.m_wParam));

}

break;

case WM_KEYUP:

if (m_KeyboardHandler)

The Human’s Game View 279

{

result = m_KeyboardHandler->VOnKeyUp(

static_cast<const BYTE>(msg.m_wParam));

}

break;

case WM_MOUSEMOVE:

if (m_PointerHandler)

result = m_PointerHandler->VOnPointerMove(

CPoint(LOWORD(msg.m_lParam), HIWORD(msg.m_lParam)),

m_PointerRadius);

break;

case WM_LBUTTONDOWN:

if (m_PointerHandler)

{

SetCapture(msg.m_hWnd);

result = m_PointerHandler->VOnPointerButtonDown(

CPoint(LOWORD(msg.m_lParam), HIWORD(msg.m_lParam)),

m_PointerRadius, “PointerLeft”);

}

break;

case WM_LBUTTONUP:

if (m_PointerHandler)

{

SetCapture(NULL);

result = m_PointerHandler->VOnPointerButtonUp(

CPoint(LOWORD(msg.m_lParam), HIWORD(msg.m_lParam)),

m_PointerRadius, “PointerUp”);

}

break;

case WM_RBUTTONDOWN:

if (m_PointerHandler)

{

SetCapture(msg.m_hWnd);

result = m_PointerHandler->VOnPointerButtonDown(

CPoint(LOWORD(msg.m_lParam), HIWORD(msg.m_lParam)),

m_PointerRadius, “PointerRight”);

}

break;

case WM_RBUTTONUP:

if (m_PointerHandler)

280 Chapter 10 n User Interface Programming

{

SetCapture(NULL);

result = m_PointerHandler->VOnPointerButtonUp(

CPoint(LOWORD(msg.m_lParam), HIWORD(msg.m_lParam)),

m_PointerRadius, “PointerRight”);

}

break;

default:

return 0;

}

return 0;

}

Did you notice that I used a reverse iterator for the screens? Here’s why: If you draw
them using a normal forward iterator, the screen on top is going to be the last one
drawn. User input should always be processed in order of the screens from top to
bottom, which in this case would be the reverse order.

If none of the screen elements in the list processed the message, we can ask the input
device handlers, in this case m_KeyboardHandler and m_PointerHandler, to
process the messages. Of course, you could always write and add your own input
device handler, perhaps for a dance pad or gamepad—if you do, here’s where you
would hook it in.

Notice that the existence of the handler is always checked before the message is sent
to it. There’s nothing that says you have to have a keyboard for every game you’ll
make with this code, so it’s a good idea to check it.

A WASD Movement Controller

You might be wondering how you use this system to create a WASD movement con-
troller, since this interface requires the use of a mouse and a keyboard combined. In
Chapter 9, “Programming Input Devices,” you read about the IPointerHandler

and IKeyboardHandler interface classes. You can use these to create a single con-
troller class that can respond to both devices.

class MovementController : public IPointerHandler, public IKeyboardHandler

{

protected:

Mat4x4 m_matFromWorld;

Mat4x4 m_matToWorld;

Mat4x4 m_matPosition;

A WASD Movement Controller 281

CPoint m_lastMousePos;

BYTE m_bKey[256]; // Which keys are up and down

// Orientation Controls

float m_fTargetYaw;

float m_fTargetPitch;

float m_fYaw;

float m_fPitch;

float m_fPitchOnDown;

float m_fYawOnDown;

float m_maxSpeed;

float m_currentSpeed;

shared_ptr<SceneNode> m_object;

public:

MovementController(shared_ptr<SceneNode> object,

float initialYaw, float initialPitch);

void SetObject(shared_ptr<SceneNode> newObject);

void OnUpdate(DWORD const elapsedMs);

public:

bool VOnPointerMove(const CPoint &mousePos, const int radius);

bool VOnPointerButtonDown(const CPoint &mousePos, const int radius,

const std::string &buttonName);

bool VOnPointerButtonUp(const CPoint &mousePos, const int radius,

const std::string &buttonName);

bool VOnKeyDown(const BYTE c) { m_bKey[c] = true; return true; }

bool VOnKeyUp(const BYTE c) { m_bKey[c] = false; return true; }

const Mat4x4 *GetToWorld() { return &m_matToWorld; }

const Mat4x4 *GetFromWorld() { return &m_matFromWorld; }

};

I’m giving you something of a sneak peak into Chapter 14, “3D Graphics Basics,”
with the introduction of the Mat4x4 member variables. I won’t explain them in
detail here, but suffice it to say that these members track where an object is in rela-
tion to the game world and how it is oriented.

Since this WASD controller doesn’t have any weapons to fire, we’ll simply return
false from the mouse button up and down handlers. Notice that the VOnKeyUp()
and VOnKeyDown() methods simply set members of a Boolean array to be true or
false to match the state of the key. Now, take a look at VOnPointerMove():

bool MovementController::VOnPointerMove(const CPoint &mousePos)

282 Chapter 10 n User Interface Programming

{

if(m_lastMousePos!=mousePos)

{

m_fTargetYaw = m_fTargetYaw + (m_lastMousePos.x - mousePos.x);

m_fTargetPitch = m_fTargetPitch + (mousePos.y - m_lastMousePos.y);

m_lastMousePos = mousePos;

}

return true;

}

This method was probably simpler than you expected. All it does is set the target yaw
and pitch of the controller to match the mouse movement. Here’s the real meat of
the controller, OnUpdate():

void MovementController::OnUpdate(DWORD const deltaMilliseconds)

{

if (m_bKey[‘W’] || m_bKey[‘S’])

{

// code here will calculate movement forward & backward

}

if (m_bKey[‘A’] || m_bKey[‘D’])

{

// code here will calculate movement left & right

}

{

// code here will set object rotation based on

// previously calculated pitch and yaw values.

// then, the movements forward, backward, left or

// right will be used to send a movement command

// to the game logic, which will evaluate them

// for legality and actually move the object

}

}

The full code of this routine requires some deeper knowledge of 3D transformations.
To avoid sending you into convulsions, I’ll postpone those discussions until Chapter 14.

Screen Elements

You’ve seen how the human view works; its big job is managing the list of screen
elements, drawing them, sending them input, and managing a couple of things like
the audio system and the Process Manager. The audio system is discussed in detail in

Screen Elements 283

Chapter 13, “Game Audio,” and you should remember the Process Manager from
Chapter 7, “Controlling the Main Loop.”

A screen element is anything that draws and accepts input. It could be anything from
a button to your rendered 3D world. In Chapter 15, “3D Vertex and Pixel Shaders,”
we create a screen element that can draw 3D objects and accept mouse and keyboard
input to move the camera through the 3D world. In this chapter, we’ll concentrate on
user interface components like buttons and dialog boxes.

Screen elements can be hierarchical—for example, a dialog box can have buttons
attached to it. A Windows-style scroll bar has lots of moving parts: a background,
two buttons, and a dynamically sized, movable bit in the middle to represent where
the scrolled data is positioned and how much data is represented off screen.

Screen elements in various configurations create the user interface for your game,
such as a menu, inventory screen, scoreboard, radar, or dialog box. Some run on
top of the main game screen, such as a radar or minimap, but others might
completely overlay the main view and even pause the game, such as an options
screen. Throughout this chapter, I’ll generally refer to a screen as something that
contains screen elements and a control as the leaf nodes of this hierarchy. In addition
to acting as a container for controls, screens parse user input messages from the
application layer and translate them into game messages.

Screens Need Transition Management

If your game has multiple screens, and even simple games have many, it’s wise
to manage them and the transitions between them in a high-level API. This
might seem a little strange to Windows programmers, but it’s a little like
programming multiple applications for the same window, and you can freely
move from one screen to another by selecting the right controls.

If your screens are fairly small “memory-wise,” consider preloading them. Any
transitions that happen will be blazingly fast, and players like responsive
transitions. If your screens have tons of controls, graphics, and sounds, you
won’t necessarily be able to preload them because of memory constraints, but
you might consider loading a small transition screen to give your players
something to look at while you load your bigger screens. Lots of console games do this, and they usually
display a bit of the next mission in the background while a nice animation plays showing the load progress.
The animation during the load is important, because all console manufacturers require animations during
loading screens beyond some small threshold, such as 10 seconds. They do this not to make your job harder,
but they want to communicate to the player that something is still happening in the background.

Lots of kids’ games and mass-market titles use a screen architecture like the one shown
in Figure 10.1 throughout the entire game. When the right controls are activated in the
right order, the current screen is replaced by a new one with different controls.

284 Chapter 10 n User Interface Programming

Other games use multiple screens to set up the characters or missions. When every-
thing is set up for the player, the game transitions to the game screen where most, if
not all, of the game is played. Almost every console game uses this model. Let’s look
at a simple interface design for a screen:

class IScreenElement

{

public:

virtual HRESULT VOnRestore() = 0;

virtual HRESULT VOnRender(double fTime, float fElapsedTime) = 0;

virtual void VOnUpdate(int deltaMilliseconds) = 0;

virtual int VGetZOrder() const = 0;

virtual void VSetZOrder(int const zOrder) = 0;

virtual bool VIsVisible() const = 0;

virtual void VSetVisible(bool visible) = 0;

virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg)=0;

virtual ˜IScreenElement() { };

virtual bool const operator <(IScreenElement const &other)

{ return VGetZOrder() < other.VGetZOrder(); }

};

This interface shows that a screen knows how to restore itself when it needs to be
rebuilt, render itself when it’s time to draw, how it should be ordered in the master
draw list, and whether it is visible. The VOnMsgProc() method accepts Windows
messages from the application layer, but translates them into a structure to simplify
the call signature of anything that will accept these messages:

Figure 10.1
Screens need a screen manager.

Screen Elements 285

struct AppMsg

{

HWND m_hWnd;

UINT m_uMsg;

WPARAM m_wParam;

LPARAM m_lParam;

};

A Custom MessageBox Dialog

The best way to show you how this works is by example. Let’s create a simple mes-
sage box that your game can call instead of the MessageBox API. The code for this
uses the DirectX GUI framework that is defined in DXUTgui.h. Word to the wise:
The DirectX GUI framework is a great start for a game interface, but it does make
some assumptions about how you want to load textures and some other quirks. On
the other hand, it sure keeps you from having to write a text edit control from
scratch. If you simply hate DirectX, and you are sufficiently motivated, just surgically
remove the DirectX components and roll your own.

This message box class conforms pretty well with the Windows MessageBox API.
You send in a text message and what kind of buttons you want, and the dialog will
store the ID of the control that was pressed:

class BaseUI : public IScreenElement

{

protected:

int m_PosX, m_PosY;

int m_Width, m_Height;

optional<int> m_Result;

bool m_bIsVisible;

public:

BaseUI()

{ m_bIsVisible = true; m_PosX = m_PosY = 0; m_Width = 100; m_Height = 100; }

virtual void VOnUpdate(int) { };

virtual bool VIsVisible() const { return m_bIsVisible; }

virtual void VSetVisible(bool visible) { m_bIsVisible = visible; }

};

class CMessageBox : public BaseUI

{

protected:

CDXUTDialog m_UI; // DirectX dialog

int m_ButtonId;

286 Chapter 10 n User Interface Programming

public:

MessageBox(std::wstring msg, std::wstring title, int buttonFlags=MB_OK);

˜MessageBox();

// IScreenElement Implementation

virtual HRESULT VOnRestore();

virtual HRESULT VOnRender(double fTime, float fElapsedTime);

virtual int VGetZOrder() const { return 99; }

virtual void VSetZOrder(int const zOrder) { }

virtual bool VIsVisible() const { return true; }

virtual void VSetVisible(bool visible) { }

virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg);

static void CALLBACK OnGUIEvent(

UINT nEvent, int nControlID, CDXUTControl* pControl);

static int Ask(MessageBox_Questions question);

};

The class design is pretty simple. It inherits from a base implementation of the
IScreenElement interface, which has a few member variables to keep track of the
size, position, and dialog result. The MessageBox class adds a DXUT member, CDXUT-
Dialog, to manage the rendering and messaging for the dialog box. The constructor sets
the callback routine and creates controls for the static text message and the buttons:

MessageBox::MessageBox(std::wstring msg, std::wstring title, int buttonFlags)

{

// Initialize dialogs

m_UI.Init(&DirectXHumanView::g_DialogResourceManager);

m_UI.SetCallback(OnGUIEvent);

// Find the dimensions of the message

RECT rc;

SetRect(&rc, 0,0,0,0);

m_UI.CalcTextRect(msg.c_str(),

m_UI.GetDefaultElement(DXUT_CONTROL_STATIC,0), &rc);

int msgWidth = rc.right - rc.left;

int msgHeight = rc.bottom - rc.top;

int numButtons = 2;

if ((buttonFlags == MB_ABORTRETRYIGNORE) ||

(buttonFlags == MB_CANCELTRYCONTINUE) ||

(buttonFlags == MB_CANCELTRYCONTINUE))

{

numButtons = 3;

}

A Custom MessageBox Dialog 287

else if (buttonFlags == MB_OK)

{

numButtons = 1;

}

int btnWidth = (int)((float) g_pApp->GetScreenSize().x * 0.15f);

int btnHeight = (int)((float) g_pApp->GetScreenSize().y * 0.037f);

int border = (int)((float) g_pApp->GetScreenSize().x * 0.043f);

m_Width = std::max(msgWidth + 2 * border, btnWidth + 2 * border);

m_Height = msgHeight + (numButtons * (btnHeight+border)) + (2 * border);

m_PosX = (g_pApp->GetScreenSize().x -m_Width)/2;

m_PosY = (g_pApp->GetScreenSize().y -m_Height)/2;

m_UI.SetLocation(m_PosX, m_PosY);

m_UI.SetSize(m_Width, m_Height);

m_UI.SetBackgroundColors(g_Gray40);

int iY = border;

int iX = (m_Width - msgWidth) / 2;

m_UI.AddStatic(0, msg.c_str(), iX, iY, msgWidth, msgHeight);

iX = (m_Width - btnWidth) / 2;

iY = m_Height - btnHeight - border;

buttonFlags &= 0xF;

if ((buttonFlags == MB_ABORTRETRYIGNORE) ||

(buttonFlags == MB_CANCELTRYCONTINUE))

{

// The message box contains three push buttons:

// Cancel, Try Again, Continue.

// This is the new standard over Abort,Retry,Ignore

m_UI.AddButton(IDCONTINUE, g_pApp->GetString(IDS_CONTINUE).c_str(),

iX, iY - (2*border), btnWidth, btnHeight);

m_UI.AddButton(IDTRYAGAIN, g_pApp->GetString(IDS_TRYAGAIN).c_str(),

iX, iY - border, btnWidth, btnHeight);

m_UI.AddButton(IDCANCEL, g_pApp->GetString(IDS_CANCEL).c_str(),

iX, iY, btnWidth, btnHeight);

}

else if (buttonFlags == MB_OKCANCEL)

{

//The message box contains two push buttons: OK and Cancel.

288 Chapter 10 n User Interface Programming

m_UI.AddButton(IDOK, g_pApp->GetString(IDS_OK).c_str(),

iX, iY - border, btnWidth, btnHeight);

m_UI.AddButton(IDCANCEL, g_pApp->GetString(IDS_CANCEL).c_str(),

iX, iY, btnWidth, btnHeight);

}

else if (buttonFlags == MB_RETRYCANCEL)

{

//The message box contains two push buttons: Retry and Cancel.

m_UI.AddButton(IDRETRY, g_pApp->GetString(IDS_RETRY).c_str(),

iX, iY - border, btnWidth, btnHeight);

m_UI.AddButton(IDCANCEL, g_pApp->GetString(IDS_CANCEL).c_str(),

iX, iY, btnWidth, btnHeight);

}

else if (buttonFlags == MB_YESNO)

{

//The message box contains two push buttons: Yes and No.

m_UI.AddButton(IDYES, g_pApp->GetString(IDS_YES).c_str(),

iX, iY - border, btnWidth, btnHeight);

m_UI.AddButton(IDNO, g_pApp->GetString(IDS_NO).c_str(),

iX, iY, btnWidth, btnHeight);

}

else if (buttonFlags == MB_YESNOCANCEL)

{

//The message box contains three push buttons: Yes, No, and Cancel.

m_UI.AddButton(IDYES, g_pApp->GetString(IDS_YES).c_str(),

iX, iY - (2*border), btnWidth, btnHeight);

m_UI.AddButton(IDNO, g_pApp->GetString(IDS_NO).c_str(),

iX, iY - border, btnWidth, btnHeight);

m_UI.AddButton(IDCANCEL, g_pApp->GetString(IDS_CANCEL).c_str(),

iX, iY, btnWidth, btnHeight);

}

else //if (buttonFlags & MB_OK)

{

// The message box contains one push button: OK. This is the default.

m_UI.AddButton(IDOK, g_pApp->GetString(IDS_OK).c_str(),

iX, iY, btnWidth, btnHeight);

}

}

DXUT needs two bits of homework to get started. First, the m_UI member is initialized
with a pointer to the global dialog resource manager. Next, a callback function is set. On
every game user interface I’ve ever worked on, there’s some mechanism for a control to
send a message to the screen that it has been clicked on or otherwise messed with. The
OnGuiEvent() will trap those events so you can see which button was clicked.

A Custom MessageBox Dialog 289

The next bit of code figures out how big the text message is. After that, you start
laying out the controls and positioning the dialog in the center of the screen. The
idea here is to find the number of buttons you’re going to add, place them in a verti-
cal stack at the bottom of the dialog box, and add up all the space you’re going to
need to make sure there’s enough room to have the buttons and the text. The button
width, height, and border of the dialog box are given sizes relative to the overall
screen. This automatically scales your dialog box with the pixel width and height of
the game screen. A more complicated but better system would be one that takes
screen aspect ratio into account—which is especially useful for games that run in
4:3 or 16:9 screens, which are typical of console games. Smart phone games can
even do 9:16 if they run in portrait orientation.

One good solution to this tricky problem is to write some code that lets you specify
how you want user interface controls anchored. Instead of anchoring them as you see
here, by the upper-left corner only, you could anchor them from the center of the
screen, top left, bottom left, and so on. This gives your user interface some flexibility
to have members float and adjust themselves to multiple screen configurations. I
could probably write a whole book about those problems alone. For now, we’ll stick
to the basics and go with a less flexible but easier to understand system.

16:9 Does Not Equal 16:10

Red Fly was working on a cooking game for The Food Network and Namco
Bandai called The Food Network Presents: Cook or Be Cooked. As we were
going through our final testing, we received word from Namco that the
screens that pop up at the beginning of all Wii games warning you not to
throw Wii remotes through your nice new plasma TV weren’t correct, and
they were stretched slightly. Red Fly’s user interface programmer looked hard
at the problem, and after many hours of searching for the problem realized
with horror that the display he was using, a nice Dell monitor, wasn’t
actually 16:9 at all. It, as every other monitor at Red Fly, was actually 16:10.
It turned out that Namco’s test team found something that every other game
publisher and Nintendo missed until then.

If you are positioning user interface controls by the upper left-hand corner, centering
is done by subtracting the inner width from the outer width and dividing by two:

m_PosX = (g_pApp->GetScreenSize().x -m_Width)/2;

m_PosY = (g_pApp->GetScreenSize().y -m_Height)/2;

If you subtract the width of the dialog from the width of the screen and divide by
two, you’ve got the X position that will center the dialog. Switch all the parameters
for heights, and you’ll have the correct Y position. You see that kind of thing a lot,

290 Chapter 10 n User Interface Programming

and it works a hell of a lot better than hard-coded positions and widths. Now we’re
ready to add controls to the dialog member, and you’ll see that in the calls to Add-

Static() for the message text and AddButton() for the buttons.

One thing you should notice right away in the call to add buttons is no hard-coded text:

m_UI.AddButton(IDOK, g_pApp->GetString(IDS_OK).c_str(),

iX, iY - border, btnWidth, btnHeight);

I mentioned this back in the application layer discussion. Instead of seeing the naked
text “OK,” you see a call into the application layer to grab a string identified by IDOK.
The application layer is responsible for grabbing text for anything that will be pre-
sented to the player because you might have multiple foreign language versions of
your game. You could create this text grabber in any number of ways, but for PC
games I prefer using an XML file with all the strings and their hot keys defined.
The cool thing about XML files is they are easy for translators to edit, and you can
easily add XML files to your game as you support more languages. They even sup-
port Asian languages like Chinese.

In the event of a device restoration event like a full-screen/windowed mode swap, it’s
a good idea to tell the DirectX dialog how big it is and where it is on the screen,
which you can do through the VOnRestore API:

HRESULT MessageBox::VOnRestore()

{

m_UI.SetLocation(m_PosX, m_PosY);

m_UI.SetSize(m_Width, m_Height);

return S_OK;

}

The render method for our screen class simply calls CDXUTDialog::OnRender. If
you create your own GUI system, this is where you’d iterate through the list of con-
trols and draw them:

HRESULT MessageBox::VOnRender(double fTime, float fElapsedTime)

{

m_UI.OnRender(fElapsedTime);

return S_OK;

};

You feed Windows messages to the DirectX GUI controls through the VOnMsgProc()
method. If you create your own GUI, you’d have to iterate through your controls and
have them process messages. A good example of that would be to highlight the con-
trol if the mouse moved over it or change the graphic to depress the control if the
mouse went down over the control’s area:

A Custom MessageBox Dialog 291

LRESULT CALLBACK MessageBox::VOnMsgProc(AppMsg msg)

{

return m_UI.MsgProc(msg.m_hWnd, msg.m_uMsg, msg.m_wParam, msg.m_lParam);

}

The only thing left to handle is the processing of the control messages. In the case of
a message box, the only thing you need to do is send the button result back to a place
so that you can grab it later. We’ll do that by posting a custom Windows message
into the message pump:

void CALLBACK CMessageBox::OnGUIEvent(UINT nEvent, int nControlID,

CDXUTControl* pControl)

{

PostMessage(g_pApp->GetHwnd(), G_MSGENDMODAL, 0, nControlID);

}

This might seem confusing at first. Why not just set the member variable in the dialog
box class that holds the last button the player selected? The answer lies in how you have
to go about creating a modal dialog box in games, which is our very next subject.

Modal Dialog Boxes

Modal dialog boxes usually present the player with a question, such as “Do you really
want to quit?” In most cases, the game stops while the dialog box is displayed so the
player can answer the question (see Figure 10.2). The answer is usually immediately
accepted by the game.

Figure 10.2
A modal dialog box.

292 Chapter 10 n User Interface Programming

This might seem easy to code, but it can be a lot trickier than you think. Why? Let’s
look at the anatomy of the “quit” dialog. If you were coding a Windows application,
the code to bring up a message box looks like this:

int answer = MessageBox(_T(“Do you really want to quit?”),

_T(“Question”), MB_YESNO | MB_ICONEXCLAMATION);

When this code is executed, a message box appears over the active window and stays
there until one of the buttons is pressed. The window disappears, and the button ID is
sent back to the calling code. If you haven’t thought about this before, you should real-
ize that the regular message pump can’t be working, but clearly some message pump is
active, or the controls would never get their mouse and mouse button messages. How
does this work? The trick is to create another message pump that runs in a tight loop
and manage that within a method that handles the life cycle of a modal dialog box:

#define G_QUITNOPROMPT MAKELPARAM(-1,-1)

#define G_MSGENDMODAL (WM_USER+100)

int GameCodeApp::Modal(

shared_ptr<IScreenElement> pModalScreen, int defaultAnswer)

{

// If we’re going to display a dialog box, we need a human view

// to interact with.

HumanView *pView;

for(GameViewList::iterator i=m_pGame->m_gameViews.begin();

i!=m_pGame->m_gameViews.end(); ++i)

{

if ((*i)->VGetType()==GameView_Human)

{

shared_ptr<IGameView> pIGameView(*i);

pView = static_cast<HumanView *>(&*pIGameView);

break;

}

}

if (!pView)

{

// Whoops! There’s no human view attached.

return defaultAnswer;

}

assert(GetHwnd() != NULL && _T(“Main Window is NULL!”));

if ((GetHwnd() != NULL) && IsIconic(GetHwnd()))

{

FlashWhileMinimized();

}

Modal Dialog Boxes 293

if (m_HasModalDialog & 0x10000000)

{

assert(0 && “Too Many nested dialogs!”);

return defaultAnswer;

}

m_HasModalDialog <<= 1;

m_HasModalDialog |= 1;

pView->VPushElement(pModalScreen);

LPARAM lParam = 0;

int result = PumpUntilMessage(G_MSGENDMODAL, NULL, &lParam);

if (lParam != 0)

{

if (lParam==G_QUITNOPROMPT)

result = defaultAnswer;

else

result = (int)lParam;

}

pView->VRemoveElement(pModalScreen);

m_HasModalDialog >>= 1;

return result;

}

The first thing that GameCodeApp::Modal() method does is find an appropriate
game view to handle the message. You can imagine a case where you have nothing
but AI processes attached to the game, and they couldn’t care less about a dialog box
asking them if they want to quit. Only a human view can see the dialog and react to
it, so you iterate through the list of game views and find a view that belongs to the
human view type. If you don’t find one, you return a default answer.

If the entire game is running in a window and that window is minimized, the player will
never see the dialog box. The player needs a clue that the game needs interaction with the
player, and a good way to do this under Windows is to flash the window until the player
maximizes the window again, which is what FlashWhileMinimized() accomplishes.

The next thing you see is a dirty trick, and I love it. You can imagine a situation
where you have a modal dialog on the screen, such as something to manage a player
inventory, and the player presses Alt-F4 and wants to close the game. This requires
an ability to nest modal dialog boxes, which in turn means you need some way to
detect this nesting and if it has gone too deep. This is required because the modal
dialogs are managed by the game application. I use a simple bit field to do this, shift-
ing the bits each time you nest deeper.

294 Chapter 10 n User Interface Programming

The next thing that happens is you push the modal screen onto the view you found
earlier, and you call a special method that acts as a surrogate Windows message
pump for the modal dialog:

int GameCodeApp::PumpUntilMessage (UINT msgEnd,

WPARAM* pWParam, LPARAM* pLParam)

{

int currentTime = timeGetTime();

MSG msg;

for (;;)

{

if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))

{

if (PeekMessage(&msg, NULL, 0, 0, 0))

{

if (msg.message != WM_SYSCOMMAND ||

msg.wParam != SC_CLOSE)

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

// Are we done?

if (! IsIconic(GetHwnd()))

{

FlashWindow(GetHwnd(), false);

break;

}

}

}

else

{

// Update the game views, but nothing else!

// Remember this is a modal screen.

if (m_pGame)

{

int timeNow = timeGetTime();

int deltaMilliseconds = timeNow - currentTime;

for(GameViewList::iterator i=m_pGame->m_gameViews.begin();

i!=m_pGame->m_gameViews.end(); ++i)

{

(*i)->VOnUpdate(deltaMilliseconds);

}

currentTime = timeNow;

DXUTRender3DEnvironment();

Modal Dialog Boxes 295

}

}

}

if (pLParam)

*pLParam = msg.lParam;

if (pWParam)

*pWParam = msg.wParam;

return 0;

}

The PumpUntilMessage function works similarly to the message pump in your
main loop, but it is a special one meant for modal dialog boxes. One message,
WM_CLOSE, gets special treatment since it must terminate the dialog and begin the
game close process. Other than close, the loop continues until the target message is
seen in the message queue. I define this custom message myself:

#define G_MSGENDMODAL (WM_USER + 100)

If there are no messages in the queue, the pump calls the right code to make the
game views update and render. Without this, you wouldn’t be able to see anything,
especially if you drag another window over your game.

As soon as the modal dialog wants to kill itself off, it will send the G_MSGENDMODAL
into the message queue, and the PumpUntilMessage method will exit back out to
the Modal method you saw earlier. G_MSGENDMODAL is a special user-defined mes-
sage, and Win32 gives you a special message range starting at WM_USER. I usually
like to start defining application-specific Windows messages at WM_USER+100

instead of starting right at WM_USER, since I’ll be able to tell them apart in the
message queue.

The trick to this is getting the answer back to the calling code, which is done with the
parameters to the G_MSGENDMODAL. In this case, we look at the ID of the control that
was clicked on. Recall CMessageBox::OnGUIEvent():

void CALLBACK CMessageBox::OnGUIEvent(

UINT nEvent, int nControlID, CDXUTControl* pControl, void *pUserContext)

{

PostMessage(g_pApp->GetHwnd(), G_MSGENDMODAL, 0, nControlID);

}

This posts G_MSGENDMODAL to the message queue, which is what the PumpUntil-

Message method was looking for all along. This breaks the tight loop, and the
GameCodeApp::Modal() method can extract the answer the player gave to the
modal dialog box.

296 Chapter 10 n User Interface Programming

You might be asking yourself two things at this point. First, this seems an awful lot of
trouble to implement a modal dialog box that can be called with one line of code.
Second, how would I do this on non-Windows platforms? There is another way—
easier in some ways to implement, but a little more hassle to call and ask the player
a simple yes or no question. The answer is to do this asynchronously.

First, you set up a dialog box as a screen just like we did above. You instantiate it and
launch it and set up a flag in your application to basically pause the game while this
screen is active. When the player presses the button and registers a response, it sends a
message to the subsystem that needed the player to answer a question. You’ll see more
about how game messages can be created, sent, and interpreted in the next chapter.

Controls

Controls have lots of permutations, but most of them share similar properties. I’ve
seen push buttons, radio buttons, check boxes, combo boxes, edit boxes, expandable
menus, and all sorts of stuff. I’ve also coded quite a few of them, I’m sad to say.

Luckily, the DirectX Framework has already implemented most of the standard GUI
controls for you:

n CDXUTButton: A simple push button, like “OK” or “Cancel”

n CDXUTStatic: A static text control for putting non-active text on a dialog

n CDXUTCheckBox: A check box control for selecting on/off status for different items

n CDXUTRadioButton: A radio button control for selecting one thing out of
many choices

n CDXUTComboBox: A combo box uses one line but can drop down a list box of
choices

n CDXUTSlider: A simple slider to do things like volume controls

n CDXUTEditBox: A text edit box for doing things like entering your name or a
console command

n CDXUTIMEEditBox: A foreign language edit box

n CDXUTListBox: A list of choices displayed with a scroll bar

n CDXUTScrollBar: A vertical or horizontal scroll bar

You can attach any of these controls to a CDXUTDialog object to create your own
user interface, and as you saw in the CMessageBox example in the previous section,
these interfaces can be modal or modeless.

Controls 297

The tough thing about implementing a new kind of control in your game isn’t how
to draw a little “x” in the check box. If you want to learn how to do that, you can
trace through the source code in the CDXUTCheckBox and find out how it works.
Rather, the tough thing is knowing what features your controls will need beyond
these simple implementations. You also need to be aware of the important “gotchas”
you’ll need to avoid. Let’s start with the easy stuff first.

n Identification: How is the control distinguished from others on the same screen?

n Hit Testing/Focus Order: Which control gets messages, especially if they over-
lap graphically?

n State: What states should controls support?

I suggest you approach the first problem from a device-centric point of view. Each
device is going to send input to a game, some of which will be mapped to the same
game functions. In other words, you might be able to select a button with the mouse
to perform some game action, like firing a missile. You might also use a hot key to
do the same thing.

Control Identification

Every control needs an identifier—something the game uses to distinguish it from the
other controls on the screen. The easiest way to do this is define an enum, and when
the controls are created, they retain the unique identifier they were assigned in their
construction:

enum MAINSCREEN_CONTROL_IDS

{

CID_EXIT,

CID_EXIT_DESKTOP,

CID_PREVIOUS_SCREEN,

CID_MAIN_MENU,

CID_OPTIONS

};

void CALLBACK CGameScreen::OnGUIEvent(UINT nEvent, int nControlID, MyControl*

pControl)

{

switch(pControl->GetID())

{

case CID_EXIT:

// exit this screen

break;

298 Chapter 10 n User Interface Programming

case CID_EXIT_DESKTOP:

// exit to the desktop

break;

// etc. etc.

}

}

This is very similar to the way Windows sends messages from controls to windows
via the WM_COMMAND message, but simplified. The only problem with defining control
IDs in this manner is keeping them straight, especially if you create screen classes
that inherit from other screen classes, each with its own set of controls.

Flatten Your Screen Class Hierarchies

There’s almost no end to the religious arguments about creating new screens by
inheriting from existing screen classes. Object-oriented coding techniques make it
easy to extend one class into another, but there is a risk of confusion and error
when the new class is so different from the original that it might as well be a
completely new class. This is why it’s better to define functionality in terms of
interfaces and helper functions and flatten your class hierarchy into functional
nuggets. A deep inheritance tree complicates the problems of changing something
in a base class without adversely affecting many classes that inherit from it.

Measure Twice, Cut Once

Many game companies don’t consider UI to be a particularly complex system,
and thus it tends to be delegated to junior engineers. This is also why most UI
systems are generally very difficult to maintain. When I worked at Slipgate, we
were making an MMO game that had very hefty UI requirements, so they
assigned a very senior engineer to create a UI architecture. He created a
system called COG, which allowed people to trivially create UI elements,
piece them together, and allow the gameplay team to hook into UI events
for button presses. It’s the best system I’ve used. A single engineer was able
to prototype complex UI screens in a matter of days or even hours while the
same screen at another company might take five times as long (literally). This
just goes to show you that UI can easily be just as complex as any other
system. Make sure you think through your architecture before jumping in
there, and don’t underestimate the amount of work you’ll have to do.

Some games define controls in terms of text strings, assigning each control a unique
string. But there is a downside to using strings to identify controls—you have to do
multiple string compares every time a control sends a message to your string class.
You’ll learn about a more efficient and interesting solution for this problem in Chap-
ter 11, “Game Event Management.” It does make things easier to debug, but there’s

Control Identification 299

nothing stopping you from including a string member in the debug build of the class.
You can solve this problem by writing a bit of debug code that detects multiple con-
trols with the same ID. Your code should simply assert so you can go find the prob-
lem and redefine the offending identifier.

Hit Testing and Focus Order

There are two ways that controls know they are the center of your attention. The first
way is via a hit test. This is where you use a pointer or a cursor and position it over
the control by an analog device such as a mouse. This method is prevalent in desktop
games, especially games that have a large number of controls on the screen.

The second method uses a focus order. Only one control has the focus at any one
time, and each control can get the focus by an appropriate movement of the input
device. If the right key or button is pressed, the control with focus sends a message
to the parent screen. This is how most console games are designed, and it clearly
limits the number and density of controls on each screen.

Hit testing usually falls into three categories: rectangular hit testing, polygonal hit
testing, and bitmap collision testing. Bitmap collision isn’t too hard, but it is a little
beyond the scope of this chapter. The other two are really easy. The rectangle hit test
is brain-dead simple. You just make sure your hit test includes the entire rectangle,
not just the inside. If a rectangle’s coordinates were (15,4) and (30,35), then a hit
should be registered both at (15,4) and (30,35).

The hit test for a 2D polygon is not too complicated. The following algorithm was
adapted from Graphics Gems and assumes the polygon is closed. This adaptation
uses a point structure and STL to clarify the original algorithm. It will work on
any arbitrary polygons, convex or concave:

#include <vector>

struct Point

{

int x, y;

Point() { x = y = 0; }

Point(int _x, int _y) { x = _x; y = _y; }

};

typedef std::vector<Point> Polygon;

bool PointInPoly(Point const &test, const Polygon & polygon)

{

Point newPoint, oldPoint;

Point left, right;

300 Chapter 10 n User Interface Programming

bool inside=false;

size_t points = polygon.size();

// The polygon must at least be a triangle

if (points < 3)

return false;

oldPoint = polygon[points-1];

for (unsigned int i=0 ; i < points; i++)

{

newPoint = polygon[i];

if (newPoint.x > oldPoint.x)

{

left = oldPoint;

right = newPoint;

}

else

{

left = newPoint;

right = oldPoint;

}

// A point exactly on the left side of the polygon

// will not intersect - as if it were “open”

if ((newPoint.x < test.x) == (test.x <= oldPoint.x)

&& (test.y-left.y) * (right.x-left.x)

< (right.y-left.y) * (test.x-left.x))

{

inside=!inside;

}

oldPoint = newPoint;

}

return(inside);

}

Control State

Controls have four states: active, highlighted, pressed, and disabled, as shown in Fig-
ure 10.3. An active control is able to receive events, but it isn’t the center of attention.
When the control gets the focus or passes a hit test from the pointing device, its state
changes to highlighted. It’s common for highlighted controls to have separate art or
even a looping animation that plays as long as it has focus.

Control State 301

When the player presses a button on the mouse or controller, the control state
changes from active to pressed. The art for this state usually depicts the control as
pressed downward so that the player can tell what’s going on. If the cursor moves
away from the control, it will change state to active again, giving the player a clue
that if the activation button is released, nothing will happen.

Disabled controls are usually drawn darkened or grayed out, giving the impression
that no one is home. I know that Windows does this all over the place, but there is
one thing about it that really bothers me: I can never tell why the control is disabled.
It’s fine to have a disabled state, but make sure that the player can figure out why it’s
disabled, or you’ll just cause a lot of frustration.

Use the Mouse Cursor for User Feedback

If your interface uses a mouse, change the mouse cursor to something different, like a hand icon, when
you are over an active control. This approach will give the player another clue that something will
happen when he clicks the button. Use the Windows LoadCursor() API to grab a handle to the right
mouse cursor and call SetCursor() with the cursor handle. If you want a good package to create
animated mouse pointers, try Microangelo by Impact Software at www.impactsoftware.com.

Don’t get confused about the control states mentioned here and control activation.
Control activation results in a command message that propagates through to the
screen’s OnControl() function. For a standard push button control, this only hap-
pens if the mouse button is pressed and released over the button’s hit area.

More Control Properties

There are some additional properties you can attach to controls, mostly to give the
player a more flexible and informative interface. These properties include hot keys,
tooltips, context-sensitive help, draggability, sounds, and animation.

Figure 10.3
Four control states used with controls.

302 Chapter 10 n User Interface Programming

www.impactsoftware.com

Hot Keys

An excellent property to attach to any control on a desktop game is a hot key. As
players become more familiar with the game, they’ll want to ditch the pointer control
in favor of pressing a single key on the keyboard. It’s faster, which makes hard-core
players really happy. You can distinguish between a hot key command and a normal
keyboard input by checking the keyboard focus. The focus is something your screen
class keeps track of itself, since it is an object that moves from control to control.
Let’s assume that you have a bunch of button controls on a game screen, as well as
a chat window. Normally, every key down and up event will get sent to the controls
to see if any of their hot keys match. If they do match, the OnControl() method of
the screen will get called. The only way to enable the chat window is to click it with
the mouse or provide a hot key for it that will set the keyboard focus for the screen.

As long as the keyboard focus points to the chat control, every keyboard event will be
sent there, and hot keys are essentially disabled. Usually, the focus is released when
the edit control decides it’s done with keyboard input, such as when the Enter key is
pressed. The focus can also be taken away by the screen, for example, if a different
control were to be activated by the mouse.

Tooltips

Tooltips are usually controlled by the containing screen, since it has to be aware of
moving the tooltip around as different controls are highlighted. Tooltips are trickier
than you’d think, because there’s much more to enabling them than creating a bit of
text on your screen for each control.

For one thing, every tooltip needs to have a good position relative to the control it
describes. You can’t just assume that every tooltip will look right if you place it in the
same relative position to every control. If you decide that every tooltip will be placed
in the upper-right area of every control, what happens when a control is already at
the upper-right border of the screen? Also, you’ll want to make sure that tooltips
don’t cover other important information on the screen when they appear. You don’t
want to annoy the heck out of your users.

Tooltips Don’t Do Much Good Off-Screen

Even if you provide a placement hint, such as above or beside a control, you’ll
still need to tweak the placement of the tooltip to make sure it doesn’t clip on
the screen edge. Also, make sure that screens can erase tooltips prematurely,
such as when a dialog box appears or when a drag begins.

More Control Properties 303

Context-Sensitive Help

Context-sensitive help is useful if you have a complicated game with lots of controls.
If the player presses a hot key to launch the help window when a control is
highlighted, the help system can bring up help text that describes what the control
will do. An easy way to do this is to associate an identifier with each control that has
context-sensitive help. In one game, this identifier was the name of the HTML file
associated with that control. When the screen gets the hot key event for help, it first
finds any highlighted control and asks it if it has an associated help file.

Dragging

Controls can initiate a drag event or accept drag events. Drag initiation is simply a
Boolean value that is used to indicate if a drag event can start on top of the control
or not. Drag acceptance is a little more complicated. Most drag events have a source
type, as discussed at the beginning of this chapter. Some controls might accept drags
of different types, given only particular game states. An example of this might be
dragging items around in a fantasy role-playing game. A character in the game
might not be able to accept a dragged object because he’s already carrying too
much, and thus not be a legal target for the drag event.

One thing you should be careful of is the discoverability of dragging. Interfaces are
becoming much more point and click, rather than click and hold, drag around, and
release. If dragging is important to your game, as it frequently is in RTS games, just
make sure your players have a good tutorial when the game starts.

Sounds and Animation

Most controls have a sound effect that launches when the button changes state. Some
games associate a single sound effect for every button, but it’s not crazy to give each
control its own sound effect. Animation frames for buttons and other controls are
usually associated with the highlighted state. Instead of a single bitmap, you should
use a bitmap series that loops while the control is highlighted.

Some Final User Interface Tips

As parting advice, there are a few random but important tips I can give you on user
interface work.

n All rectangular interfaces are boring.

n Localization can make a mess of your UI.

304 Chapter 10 n User Interface Programming

n You don’t have to roll your own UI code anymore.

n UI code is easy to write, but making a good UI is an art form.

If your interface code doesn’t use polygonal hit testing or bitmap collision, you are
destined to have legions of square buttons and other controls populating your inter-
face. That’s not only a dull and uncreative look, but your artists will probably strangle
you before you ever finish your game. Artists need the freedom to grow organic
shapes in the interface and will resist all those vertical and horizontal lines.

Localization is a huge subject, but a significant part of that subject is interface design.
You may hear things like, “make all your buttons 50 percent wider for German text,”
as the be-all end-all for localization. While that statement is certainly true, there’s a
lot more to it than that. It’s difficult to achieve an excellent interface using nothing
but icons instead of clear text labels. One of the casino games I worked on at Com-
pulsive Development used this approach, and the team was completely stymied with
the problem of choosing an international icon for features like blackjack insurance
and placing a repeat bet on a roulette table. The fact is that international symbols
are used and recognized for men’s and women’s bathrooms and locating baggage
claim, but they are only recognized because they are extremely common and follow
international standards—hardly something you should expect with a random icon in
your game. If you use icons, more power to you, but you’d better provide some tool-
tips to go along with them.

A truly international application has to conform to much more than left-to-right,
top-to-bottom blocks of text. Asian and Middle Eastern languages don’t always fol-
low Western European “sensibility.” All you can really count on is being able to print
text to a definable rectangle. If you have to print lots of text, consider using a well-
known format like HTML or Flash and be done with it.

Since the first edition of this book was published, there has been a lot of good work
done in user interface systems you can grab from the open source community or
license. Scaleform is probably the most well known, implementing a Flash-based
UI in almost any platform on the market. RADGameTools has also entered the
fray with their Iggy product. There’s even an open source library, gameswf, that
you can use, but be very careful with it. The gameswf library might seem like a
great way to save money, but you’ll quickly realize that it allocates and frees memory
hundreds of times per frame, and that’s not good for your game and will fragment
your memory like nothing you thought possible. You’ll spend just as much time fixing
it as licensing something. Also, it stands to reason that if you license a Flash-based UI
system, you need someone who knows something about making user interfaces in Flash.

Some Final User Interface Tips 305

When you design your user interface, know your audience. Older players are more
comfortable with menus and labeled buttons. Younger players enjoy the experience
of exploring a graphical environment with their mouse and clicking where they see
highlights. This is extremely problematic if you are a youngish programmer writing
games for little kids or your parents. They simply don’t think the same way you do,
and nothing you do in your interface code will change that. Mimic proven solutions
if you can, but always get a random sample of your target audience by taking your
interface design for a test drive.

There’s nothing more humbling than when you stand behind someone playing your
game and silently watch that person struggle with the simplest task. You want to
scream at the top of your lungs, “Simpleton! How do you find enough neurons to
respirate?” In a calmer moment, perhaps you’ll realize that the one with missing neu-
rons looks back at you from mirrors. Take a deep breath, go back to your drawing
board, and make things better. You’ll be glad you did.

306 Chapter 10 n User Interface Programming

Chapter 11

by David “Rez” Graham

Game Event Management

So far, you’ve learned about actors, the resource cache, the main loop, and a number
of other systems. Communication between these various systems can get very com-
plicated and even start to break down completely if you’re not careful. Consider this
example: A game script wants to create an object, such as a ticking time bomb. The
game logic needs to insert the time bomb into the game object list, and the various
view objects need to know that a new object has been created. The human view will
need to render it, while the AI views need to know it exists so that NPCs will react
appropriately, such as running away in a panic. You’ll also need to schedule future
explosion events.

A naive programmer might code this complicated system by using a series of API
calls to various subsystems of the game engine. This approach could get extremely
messy and could require a morass of #includes at the top of every CPP file. I’m
sure that you have come across code like this before. Each system would have to
know about the public API of every other system that it interacted with. I’ve worked
on a number of games that were built this way, and each experience was pretty hor-
rible. Whenever even a trivial modification was made to a subsystem, it seemed that
the whole game would have to be recompiled. This can also be the source of hard-
to-find bugs.

In this chapter, you’ll learn that you can solve the problems of communications
between game subsystems and how they interact with game objects by using a

307

general-purpose game event system. We’ll start first by exploring game events, and
then we’ll build a basic Event Manager that you can use as a building block for
your own games.

Game Events

Whenever some authoritative system in your game makes something important
happen, such as destroying an actor, it fires off an event. Your game must then notify
all the appropriate subsystems that the event has occurred so that they can handle
the event in their own way. A good example of an authoritative system is the game
logic, which is responsible for all the actors in the game. An example of a subsystem
that consumes events is the game renderer (or human view). The view needs to know
the actor’s correct position. It also needs to know when the actor is destroyed so that
it can destroy its own internal representation of the actor and remove it from the
scene.

The game logic could try to keep track of all the systems that need to know about
actors, such as the renderer, and call each system’s API to tell each one that an
actor has been destroyed. If there are a number of systems that need to know about
actors, the game logic must call into each one, probably using a slightly different API
and parameter list. Yuck!

Fortunately, there’s a much better way to do this. Instead of calling each system every
time an actor is destroyed, the game logic could create a game event and send it into
a system that knows how to distribute the event to any subsystem that wants to lis-
ten. One side effect of this solution is that it cleans up the relationship between game
subsystems. Mostly, they don’t care about anything but themselves and the event
management system.

A system such as an audio system already knows what events it should listen to. In
this case, it would listen to “object collided” or “object destroyed.” On the other
hand, there might be tons of other messages that the audio system could safely
ignore, such as an event that signals the end of an animation.

In a well-designed game, each subsystem should be responsible for subscribing to and
handling game events as they pass through the system. The game event system is
global to the application and therefore makes a good candidate to sit in the applica-
tion layer. It manages all communications going on between the game logic and
game views. If the game logic moves or destroys an actor, an event is sent, and all
the game views will receive it. If a game view wants to send a command to the
game logic, it does so through the event system. The game event system is the glue
that holds the entire game logic and game view architecture together.

308 Chapter 11 n Game Event Management

Death in the Kingdom

The death code in The Sims Medieval works more or less like it did in The
Sims 3, but we had a number of new systems that had to respond to a sim
dying. There was a quest system, for example, that had to ensure the sim was
properly removed from the quest and potentially fail the quest if this was an
important NPC (or the player). We also had to ensure that the role system
knew about the death. If it was a town guard, blacksmith’s apprentice, or
some other “role sim” that died, the role system had to generate a new one
to replace the dead sim. This could have been a major hassle if it weren’t for
the event system. When a sim died, the death system sent an event. All we
had to do was make our new systems handle this event appropriately. The
death system didn’t have to know anything about the new systems, and the
new systems didn’t have to know anything about the death system. They just
knew that Garvin the Town Crier was dead.

The game event system is organized into three basic parts:

n Events and event data

n Event handler delegates

n Event Manager

Events and event data are generated by authoritative systems when an action of any
significance occurs, and they are sent into the Event Manager, sometimes also called
a listener registry. The Event Manager matches each event with all the subsystems
that have subscribed to the event and calls each event listener delegate function in
turn so it can handle the event in its own way.

Events and Event Data

A classic problem in computer games is how to define types of data or objects. The
easiest way to define different types of elements, such as event types, is to put them
all into a single enumeration like this:

Enum EventType

{

Event_Object_Moved,

Event_Object_Created,

Event_Object Destroyed,

Event_Guard_Picked_Nose,

// and on and on….

};

Game Events 309

With this type of solution, each subsystem in your game would likely need this enu-
meration because each probably generates one or more of these events. In coding this
approach, you would need to have every system #include this enumeration. Then,
every time you add to it or change it, your entire game would need to be recompiled,
clearly a bad thing.

Build Times on Thief: Deadly Shadows

When I was working on Thief: Deadly Shadows at Ion Storm, we had a few
systems like this, including the event system. Each event type was defined in
a huge enumeration, and creating a new event or deleting a deprecated one
caused us to recompile everything, and I mean everything. Thief: Deadly
Shadows had nine build targets: PC Game, Xbox Game, and Editor, with
each having Debug, Profile, and Release build flavors. Even on a fast
desktop workstation, it would take us 15 minutes or more to build just one,
and building everything took more than an hour. Screams of anguish could
be heard when someone checked in one of these core header files without
sending a warning email with plenty of advance notice. The moment
someone had to get code off the Net, that person might as well go take a
prolonged break. Believe me, we didn’t want the break either because it
would just turn a 12-hour day into a 13-hour day.

Fortunately, there’s a better way to do this. Instead of creating a massive enumeration
in a core header file, you can create a bunch of GUIDs (globally unique identifiers)
for each event. These GUIDs are defined on the event itself so if something gets
added or removed, you only need to recompile the effected files. It’s fast and saves
your team from the terrible monolithic enumeration that everyone has to reference.

You can create GUIDs in Visual Studio by going to the Tools menu and clicking on
Create GUID, which will bring up a dialog box with several new options. The one I
always choose is “DEFINE_GUID that(…).” Then you can press the Copy button,
which copies the GUID to your clipboard. When you paste this into your code or a
text file somewhere, you’ll get something like this:

// {6A873D78-508D-4AC0-AC79-1D73B3FF1A0A}

DEFINE_GUID(<<name>>,

0x6a873d78, 0x508d, 0x4ac0, 0xac, 0x79, 0x1d, 0x73, 0xb3, 0xff, 0x1a, 0xa);

Then grab the first number, 0x6a873d78 in this case, and use that as your 32-bit
GUID. Now you have an easy way to create as many event types as you want.
Here’s how to create events and data that can ride along with the event:

class IEventData

{

public:

310 Chapter 11 n Game Event Management

virtual const EventType& VGetEventType(void) const = 0;

virtual float VGetTimeStamp(void) const = 0;

virtual void VSerialize(std::ostrstream& out) const = 0;

virtual IEventDataPtr VCopy(void) const = 0;

virtual const char* GetName(void) const = 0;

};

class BaseEventData : public IEventData

{

const float m_timeStamp;

public:

explicit BaseEventData(const float timeStamp = 0.0f) :

m_timeStamp(timeStamp) { }

virtual ˜BaseEventData(void) {}

// Returns the type of the event

virtual const EventType& VGetEventType(void) const = 0;

float VGetTimeStamp(void) const { return m_timeStamp; }

// Serializing for network out.

virtual void VSerialize(std::ostrstream &out) const { }

};

Choose Your Stream Implementation Carefully

Did you note the use of std::ostrstream in the previous code snippet? This was chosen to make the
stream human readable, which can be very useful during development, but a big mistake for any
shipping game. For one thing, a human-readable stream is trivial to hack. More importantly, the stream
is large and takes much longer to load and parse than a binary stream. Try using std::ostream

instead or your own custom stream class.

An event encapsulates the event type, the event data, and the time the event
occurred. Event data is defined by you, the programmer, and you are free to create
ad hoc data that will accompany your event. It’s a little easier to see what’s going on
with a concrete example. Recall from Chapter 6, “Game Actors and Component
Architecture,” that every actor has an ID that’s used for tracking purposes. Now, if
an actor is ever destroyed, this ActorId would get sent along with an event so
other subsystems could remove the actor from their lists. The event data class for
an “actor destroyed” event would look like this:

typedef unsigned long EventType;

class EvtData_Destroy_Actor : public BaseEventData

Game Events 311

{

ActorId m_id;

public:

static const EventType sk_EventType;

explicit EvtData_Destroy_Actor(ActorId id)

: m_id(id) { }

explicit EvtData_Destroy_Actor(std::istrstream& in)

{

in >> m_id;

}

virtual const EventType& VGetEventType(void) const

{

return sk_EventType;

}

virtual IEventDataPtr VCopy(void) const

{

return IEventDataPtr(GCC_NEW EvtData_Destroy_Actor(m_id));

}

virtual void VSerialize(std::ostrstream &out) const

{

out << m_id;

}

virtual const char* GetName(void) const

{

return “EvtData_Destroy_Actor“;

}

ActorId GetId(void) const { return m_id; }

};

The event data inherits from the BaseEventData so it can be wired into the event
system. When an actor is destroyed, its ActorId is sent along with the event.

The sk_EventType variable is the GUID, which is initialized like this:

const EventType EvtData_Destroy_Actor::sk_EventType(0x77dd2b3a);

This is how the event is uniquely identified across the entire application. Listeners
register for events using this ID.

312 Chapter 11 n Game Event Management

The Event Listener Delegates

Events and event data need to go somewhere, and they always go to event listener
delegate functions. A delegate function is basically a function pointer that can be cou-
pled with an object pointer and used as a callback. They are used quite extensively in
C# and other .NET applications. C++ can do C-style function pointers as well as C++
functor objects, but it tends to fall apart when you try to encapsulate pointers to
member functions. The problem is that the C++ compiler needs to know the type
of the function pointer, which defeats our purposes. What we really want is a C#-
style delegate where we can define a function signature and not care where the func-
tion comes from, as long as it conforms to our signature. C++ can’t do this without a
lot of template magic.

Fortunately, someone has already solved this problem for us! Don Clugston wrote a
great article on The Code Project about fast C++ delegates and was kind enough to
publish the code for public use. It has no license whatsoever, so you can use it in
commercial applications. The article itself is fantastic and worth a read, although I
warn you that it covers some pretty advanced C++ stuff. It’s not for the feint of
heart:

http://www.codeproject.com/KB/cpp/FastDelegate.aspx

All event listener delegate functions must conform to the following function
prototype:

typedef shared_ptr<IEventData> IEventDataPtr; // smart ptr to IEventData

void Delegate(IEventDataPtr pEventData);

The name of the function doesn’t matter, nor does the name of the parameter or
even what class it comes from. It could be a virtual function, a static function, a
global function, or just a regular member function. That’s the beauty of the fast dele-
gate library! To declare this function signature as a delegate, we typedef it like so:

typedef fastdelegate::FastDelegate1<IEventDataPtr> EventListenerDelegate;

Everything in the fast delegate library is under the fastdelegate namespace. The
FastDelegate1 template is the help class used to bind the runtime object (if it
exists) with the appropriate function pointer. The “1” you see there is because there
is one parameter. If there were two parameters, you would use FastDelegate2, and
so on. This is required mostly for compiler compatibility. The template parameter is
the parameter type you want to pass into the function. There is an optional addi-
tional parameter for the return value, which we’re not using here. EventListener-
Delegate is now a typedef of the delegate type.

Game Events 313

http://www.codeproject.com/KB/cpp/FastDelegate.aspx

To use the delegate, you instantiate it and call the bind() method. This overloaded
method will bind your function (or object pointer and function pair) to the delegate
object. If you’re binding C++ functions, the easiest thing to do is to use the global
MakeDelegate() function. This function takes in the object pointer and member
function pointer and returns a newly constructed delegate object.

There’s a lot more to the fast delegates library, but these are the core features we’ll be
using for the event system presented in this chapter. If you want to see some exam-
ples of how to use this system, download the source code for this book and check out
the following file:

Source\GCC4\3rdParty\FastDelegate\Demo.cpp

This file comes with the fast delegates source bundle and exists to show off the func-
tionality and interface.

You now know how to create an event and write a delegate method that listens for
events, but you still lack a crucial piece of this puzzle. The Event Manager is the
nexus of events in your game. It receives them from practically anywhere and calls
any registered delegate functions.

The Event Manager

As you might expect, the Event Manager is more complicated than the events or the
delegate methods. It has a tough job matching events with listeners and doing it in a
manner that is pretty fast. First, you’ll see the IEventManager interface. The Event
Manager class is set up to be a global singleton, and it manages its own global
pointer. This is pretty useful, since virtually every system in your game will need
access to the Event Manager object.

The interface defines the following methods:

n VAddListener: Matches a delegate function with an event type, so anytime
the event type is sent, the delegate will be called.

n VRemoveListener: Removes a delegate. You must call this when the
registering object is destroyed.

n VTriggerEvent: Immediately fires an event to listeners that care about it.

n VQueueEvent: Puts an event in a queue to be fired later.

n VAbortEvent: Removes an event from the queue.

n VUpdate: Processes the events in the queue. This is called every game
loop.

314 Chapter 11 n Game Event Management

class IEventManager

{

public:

enum eConstants { kINFINITE = 0xffffffff };

explicit IEventManager(const char* pName, bool setAsGlobal);

virtual ˜IEventManager(void);

// Registers a delegate function that will get called when the event type is

// triggered. Returns true if successful, false if not.

virtual bool VAddListener(const EventListenerDelegate& eventDelegate,

const EventType& type) = 0;

// Removes a delegate / event type pairing from the internal tables.

// Returns false if the pairing was not found.

virtual bool VRemoveListener(const EventListenerDelegate& eventDelegate,

const EventType& type) = 0;

// Fires off event NOW. This bypasses the queue entirely and immediately

// calls all delegate functions registered for the event.

virtual bool VTriggerVTriggerEvent(const IEventDataPtr& pEvent) const = 0;

// Fires off event. This uses the queue and will call the delegate function

// on the next call to VTickVUpdate(), assuming there’s enough time.

virtual bool VQueueEvent(const IEventDataPtr& pEvent) = 0;

// Finds the next-available instance of the named event type and remove it

// from the processing queue. This may be done up to the point that it is

// actively being processed … e.g.: is safe to happen during event

// processing itself.

//

// If allOfType is true, then all events of that type are cleared from the

// input queue.

//

// returns true if the event was found and removed, false otherwise

virtual bool VAbortEvent(const EventType& type, bool allOfType = false) = 0;

// Allows for processing of any queued messages, optionally specify a

// processing time limit so that the event processing does not take too

// long. Note the danger of using this artificial limiter is that all

// messages may not in fact get processed.

//

// returns true if all messages ready for processing were completed, false

// otherwise (e.g. timeout).

Game Events 315

virtual bool VTickVUpdate(unsigned long maxMillis = kINFINITE) = 0;

// Getter for the main global event manager. This is the event manager that

// is used by the majority of the engine, though you are free to define your

// own as long as you instantiate it with setAsGlobal set to false.

// It is not valid to have more than one global event manager.

static IEventManager* Get(void);

};

You can take a look at the comments above each method to see what it is supposed
to do. The implementation of IEventManager manages two sets of objects: event
data and listener delegates. As events are processed by the system, the Event Manager
matches them up with subscribed listener delegate functions and calls each one with
events they care about.

There are two ways to send events—by queue and by trigger. By queue means the
event will sit in line with other events until the game processes IEventManager::
VUpdate(). By trigger means the event will be sent immediately—almost like calling
each delegate function directly from your calling code.

Now you’re ready to see how an Event Manager class implements the interface:

const unsigned int EVENTMANAGER_NUM_QUEUES = 2;

class EventManager : public IEventManager

{

typedef std::list<EventListenerDelegate> EventListenerList;

typedef std::map<EventType, EventListenerList> EventListenerMap;

typedef std::list<IEventDataPtr> EventQueue;

EventListenerMap m_eventListeners;

EventQueue m_queues[EVENTMANAGER_NUM_QUEUES];

int m_activeQueue; // index of actively processing queue; events

// enque to the opposing queue

public:

explicit EventManager(const char* pName, bool setAsGlobal);

virtual ˜EventManager(void) { }

virtual bool VAddListener(const EventListenerDelegate& eventDelegate,

const EventType& type);

virtual bool VRemoveListener(const EventListenerDelegate& eventDelegate,

const EventType& type);

virtual bool VTriggerVTriggerEvent(const IEventDataPtr& pEvent) const;

virtual bool VQueueEvent(const IEventDataPtr& pEvent);

316 Chapter 11 n Game Event Management

virtual bool VAbortEvent(const EventType& type, bool allOfType = false);

virtual bool VTickVUpdate(unsigned long maxMillis = kINFINITE);

};

EventListenerList is a list of EventDelegate objects. EventListenerMap is a
map where the key is an EventType and the data is the EventListenerList. This
is the data structure used to register listener delegate functions. Each event has a list
of delegates to call when the event is triggered. The third typedef, EventQueue,
defines a list of smart pointers to IEventData objects.

The next block declares the actual data members. The first is the map, and the sec-
ond is an array of event queues. There are two event queues here so that delegate
methods can safely queue up new events. You can imagine an infinite loop where
two events queue up each other. Without two queues, the program would hang in
an infinite loop and never break out of the event VTickVUpdate() function. The
m_activeQueue member is the index of the currently active queue.

The constructor is pretty bare bones:

EventManager::EventManager(char const * const pName, bool setAsGlobal)

: IEventManager(pName, setAsGlobal)

{

m_activeQueue = 0;

}

Here’s the code for adding a new delegate function:

bool EventManager::VAddListener(const EventListenerDelegate& eventDelegate,

const EventType& type)

{

// this will find or create the entry

EventListenerList& eventListenerList = m_eventListeners[type];

for (auto it = eventListenerList.begin(); it != eventListenerList.end();

++it)

{

if (eventDelegate == (*it))

{

GCC_WARNING(“Attempting to double-register a delegate“);

return false;

}

}

eventListenerList.push_back(eventDelegate);

return true;

}

Game Events 317

First, the code grabs (or creates) the event listener list. It walks through the list to see
if the listener has already been registered and kicks out a warning if it has been. Reg-
istering the same delegate for the same event more than once is definitely an error,
since processing the event would end up calling the delegate function multiple times.

If the delegate has never been registered for this event, it’s added to the list.

Here’s how you remove a listener:

bool EventManager::VRemoveListener(const EventListenerDelegate& eventDelegate,

const EventType& type)

{

bool success = false;

auto findIt = m_eventListeners.find(type);

if (findIt != m_eventListeners.end())

{

EventListenerList& listeners = findIt->second;

for (auto it = listeners.begin(); it != listeners.end(); ++it)

{

if (eventDelegate == (*it))

{

listeners.erase(it);

success = true;

// We don’t need to continue because it should be impossible for

// the same delegate function to be registered for the same event

// more than once.

break;

}

}

}

return success;

}

This function gets the event listener list for the event type that was passed in. If the
list is valid, it walks through it, attempting to find the delegate. The FastDelegate
classes all implement an overloaded == operator, so this works really well. If the del-
egate is found, it’s removed from the list, success is set to true, and the loop is
broken. That’s all there is to it.

318 Chapter 11 n Game Event Management

Always Clean Up After Yourself

The fast delegate library uses raw pointers on the inside and binds the object
pointer you give it to the function pointer. That means that if you destroy the
object without removing the delegate, you’ll get a crash when an event that
delegate is set to receive is fired. You should always remember to clean up
after yourself and remove any delegate listeners in the destructor of your
listener class.

While the situation is certainly not the norm, it is occasionally necessary to fire an
event and have all listeners respond to it immediately, without using the event
queue. That’s where the VTriggerVTriggerEvent() function comes in. In all
honesty, this method breaks the paradigm of remote event handling, as you will see
done in Chapter 18, “Network Programming for Multiplayer Games,” but it’s still
necessary for certain operations. A good example of a valid use is in the game startup
code when you don’t want to wait a frame just to ensure that something started
before continuing to the next stage. Here’s the VTriggerVTriggerEvent()

method:

bool EventManager::VTriggerVTriggerEvent(const IEventDataPtr& pEvent) const

{

bool processed = false;

auto findIt = m_eventListeners.find(pEvent->VGetEventType());

if (findIt != m_eventListeners.end())

{

const EventListenerList& eventListenerList = findIt->second;

for (EventListenerList::const_iterator it = eventListenerList.begin();

it != eventListenerList.end(); ++it)

{

EventListenerDelegate listener = (*it);

listener(pEvent); // call the delegate

processed = true;

}

}

return processed;

}

This function is relatively simple. It tries to find the event listener list associated with
this event type and then, if found, iterates through all the delegates and calls each
one. It returns true if any listener handled the event.

Game Events 319

The most common (and correct) way of sending events is by using the VQueueEvent
method:

bool EventManager::VQueueEvent(const IEventDataPtr& pEvent)

{

GCC_ASSERT(m_activeQueue >= 0);

GCC_ASSERT(m_activeQueue < EVENTMANAGER_NUM_QUEUES);

auto findIt = m_eventListeners.find(pEvent->VGetEventType());

if (findIt != m_eventListeners.end())

{

m_queues[m_activeQueue].push_back(pEvent);

return true;

}

else

{

return false;

}

}

This function is also pretty simple. First, it finds the associated event listener list. If it
finds this list, it adds the event to the currently active queue. This keeps the Event
Manager from processing events for which there are no listeners.

Of course, you could change your mind about a queued message and want to take it
back, like some of those emails I sent to my boss.

bool EventManager::VAbortEvent(const EventType& inType, bool allOfType)

{

GCC_ASSERT(m_activeQueue >= 0);

GCC_ASSERT(m_activeQueue < EVENTMANAGER_NUM_QUEUES);

bool success = false;

EventListenerMap::iterator findIt = m_eventListeners.find(inType);

if (findIt != m_eventListeners.end())

{

EventQueue& eventQueue = m_queues[m_activeQueue];

auto it = eventQueue.begin();

while (it != eventQueue.end())

{

// Removing an item from the queue will invalidate the iterator, so

// have it point to the next member. All work inside this loop will

// be done using thisIt.

auto thisIt = it;

++it;

320 Chapter 11 n Game Event Management

if ((*thisIt)->VGetEventType() == inType)

{

eventQueue.erase(thisIt);

success = true;

if (!allOfType)

break;

}

}

}

return success;

}

The VAbortEvent() method is a simple case of looking in the active queue for the
event of a given type and erasing it. Note that this method can erase the first event in
the queue of a given type or all events of a given type, depending on the value of the
second parameter. You could use this method to remove redundant messages from
the queue, such as two “move object” events for the same object.

All those queued messages have to be processed sometime. Somewhere in the game’s
main loop, the Event Manager’s VUpdate() method should be called, and the
queued messages will get distributed like so many pieces of mail.

bool EventManager::VTickVUpdate(unsigned long maxMillis)

{

unsigned long currMs = GetTickCount();

unsigned long maxMs = ((maxMillis == IEventManager::kINFINITE) ?

(IEventManager::kINFINITE) :

(currMs + maxMillis));

// swap active queues and clear the new queue after the swap

int queueToProcess = m_activeQueue;

m_activeQueue = (m_activeQueue + 1) % EVENTMANAGER_NUM_QUEUES;

m_queues[m_activeQueue].clear();

// Process the queue

while (!m_queues[queueToProcess].empty())

{

// pop the front of the queue

IEventDataPtr pEvent = m_queues[queueToProcess].front();

m_queues[queueToProcess].pop_front();

const EventType& eventType = pEvent->VGetEventType();

// find all the delegate functions registered for this event

Game Events 321

auto findIt = m_eventListeners.find(eventType);

if (findIt != m_eventListeners.end())

{

const EventListenerList& eventListeners = findIt->second;

// call each listener

for (auto it = eventListeners.begin(); it != eventListeners.end();

++it)

{

EventListenerDelegate listener = (*it);

listener(pEvent);

}

}

// check to see if time ran out

currMs = GetTickCount();

if (maxMillis != IEventManager::kINFINITE && currMs >= maxMs)

{

GCC_LOG(“EventLoop”, “Aborting event processing; time ran out”);

break;

}

}

// If we couldn’t process all of the events, push the remaining events to

// the new active queue.

// Note: To preserve sequencing, go back-to-front, inserting them at the

// head of the active queue.

bool queueFlushed = (m_queues[queueToProcess].empty());

if (!queueFlushed)

{

while (!m_queues[queueToProcess].empty())

{

IEventDataPtr pEvent = m_queues[queueToProcess].back();

m_queues[queueToProcess].pop_back();

m_queues[m_activeQueue].push_front(pEvent);

}

}

return queueFlushed;

}

The VUpdate() method takes all of the queued messages and calls the registered
delegate methods. As I said before, there are actually two queues. This is almost like
double buffering in a renderer. Sometimes handling events creates new events; in fact,
it happens all the time. Colliding with an object might cause it to move and collide
with another object. If you always added events to a single queue, you might never

322 Chapter 11 n Game Event Management

run out of events to process. This problem is handled easily with two queues: one for
the events being actively processed and the other for new events.

The code is very much like what you saw in the VTriggerEvent() method, with
one more difference than the fact the events are being pulled from one of the queues.
It also can be called with a maximum time allowed. If the amount of time is
exceeded, the method exits, even if there are messages still in the queue.

This can be pretty useful for smoothing out some frame rate stutter if you attempt to
handle too many events in one game loop. If your game events start to pile up and your
queue always seems to stay full, perhaps you’d better work on a little optimization.

Example: Bringing It All Together

Let’s look at a simple example to bring it all together. In this case, we’ll look at what
happens when you destroy an actor. The first step is to define the event data by writ-
ing a new class that inherits from BaseEventData. You’ve already seen this class;
it’s EvtData_Destroy_Actor event above, so let’s use that. Flip back to earlier in
this chapter if you need a refresher on that class.

The next step is to define the delegate methods that need to handle this event. Here’s
what it might look like:

void RoleSystem::DestroyActorDelegate(IEventDataPtr pEventData)

{

// cast the base event pointer to the actual event data we need

shared_ptr<EvtData_Destroy_Actor> pCastEventData =

static_pointer_cast<EvtData_Destroy_Actor>(pEventData);

// Remove the actor from the map of roles. Assume the role map is

// defined as follows:

// std::map<ActorId, RoleData> m_roleMap;

m_roleMap.erase(pCastEventData->GetActorId());

}

Somewhere in the initialization of the role system, you also need to register the
delegate:

bool RoleSystem::VInit(void)

{

// create the delegate function object

EventListenerDelegate delegateFunc =

MakeDelegate(this, &RoleSystem::DestroyActorDelegate);

// register the delegate with the event manager

Game Events 323

IEventManager::Get()->VAddListener(delegateFunc,

EvtData_Destroy_Actor::sk_EventType);

}

You also need to remember to remove it in the destructor:

RoleSystem::~RoleSystem(void)

{

// Create a delegate function object. This will have the same value as

// the one previously registered in VInit(). Another way to do this would

// be to cache the delegate object. This is a memory vs performance trade-

// off. Since the performance gain would only be during shut-down, memory

// is the better way to go here.

EventListenerDelegate delegateFunc =

MakeDelegate(this, &RoleSystem::DestroyActorDelegate);

// remove the delegate from the event manager

IEventManager::Get()->VRemoveListener(delegateFunc,

EvtData_Destroy_Actor::sk_EventType);

}

That’s all you need to do in order to register events. Here’s the code to send the
event:

// Instantiate the event. The event system tracks all events with smart

// pointers, so you must instantiate the event using a smart pointer.

shared_ptr<EvtData_New_Actor> pDestroyEvent(

GCC_NEW EvtData_Destroy_Actor(pActor->GetId());

// Queue the event.

IEventManager::Get()->VQueueEvent(pDestroyEvent);

// Or, if you prefer, force the event to resolve immediately with VTrigger()

// with VTriggerEvent()

IEventManager::Get()->VTriggerVTriggerEvent(pDestroyEvent);

And there you have it, a simple event system!

What Game Events Are Important?

It’s a little something of a cop-out, but it completely depends on your game, doesn’t
it? A game like Tetris might care about a few simple events such as “Brick Created,”
“Brick Moved,” “Brick Rotated,” and “Brick Collision.” A game like The Sims Medie-
val had dozens, if not hundreds, of different game events. Table 11.1 shows an exam-
ple of the kind of game events you might send in just about any game:

324 Chapter 11 n Game Event Management

Table 11.1 Common Types of Events

Game Events Description

ActorMove A game object has moved.

ActorCollision A collision has occurred.

AICharacterState Character has changed states.

PlayerState Player has changed states.

PlayerDeath Player is dead.

GameOver Player death animation is over.

ActorCreated A new game object is created.

ActorDestroy A game object is destroyed.

Map/Mission Events

PreLoadLevel A new level is about to be loaded.

LoadedLevel A new level is finished loading.

EnterTriggerVolume A character entered a trigger volume.

ExitTriggerVolume A character exited a trigger volume.

PlayerTeleported The player has been teleported.

Game Startup Events

GraphicsStarted The graphics system is ready.

PhysicsStarted The physics system is ready.

EventSystemStarted The event system is ready.

SoundSystemStarted The sound system is ready.

ResourceCacheStarted The resource system is ready.

NetworkStarted The network system is ready.

HumanViewAttached A human view has been attached.

GameLogicStarted The game logic system is ready.

GamePaused The game is paused.

GameResumedResumed The game is resumed.

PreSave The game is about to be saved.

PostSave The game has been saved.

(Continues)

What Game Events Are Important? 325

Distinguishing Events from Processes

If you recall the Process class from Chapter 7, “Controlling the Main Loop,” you
might wonder if there is a significant difference between a game event and a process.
The difference is easy—a game event is something that has happened in the most
recent frame, such as an actor has been destroyed or moved. A process is something
that takes more than one frame to process, such as an animation or monitoring a
sound effect.

These two systems are quite powerful by themselves and can easily create a game of
significant complexity with surprisingly little code in your game logic or view classes.

Events are the main tool used for communicating to other systems. Using the event
system presented in this chapter, you can design complex systems that are nice and
decoupled from each other while still allowing them to talk to one another. This
decoupling allows these systems to grow and change organically without affecting
any of the other systems they are attached to, as long as they still send and respond
to the same events as before. As you can see, events are crucial tools to have in your
programming toolbox.

Table 11.1 Common Types of Events (Continued)

Game Events Description

Animation and Sound Events

AnimationStarted An animation has begun.

AnimationLooped An animation has looped.

AnimationEnded An animation has ended.

SoundEffectStarted A new sound effect has started.

SoundEffectLooped A sound effect has looped back to the
beginning.

SoundEffectEnded A sound effect has completed.

VideoStarted A cinematic has started.

VideoEnded A cinematic has ended.

326 Chapter 11 n Game Event Management

Further Reading

Algorithms in C++, Robert Sedgewick

Beyond the C++ Standard Library, Björn Karlsson

Effective STL, Scott Meyers

Introduction to Algorithms, Thomas Cormen

The Code Project article: Member Function Pointers and the Fastest Possible
C++ Delegates, by Don Clugston: http://www.codeproject.com/KB/cpp/
FastDelegate.aspx

Further Reading 327

http://www.codeproject.com/KB/cpp/FastDelegate.aspx
http://www.codeproject.com/KB/cpp/FastDelegate.aspx

This page intentionally left blank

Chapter 12

by David “Rez” Graham

Scripting with Lua

In the past decade or so, games have started to become much more data driven. For
example, the Actor system lets you create whole classes of different actors by just
mixing and matching different components. You can even add and remove compo-
nents at runtime, making it possible to completely change an actor’s definition,
behavior, and properties without having to recompile and relaunch the game. The
days of having hard-coded constants that affect gameplay are coming to a close,
being replaced by tuning hierarchies that are completely in the hands of the designers.

As a programmer, my job is becoming more about enabling the designers, artists, and
musicians to be creative. I spend my days creating tuning hooks for them to play
with the simulation. This is an incredibly powerful concept because it means that
once a system is working, the designers can iterate on it without having to talk to
me at all. On The Sims, a programmer doesn’t need to be involved in creating every
single television, he just needs to figure out the first one. And with a bit of cleverness,
he may not need to be involved in any television objects at all since they can be
defined entirely in data. The available channels, the amount of fun it provides, and
so on can all be set by the designers.

This chapter is much more than just coverage of Lua syntax and how to embed a
scripting language into your game. I want to take you back to the very early days of
computer programming and talk about how languages evolved from machine code
up to the high-level languages we have today. With a little background, I hope to
give you a better context for why you might want to use a scripting language at all

329

and how it fits into the grand scheme of things. After that, I’ll talk about strategies
for using a scripting language, including comparing two of the most popular ones.
Then the time will be right to dig into the internals of the Lua scripting language.
I’ll also show you not only the mechanics of how to get it up and running in your
game, but also some best practices in using a scripting language, including how to
decouple your engine code from your scripting code and figure out what should live
in C++ and what should live in the script. This is done by extending systems you’ve
already worked with in previous chapters.

A Brief History of Game Programming Languages

Way back in 1946, the ENIAC was completed at the University of Pennsylvania. This
is considered the first general-purpose electronic computer, able to be reprogrammed
to solve any number of complex operations. The process of programming this mas-
sive machine involved setting a series of switches and changing cables, which often
took days even for simple tasks. Input and output were handled with punch cards, a
far cry from the modern keyboard and monitor we all know and love. There are a
few pieces of the ENIAC on display at various museums. It’s worth the trip to get
an appreciation of our programming forefathers.

One of the very first video games was called Tennis for Two and was first seen in
1958 at the Brookhaven National Laboratory. It was created on an oscilloscope screen
and showed a tennis court on its side. The brightly lit ball bounced from one end to
the other, simulating the physics of a ball bouncing in real time. Players would use
controllers with buttons and rotating dials to control the angle of an invisible racquet.
If you do a quick search online, you can find video of this grandfather of modern
gaming. It’s quite remarkable.

Tennis for Two was created on a small analog computer. By using resistors, capaci-
tors, and relays, it was possible to generate various curves on the oscilloscope. In fact,
the computer was made to perform tasks like calculating trajectories for bullets, mis-
siles, and yes, even a ball. The programming for the game was largely done by build-
ing the actual circuitry for it, which sent input to the analog computer, received the
output, and displayed it on the oscilloscope.

The dawn of video games as an industry occurred in 1972 with the release of the
Magnavox Odyssey and, shortly afterwards, the Atari VCS (renamed the Atari
2600). I’m sure many of you have never even heard of the Magnavox Odyssey. It
was only marginally successful, but it undoubtedly shaped the video games industry
as we know it today by being the first dedicated home video game console you could
hook up to your TV.

330 Chapter 12 n Scripting with Lua

Assembly Language

All of these first-generation video games were programmed in some flavor of assem-
bly language. Assembly language is a very low-level language that sits right on top of
the processor. It’s one step above inputting the machine code (for example, the actual
hex instructions sent to the CPU), though it’s not a very big step. Each instruction
translates directly to a series of machine code instructions. For example, here’s an
instruction written in ×86 assembler:

mov byte ptr [eax],61h

This instruction translates to the following machine code:

C6 00 61

As you can see, assembly language is quite a step up from machine code. It’s typically just
as fast, too, since the instructions translate directly into small sets of machine code instruc-
tions, although there are certain machine code optimizations a programmer might want to
do. For the most part, this was the way games were developed for quite some time.

Learn Assembly Language

Nothing will help you truly understand what’s happening inside the processor
better than learning assembly language. Simply reading a book or Web page
doesnt count. You need to actually do something useful with it, like get
yourself an Atari 2600 emulator and an assembler capable of building Atari
ROMs and make a simple game. You will be incredibly frustrated just trying
to render a single line, but I guarantee that you will learn more by doing this
than learning just about any other language. As a bonus, you’ll also be forced
to learn the extreme importance of commenting your code. It will also vastly
increase your debugging skills.

Assembly language worked well enough for older games since they were smaller and
simpler than the games we have today. The typical working model at Atari was to lock
one programmer in a room for several months to create a game. Contrast that with
the 100 or so people we had on The Sims Medieval at its peak. If we had written The
Sims Medieval entirely in assembly language, we’d still be working on it. As games got
more complex and processors got even faster, it was time to move up to the next level.

C/C++

The C programming language was originally created by the late Dennis Ritchie at
Bell Labs in the early 70s. It was originally designed for use with the UNIX operating
system, but it had the capability of being platform independent. That’s a big one—
assembly language is completely dependant on the instruction set of the CPU.

A Brief History of Game Programming Languages 331

C compilers had the ability to build different executables from the same code for dif-
ferent platforms.

While assembly language has a one-to-one correlation with machine code, C is com-
piled into object code. This is a translation from the C code to machine code for that
particular platform. Those object files are then linked with each other and other
libraries to form a final, platform-specific executable. This is one major difference
between C and assembly language. Assembly language is tied directly to the machine
architecture, while the same C program can be compiled onto multiple platforms
with completely different architectures.

Another huge difference between assembly language and C is that C is much easier
for a human to understand. As an example, here’s a bubble sort function implemen-
ted in 6502 Assembly, which is what the Atari 2600 and NES used:

;DOWNLOADED FROM: http://6502.org/source/sorting/bubble8.htm

;THIS SUBROUTINE ARRANGES THE 8-BIT ELEMENTS OF A LIST IN ASCENDING

;ORDER. THE STARTING ADDRESS OF THE LIST IS IN LOCATIONS $30 AND

;$31. THE LENGTH OF THE LIST IS IN THE FIRST BYTE OF THE LIST. LOCATION

;$32 IS USED TO HOLD AN EXCHANGE FLAG.

SORT8 LDY #$00 ;TURN EXCHANGE FLAG OFF (= 0)

STY $32

LDA ($30),Y ;FETCH ELEMENT COUNT

TAX ; AND PUT IT INTO X

INY ;POINT TO FIRST ELEMENT IN LIST

DEX ;DECREMENT ELEMENT COUNT

NXTEL LDA ($30),Y ;FETCH ELEMENT

INY

CMP ($30),Y ;IS IT LARGER THAN THE NEXT ELEMENT?

BCC CHKEND

BEQ CHKEND

;YES. EXCHANGE ELEMENTS IN MEMORY

PHA ; BY SAVING LOW BYTE ON STACK.

LDA ($30),Y ; THEN GET HIGH BYTE AND

DEY ; STORE IT AT LOW ADDRESS

STA ($30),Y

PLA ;PULL LOW BYTE FROM STACK

INY ; AND STORE IT AT HIGH ADDRESS

STA ($30),Y

LDA #$FF ;TURN EXCHANGE FLAG ON (= -1)

STA $32

CHKEND DEX ;END OF LIST?

BNE NXTEL ;NO. FETCH NEXT ELEMENT

BIT $32 ;YES. EXCHANGE FLAG STILL OFF?

332 Chapter 12 n Scripting with Lua

BMI SORT8 ;NO. GO THROUGH LIST AGAIN

RTS ;YES. LIST IS NOW ORDERED

And here’s a bubble sort in C:

void BubbleSort(int numbers[], int array_size)

{

int i, j, temp;

for (i = (array_size - 1); i > 0; i--)

{

for (j = 1; j <= i; j++)

{

if (numbers[j-1] > numbers[j])

{

temp = numbers[j-1];

numbers[j-1] = numbers[j];

numbers[j] = temp;

}

}

}

}

As you can see, assembly language is much more difficult to understand and parse
than C. As technology marched forward and processors became faster and more effi-
cient, it finally started to become feasible to write large parts of the game in C and
leave assembly language for the performance-intensive stuff. Using C allowed devel-
opers to save huge amounts of development time.

As processor speeds and compilers continued to improve, C was eventually replaced
by C++ in most game studios, although there is at least one studio I know of that still
uses straight C. C++ has the power of C with all the cool object-oriented bits added
on top. It’s a great language for performance because it still sits pretty close to the
hardware while offering relatively straightforward syntax. The semantics of many lan-
guages used today owe their roots to C and C++.

As great as C++ is, it still has many flaws and is really beginning to show its age. For
example, you have to deal with memory management yourself. Every new must have
a matching delete, which isn’t the case in many higher-level languages. This can be
a blessing or a curse, depending on the problem you’re trying to solve. I can write a
C++ program that only allocates memory once during the entire program. This
would be impossible in many scripting languages.

With even faster computers and more complex games, the time was right to start
looking into scripting languages.

A Brief History of Game Programming Languages 333

Scripting Languages

What is a scripting language? This may seem like a simple question, but the term
“script” has become somewhat ambiguous as more complex programs are written in
what are traditionally thought of as scripting languages. Simply put, a scripting lan-
guage is a high-level programming language that is interpreted by another program
at runtime. It is often embedded within a native application. If you think about it,
this is a rather broad definition. Is C# a scripting language? It certainly meets the
criteria. C# is compiled into byte-code that’s interpreted at runtime by NET, yet
most people don’t consider it a scripting language.

For purposes of this chapter, I’m going to consider anything higher level than C++
that is embedded into the core game engine to be a scripting language. I’m sure the
time will come when even C# and Python are considered archaic relics of the past,
and programming is done entirely visually.

As far as I can tell, the first scripting language used in a game was the SCUMM
engine by LucasArts. SCUMM stands for Script Creation Utility for Maniac Mansion.
It was a custom language created during the development of Maniac Mansion to
make it easy to create locations, dialogue, objects, puzzles, and other high-level game-
play constructs without having to the touch the 6502 Assembly code at all. This was
an incredibly powerful tool that allowed them to iterate on gameplay incredibly
quickly. In a talk at GDC in 2011, Ron Gilbert (one of the creators of the SCUMM
system) recalled one particular sequence where the player could take a hamster, put it
in the microwave, turn it on, and watch it explode. This was all done in just a few
minutes with the power of the SCUMM system. If you were to do something like this
in 6502 Assembly, it would take 10–20 times as long. This is the power of scripting
and why you should absolutely use it for all of your high-level game logic.

Using a Scripting Language

There are a number of benefits to using scripting languages for your gameplay, but
there are also a lot of pitfalls that I see developers fall into over and over again. I’ve
made a number of these mistakes myself, and I hope that you can learn from them.

Rapid Prototyping

One of the coolest things about using a scripting language is the rapid prototyping.
You can build complex interactions and systems extremely quickly and get them run-
ning in the game without a lot of effort (at least compared to C++). A great example is
the delegate system used in the Event Manager. It took me a full Saturday to rewrite
the event system using delegate functions, and that’s not including the FastDelegate

334 Chapter 12 n Scripting with Lua

stuff, which was written by a third party. There’s a lot of code there just to allow you
to pass in an arbitrary function that matches a particular signature. In most scripting
languages, such a system would be trivial. Functions are usually first-class objects,
which means they are treated like any other variable. You can pass them around,
assign them to other variables, and so on. An event system implemented purely in
Python or Lua probably wouldn’t take me more than an hour to write.

Another big advantage to scripts is that they can usually be reloaded at runtime.
Scripts are loaded from the resource cache just like any other asset and interpreted
at runtime. It’s pretty easy to imagine a system that would let you change a script
while the game was running and type a console command that would reload your
script right there. You wouldn’t even have to shut down the game! When I was
developing the minigames in Rat Race, this is exactly what we did. It made iterating
on those games extremely easy. I could play the minigame and fix issues as I found
them and then reload the script and do it again.

The Poster Child for Rapid Prototyping

When I worked at Planet Moon, there was a programmer who was in charge of
the camera system for Drawn to Life. He implemented the entire thing in Lua
very quickly, moving the math functions to C++ as needed. This allowed him to
iterate with the designers very quickly, often making changes and reloading the
scripts while they were sitting right there. I think we went through a dozen
different camera schemes, all very different from each other. When the design
finally solidified, he moved most of it down to C++ for performance reasons.
This is a great example of what rapid prototyping buys you. If he had started in
C++, he wouldn’t have been able to iterate nearly as quickly.

Design Focused

An interesting side effect to scripting languages is that they tend to be a bit more
designer friendly. At Planet Moon, we had special scripts that designers were allowed
to modify. All of the AI on Drawn to Life, for instance, was configured through these
designer-facing scripts. This is a very powerful concept. By giving your designers
access to the scripting system, you give them the ability to prototype things in the
game without having to involve you directly.

The nature of most scripting languages enables you to take this a step further and
attach snippets of code to objects. For example, you could load up a creature and
pass in an AI script. You could even expose the scripts to the end-users and allow
them to mod your game. World of Warcraft does this with their HUD layout; with
some simple Lua script and XML, you can write your own custom UI.

Using a Scripting Language 335

Speed and Memory Costs

All of this power comes at a cost. Scripts are generally very slow when compared to
C++, and they take up more memory, which is one of the main disadvantages to
using a scripting language. When you load a script, the interpreter typically parses
the actual text right then and there and then executes the instructions found within.
Many languages give you a way to speed this up by allowing you to compile the
script into a binary form as an offline process, but a script’s execution is always
going to be slower. Crossing the boundary between C++ and script is also very
slow, especially if you’re marshalling a large amount of data. For these reasons, you
would never want to attempt to write a high performance graphics engine or physics
engine using a scripting language; these systems are best saved for C++.

Where’s the Line?

One of the pitfalls I see a lot of developers make is trying to do too much in the
scripting language. Scripting languages are extremely powerful, and it can be tempt-
ing to try to write huge, complex systems entirely in script. In the end, I’ve found
that this doesn’t really buy you anything. By their very nature, scripts tend to be
more difficult to maintain than a language like C++. For example, take a look at the
process system you saw in Chapter 7, “Controlling the Main Loop.” It would have
been possible to implement that entire system in Lua or Python much faster than
C++, but this is the kind of system that can potentially do a lot of work every single
frame. Furthermore, once it’s built, it’s pretty unlikely that you’ll need to iterate on it.
You don’t lose very much by having it in C++, and you gain a considerable amount
of performance. You could certainly prototype it in script, but this is the kind of sys-
tem that you’d eventually want to move out to C++.

As a counter example, let’s suppose you want to make an RPG similar to Dragon Age or
Skyrim. You decide that you’ll need a quest system that can manage what quests the
player is on, the state of each quest, all the flags and items associated with them, etc.
This entire quest system can and should be implemented completely in script. This is
the kind of thing that you will be constantly iterating on and will want to have the abil-
ity to tweak on the fly. It’s also not a system that needs to be constantly updating every
frame because it will most likely just respond to events or potentially timers, so the per-
formance gain of having this type of system in C++ doesn’t really buy you anything.

So where’s the line between systems that should live in the script and systems that
should live in C++? The answer to this really depends on who you ask. I know devel-
opers who think only truly time-critical things should ever be in C++, and everything
else should be in script. I also know developers who think script should be more for

336 Chapter 12 n Scripting with Lua

defining data, like you might use in XML. I personally tend to fall somewhere in the
middle. I think that large systems that tend to remain relatively static and time-critical
code should be in C++, while volatile code or code that’s not time-critical should be in
the script. No matter what, it’s always a judgment call. We had to move all of the AI
processing for Drawn to Life out to C++ because it was taking too long to process.

Scripting Language Integration Strategies

Scripting languages come in all shapes and sizes, each with its own strengths and
weaknesses that complement the things I’ve already mentioned. When choosing a
scripting language, there are two general strategies you can follow. You can either
write your own, or you can integrate an existing language.

Writing Your Own

In the early days of scripting languages, writing your own was really the only viable choice,
as other high-level languages either weren’t available or weren’t up to the task. Most early
scripting languages were very specific to the engine they were developed for. Examples of
such languages include SCUMM, used by many of the LucasArts adventure titles, SCI,
used by Sierra On-Line for many of their early point-and-click adventure games, and
UNK and AGIL for the Ultima games at Origin Systems, QuakeC, and UnrealScript.

The real advantage to creating a custom scripting language is that engine-specific
constructs can be integrated directly into the language. With an existing general-
purpose language, you must write all these layers yourself. You can also cut out all
the things you don’t need that many languages include directly.

Writing your own scripting language is an incredibly daunting task. If you choose to
walk down this path, expect to spend the first year or so just getting the language up
and running, assuming you’re targeting a high level of polish. The first year of devel-
opment for Maniac Mansion was just getting the SCUMM language up and running.

There are entire books dedicated to writing your own programming language. You
have to write an interpreter that can read a source file, decompose it into its core
structure, and then process that structure to actually execute the instructions. Doing
this is far beyond the scope of this book, but if you’re interested in it, you should
check out LEX and YACC. They can give a leg up in your endeavor. Good luck.

Using an Existing Language

Using an existing scripting language is relatively common these days. In fact, the Lua
programming language was designed from the ground up to be embedded within a
native application.

Scripting Language Integration Strategies 337

There are a number of advantages to using an existing language—the most important
being the incredible amount of time you’ll save. I integrated Lua into this engine in
about a day, with another day for writing some glue code and a bunch of testing. In a
professional game, it might take 10 times as long, but if you compare that to the
numbers above for writing your own, the savings are obvious.

Another advantage is the huge amount of testing already done. You know that Python’s
if statement and for loops work, and you can be pretty sure that their data structures
are relatively optimized. The same will never be said about your own scripting language.
The reason is sheer numbers; there are thousands upon thousands of people using
Python and Lua every day, so the developers have had a lot of users flushing out all
the bugs. Your language will have considerably fewer users. On top of that, there are a
number of resources already available for existing languages. Do you need a very fast
math module for Lua? You can probably find one with a bit of searching. There are
thousands of people who can tell you how to call a function in Lua. By contrast, there
are maybe half a dozen people in this world who could tell you how to call a function
in the custom Action System scripting language we made at Super-Ego Games.

One disadvantage of using an existing scripting language is that you’re locked into
their environment model. It’s typically harder to control things like memory alloca-
tion, garbage collection, memory footprint, execution overhead, and so on. In a cus-
tom scripting language, you have complete control over all of those things.

Unless you have a really good reason not to do so, I strongly recommend using an
existing language instead of creating your own. The advantages almost always out-
weigh the disadvantages. This is the method I have chosen for this book.

Choosing a Scripting Language

The two most common general-purpose scripting languages used in game develop-
ment are Python and Lua. UnrealScript is also fairly common, but only because the
Unreal engine itself is fairly common. C# is a relatively new contender with XNA and
Unity3D entrenching themselves on the scene. They tend to be used more in inde-
pendent games rather than professional games, but that’s been changing. C# was used
on The Sims 3 as well as The Sims Medieval for scripting.

Python

Python is a very popular scripting language with a huge support community. It is fully
object-oriented and has tons of tools and support. Here’s some sample Python code:

This is a comment in python

def process_actors(actors):

338 Chapter 12 n Scripting with Lua

for actor in actors:

if actor.is_alive():

actor.process()

The syntax is easy to follow for the most part, although Python does have certain
constructs that throw new users for a loop, like list comprehensions:

pruned_list = [x for x in actors if x.is_alive()]

This will generate a list of living actors and will run very fast (the bulk of it actually
runs in C). Another odd thing with Python that some users (including me) dislike is
that Python uses whitespace to determine scope. When you indent in Python, you
are creating a scope, and when you unindent, you step out of that scope. For an old
crusty C++ programmer like me, it can be tough to get used to. I wonder if that’s
how old assembly language programmers felt about the goto statement.

Overall, Python is a great language with a rich feature set. It’s been used on a number
of professional games, including Eve Online, Star Trek Bridge Commander, and the
later games in the Civilization series. We used it at Slipgate for our core gameplay
language.

Lua

As I said earlier, Lua is another popular scripting language that was designed from
the ground up to be an embedded language for use with native applications. It’s
fast, small, and an overall great language. Here’s some sample Lua code:

-- This is a comment in Lua

function process_actors(actors)

for index, actor in ipairs(actors) do

if actor:is_alive() then

actor.process()

end

end

end

As you can see, the syntax is relatively simple. It’s a bit more verbose than a compact
language like Python, which tends to bother some people. Lua is also much more
bare bones than Python.

The language itself has a number of very simple features and a rather sparse series of
optional libraries for math, IO, etc. Many people see this as an advantage to Lua.
Most of the code you write with your scripting language will be game or engine spe-
cific. It’s rare that you’ll need a network socket API or even file IO, especially since
those things can easily be exposed from the engine. A lack of these libraries means

Scripting Language Integration Strategies 339

that Lua runs in a much smaller memory space than other languages like Python.
This makes it a viable language even for console games. We successfully used Lua
on Drawn to Life for the Wii and even on Wedding Dash for the iPhone.

It is the simplicity and elegance of the language that won me over several years ago
when I started working with it. For these reasons and more, Lua is the language I
have chosen for this book.

A Crash Course in Lua

Before I get into the details of how to integrate Lua into the game, I’d like to give you
a crash course in the language itself. This is by no means a complete language refer-
ence, but we’ll explore the core language features.

Comments

Lua comments begin with two dashes:

-- This is a comment

There is also a block comment for commenting out across multiple lines. It uses dou-
ble square brackets, like this:

--[[

This is a single comment

that takes multiple lines.

--]]

As with any programming language, commenting your code is extremely important.
Since Lua is dynamically typed, it’s often hard to tell what an object is just by looking
at the code.

Variables

Lua is a dynamically typed language. That means that a variable can change its type
just by assigning something new to it:

x = 3 -- x is an integer

x = 3.14 -- now it’s a float

x = “PI” -- now it’s a string

Unlike C, variables aren’t declared until they are used. In the above code, x doesn’t
exist until the first line. The second line overwrites the contents of the variable, as
does the third line. There are eight basic types that Lua recognizes: number, string,
Boolean, table, function, nil, userdata, and thread (more on these later).

340 Chapter 12 n Scripting with Lua

The nil type is a special type that is equivalent in concept to C++’s NULL value,
although it behaves a bit differently. Any name that has never been used before is
considered to have a value of nil. This is also how you can delete objects from Lua.

print(type(y)) -- this will print “nil”

y = 20

print(type(y)) -- this will print “number”

y = nil -- This effectively deletes y, causing the memory to be marked

-- for garbage collection

Attempting to Use a nil Value

C++’s NULL and Lua’s nil are conceptually the same, but they behave very
differently. Most C++ compilers define NULL as 0. In Lua, nil has no value, it
only has a type. Be careful attempting to use nil as a valid value.

Like most other programming languages, variables in Lua have scope. Unlike most
other programming languages, the default scope for Lua variables is global. That
means that even if you declare a variable inside of a function or if statement, it is
still considered a global variable. In order to make a variable local, you must explic-
itly use the local keyword:

local x = 10 -- this is a local variable

Variable Scoping in Lua

These scoping issues can really bite you if you’re not careful. You should always
declare a variable as local unless there is a real reason not to; otherwise, you
will find yourself with hard-to-fix bugs.

Variable Naming Conventions

Lua is a dynamically typed language, which means that it’s not always clear
what type a variable is intended to be. If you see a variable named
position, what do you think it is? Maybe it’s a 3D vector or a matrix or
even a custom table. It’s impossible to know without running the code and
inspecting the value. For these types of ambiguous variables, it’s often a good
idea to bake the type into the name. For example, the above variable could be
named positionVec3 or positionMat instead. This will save you a lot
more time than you might think.

A Crash Course in Lua 341

Functions

Functions are self-contained chunks of execution, much like they are in C or C++.
One big difference is that functions are also first-class objects in Lua, which means
they are treated like any other variable. You can assign them to other variables, pass
them as parameters to other functions, and so on.

Functions are declared using the function keyword, followed by the function name.
Parentheses are used to enclose any variables the function expects. Functions can
return anything or nothing at all. They can return multiple values as well. If a func-
tion doesn’t explicitly return, it returns nil by default. If you call a function without
enough parameters, the extra parameters will all be nil. If you call a function with
too many parameters, the extra parameters passed in are ignored.

Here’s a simple function:

function Square(val)

return val * val

end

This function returns the square of the number you pass in. In reality, what this
statement is really doing is creating a function and assigning a pointer to that func-
tion to a variable called Square. You call the function like you would call a function
in C.

x = Square(5)

print(x) -- > prints 25

Since Square is really just a variable pointing to a function, you can treat it like any
other variable.

x = Square -- no parentheses; x is now pointing to the same function

print(type(x)) -- > prints “function”

Square = x(5)

print(Square) -- > prints 25

In fact, the syntax you’ve seen thus far for writing functions is just syntax sugar to
make it a bit more readable. The more explicit way a function is defined is as
follows:

Square = function(val) return val * val end

As far as the Lua interpreter is concerned, there’s no difference between the two. The
first form is a bit more readable, but the second form can be handy when assigning
functions to a table or generating anonymous functions as parameters to other
functions.

342 Chapter 12 n Scripting with Lua

You can overwrite any function (including any Lua system function) by simply
assigning a new version of that function to the variable. For example, the following
code overwrites the print() function to add “[Lua] ” in front of every print()

statement.

oldprint = print; -- save the old version of print

print = function(string)

local newString = “[Lua] ” .. string

oldprint(newString)

end

This is a very important property of functions, as you will see later on in this chapter.

Save Old Functions

If you choose to overwrite existing Lua library functions, it’s a good practice to
save the old one in a global variable somewhere. If you don’t, you won’t have
any way to call upon the original behavior.

As I said before, functions can return multiple values. These values are separated
with a comma:

function MultiReturn()

return 2, 4

end

x, y = MultiReturn(); -- x will contain 2 and y will contain 4

Tables

Tables are Lua’s basic (and only) data structure. They are arrays and generic dictio-
naries all in one. Here’s a simple table:

prime = { 2, 3, 5, 7, 11 }

This statement declares a table with the first five prime numbers. A table is created
through the use of curly braces, which will actually instantiate a table object under
the covers. You can access the table using square brackets, just like in C.

print(prime[2]) -- > prints out 3

A Crash Course in Lua 343

Lua Tables Are 1-Indexed!

If you’re paying attention, you might think there’s a typo in the above code
sample. Surely prime[2] should point to 5, right? Not in Lua! Lua is 1-
indexed, meaning that all arrays start at the index of 1, as opposed to C++,
which is 0-indexed. I guarantee that this rather unfortunate decision by the
developers of Lua will cause bugs in your code. This becomes especially messy
when you pass array indexes between C++ and Lua.

It’s important to note that in the above example, prime is just a reference to the real
table object. If you assign prime to another variable, Lua does a simple pointer copy,
and both variables will contain references to the same table.

prime = { 2, 3, 5, 7, 11 } -- the original table

prime2 = prime -- this is just a simple pointer copy

print(prime, prime2) -- > this prints out “table: 02D76278 table: 02D76278”

prime2[1] = 10

print(prime[1]) -- > prints out “10”

Tables don’t have to be indexed using a number, that’s just the default. You can
index tables using anything, including numbers, strings, other tables, functions, or
anything else you want.

messyTable = {} -- an empty table

-- index by string

messyTable[“string”] = 20

messyTable[“another string”] = “data” -- the data doesn’t have to

-- be consistent either

-- index by table

anotherTable = {}

messyTable[anotherTable] = 5

-- index by function

Function X() end

messyTable[X] = anotherTable -- this time the data is another table

As you can see, tables have the ability to get very messy. In practice, you probably
wouldn’t have a table that was so inconsistent with its keys and data. One interesting
property of Lua tables is that they treat integer-indexed items separately from every-
thing else. Under the covers, tables actually have two sections. One section behaves
like a resizable array and the other like a map. As the programmer, you rarely have to
worry about the differences between these. When you create a table like the prime

table above, you are using the array section. When you create one like messyTable,

344 Chapter 12 n Scripting with Lua

you are using the map section. This is done mostly for optimization reasons, as Lua
uses a true array for the array section and a hash map for everything else. This typi-
cally only comes into play when you want to loop through all the elements of a table,
which you’ll see below. Note that all tables have these sections, so there’s nothing
stopping you from using both in a single table.

In the first example, a table was initialized with the first five prime numbers. You can
also initialize tables that use non-integer keys by wrapping the key in square brackets
and using the assignment operator. The messy table above could be created like this,
assuming that anotherTable and X were already defined:

messyTable = { [“string”] = 20, [“another string”] = “data”,

[anotherTable] = 5, [X] = anotherTable }

You can actually do both:

temp = { [“hat”] = “blue”, 5, “purple”, [“ninja”] = 3 }

This is equivalent to:

temp = {}

temp[“hat”] = “blue”

temp[1] = 5

temp[2] = “purple”

temp[“ninja”] = 3

Indexing a table by string is so common that Lua provides a bit of syntax sugar to
make it a little cleaner. First, you don’t have to surround string keys with square
brackets or quotes when initializing the table. Second, you can access the value by
using the “.” operator with no quotes. These two tables are identical, and the two
print statements show two different ways to access them:

v1 = { [“x”] = 13.5, [“y”] = 1, [“z”] = 15.4 }

v2 = { x = 13.5, y = 1, z = 15.4 }

print(v1[“x”]) -- > prints 13.5

print(v1.x) – > prints 13.5

v1.y = 3 -- you can set values using the ‘.’ operator as well

Lua provides a special table named “table” that contains a number of helper functions
for table manipulation. I’m not going to go into detail on these functions, since you
can look them up pretty easily, but here’s the one-line description for each:

n insert(): Inserts elements into the table.

n remove(): Removes elements from the table.

n getn(): Returns the number of elements in the array section of the table (not
including the map section).

A Crash Course in Lua 345

n setn(): Sets the number of elements in the array section of the table (not the
map section). This is useful to allow nil to exist in a table.

n maxn(): Returns the highest positive numerical index of the table by doing a
O(n) search.

n sort(): Sorts the array portion of the table.

n concat(): Joins the elements of a table together to form a string.

Tables are extremely powerful, especially when you factor in the idea that everything
in Lua is a first-class object, including functions. You can create tables that contain
data and functions indexed by strings using the “.” operator. At that point, it starts
looking like a real object-oriented language. Once you add in metatables, you have
everything you need to create a fully object-oriented system very easily. I’ll revisit this
concept later on in the chapter after I show you more of the basic operations in Lua.

Flow Control

Lua supports a number of control structures that are common in most programming
languages, like if, while, and for.

if

The structure of an if statement looks like this:

if exp then

-- do something

end

Unlike C, Lua doesn’t use curly braces for scoping blocks of code. In this case, it uses
the then keyword to define the beginning of the block and the end keyword to end
it. You can also have else and elseif statements, which work like they do in C:

if exp then

-- do something

elseif exp2 then -- note that elseif is all one word

-- do something else

else

-- otherwise, do this other thing

end -- note how end will end the whole chain and is omitted above

while

while loops work much like they do in C. Here’s the basic form:

i = 5

while i > 0 do

346 Chapter 12 n Scripting with Lua

print(i)

i = i – 1

end

There’s nothing fancy here. As with if statements, there are no curly braces. The
loop block is between the do and end keywords.

for

Lua has two flavors of for loop. The first is the numeric form, which is very similar
to what you’d find in C. The second is the generic form, which is a handy shorter
form typically used for tables. The numeric form looks like this:

for i = 1, 10, 1 do

-- do stuff here

end

As with the while loop, the do and end keywords define where the inner scope of
this loop is. The first part of the for declaration sets a local variable to the value of 1.
(Note that the local keyword is not required in this specific case; for loop counter
variables are always local.) The second part of the declaration is the limit and will
cause the loop to exit once it’s reached. The third part of the declaration is the step,
which adds that value to the variable. If you omit the third statement entirely, Lua
will assume you want to increment the variable by 1, so this part is unnecessary
unless you want something else. This loop will do exactly the same thing:

for i = 1, 10 do

-- do stuff here

end

Note that Lua evaluates the limit inclusively. In other words, it checks to see if i is
less than or equal to the value. The above loop will execute 10 times.

The generic form of the for loop works using iterator functions. On each iteration,
the function is called to produce a new value and breaks out when the function
returns nil.

prime = { 2, 3, 5, 7, 11 } -- the first five prime numbers

for index, value in ipairs(prime) do

print(index, value)

end

This chunk will loop through the prime table and print out the index and value for
each element in the table. The ipairs() function is a built-in Lua iterator function
that returns the next index/value pair until the end of the table is reached. Note that
this function only works for the array portion of the table. If you need to see the hash

A Crash Course in Lua 347

table portion, you have to use the pairs() function. This will loop through the
entire table.

test = { x = 5, y = 10, z = 15, 20, 25 }

-- This block will print out:

-- 1 20

-- 2 25

for index, value in ipairs(test) do

print(index, value)

end

-- This block will print out:

-- 1 20

-- 2 25

-- y 10

-- x 5

-- z 15

for key, value in pairs(test) do

print(key, value)

end

Did you notice the odd ordering in the second version of the loop? The reason is
because the non-array part of the table is a hash map, so the ordering is not defined.
You get similar behavior looping through an STL map. Use ipairs() to loop over
the array part of the table and use pairs() to loop over everything in the table.

Operators

Lua supports a number of operators like you’d expect in any language. For basic math-
ematics, it supports addition (+), subtraction (−), multiplication (*), division (/), mod-
ulo (%), exponentiation (^), and unary negation (-). These all work like the ones in C+
+, except for the exponentiation operator, which C++ doesn’t have. This operator takes
the value on the left and raises to the power of the value on the right. For example:

x = 2 ^ 4 -- x = 16, or 2-to-the-4th power.

You may notice a few missing operators here. Lua doesn’t support increment (++) or
decrement (--) operators, nor does it support the combo assignment operators that
also perform a mathematical operation (+=, -=, *=, etc.).

Lua’s relational operators are also rather similar to C++. It has equality (==), inequal-
ity (˜=), less-than (<), greater-than (>), less-than or equal-to (<=), and greater-than
or equal-to (>=). Note that the inequality operator is not the typical one you may be
used to. They all work like you would expect from other languages.

348 Chapter 12 n Scripting with Lua

Lua provides three logical operators: and, or, and not. They are analogous to C++’s
logical and (&&), or (jj) and not (!) operators and generally behave like you would
expect them to.

One very handy operator Lua provides is the string concatenation operator (..). This
concatenates two strings and returns the results, like so:

x = “the brown “ .. “dog went home. ”

print(x) -- > prints “the brown dog went home. ”

-- It works on numbers as well

y = 10

print(x .. y) -- > prints “the brown dog went home. 10”

What’s Next?

The goal of this section was to familiarize you with basic Lua syntax. As I said pre-
viously, this is nowhere near the full breadth of the language, and I strongly urge
you to check out some resources online. I’ve provided a few helpful links at the
end of this chapter that should help. If there were some things you didn’t quite
understand, now would be a good time to go reread those sections or check out
online samples. The rest of this chapter talks about some pretty advanced stuff and
from this point on, I’ll assume you are relatively comfortable with the basics of Lua
programming.

Object-Oriented Programming in Lua

Lua doesn’t have any direct support for object-oriented programming, although it’s
possible to plug it in using tables. Tables give you a way to group data together and
map chunks of data to names (string keys). Since functions are really just another
form of data, you can easily group them all together to create encapsulation. Let’s
start by attempting to make a vector object in Lua.

-- Note how the table is defined across multiple lines, just like you might do

-- for a C array or parameter list. Lua doesn’t care. This is much more

-- readable for our purposes.

vector =

{

-- This is the vector data

x = 0, y = 0, z = 0,

-- Here’s the first attempt at a Length() function. Note the use of the

-- math table for math.sqrt(). This works exactly like the table functions

-- you saw above.

Object-Oriented Programming in Lua 349

Length = function(vec)

return math.sqrt((vec.x * vec.x) + (vec.y * vec.y) + (vec.z * vec.z));

end

}

This technically works:

vector.x = 10

vector.y = 20

vector.z = 15

print(vector.Length(vector)) -- > prints 26.92582321167

There are several things wrong with this object. One glaring issue is that the Length()
function requires the table it is on as a parameter. This idea isn’t completely unreason-
able from a technical point of view; after all, C++ passes the this pointer as a hidden
first parameter to all member functions. Fortunately, Lua offers this same functionality.
By replacing the “.” with a “:”, Lua passes in the table as the first parameter and calls
it self.

print(vector:Length()) -- > prints 26.92582321167

This works when defining the function, too:

vector =

{

x = 0, y = 0, z = 0

}

-- Note the lack of parameter; since the colon operator is used, self

-- is implied.

function vector:Length()

return math.sqrt((self.x * self.x) + (self.y * self.y) + (self.z * self.z));

end

As you can see, the function is defined using the colon operator. This implies a first
parameter called self, which is implicitly passed in when function is called with the
colon operator. Note that the colon operator is just syntax sugar, because it doesn’t actu-
ally change anything except to supply that hidden first parameter. It’s perfectly valid to
define a function using the colon operator and call it by explicitly passing the table or
vice versa. Another side effect of using the colon operator is the need to declare the func-
tion outside the table. This is the preferred method for assigning functions to tables.

Now we have a vector object that has what appears to be a member function on it.
This is nice, but it doesn’t get us what we really want. We need a way to define clas-
ses of data and functionality that we can then instantiate objects from. We need a
way to write a class.

350 Chapter 12 n Scripting with Lua

Metatables

One of the most powerful concepts of Lua is its ability to modify the behavior of
tables. For example, it is typically illegal to attempt to add two tables together.
Using metatables, you could define behavior where this is valid.

A metatable is just another table. There’s nothing particularly special about it. Any
table may be the metatable for any other table. Metatables may have metatables them-
selves, and multiple tables can have the same metatable that defines a set of common
behaviors. A table can even be its own metatable! By default, tables have no metatable.

Metatables are use by Lua when it encounters certain situations. For example, when
Lua attempts to add two tables, it first checks to see if either table has a metatable. If
so, it checks to see if one of them defines a variable named __add. It then calls this
variable (which should be a function). The __add field is a metamethod, which is a
predefined field that Lua looks for in that situation. There are many such meta-
methods, several of which you’ll see below.

You can get and set the metatable of a table with getmetatable() and setmeta-

table().

x = {} -- empty table

print(getmetatable(x)) -- > nil; tables don’t have metatables by default

y = {}

setmetatable(x, y) -- y is now the metatable for x

-- This block will print “Success”

if getmetatable(x) == y then

print(“Success”)

else

print(“Fail”)

end

In order to be useful, you need to set metamethod fields on the metatable. The meta-
method we’re interested in is __index, which is used when Lua can’t find a field you
are attempting to read. For example, say you have the following code:

x = {}

print(x.y)

The output of the print statement will be nil. What’s really happening is that Lua
looks at the x table and checks to see if it has a field called y. If it does, it returns this.
If not, it checks to see if the table has a metatable. If it does, it checks to see if that
metatable has the __index metamethod and, if it does, calls it, returning the result as
the value for y. If the __index field is another table, Lua attempts the same access on

Object-Oriented Programming in Lua 351

it. It checks the new table for a field called y, followed by a metatable, and so on until
it either finds a valid value or can’t find anything valid, in which case it returns nil.

It’s important to note that this only affects the reading of a value, not the writing of
one. There’s a separate metamethod, __newvalue, that’s invoked when attempting
to write a new value. This is invoked first, before writing the value, to allow you to
change how the table deals with new values. This could be used to implement a read-
only table, for example.

For our vector example, we want to create a template of functionality. We do this by
creating the vector table just as before. This will be our class. To instantiate an object
from this class, a new table is created with a metatable that has an __index field
pointing to the vector class. Here’s the new version with an example:

-- Renaming this table to make it look more like a class

Vec3 =

{

-- These values now represent defaults

x = 0, y = 0, z = 0

}

-- This function is unchanged

function Vec3:Length()

return math.sqrt((self.x * self.x) + (self.y * self.y) + (self.z * self.z));

end

-- Create an instance of this class. v is initialized with an __index

-- field set to the Vec3 table.

v = { __index = Vec3 }

setmetatable(v, v) -- v is now its own metatable

-- This will cause Lua to search v for the x field. It won’t find it, so

-- Lua will check for a metatable. It will find out that v is the metatable

-- for v, so it will look for an __index field. It will find one that points

-- to the Vec3 table. Lua will then search Vec3 for an x field, which it finds

-- and returns. The below line will print 0.

print(v.x)

-- This assignment will cause Lua to search v for a metatable, which is has.

-- It will then search for a __newindex field, which doesn’t exist. Lua will

-- set the value of v.x to 10 without affecting the Vec3 table.

v.x = 10

-- This will cause Lua to search v for the x field, which it finds and returns.

-- It will print 10.

print(v.x)

352 Chapter 12 n Scripting with Lua

Now we have a very simple 3D vector class! You can extend this class with more
metamethods for addition, multiplication, etc. Check out Assets/Scripts/PreInit.lua
in the Teapot Wars code base for the complete Vec3 listing, including a number of
these metamethods defined.

Incidentally, inheritance works exactly the same way. If you want Vec3 to inherit
from something, simply set up a metatable and point the __index field to the base
class. Lua doesn’t distinguish between classes and objects; they’re all just tables, which
may or may not have metatables.

It’s worth noting that metatables are very similar to C++ virtual tables, which are the
tables used by C++ to store virtual functions. When you call a virtual function, C++
looks it up in the virtual table to find the actual implementation. Lua metatables with
the __index field behave much the same way. With all the other meta fields avail-
able to Lua, it makes the language itself extremely flexible.

Creating a Simple Class Abstraction

As you can see, with a little legwork, Lua fully supports object-oriented programming
techniques. There’s still one thing missing. The Vec3 class will work very well, but
it’s still not as easy as defining a class in C++, C#, Python, or any other truly
object-oriented language. Our ultimate goal is something like this:

class SomeClass : public BaseClass {};

What we really need is to abstract away all the metatable stuff into a function you
can call that generates the class table and allows you to instantiate objects from it.

function class(baseClass, body)

local ret = body or {};

-- if there’s a base class, attach our new class to it

if (baseClass ˜= nil) then

setmetatable(ret, ret);

ret.__index = baseClass;

end

-- Add the Create() function

ret.Create = function(self, constructionData, originalSubClass)

local obj;

if (self.__index ˜= nil) then

if (originalSubClass ˜= nil) then

obj = self.__index:Create(constructionData, originalSubClass);

else

obj = self.__index:Create(constructionData, self);

end

Object-Oriented Programming in Lua 353

else

obj = constructionData or {};

end

setmetatable(obj, obj);

obj.__index = self;

-- copy any operators over

if (self.__operators ˜= nil) then

for key, val in pairs(self.__operators) do

obj[key] = val;

end

end

return obj;

end

return ret;

end

This is probably one of the most complex Lua functions you’ve seen so far, so let’s
walk through it step by step. The function takes two parameters. The baseClass

parameter is the base class for this class. It is expected to be a table that also creates
with the class() function. If this class has no base class, you must explicitly pass in
nil. The body parameter is the body of the class. It is expected to be a table where
all of the member variables live.

The first line of the function creates the return value ret as a local variable that is
initialized to either the body table (if there is one) or an empty table. This variable
will be the class table itself, much like Vec3 was earlier. If a base class is passed in,
ret will be set up as its own metatable with the __index field pointing to the base
class. This sets up the inheritance hierarchy.

The next section defines and creates the Create() member function, which is used
to instantiate objects from this class. Since the class table is generated by the function,
this function needs to be defined inline like this.

The Create() function takes in three parameters. The first parameter is self,
which is the class table we’re instantiating the object from. This is passed in automat-
ically by using the colon operator when calling it. Since this function is being defined
with the assignment operator, this parameter needs to be explicitly put here. The sec-
ond parameter is constructionData, which is a table that can be sent in as extra
data. Think of it like a constructor: any extra data that’s sent in will be added to the
instance data, overriding any values from the class. The third parameter, original-
SubClass, is a special parameter used for recursion. It must be nil. This parameter

354 Chapter 12 n Scripting with Lua

is used internally in some cases when accessing the leaf table is necessary. It’s cur-
rently used by the ScriptProcess class in C++, which you’ll see later in this
chapter.

The first thing the Create() function does is declare a local variable called obj.
This will be the instance table of the class. The next section will recursively call into
the Create() function of each base class in the inheritance chain, passing in the
construction data and the original leaf class (which is self the first time). When it
finally reaches the top base class, obj is initialized with either the construction-

Data table or an empty table if there is no construction data. After that, the metata-
ble is set up, and any overloaded operators defined in a special __operators table
are copied over. Finally, the object is returned.

Using the class() function is a breeze. Here’s how you would define the Vec3 class
above:

Vec3 = class(nil,

{

x = 0, y = 0, z = 0

})

function Vec3:Length()

return math.sqrt((self.x * self.x) + (self.y * self.y) + (self.z * self.z));

end

-- Create an instance of this class

V = Vec3:Create()

-- This version initializes the values

V2 = Vec3:Create({x = 10, y = 10, z = 10})

It doesn’t get much easier than that! Later in this chapter, I’ll even show you how you
can inherit from C++ classes.

Public/Private Variable Naming Conventions

One thing you can’t easily get in Lua is a way to represent public, private, and
protected variables. A typical convention in many scripting languages is to put
an underscore in front of variable and function names that are meant to be
private, so seeing _var would let the programmer know that this variable is
meant to be private. Similarly, a function named _Update() would be a
private function. It’s good to have this kind of convention, or it quickly
becomes confusing what the public interface is. Refactoring can be a
nightmare.

Object-Oriented Programming in Lua 355

Memory Management

Like most scripting languages, Lua uses automatic memory management and garbage
collection. This works very much like TR1’s shared_ptr construct. Every variable
you create is reference counted, and when all references go away, the object is
marked for garbage collection. Lua periodically runs a garbage collection cycle
where it walks through the garbage list and frees up memory. You don’t have to do
this manually; it’s done automatically by Lua. If you do want to force a garbage col-
lection cycle, you can call the collectgarbage() function.

Global Variables Are Here to Stay

Global variables are never garbage collected until the program shuts down.
They can be accessed by any part of the program at any time, so Lua has no
way of knowing when you don’t need them anymore. When you’re done with a
global variable, it’s good to assign nil to it. Assuming there are no other
references, this will cause Lua to mark it as collectable.

Binding Lua to C++

Hopefully by now you have a pretty good understanding of Lua and how it works.
The remainder of this chapter will build upon this foundation and create a working
relationship between Lua script and the C++ engine we’ve been creating throughout
this entire book. First, we’ll look at some integration strategies and third-party librar-
ies to make the process of embedding Lua into the C++ engine easier. Then we’ll go
over some of the glue to get Lua to play nicely with the Process Manager and event
system. Finally, I’ll bring it all together with a couple of examples.

The Lua C API

As I said earlier in this chapter, Lua was built from the ground up to be integrated
into an existing system. (Its original intent was to be an embedded configuration
language.) To facilitate this, there is a core C API for integrating Lua into your code-
base. Unfortunately, this API is rather lacking in terms of usability. You have to
manually deal with the Lua stack and language internals. Binding C functions to the
Lua API is not particularly easy, and calling Lua functions from C is equally difficult.
Good luck trying to bind a C++ class or function!

With a bit of work, you can get the Lua C API to function in your programs, but it’s
certainly not ideal. There are a large number of binding libraries that make this job a
lot easier. They are typically built on top of the core C API, although that’s not
always the case.

356 Chapter 12 n Scripting with Lua

tolua++

This library attempts to solve the problem of registering functions and classes to Lua
so they can be used in script. First, you go into your C++ code and tag the things you
want to expose with special comments. When you build your game, you run a simple
pre-process that scans your source tree and generates the binding C file that exports
these functions and classes for Lua. When your program compiles, these are all visi-
ble to Lua. We used this at Super-Ego Games very successfully.

The advantage of this system is that it’s trivial to export any function or class to the
script. You literally just tag the line with a // tolua_export comment, and the
pre-process does the rest. There are a few disadvantages, though. One of the biggest
disadvantages is that tolua++ is a one-way street. It’s not easy to call a Lua function
from within C++ code and read a Lua-specific data structure like a table. You can
return simple types like numbers and strings, but tables are much more difficult to
work with.

luabind

luabind solves a lot of the problems of two-way communication that tolua++ has by
wrapping a lot of the Lua C API functionality into classes. You can grab any Lua
variable, read it, iterate across its elements if it’s a table, call it if it’s a function, and
so on. You can expose C++ class, functions, and other objects to Lua, going back and
forth relatively easily. Overall, it’s a great system.

One big disadvantage of luabind is its reliance on boost, which includes a lot of over-
head. Some people don’t mind this much, but for others it’s a deal breaker.

LuaPlus

LuaPlus was created by Josh Jensen and has a lot of the same core functionality as
luabind, but it has absolutely no reliance on other libraries. It tends to run faster
and adds wide-string support to the core Lua library. Many of the same class and
function binding capabilities exist in LuaPlus as well. For these reasons, it is the bind-
ing system I have chosen for this book.

LuaPlus does have a few disadvantages. First, it modifies the core Lua implementa-
tion. This is done for performance reasons and to add wide-string support. For some
people, modifying the core library is a deal breaker. Another slight flaw when com-
pared to luabind is that LuaPlus doesn’t include all of the same functionality,
although LuaPlus has more than enough for most purposes.

Binding Lua to C++ 357

A Crash Course in LuaPlus

Unfortunately, I don’t have the page count to go in-depth into LuaPlus. This will be a
whirlwind tour of what it has to offer. Hang on!

LuaState

Everything in Lua begins with the Lua state. The Lua state represents an execution envi-
ronment for Lua. You can have as many states as you want; each will be totally separate
with its own set of global variables, functions, etc. There are many reasons you might
want multiple states. One example might be allowing each C++ thread to have its own
state. For the purposes of this book, we only create a single state for the program.

In the Lua C API, the lua_State struct contains all the data necessary to access
the state. Nearly all Lua functions require the lua_State object as their first param-
eter. This looks suspiciously like C trying to act like C++, doesn’t it? LuaPlus removes
this entirely and wraps the whole thing in a single C++ class called LuaState.

To create a LuaState object, call the static Create() function. Call Destroy() to
destroy it. Do not use new or delete on these objects.

// All LuaPlus objects are under this namespace. I will omit it from future

// code listings.

using namespace LuaPlus;

// This is called during the initialization of your application.

LuaState* pLuaState = LuaState::Create();

// This is done during the destruction of your application.

LuaState::Destroy(pLuaState);

pLuaState = NULL;

LuaState has a number of very useful functions for accessing the Lua execution
unit as a whole. Two key functions are DoString() and DoFile(), both of which
take a string as an argument. DoString() will parse and execute an arbitrary string
as Lua code. DoFile() will open, parse, and execute a file.

pLuaState->DoFile(“test.lua”); // execute the test.lua file

pLuaState->DoString(“x = {}”); // after this line, there will be a new global

// variable called x, which is an empty table.

LuaObject

The LuaObject class represents a single Lua variable. This can be a number, string,
table, function, nil, or any other object Lua supports. This is the main interface for
dealing with Lua variables. Note that a LuaObject is considered a strong reference

358 Chapter 12 n Scripting with Lua

to the underlying data. In other words, you don’t have to worry about the Lua gar-
bage collector coming to clean up the object out from under you, even if all the refer-
ences in Lua go away. On the flip side, make sure you get rid of any references to
LuaObject variables that you want Lua to garbage collect.

You can check the type of an object by using the Type() function, which returns a value
from the Types enum in LuaState. There are also a number of Is*() functions:

n bool IsNil()

n bool IsTable()

n bool IsUserData()

n bool IsCFunction()

n bool IsNumber()

n bool IsString()

n bool IsWString()

n bool IsConvertibleToNumber()

n bool IsConvertibleToString()

n bool IsConvertibleToWString()

n bool IsFunction()

n bool IsNone()

n bool IsLightUserData()

n bool IsBoolean()

These functions return true if the variable type matches. To retrieve a value, call one
of the Get*() functions:

n int GetInteger()

n float GetFloat()

n double GetDouble()

n const char* GetString()

n const wchar_t* GetWString()

n void* GetUserData()

n void* GetLightUserData()

n bool GetBoolean()

A Crash Course in LuaPlus 359

To assign a value to a value to a LuaObject, use the Assign*() functions:

n void AssignNil(LuaState* state)

n void AssignBoolean(LuaState* state, bool value)

n void AssignInteger(LuaState* state, int value)

n void AssignNumber(LuaState* state, double value)

n void AssignString(LuaState* state, const char* value)

n void AssignWString(LuaState* state, const wchar_t* value)

n void AssignUserData(LuaState* state, void* value)

n void AssignLightUserData(LuaState* state, void* value)

n void AssignObject(LuaState* state, LuaObject& value)

n void AssignNewTable(LuaState* state, int narray = 0, int nhash = 0)

Notice that the various assignment functions require a LuaState pointer. This is
because every valid value must be attached to a state in Lua, so when you create a
new value, you tell LuaPlus where to attach it.

Tables

LuaObject has a number of functions and operators specifically written to help deal
with tables. The easiest way to look up a value on a table is to use the overloaded
array access operator. You can also use the GetByName(), GetByObject(), or
GetByIndex() functions to retrieve a value from the table. For example, let’s say
we have the following table in Lua:

positionVec = { x = 10, y = 15 }

Let’s also say that this value is stored in a LuaObject called positionTable. We
can access fields on this table like so:

GCC_ASSERT(positionTable.IsTable()); // safety first

LuaObject x = positionTable[“x”]; // this is one way

LuaObject y = positionTable.GetByName(“y”); // here’s another

// let’s fill up a Vec2:

GCC_ASSERT(x.IsNumber() && y.IsNumber()); // more type checking

Vec2 vec(x.GetFloat(), y.GetFloat());

That’s all there is to it. Of course, without any type safety, you need to handle all the
error checking yourself.

360 Chapter 12 n Scripting with Lua

You can also set a field on a table with the various Set*() functions:

n void SetNil(const char* key)

n void SetBoolean(const char* key, bool value)

n void SetInteger(const char* key, int value)

n void SetNumber(const char* key, double value)

n void SetString(const char* key, const char* value)

n void SetWString(const char* key, const wchar_t* value)

n void SetUserData(const char* key, void* value)

n void SetLightUserData(const char* key, void* value)

n void SetObject(const char* key, LuaObject& value)

To add a z field to the table above, you would do the following:

positionTable.SetNumber(“z”, 0);

Iterating through tables is possible with the use of LuaPlus’s LuaTableIterator.
It’s somewhat similar in form to STL iterators, but it is not STL compliant. Here’s
an example that loops through an entire table:

// set up a test table in Lua and read it into a LuaObject

pLuaState->DoString(“birthdayList = { John = ‘Superman’, Mary = ‘Batman’ }”);

LuaObject table = pLuaState->GetGlobals().GetByName(“globalPosition”);

// loop through the table, printing out the pair

for (LuaTableIterator it(table); it; it.Next())

{

LuaObject key = it.GetKey();

LuaObject value = it.GetValue();

// do whatever you want with the objects…

}

As you can see, looping through a table is relatively straightforward. This is a huge
improvement from the Lua C API with the various lua_next() and lua_pop() calls.

Globals

The previous example had a glaring hole in it. I showed you a table in Lua and how
to get values from the C++ representation, but I didn’t show you how to actually read
a Lua variable in C++. In order to do that, I need to pull the curtain back a bit and
show you how global variables are actually stored in Lua.

A Crash Course in LuaPlus 361

In Lua, tables are used for just about everything. A variable is really just a field in a
table indexed by a string. That string is the variable name. When you define a global
variable in Lua, what really happens is that Lua inserts it into a special table where all
global variables live. There’s nothing special about this table; you can even access it
directly.

-- These two lines are equivalent

x = 10

_G[“x”] = 10

-- This will print out all global variables

for key, val in pairs(_G) do

print(key, val)

end

In fact, if you’re feeling really crazy, you can even change the behavior of global vari-
ables by assigning a metatable to _G with __index or __newindex defined! You
could completely forbid new global variables or call a function whenever a global is
accessed or set.

Don’t Do That

Just because you can modify the behavior of the globals table doesn’t mean
you should. Leave it alone unless you have a really, really, really good
reason. I’ve shipped five professional games with Lua, and we never once
had to mess with the behavior of this table. Chances are, neither will you.

To access a global variable in LuaPlus, you grab the globals table from the LuaState
object and access it like any other member. Here’s the missing code from the exam-
ple above that gets the positionVec global:

LuaObject globals = pLuaState->GetGlobals();

LuaObject positionTable = globals.GetByName(“positionVec”);

Once you have this globals table, you can assign values as well:

globals.SetString(“programName”, “Teapot Wars”);

This creates a global variable called programName and sets it to the value of
“Teapot Wars.” You can access it in Lua as normal:

print(programName) -- > prints “Teapot Wars”

362 Chapter 12 n Scripting with Lua

Functions

LuaPlus provides a few ways to call Lua functions from C++. The easiest way is to
use the overloaded template LuaFunction functor class, which makes calling Lua
functions look a lot like calling any C++ function. It takes care of all the parameter
and return value conversions as well. For example, let’s say we have the following Lua
function:

function Square(val)

return val * val

end

To call this function from C++, you would do the following:

LuaPlus::LuaState* pLuaState; // assume this is valid

LuaPlus::LuaFunction<float> LuaSquare = pLuaState->GetGlobal(“Square”);

float result = LuaSquare(5);

cout << result; // this will print out 25

The LuaFunction template parameter defines the return value. The parameters are
determined by what you pass when you call the functor. There are a number of over-
loaded templated call operators so that nearly every combination is supported, up to
and including eight different parameters. If you need more than that, you’ll need to
use another method for calling Lua functions.

Calling C++ Functions from Lua

Calling a C++ function from Lua requires you to bind that function to the Lua state.
If you were just using the Lua C API, it would require writing a wrapper function
that took the arguments off the stack, translated them into the correct types, and
called the C++ function directly. If you want to bind a C++ instance method, it’s
even trickier.

Fortunately, LuaPlus takes care of a lot of the headaches for you. All you need to do
is bind your function to a variable in Lua. That variable becomes a Lua function that
can be accessed directly in your Lua code. Simple types are automatically converted,
though there’s still a little translation that needs to happen in the case of tables.

There are several ways to perform this binding with LuaPlus. The simplest way is to
call the RegisterDirect() function on the table you want the function bound to:

float Square(float val)

{

return val * val;

}

A Crash Course in LuaPlus 363

LuaState* pState; // assume this is a valid LuaState pointer

LuaObject globals = pState->GetGlobals();

globals.RegisterDirect(“Square”, &Square);

That’s all there is to it. This binds the global C++ function Square() to the name
“Square” in the globals table in Lua. That means anywhere in your Lua code, you can
do this:

x = Sqaure(5) -- x will be 25

This works for static functions as well. This is how you would bind a static function
to a global Lua function:

globals.RegisterDirect(“SomeFunction”, &SomeClass::SomeStaticFunction);

Notice how the arguments are deciphered and sent through to the function automat-
ically. This is one of the really nice things about using systems like LuaPlus; it takes
care of a lot of the overhead of marshalling data across the C++/Lua boundary.

You can use an overloaded version of RegisterDirect() to bind member func-
tions of C++ classes. If you have an object you know isn’t going to be destroyed
while the script has access to it, you can bind the pointer and function pair directly
by providing a reference to the object as the second parameter.

class SingletonClass

{

public:

void MemberFunction(int param);

virtual VirtualMemeberFunction(char* str);

};

SingletonClass singletonInst;

LuaState* pLuaState; // once again, assume this is valid

// Register the member function

pLuaState->GetGlobals().RegisterDirect(“MemberFunction”, singletonInst,

&SingletonClass::MemberFunction);

// You can register virtual functions too, it doesn’t matter. The correct

// version will get called.

pLuaState->GetGlobals().RegisterDirect(“VirtualMemberFunction”, singletonInst,

&SingletonClass::VirtualMemberFunction);

In the example above, two member functions along with their instances are bound to
global Lua functions. This still only gets us part of the way there since the reference
you bind with RegisterDirect() never changes. What we really need is a way to

364 Chapter 12 n Scripting with Lua

bind C++ member functions to a special table in Lua without having to specify the
object instance at registration time. This table can serve as the metatable for other
tables that represent instances of the object. It only needs to be created once. When
a new object is sent to the script, a new table is created with that metatable applied.
This new table has a special __object field that contains a lightuserdata pointer
back to the C++ instance. This is how LuaPlus know which C++ instance to invoke
the function on. In Lua, lightuserdata is a type that is ignored by the Lua inter-
preter. It’s a raw pointer that is effectively equivalent to a void* in C++. In fact,
when you retrieve a lightuserdata object in C++, a void* is returned.

Creating this table and binding methods to it are relatively straightforward. You cre-
ate the table as you would any other variable and call RegisterObjectDirect()
for each method you want to bind. As an example, let’s say you have a very simple
class you want to expose to the script.

class Ninja

{

Vec3 m_position;

public:

void SetPosition(float x, float y, float z);

};

The SetPosition() method is the one you want to expose to the script. Some-
where in the initialization code, the metatable needs to be created, and the function
needs to be registered.

LuaState* pLuaState; // assume this is valid

// create the metatable under the global variable name NinjaMetaTable

LuaObject metaTable = pLuaState->GetGlobalVars().CreateTable(“NinjaMetaTable”);

metaTable.SetObject(“__index”, metaTable); // it’s also its own metatable

// register the SetPosition() function

metaTable.RegisterObjectDirect(“SetPosition”, (Ninja*)0, &Ninja::SetPosition);

The metatable now exists in Lua and has the SetPosition() method bound to it.
It can’t be called, of course, since it’s missing the instance pointer. When the object
itself is created, that pointer needs to be bound to a new table, which will serve as the
instance of that object in Lua. One way to do this is to create a new static method
that will instantiate the object, take care of the binding, and return the table with the
C++ instance pointer bound to it.

class Ninja

{

Vec3 m_position;

A Crash Course in LuaPlus 365

public:

void SetPosition(float x, float y, float z);

static LuaObject CreateFromScript(void); // new function on the Ninja class

};

LuaObject Ninja::CreateFromScript(void)

{

// create the C++ instance

Ninja* pCppInstance = new Ninja();

// create the Lua instance

LuaObject luaInstance;

luaInstance.AssignNewTable(pLuaState);

// assign the C++ instance pointer to the lua instance

luaInstance.SetLightUserData(“__object”, pCppInstance);

// assign the metatable to the new Lua instance table

LuaObject metaTable =

pLuaState->GetGlobalVars().GetByName(“NinjaMetaTable”);

luaInstance.SetMetaTable(metaTable)

return luaObject;

}

The CreateFromScript() function also needs to be registered to Lua.

LuaObject globals = pLuaState->GetGlobals();

globals.RegisterDirect(“CreateNinja”, &Ninja::CreateFromScript);

Now you can create instances of the Ninja class in Lua and call the SetPosition()
function just like you would any other Lua object.

ninja = CreateNinja()

ninja:SetPosition(10, 20, 30)

These two methods of function and object registration form the basis of the glue
between C++ and Lua.

Bringing It All Together

In this next section, I’ll show you how to bring all of these components together to
form a cohesive scripting system. I’ll show you how to manage the LuaState object
and initialize the scripting system, how to send events to and receive events from the
Event Manager, and how to write your own processes that run inside Lua. This sec-
tion builds on everything you’ve learned in this book so far.

366 Chapter 12 n Scripting with Lua

Managing the Lua State

The Lua state is managed through a singleton that encapsulates construction and
destruction and exposes a few useful methods. It also handles some error checking.
Here’s the class declaration:

class LuaStateManager : public IScriptManager

{

static LuaStateManager* s_pSingleton;

LuaPlus::LuaState* m_pLuaState;

std::string m_lastError;

public:

// Singleton functions

static bool Create(void);

static void Destroy(void);

static LuaStateManager* Get(void)

{ GCC_ASSERT(s_pSingleton); return s_pSingleton; }

// IScriptManager interface

virtual bool VInit(void) override;

virtual void VExecuteFile(const char* resource) override;

virtual void VExecuteString(const char* str) override;

LuaPlus::LuaObject GetGlobalVars(void);

LuaPlus::LuaState* GetLuaState(void) const;

// public helpers

LuaPlus::LuaObject CreatePath(const char* pathString,

bool toIgnoreLastElement = false);

void ConvertVec3ToTable(const Vec3& vec,

LuaPlus::LuaObject& outLuaTable) const;

void ConvertTableToVec3(const LuaPlus::LuaObject& luaTable,

Vec3& outVec3) const;

private:

void SetError(int errorNum);

void ClearStack(void);

// Private constructor & destructor; call the static Create() and Destroy()

// functions instead.

explicit LuaStateManager(void);

virtual ˜LuaStateManager(void);

};

This class inherits from IScriptManager, a pure virtual interface. This is what
you’d override to implement a new scripting system. As stated before, this is a

Bringing It All Together 367

singleton class. It’s created and destroyed explicitly through the static Create() and
Destroy() methods. The Get() method gets the singleton pointer.

The ExecuteFile() function opens and runs a Lua script while the Execute-

String() function parses an arbitrary string as Lua code. These two functions just
wrap LuaState::DoFile() and LuaState::DoString(), respectively.

The Init() function is called from the Create() function and initializes the Lua
state and registers a couple of functions. Here’s the definition:

bool LuaStateManager::Init(void)

{

m_pLuaState = LuaPlus::LuaState::Create(true);

if (m_pLuaState == NULL)

return false;

// register functions

m_pLuaState->GetGlobals().RegisterDirect(“ExecuteFile”, (*this),

&LuaStateManager::ExecuteFile);

m_pLuaState->GetGlobals().RegisterDirect(“ExecuteString”, (*this),

&LuaStateManager::ExecuteString);

return true;

}

GetGlobalVars() and GetLuaState() are both simple wrappers. CreatePath()
is a handy function that takes a string and creates a table path to it. For example, if you
pass in A.B.C, it will create a table called A with a single element named B, which has
a single element named C. This can be handy when exposing methods to specific tables
in script. You’ll see it used below when we talk about the Script component.

ConvertVec3ToTable() and ConvertTableToVec3() are both helpers for con-
verting vectors between C++ and Lua.

Script Exports

All global script exports are placed into an internal class for organizational purposes.
This allows for a single place to export functions from. Here’s the initial implemen-
tation of the class:

class InternalScriptExports

{

public:

// initialization

static bool Init(void);

static void Destroy(void);

368 Chapter 12 n Scripting with Lua

// These are exported to Lua

static bool LoadAndExecuteScriptResource(const char* scriptResource);

};

The static functions that are exported to Lua are done in the typical manner. These
functions are wrappers for engine functionality and typically just send the request to
that system. For example, here’s the LoadAndExecuteScriptResource()

function:

bool InternalScriptExports::LoadAndExecuteScriptResource(

const char* scriptResource)

{

Resource resource(scriptResource);

shared_ptr<ResHandle> pResourceHandle =

g_pApp->m_ResCache->GetHandle(&resource);

if (pResourceHandle)

return true;

return false;

}

The functions are registered with the global ScriptExports::Register()

function:

namespace ScriptExports

{

void Register(void);

void Unregister(void);

}

And the implementation:

void ScriptExports::Register(void)

{

LuaPlus::LuaObject globals = LuaStateManager::Get()->GetGlobalVars();

// init

InternalScriptExports::Init();

// resource loading

globals.RegisterDirect(“LoadAndExecuteScriptResource”,

InternalScriptExports::LoadAndExecuteScriptResource);

}

void ScriptExports::Unregister(void)

{

InternalScriptExports::Destroy();

}

Bringing It All Together 369

This is just the initial implementation. As more systems are integrated and
exposed to Lua later in this chapter, the InternalScriptExports class will grow.
You can see the final version of this class and how it all fits together in source
code in the ScriptExports.cpp source file, located at Source/GCC4/LUAScripting/
ScriptExports.cpp.

Process System

The Lua system needs a heartbeat—a way to update over multiple frames. Fortu-
nately, the process system introduced in Chapter 7 works perfectly for this. It just
needs to be extended and exposed to Lua. One possibility would be to attach some
Lua information to the ProcessManager and Process classes, but this would be a
bad idea. We want to leave the original system intact and not add references to Lua
where we don’t have to.

A better approach would be to create a special type of process that has knowledge of
the scripting system. This special process is created from Lua with a parameter to a
table containing methods that are called at the appropriate times. The idea is to cre-
ate the illusion that the Lua table is inheriting from this special process so that it
looks pretty much the same in Lua or C++. We can do all of this without modifying
or even extending the Process Manager whatsoever; we just need to write a special
script process that inherits from Process. This subclass will override each of the
Process virtual functions to call the Lua versions of those functions

Here’s the ScriptProcess class:

class ScriptProcess : public Process

{

unsigned long m_frequency, m_time;

LuaPlus::LuaObject m_scriptInitFunction, m_scriptUpdateFunction;

LuaPlus::LuaObject m_scriptSuccessFunction, m_scriptFailFunction;

LuaPlus::LuaObject m_scriptAbortFunction;

LuaPlus::LuaObject m_self;

public:

static void RegisterScriptClass(void);

protected:

// Process interface

virtual void VOnInit(void);

virtual void VOnUpdate(unsigned long deltaMs);

virtual void VOnSuccess(void);

virtual void VOnFail(void);

virtual void VOnAbort(void);

370 Chapter 12 n Scripting with Lua

private:

// private helpers

static void RegisterScriptClassFunctions(void);

static LuaPlus::LuaObject CreateFromScript(LuaPlus::LuaObject self,

LuaPlus::LuaObject constructionData,

LuaPlus::LuaObject originalSubClass);

virtual bool VBuildCppDataFromScript(LuaPlus::LuaObject scriptClass,

LuaPlus::LuaObject constructionData);

// These are needed because the base-class version of these functions are

// all const and LuaPlus can’t deal with registering const functions.

bool ScriptIsAlive(void) { return IsAlive(); }

bool ScriptIsDead(void) { return IsDead(); }

bool ScriptIsPaused(void) { return IsPaused(); }

// This wrapper function is needed so we can translate a Lua script object

// to something C++ can use.

void ScriptAttachChild(LuaPlus::LuaObject child);

// don’t allow construction outside of this class

explicit ScriptProcess(void);

// static create function so Lua can instantiate it; only used internally

static ScriptProcess* Create(const char* scriptName = NULL);

static void Destroy(ScriptProcess* pObj);

};

The m_frequency and m_time members are used for timing. They allow the Lua
update function to be called at a set frequency. This can be important because cross-
ing the C++ / Lua boundary can be expensive. You should only call the update func-
tion as often as you have to.

The next several member variables hold the various Lua functions that are treated as
overrides. The m_self member holds onto the Lua instance of the class. This is
passed into the Lua overrides as the first parameter, which mimics calling the func-
tion using Lua’s colon operator. It allows the functions to access the appropriate
member variables.

The static RegisterScriptClass() function must be called during the application
initialization to set up the initial metatable to allow the ScriptProcess class to be
accessible from Lua. Here’s the function:

const char* SCRIPT_PROCESS_NAME = “ScriptProcess”;

void ScriptProcess::RegisterScriptClass(void)

{

Bringing It All Together 371

LuaPlus::LuaObject metaTableObj =

LuaStateManager::Get()->GetGlobalVars().CreateTable(SCRIPT_PROCESS_NAME);

metaTableObj.SetObject(“__index”, metaTableObj);

metaTableObj.SetObject(“base”, metaTableObj);

metaTableObj.SetBoolean(“cpp”, true);

RegisterScriptClassFunctions();

metaTableObj.RegisterDirect(“Create”, &ScriptProcess::CreateFromScript);

}

First, the metatable itself is created and assigned as a global object. The __index

field of the metatable is set to point to itself. A special base variable is also set to
the parent class. This allows the instance or subclass to force a call to a parent class
member, even if the subclass already defines that member. Another member, cpp, is
also set. This allows queries to see if a particular class comes from C++ or not. All
script class functions are registered with the call to the private function Register-

ScriptClassFunctions(), after which the CreateFromScript() static function
is registered to the new metatable.

The RegisterScriptClassFunctions() function is a helper that registers all the
member functions with the metatable object.

void ScriptProcess::RegisterScriptClassFunctions(void)

{

metaTableObj.RegisterObjectDirect(“Succeed”,(Process*)0,&Process::Succeed);

metaTableObj.RegisterObjectDirect(“Fail”, (Process*)0, &Process::Fail);

metaTableObj.RegisterObjectDirect(“Pause”, (Process*)0, &Process::Pause);

metaTableObj.RegisterObjectDirect(“UnPause”,(Process*)0, &Process::UnPause);

metaTableObj.RegisterObjectDirect(“IsAlive”, (ScriptProcess*)0,

&ScriptProcess::ScriptIsAlive);

metaTableObj.RegisterObjectDirect(“IsDead”, (ScriptProcess*)0,

&ScriptProcess::ScriptIsDead);

metaTableObj.RegisterObjectDirect(“IsPaused”, (ScriptProcess*)0,

&ScriptProcess::ScriptIsPaused);

metaTableObj.RegisterObjectDirect(“AttachChild”,(ScriptProcess*)0,

&ScriptProcess::ScriptAttachChild);

}

These are all the functions that are exposed to Lua through this metatable. Any Lua
class that inherits from ScriptProcess will be able to call these C++ functions.
Notice that some of these functions come from the base Process class while others
are defined directly on the ScriptProcess class. The reason is because Lua doesn’t
necessarily know anything about the actual C++ class. For example, AttachChild()
can’t be directly exposed because Lua has no idea what a Process is, so it has no idea

372 Chapter 12 n Scripting with Lua

how to translate the Process* parameter. A special ScriptAttachChild() is
written to manually perform the translation:

void ScriptProcess::ScriptAttachChild(LuaPlus::LuaObject child)

{

if (child.IsTable())

{

LuaPlus::LuaObject obj = child.GetByName(“__object”);

if (!obj.IsNil())

{

// Casting a raw ptr to a smart ptr is generally bad, but Lua has no

// concept of what a shared_ptr is. There’s no easy way around it.

shared_ptr<Process> pProcess(

static_cast<Process*>(obj.GetLightUserData()));

GCC_ASSERT(pProcess);

AttachChild(pProcess);

}

else

{

GCC_ERROR(“Attempting to attach child with no valid object”);

}

}

else

{

GCC_ERROR(“Invalid object type passed into \

ScriptProcess::ScriptAttachChild(); type = “ +

std::string(child.TypeName()));

}

}

This function first makes sure the child parameter is a table. Then it tries to find
the __object field in that table (or the table’s metatable). Remember that the
__object field is a light userdata field that contains the pointer to the C++ Pro-

cess object. This is the object that needs to actually be attached. This pointer is
cast into a Process smart pointer and attached. Casting a raw pointer into a smart
pointer isn’t ideal since Lua still holds onto the raw pointer, but it should be safe
since the __object field is destroyed when the C++ Process object is destroyed.

Functions like IsAlive() and IsDead() are declared as const, which LuaPlus
doesn’t know how to handle. Simple non-const wrappers are created.

The CreateFromScript() function is registered as a function on the metatable
that is exported to Lua. This function creates the actual C++ and Lua instances and
binds them together through the __object field:

Bringing It All Together 373

LuaPlus::LuaObject ScriptProcess::CreateFromScript(LuaPlus::LuaObject self,

LuaPlus::LuaObject constructionData,

LuaPlus::LuaObject originalSubClass)

{

// Note: The self parameter is not used in this function but it allows us

// to be consistent when calling Create(). The Lua version of this function

// needs self.

ScriptProcess* pObj = GCC_NEW ScriptProcess;

pObj->m_self.AssignNewTable(LuaStateManager::Get()->GetLuaState());

if (pObj->BuildCppDataFromScript(originalSubClass, constructionData))

{

LuaPlus::LuaObject metaTableObj =

LuaStateManager::Get()->GetGlobalVars().Lookup(SCRIPT_PROCESS_NAME);

GCC_ASSERT(!metaTableObj.IsNil());

pObj->m_self.SetLightUserData(“__object”, pObj);

pObj->m_self.SetMetaTable(metaTableObj);

}

else

{

pObj->m_self.AssignNil(LuaStateManager::Get()->GetLuaState());

SAFE_DELETE(pObj);

}

return pObj->m_self;

}

The first parameter is just to allow consistency so the function can be called in Lua
with the colon operator, just like the Create() functions for other Lua classes using
the class() function. The second parameter is the construction data, and the third
parameter is the original subclass this object is being instantiated from. These para-
meters are exactly the same as the three parameters in the Create() function
attached to classes through the class() function you saw earlier in this chapter.
This is no coincidence; the functions should be completely interchangeable so that
the caller has no idea if it’s creating a C++ object or a pure Lua object.

Inside the function, the C++ object is instantiated, followed by the creation of the
Lua table that will serve as the instance object. It’s created on the m_self member
so that the C++ object always has a reference to the Lua object, just like the Lua
object has a reference to the C++ object through the __object field. Next, the func-
tion calls BuildCppDataFromScript(), which mines the constructionData

and originalSubClass tables for any functions and configuration data that are
appropriate (see below). If this succeeds, the function finds the metatable that was

374 Chapter 12 n Scripting with Lua

created with RegisterScriptClass() function. Then it binds the C++ instance to
the Lua instance by setting the __object field. Then it sets the metatable. If
BuildCppDataFromScript() fails, both the table and the C++ object are
destroyed. The m_self parameter is returned, which, if successful, will contain the
Lua instance. If the function failed, the return value will be nil.

The BuildCppDataFromScript() function is responsible for finding all the appro-
priate functions defined in the Lua class table:

bool ScriptProcess::BuildCppDataFromScript(LuaPlus::LuaObject scriptClass,

LuaPlus::LuaObject constructionData)

{

if (scriptClass.IsTable())

{

// OnInit()

LuaPlus::LuaObject temp = scriptClass.GetByName(“OnInit”);

if (temp.IsFunction())

m_scriptInitFunction = temp;

// OnUpdate()

temp = scriptClass.GetByName(“OnUpdate”);

if (temp.IsFunction())

{

m_scriptUpdateFunction = temp;

}

else

{

GCC_ERROR(“No OnUpdate() found in script process; type == ” +

std::string(temp.TypeName()));

return false;

}

// OnSuccess()

temp = scriptClass.GetByName(“OnSuccess”);

if (temp.IsFunction())

m_scriptSuccessFunction = temp;

// OnFail()

temp = scriptClass.GetByName(“OnFail”);

if (temp.IsFunction())

m_scriptFailFunction = temp;

// OnAbort()

temp = scriptClass.GetByName(“OnAbort”);

if (temp.IsFunction())

Bringing It All Together 375

m_scriptAbortFunction = temp;

}

else

{

GCC_ERROR(“scriptClass is not a table in \

ScriptProcess::BuildCppDataFromScript()“);

return false;

}

if (constructionData.IsTable())

{

for (LuaPlus::LuaTableIterator constructionDataIt(constructionData);

constructionDataIt; constructionDataIt.Next())

{

const char* key = constructionDataIt.GetKey().GetString();

LuaPlus::LuaObject val = constructionDataIt.GetValue();

if (strcmp(key, “frequency”) == 0 && val.IsInteger())

m_frequency = val.GetInteger();

else

m_self.SetObject(key, val);

}

}

return true;

}

The first parameter to this function is scriptClass, which is the Lua table that
represents the class we’re trying to instantiate. The originalScriptClass param-
eter from CreateFromScript() is passed in as this parameter. This ensures that
when the function looks for a function called OnInit() or OnUpdate(), it’s looking
at the right class. The second parameter, constructionData, is used for any extra
configuration.

The first part of this function ensures that scriptClass is a valid table. Everything
within that if block has the same format; its entire purpose is to find the Lua versions
of the various Process virtual functions. Since it’s looking for functions that have the
same name, it gives the illusion that Lua is overriding C++ virtual functions. Any
found functions are placed in the appropriate member variables. The only required
function is OnUpdate(), which will cause the function to fail if it’s not found. The
OnUpdate() function in Process is a pure virtual function, so this makes sense.

The second part of the function processes the constructionData parameter. It loops
through each element on the table and tests to see if the key is frequency and the value
is an integer. If it is, the m_frequency member is set. If not, the value is set on the

376 Chapter 12 n Scripting with Lua

m_self table. This keeps the constructionData parameter sent to the Create-

FromScript() function acting like the constructor of the Create() function on
Lua classes generated with the class() function. Consistency is important to ensure
that the calling code never has to care whether this is a C++ or Lua object.

The overridden virtual methods from Process call the functions found by
BuildCppDataFromScript(). They all behave essentially the same way. They
check to see if the appropriate Lua variable was defined and call the function if it
was. Here’s the OnInit() function as an example:

void ScriptProcess::VOnInit(void)

{

Process::VOnInit();

if (!m_scriptInitFunction.IsNil())

{

LuaPlus::LuaFunction<void> func(m_scriptInitFunction);

func(m_self);

}

}

OnSuccess(), OnFail(), and OnAbort() behave the same way. The only function
that behaves a bit differently is OnUpdate().

void ScriptProcess::VOnUpdate(unsigned long deltaMs)

{

m_time += deltaMs;

if (m_time >= m_frequency)

{

LuaPlus::LuaFunction<void> func(m_scriptUpdateFunction);

func(m_self, m_time);

m_time = 0;

}

}

This function updates the m_time variable with the current delta and doesn’t call the
Lua OnUpdate() function until the appropriate amount of time has passed. As I said
earlier, this is important to keep from constantly crossing over the C++ / Lua boundary
if it’s not necessary. Of course, if no frequency was provided, the Lua OnUpdate()

function will happily call every frame. This isn’t a huge deal, it’s just an extra perfor-
mance cost that may or may not be necessary, depending on the process.

That’s everything you need to define a process in Lua, but what about the Process
Manager? We still need a way to attach processes to the Process Manager. Instead
of trying to expose the ProcessManager class, the best thing to do in this case to
write a global wrapper function and export it through the ScriptExports interface

Bringing It All Together 377

you saw earlier. This is just a simple wrapper to the ProcessManager::Attach-

Process() function:

void InternalScriptExports::AttachScriptProcess(

LuaPlus::LuaObject scriptProcess)

{

LuaPlus::LuaObject temp = scriptProcess.Lookup(“__object”);

if (!temp.IsNil())

{

shared_ptr<Process> pProcess(

static_cast<Process*>(temp.GetLightUserData()));

g_pApp->m_pGame->AttachProcess(pProcess);

}

else

{

GCC_ERROR(“Couldn’t find __object in script process”);

}

}

Let’s put all this together and see it in action with an example. This is a complete
process written entirely in Lua:

TestScriptProcess = class(ScriptProcess,

{

count = 0;

});

function TestScriptProcess:OnInit()

print(“OnInit()”);

end

function TestScriptProcess:OnUpdate(deltaMs)

self.count = self.count + 1;

print(“Count: ” .. self.count);

if self.count >= 5 then

self:Succeed();

end

end

function TestScriptProcess:OnSuccess()

print(“Success!!”);

end

-- run some tests

parent = TestScriptProcess:Create({frequency = 1000});

378 Chapter 12 n Scripting with Lua

child = TestScriptProcess:Create({frequency = 500});

parent:AttachChild(child);

AttachProcess(parent);

First, the TestScriptProcess class is created with the class() function. It
defines three methods: OnInit(), OnUpdate(), and OnSuccess(). The OnUp-

date() method counts to five and then calls Succeed()—a C++ method—to end
the process. The test code for this class creates two objects, one with an update fre-
quency of 1,000 and the other with an update frequency of 500. It then attaches
the child to the parent and attaches the parent to the Process Manager. You’ll see
the count from 1–5, each taking 1 second in between, followed by another count of
1–5, taking half a second each, before terminating.

As you can see, this class looks very much like any other class that inherits from
Process, which is the whole idea. Remember at the beginning of the chapter
when I said that one of the biggest reasons for using a scripting language is for
fast iteration? This is exactly how you achieve it. You can write processes very
quickly in Lua, test them out, and iterate very quickly. In many cases, you can
update a process without even restarting the game. You just edit the code, reload
the script (probably by calling ExecuteFile(), which is exposed to Lua), and
then trigger the process again.

If you decide that you need to move the process to C++ for performance reasons,
the Lua class is already laid out like the C++ version. You just create the same
class in C++, port the code from Lua to C++, and set up the triggering calls.
This is an extremely powerful and flexible system, and you should use it wherever
you can.

Inheriting from C++ Classes

The ScriptProcess class gives us one more thing that’s extremely
powerful: the ability to inherit from C++ classes in Lua. Without too much
trouble, you should be able to create a system that allows you to expose any
arbitrary class to Lua and enable Lua classes to inherit from them. I chose not
to do this here because such a system tends to make the details much more
obscure and harder to understand. My goal here is not to give you the best
engine I possibly can, but to teach you how you can build it yourself. I leave
this as an exercise to the reader. If you get stuck, you can always post in the
forums, and I’ll be happy to help.

By the way, you should always be on the lookout for these types of
abstractions. They can make the difference between an okay engine and an
amazing one.

Bringing It All Together 379

Event System

Communication between C++ and Lua is inevitable, and there needs to be a system
to facilitate that communication. A naive approach might be to expose all the meth-
ods you need to Lua and allow them to be called directly. This would probably work
just fine, but it would end up being very messy. You’ll have dozens or even hundreds
of methods exposed to Lua, and this tightly couples your engine to the Lua script. If
one of those methods changes, you’ll have to update all the appropriate places in the
script as well.

A much better approach is to use the event system we already created in Chapter 11,
“Game Event Management,” and extend it in a similar way that we extended the pro-
cess system. Unfortunately, this won’t be as easy. It’s one thing to create a self-
contained process with very little data that needs to cross the C++ / Lua boundary,
and it’s quite another to facilitate that communication.

The first thing you need is a special type of event that can be sent to or from Lua. This
event should take care of all the data translation as well. The goal is for the receiver of
the event to have no idea where it came from. You should be able to send an event
that’s received by both Lua and C++ without either knowing of the source. This
keeps it all nice and decoupled, which is the whole point of the event system.

Here’s the ScriptEvent class, which serves as the base class for all events that need
to cross the C++ / Lua boundary:

#define REGISTER_SCRIPT_EVENT(eventClass, eventType) \

ScriptEvent::RegisterEventTypeWithScript(#eventClass, eventType); \

ScriptEvent::AddCreationFunction(eventType, \

&eventClass::CreateEventForScript)

#define EXPORT_FOR_SCRIPT_EVENT(eventClass) \

public: \

static ScriptEvent* CreateEventForScript(void) \

{ \

return new eventClass; \

}

// function ptr typedef to create a script event

typedef ScriptEvent* (*CreateEventForScriptFunctionType)(void);

class ScriptEvent : public BaseEventData

{

typedef std::map<EventType, CreateEventForScriptFunctionType>

CreationFunctions;

static CreationFunctions s_creationFunctions;

bool m_eventDataIsValid;

380 Chapter 12 n Scripting with Lua

protected:

LuaPlus::LuaObject m_eventData;

public:

// construction

ScriptEvent(void) { m_eventDataIsValid = false; }

// script event data, which should only be called from the appropriate

// ScriptExports functions

LuaPlus::LuaObject GetEventData(void); // called when event is sent from

// C++ to script

bool SetEventData(LuaPlus::LuaObject eventData); // called when event is

// sent from script to C++

// Static helper functions for registering events with the script.

static void RegisterEventTypeWithScript(const char* key, EventType type);

static void AddCreationFunction(EventType type,

CreateEventForScriptFunctionType pCreationFunctionPtr);

static ScriptEvent* CreateEventFromScript(EventType type);

protected:

virtual void VBuildEventData(void);

virtual bool VBuildEventFromScript(void) { return true; }

};

The macros at the top are used for registering the event and exporting it to Lua.
REGISTER_SCRIPT_EVENT() is called during the initialization of the application,
passing in the class and the event type guid as parameters. It calls the static Regis-
terEventTypeWithScript() and AddCreationFunction() functions, which
you’ll see below. The reason this needs to be a macro is so that the RegisterE-

ventTypeWithScript() function can use the name of the class as the first param-
eter with the # operator, which places quotes around the token. The
EXPORT_FOR_SCRIPT_EVENT() macro is called inside the subclass declaration to
generate the CreateEventForScript() function. This is a macro so that you
have one central place to change any of this code should you need to do so without
having to go to every single subclass.

Inside the ScriptEvent class is a static map variable that maps event type guids to
creation functions. Whenever an event needs to be created by guid, it looks up the
appropriate function in the map and calls it to create the appropriate subclass instance.

The m_eventDatamember is the Lua representation of the data used by the event. It is
typically a table, but it can be anything you like. This data is manipulated by the

Bringing It All Together 381

protected virtual functions VBuildEventData() and VBuildEventFromScript().
All subclasses of this event should implement one or both of these functions.
VBuildEventData() must be overridden if you want to fire this event from C++ and
have it be received by Lua. The VBuildEventFromScript() must be overridden by
events that are sent from Lua and received by C++. If you want both, then both func-
tions must be overridden.

These two functions perform the translation between C++ and Lua. Inside VBuild

EventData(), you are expected to fill out the m_eventData member with any
data you want passed to Lua. Inside VBuildEventFromScript(), you do the
opposite. You read the m_eventData member and fill out any C++ members you
want. Although you could just read the table when the event is received, it’s better
to do it here because VBuildEventFromScript() is only called once. The perfor-
mance costs are the same, regardless of how many receivers listen for the event.

The RegisterEventTypeWithScript() function registers the event type guid
with Lua. This guid maps the ScriptEvent subclass name to that guid. It does
this by adding to a global EventType table in Lua. This ensures that C++ and Lua
can refer to the same event using the same identifier.

void ScriptEvent::RegisterEventTypeWithScript(const char* key, EventType type)

{

// get or create the EventType table

LuaPlus::LuaObject eventTypeTable =

LuaStateManager::Get()->GetGlobalVars().GetByName(“EventType”);

if (eventTypeTable.IsNil())

eventTypeTable =

LuaStateManager::Get()->GetGlobalVars().CreateTable(“EventType”);

// error checking

GCC_ASSERT(eventTypeTable.IsTable());

GCC_ASSERT(eventTypeTable[key].IsNil());

// add the entry

eventTypeTable.SetNumber(key, (double)type);

}

First, this function gets or creates the EventType table and then it does some simple
error checking. After that, it assigns the guid to the table. Since this function is called
from the REGISTER_SCRIPT_EVENT() macro, it’s able to turn the ScriptProcess
subclass into a string and use that as the key.

The AddCreationFunction() function is trivial, as it just inserts the EventType/
function pair into the static map. This is called automatically by the

382 Chapter 12 n Scripting with Lua

REGISTER_SCRIPT_EVENT() macro. CreateEventFromScript() finds the crea-
tion function pointer and calls it.

Now that we have a nice little class that can translate C++ and Lua data, we need a
system to be able to queue up and receive events on the Lua side. Events coming
from C++ don’t need anything special, they can just call VQueueEvent() or
VTriggerEvent() as normal.

The easiest problem to tackle is that of queuing events from Lua. We’ll use the same
scheme used for attaching processes from Lua, using ScriptExports to expose a
couple of wrapper functions.

bool InternalScriptExports::QueueEvent(EventType eventType,

LuaPlus::LuaObject eventData)

{

shared_ptr<ScriptEvent> pEvent(BuildEvent(eventType, eventData));

if (pEvent)

{

IEventManager::Get()->VQueueEvent(pEvent);

return true;

}

return false;

}

bool InternalScriptExports::TriggerEvent(EventType eventType,

LuaPlus::LuaObject eventData)

{

shared_ptr<ScriptEvent> pEvent(BuildEvent(eventType, eventData));

if (pEvent)

return IEventManager::Get()->VTriggerEvent(pEvent);

return false;

}

Both of these functions are very simple; they just call BuildEvent() to create the
event instance and then call into the Event Manager. BuildEvent() is a helper
function.

shared_ptr<ScriptEvent> InternalScriptExports::BuildEvent(EventType eventType,

LuaPlus::LuaObject& eventData)

{

// create the event from the event type

shared_ptr<ScriptEvent> pEvent(

ScriptEvent::CreateEventFromScript(eventType));

if (!pEvent)

return shared_ptr<ScriptEvent>();

Bringing It All Together 383

// set the event data that was passed in

if (!pEvent->SetEventData(eventData))

{

return shared_ptr<ScriptEvent>();

}

return pEvent;

}

This function creates the event by calling CreateEventFromScript(), which in
turn calls the factory method to instantiate the appropriate subclass. Then it calls
SetEventData(), which will call your implementation of BuildEventFrom-

Script(). If this succeeds, it returns the newly created event. That’s all there is to
it. Using these two methods, you can send events from Lua and have them received
by C++ listeners. In C++, you create those listeners as normal.

Allowing Lua to receive events is a little trickier. We want to create a system where you
can register a Lua function to receive a C++ event. Doing this requires a special Script
EventListener class that finds the event type guid with the Lua callback function.
We also need a place to store these listener objects, so a ScriptEventListenerMgr

class is created as well. First, we’ll look at the ScriptEventListener class.

class ScriptEventListener

{

EventType m_eventType;

LuaPlus::LuaObject m_scriptCallbackFunction;

public:

explicit ScriptEventListener(const EventType& eventType,

const LuaPlus::LuaObject& scriptCallbackFunction);

˜ScriptEventListener(void);

EventListenerDelegate GetDelegate(void)

{

return MakeDelegate(this, &ScriptEventListener::ScriptEventDelegate);

}

void ScriptEventDelegate(IEventDataPtr pEventPtr);

};

The first member is the event type guid, and the second member is the Lua function
that will act as the listener delegate. These are both set in the
constructor. ScriptEventDelegate() is the true C++ listener delegate that acts
as the proxy to the Lua delegate.

void ScriptEventListener::ScriptEventDelegate(IEventDataPtr pEvent)

{

384 Chapter 12 n Scripting with Lua

// call the Lua function

shared_ptr<ScriptEvent> pScriptEvent =

static_pointer_cast<ScriptEvent>(pEvent);

LuaPlus::LuaFunction<void> callback = m_scriptCallbackFunction;

callback(pScriptEvent->GetEventData());

}

All this function does is calls the Lua delegate function with the results of
GetEventData() as the only parameter. GetEventData() calls your script event’s
BuildEventData() function if necessary and returns m_eventData. The Lua del-
egate then does whatever it wants with the data.

These event listeners take care of all the overhead for binding the Lua listener dele-
gate to a C++ delegate. The ScriptEventListenerMgr manages these objects.

class ScriptEventListenerMgr

{

typedef std::set<ScriptEventListener*> ScriptEventListenerSet;

ScriptEventListenerSet m_listeners;

public:

˜ScriptEventListenerMgr(void);

void AddListener(ScriptEventListener* pListener);

void DestroyListener(ScriptEventListener* pListener);

};

This class maintains a set of ScriptEventListener objects, which are added and
removed through the AddListener() and DestroyListener() functions, respec-
tively. These functions are just wrappers to insert or remove/delete objects from the
set.

The final piece we need is a function for registering a Lua event listener, which is a
function that is exposed to Lua.

unsigned long InternalScriptExports::RegisterEventListener(EventType eventType,

LuaPlus::LuaObject callbackFunction)

{

GCC_ASSERT(s_pScriptEventListenerMgr);

if (callbackFunction.IsFunction())

{

// create the C++ listener proxy and set it to listen for the event

ScriptEventListener* pListener = GCC_NEW ScriptEventListener(eventType,

callbackFunction);

s_pScriptEventListenerMgr->AddListener(pListener);

IEventManager::Get()->VAddListener(pListener->GetDelegate(), eventType);

Bringing It All Together 385

// convert the pointer to an unsigned long to use as the handle

unsigned long handle = reinterpret_cast<unsigned long>(pListener);

return handle;

}

GCC_ERROR(“Attempting to register script event listener with \

invalid callback function”);

return 0;

}

After a bit of error checking, this function creates a new ScriptEventListener

object and adds it to the ScriptEventListenerMgr instance. Then it registers
the newly created C++ delegate proxy with the Event Manager.

With all the pieces in place, it is now possible to create events that can be sent across
the C++/Lua boundary. To do this, create a new event class that inherits from
ScriptEvent. Then implement the BuildEventData() and BuildEventFrom-

Script() virtual methods as necessary. Call the EXPORT_FOR_SCRIPT_EVENT()

macro in the event subclass declaration and call the REGISTER_SCRIPT_EVENT()

macro in the initialization code for the application.

To test out this functionality, we create two simple events. One is sent from C++ and
received by Lua, the other is sent from Lua and received by C++. Both of these events
inherit from ScriptEvent and override the appropriate virtual functions. Here are
the overridden functions:

// This is for the event being sent from C++ to Lua

void EvtData_ScriptEventTest_ToLua::BuildEventData(void)

{

m_eventData.AssignNumber(LuaStateManager::Get()->GetLuaState(), m_num);

}

// This is for the event being sent from Lua to C++

bool EvtData_ScriptEventTest_FromLua::BuildEventFromScript(void)

{

if (m_eventData.IsInteger())

{

m_num = m_eventData.GetInteger();

return true;

}

return false;

}

386 Chapter 12 n Scripting with Lua

In the application initialization, the REGISTER_SCRIPT_EVENT() macro must be
called:

REGISTER_SCRIPT_EVENT(EvtData_ScriptEventTest_ToLua,

EvtData_ScriptEventTest_ToLua::sk_EventType);

REGISTER_SCRIPT_EVENT(EvtData_ScriptEventTest_FromLua,

EvtData_ScriptEventTest_FromLua::sk_EventType);

Now the events are ready for Lua:

function TestEventHandler(eventData)

print("Event Received in Lua: “ .. eventData)

eventData = eventData + 1

QueueEvent(EventType.EvtData_ScriptEventTest_FromLua, eventData)

end

RegisterEventListener(EventType.EvtData_ScriptEventTest_ToLua,TestEventHandler)

This code creates a listener function and registers it to listen for an event. The lis-
tener adds a number and then queues a new event, which is received by C++. The
event chain can be tested by firing off the C++ event.

shared_ptr<EvtData_ScriptEventTest_ToLua> pEvent(

GCC_NEW EvtData_ScriptEventTest_ToLua);

IEventManager::Get()->VQueueEvent(pEvent);

That will send an event from C++ that’s received by Lua, which in turn will send an
event from Lua that is received by C++.

Using events is a great way to communicate between C++ and Lua. It keeps Lua and
C++ nicely decoupled by ensuring that the listener doesn’t care about the source of
the event. That means you can move events freely from Lua to C++ or vice versa
without having to change any of the code on the listeners.

Script Component

So far, we’ve created a way to deal with script processing over multiple frames as well
as communicating between C++ and Lua using events. Another crucial piece to this
puzzle is the ability to manipulate actors through Lua. It wouldn’t be a good idea to
start exposing tons of different components since that can get really messy, so instead,
a new type of component is created. This component knows how to access the other
components on the actor and call whatever functions are appropriate to expose.

The implementation of the script component is fairly trivial compared to everything
you’ve seen so far. Here’s the class declaration:

Bringing It All Together 387

class BaseScriptComponent : public ScriptComponentInterface

{

std::string m_scriptObjectName;

std::string m_constructorName;

std::string m_destructorName;

LuaPlus::LuaObject m_scriptObject;

LuaPlus::LuaObject m_scriptConstructor;

LuaPlus::LuaObject m_scriptDestructor;

public:

BaseScriptComponent(void);

virtual ˜BaseScriptComponent(void);

virtual bool VInit(TiXmlElement* pData);

virtual void VPostInit(void);

virtual TiXmlElement* VGenerateXml(void);

static void RegisterScriptFunctions(void);

static void UnregisterScriptFunctions(void);

private:

void CreateScriptObject(void);

// component script functions

LuaPlus::LuaObject GetActorId(void);

// physics component script functions

LuaPlus::LuaObject GetPos(void);

void SetPos(LuaPlus::LuaObject newPos);

LuaPlus::LuaObject GetLookAt(void) const;

float GetYOrientationRadians(void) const;

void RotateY(float angleRadians);

};

The XML definition for this component allows you to define a script object, a con-
structor, and a destructor. The script object is the name of a Lua variable where a Lua
instance of this object will live. The constructor is the name of a Lua function that is
called when the actor has been created, while the destructor is the name of a Lua
function that is called when the actor is destroyed. Both the constructor and destruc-
tor Lua functions are of the form func(scriptObject), where scriptObject is
the Lua instance of this component.

Since there’s nothing particularly new, I’m not going to cover it in depth. This class
follows the same basic pattern the others have. The idea behind this class is that it
represents the actor as far as Lua is concerned. All actor-specific functions should

388 Chapter 12 n Scripting with Lua

either go through here or use script events. You can see the full implementation of
the class in the source code in the Source/GCC4/Actors/ directory. The files you want
are ScriptComponentInterface.h, BaseScriptComonent.h, and BaseScriptComponent.cpp.

Lua Development and Debugging

As your scripts become more complex, you will invariably need tools in order to
manage and debug them. The print() statement and debug logs will only get you
so far, so you need a way to set breakpoints in Lua functions, inspect the values of
variables and tables, and single-step through your scripts. Lua does provide a number
of debug hooks to be able to do this, but they can be tedious to use. What you really
need is a full IDE (Integrated Development Environment) made for Lua. There are a
few of them out there of varying levels of quality.

C++ for Debugging

I’ve worked at two separate companies that used Lua without having a
debugger. At Super-Ego Games, we just used print debugging, and any
complex code was written in C++ whether it belonged there or not. At
PlayFirst, we only used Lua for UI configurations, so a debugger wasn’t
necessary. If we had a debugger at either of these companies, we would
have gotten a lot more from Lua than we did. This was proven to me when
I worked at Planet Moon, where we had a fully featured Lua debugger. Trust
me, you can get away without a debugger for a little while, but not long.

The best I’ve used by far is Decoda, by Unknown Worlds. It’s fast, easy to use, and
has a large set of features for managing projects and debugging your Lua scripts. The
only down side is that it’s not free, although it still costs less than the price of a typi-
cal console game. If you’re at all serious about integrating Lua into your games, I
highly recommend this program.

Final Thoughts

This Lua integration is relatively simple, but it’s enough for you play around with. It’s
important to note that I really only scratched the surface of Lua in this chapter.
There are a lot more things you can do with Lua and LuaPlus that I simply didn’t
have the page count to cover, like co-routines, threads, and more. Make sure you go
through the reading section below and check out some of the material there. Remem-
ber to experiment!

Final Thoughts 389

You’ll see this system really put to use later on in Chapter 19, “An Introduction to
Game AI,” when you learn about artificial intelligence, as well as Chapter 21, “A
Game of Teapot Wars,” when you see the sample Teapot Wars game.

Further Reading

Programming in Lua, Roberto Ierusalimschy

www.lua.org

www.lua.org/manual/5.1/

Lua Programming Gems, various authors

C++ Templates: The Complete Guide, Nicolai M. Josuttis und David Vandevoorde

390 Chapter 12 n Scripting with Lua

www.lua.org
www.lua.org/manual/5.1/

Chapter 13

by Mike McShaffry

Game Audio

If you have any doubt about how important sound is in games, try a little experi-
ment. First, find a home theater system that can turn off all the sound except for
the center channel. The center channel is almost always used for dialogue, and every-
thing else is for music and sound effects. Pop a movie in and feel for yourself how
flat the experience is without music and sound.

The same is true for games. Done well, sound and music convey critical information
to the player as well as incite powerful emotional reactions. One of my favorite exam-
ples of powerful music in any game is the original Halo from Bungie. When the
music segues into a driving combat tune, you can tell what is coming up—lots of
carnage, hopefully on the Covenant side of things!

I’m biased, of course, but an excellent example of sound design and technology
comes from Thief: Deadly Shadows by Ion Storm. This game integrated the physics,
portal, and AI subsystems with the sound system. AI characters would receive prop-
agated sound effect events that happened anywhere near them, and they would react
accordingly. If you got clumsy and stumbled Garrett, the main character in Thief,
into a rack of swords, AI characters around the corner and down the hall would
hear it, and they’d come looking for you.

Another great example is from Mushroom Men: The Spore Wars for the Wii by Red
Fly Studio. In this game, the sound system was actually integrated into the graphics
and particles system, creating a subtle but effective effect that had each sparkle of a
particle effect perfectly timed with the music. They called this the “Metronome.”

391

In this chapter, I’ll take you as far as I can into the world of sound. We’ll explore
both sound effects and music. With a little work and imagination, you should be
able to take what you learn here and create your own sound magic.

How Sound Works

Imagine someone on your street working with a hammer. Every time the hammer
strikes a nail, or perhaps the poor schmuck’s finger, a significant amount of energy
is released, causing heat, deformation of the hammer, deformation of whatever was
hit, and vibrations in all the objects concerned as they return to an equilibrium
state. A more complete description of the situation would also include high-
amplitude vibration of Mr. Schmuck’s vocal cords. Either way, those vibrations are
propagated through the air as sound waves.

When these sound waves strike an object, sometimes they make the object vibrate at
the same frequency. This only happens if the object is resonant with the frequency of
the sound waves. Try this: Go find two guitars and make sure they are properly
tuned. Then hold them close together and pluck the biggest, fattest string of one of
them. You should notice that the corresponding string on the second guitar will
vibrate, too, and you never touched it directly.

The experiment with the guitars is similar to how the mechanical parts of your ear
work. Your ears have tiny hairs, each having a slightly different length and resonant
frequency. When sound waves get to them and make different sets of them vibrate,
they trigger chemical messages in your brain, and your conscious mind interprets the
signals as different sounds. Some of them sound like a hammer striking a nail, and
others sound more like words you’d rather not say in front of little kids.

The tone of a sound depends on the sound frequency, or how fast the vibrations hit
your ear. Vibrations are measured in cycles per second, or Hertz (abbreviated Hz).
The lowest tone a normal human ear can hear is 20Hz, which is so low you almost
feel it more than you hear it! As the frequency rises, the tone of the sounds gets
higher until you can’t hear it anymore. The highest frequency most people can hear
is about 20,000Hz, or 20 kiloHertz (KHz).

The intensity of a sound is related to the number of air molecules pushed around by
the original vibration. You can look at this as the “pressure” applied to anything by a
sound wave. A common measurement of sound intensity is the decibel, or dB. This
measurement is on a logarithmic scale, which means that a small increase in the dB
level can be a dramatic increase in the intensity of the sound. Table 13.1 shows the
dB levels for various common sounds.

392 Chapter 13 n Game Audio

The reason the scale is a logarithmic one has to do with the sensitivity of your ears.
Normal human hearing can detect sounds over an amazing range of intensity, with
the lowest being near silence and the highest being something that falls just shy of
blowing your eardrums out of your head. The power difference between the two is
over one million times. Since the range is so great, it is convenient to use a nonlinear,
logarithmic scale to measure the intensity of sound.

Did you ever wonder why the volume knob on expensive audio gear is marked with
negative dB? This is because volume is actually attenuation, or the level of change of
the base level of a sound. Decibels measure relative sound intensity, not absolute
intensity, which means that negative decibels measure the amount of sound reduc-
tion. Turning the volume to 3dB lower than the current setting reduces the power
to your speakers by half. Given that, and I can put this in writing, all the stereo
heads out there will be happy to know that if you set your volume level to 0dB,
you’ll be hearing the sound at the level intended by the audio engineer. This is, of
course, usually loud enough to get complaints from your neighbors.

Digital Recording and Reproduction

If you happen to have some speakers with the cones exposed, like my nice Boston
Acoustics setup, you can watch these cones move in and out in a blur when you
crank the music. It turns out that the speakers are moving in correlation to the plot
of the sound wave recorded in the studio.

Table 13.1 Decibel Levels for Different Sounds

dB Level Description

0 The softest sound a person can hear with normal hearing

10 Normal breathing

20 Whispering at five feet

30 Soft whisper

50 Rainfall

60 Normal conversation

110 Shouting in ear

120 Thunder

150 Mr. Mike screaming when he beats his nephew Chris at Guitar Hero

How Sound Works 393

You’ve probably seen a graphic rendering of a sound wave; it looks like some random
up-and-down wiggling at various frequencies and amplitudes (see Figure 13.1).

This scratching is actually a series of values that map to an energy value of the sound
at a particular moment in time. This energy value is the power level sent into a
speaker magnet to get the speaker cone to move, either in or out. The frequency, or
tone, of the sound is directly related to the number of up/down wiggles you see in the
graphic representation of the waveform. The speaker is reproducing, to the best of its
ability, the identical waveform of the sound that was recorded in the studio.

If you zoom into the waveform, you’ll see these energy values plotted as points above
and below the X-axis (see Figure 13.2).

If all the points were in a straight line at value 0.0f, there would be complete silence.
The odd thing is, if all the points were in a straight line at 1.0, you would get a little
“pop” at the very beginning and silence thereafter. The reason is the speaker cone
would sit at the maximum position of its movement, making no vibrations at all.

The amplitude, or height, of the waveform is a measure of the sound’s intensity.
Quiet sounds only wiggle close to the 0.0 line, whereas loud noises wiggle all the
way from 1.0f to -1.0f. You can also imagine a really loud noise, like an explosion,
has an energy level that my Boston Acoustics can’t reproduce and can’t be accurately
recorded anyway because of the energies involved. Figure 13.3 shows what happens
to a sound wave that fails to record the amplitude of a high-energy sound.

Instead of a nice waveform, the tops and bottoms are squared off. This creates a
nasty buzzing noise because the speaker cones can’t follow a nice smooth waveform.

Figure 13.2
A closer view of a sound wave.

Figure 13.1
A typical sound wave.

394 Chapter 13 n Game Audio

Audio engineers say that a recording like this had the “levels too hot,” and they had
to re-record it with the input levels turned down a bit. If you ever saw those record-
ing meters on a mixing board, you’d notice that the input levels jumped into the red
when the sound was too hot, creating the clipped waveforms. The same thing can
happen when you record sounds straight to your desktop with a microphone, so
keep an eye on those input levels.

Crusty Geezers Say the Wildest Things

On the Microsoft Casino project, the actors were encouraged to come up with
extemporaneous barks for their characters. Not surprisingly, some of them had
to be cut from the game. One was cut by Microsoft legal because they thought
it sounded too much like the signature line, “I’ll be back,” from Arnold
Schwarzenegger. Another was cut because it made disparaging remarks
toward the waitresses at the Mirage Resorts. My favorite one of all time,
though, was a bit of speech from a crusty old geezer, “You know what I
REALLY love about Vegas??? The hookers!!!”

Sound Files

Sound files have many different formats, the most popular being WAV, MP3, OGG,
and MIDI. The WAV format stores raw sound data, the aural equivalent of a BMP
or TGA file, and is therefore the largest. MP3 and OGG files are compressed sound
file formats and can achieve about a 10:1 compression ratio over WAV, with only a
barely perceptible loss in sound quality. MIDI files are almost like little sound pro-
grams and are extremely tiny, but the sound quality is completely different—it sounds
like those video games from the 1980s. So why would you choose one over the other?

MIDI was popular for downloadable games and games on handheld platforms
because they were so small and efficient. These days MIDI is more a choice for
style than anything else, since even handheld devices are fully capable of playing
most sound formats. The WAV format takes a lot of memory, but it is incredibly
easy on your CPU budget. MP3s and OGGs will save your memory budget but will
hit your CPU for each stream you decompress into a hearable sound.

Figure 13.3
A clipped sound wave.

How Sound Works 395

If you’re short on media space, you can store everything in MP3 or OGG and
decompress the data in memory at load time. This is a pretty good idea for short
sound effects that you hear often, like weapons fire and footsteps. Music and back-
ground ambiance can be many minutes long and are almost always played in their
compressed form.

Always Keep Your Original High-Fidelity Audio Recordings

Make sure that all of your original sound is recorded in high-resolution WAV
format, and plan to keep it around until the end of the project. If you convert
all your audio to a compressed format such as MP3, you’ll lose sound quality,
and you won’t be able to reconvert the audio stream to a higher bit-rate if the
quality isn’t good enough. This is exactly the same thing as storing all your
artwork in high-resolution TGAs or TIFFs. You’ll always have the original work
stored in the highest possible resolution in case you need to mess with it later.

A Quick Word About Threads and Synchronization

Sound systems run in a multithreaded architecture. I’m talking about real multi-
threading here and not the cooperative multitasking. What’s the difference? You
should already be familiar with the Process and ProcessManager classes from
Chapter 7, “Controlling the Main Loop.” These classes are cooperative, which
means it is up to them to decide when to return control to the calling routine. For
those of you who remember coding in the old DOS or Windows 3.x days, this is all
we had without some serious assembly level coding. In a way, it was a lot safer, for
reasons you’ll see in a minute, but it was a heck of a lot harder to get the computer to
accomplish many tasks at once.

A classic task in games is to play some neat music in the background while you are
playing the game. Like I said at the start of this chapter, sound creates emotion in
your game. But what is really going on in the background to make sound come out
of your speakers?

Sound data is pushed into the sound card, and the sound card’s driver software con-
verts this data into electric signals that are sent to your speakers. The task of reading
new data into the sound card and converting it into a usable format takes some CPU
time away from your computer. While modern sound cards have CPUs of their own,
getting the data from the digital media into the sound card still takes your main CPU.

Since sound data is played at a linear time scale, it’s critical to push data into the
sound card at the right time. If it is pushed too early, you’ll overwrite music that is
about to be played. If it is pushed too late, the sound card will play some music
you’ve already heard, only to skip ahead when the right data gets in place.

396 Chapter 13 n Game Audio

This is the classic reader/writer problem, where you have a fixed memory area with a
writer that needs to stay ahead of the reader. If the reader ever overtakes the writer or
vice versa, the reader reads data that is either too old or too new. When I heard
about this in college, the example presented was always some horribly boring data
being read and written, such as employee records or student class enrollment records.
I would have paid a lot more attention to this class if they had told me the same
solutions could be applied to computer game sound systems.

What makes this problem complicated is there must be a way to synchronize the
reader and writer to make sure the writer process only writes when it knows it is
safely out of the reader’s way. Luckily, the really nasty parts of this problem are han-
dled at a low level in DirectSound, but you should always be aware of it so you don’t
pull the rug out from the sound system’s feet, so to speak. Let me give you an
example.

In your game, let’s assume there’s a portable stereo sitting on a desk, and it is playing
music. You take your gun and fire an explosive round into the radio and destroy the
radio. Hopefully, the music the radio is playing stops when the radio is destroyed,
and the memory used by the music is returned to the system. You should be able to
see how order-dependent all this is. If you stop the music too early, it looks like the
radio was somehow self-aware and freaked out just before it was sent to radio nir-
vana. If you release all the radio’s resources before you notify the sound system, the
sound system might try to play some sound data from a bogus area of memory.

Worse still, because the sound system runs in a different thread, you can’t count on a
synchronous response when you tell the sound system to stop playing a sound.
Granted, the sound system will respond to the request in a few milliseconds, far
shorter than any human can perceive, but far longer than you could count on using
the memory currently allocated to the sound system for something that is still active.

All these complications require a little architecture to keep things simple for pro-
grammers who are attaching sounds to objects or music to a game.

Game Sound System Architecture

Just like a graphics subsystem, audio subsystems can have a few different implemen-
tations. DirectSound, Miles Audio, WWise, and FMod are a few examples. It’s a good
idea to create an implementation-agnostic wrapper for your sound system so that
you are free to choose the implementation right for your game. The audio system
presented in this chapter can use DirectSound or Miles, and the only change you
have to make for your high-level game code is one line of code. Figure 13.4 shows
the class hierarchy for our sound system.

Game Sound System Architecture 397

The sound system inherits from IAudio. This object is responsible for the list of sounds
currently active. As you might predict, you only need one of these for your game.
The Audio base class implements some implementation-generic routines, and the
DirectSoundAudio class completes the implementation with DirectSound-specific calls.

The sound system needs access to the bits that make up the raw sound. The
IAudioBuffer interface defines the methods for an implementation-generic sound
buffer. AudioBuffer is a base class that implements some of the IAudioBuffer

interface, and the DirectSoundAudioBuffer completes the implementation of
the interface class using DirectSound calls. Each instance of a sound effect will use
one of these buffer objects.

A Resource encapsulates sound data, presumably loaded from a file or your
resource cache. If you had five explosions going off simultaneously, you’d have one
Resource object and five DirectSoundAudioBuffer objects.

Sound Resources and Handles

If you want to play a sound in your game, the first thing you do is load it. Sound
resources are loaded exactly the same as other game resources; they will likely exist
in a resource file. Sound effects can be tiny or quite long. Your game may have thou-
sands of these things, or tens of thousands as many modern games have. Just as you
saw in Chapter 8, “Loading and Caching Game Data,” you shouldn’t store each effect
in its own file; rather, you should pull it from a resource cache.

A resource cache is convenient if you have many simultaneous sounds that use the
same sound data, such as weapons fire. You should load this resource once, taking up
only one block of memory, and have the sound driver create many “players” that will
use the same resource.

Figure 13.4
Sound system class hierarchy.

398 Chapter 13 n Game Audio

The concept of streaming sound, compressed or otherwise, is beyond the scope of this
chapter. The sound system described here uses the resource cache to load the sound
data from a resource file, decompresses it if necessary, and manages DirectSound audio
buffers if you happen to have the same sound being played multiple times. As usual, I’m
exchanging clarity for performance, specifically memory usage, so take this into account
when looking at this system. A commercial grade sound system would only load the
compressed sound into memory and use a thread to decompress bits of it as it is played,
saving a ton of memory. With that caveat in mind, the first thing to do is define three
classes to help the resource cache load and decompress WAV and OGG files::

class SoundResourceExtraData : public IResourceExtraData

{

friend class WaveResourceLoader;

friend class OggResourceLoader;

public:

SoundResourceExtraData();

virtual ~SoundResourceExtraData() { }

virtual std::string VToString() { return “SoundResourceExtraData”; }

enum SoundType GetSoundType() { return m_SoundType; }

WAVEFORMATEX const *GetFormat() { return &m_WavFormatEx; }

int GetLengthMilli() const { return m_LengthMilli; }

protected:

enum SoundType m_SoundType; // is this an Ogg, WAV, etc.?

bool m_bInitialized; // has the sound been initialized

WAVEFORMATEX m_WavFormatEx; // description of the PCM format

int m_LengthMilli; // how long the sound is in milliseconds

};

class WaveResourceLoader : public IResourceLoader

{

public:

virtual bool VUseRawFile() { return false; }

virtual unsigned int VGetLoadedResourceSize(char *rawBuffer,

unsigned int rawSize);

virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize,

shared_ptr<ResHandle> handle);

virtual std::string VGetPattern() { return “*.wav”; }

protected:

bool ParseWave(char *wavStream, size_t length,

shared_ptr<ResHandle> handle);

};

Game Sound System Architecture 399

class OggResourceLoader : public IResourceLoader

{

public:

virtual bool VUseRawFile() { return false; }

virtual unsigned int VGetLoadedResourceSize(char *rawBuffer,

unsigned int rawSize);

virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize,

shared_ptr<ResHandle> handle);

virtual std::string VGetPattern() { return “*.ogg”; }

protected:

bool ParseOgg(char *oggStream, size_t length, shared_ptr<ResHandle> handle);

};

The SoundResourceExtraData class stores data that will be used by DirectSound. It
is initialized when the resource cache loads the sound. Take a look at the protected
members first. The m_SoundType members store an enumeration that defines the dif-
ferent sound types you support: WAV, OGG, and so on. The next Boolean stores
whether the sound has been initialized, which is to say that the sound is ready to play.

The next data member, m_wavFormatEx, stores information about the sound so that
DirectSound can play it. This includes how many channels are included in the sound,
its sample rate, its bits per sample, and other data. The last member is a convenience
member used to grab the length of the sound in milliseconds, which is nice to have if
you are timing something, like an animation, to coincide with the end of the sound.

A real game would keep compressed sounds in memory and send bits and pieces of
them into the audio hardware as they were needed, saving precious memory space. For
longer pieces such as music, the system might even stream bits of the compressed music
from digital media and then uncompress those bits as they were consumed by the audio
card. As you can see, that system could use its own book to describe it thoroughly.

The resource cache will use implementations of the IResourceLoader interface to
determine what kind of resource the sound is and the size of the loaded resource and
to actually load the resource into the memory the resource cache allocates.

Stream Your Music

A better solution for music files, which tend to be huge in an uncompressed form,
is to stream them into memory as the sound data is played. This is a complicated
subject, so for now we’ll simply play uncompressed sound data that is loaded
completely into memory. Notice that even though a multimegabyte OGG file is
loaded into a decompressed buffer, taking up perhaps 10 times as much
memory, it loads many times faster. As you might expect, the Vorbis
decompression algorithm is much faster than your hard drive.

400 Chapter 13 n Game Audio

Loading the WAV Format with WaveResourceLoader

WAV files are what old-school game developers call a chunky file structure. Each
chunk is preceded by a unique identifier, which you’ll use to parse the data in
each chunk. The chunks can also be hierarchical; that is, a chunk can exist within
another chunk. Take a quick look at the code below, and you’ll see what I’m talking
about. The first identifier, RIFF, is a clue that the file has an IFF, or Indexed File
Format, basically the same thing as saying a chunky format. If the next identifier in
the file is WAVE, you can be sure the file is a WAV audio file.

You’ll notice the identifier is always four bytes and is immediately followed by a 4-
byte integer that stores the length of the chunk. Chunky file formats allow parsing
code to ignore chunks they don’t understand, which is a great way to create extensi-
ble file formats. As you’ll see next, we’re only looking for two chunks from our WAV
file, but that doesn’t mean that other chunks aren’t there:

bool WaveResourceLoader::ParseWave(char *wavStream, size_t bufferLength,

shared_ptr<ResHandle> handle)

{

shared_ptr<SoundResourceExtraData> extra =

static_pointer_cast<SoundResourceExtraData>(handle->GetExtra());

DWORD file = 0;

DWORD fileEnd = 0;

DWORD length = 0;

DWORD type = 0;

DWORD pos = 0;

// mmioFOURCC — converts four chars into a 4 byte integer code.

// The first 4 bytes of a valid .wav file is ‘R’,’I’,’F’,’F’

type = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

if(type != mmioFOURCC(‘R’, ‘I’, ‘F’, ‘F’))

return false;

length = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

type = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

// ‘W’,’A’,’V’,’E’ for a legal .wav file

if(type != mmioFOURCC(‘W’, ‘A’, ‘V’, ‘E’))

return false; //not a WAV

// Find the end of the file

fileEnd = length - 4;

memset(&extra->m_WavFormatEx, 0, sizeof(WAVEFORMATEX));

Game Sound System Architecture 401

bool copiedBuffer = false;

// Load the .wav format and the .wav data

// Note that these blocks can be in either order.

while(file < fileEnd)

{

type = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

file += sizeof(DWORD);

length = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

file += sizeof(DWORD);

switch(type)

{

case mmioFOURCC(‘f’, ‘a’, ‘c’, ’t’):

{

GCC_ERROR”We don’t handle compressed wav files”);

break;

}

case mmioFOURCC(‘f’, ‘m’, ’t’, ‘ ‘):

{

memcpy(&extra->m_WavFormatEx, wavStream+pos, length);

pos+=length;

extra->m_WavFormatEx.cbSize = (WORD)length;

break;

}

case mmioFOURCC(‘d’, ‘a’, ’t’, ‘a’):

{

copiedBuffer = true;

if (length != handle->Size())

{

GCC_ERROR”Wav resource size does not equal buffer size”));

return 0;

}

memcpy(handle->WritableBuffer(), wavStream+pos, length);

pos+=length;

break;

}

}

file += length;

// If both blocks have been seen, we can return true.

if(copiedBuffer)

402 Chapter 13 n Game Audio

{

extra->m_LengthMilli = (handle->Size() * 1000) /

extra->GetFormat()->nAvgBytesPerSec;

return true;

}

// Increment the pointer past the block we just read,

// and make sure the pointer is word aligned.

if (length & 1)

{

++pos;

++file;

}

}

// If we get to here, the .wav file didn’t contain all the right pieces.

return false;

}

The ParseWave() method has two parts. The first part initializes local and output
variables and makes sure the WAV file has the right beginning tag, RIFF, signifying
that the file is the IFF type, and the identifier immediately following is WAVE. If either
of these two checks fails, the method returns false.

The code flows into a while loop that is looking for two blocks: fmt and data. They
can arrive in any order, and there may be other chunks interspersed. That’s fine, because
we’ll just ignore them and continue looking for the two we care about. Once they are
found, we return with success. If for some reason we get to the end of the file and we
didn’t find the two chunks we were looking for, we return false, indicating a failure.

Loading the OGG Format

The ParseOgg() method decompresses an OGG stream already in memory. The
OggVorbis_File object can load from a normal file or a memory buffer. Loading
from a memory buffer is a little trickier since you have to “fake” the operations of an
ANSI FILE * object with your own code.

This first task is to create a structure that will keep track of the memory buffer, the
size of this buffer, and where the “read” position is:

struct OggMemoryFile

{

unsigned char* dataPtr; // Pointer to the data in memory

size_t dataSize; // Size of the data

size_t dataRead; // Bytes read so far

Game Sound System Architecture 403

OggMemoryFile(void)

{

dataPtr = NULL;

dataSize = 0;

dataRead = 0;

}

};

The next task is to write functions to mimic fread, fseek, fclose, and ftell:

size_t VorbisRead(void* data_ptr, size_t byteSize,

size_t sizeToRead, void* data_src)

{

OggMemoryFile *pVorbisData = static_cast<OggMemoryFile *>(data_src);

if (NULL == pVorbisData)

{

return -1;

}

size_t actualSizeToRead, spaceToEOF =

pVorbisData->dataSize - pVorbisData->dataRead;

if ((sizeToRead*byteSize) < spaceToEOF)

{

actualSizeToRead = (sizeToRead*byteSize);

}

else

{

actualSizeToRead = spaceToEOF;

}

if (actualSizeToRead)

{

memcpy(data_ptr,

(char*)pVorbisData->dataPtr + pVorbisData->dataRead, actualSizeToRead);

pVorbisData->dataRead += actualSizeToRead;

}

return actualSizeToRead;

}

int VorbisSeek(void* data_src, ogg_int64_t offset, int origin)

{

OggMemoryFile *pVorbisData = static_cast<OggMemoryFile *>(data_src);

if (NULL == pVorbisData)

{

return -1;

}

404 Chapter 13 n Game Audio

switch (origin)

{

case SEEK_SET:

{

ogg_int64_t actualOffset;

actualOffset = (pVorbisData->dataSize >= offset) ?

offset : pVorbisData->dataSize;

pVorbisData->dataRead = static_cast<size_t>(actualOffset);

break;

}

case SEEK_CUR:

{

size_t spaceToEOF =

pVorbisData->dataSize - pVorbisData->dataRead;

ogg_int64_t actualOffset;

actualOffset = (offset < spaceToEOF) ? offset : spaceToEOF;

pVorbisData->dataRead += static_cast<LONG>(actualOffset);

break;

}

case SEEK_END:

pVorbisData->dataRead = pVorbisData->dataSize+1;

break;

default:

assert(false && “Bad parameter for ‘origin’, requires same as fseek.”);

break;

};

return 0;

}

int VorbisClose(void *src)

{

// Do nothing - we assume someone else is managing the raw buffer

return 0;

}

long VorbisTell(void *data_src)

{

OggMemoryFile *pVorbisData = static_cast<OggMemoryFile *>(data_src);

if (NULL == pVorbisData)

Game Sound System Architecture 405

{

return -1L;

}

return static_cast<long>(pVorbisData->dataRead);

}

You might notice that the method that fakes the fclose() doesn’t do anything.
Ordinarily, you might free the memory in the buffer, but since the raw sound
data is managed by the resource cache, nothing needs to be done. Here’s what the
ParseOgg() method looks like:

bool OggResourceLoader::ParseOgg(char *oggStream, size_t length,

shared_ptr<ResHandle> handle)

{

shared_ptr<SoundResourceExtraData> extra =

static_pointer_cast<SoundResourceExtraData>(handle->GetExtra());

OggVorbis_File vf; // for the vorbisfile interface

ov_callbacks oggCallbacks;

OggMemoryFile *vorbisMemoryFile = new OggMemoryFile;

vorbisMemoryFile->dataRead = 0;

vorbisMemoryFile->dataSize = length;

vorbisMemoryFile->dataPtr = (unsigned char *)oggStream;

oggCallbacks.read_func = VorbisRead;

oggCallbacks.close_func = VorbisClose;

oggCallbacks.seek_func = VorbisSeek;

oggCallbacks.tell_func = VorbisTell;

int ov_ret =

ov_open_callbacks(vorbisMemoryFile, &vf, NULL, 0, oggCallbacks);

assert(ov_ret>=0);

// ok now the tricky part

// the vorbis_info struct keeps the most of the interesting format info

vorbis_info *vi = ov_info(&vf,-1);

memset(&extra->m_WavFormatEx, 0, sizeof(extra->m_WavFormatEx));

extra->m_WavFormatEx.cbSize = sizeof(extra->m_WavFormatEx);

extra->m_WavFormatEx.nChannels = vi->channels;

// ogg vorbis is always 16 bit

extra->m_WavFormatEx.wBitsPerSample = 16;

extra->m_WavFormatEx.nSamplesPerSec = vi->rate;

406 Chapter 13 n Game Audio

extra->m_WavFormatEx.nAvgBytesPerSec =

extra->m_WavFormatEx.nSamplesPerSec* extra->m_WavFormatEx.nChannels*2;

extra->m_WavFormatEx.nBlockAlign = 2* extra->m_WavFormatEx.nChannels;

extra->m_WavFormatEx.wFormatTag = 1;

DWORD size = 4096 * 16;

DWORD pos = 0;

int sec = 0;

int ret = 1;

// get the total number of PCM samples

DWORD bytes = (DWORD)ov_pcm_total(&vf, -1);

bytes *= 2 * vi->channels;

if (handle->Size() != bytes)

{

GCC_ERROR(“The Ogg size does not match the memory buffer size”);

ov_clear(&vf);

SAFE_DELETE(vorbisMemoryFile);

return false;

}

// now read in the bits

while(ret && pos<bytes)

{

ret = ov_read(&vf, handle->WriteableBuffer()+pos, size, 0, 2, 1, &sec);

pos += ret;

if (bytes - pos < size)

{

size = bytes - pos;

}

}

extra->m_LengthMilli = 1000.f * ov_time_total(&vf, -1);

ov_clear(&vf);

delete vorbisMemoryFile;

return true;

}

This method shows you how to decompress an OGG memory buffer using the Vor-
bis API. The method will decompress the OGG stream into a PCM buffer that is
essentially identical to the results you saw earlier with the WaveResourceLoader.
The first part of the method initializes the OggMemoryFile structure and sets up
the callback functions for Vorbis. Then a structure called vorbis_info is used to
initialize the members of the WAVEFORMATEX, stored with the resource handle.

Game Sound System Architecture 407

After the memory buffer is double-checked to be big enough to handle the decom-
pressed OGG stream, the ov_read function is called in a loop to decompress it.

If you feel sufficiently energetic one weekend, this is where you’ll want to play
around if you’d like to implement decompression of the OGG stream in real time.
Instead of decompressing the entire buffer, you’ll decompress a part of it, save the
stream where you left off, and let DirectSound play the buffer. Before DirectSound
finishes playing the buffer, you’ll run the decompression loop again into a different
buffer. If your timing is right, DirectSound will be playing from one buffer while you
are decompressing into another. If you think this is touchy work, you are right; it is
for this reason that sound systems were typically fraught with weird bugs and insta-
bility. Imagine what would happen if the source OGG stream were thrown out of the
resource cache, causing a cache miss and a huge delay in providing DirectSound with
the data it needs to create the illusion of a continuous sound from a single uncom-
pressed stream.

Always Show Something Moving

Any time you have a while loop that might take some time, such as
decompressing a large OGG file, it’s a good idea to create a callback function
that your game can use to monitor the progress of the routine. This might be
important for creating a progress bar or some other animation that will give
your players something to look at other than a completely stalled screen.
Console games are usually required to have on-screen animations during
loads, but this is a good idea for PC games, too.

If you are just lifting this OGG code into your game and ignoring the rest of this
chapter, don’t forget to link the Vorbis libraries into your project. Since there’s no
encoding going on here, you can just link the following libraries:
libvorbisfile_static.lib, libvorbis_static.lib, and libogg_static.lib. If you are compiling
your code under Visual Studio, you can add the following lines of code to one of
your CPP files. In the GameCode4 source, they are in GameCode4.cpp, where all of
the other #pragma comment() statements are.

#pragma comment(lib, “libogg_static.lib”)

#pragma comment(lib, “libvorbis_static.lib”)

#pragma comment(lib, “libvorbisfile_static.lib”)

To learn more about the OGG format, go to www.xiph.org/. The technology is open
source, the sound is every bit as good as MP3, and you don’t have to worry about
paying expensive license fees. In other words, unless you have money to burn, use
OGG for sound data compression. Lots of audio tools support OGG, too. You can
go to the Xiph website to find out which ones.

408 Chapter 13 n Game Audio

www.xiph.org/

IAudioBuffer Interface and AudioBuffer Class

Now that you’ve got a sound in memory, it’s time to play it. IAudioBuffer exposes
methods such as volume control, pausing, and monitoring individual sounds while
they are in memory. IAudioBuffer, and a partial implementation AudioBuffer,
are meant to be platform agnostic. You’ll see the DirectSound specific implementa-
tion shortly. Here’s the interface class:

class IAudioBuffer

{

public:

virtual ~IAudioBuffer() { }

virtual void *VGet()=0;

virtual shared_ptr<ResHandle> const VGetResource()=0;

virtual bool VRestore()=0;

virtual bool VPlay(int volume, bool looping)=0;

virtual bool VPause()=0;

virtual bool VStop()=0;

virtual bool VResume()=0;

virtual bool VTogglePause()=0;

virtual bool VIsPlaying()=0;

virtual bool VIsLooping() const=0;

virtual void VSetVolume(int volume)=0;

virtual int VGetVolume() const=0;

virtual float VGetProgress() const=0;

};

The first method is a virtual destructor, which will be overloaded by classes that
implement the interface. If this destructor weren’t virtual, it would be impossible to
release audio resources grabbed for this sound effect.

The next method, VGet(), is used to grab an implementation-specific handle to the
allocated sound. When I say implementation-specific, I’m talking about the piece of
data used by the audio system implementation to track sounds internally. In the case
of a DirectSound implementation, this would be a LPDIRECTSOUNDBUFFER. This is
for internal use only, for whatever class implements the IAudio interface to call.
Your high-level game code will never call this method unless it knows what the
implementation is and wants to do something really specific.

The next method, VRestore(), is primarily for Windows games since it is possible
for them to lose control of their sound buffers, requiring their restoration. The audio
system will double-check to see if an audio buffer has been lost before it sends

Game Sound System Architecture 409

commands to the sound driver to play the sound. If it has been lost, it will call the
VRestore() method, and everything will be back to normal. Hopefully, anyway.

The next four methods can control the play status on an individual sound effect.
VPlay() gets a volume from 0–100 and a Boolean looping, which you set to
true if you want the sound to loop. VPause(), VStop(), VResume(), and
VPause() let you control the progress of a sound.

The volume methods do exactly what you’d think they do: set and retrieve the cur-
rent volume of the sound. The method that sets the volume will do so instantly, or
nearly so. If you want a gradual fade, on the other hand, you’ll have to use something
a little higher level. Luckily, we’ll do exactly that later on in this chapter.

The last method, VGetProgress(), returns a floating-point number between 0.0f
and 1.0f and is meant to track the progress of a sound as it is being played. If the
sound effect is one-fourth of the way through playing, this method will return 0.25f.

All Things Go from 0.0 to 1.0

Measuring things like sound effects in terms of a coefficient ranging from 0.0
to 1.0 instead of a number of milliseconds is a nice trick. This abstraction gives
you some flexibility if the actual length of the sound effect changes, especially
if it is timed with animations, or animations are tied to sound, which is very
frequently the case. If either the sound changes or the animation changes, it is
easy to track one versus the other.

With the interface defined, we can write a little platform-agnostic code and create the
AudioBuffer class. The real meat of this class is the management of the smart
pointer to a SoundResource. This guarantees that the memory for your sound
effect can’t go out of scope while the sound effect is being played.

class AudioBuffer : public IAudioBuffer

{

public:

virtual shared_ptr<ResHandle> VGetResource() { return m_Resource; }

virtual bool VIsLooping() const { return m_isLooping; }

virtual int VGetVolume() const { return m_Volume; }

protected:

AudioBuffer(shared_ptr<ResHandle >resource)

{

m_Resource = resource;

m_isPaused = false;

410 Chapter 13 n Game Audio

m_isLooping = false;

m_Volume = 0;

} // disable public construction

shared_ptr<ResHandle> m_Resource;

// Is the sound paused

bool m_isPaused;

// Is the sound looping

bool m_isLooping;

//the volume

int m_Volume;

};

This class holds the precious smart pointer to your sound data managed by the
resource cache and implements the IAudioBuffer interface. VIsLooping() and
VGetVolume() tell you if your sound is a looping sound and the current volume
setting. VGetResource() returns a smart pointer to the sound resource, which
manages the sound data.

We’re nearly to the point where you have to dig into DirectSound. Before that hap-
pens, take a look at the classes that encapsulate the system that manages the list of
active sounds: IAudio and Audio.

IAudio Interface and Audio Class

IAudio has three main purposes: create, manage, and release audio buffers.

class IAudio

{

public:

virtual bool VActive()=0;

virtual IAudioBuffer *VInitAudioBuffer(shared_ptr<ResHandle> soundResource)=0;

virtual void VReleaseAudioBuffer(IAudioBuffer* audioBuffer)=0;

virtual void VStopAllSounds()=0;

virtual void VPauseAllSounds()=0;

virtual void VResumeAllSounds()=0;

virtual bool VInitialize()=0;

virtual void VShutdown()=0;

};

Game Sound System Architecture 411

VActive() is something you can call to determine if the sound system is active. As
rare as it may be, a sound card might be disabled or not installed. It is also likely that
during initialization or game shutdown, you’ll want to know if the sound system has
a heartbeat.

The next two methods, VInitAudioBuffer() and VReleaseAudioBuffer(), are
called when you want to launch a new sound or tell the audio system you are done
with it and it can release audio resources back to the system. This is important, so
read it twice. You’ll call these for each instance of a sound, even if it is exactly the
same effect. You might want to play the same sound effect at two different volumes,
such as when two players are firing the same type of weapon at each other, or you
have multiple explosions going off at the same time in different places.

You’ll notice that the only parameter to the initialize method is a shared pointer to a
ResHandle object. This object contains the single copy of the actual decompressed
PCM sound data. The result of the call, assuming it succeeds, is a pointer to an object
that implements the IAudioBuffer interface. What this means is that the audio
system is ready to play the sound.

The next three methods are system-wide sound controls, mostly for doing things like
pausing and resuming sounds when needed, such as when the player on a Windows
game Alt-Tabs away from your game. It’s extremely annoying to have game sound
effects continue in the background if you are trying to check email or convince
your boss you aren’t playing a game.

The last two methods, VInitialize() and VShutdown(), are used to create and
tear down the sound system. Let’s take a look at a platform-agnostic partial imple-
mentation of the IAudio interface:

class Audio : public IAudio

{

public:

Audio();

virtual void VStopAllSounds();

virtual void VPauseAllSounds();

virtual void VResumeAllSounds();

virtual void VShutdown();

static bool HasSoundCard(void);

bool IsPaused() { return m_AllPaused; }

protected:

typedef std::list<IAudioBuffer *> AudioBufferList;

412 Chapter 13 n Game Audio

AudioBufferList m_AllSamples; // List of all currently allocated buffers

bool m_AllPaused; // Has the sound system been paused?

bool m_Initialized; // Has the sound system been initialized?

};

We’ll use STL to organize the active sounds in a linked list called m_AllSamples.
This is probably good for almost any game because you’ll most likely have only a
handful of sounds active at one time. Linked lists are great containers for a small
number of objects. Since the sounds are all stored in the linked list, and each sound
object implements the IAudioBuffer interface, you can define routines that per-
form an action on every sound in the system.

void Audio::VShutdown()

{

AudioBufferList::iterator i=m_AllSamples.begin();

while (i!=m_AllSamples.end())

{

IAudioBuffer *audioBuffer = (*i);

audioBuffer->VStop();

m_AllSamples.pop_front();

}

}

//Stop all active sounds, including music

void Audio::VPauseAllSounds()

{

AudioBufferList::iterator i;

AudioBufferList::iterator end;

for(i=m_AllSamples.begin(), end=m_AllSamples.end(); i!=end; ++i)

{

IAudioBuffer *audioBuffer = (*i);

audioBuffer->VPause();

}

m_AllPaused=true;

}

void Audio::VResumeAllSounds()

{

AudioBufferList::iterator i;

AudioBufferList::iterator end;

for(i=m_AllSamples.begin(), end=m_AllSamples.end(); i!=end; ++i)

{

IAudioBuffer *audioBuffer = (*i);

audioBuffer->VResume();

Game Sound System Architecture 413

}

m_AllPaused=false;

}

void Audio::VStopAllSounds()

{

IAudioBuffer *audioBuffer = NULL;

AudioBufferList::iterator i;

AudioBufferList::iterator end;

for(i=m_AllSamples.begin(), end=m_AllSamples.end(); i!=end; ++i)

{

audioBuffer = (*i);

audioBuffer->VStop();

}

m_AllPaused=false;

}

The code for each of these routines iterates the list of currently playing sounds and
calls the appropriate stop, resume, or pause method of the IAudioBuffer object.

DirectSound Implementations

The Audio and AudioBuffer classes are useless on their own; we must still create
the platform-specific code. Since DirectSound is completely free to use by anyone,
we’ll create our platform-specific code around that technology.

You’ll need to extend this code if you want to play MP3 or MIDI. Still, DirectSound
can make a good foundation for a game’s audio system. Let’s take a look at the
implementation for DirectSoundAudio first, which extends the Audio class we
just discussed:

class DirectSoundAudio : public Audio

{

public:

DirectSoundAudio() { m_pDS = NULL; }

virtual bool VActive() { return m_pDS != NULL; }

virtual IAudioBuffer *VInitAudioBuffer(

shared_ptr<ResHandle> soundResource);

virtual void VReleaseAudioBuffer(IAudioBuffer* audioBuffer);

virtual void VShutdown();

virtual bool VInitialize(HWND hWnd);

protected:

IDirectSound8* m_pDS;

414 Chapter 13 n Game Audio

HRESULT SetPrimaryBufferFormat(

DWORD dwPrimaryChannels,

DWORD dwPrimaryFreq,

DWORD dwPrimaryBitRate);

};

The only piece of data in this class is a pointer to an IDirectSound8 object, which is
DirectSound’s gatekeeper, so to speak. Initialization, shutdown, and creating audio buffers
are all done through this object. One way to look at this is that DirectSoundAudio is a
C++ wrapper around IDirectSound8. Let’s look at initialization and shutdown first:

bool DirectSoundAudio::VInitialize(HWND hWnd)

{

if (m_Initialized)

return true;

m_Initialized=false;

m_AllSamples.clear();

SAFE_RELEASE(m_pDS);

HRESULT hr;

// Create IDirectSound using the primary sound device

if(FAILED(hr = DirectSoundCreate8(NULL, &m_pDS, NULL)))

return false;

// Set DirectSound coop level

if(FAILED(hr = m_pDS->SetCooperativeLevel(hWnd, DSSCL_PRIORITY)))

return false;

if(FAILED(hr = SetPrimaryBufferFormat(8, 44100, 16)))

return false;

m_Initialized = true;

return true;

}

This code is essentially lifted straight from the DirectX sound samples, so it might
look pretty familiar. When you set the cooperative level on the DirectSound object,
you’re telling the sound driver you want more control over the sound system, specif-
ically how the primary sound buffer is structured and how other applications run at
the same time. The DSSCL_PRIORITY level is better than DSSCL_NORMAL because
you can change the format of the output buffer. This is a good setting for games
that still want to allow background applications like Microsoft Messenger or Outlook
to be able to send something to the speakers.

Game Sound System Architecture 415

Why bother? If you don’t do this, and set the priority level to DSSCL_NORMAL,
you’re basically informing the sound driver that you’re happy with whatever pri-
mary sound buffer format is in place, which might not be the same sound format
you need for your game audio. The problem is one of conversion. Games use tons
of audio, and the last thing you need is for every sound to go through some conver-
sion process so it can be mixed in the primary buffer. If you have 100,000 audio
files and they are all stored in 44KHz, the last thing you want is to have each one
be converted to 22KHz, because it’s a waste of time. Take control and use
DSSCL_PRIORITY.

The call to SetPrimaryBufferFormat() sets your primary buffer format to a fla-
vor you want; most likely, it will be 44KHz, 16-bit, and some number of channels
that you feel is a good trade-off between memory use and the number of simulta-
neous sound effects you’ll have in your game. For the purposes of this class, I’m
choosing eight channels, but in a commercial game you could have 32 channels or
even more. The memory you’ll spend with more channels is dependent on your
sound hardware, so be cautious about grabbing a high number of channels—you
might find some audio cards won’t support it.

HRESULT DirectSoundAudio::SetPrimaryBufferFormat(

DWORD dwPrimaryChannels,

DWORD dwPrimaryFreq,

DWORD dwPrimaryBitRate)

{

// !WARNING! - Setting the primary buffer format and then using this

// for DirectMusic messes up DirectMusic!

//

// If you want your primary buffer format to be 22KHz stereo, 16-bit

// call with these parameters: SetPrimaryBufferFormat(2, 22050, 16);

HRESULT hr;

LPDIRECTSOUNDBUFFER pDSBPrimary = NULL;

if(! m_pDS)

return CO_E_NOTINITIALIZED;

// Get the primary buffer

DSBUFFERDESC dsbd;

ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));

dsbd.dwSize = sizeof(DSBUFFERDESC);

dsbd.dwFlags = DSBCAPS_PRIMARYBUFFER;

dsbd.dwBufferBytes = 0;

dsbd.lpwfxFormat = NULL;

416 Chapter 13 n Game Audio

if(FAILED(hr = m_pDS->CreateSoundBuffer(&dsbd, &pDSBPrimary, NULL)))

return DXUT_ERR(L”CreateSoundBuffer”, hr);

WAVEFORMATEX wfx;

ZeroMemory(&wfx, sizeof(WAVEFORMATEX));

wfx.wFormatTag = (WORD) WAVE_FORMAT_PCM;

wfx.nChannels = (WORD) dwPrimaryChannels;

wfx.nSamplesPerSec = (DWORD) dwPrimaryFreq;

wfx.wBitsPerSample = (WORD) dwPrimaryBitRate;

wfx.nBlockAlign = (WORD) (wfx.wBitsPerSample / 8 * wfx.nChannels);

wfx.nAvgBytesPerSec = (DWORD) (wfx.nSamplesPerSec * wfx.nBlockAlign);

if(FAILED(hr = pDSBPrimary->SetFormat(&wfx)))

return DXUT_ERR(L”SetFormat”, hr);

SAFE_RELEASE(pDSBPrimary);

return S_OK;

}

You have to love DirectSound. This method essentially makes two method calls, and
the rest of the code simply fills in parameters. The first call is to CreateSound-

Buffer(), which actually returns a pointer to the primary sound buffer where all
your sound effects are mixed into a single sound stream that is rendered by the
sound card. The second call to SetFormat() tells the sound driver to change the
primary buffer’s format to one that you specify.

The shutdown method, by contrast, is extremely simple:

void DirectSoundAudio::VShutdown()

{

if(m_Initialized)

{

Audio::VShutdown();

SAFE_RELEASE(m_pDS);

m_Initialized = false;

}

}

The base class’s VShutdown() is called to stop and release all the sounds still active.
The SAFE_RELEASE on m_pDS will release the IDirectSound8 object and shut
down the sound system completely.

The last two methods of the DirectSoundAudio class allocate and release audio
buffers. An audio buffer is the C++ representation of an active sound effect. In our

Game Sound System Architecture 417

platform-agnostic design, an audio buffer is created from a sound resource, presum-
ably something loaded from a file or more likely a resource file.

IAudioBuffer *DirectSoundAudio::VInitAudioBuffer(shared_ptr<ResHandle> resHandle)

{

shared_ptr<SoundResourceExtraData> extra =

::static_pointer_cast<SoundResourceExtraData>(resHandle->GetExtra());

if(! m_pDS)

return NULL;

switch(soundResource->GetSoundType())

{

case SOUND_TYPE_OGG:

case SOUND_TYPE_WAVE:

// We support WAVs and OGGs

break;

case SOUND_TYPE_MP3:

case SOUND_TYPE_MIDI:

// If it’s a midi file, then do nothing at this time...

// maybe we will support this in the future

GCC_ERROR(“MP3s and MIDI are not supported”);

return NULL;

break;

default:

GCC_ERROR(“Unknown sound type”);

return NULL;

}

LPDIRECTSOUNDBUFFER sampleHandle;

// Create the direct sound buffer, and only request the flags needed

// since each requires some overhead and limits if the buffer can

// be hardware accelerated

DSBUFFERDESC dsbd;

ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));

dsbd.dwSize = sizeof(DSBUFFERDESC);

dsbd.dwFlags = DSBCAPS_CTRLVOLUME;

dsbd.dwBufferBytes = resHandle->Size();

dsbd.guid3DAlgorithm = GUID_NULL;

dsbd.lpwfxFormat = const_cast<WAVEFORMATEX *>(extra->GetFormat());

HRESULT hr;

if(FAILED(hr = m_pDS->CreateSoundBuffer(&dsbd, &sampleHandle, NULL)))

418 Chapter 13 n Game Audio

{

return NULL;

}

// Add handle to the list

IAudioBuffer *audioBuffer =

(IAudioBuffer *)(new DirectSoundAudioBuffer(sampleHandle, resHandle));

m_AllSamples.push_front(audioBuffer);

return audioBuffer;

}

Notice the switch statement at the beginning of this code? It branches on the sound
type, which signifies what kind of sound resource is about to play: WAV, MP3, OGG,
or MIDI. In our simple example, we’re only looking at WAV data or OGG data that
has been decompressed, so if you want to extend this system to play other kinds of
sound formats, you’ll hook that new code in right there. For now, those other for-
mats are short circuited and will force a failure.

The call to IDirectSound8::CreateSoundBuffer() is preceded by setting vari-
ous values of a DSBUFFERDESC structure that informs DirectSound what kind of
sound is being created. Take special note of the flags, since that member controls
what can happen to the sound. An example is the DSBCAPS_CTRLVOLUME flag,
which tells DirectSound that we want to be able to control the volume of this sound
effect. Other examples include DSBCAPS_CTRL3D, which enables 3D sound, or
DSBCAPS_CTRLPAN, which enables panning control. Take a look at the DirectSound
docs to learn more about this important structure.

After we’re sure we’re talking about a sound data format we support, there are two
things to do. First, the sound data is passed onto DirectSound’s CreateSoundBuf-
fer() method, which creates an IDirectSoundBuffer8 object. Next, the Direct-
Sound sound buffer is handed to our C++ wrapper class, DirectSound

AudioBuffer, and inserted into the master list of sound effects managed by Audio.

Releasing an audio buffer is pretty trivial:

void DirectSoundAudio::VReleaseAudioBuffer(IAudioBuffer *sampleHandle)

{

sampleHandle->VStop();

m_AllSamples.remove(sampleHandle);

}

The call to IAudioBuffer::VStop() stops the sound effect, and it is then
removed from the list of active sounds.

Game Sound System Architecture 419

The second piece of this platform-dependent puzzle is the implementation of the
DirectSoundAudioBuffer, which picks up and defines the remaining unimple-
mented virtual functions from the IAudioBuffer interface.

class DirectSoundAudioBuffer : public AudioBuffer

{

protected:

LPDIRECTSOUNDBUFFER m_Sample;

public:

DirectSoundAudioBuffer(

LPDIRECTSOUNDBUFFER sample,

shared_ptr<ResHandle> resource);

virtual void *VGet();

virtual bool VRestore();

virtual bool VPlay(int volume, bool looping);

virtual bool VPause();

virtual bool VStop();

virtual bool VResume();

virtual bool VTogglePause();

virtual bool VIsPlaying();

virtual void VSetVolume(int volume);

private:

HRESULT FillBufferWithSound();

HRESULT RestoreBuffer(BOOL* pbWasRestored);

};

The methods in this class are pretty easy C++ wrappers around IDirectSound

Buffer8. The exceptions are FillBufferWithSound() and RestoreBuffer().

DirectSoundAudioBuffer::DirectSoundAudioBuffer(

LPDIRECTSOUNDBUFFER sample,

shared_ptr<CSoundResource> resource)

: AudioBuffer(resource)

{

m_Sample = sample;

FillBufferWithSound();

}

void *DirectSoundAudioBuffer::VGet()

{

if (!VRestore())

return NULL;

420 Chapter 13 n Game Audio

return m_Sample;

}

bool DirectSoundAudioBuffer::VPlay(int volume, bool looping)

{

if(!g_Audio->VActive())

return false;

VStop();

m_Volume = volume;

m_isLooping = looping;

LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

if (!pDSB)

return false;

pDSB->SetVolume(volume);

DWORD dwFlags = looping ? DSBPLAY_LOOPING : 0L;

return (S_OK==pDSB->Play(0, 0, dwFlags));

}

bool DirectSoundAudioBuffer::VStop()

{

if(!g_Audio->VActive())

return false;

LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

if(pDSB)

return false;

m_isPaused=true;

pDSB->Stop();

return true;

}

bool DirectSoundAudioBuffer::VResume()

{

m_isPaused=false;

return VPlay(VGetVolume(), VIsLooping());

}

bool DirectSoundAudioBuffer::VTogglePause()

{

if(!g_Audio->VActive())

return false;

Game Sound System Architecture 421

if(m_isPaused)

{

VResume();

}

else

{

VPause();

}

return true;

}

bool DirectSoundAudioBuffer::VIsPlaying()

{

if(!g_Audio->VActive())

return false;

DWORD dwStatus = 0;

LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

pDSB->GetStatus(&dwStatus);

bool bIsPlaying = ((dwStatus & DSBSTATUS_PLAYING) != 0);

return bIsPlaying;

}

void DirectSoundAudioBuffer::VSetVolume(int volume)

{

const int gccDSBVolumeMin = DSBVOLUME_MIN;

if(!g_Audio->VActive())

return;

LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

assert(volume>=0 && volume<=100 && “Volume must be between 0 and 100”);

// convert volume from 0-100 into range for DirectX

// Don’t forget to use a logarithmic scale!

float coeff = (float)volume / 100.0f;

float logarithmicProportion = coeff >0.1f ? 1+log10(coeff) : 0;

float range = (DSBVOLUME_MAX - gccDSBVolumeMin);

float fvolume = (range * logarithmicProportion) + gccDSBVolumeMin ;

GCC_ASSERT(fvolume>=gccDSBVolumeMin && fvolume<=DSBVOLUME_MAX);

HRESULT hr = pDSB->SetVolume(LONG(fvolume));

GCC_ASSERT(hr==S_OK);

}

422 Chapter 13 n Game Audio

Most of the previous code has a similar structure and is a lightweight wrapper
around IDirectSoundBuffer8. The first few lines check to see if the audio system
is running, the audio buffer has been initialized, and parameters have reasonable
values. Take note of the VSetVolume method; it has to renormalize the volume
value from 0–100 to a range compatible with DirectSound, and it does so with a log-
arithmic scale, since sound intensity is logarithmic in nature.

The last three methods in this class are a little trickier, so I’ll give you a little more detail
on them. The first, VRestore(), is called to restore sound buffers if they are ever lost.
If that happens, you have to restore it with some DirectSound calls and then fill it with
sound data again—it doesn’t get restored with its data intact. The VRestore() method
calls RestoreBuffer() to restore the sound buffer, and if that is successful, it calls
FillBufferWithSound() to put the sound data back where it belongs.

bool DirectSoundAudioBuffer::VRestore()

{

HRESULT hr;

BOOL bRestored;

// Restore the buffer if it was lost

if(FAILED(hr = RestoreBuffer(&bRestored)))

return NULL;

if(bRestored)

{

// The buffer was restored, so we need to fill it with new data

if(FAILED(hr = FillBufferWithSound()))

return NULL;

}

return true;

}

This implementation of RestoreBuffer() is pretty much lifted from the Direct-
Sound samples. Hey, at least I admit to it! If you’re paying attention, you’ll notice
an unfortunate bug in the code—see if you can find it:

HRESULT DirectSoundAudioBuffer::RestoreBuffer(BOOL* pbWasRestored)

{

HRESULT hr;

if(m_Sample)

return CO_E_NOTINITIALIZED;

if(pbWasRestored)

*pbWasRestored = FALSE;

Game Sound System Architecture 423

DWORD dwStatus;

if(FAILED(hr = m_Sample->GetStatus(&dwStatus)))

return DXUT_ERR(L”GetStatus”, hr);

if(dwStatus & DSBSTATUS_BUFFERLOST)

{

// Since the app could have just been activated, then

// DirectSound may not be giving us control yet, so

// the restoring the buffer may fail.

// If it does, sleep until DirectSound gives us control but fail if

// if it goes on for more than 1 second

int count = 0;

do

{

hr = m_Sample->Restore();

if(hr == DSERR_BUFFERLOST)

Sleep(10);

}

while((hr = m_Sample->Restore()) == DSERR_BUFFERLOST &&

++count < 100);

if(pbWasRestored != NULL)

*pbWasRestored = TRUE;

return S_OK;

}

else

{

return S_FALSE;

}

}

The bug in the method is the termination condition of the do/while loop; it could try
forever, assuming DirectSound was in some wacky state. This could hang your game
and cause your players to curse your name and post all kinds of nasty things on the
Internet. Making the code better depends on what you want to do when this kind of
failure happens. You likely would throw up a dialog box and exit the game. It’s totally
up to you. The lesson here is that just because you grab something directly from a
DirectX sample doesn’t mean you should install it into your game unmodified!

The next method is FillBufferWithSound(). Its job is to copy the sound data from
a sound resource into a prepared and locked sound buffer. There’s also a bit of code to
handle the special case where the sound resource has no data—in that case, the sound
buffer gets filled with silence. Notice that “silence” isn’t necessarily a buffer with all zeros.

424 Chapter 13 n Game Audio

HRESULT DirectSoundAudioBuffer::FillBufferWithSound(void)

{

HRESULT hr;

VOID *pDSLockedBuffer = NULL; // DirectSound buffer pointer

DWORD dwDSLockedBufferSize = 0; // Size of DirectSound buffer

DWORD dwWavDataRead = 0; // Data to read from the wav file

if(m_Sample)

return CO_E_NOTINITIALIZED;

// Make sure we have focus, and we didn’t just switch in from

// an app which had a DirectSound device

if(FAILED(hr = RestoreBuffer(NULL)))

return DXUT_ERR(L”RestoreBuffer”, hr);

int pcmBufferSize = m_Resource->Size();

shared_ptr<SoundResourceExtraData> extra =

static_pointer_cast<SoundResourceExtraData>(m_Resource->GetExtra());

// Lock the buffer down

if(FAILED(hr = m_Sample->Lock(0, pcmBufferSize,

&pDSLockedBuffer, &dwDSLockedBufferSize,

NULL, NULL, 0L)))

return DXUT_ERR(L”Lock”, hr);

if(pcmBufferSize == 0)

{

// Wav is blank, so just fill with silence

FillMemory((BYTE*) pDSLockedBuffer,

dwDSLockedBufferSize,

(BYTE)(m_Resource->GetFormat()->wBitsPerSample == 8 ? 128 : 0));

}

else

{

CopyMemory(pDSLockedBuffer,

m_Resource->GetPCMBuffer(), pcmBufferSize);

if(pcmBufferSize < (int)dwDSLockedBufferSize)

{

// If the buffer sizes are different fill in the rest with silence

FillMemory((BYTE*) pDSLockedBuffer + pcmBufferSize,

dwDSLockedBufferSize - pcmBufferSize,

(BYTE)(m_Resource->GetFormat()->wBitsPerSample == 8 ? 128 : 0));

}

}

Game Sound System Architecture 425

// Unlock the buffer, we don’t need it anymore.

m_Sample->Unlock(pDSLockedBuffer, dwDSLockedBufferSize, NULL, 0);

return S_OK;

}

There’s also some special case code that handles the case where the DirectSound
buffer is longer than the sound data—any space left over is filled with silence.

There’s one last method to implement in the IAudioBuffer interface, the
VGetProgress() method:

float DirectSoundAudioBuffer::VGetProgress()

{

LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

DWORD progress = 0;

pDSB->GetCurrentPosition(&progress, NULL);

float length = (float)m_Resource->Size();

return (float)progress / length;

}

This useful little routine calculates the current progress of a sound buffer as it is
being played. Sound plays at a constant rate, so things like music and speech will
sound exactly as they were recorded. It’s up to you, the skilled programmer, to get
your game to display everything exactly in sync with the sound. You do this by poll-
ing the sound effect’s progress when your game is about to start or change an
animation.

Perhaps you have an animation of a window cracking and then shattering. You’d
launch the sound effect and animation simultaneously, call VGetProgress() on
your sound effect every frame, and set your animation progress accordingly. This is
especially important because players can detect even tiny miscues between sound
effects and animation.

Sound Processes

All of the classes you’ve seen so far form the bare bones of an audio system for a
computer game. What’s missing is some way to launch and monitor a sound effect
as it is playing, perhaps to coordinate it with an animation. If you paid some atten-
tion in Chapter 7, you’ll remember the Process class. It turns out to be perfect for
this job.

class SoundProcess : public Process

{

426 Chapter 13 n Game Audio

public:

SoundProcess(

shared_ptr<ResHandle> soundResource,

int typeOfSound=PROC_SOUNDFX,

int volume=100,

bool looping=false);

virtual ~SoundProcess();

virtual void VOnUpdate(const int deltaMilliseconds);

virtual void VOnInitialize();

virtual void VKill();

virtual void VTogglePause();

void Play(const int volume, const bool looping);

void Stop();

void SetVolume(int volume);

int GetVolume();

int GetLengthMilli();

bool IsSoundValid() { return m_SoundResource!=NULL; }

bool IsPlaying();

bool IsLooping() { return m_AudioBuffer->VIsLooping(); }

float GetProgress();

protected:

SoundProcess(); //Disable Default Construction

void InitializeVolume();

void Replay() { m_bInitialUpdate = true; };

shared_ptr<ResHandle> m_SoundResource;

shared_ptr<IAudioBuffer> m_AudioBuffer;

int m_Volume;

bool m_isLooping;

};

This class provides a single object that manages individual sounds. Many of the
methods are re-implementations of some IAudioBuffer methods, and while this
isn’t the best C++ design, it can make things a little easier in your code.

As you might expect, the parameters to initialize this object are a ResHandle and
initial sound settings. One parameter needs a little explanation, typeOfSound.
Every process has a type, and sound processes use this to distinguish themselves

Game Sound System Architecture 427

into sound categories such as sound effects, music, ambient background effects, or
speech. This creates an easy way for a game to turn off or change the volume level
of a particular type of sound, which most gamers will expect. If players want to turn
down the music level so they can hear speech better, it’s a good idea to let them.

SoundProcess::SoundProcess(

shared_ptr<ResHandle> soundResource,

int typeOfSound, int volume, bool looping)

: CProcess(typeOfSound, 0),

m_SoundResource(soundResource),

m_Volume(volume),

m_isLooping(looping)

{

InitializeVolume();

}

SoundProcess::~SoundProcess()

{

if (m_AudioBuffer)

{

g_Audio->VReleaseAudioBuffer(m_AudioBuffer.get());

}

}

The meat of the code in SoundProcess is in the next few methods. One important
concept to understand about sounds is that the code might create a sound process
long before the sound should be played or even loaded. Since sound effects tend to
require a lot of data, it’s a good idea to be careful about when you instantiate sound
effects. After all, you don’t want your game to stutter or suffer wacky pauses. The
code shown next assumes the simplest case, where you want the sound to begin play-
ing immediately, but it’s good to know that you don’t have to do it this way.

void SoundProcess::VOnInitialize()

{

if (m_handle == NULL || m_handle->GetExtra() == NULL)

return;

//This sound will manage its own handle in the other thread

IAudioBuffer *buffer = g_Audio->VInitAudioBuffer(m_handle);

if (!buffer)

{

VKill();

return;

}

428 Chapter 13 n Game Audio

m_AudioBuffer.reset(buffer);

Play(m_Volume, m_isLooping);

}

The VOnUpdate method monitors the sound effect as it’s being played. Once it is
finished, it kills the process and releases the audio buffer. If the sound is looping, it
will play until some external call kills the process. Again, you don’t have to do it this
way in your game. Perhaps you’d rather have the process hang out until you kill it
explicitly:

void SoundProcess::VOnUpdate(const int deltaMilliseconds)

{

// Call base

Process::VOnUpdate(deltaMilliseconds);

if (IsDead() && IsLooping())

{

Replay();

}

}

This class overloads the VKill() method to coordinate with the audio system. If the
process is going to die, so should the sound effect.

void SoundProcess::VKill()

{

if (IsPlaying())

Stop();

Process::VKill();

}

Notice that the base class’s VKill() is called at the end of the method, rather than
the beginning. You can look at VKill() similar to a destructor, which means this
calling order is a safer way to organize the code.

As advertised, the remaining methods do nothing more than pass calls into the
IAudioBuffer object.

bool SoundProcess::IsPlaying()

{

if (! m_handle || ! m_AudioBuffer)

return false;

return m_AudioBuffer->VIsPlaying();

}

Game Sound System Architecture 429

int SoundProcess::GetLengthMilli()

{

if (m_handle && handle->GetExtra())

{

shared_ptr<SoundResourceExtraData> extra =

static_pointer_cast<SoundResourceExtraData>(m_handle->GetExtra());

return extra->GetLengthMilli();

}

else

return 0;

}

void SoundProcess::SetVolume(int volume)

{

if(m_AudioBuffer==NULL)

return;

GCC_ASSERT(volume>=0 &&

volume<=100 &&

“Volume must be a number between 0 and 100”);

m_Volume = volume;

m_AudioBuffer->VSetVolume(volume);

}

int SoundProcess::GetVolume()

{

if(m_AudioBuffer==NULL)

return 0;

m_Volume = m_AudioBuffer->VGetVolume();

return m_Volume;

}

void SoundProcess::TogglePause()

{

if(m_AudioBuffer)

m_AudioBuffer->VTogglePause();

}

void SoundProcess::Play(const int volume, const bool looping)

{

GCC_ASSERT(volume>=0 &&

volume<=100 &&

“Volume must be a number between 0 and 100”);

430 Chapter 13 n Game Audio

if(!m_AudioBuffer)

return;

m_AudioBuffer->VPlay(volume, looping);

}

void SoundProcess::Stop()

{

if(m_AudioBuffer)

m_AudioBuffer->VStop();

}

float SoundProcess::GetProgress()

{

if (m_AudioBuffer)

return m_AudioBuffer->VGetProgress();

return 0.0f;

}

Launching Sound Effects

The only thing you need to see now is how to tie all this together to launch
and monitor a sound effect in your game. It may seem a little anticlimactic, but
here it is:

Resource resource(“SpaceGod7-Level2.ogg”);

shared_ptr<ResHandle> rh = g_pApp->m_ResCache->GetHandle(&resource);

shared_ptr<SoundProcess> sfx(new SoundProcess(srh, PROC_MUSIC, 100, true));

m_pProcessManager->Attach(sfx);

There’s clearly an awful lot of work going on in the background, all of which you
now know how to do. Launching a sound effect ties together much of the code
you’ve seen in this book: a cooperative multitasker, the resource cache, and a bit of
DirectX, which launches an extra thread to manage the problem of getting data to the
sound card at exactly the right speed. Still, it’s nice to know that all that functionality
can be accessed with three lines of code.

If you want to launch three sound effects based on the same data, one playing as
soon as the other is complete, here’s how you do it. Each one plays at a lower volume
level than the one before it.

Resource resource(“blip.wav”);

shared_ptr<SoundProcess> sfx1(new SoundProcess(srh, PROC_SOUNDFX, 100, false));

shared_ptr<SoundProcess> sfx2(new SoundProcess(srh, PROC_SOUNDFX, 60, false));

shared_ptr<SoundProcess> sfx3(new SoundProcess(srh, PROC_SOUNDFX, 40, false));

Game Sound System Architecture 431

m_pView->m_pProcessManager->Attach(sfx1);

sfx1->SetNext(sfx2);

sfx2->SetNext(sfx3);

Other Technical Hurdles

There are a few more wires to connect, in code and in your brain, before you’re ready
to install a working sound system in your game. Most sounds are tied directly to
game objects or events. Even music is tied to the intensity of the game or, even bet-
ter, the impending intensity of the game! Tying sounds to game objects and synchro-
nization are critical problems in any game sound system. If you have multiple effects
at one time, you’ll also have to worry about mixing issues.

Sounds and Game Objects

Imagine the following game situation: A wacky machine in a lab is active and makes
some kind of “wub-wub-wub” sound tied to an animation. Your hero, armed with his
favorite plasma grenade, tosses one over to the machine and stands back to watch the
fun. The grenade explodes, taking the wacky machine and the “wub-wub-wub” noise
with it. What’s really going on in the background?

Your game has some grand data structure of game actors, one of which is the doomed
machine. When the grenade goes off, there’s likely a bit of code or script that searches
the local area for actors that can be damaged. Each actor in the blast radius will get
some damage, and the code that applies damage will notice the machine is a gonner.

What happens next is a core technical problem in computer games: When the
machine is destroyed, related game actors or systems should be notified. This can
include things like sound effects or animation processes. Most games solve this with
the trigger/event system, and this is no exception.

For purposes of clarity, the audio system code presented in this chapter has no such
hook, but the event system you read about in Chapter 11, “Game Event Manage-
ment,” is exactly what is needed to solve this problem. You’ll see how these two sys-
tems are tied together in Chapter 21, “A Game of Teapot Wars.”

Timing and Synchronization

Imagine the following problem: You have a great explosion graphics effect that has a
secondary and tertiary explosion after the initial blast. How could you synchronize
the graphics to each explosion? The pacing of the sound is pretty much constant, so
the graphics effect should monitor the progress of the sound and react accordingly.
We can use the Process class to make this work:

432 Chapter 13 n Game Audio

class ExplosionProcess : public Process

{

public:

ExplosionProcess() : Process(PROC_GAMESPECIFIC) { m_Stage=0; }

protected:

int m_Stage;

shared_ptr<SoundProcess> m_Sound;

virtual void VOnUpdate(unsigned long deltaMs);

virtual void VOnInit();

};

void ExplosionProcess::VOnInit()

{

Process::VOnInit();

Resource resource(“explosion.wav”);

shared_ptr<ResHandle> srh = g_pApp->m_ResCache->GetHandle(&resource);

m_Sound.reset(GCC_NEW SoundProcess(srh));

// Imagine cool explosion graphics setup code here!!!!

//

//

//

}

void ExplosionProcess::VOnUpdate(unsigned long deltaMs)

{

float progress = m_Sound->GetProgress();

switch (m_Stage)

{

case 0:

if (progress>0.55f)

{

++m_Stage;

// Imagine secondary explosion effect launch right here!

}

break;

case 1:

if (progress>0.75f)

{

++m_Stage;

// Imagine tertiary explosion effect launch right here!

}

break;

Other Technical Hurdles 433

default:

break;

}

}

The ExplosionProcess owns a sound effect and drives the imaginary animation
code. The sound effect is initialized during the VOnInit() call, and VOnUpdate()

handles the rest as you’ve seen before. There’s a trivial state machine that switches
state as the sound progresses past some constant points, 55 percent and 75 percent
of the way through.

Do you notice the hidden problem with this code? This is a common gotcha in com-
puter game design. What happens if the audio designer decides to change the sound
effect and bring the secondary explosion closer to the beginning of the sound? It’s
equally likely an artist will change the timing of an animated texture, which could
have exactly the same effect. Either way, the explosion effect looks wrong, and it’s
anyone’s guess who will get the bug: programmer, artist, or audio engineer.

The Butterfly Effect

Code, animations, and sound data are tightly coupled and mutually dependent
entities. You can’t easily change one without changing the others, and you can
make your life hell by relating all three with hard-coded constants. There’s no
silver bullet for this problem, but there are preventative measures. It might seem
like more work, but you could consider factoring the ExplosionClass into
three distinct entities, each with its own animation and sound data. Either way,
make sure that you have some asset tracking so you can tell when someone
changes anything in your game: code, sounds, or animations. When something
breaks unexpectedly, the first thing you check is changes to the files.

Mixing Issues

Sound in your game will include sound effects, music, and speech. Depending on
what’s going on, you might have to change the volume of one or more of these ele-
ments to accentuate it. A good example of this is speech, and I’m not talking about
the random barks of a drunken guard. Games will introduce clues and objectives with
AI dialogue, and it’s important that the player be able to hear it. If you played Thief:
Deadly Shadows, there’s a good example of this in the Seaside Mansion mission about
halfway through the game. The thunder and lightning outside were so loud it was
difficult to hear the AI dialogue.

That’s one of the reasons there is this notion of SoundType in our audio system. It
gives you a bit of data to hang on to if you want to globally change the volume of

434 Chapter 13 n Game Audio

certain sounds. In the case of Thief, it would have been a good idea to cut the volume
of the storm effects so the game clues in the AI dialogue would be crystal clear.

Don’t Depend on Dialogue

Dialogue is great to immerse players in game fiction, but you can’t depend
on it 100 percent. If you give critical clues and objectives via dialogue, make
sure that you have some secondary way to record and represent the
objectives, such as a special screen where the player can read a synopsis.
It’s too easy for a player to miss something. If your game enables subtitles,
you can provide a screen that shows the last conversation.

While we’re talking about mixing, you’ve got to take some care when changing the
levels of sound effects. Any discrete jump in volume is jarring. Solve this problem
with a simple fade mechanism:

FadeProcess::FadeProcess(

shared_ptr<SoundProcess> sound,

int fadeTime,

int endVolume)

: Process(PROC_INTERPOLATOR)

{

m_Sound = sound;

m_TotalFadeTime = fadeTime;

m_StartVolume = sound->GetVolume();

m_EndVolume = endVolume;

m_ElapsedTime = 0;

VOnUpdate(0);

}

void FadeProcess::VOnUpdate(unsigned long deltaMs)

{

if (!m_bInitialUpdate)

m_ElapsedTime += deltaMilliseconds;

Process::VOnUpdate(deltaMilliseconds);

if (m_Sound->IsDead())

Succeed();

float cooef = (float)m_ElapsedTime / m_TotalFadeTime;

if (cooef>1.0f)

cooef = 1.0f;

Other Technical Hurdles 435

if (cooef<0.0f)

cooef = 0.0f;

int newVolume = m_StartVolume +

(float(m_EndVolume - m_StartVolume) * cooef);

if (m_ElapsedTime >= m_TotalFadeTime)

{

newVolume = m_EndVolume;

Succeed(); }

m_Sound->SetVolume(newVolume);

}

This class can change the volume of a sound effect over time, either up or down. It
assumes the initial volume of the sound effect has already been set properly, and all
the times are given in milliseconds.

Here’s how you would create some background music and fade it in over 10 seconds:

Resource resource(“SpaceGod7-Level2.ogg”);

shared_ptr<ResHandle> rh = g_pApp->m_ResCache->GetHandle(&resource);

shared_ptr<SoundProcess> music(GCC_NEW SoundProcess(rh, PROC_MUSIC, 0, true));

m_pProcessManager->Attach(music);

shared_ptr<FadeProcess> fadeProc(new FadeProcess(music, 10000, 100));

m_pProcessManager->AttachProcess(fadeProc);

The fade process grabs a smart pointer reference to the sound it is modifying, and
once the volume has been interpolated to the final value, the process kills itself.
Note that the original sound is created with a zero volume, and the fade process
brings it up to 100.

Simlish

Sims have their own language of gibberish called “Simlish,” which is meant to
sound like a real language. While there are a few words and phrases that
come to have actual translations, it’s mostly just designed to sound
appropriate and go with the tone of the conversation. Even the music has to
use this fake language, which presents an interesting challenge to the
musicians who create the songs you can hear when your sim turns on its
radio.

How was Simlish born? Well, there is no possible way to record all the speech
and dialogue required for each interaction without it sounding completely
stale after the first few times. By having Simlish, we are more easily able to
create that illusion without shipping a terabyte of speech.

436 Chapter 13 n Game Audio

Some Random Notes

In the last 50 pages or so, you’ve read about sound resources, audio buffers, audio
systems, and sound processes. This is where most books would stop. Neither my
editor nor my readers will find any surprise in me continuing on a bit about
sound. Why? I haven’t told you a thing about how to actually use sound in your
game.

Data-Driven Sound Settings

Sometimes I think this book is equally good at showing you how not to code game
technology as it is at showing you how to code correctly. The observant programmer
would notice that all my sound examples in the previous pages all had hard-coded
constants for things like volume, fade-in times, or animation points.

From day one, most programmers learn that hard-coded constants are a bad thing,
and they can become a complete nightmare in computer game programming. The
reason that I use so many of them in this book is because they make the code easier
to read and understand. Real computer games would load all of this data at runtime
from a data file. If the data changes, you don’t have to recompile. If the game can
reload the data at runtime with a cheat key, you can test and tweak this kind of
data and get instant feedback.

With this kind of data-driven solution, programmers don’t even have to be in the
building when the audio guys are making the sounds. Believe it or not, they actually
work later than programmers. This leaves programmers doing what they do best—
programming game technology! A bit of volume data can also be tweaked more eas-
ily than the original sound file can be releveled, so your audio engineer doesn’t have
to be in the building, either.

So who’s left to set the level on new sound effects on a Saturday? It’s so easy that
even a producer could do it. For those of you outside the game industry, I could as
well have said, “It’s so easy, your boss could do it!”

Record All Audio at Full Volume

Every sound effect should be recorded at full volume, even if it is way too
loud for the game. This gives the sound the highest degree of waveform
accuracy before it is attenuated and mixed with the other sounds in the
primary sound buffer.

Some Random Notes 437

Background Ambient Sounds and Music

Most games have a music track and an ambient noise track along with the incident
sounds you hear throughout the game. These additional tracks are usually long
because they’ll most likely loop back to their beginning until there’s some environ-
mental reason to change them.

An example of an ambient noise track could be the sounds of a factory, crowd noises,
traffic, or some other noise. Sounds like these have the effect of placing the players
in the environment and give the impression that there’s a lot more going on than
what they see. This technique was used brilliantly in Thief: Deadly Shadows in the
city sections. You could clearly hear city dwellers, small animals, carts, and other
such noise, and it made you feel as if you were in the middle of a medieval city.
But be warned—if the background ambient has recognizable elements, such as some-
one saying, “Good morning,” players will recognize the loop quickly and get
annoyed. Keep any ambient background close to “noise” instead of easily discernible
sounds.

Music adds to this environment by communicating gut-level intensity. It helps
inform the player and add a final polish to the entire experience. Perhaps my favorite
example of music used in a game is the original Halo. Instead of only reacting to the
current events in the game, the music segues just before a huge battle, telling the
player he’d better reload his shotgun and wipe the sweat off his controller.

Live Music Rocks—from Professional Musicians

On the Microsoft Casino project, I thought it would be a great idea to
record live music. It would be classy and add a unique feel to the game.
I’d never produced live music for a game, so I was a little nervous about
it. The music was composed by an Austin composer, Paul Baker, who also
conducted the band. I got to play the part of the big-time producer guy
behind the glass in the recording studio. I thought it was really cool until I
heard the band run through the music the first time. It was horrible! I
thought I’d be fired and wondered quickly how I could salvage this
disaster.

My problem was that I’d never seen how professional musicians work. They
arrived that day having never seen the music before, and the first time they
played it they were all sight-reading. After a break, they played it one more time, and it was nearly
flawless. I thought I’d just heard a miracle, but that’s just my own naiveté. There was one errant horn
note, blurted a little off time, and they cleared everyone out of the room except for the one horn player.
He said, “gimme two measures,” and they ran the tape back. At exactly the right moment, he played the
single note he screwed up, and it was mixed flawlessly into the recording. I was so impressed by the live
performance that I’ll never be afraid of doing it in other games.

438 Chapter 13 n Game Audio

The CPU budget for all this sound decompression is definitely a factor. The longish
music and ambient noise tracks will certainly be streamed from a compressed source
rather than loaded into memory in uncompressed PCM format. Different platforms
and decompression algorithms will take different and sometimes surprising amounts
of your CPU time, so you should keep track of this. Do some benchmarks on your
own and set your budgets accordingly.

Speech

In-game character speech is a great design technique to immerse the player and add
dimension to the AI characters. Games use character speech to communicate story,
provide clues, and show alert levels in patrolling guards. Players expect a great script,
smooth integration of the speech effects with the graphics, and most importantly, the
ability to ignore it if they want to.

Random Barks

A bark is another way of saying “filler speech.” It usually describes any bit of speech
that is not part of a scripted sequence. Good examples of this are AI characters talking
to themselves or reactions to game events like throwing a grenade around a corner.

Some of my favorite random barks came from the drunk guard in Thief: Deadly Sha-
dows. It was perfect comic relief in what is normally a dark game with long stretches
of tension. If you hid in a nearby shadow, you’d hear this inebriated and somewhat
mentally challenged guard talk to himself for a really long time.

In the background, a piece of code selects a random speech file at random intervals.
The code must keep track of the barks so it doesn’t play the same thing three times
in a row, and it should also make sure that the random barks don’t overlap any
scripted speech the AI character might have, either.

Something that works well is a queue for each AI character regarding speech. Here a
high-priority scripted bark will wipe out any random barks in the queue, and you can
keep already barked elements in the queue to record which ones have played in
recent history.

Too Much of a Good Thing Is True

Back on Microsoft Casino, there was this “blue-haired old lady” character
that was our first AI character installed in the game. She only had one
random bark: “Have you even been to Hoover Dam?,” she would say,
waiting for her cards. We sent the build to Microsoft QA, and we waited
patiently for the phone call, which came way too quickly for it to be news
of acceptance. The lead QA on the phone told us that after just one hour of

Some Random Notes 439

testing, no one in QA was “ever likely to ever visit the @%$#& Hoover Dam” and could we please
remove the bark technology until more barks were recorded. The bark was so reviled, we had to
remove it entirely from the game.

Game Fiction

Characters talking among themselves or straight to the player are an excellent way to
give objectives or clues. If you do this, you must beware of a few gotchas. First, you
shouldn’t force the player to listen to the speech again if he’s heard it before. Second,
you should record a summary of the clue or objective in a form that can be refer-
enced later—it’s too easy to miss something in a speech-only clue. The third gotcha
involves localization.

One game that comes to mind that solved the first gotcha in an interesting way was
Munch’s Odyssey, an Xbox launch title. Throughout the game, this funny mystic
character appears and tells you exactly what you need to do to beat the level. If
you’ve heard the spiel before, you can hit a button on the controller and your char-
acter, Abe or Munch, will interrupt and say something like, “I’ve heard all this
before,” and the mystic guy will bark, “Whatever…” and disappear. Very effective.

The second gotcha is usually solved with some kind of in-game notebook or objec-
tives page. It’s too easy to miss something in scripted speech, especially when it tends
to be more colorful and therefore a little easier to miss the point entirely. Almost
every mission-based game has this design conceit—it keeps the players on track and
keeps them from getting lost.

The last gotcha has to do with language translation. What if you record your speech
in English and want to sell your game in Japan? Clearly, the solution involves some
kind of subtitle to go along with the scripted speech. Re-recording the audio can be
prohibitively expensive if you have a huge script and a small budget.

Lip Synching

Synching the speech files to in-game character animations is challenging, from both a
technology and tools standpoint. This is yet another one of those topics that could
use an entire book, so let me at least convince you that the problem is a big one
and not one to be taken lightly or without experience.

It turns out that human speech has a relatively small number of unique sounds and
sound combinations. You can create convincing speech with only a few dozen
sounds. Since each sound is made with a particular position of the mouth and ton-
gue, it follows that an artist can create these positions in a character ahead of time.

440 Chapter 13 n Game Audio

While the speech is being played, a data stream is fed into the animation system that
tells which phoneme to show on the character at each point in time. The animation
system interpolates smoothly between each sound extreme, and you get the illusion
that the character is actually talking.

Cheap Hacks for Lip Synching

There are ways of doing lip synching on the cheap, depending on your game.
Interstate 76 solved the lip synching problem by removing all the lips; none of
their characters had mouths at all! Another clever solution is to have the
characters animate to a particular phrase like “peas and carrots, peas and
carrots.” Wing Commander II, a game published by Origin Systems in the
mid-1990s, had all its characters lip-synched to a single phrase: “Play more
games like Wing Commander II.”

Recording Speech

Most games will use at most a few hundred sound effects. This relatively small num-
ber of sound files is trivial to manage compared to speech files in some games. Thief:
Deadly Shadows had somewhere around 10,000 lines of speech. You can’t just throw
these files into a single directory. You’ve got to be organized.

The first thing you need is a script—one for each character. As part of the script, the
character should be described in detail, even to the point of including a rendering of
the character’s face. Voice actors use the character description to get “into character”
and create a great performance.

The recording session will most likely have the voice actor read the entire script from
top to bottom, perhaps repeating a line or phrase a few times to get it right. It’s criti-
cal to keep accurate records about which one of the lines you intend to keep and
which you’ll throw away. A few days later, you could find it difficult to remember.

You’ll record to DAT tape or some other high-fidelity media and later split the ses-
sion into individual, uncompressed files. Here’s where your organization will come
into key importance: You should have a database that links each file with exactly
what is said. This will help foreign language translators record localized speech or
create localized subtitles. It is, after all, quite likely that the actor may ad lib a bit
and say something a little differently than the original script.

The Last Dance

The one thing I hope you get from this chapter besides a bit of technology advice is
that sound is a critically important part of your game. This book has certainly spent

The Last Dance 441

enough pages on it. Most programmers and designers tend to wait until the very end
of the production cycle before bringing in the sound engineers and composers. By
that time, it’s usually too late to create a cohesive sound design in your game, and
the whole thing will be horribly rushed. As much as sound designers have resigned
themselves to this fate, it is still something you should try to avoid.

Get organized from the very beginning, and ask yourself whether each task in your
game schedule needs an audio component. You’ll be surprised how many objects
need sound effects, how many levels need their own background ambient tracks,
and how much speech you need to record. Basically, if it moves at all, it needs
sound.

Sound technology will also stress more of your core game components than any
other system, including resource cache, streaming, memory, main loop, and more.
Once your sound system is working flawlessly, you can feel confident about your
lower-level systems. That’s another good reason to get sound in your game as early as
possible.

Most importantly, don’t forget that sound sets the emotional stage for players. They
will get critical player direction, feel more immersed, and react more strongly to
everything if you’ve done a good job with your sound system and the sounds that it
makes possible.

442 Chapter 13 n Game Audio

Chapter 14

by Mike McShaffry

3D Graphics Basics

I want to tell you up front that the next three chapters won’t teach you everything
you need to know about 3D graphics—actually, far from it. Walk the aisle of any
decent computer bookstore, and you’ll see racks of books devoted entirely to 3D gra-
phics. I’m only including three 3D chapters in this book, so I can’t compete with the
classics on 3D graphics. What’s lacking in volume, I’ll try to make up in focus and
content. My job in these three chapters is to open the door to 3D graphics, especially
in the way that game programmers utilize 3D techniques within well-designed game
architecture. Many samples and tutorials are so hard coded they don’t even work
well when you import them into a game that draws more than one object, or they
simply fail to work when you make a simple change. My goal is to give you a funda-
mental understanding of 3D graphics concepts, show you an architecture that is a
good place to experiment and learn, and thus give you just enough knowledge to
have some fun.

In this chapter, I’ll focus on the basics. First, you’ll learn about the 3D rendering
pipeline. Then you’ll have a 3D math primer. Lastly, you’ll learn about materials, tex-
tures, lights, and geometry. You’ll need this knowledge before you can learn about
vertex and pixel shaders in the next chapter. This will set the foundation so that
you can start manipulating objects and creating scenes in Chapter 16, “3D Scenes.”

Get caffeinated—this is going to be a fast trip through 3D graphics.

443

3D Graphics Pipeline

The word pipeline describes the process of getting a 3D scene up on a screen. It’s a
great word because it implies a beginning that accepts raw materials, a process that
occurs along the way, and a conclusion from which the refined result pours. This is
analogous to what happens inside 3D game engines. The raw materials or resources
used in the pipeline include:

n Geometry: Everything you see on the screen starts with descriptions of their
shape. Each shape is broken down into triangles, each of which is composed of
three vertices, which is a basic drawable element in 3D engines. Some renderers
support points, lines, and even curved surfaces, but the triangle is by far the
most common. Meshes are collections of triangles.

n Materials: These elements describe appearance. You can imagine materials as
paint that you apply to the geometry. Each material can describe colors, trans-
lucency, and how the material reflects light.

n Textures: These are images that can be applied to objects, just as you might
have applied decals to plastic models or wallpaper to your kitchen.

n Lights: You must have light to see anything. Light can affect an entire scene or
have a local effect that mimics a spotlight.

n Camera: Records the scene onto a render target, such as the screen. It even
describes what kind of lens is used, such as a wide or narrow angle lens. You can
have multiple cameras to split the screen for a multiplayer game or render a
different view to create a rearview mirror.

n Shader: A shader is a bit of code that runs on the video card. It is able to con-
sume all of the above and calculate exactly what pixels to paint to the screen in
the right positions to faithfully render every triangle the camera can see. Shaders
typically work on either vertex positions or individual pixels inside a triangle,
but in truth they can be much more general than that.

Some of the processes applied to the raw materials include the following:

n Transformations: The same object can appear in the world in different orien-
tations and locations. Objects are manipulated in 3D space via matrix
multiplications.

n Culling: At the object level, visible objects are inserted into a list of objects that
are in view of the camera; at the triangle level, individual triangles are removed
if they don’t meet certain criteria, such as facing the camera.

444 Chapter 14 n 3D Graphics Basics

n Lighting: Each object in range of a light source is illuminated by calculating
additional colors applied to each vertex.

n Rasterization: Polygons are drawn, sometimes in many passes, to handle addi-
tional effects such as lighting and shadows.

Graphics pipelines also come in two flavors: fixed-function and programmable. The
fixed-function pipeline sets rendering states and then uses those states to draw ele-
ments with those exact states. A programmable pipeline is much more flexible—it
allows programmers to have detailed control over every pixel on the screen. Many
systems, like the Nintendo Wii, still use a fixed-function pipeline. Modern graphics
cards running Direct3D 10 or above and consoles like the Xbox360 and the PS3 use
a programmable pipeline.

Knowing both fixed-function and programmable pipelines can be a really useful
thing, but there are only so many trees in the forest, and I think it is best that this
chapter focus on a programmable pipeline, specifically Direct3D 11. For those of you
who are still running on a system that can’t use Direct3D 11, like a Windows XP
machine, don’t worry. All the code that accompanies this book contains code for
Direct3D 9’s fixed-function pipeline. The 3D graphics chapters in this book only
describe Direct3D 11, but if you are interested in Direct3D 9, you can find more
information about it in the third edition of this book or in comments in the source
code.

Before you see Direct3D 11, I’m going to take a quick shortcut through two math
classes you probably slept though in high school or college. I know that because I
slept through the same classes—trigonometry and linear algebra.

3D Math 101

I’ll try my best to make this topic interesting. I’ll know I’ve succeeded if I get through
writing it without losing consciousness. This stuff can make your eyes glaze over.
Remember one thing: You must understand the math, or you’ll be hopelessly con-
fused if you attempt any 3D programming. Sure, you’ll be able to compile a DirectX
sample program, tweak some parameters, and make some pretty pictures. Once you
leave “Sampleland” and start making changes to your 3D code, however, you won’t
have a clue why your screen is black and none of the pretty pictures show up. You’ll
attempt to fix the problem with random tweaks of various numbers in your code,
mostly by adding and removing minus signs, and you’ll end up with the same black
screen and a mountain of frustration.

3D Math 101 445

My advice is to start small. Make sure that you understand each component fully and
then move to the next. Have patience, and you’ll never tweak a negative sign in anger
again.

3D Code Can Look Correct and Still Be Wrong

3D programming is easier to get wrong than right, and the difficult part is that a
completely miscoded system can look and feel correct. There will be a point
where things will begin to break down, but by that time you might have
hundreds or thousands of lines of bogus code. If something is wrong, and you
randomly apply a negative sign to something to fix it and don’t understand why
it fixed it, you should back up and review the math.

Coordinates and Coordinate Systems

In a 2D graphics system, you express pixel coordinates with two numbers: (X,Y).
These are screen coordinates to indicate that each integer number X and Y corre-
sponds to a row and column of pixels, respectively. Taken together as a pair, they
describe the screen location of exactly one pixel. If you want to describe a 2D coor-
dinate system fully, you need a little more data, such as where (0,0) is on the screen,
whether the X coordinate describes rows or columns, and in which direction the
coordinates grow—to the left or right. Those choices are made somewhat arbitrarily.
There’s nothing that says you couldn’t create a 2D graphics engine that uses the
lower right-hand corner of the screen as your (0,0) point—your origin. There’s
nothing that would keep you from describing the X-axis as vertical and Y as hori-
zontal, and both coordinates grow positive toward the upper left-hand side of the
screen.

Nothing would keep you from doing this, except perhaps the risk of industry-wide
embarrassment. I said that these choices of coordinate system are somewhat arbi-
trary, but they do have a basis in tradition or programming convenience. Here’s an
example. Since the display memory is organized in row order, it makes sense to
locate the origin at the top left-hand side of the screen. Traditional Cartesian mathe-
matics sets the horizontal as the X-axis and the vertical as the Y-axis, which means
that programmers can relate to the graphics coordinates with ease. It doesn’t hurt
that the original designers of text-display systems read text from left to right, top to
bottom. If these were reversed, programmers would be constantly slapping their fore-
heads and saying, “Oh yeah, those idiots made the X-axis vertical!”

446 Chapter 14 n 3D Graphics Basics

Which Way Is Up?

Drawn to Life: The Next Chapter is a Wii title I worked on that was technically a
3D game, but the camera was locked along a single plane, giving it the feel of a
2D platformer. One of my early tasks was getting a new enemy into the game
and hooking up some basic AI. I went into the design tool and placed the spawn
point for the monster. When I loaded up the game, the monster wasn’t there. I
couldn’t find him anywhere. After banging my head against this problem for a
while, one of the programmers came up and casually mentioned that they were
using the Z-axis as the vertical axis, not Y. Y represented depth, so I was setting
the position of the creature to somewhere behind the scenery instead of up in
the air. This became a common bug throughout development, albeit an easy one
to fix.

A 3D world requires a 3D coordinate system. Each coordinate is expressed as a trip-
let: (X,Y,Z). This describes a position in a three-dimensional universe. As you might
expect, a location on any of the three axes is described with a floating-point number.
The range that can be expressed in a 32-bit floating-point number in IEEE format is
shown in Table 14.1.

The diameter of the known universe is on the order of 1026 meters. The smallest the-
oretical structures of the universe, superstrings, have an estimated length of 10−35

meters. You might believe that a 32-bit floating-point number is more than sufficient
to create a 3D simulation of everything in our universe, but you’d be wrong. Even
though the range is up to the task, the precision is not. Oddly enough, we may one
day find out that the universe is best expressed in terms of 256-bit integers, which
would give enough range and precision to represent a number from 0 to ~1076,
plenty to represent the known universe, ignoring irrational or transcendental num-
bers like π.

So where does that leave you and your 32-bit IEEE floating-point number with its
decent range and lacking precision? The IEEE format stores an effective 24 bits of
resolution in the mantissa. This gives you a range of 1.67 ×107. How much is that?
As Table 14.2 indicates, you should set your smallest unit based on your game

Table 14.1 Precision of Floating-Point Numbers

Single Precision, 32-bit Double Precision, 64-bit

� 2−126 to (2−2−23) × 2127 � 2−1022 to (2−2−52) × 21023

3D Math 101 447

design. Most games can safely use the 100 micrometer (μm) basis since your sandbox
can be as big as downtown San Francisco. The human eye can barely detect objects
100μm across but can’t discern any detail.

This is why most games set their basic unit of measurement as the meter, constrain
the precision to 1mm, and set their maximum range to 100 kilometers. Most art
packages like 3ds Max enable artists to set their basic unit of measurement. If you
use such a package, you need to make sure they set it to the right value for your
game.

Agree with Your Artists on a Standard Unit of Measurement

A common source of problems in computer game development is when artists
and programmers can’t seem to get their units of measurement correct. Game
objects and game logic might use different units of measurement, such as feet
instead of meters. One clue: If things in your game appear either three times
too big or three times too small, someone screwed up the units of
measurement.

Now that we’ve nailed the range and precision of the 3D coordinates, let’s take a few
moments to consider those arbitrary decisions about origin and axes directions.
You’ve probably heard of 3D coordinate systems described as either left- or right-
handed, and if you’re like me, you tend to forget which is which, and the explanation
with your fingers and thumbs was always just a little confusing because I couldn’t
remember how to hold my hands! Here’s another way to visualize it. Imagine that
you are standing at the origin of a classic 3D Cartesian coordinate system, and you
are looking along the positive X-axis. The positive Y-axis points straight up. If the

Table 14.2 Units of Measurement

Smallest
Unit

Physical Description
of Smallest Representable
Object (as a Textured
Polygon)

Upper Range
in Meters

Physical Description of
Area in the Upper Range

100m A group of redwood trees 1.67 × 109 Earth/Moon System

1m A human being 1.67 × 107 North and South America

1cm A coin 1.67 × 106 California

1mm A flea 1.67 × 105 San Francisco Bay Area

100 μm A grain of pollen 1.67 × 104 Downtown San Francisco

448 Chapter 14 n 3D Graphics Basics

coordinate system is right-handed, the Z-axis will point to your right. A left-handed
coordinate system will have a positive Z-axis pointed to the left.

Why is handedness important? For one thing, when you move objects around your
world, you’ll want to know where your positive Z-axis is and how it relates to the
other two, or you might have things zig instead of zag. The tougher answer is that
it affects the formulas for calculating important 3D equations, such as a cross prod-
uct. I’m extremely glad I don’t have to explain a 4D coordinate system. I don’t think
I have it in me.

Converting Handedness

Since some art packages have different handedness than 3D rendering
engines, you have to know how to convert the handedness of objects from
one coordinate system to another. If you don’t do this, all of your objects
will draw incorrectly, with the polygons facing the opposite way that they
should, giving objects an “inside out” appearance. Here is how you do the
conversion:

1. Reverse the order of the vertices on each triangle. If a triangle started
with vertices v0, v1, and v2, they need to be flipped to v2, v1, and v0.

2. Multiply each Z coordinate in the model by −1.
Here’s an example:
Original:
V0 = (2.3, 5.6, 1.2) V1 = (1.0, 2.0, 3.0) V2 = (30.0, 20.0, 10.0)
Becomes:
V0 = (30.0, 20.0, −10.0) V1 = (1.0, 2.0, −3.0) V2 = (2.3, 5.6, −1.2)

Vector Mathematics

Vector and matrix math was always the sleepiest part of linear algebra for me. Rather
than just show you the guts of the dot product or cross product for the umpteenth
time, I’ll also tell you what they do. That’s more important anyway. I’ll also show you
some safety rules regarding matrix mathematics, because they don’t act like regular
numbers.

Before we go any further, you need to know what a unit vector is because it is some-
thing you’ll use all the time in 3D graphics programming. A unit vector is any vector
that has a length of 1.0. If you have a vector of arbitrary length, you can create a unit
vector that points in the same direction by dividing the vector by its length. This is
also known as normalizing a vector:

Vec3 v(3, 4, 0);

float length = sqrt (v.x * v.x + v.y * v.y + v.z * v.z);

3D Math 101 449

Vec3 unit = v / length;

cout “Length=“ << length << newline;

cout “Unit vector: (X,Y,Z)=(“ << unit.x << “,” << unit.y << “,” << unit.z << “)”

<< newline;

The output generated would be:

Length=5.0

Unit vector (X,Y,Z): (0.6,0.8,0.0)

When we talk about dot-and-cross products, their inputs are almost always unit vec-
tors (also called normalized vectors). The formulas certainly work on any arbitrary
vector, but the results are relatively meaningless unless at least one of them is a unit
vector. Take the same formulas and apply unit vectors to them, and you’ll find some
interesting results that you can use to calculate critical angles and directions in your
3D world.

A dot product of two vectors is a single floating-point number, sometimes called a
scalar. The cross product of two vectors is another vector. Remember these two
important facts, and you’ll never get one confused with the other again. Another
way to say this is dot products calculate angles and cross products calculate direction.
The dot product is calculated with the following formula:

float dotProduct = (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z);

Unit vectors never have any coordinate with an absolute value greater than 1.0. Given
that, you’ll notice that the results of plugging various numbers into the dot product
formula have interesting effects. Assuming V1 and V2 are unit vectors:

n V1 equals V2: If you calculate the dot product of a vector with itself, the value
of the dot product is always 1.0.

n V1 is orthogonal to V2: If the two vectors form a right angle to each other and
they are the same length, the result of the dot product is always zero.

n V1 points in the opposite direction to V2: Two vectors of the same length
pointing exactly away from each other have a dot product of −1.0.

If this relationship between vectors, right angles, and the range [-1.0, 1.0] is stirring
some deep dark memory, you’re correct. The dark memory is trigonometry, and the
function you are remembering is the cosine. It turns out that you can use the dot
product of two unit vectors to calculate the angle between two vectors. For two unit
vectors a and b, the formula for calculating the angle between them is

� ¼ cos
�1

ab

jajjbj

� �

450 Chapter 14 n 3D Graphics Basics

That is a complicated way of saying that if you divide the dot product of two vectors
by their lengths multiplied together, you get the cosine of their angle. Take the arc-
cosine of that number, and you have the angle! This is extremely useful in computer
games, since you are always trying to figure out the angle between vectors.

Another way to visualize the dot product graphically is that the dot product projects
one vector onto the other and calculates the length of that vector. This dot product
relationship is shown in Figure 14.1, where the dot product equals the length of the
projection of vector A onto B. As it turns out, this length is exactly the same as the
projection of vector B onto vector A. Weird, huh?

The dot product can be useful by itself, since it can determine whether the angle
between two vectors is acute, a right angle, or obtuse. The classic application of the
dot product in 3D graphics is determining whether a polygon is facing toward or
away from the camera (see Figure 14.2).

In Figure 14.2, the camera has a unit vector called the look at vector, and it points in
the same direction as the camera. Each polygon has a normal vector that is orthogo-
nal to the plane of the polygon. If the dot product between these two vectors is less
than zero, the polygon is facing the camera and should be added to the draw list. In
the case of Figure 14.2, the dot product for these two vectors is close to -1.0, so the
polygon will be drawn.

Figure 14.1
The dot product projects one vector onto another.

3D Math 101 451

If you want the actual angle represented by the dot product, you must perform an
arccosine operation. If you remember those hazy trig classes at all, you’ll know that
the arccosine isn’t defined everywhere, only between values [−1.0, 1.0]. That’s lucky,
because dot products from unit vectors have exactly the same range. So where’s the
problem? The arccosine will always return positive numbers.

The dot product is directionless, giving you the same result no matter which vector
you send in first: A dot B is the same as B dot A. Still not convinced this is a prob-
lem? Let’s assume that you are using the dot product to determine the angle between
your current direction and the direction vector that points to something you are
targeting.

In Figure 14.3, the white arrow is the current direction, and the gray arrows are ori-
ented 45 degrees away about the Y-axis. Notice that one of the gray arrows is point-
ing straight to our teapot target, but the other one is pointing in a completely wrong
direction. Yet, the dot products between the white direction vector and both gray
vectors are the same because the angles are the same!

Figure 14.2
Dot products are used to see if a polygon is facing the camera—the dot product will be negative.

452 Chapter 14 n 3D Graphics Basics

Remember that the dot product measures angles and not direction. As you can see
from the diagram, the dot product won’t tell you which way to turn, only how
much to turn. You need a cross product.

Graphically, the cross product returns a vector that is orthogonal to the plane formed
by the two input vectors. The cross product vector should be normalized before you
use it. Planes have two sides, and the resulting normal vector can only point in one
direction. How does it know which way to point? It turns out that cross products are
sensitive to the order of their input vectors. In other words, A cross B is not equal to
B cross A. As you might expect, it is exactly negative. This is where the handedness
of the coordinate system comes back into play. The cross product is always calculated
with this formula:

cross.x = (A.y * B.z) − (B.y * A.z)

cross.y = (A.z * B.x) − (B.z * A.x)

cross.z = (A.x * B.y) − (B.x * A.y)

Figure 14.3
Dot products can’t find targets.

3D Math 101 453

I’m going to borrow your right hand for a moment. Hold your right hand out in
front of you, fingers together and totally flat. Make sure you are looking at your
palm. Extend your thumb out, keeping your hand flat. Your thumb is vector A, and
your forefinger is vector B. The result of the cross product, A cross B, is a vector
pointing up out of your palm. If you did it backward, B cross A, the vector would
be pointing away from you. This is the fundamental difference between left- and
right-handed coordinate systems—determining which vectors get sent into the cross
product in which order. It matters!

The classic use of the cross product is figuring out the normal vector of a polygon
(see Figure 14.4). The normal vector is fundamental to calculating which polygons
are facing the camera, and therefore, which polygons are drawn and which can be
ignored. It is also good for calculating how much light reflects from the polygon
back to the camera. By the way, if you take the cross product of two parallel vectors,
the result will be a null vector—X, Y, and Z will all equal zero.

For any polygon that has three vertices, V0, V1, and V2, the normal vector is calcu-
lated using a cross product:

Vector A = V1 – V0;

Vector B = V2 – V0;

Vector Cross = CrossProduct(A, B);

In a right-handed coordinate system, the vertices are arranged in a counterclockwise
order because they are seen when looking at the drawn side of the polygon.

Another use is figuring the direction. We have a dot product that tells us that we
need to steer either left or right, but we can’t figure out which. It turns out that the

Figure 14.4
A cross product.

454 Chapter 14 n 3D Graphics Basics

cross product between the direction vectors contains information about which way to
steer.

The cross product between the target vector and your direction vector points up, indi-
cating you should steer right (see Figure 14.5). If the cross product pointed down, the
target would have been off to your left. The target example is somewhat contrived
because you don’t actually need the cross product at all. It makes a good example
because it’s a useful experiment to visualize the usefulness of the cross product.

Find Targets with Just a Dot Product

Through a little trickery, you can do it solely with the dot product, as long as
you choose the correct vectors. If you use a vector that points to your right
instead of straight ahead, your dot product will yield a positive number if
you need to steer right, a negative number if you need to steer left, and
something close to zero if your target is right in front of you. Even better, if
your steering parameters range from −1.0 to steer hard left and 1.0 to lock it
all the way to the right, you can send this dot product straight into your
steering code. Cool, huh?

Figure 14.5
A cross product and a dot product together can find a target.

3D Math 101 455

C++ Math Classes

Before we get into the guts of a scene graph and how it works, we’ll need some sim-
ple math classes for handling 3D and 4D vectors, matrices, and quaternions. Most
programmers will create a math library with ultra-efficient implementations of these
and other useful tidbits. For this book, I’m using DirectX D3DX math functions and
structures as a base. Here are the reasons why I’m using this approach:

n The DirectX math functions are fairly well optimized for PC development and
are a fair place to start for console development.

n The new XNA math libraries, which many of the Direct3D 11 samples and
tutorials use, do not easily support encapsulation into classes meant to abstract
their lineage, and they cannot be used by DirectX 9, which is still supported by
the code in this book. D3DX based structures can be used in Direct3D 9, 10,
and 11.

n By creating some platform-agnostic math classes for use in the scene graph code,
you can replace them with any C++ implementation you like. Personally, I think
the C++ versions are much easier to read, too. These classes are bare bones,
really not much more than the very basics.

The classes you will use throughout the 3D code in this book include the following:

n Vec3 & Vec4: Three- and four-dimensional vectors.

n Quaternion: A quaternion that describes orientation in 3D space.

n Mat4 x 4: A matrix that holds both orientation and translation.

n Plane: A flat surface that stretches to infinity; it has an “inside” and an
“outside.”

n Frustum: A shape like a pyramid with the point clipped off, usually used to
describe the viewable area of a camera.

Vector Classes

You should already be very familiar with the vector structures used by DirectX—
D3DXVECTOR3 and D3DXVECTOR4. Here’s a very simple C++ wrapper for both of
those structures:

class Vec3 : public D3DXVECTOR3

{

public:

inline float Length()

456 Chapter 14 n 3D Graphics Basics

{ return D3DXVec3Length(this); }

inline Vec3 *Normalize()

{ return static_cast<Vec3 *>(D3DXVec3Normalize(this, this)); }

inline float Dot(const Vec3 &b)

{ return D3DXVec3Dot(this, &b); }

inline Vec3 Cross(const Vec3 &b) const

{

Vec3 out;

D3DXVec3Cross(&out, this, &b);

return out;

}

Vec3(D3DXVECTOR3 &v3)

{ x = v3.x; y = v3.y; z = v3.z; }

Vec3() : D3DXVECTOR3() { }

Vec3(const float _x, const float _y, const float _z)

{ x=_x; y=_y; z=_z; }

inline Vec3(const class Vec4 &v4)

{ x = v4.x; y = v4.y; z = v4.z; }

};

class Vec4 : public D3DXVECTOR4

{

public:

inline float Length()

{ return D3DXVec4Length(this); }

inline Vec4 *Normalize()

{ return static_cast<Vec4 *>(D3DXVec4Normalize(this, this)); }

inline float Dot(const Vec4 &b)

{ return D3DXVec4Dot(this, &b); }

// If you want the cross product, use Vec3::Cross

Vec4(D3DXVECTOR4 &v4)

{ x = v4.x; y = v4.y; z = v4.z; w = v4.w; }

Vec4() : D3DXVECTOR4() { }

Vec4(const float _x, const float _y, const float _z, const float _w)

{ x=_x; y=_y; z=_z; w=_w; }

Vec4(const Vec3 &v3)

{ x = v3.x; y = v3.y; z = v3.z; w = 1.0f; }

};

typedef std::list<Vec3> Vec3List;

typedef std::list<Vec4> Vec4List;

The Vec3 and Vec4 classes wrap the DirectX D3DXVECTOR3 and D3DXVECTOR4

structures. The usefulness of the Vec3 class is pretty obvious. As for Vec4, you

C++ Math Classes 457

need a four-dimensional vector to send in to a 4 × 4-transform matrix. If you
remember your high school math, you can’t multiply a 4 × 4 matrix and a three-
dimensional vector. Only a four-dimensional vector will do.

The methods that are provided as a part of this class are

n Length: Finds the length of the vector.

n Normalize: Changes the vector to have the same direction but a length of 1.0f.

n Dot: Computes the dot product of the vector.

n Cross: Computes the cross product of the vector (only Vec3 does this!).

Matrix Mathematics

A 3D world is filled with objects that move around. It would seem like an impossible
task to set each vertex and surface normal of every polygon each time an object
moves. There’s a shortcut, it turns out, and it concerns matrices. Vertices and surface
normals for objects in your 3D world are stored in object space. As the object moves
and rotates, the only thing that changes is the object’s transform matrix. The original
vertices and normals remain exactly the same. The object’s transform matrix holds
information about its position in the world and its rotation about the X-, Y-, and
Z-axis.

Multiple instances of an object need not duplicate the geometry data. Each object
instance only needs a different transform matrix and a reference to the original
geometry. As each object moves, the only things that change are the values of each
transform matrix. A transform matrix for a 3D engine is represented by a 4 × 4 array
of floating-point numbers. This is enough information to store both the rotation and
position of an object. If you only want to store the rotation and not the position, a
3 × 3 array is just fine. This is one of the reasons you see both matrices represented
in DirectX and other renderers. I’ll use the 4 × 4 D3DXMATRIX in this chapter for all
of the examples because I want to use one data structure for rotation and translation.
The matrix elements are set in specific ways to perform translations and different
rotations. For each kind of matrix, I’ll show you how to set the elements yourself or
how to call a DirectX function to initialize it.

A translation matrix moves vectors linearly. Assuming that you have a displacement
vector t, which describes the translation along each axis, you’ll initialize the transla-
tion matrix with the values shown below.

// Create a DirectX matrix that will translate vectors

// +3 units along X and −2 units along Z

458 Chapter 14 n 3D Graphics Basics

D3DXVECTOR3 t(3,0,−2);

D3DXMATRIX transMatrix;

D3DXMatrixTranslation(&transMatrix, t.x,t.y,t.z);

Here’s how to do the same thing in DirectX:

D3DXVECTOR4 original(1, 1, 1, 1);

D3DXVECTOR4 result;

D3DXVec4Transform(&result, &original, &transMatrix);

The transform creates a new vector with values (4, 1, −1, 1). The DirectX function
D3DXVec4Transform multiplies the input vector with the transform matrix. The
result is a transformed vector.

1 0 0 0

0 1 0 0

0 0 1 0

T:x T:y T:z 1

2

664

3

775

Make Sure You Match 4 × 4 Matrices with a 4D Vector

Did you notice my underhanded use of the D3DXVECTOR4 structure without
giving you a clue about its use? Matrix mathematics is very picky about the
dimensions of vectors and matrices that you multiply. It turns out that you
can only multiply matrices where the number of rows matches the number of
columns. This is why a 4 × 4 matrix must be multiplied with a four-dimensional
vector. Also, the last value of that 4D vector, W, should be set at 1.0, or you’ll
get odd results.

There are three kinds of rotation matrices, one for rotation about each axis. The most
critical thing you must get through your math-addled brain is this: Rotations always
happen around the origin. “What in the heck does that mean,” you ask? You’ll
understand it better after you see an example. First, you need to get your bearings.
Figure 14.6 shows an image of a teapot sitting at the origin. The squares are one
unit across. We are looking at the origin from (X=6, Y=6, Z=6). The Y-axis points
up. The X-axis points off to the lower left, and the Z-axis points to the lower right.

If you look along the axis of rotation, an object will appear to rotate counterclockwise
if you rotate it in a positive angle. One way to remember this is by going back to the
unit circle in trig, as shown in Figure 14.7.

A special note to my high school geometry teacher, Mrs. Connally: You were right all
along—I did have use for the unit circle after all…. I’m torturing other people with it!

That means if you want to rotate the teapot so that the spout is pointing straight at
us, you’ll need to rotate it about the Y-axis. The Y-axis points up, so any rotation

C++ Math Classes 459

Figure 14.6
Displaying a teapot at the origin (0,0,0).

Figure 14.7
The ubiquitous unit circle.

460 Chapter 14 n 3D Graphics Basics

about that axis will make the teapot appear as if it is sitting on a potter’s wheel. How
do you calculate the angle? Go back to your unit circle to figure it out. The angle you
want is 45 degrees, or π/4. We also know that the angle should be negative. Here’s
why: If you were looking along the Y-axis, you’d be underneath the teapot looking
straight up. The teapot’s spout needs to twist clockwise to achieve the desired result,
so the angle is negative.

A rotation matrix for the Y-axis looks like this:

cosð�Þ 0 �sinð�Þ 0

0 1 0 0

sinð�Þ 0 cosð�Þ 0

0 0 0 1

2

664

3

775

Here’s the code to create this matrix in DirectX:

float angle = -D3DX_PI / 4.0f;

D3DXMATRIX rotateY;

D3DXMatrixRotationY(&rotateY, angle);

Let’s transform a vector with this matrix and see what happens. Since the teapot’s
spout is pointing down the X-axis, let’s transform (x=1, y=0, z=0):

D3DXVECTOR4 original(1, 0, 0, 1);

D3DXVECTOR4 result(0,0,0,0);

D3DXVec4Transform(&result, &original, &rotateY);

Here’s the result:

result {...} D3DXVECTOR4

x 0.70710677 float

y 0.00000000 float

z 0.70710677 float

w 1.0000000 float

Excellent, that’s exactly what we want. The new vector is sitting on the X-Z plane, and
both coordinates are in the positive. If we take that same transform, apply it to every
vertex of the teapot, and then redraw it, we’ll get the picture shown in Figure 14.8.

This matrix will create a rotation about the X-axis:

1 0 0 0

0 cosð�Þ sinð�Þ 0

0 �sinð�Þ cosð�Þ 0

0 0 0 1

2

664

3

775

C++ Math Classes 461

This matrix will create a rotation about the Z-axis:

cosð�Þ sinð�Þ 0 0

�sinð�Þ cosð�Þ 0 0

0 0 1 0

0 0 0 1

2

664

3

775

The DirectX code to create those two rotations is exactly what you’d expect:

float angle = -D3DX_PI / 4.0f;

D3DXMATRIX rotateX, rotateZ;

D3DXMatrixRotationX(rotateX, angle);

D3DXMatrixRotationZ(rotateZ, angle);

With simple translation and rotation transforms firmly in your brain, you need to
learn how to put multiple transforms into action. It turns out that you can multiply,
or concatenate, matrices. The result encodes every operation into a single matrix. I
know, it seems like magic. There’s one important part of this wizardry: The
concatenated matrix is sensitive to the order in which you did the original

Figure 14.8
The teapotahedron rotated −π/4 radians around the Y-axis.

462 Chapter 14 n 3D Graphics Basics

multiplication. Let’s look at two examples, starting with two matrices you should be
able to visualize:

D3DXMATRIX trans, rotateY;

D3DXMatrixTranslation(&trans, 3,0,0);

D3DXMatrixRotationY(&rotateY, -D3DX_PI / 4.0f);

The translation matrix will push your teapot down the X-axis, or to the lower left in
your current view. The negative angle rotation about the Y-axis you’ve already seen.

In DirectX, you can multiply two matrices with a function call. I’m not going to
bother showing you the actual formula for two reasons. First, you can find it for
yourself on the Internet, and second, no one codes this from scratch. There’s always
an optimized version of a matrix multiply in any 3D engine you find, including
DirectX:

D3DXMATRIX result;

D3DXMatrixMultiply(&result, &trans, &rotateY);

Note the order. This should create a transform matrix that will push the teapot down
the X-axis and rotate it about the Y-axis, in that order. Figure 14.9 shows the results.

Figure 14.9
Translate down X-axis first and then rotate about the origin.

C++ Math Classes 463

If you expected the teapot to be sitting on the X-axis, you must remember that any
rotation happens about the origin, not the center of the object! This is a common
mistake, and I’ve spent much of my 3D debugging time getting my matrices in the
right order.

Translations Always Come Last

Always translate last. If you want to place an object in a 3D world, you
always perform your rotations first, scale second, and translations third. Use
“RST” as a helpful mnemonic, standing for rotate, scale, translate.

Let’s follow my own best practice and see if you get a better
result. First, you reverse the order of the parameters into the
matrix multiplication API:

D3DXMATRIX result;

D3DXMatrixMultiply(&result, &rotateY, &trans);

Figure 14.10 shows the result.

Figure 14.10
Rotate about the origin first and then translate down the X-axis.

464 Chapter 14 n 3D Graphics Basics

I’ll show you one more, just to make sure you get it. The goal of this transformation
is two rotations and one translation. I want the teapot to sit four units down the
Z-axis, on its side with the top toward us, and the spout straight up in the air.
Here’s the code:

D3DXMATRIX rotateX, rotateZ, trans;

D3DXMatrixRotationZ(&rotateZ, −D3DX_PI / 2.0f);

D3DXMatrixRotationX(&rotateX, −D3DX_PI);

D3DXMatrixTranslation(&trans, 0,0,4);

D3DXMATRIX temp, result;

D3DXMatrixMultiply(&temp, &rotateZ, &rotateX);

D3DXMatrixMultiply(&result, &temp, &trans);

The first rotation about the Z-axis points our teapot’s spout down the negative
Y-axis, and the second rotation twists the whole thing around the X-axis to get the
spout pointing straight up. The final translation moves it to its resting spot on the
Z-axis (see Figure 14.11).

Figure 14.11
Rotate the teapot about the Z-axis, then the X-axis, and then translate down the Z-axis.

C++ Math Classes 465

The Mat4 × 4 Transform Matrix Class

It can be convenient to wrap DirectX’s D3DXMATRIX structure into a C++ class:

class Mat4x4 : public D3DXMATRIX

{

public:

// Modifiers

inline void SetPosition(Vec3 const &pos)

{

m[3][0] = pos.x;

m[3][1] = pos.y;

m[3][2] = pos.z;

m[3][3] = 1.0f;

}

inline void SetPosition(Vec4 const &pos)

{

m[3][0] = pos.x;

m[3][1] = pos.y;

m[3][2] = pos.z;

m[3][3] = pos.w;

}

// Accessors and Calculation Methods

inline Vec3 GetPosition() const

{

return Vec3(m[3][0], m[3][1], m[3][2]);

}

inline Vec4 Xform(Vec4 &v) const

{

Vec4 temp;

D3DXVec4Transform(&temp, &v, this);

return temp;

}

inline Vec3 Xform(Vec3 &v) const

{

Vec4 temp(v), out;

D3DXVec4Transform(&out, &temp, this);

return Vec3(out.x, out.y, out.z);

}

inline Mat4x4 Inverse() const

{

Mat4x4 out;

466 Chapter 14 n 3D Graphics Basics

D3DXMatrixInverse(&out, NULL, this);

return out;

}

// Initialization methods

inline void BuildTranslation(const Vec3 &pos)

{

*this = Mat4x4::g_Identity;

m[3][0] = pos.x; m[3][1] = pos.y; m[3][2] = pos.z;

}

inline void BuildTranslation(const float x, const float y, const float z)

{

*this = Mat4x4::g_Identity;

m[3][0] = x; m[3][1] = y; m[3][2] = z;

}

inline void BuildRotationX(const float radians)

{ D3DXMatrixRotationX(this, radians); }

inline void BuildRotationY(const float radians)

{ D3DXMatrixRotationY(this, radians); }

inline void BuildRotationZ(const float radians)

{ D3DXMatrixRotationZ(this, radians); }

inline void BuildYawPitchRoll(

const float yawRadians, const float pitchRadians,

const float rollRadians)

{ D3DXMatrixRotationYawPitchRoll(

this, yawRadians, pitchRadians, rollRadians); }

inline void BuildRotationQuat(const Quaternion &q)

{ D3DXMatrixRotationQuaternion(this, &q); }

inline void BuildRotationLookAt(const Vec3 &eye, const Vec3 &at, const Vec3 &up) {

D3DXMatrixLookAtRH(this, &eye, &at, &up); }

Mat4x4(D3DXMATRIX &mat) { memcpy(&m, &mat.m, sizeof(mat.m)); };

Mat4x4() : D3DXMATRIX() { }

static const Mat4x4 g_Identity;

};

const Mat4x4 Mat4x4::g_Identity(D3DXMATRIX(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1));

inline Mat4x4 operator * (const Mat4x4 &a, const Mat4x4 &b)

{

Mat4x4 out;

D3DXMatrixMultiply(&out, &a, &b);

return out;

}

C++ Math Classes 467

There are three sections: the modifiers, the accessors and transforms, and finally the
initializers. The modifiers simply set position; if you want to set rotations, there’s
another way I’ll show you in a moment. The accessor GetPosition() returns the
position component of the 4 × 4 matrix. The Xform() methods transform a Vec3 or
Vec4 object into the space and position of the matrix. Don’t worry yet because I’ll
show you an example of how to use this in a moment.

The initializer methods, those starting with Build, take various parameters you
might have on hand to build a rotation or transform matrix. If you want one that
encodes both rotation and transformation, just build two of them and multiply
them. Multiplying matrices is the same thing as concatenating them.

There’s also a static member, g_Identity, which forms a matrix that you use to set
an object at the origin with no scaling or rotation.

Here’s a quick example in C++ that does the following things:

n Builds two matrices, one for rotation and one for translation.

n Concatenates these matrices in one Mat4 × 4 to encode both movements.
Remember that rotation always comes first and then translation.

n Determines which direction in the 3D world is considered “forward” by the new
orientation and position. This direction is sometimes referred to as a frame or
reference.

Mat4x4 rot;

rot.BuildYawPitchRoll(D3DX_PI / 2.0f, -D3DX_PI / 4.0f, 0);

Mat4x4 trans;

trans.BuildTranslation(1.0f, 2.0f, 3.0f);

// don’t mess up the order! Multiplying Mat4x4s isn’t like ordinary numbers….

Mat4x4 result = rotOnly * trans;

Vec4 fwd(0.0f, 0.0f, 1.0f); // forward is defined as positive Z

Vec4 fwdWorld = result.Xform(fwd);

There you have it. The fwdWorld vector points in the forward direction of the trans-
form matrix. This is important because of two reasons. First, all of the code in this
chapter will continue using these math classes, and this is exactly how you’d tell a
missile what direction to move if you fired it from an object that was using the
concatenated matrix.

I hope you’ve followed these bits about rotating things around an axis because it’s a
critical concept you need to understand before we talk about quaternions. If you

468 Chapter 14 n 3D Graphics Basics

think you might be hazy on the whole rotation thing, play with a Direct3D sample
for a while, and you’ll get it.

Quaternion Mathematics

Orientation can be expressed as three angles: yaw, pitch, and roll. In our teapot
example, yaw would be around the Y-axis, pitch would be around the Z-axis, and
roll would be around the X-axis. By the way, this happens to be called the Euler
representation, or Euler angles (you pronounce Euler like “oiler”). This method has
a critical weakness. Imagine that you want to interpolate smoothly between two
orientations. This would make sense if you had an object like an automated cannon
that slowly tracked moving objects. It would know its current orientation and the
target orientation, but getting from one to the other might be problematic with Euler
angles.

There is a special mathematical construct known as a quaternion, and almost every
3D engine supports its use. A quaternion is a fourth-dimensional vector, and it can
be visualized as a rotation about an arbitrary axis. Let’s look at an example:

D3DXQUATERNION q;

D3DXQuaternionIdentity(&q);

D3DXVECTOR3 axis(0,1,0);

float angle = -D3DX_PI / 4.0;

D3DXQuaternionRotationAxis(&q, &axis, angle);

D3DXMATRIX result;

D3DXMatrixRotationQuaternion(&result, &q);

This code has exactly the same effect on our teapot as the first rotation example. The
teapot rotates around the Y-axis −π/4 degrees. Notice that I’m not setting the values
of the quaternion directly, I’m using a DirectX API. I do this because the actual
values of the quaternion are not intuitive at all. Take a look at the resulting values
from our simple twist around the Y-axis:

q {...} D3DXQUATERNION

x 0.00000000 float

y −0.38268343 float

z 0.00000000 float

w 0.92387950 float

Not exactly the easiest thing to read, is it?

The quaternion is sent into another DirectX function to create a transformation
matrix. This is done because vectors can’t be transformed directly with quaternions—
you still have to use a transform matrix.

C++ Math Classes 469

If you think this seems like a whole lot of work with little gain, let’s look at the inter-
polation problem. Let’s assume that I want the teapot to turn so that the spout is
pointing down the Z-axis, which would mean a rotation about the Y-axis with an
angle of –π/2 degrees. Let’s also assume that I want to know what the transformation
matrix is at two-thirds of the way through the turn, as shown in Figure 14.12.

Here’s the code:

D3DXQUATERNION start, middle, end;

D3DXQuaternionIdentity(&start);

D3DXQuaternionIdentity(&middle);

D3DXQuaternionIdentity(&end);

D3DXVECTOR3 axis(0,1,0);

float angle = −D3DX_PI / 2.0;

D3DXQuaternionRotationAxis(&start, &axis, 0);

D3DXQuaternionRotationAxis(&end, &axis, angle);

Figure 14.12
Our teapot two-thirds of the way through a rotation—using quaternions.

470 Chapter 14 n 3D Graphics Basics

D3DXQuaternionSlerp(&middle, &end, &start, 0.66f);

D3DXMATRIX result;

D3DXMatrixRotationQuaternion(&result, &middle);

The two boundary quaternions, start and end, are initialized in the same way as
you saw earlier. The target orientation quaternion, middle, is calculated with the
DirectX method D3DXQuaternionSlerp. This creates a quaternion 66 percent of
the way between our start and end quaternions.

I might not quite have convinced you yet, but only because I used a trivial rotation
that was easy to display. Anyone can interpolate a rotation around a single axis.
Quaternions can represent a rotation about a completely arbitrary axis, like (x=3.5,
y=−2.1, z=0.04), and they can be much more useful than Euler angles.

Compressing Quaternions? Don’t Bother!

When I was on Thief: Deadly Shadows, I was sharing an office with a friend of mine who was tasked
with the job of compressing streams of quaternions. He was trying to save a few precious megabytes
on our animations for the main character. His first few attempts were close, but some of the animations
were completely wacko. The character’s legs would lift up past his ears in a manner only suitable for a
circus performer. The problem was a loss in precision in the quaternion stream, and when we thought
about it and truly understood what a normalized quaternion was, it made perfect sense. A normalized
quaternion is a fourth-dimensional vector whose origin sits at (0,0,0,0) and whose endpoint always sits
on the surface of a fourth-dimensional hypersphere. Since a well-formed unit quaternion has a length of
1.0f, any loss of accuracy because of compression will trash the unit length and ruin the precision of the
quaternion. So what did we do? We used Euler angles for storing and compression and converted them
to quaternions during runtime. Euler angles can lose precision like crazy and still work just fine.
Sometimes, the old-school solution is what you need.

The Quaternion Class

The D3DXQUATERNION structure can be wrapped in a useful C++ wrapper class:

class Quaternion : public D3DXQUATERNION

{

public:

// Modifiers

void Normalize() { D3DXQuaternionNormalize(this, this); };

void Slerp(const Quaternion &begin, const Quaternion &end, float cooef)

{

// performs spherical linear interpolation between begin & end

// NOTE: set cooef between 0.0f-1.0f

D3DXQuaternionSlerp(this, &begin, &end, cooef);

}

C++ Math Classes 471

// Accessors

void GetAxisAngle(Vec3 &axis, float &angle) const

{

D3DXQuaternionToAxisAngle(this, &axis, &angle);

}

// Initializers

void BuildRotYawPitchRoll(

const float yawRadians,

const float pitchRadians,

const float rollRadians)

{

D3DXQuaternionRotationYawPitchRoll(

this, yawRadians, pitchRadians, rollRadians);

}

void BuildAxisAngle(const Vec3 &axis, const float radians)

{

D3DXQuaternionRotationAxis(this, &axis, radians);

}

void Build(const class Mat4x4 &mat)

{

D3DXQuaternionRotationMatrix(this, &mat);

}

Quaternion(D3DXQUATERNION &q) : D3DXQUATERNION(q) { }

Quaternion() : D3DXQUATERNION() { }

static const Quaternion g_Identity;

};

inline Quaternion operator * (const Quaternion &a, const Quaternion &b)

{

// for rotations, this is exactly like concatenating

// matrices - the new quat represents rot A followed by rot B.

Quaternion out;

D3DXQuaternionMultiply(&out, &a, &b);

return out;

}

const Quaternion Quaternion::g_Identity(D3DXQUATERNION(0,0,0,1));

The quaternion is useful for orienting objects in a three-dimensional space. The
Quaternion class just presented gives you the three most used methods for initial-
izing it: from yaw-pitch-roll angles, an axis and rotation around that axis, and a 4 × 4

472 Chapter 14 n 3D Graphics Basics

matrix. The class also has an operator * to multiply two quaternions, which performs
a similar mathematical operation as concatenating matrices. The modifiers let you
normalize a quaternion and perform a spherical linear interpolation on them. You
saw the interpolation in the previous pages when I showed you how to orient the
teapot in between two different rotations. Slerp() does the same thing.

The identity quaternion is also provided as a global static so you can get to it quickly,
especially for initializing a quaternion. This is something I like to do instead of forc-
ing a default initialization all the time. You can use it if you want and start with the
identity, or you can use one of the builder methods.

The Plane Class

The plane is an extremely useful mathematical device for 3D games. Here’s a simple
wrapper around the DirectX plane structure, D3DXPLANE:

class Plane : public D3DXPLANE

{

public:

inline void Normalize();

// normal faces away from you if you send in verts

// in counter clockwise order....

inline void Init(const Vec3 &p0, const Vec3 &p1, const Vec3 &p2);

bool Inside(const Vec3 &point, const float radius) const;

bool Inside(const Vec3 &point) const;

};

inline void Plane::Normalize()

{

float mag;

mag = sqrt(a * a + b * b + c * c);

a = a / mag;

b = b / mag;

c = c / mag;

d = d / mag;

}

inline void Plane::Init(const Vec3 &p0, const Vec3 &p1, const Vec3 &p2)

{

D3DXPlaneFromPoints(this, &p0, &p1, &p2);

Normalize();

}

bool Plane::Inside(const Vec3 &point) const

C++ Math Classes 473

{

// Inside the plane is defined as the direction the normal is facing

float result = D3DXPlaneDotCoord(this, &point);

return (result >= 0.0f);

}

bool Plane::Inside(const Vec3 &point, const float radius) const

{

float fDistance; // calculate our distances to each of the planes

// find the distance to this plane

fDistance = D3DXPlaneDotCoord(this, &point);

// if this distance is < -radius, we are outside

return (fDistance >= -radius);

}

Basically, if you know three points on the surface of the plane, you’ll have enough
information to create it mathematically. You can also create planes in other ways,
and you’re perfectly free to extend this bare-bones class to create more constructors,
but this simple version goes a surprisingly long way.

Once the plane is initialized, you can ask whether a point or a sphere (defined by a
point and a radius) is on the inside or outside of the plane. Inside is defined as being
on the same side as the plane normal. The plane normal is defined by the coefficients
a, b, and c inside the D3DXPLANE structure and is calculated for you when the
Plane class is constructed.

The Plane is rarely used by itself. It is usually used to create things like BSP trees,
portals, and a camera view frustum, which you’ll see how to create next.

The Frustum Class

Imagine sitting in front of a computer screen and seeing four lines coming from your
eyeball and intersecting with the corners of the screen. For the sake of simplicity, I’ll
assume you have only one eyeball in the center of your head. These lines continue
into the 3D world of your favorite game. You have a pyramid shape with the point
at your eyeball and its base somewhere out in infinity. Clip the pointy end of the
pyramid with the plane of your computer screen and form a base of your pyramid
at some arbitrary place in the distance. This odd clipped pyramid shape is called
the viewing frustum, as shown in Figure 14.13. The shape is actually a cuboid, since
it is topologically equivalent to a cube, although pushed out of shape. This shape is
what defines the total viewing area of a camera in a 3D game. Any object completely

474 Chapter 14 n 3D Graphics Basics

outside the frustum doesn’t need to be drawn, so it is an indispensible member of
any 3D graphics engine.

The camera is at the tip of the pyramid, looking at the frustum through the near
clipping plane. Any object that is totally outside the six planes that describe the frus-
tum are outside the viewing area, which means they can be skipped during the ren-
dering passes. The six planes include the near and far clipping planes and the four
other planes that make up the top, left, right, and bottom of the frustum. It turns
out to be really efficient to test a point or a sphere against a frustum, and that is
exactly how this frustum will be used to cull objects in the scene graph. If you
didn’t do this, you’d be sending every triangle in your scene into the renderer, even
if it wouldn’t be seen by the player. That means your scenes would have to be a lot
less complicated, or shall I say boring, to keep up a fast frame rate.

A frustum is defined with four parameters: the field of view, the aspect ratio, the dis-
tance to the near clipping plane, and the distance to the far clipping plane. The field
of view, or FOV, is the full angle made by the tip of the pyramid at the camera loca-
tion (see Figure 14.14). The aspect ratio is the width of the near clipping plane
divided by the height of the near clipping plane. For a 640 × 480 pixel screen, the
aspect ratio would be 640.f/480.f or 1.33333334. The distance to the near and far clip-
ping planes should be given in whatever units your game uses to measure distance—
feet, meters, cubits, whatever. With these parameters safely in hand, the six Plane

objects can be built.

Here’s the code for defining the Frustum class:

class Frustum

{

Figure 14.13
The view frustum with near and far clipping planes.

C++ Math Classes 475

public:

enum Side { Near, Far, Top, Right, Bottom, Left, NumPlanes };

Plane m_Planes[NumPlanes]; // planes of the frusum in camera space

Vec3 m_NearClip[4]; // verts of the near clip plane in camera space

Vec3 m_FarClip[4]; // verts of the far clip plane in camera space

float m_Fov; // field of view in radians

float m_Aspect; // aspect ratio - width divided by height

float m_Near; // near clipping distance

float m_Far; // far clipping distance

public:

Frustum();

bool Inside(const Vec3 &point) const;

bool Inside(const Vec3 &point, const float radius) const;

const Plane &Get(Side side) { return m_Planes[side]; }

void SetFOV(float fov) { m_Fov=fov; Init(m_Fov, m_Aspect, m_Near, m_Far); }

void SetAspect(float aspect)

{ m_Aspect=aspect; Init(m_Fov, m_Aspect, m_Near, m_Far); }

void SetNear(float nearClip)

{ m_Near=nearClip; Init(m_Fov, m_Aspect, m_Near, m_Far); }

void SetFar(float farClip)

{ m_Far=farClip; Init(m_Fov, m_Aspect, m_Near, m_Far); }

void Init(const float fov, const float aspect,

const float near, const float far);

void Render();

};

Figure 14.14
Calculating the points of the view frustum.

476 Chapter 14 n 3D Graphics Basics

Frustum::Frustum()

{

m_Fov = D3DX_PI/4.0f; // default field of view is 90 degrees

m_Aspect = 1.0f; // default aspect ratio is 1:1

m_Near = 1.0f; // default near plane is 1m away from the camera

m_Far = 1000.0f; // default near plane is 1000m away from the camera

}

bool Frustum::Inside(const Vec3 &point) const

{

for (int i=0; i<NumPlanes; ++i)

{

if (!m_Planes[i].Inside(point))

return false;

}

return true;

}

bool Frustum::Inside(const Vec3 &point, const float radius) const

{

for(int i = 0; i < NumPlanes; ++i)

{

if (!m_Planes[i].Inside(point, radius))

return false;

}

// otherwise we are fully in view

return true;

}

The next method, Init(), is a little heavy on the math. The algorithm is to find the
eight points in space made by corners of the view frustum and use those points to
define the six planes. If you remember your high school geometry, you’ll remember
that the tangent of an angle is equal to the length of the opposite side divided by the
adjacent side. Since we know the length D from the camera to the near clipping
plane, we can find the length between the center point of the near clipping plane to
the right edge and also the top using the aspect ratio. The same operation is repeated
for the far clipping plane, and that gives us the 3D location of the corner points:

void Frustum::Init(const float fov, const float aspect, const float nearClip, const

float farClip)

{

m_Fov = fov;

m_Aspect = aspect;

C++ Math Classes 477

m_Near = nearClip;

m_Far = farClip;

double tanFovOver2 = tan(m_Fov/2.0f);

Vec3 nearRight = (m_Near * tanFovOver2) * m_Aspect * g_Right;

Vec3 farRight = (m_Far * tanFovOver2) * m_Aspect * g_Right;

Vec3 nearUp = (m_Near * tanFovOver2) * g_Up;

Vec3 farUp = (m_Far * tanFovOver2) * g_Up;

// points start in the upper right and go around clockwise

m_NearClip[0] = (m_Near * g_Forward) - nearRight + nearUp;

m_NearClip[1] = (m_Near * g_Forward) + nearRight + nearUp;

m_NearClip[2] = (m_Near * g_Forward) + nearRight - nearUp;

m_NearClip[3] = (m_Near * g_Forward) - nearRight - nearUp;

m_FarClip[0] = (m_Far * g_Forward) - farRight + farUp;

m_FarClip[1] = (m_Far * g_Forward) + farRight + farUp;

m_FarClip[2] = (m_Far * g_Forward) + farRight - farUp;

m_FarClip[3] = (m_Far * g_Forward) - farRight - farUp;

// now we have all eight points. Time to construct six planes.

// the normals point away from you if you use counter clockwise verts.

Vec3 origin(0.0f, 0.0f, 0.0f);

m_Planes[Near].Init(m_NearClip[2], m_NearClip[1], m_NearClip[0]);

m_Planes[Far].Init(m_FarClip[0], m_FarClip[1], m_FarClip[2]);

m_Planes[Right].Init(m_FarClip[2], m_FarClip[1], origin);

m_Planes[Top].Init(m_FarClip[1], m_FarClip[0], origin);

m_Planes[Left].Init(m_FarClip[0], m_FarClip[3], origin);

m_Planes[Bottom].Init(m_FarClip[3], m_FarClip[2], origin);

}

With the location of the corner points correctly nabbed, the planes of the view frus-
tum can be created with three known points for each one. Don’t forget that the order
in which the points are sent into the plane equation is important. The order deter-
mines the direction of the plane’s normal and therefore which side of the plane is the
inside versus the outside.

Transformations

One of the processes in a 3D graphics pipeline transforms arbitrary points in the 3D
game universe into 2D points on a display. There are three things to consider: an
object’s position and orientation in the 3D world, the position and orientation of
the camera or viewpoint, and the physical dimensions of the display and field of
view. Each one requires the definition of a transform, which is stored in a Mat4 x 4

478 Chapter 14 n 3D Graphics Basics

object. The three transforms are called the world transform, the view transform, and
the projection transform.

World Transform

When objects are created by a programmer plotting out 3D points on graph paper or
an artist models something in 3ds Max, they exist in object space. As the object
moves around the 3D world, it is much easier to modify a single Mat4 × 4 object
than to change each individual point that describes the shape of the object. That
Mat4 x 4 matrix describes the world transform, and it can be used to move and
reorient any object, just as you saw with the teapotahedron on the previous pages.

View Transform

If you are going to render the scene, you need to have a camera. That camera must
have an orientation and a position just like any other object in the world. Similar to
any other object, the camera needs a transform matrix that converts world space ver-
tices to camera space.

Calculating the transform matrix for a camera can be tricky. In many cases, you want
the camera to look at something, like a teapot. If you have a desired camera position
and a target to look at, you don’t quite have enough information to place the camera.
The missing data is a definition of the up direction for your world. This last bit of
data gives the camera a hint about how to orient itself. The BuildRotationLookAt
method of the Mat4 x 4 class wraps D3DXMatrixLookAtLH, which takes these
inputs and constructs the view transform:

Mat4x4 matView;

Vec3 vFromPt = Vec3(6.0f, 6.0f, 6.0f);

Vec3 vLookatPt = Vec3(0.0f, 0.0f, 0.0f);

Vec3 vUpVec = Vec3(0.0f, 1.0f, 0.0f);

matView.BuildRotationLookAt(&vFromPt, &vLookatPt, &vUpVec);

By the way, the LH at the end of the DirectX function’s name is a hint that this func-
tion assumes a left-handed coordinate system. There is a right-handed version of this
and most other matrix functions, as well.

The vFromPt is out along the positive values of X, Y, and Z, and the vLookatPt

point is right back at the origin. The last parameter defines the up direction. If you
think about a camera as having an orientation constraint similar to a camera boom
like you see on ESPN, it can move anywhere, pan around to see its surroundings, and
pitch up or down. It doesn’t tilt, at least not normally. This is important, because if
tilting were allowed in constructing a valid view transform, there could be many dif-
ferent orientations that would satisfy your input data.

C++ Math Classes 479

Straight Up and Straight Down Are Tricky!

This system isn’t completely perfect because there are two degenerate
orientations. Given the definition of up as (X=0, Y=1, Z=0) in world space, the
two places you can’t easily look are straight up and straight down. You can
construct the view transform for this degenerate case quite easily by creating a
view transform looking straight forward in the normal way and then using a
90-degree rotation about the Y-axis to transform the matrix to look straight up.

Remember that the camera’s view transform is a matrix, just like any other. You
don’t have to use the look-at function to calculate it, but it tends to be the most effec-
tive camera positioning function there is.

Projection Transform

Using the world transform and the view transform, vertices from object space can be
transformed into vertices from world space and then transformed into camera space.
Now we need to take all those 3D vertices sitting in camera space and figure out
where they belong on your computer screen and which objects sit in front of other
objects. The view frustum will help determine what gets drawn and what gets culled.

Every object inside the view frustum will be drawn on your screen. The projection
transform takes the camera space (X,Y,Z) of every vertex and transforms it into a
new vector that holds the screen pixel (X,Y) location and a measure of the vertices’
distance into the scene.

Here’s the code to create the projection transform using the settings of the viewing
frustum and the screen dimensions:

Mat4x4 matProj;

m_Frustum.SetAspect(DXUTGetWindowWidth() / (FLOAT) DXUTGetWindowHeight());

D3DXMatrixPerspectiveFovLH(&m_Projection, m_Frustum.m_Fov, m_Frustum.m_Aspect,

m_Frustum.m_Near, m_Frustum.m_Far);

The DirectX function that helps you calculate a projection matrix—something you
don’t want to do by yourself—accepts four parameters after the address of the
matrix:

n Field of view: Expressed in radians, this is the width of the view angle. π/4 is a
pretty standard angle. Wider angles such as 3π/4 make for some weird results.
Try it and see what happens.

n Aspect ratio: This is the aspect ratio of your screen. If this ratio were 1.0, the
projection transform would assume you had a square screen. A 1280 × 960
screen has a 1.333 aspect ratio.

480 Chapter 14 n 3D Graphics Basics

n Near clipping plane: This is the distance between your eye and the near view
plane. Any object closer will get clipped. The units are usually meters, but feel
free to set them to whatever standard makes sense for your game.

n Far clipping plane: The distance between your eye and the far clipping plane.
Anything farther away will be clipped.

Set Far Clipping Plane Distance to Something Far, but Not Too Far

Don’t set your far clipping plane to some arbitrarily large number in the hopes
that nothing in your huge 3D world will get clipped. The trade-off is that the
huge distance between your near and far clipping plane will create sorting
problems in objects very close or very far from the camera—depending on
your renderer. These weird sorting problems manifest themselves as if two
polygons were run through a paper shredder, since the individual pixels on
two coincident polygons will sort incorrectly. This problem is caused by
numerical inaccuracy, and the polygons will sort into exactly the depth in 3D
space. If you see this problem, first check the art to make sure the artists
actually placed the polygons correctly and then check your far clipping plane
distance. This problem is sometimes called “Z fighting.”

Also, don’t set your near clipping plane to zero, with the hope that you’ll be able to see things very close
to the camera. There’s a relationship between the near clipping plane and the field of view. If you
arbitrarily move the near clipping plane closer to the camera without changing the field of view, weird
things begin to happen. My suggestion is to write a little code and see for yourself.

Geometry

Did you know that everything from teapots to cars to volleyball-playing beach bun-
nies can be made out of triangles? We all know that a geometric triangle is made up
of three points. In a 3D world, a triangle is composed of three vertices. A vertex
holds important information the shader will use to draw the triangle, and as you
might expect, there can be a lot more than its location in a 3D space.

Different renderers will support different kinds of triangles and therefore different
kinds of vertices that create those triangles. Once you get your feet wet with one ren-
dering technology, such as DirectX 11, you’ll quickly find analogs in any other ren-
dering technology, such as OpenGL. In our example, our vertex will contain a
position in 3D space, a normal vector, and a texture coordinate.

struct D3D11Vertex_UnlitTextured

{

D3DXVECTOR3 Pos;

D3DXVECTOR3 Normal;

D3DXVECTOR2 Uv;

};

C++ Math Classes 481

As you might expect, a position in 3D space is a 3D vector. A normal vector is also a
3D vector, and a texture coordinate is a 2D vector. Three of those define the three
points required to render one triangle on the screen. Next let’s dig in to how lighting
and texturing work.

Lighting, Normals, and Color

In DirectX 11 and many other rendering technologies, you can assign colors to verti-
ces yourself, or you can instruct the renderer to calculate those colors by looking at
vertex data and the lights that illuminate the vertex. You can even do both. Everyone
has seen games that show subtle light pools shining on walls and floors—a nice and
efficient effect but completely static and unmoving. Other illumination is calculated
in real time, such as when your character shines a flashlight around a scene. Multiple
lights can affect individual vertices, each light adding a color component to the vertex
color calculation.

One of the simplest kinds of lighting is diffuse lighting, which simply adds a bit of the
light color to the native color of the triangle, depending on how it is oriented to the
light. To understand how this works, you need to know about normal vectors, which
are an important part of the vertex definition that enables lighting calculations.

When light hits an object, the color of light is added to the object’s defined color.
Perform a little experiment to see this in action. Take a playing card, like the ace of
spades, and place it flat on a table lit by a ceiling lamp. The card takes on a color
component that reflects the color of that lamp. If your lamp is a fluorescent light,
the card will appear white with a slight greenish tint. If your lamp is incandescent,
the card will take on a slightly yellowish color.

If you take the card in your hand and slowly turn it over, the brightness and color of
the card face with the spade changes. As the card approaches an edge-on orientation
to the lamp, the effects of the lighting diminish to their minimum. The light has its
maximum effect when the card is facing perpendicular to the light and its minimum
effect when the card is edge-on to the light. This happens because when light hits a
surface at a low angle it spreads out and has to cover a larger area with the same
number of photons. This gives you a dimming effect.

Diffuse lighting attempts to simulate this effect. With the card sitting flat on the table
again, take a pencil and put the eraser end in the middle of the card and point the tip
of the pencil straight up in the air, toward your ceiling lamp. You’ve just created a
normal vector. Turn the card as before, but hold the pencil and turn it as well, as if
it were glued to the card. Notice that the light has a maximum effect when the angle
between the pencil and the light is 180 degrees, minimum effect when the angle

482 Chapter 14 n 3D Graphics Basics

between the light and the pencil is 90 degrees, and no effect when the card faces away
from the light.

Each vertex gets its own normal vector. This might seem like a waste of memory, but
consider this: If each vertex has its own normal, you can change the direction of the
normal vectors to “fool” the lighting system. You can make the 3D object take on a
smoother shading effect. This is a common technique to blend the edges of coinci-
dent triangles. The illusion you create allows artists to create 3D models with fewer
polygons.

The normals on the teapot model are calculated to create the illusion of a smooth
shape, as shown in Figure 14.15.

Now that you know what a normal vector is, you need to know how to calculate one.
If you want to find the normal vector for a triangle, you’ll need to use a cross product
as shown here:

Vec3 triangle[3];

triangle[0] = Vec3(0,0,0);

triangle[1] = Vec3(5,0,0);

triangle[2] = Vec3(5,5,0);

Figure 14.15
Vertex normals on a teapotahedron.

C++ Math Classes 483

Vec3 edge1 = triangle[1]-triangle[0];

Vec3 edge2 = triangle[2]-triangle[0];

Vec3 normal = edge1.Cross(edge2);

normal.Normalize();

Our polygon is defined with three positions in 3D space. These positions are used to
construct two edge vectors, both pointing away from the same vertex. The two edges
are sent into the cross product function, which returns a vector that is pointing in the
right direction but is the wrong size. All normal vectors must be exactly one unit in
length to be useful in other calculations, such as the dot product. The Vec3::Nor-

malize() function calculates the unit vector by dividing the temp vector by its
length. The result is a normal vector you can apply to a vertex.

If you take a closer look at the teapot figure, you’ll notice that the normal vectors are
really the normals of multiple triangles, not just a single triangle. You calculate this
by averaging the normals of each triangle that shares your vertex. Calculate the aver-
age of multiple vectors by adding them together and dividing by the number of vec-
tors, exactly as you would calculate the average of any other
number.

Calculate Your Normals Ahead of Time

Calculating a normal is a somewhat expensive operation. Each triangle will
require two subtractions, a cross product, a square root, and three divisions. If
you create 3D meshes at runtime, try to calculate your normals once, store them
in object space, and use transforms to reorient them.

You might be wondering why I didn’t mention ambient lighting—
a color value that is universally applied to every vertex in the scene. This has the effect
of making an object glow like a light bulb, and it isn’t very realistic. Ambient lighting
values are a necessary evil in today’s 3D games because they simulate low-light levels
on the back or underside of objects due to light reflecting all about the scene. In the
next few years, I expect this light hack to be discarded completely in favor of more
advanced techniques with pixel shaders using environment-based lighting effects.

Materials

When light hits something, the light color is added to the color of the object. This
color is typically defined by a material—basically a fancy way of describing how an
object reflects light. DirectX 9 defined this with a structure still useful in Direct3D 11:
D3DMATERIAL9.

484 Chapter 14 n 3D Graphics Basics

typedef struct _D3DMATERIAL9 {

D3DCOLORVALUE Diffuse;

D3DCOLORVALUE Ambient;

D3DCOLORVALUE Specular;

D3DCOLORVALUE Emissive;

float Power;

} D3DMATERIAL9;

Black Objects Everywhere? Set Your Material!

A common mistake with almost any renderer is not to set a material for your
object. Most shaders use multiplication to combine the lights affecting the
object with the object’s color. If that color is not defined, it will typically be
zeroed out to black, and as everyone knows, zero times anything is still zero.
If your game has a black background, objects without a material defined will
completely disappear from your scene!

Other than the critical information about needing a default material and texture, the
DirectX SDK documentation does a pretty fair job of showing you what happens
when you play with the specular and power settings. They can turn a plastic ping-
pong ball into a ball bearing, highlights and everything.

The material defines how light reflects off the polygons. In Direct3D, this includes
different colors for ambient, diffuse, specular, and emissive light. It is convenient to
wrap the D3DMATERIAL9 structure in a class, which will be used in the next chapter
to control how objects look, or even if they are transparent. Here is the source code
for the class:

#define fOPAQUE (1.0f)

#define fTRANSPARENT (0.0f)

typedef D3DXCOLOR Color;

Color g_White(1.0f, 1.0f, 1.0f, fOPAQUE);

Color g_Black(0.0f, 0.0f, 0.0f, fOPAQUE);

Color g_Cyan(0.0f, 1.0f, 1.0f, fOPAQUE);

Color g_Red(1.0f, 0.0f, 0.0f, fOPAQUE);

Color g_Green(0.0f, 1.0f, 0.0f, fOPAQUE);

Color g_Blue(0.0f, 0.0f, 1.0f, fOPAQUE);

Color g_Yellow(1.0f, 1.0f, 0.0f, fOPAQUE);

Color g_Gray40(0.4f, 0.4f, 0.4f, fOPAQUE);

Color g_Gray25(0.25f, 0.25f, 0.25f, fOPAQUE);

Color g_Gray65(0.65f, 0.65f, 0.65f, fOPAQUE);

Color g_Transparent (1.0f, 0.0f, 1.0f, fTRANSPARENT);

C++ Math Classes 485

class Material

{

D3DMATERIAL9 m_D3DMaterial;

public:

Material()

{

ZeroMemory(&m_D3DMaterial, sizeof(D3DMATERIAL9));

m_D3DMaterial.Diffuse = g_White;

m_D3DMaterial.Ambient = Color(0.10f, 0.10f, 0.10f, 1.0f);

m_D3DMaterial.Specular = g_White;

m_D3DMaterial.Emissive = g_Black;

}

void SetAmbient(const Color &color)

{ m_D3DMaterial.Ambient = color; }

const Color GetAmbient() { return m_D3DMaterial.Ambient; }

void SetDiffuse(const Color &color)

{ m_D3DMaterial.Diffuse = color; }

const Color GetDiffuse() { return m_D3DMaterial.Diffuse; }

void SetSpecular(const Color &color, const float power)

{

m_D3DMaterial.Specular = color; m_D3DMaterial.Power = power;

}

void GetSpecular(Color &_color, float &_power)

{ _color = m_D3DMaterial.Specular; _power = m_D3DMaterial.Power; }

void SetEmissive(const Color &color)

{ m_D3DMaterial.Emissive = color; }

const Color GetEmissive() { return m_D3DMaterial.Emissive; }

void SetAlpha(const float alpha)

{ m_D3DMaterial.Diffuse.a = alpha; }

bool HasAlpha() const { return GetAlpha() != fOPAQUE; }

float GetAlpha() const { return m_D3DMaterial.Diffuse.a; }

};

The material has four different color components. Generally, you’ll set the ambient
and diffuse color to the same thing, but you might get a black object by mistake. If
you set an object’s diffuse and ambient material to 100% blue, and you put that
object in an environment with 100% red light, it will appear black. That’s because a
100% blue object doesn’t reflect any red light. Fix this by putting a little red in either
the diffuse or ambient color. The specular color is usually set to white or gray and
defines the color of the shininess the object takes on. Lastly, the emissive component

486 Chapter 14 n 3D Graphics Basics

allows an object to light itself. This is a good idea for things like explosions or light
bulbs—anything that emits light. The alpha setting uses the diffuse alpha component;
it is read and used by the simple pixel shader you’ll see in the next chapter.

The last property is used to classify how the scene node is drawn, opaque or
transparent.

Textured Vertices

A texture is a piece of two-dimensional art that is applied to a model. Each vertex
gets a texture coordinate. Texture coordinates are conventionally defined as (U,V)
coordinates, where U is the horizontal component and V is the vertical component.
These coordinates are described as floating-point numbers, where (0.0f,0.0f) signifies
the top left of the texture and grows to the left and down for DirectX—in OpenGL it
describes the bottom left of the texture. The coordinate (0.5f, 0.5f) would signify the
exact center of the texture. Each vertex gets a texture coordinate for every texture.

Numbers greater than 1.0 can tile the texture, mirror it, or clamp it, depending on
the addressing mode of the renderer. If you wanted a texture to tile three times in
the horizontal direction and four times in the vertical direction on the surface of a
single polygon, the texture (U,V) coordinate that would accomplish that task would
be (3.0f, 4.0f). Numbers less than 0.0f are also supported. They have the effect of mir-
roring the texture.

Texturing

Creating a texture is as easy as popping into Photoshop, Paint.NET, or any bitmap-
editing tool. That leaves out tools like Macromedia Flash or Illustrator because they
are vector tools and are no good for bitmaps.

Go into one of these tools and create an image 128 × 128 pixels in size, and save it
out as a JPG. Figure 14.16 shows my version.

Figure 14.16
A sample texture.

C++ Math Classes 487

If you are working in Photoshop, you’ll want to save the PSD file for future editing,
but our next step can’t read PSDs. While you can use the DirectX Texture tool to
save your texture in DirectX’s DDS format, DirectX can load BMP, DIB, HDR, JPG,
PFM, PNG, PPM, and TGA files, too. Choosing which of these formats to use has
something to do with what tools are generating the textures, but also how you want
them compressed. There’s a good discussion of that in Chapter 8, “Loading and
Caching Game Data.”

In Direct3D 11, a texture is loaded from a file or, as you’ll see below, from our
resource cache. Once in memory, it is stored in an ID3D11ShaderResourceView

structure, which is sent to a pixel shader. The pixel shader also needs information
about how the texture is to be sampled—or put another way, if the pixel shader
knows exactly where in the texture to sample, the sampling method will determine
what color will be returned by that sample.

Subsampling

If you’ve ever seen old 3D games or perhaps just really bad 3D games, you’ll probably
recall an odd effect that happens to textured objects as you back away from them.
This effect, called scintillation, is especially noticeable on textures with a regular pat-
tern, such as a black-and-white checkerboard pattern. As the textured objects recede
in the distance, you begin to notice that the texture seems to jump around in weird
patterns. This is due to an effect called subsampling.

Assume for the moment that a texture appears on a polygon very close to its original
size. If the texture is 128 × 128 pixels, the polygon on the screen will look almost
exactly like the texture. If this polygon were reduced to half of this size, 64 × 64 pix-
els, the renderer must choose which pixels from the original texture must be applied
to the polygon. So what happens if the original texture looks like the one shown in
Figure 14.17?

Figure 14.17
A texture particularly sensitive to subsampling.

488 Chapter 14 n 3D Graphics Basics

This texture is 128 × 128 pixels, with alternating vertical lines exactly one pixel in
width. If you reduced this texture in a simple paint program, you might get nothing
but a 64 × 64 texture that is completely black. What’s going on here?

When the texture is reduced to half its size, the naive approach would select every
other pixel in the grid, which in this case happens to be every black pixel on the tex-
ture. The original texture has a certain amount of information, or frequency, in its
data stream. The frequency of the above texture is the number of alternating lines.
Each pair of black-and-white lines is considered one wave in a waveform that
makes up the entire texture. The frequency of this texture is 64, since it takes 64
waves of black-and-white lines to make up the texture.

Subsampling is what occurs if any waveform is sampled at less than twice its fre-
quency. In the previous case, any sample taken at 128 samples or fewer will drop
critical information from the original data stream.

It might seem weird to think of textures having a frequency, but they do. A high
frequency implies a high degree of information content. In the case of a texture, it
has to do with the number of undulations in the waveform that make up the data
stream. If the texture were nothing more than a black square, it would have a mini-
mal frequency and therefore carry only the smallest amount of information. A tex-
ture that is a solid black square, no matter how large, can be sampled at any rate
whatsoever. No information is lost because there isn’t that much information to
begin with.

In case you are wondering whether or not this subject of subsampling can apply to
audio waveforms, it can. Let’s assume that you have a high-frequency sound, say a
tone at 11KHz. If you attempt to sample this tone in a WAV file at 11KHz, exactly
the frequency of the tone, you won’t be happy with the results. You’ll get a sub-
sampled version of the original sound. Just as the texture turned completely black,
your subsampled sound would be a completely flat line, erasing the sound
altogether.

It turns out there is a solution for this problem, and it involves processing and filter-
ing the original data stream to preserve as much of the original waveform as possible.
For sounds and textures, the new sample isn’t just grabbed from an original piece of
data in the waveform. The data closest to the sample is used to figure out what is
happening to the waveform, instead of one value of the waveform at a discrete
point in time.

In the case of our lined texture used previously, the waveform is alternating from
black to white as you sample horizontally across the texture, so naturally if the tex-
ture diminishes in size, the eye should begin to perceive a 50 percent gray surface. It’s

C++ Math Classes 489

no surprise that if you combine black and white in equal amounts you get 50 percent
gray.

For textures, each sample involves the surrounding neighborhood of pixels—a pro-
cess known as bilinear filtering. The process is a linear combination of the pixel
values on all sides sampled pixel—nine values in all. These nine values are weighted
and combined to create the new sample. The same approach can be used with sounds
as well, as you might have expected.

Bilinear filtering is done right on the video card and is very fast, but processing tex-
tures at runtime to avoid subsampling is a different story, since the system would
have to create a set of smaller textures from a source texture. This processing can
be expensive, so most game engines do this processing as textures are imported into
the game, and they store these reduced images for each texture as a part of the game
assets. This master texture is known as a mip-map.

Mip-Mapping

Mip-mapping is a set of textures that has been preprocessed to contain one or more
levels of size reduction. In practice, the size reduction is in halves, all the way down
to one pixel that represents the dominant color of the entire texture. You might think
that this is a waste of memory, but it’s actually more efficient than you’d think. A
mip-map uses only one-third more memory than the original texture, and consider-
ing the vast improvement in the quality of the rendered result, you should provide
mip-maps for any texture that has a relatively high frequency of information. It is
especially useful for textures with regular patterns, such as our black-and-white line
texture.

The DirectX Texture Tool can generate mip-maps for you. To do this, you just load
your texture and select Format, Generate Mip Maps. You can then see the resulting
reduced textures by pressing PageUp and PageDn.

Really Long Polygons Can Be Trouble

One last thing about mip-maps: As you might expect, the renderer will choose
which mip-map to display based on the screen size of the polygon. This means
that it’s not a good idea to create huge polygons on your geometry that can
recede into the distance. The renderer might not be able to make a good choice
that will satisfy the look of the polygon edge, both closest to the camera and
the one farthest away. Some older video cards might select one mip-map for
the entire polygon and would therefore look strange. You can’t always count
on every player to have modern hardware. If you have to support these older
cards, you should consider breaking up longer polygons into ones that are
more square.

490 Chapter 14 n 3D Graphics Basics

Also, while we’re on the subject, many other things can go wrong with huge polygons in world space, such as
lighting and collision. It’s always a good idea to tessellate, or break up, larger surfaces into smaller polygons
that will provide the renderer with a good balance between polygon size and vertex count.

You might have heard of something called trilinear filtering. If the renderer switches
between one mip-map level on the same polygon, it’s likely that you’ll notice the
switch. Most renderers can sample the texels from more than one mip-map and
blend their color in real time. This creates a smooth transition from one mip-map
level to another, a much more realistic effect. As you approach something like a
newspaper, the mip-maps are sampled in such a way that eventually the blurry
image of the headline can resolve into something you can read and react to.

Introducing ID3D11Device and ID3D11DeviceContext

In the following pages you’ll see some code that uses two DXUT11 functions: DXUT-
GetD3D11Device() and DXUTGetD3D11DeviceContext(). DXUTGetD3D11De-
vice() returns a ID3D11Device * and represents a virtual adapter. You use it to
create resources used in rendering, everything from textures to geometry. DXUT-
GetD3D11DeviceContext() returns ID3D11DeviceContext *, and it represents
the current state of the virtual adapter. You’ll use this to set which resources are
being used by all subsequent calls, such as setting the graphics system to use a spe-
cific texture. Of course, this is a gross oversimplification of these two interfaces, the
full description of which is much better done by a dedicated Direct3D 11 book, but
at least you’ll have some inkling of what they do by looking at what kinds of methods
each of these interfaces supports.

Loading Textures in D3D11

You are finally ready to see how to load textures for Direct3D 11, and you can do so
right from the resource cache described in Chapter 8. Textures need to be processed
into two interfaces for Direct3D 11. First, the ID3DShaderResourceView interface
defines data that can be used by the shader, in this case our texture data. Second, the
ID3DSamplerState defines how the data is to be sampled, most especially to avoid
the problems of subsampling you just learned.

First, we define a class that implements IResourceExtraData interface so that tex-
tures managed by the ResCache class from Chapter 8 can be loaded:

class D3DTextureResourceExtraData11 : public IResourceExtraData

{

friend class TextureResourceLoader;

C++ Math Classes 491

public:

D3DTextureResourceExtraData11();

virtual ˜D3DTextureResourceExtraData11()

{ SAFE_RELEASE(m_pTexture); SAFE_RELEASE(m_pSamplerLinear); }

virtual std::string VToString() { return “D3DTextureResourceExtraData11”; }

ID3D11ShaderResourceView * const *GetTexture() { return &m_pTexture; }

ID3D11SamplerState * const *GetSampler() { return &m_pSamplerLinear; }

protected:

ID3D11ShaderResourceView *m_pTexture;

ID3D11SamplerState* m_pSamplerLinear;

};

This class simply encapsulates the two interfaces Direct3D 11 needs to access tex-
tures. Next, we define a loader class for textures:

class TextureResourceLoader : public IResourceLoader

{

public:

virtual bool VUseRawFile() { return false; }

virtual bool VDiscardRawBufferAfterLoad() { return true; }

virtual unsigned int VGetLoadedResourceSize(char *rawBuffer,

unsigned int rawSize)

{ return 0; }

virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize,

shared_ptr<ResHandle> handle);

};

The class helps the resource cache know how to process the raw texture bits. First,
VUseRawFile() tells the resource cache to expect some processing after the raw
bits are available in memory. The method VDiscardRawBufferAfterLoad() tells
the resource cache that once the raw bits have been processed they are no longer
needed and don’t have to be counted as taking up space in the resource cache,
which also describes why VGetLoadedResourceSize() returns zero. For textures,
Direct3D 11 manages texture memory, and while we probably could create a more
complicated relationship between our resource cache and Direct3D 11, for now
we’ll stick to something simpler. The last method is what does the processing of the
raw texture bits into something Direct3D 11 can consume. If you weren’t using a
resource cache at all, this method is all you really would need after the texture file
is read into memory:

bool TextureResourceLoader::VLoadResource(char *rawBuffer,

unsigned int rawSize, shared_ptr<ResHandle> handle)

492 Chapter 14 n 3D Graphics Basics

{

shared_ptr<D3DTextureResourceExtraData11> extra =

shared_ptr<D3DTextureResourceExtraData11>(

GCC_NEW D3DTextureResourceExtraData11());

// Load the Texture

if (FAILED (D3DX11CreateShaderResourceViewFromMemory(

DXUTGetD3D11Device(), rawBuffer, rawSize, NULL, NULL,

&extra->m_pTexture, NULL)))

return false;

// Create the sample state

D3D11_SAMPLER_DESC sampDesc;

ZeroMemory(&sampDesc, sizeof(sampDesc));

sampDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;

sampDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;

sampDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;

sampDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;

sampDesc.ComparisonFunc = D3D11_COMPARISON_NEVER;

sampDesc.MinLOD = 0;

sampDesc.MaxLOD = D3D11_FLOAT32_MAX;

if(FAILED(DXUTGetD3D11Device()->CreateSamplerState(&sampDesc,

&extra->m_pSamplerLinear)))

return false;

handle->SetExtra(shared_ptr<D3DTextureResourceExtraData11>(extra));

return true;

}

This method makes two calls to Direct3D 11 utility functions. The first,
D3DX11CreateShaderResourceViewFromMemory, fills the shader resource view
interface with the texture data. Next, the sampler state is created by filling a
D3D11_SAMPLER_DESC structure with a description of the kind of sampler needed
and calling ID3D11Device::CreateSamplerState(). The filter parameter,
D3D11_FILTER_MIN_MAG_MIP_LINEAR, requests a sampler that will use linear
interpolation for minimization, magnification, and mip-level sampling; this is a
good choice to avoid subsampling issues. Minimization is what happens when the
texture is rendered so far away as to only take up a single pixel. Magnification is
what happens when the texture is so close that a single texel fills the entire screen.
There are almost two dozen other filter types in Direct3D 11, so it makes for a
great experiment to change this value and see what results. Some of the filters have
the ability to use multiple sampling methods, compare the results, and then choose
one over the other; that is why you would choose to set the ComparisonFunc mem-
ber of the structure. For this simple filter, we’ll leave it at the default setting.

C++ Math Classes 493

The texture address setting determines what happens when the texture coordinates
are close to the border of the texture or are outside of the [0.0, 1.0] range. The choice
made above is for the texture to wrap, so that if a texture coordinate were set to (4.0,
3.0), the texture would repeat four times in the horizontal dimension and three times
in the vertical. You can also choose other settings to mirror the texture, clamp it, set
a specific border color, or even mirror the texture once. These are all defined in the
D3D11_TEXTURE_ADDRESS enum and found in the Direct 3D 11 documentation.

The MinLOD and MaxLOD members define which mip-maps, if they are defined, are
available to the sampler. Typically, you would leave these at the default settings and
have them all available.

Once the loader is defined, you can then access and set the texture with this code:

Resource resource(m_textureResource);

shared_ptr<ResHandle> texture = g_pApp->m_ResCache->GetHandle(&resource);

if (texture)

{

shared_ptr<D3DTextureResourceExtraData11> extra =

static_pointer_cast<D3DTextureResourceExtraData11>(texture->GetExtra());

DXUTGetD3D11DeviceContext()->PSSetShaderResources(0, 1,

extra->GetTexture());

DXUTGetD3D11DeviceContext()->PSSetSamplers(0, 1, extra->GetSampler());

}

Note that the first two parameters to the pixel shader methods define the start slot
(defined above to be zero), and the number of shader resources to set (defined above
as one). This is very specific to how the shader is written; if the shader expected five
textures instead of one, you would load the other four textures and make extra calls
to PSSetShaderResources(). I know, I haven’t said a word yet about what a
shader looks like from the inside, but for now just take my word for it that in addi-
tion to sending texture resources, you’ll send all the other data we’ve been talking
about, including triangle mesh data, which is coming up next.

Triangle Meshes

We’ve been talking so far about individual vertices. It’s time to take that knowledge
and create some triangle meshes. You might define a mesh as a long list of vertices,
with each group of three vertices (or verts, as programmers say) defining one triangle.
If you look at the teapot mesh in Figure 14.15 again, you’ll quickly discover that
you’ll be duplicating a lot of data.

Instead of sending only vertex data to the shader, you can send an index along with
it. This index is an array of numbers that define the verts of each triangle, allowing

494 Chapter 14 n 3D Graphics Basics

you to avoid serious vertex duplication and save tons of memory. Here’s the code
that created the grid verts and indices in the teapot example:

// Create the vertex buffer − we’ll need enough verts

// to populate the grid. If we want a 2x2 grid, we’ll

// need 3x3 set of verts.

m_numVerts = (m_squares+1)*(m_squares+1); // Create vertex buffer

// Fill the vertex buffer. We are setting the tu and tv texture

// coordinates, which range from 0.0 to 1.0

D3D11Vertex_UnlitTextured *pVerts =

GCC_NEW D3D11Vertex_UnlitTextured[m_numVerts];

GCC_ASSERT(pVerts && “Out of memory”);

for(int j=0; j<(m_squares+1); j++)

{

for (int i=0; i<(m_squares+1); i++)

{

// Which vertex are we setting?

int index = i + (j * (m_squares+1));

D3D11Vertex_UnlitTextured *vert = &pVerts[index];

// Default position of the grid is centered on the origin, flat on

// the XZ plane.

float x = (float)i - (m_squares/2.0f);

float y = (float)j - (m_squares/2.0f);

vert->Pos = Vec3(x,0.f,y);

vert->Normal = Vec3(0.0f, 1.0f, 0.0f);

// The texture coordinates are set to x,y to make the

// texture tile along with units - 1.0, 2.0, 3.0, etc.

vert->Uv.x = x;

vert->Uv.y = y;

}

}

D3D11_BUFFER_DESC bd;

ZeroMemory(&bd, sizeof(bd));

bd.Usage = D3D11_USAGE_DEFAULT;

bd.ByteWidth = sizeof(D3D11Vertex_UnlitTextured) * m_numVerts;

bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;

bd.CPUAccessFlags = 0;

D3D11_SUBRESOURCE_DATA InitData;

ZeroMemory(&InitData, sizeof(InitData));

InitData.pSysMem = pVerts;

C++ Math Classes 495

hr = DXUTGetD3D11Device()->CreateBuffer(&bd, &InitData, &m_pVertexBuffer);

if(FAILED(hr))

return hr;

// The number of indices equals the number of polygons times 3

// since there are 3 indices per polygon. Each grid square contains

// two polygons. The indices are 16 bit, since our grids won’t

// be that big!

m_numPolys = m_squares * m_squares * 2;

WORD *pIndices = GCC_NEW WORD[m_numPolys * 3];

GCC_ASSERT(pIndices && “Out of memory!”);

// Loop through the grid squares and calc the values

// of each index. Each grid square has two triangles:

//

// A − B

// | / |

// C − D

WORD *current = pIndices;

for(int j=0; j<m_squares; j++)

{

for (int i=0; i<m_squares; i++)

{

// Triangle #1 ACB

(current) = WORD(i + (j(m_squares+1)));

(current+1) = WORD(i + ((j+1)(m_squares+1)));

(current+2) = WORD((i+1) + (j(m_squares+1)));

// Triangle #2 BCD

(current+3) = WORD((i+1) + (j(m_squares+1)));

(current+4) = WORD(i + ((j+1)(m_squares+1)));

(current+5) = WORD((i+1) + ((j+1)(m_squares+1)));

current+=6;

}

}

I’ve commented the code pretty heavily to help you understand what’s going on. When
the code is executed, pVerts holds the list of vertices, and pIndices holds the
indexes into that list that defines the triangles of the grid mesh. Take a few minutes
to stare at the code that assigns the index numbers—it’s the last nested for loop. If
you have trouble figuring it out, trace the code with a 2 × 2 grid, and you’ll get it.

Once these two data structures are defined, you have to create the vertex buffer and
index buffer that can be consumed by Direct3D 11. Here’s the code to do that:

496 Chapter 14 n 3D Graphics Basics

HRESULT hr;

D3D11_BUFFER_DESC bd;

ZeroMemory(&bd, sizeof(bd));

bd.Usage = D3D11_USAGE_DEFAULT;

bd.ByteWidth = sizeof(D3D11Vertex_UnlitTextured) * m_numVerts;

bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;

bd.CPUAccessFlags = 0;

D3D11_SUBRESOURCE_DATA InitData;

ZeroMemory(&InitData, sizeof(InitData));

InitData.pSysMem = pVerts;

hr = DXUTGetD3D11Device()->CreateBuffer(&bd, &InitData, &m_pVertexBuffer);

if(SUCCEEDED (hr))

{

bd.Usage = D3D11_USAGE_DEFAULT;

bd.ByteWidth = sizeof(WORD) * m_numPolys * 3;

bd.BindFlags = D3D11_BIND_INDEX_BUFFER;

bd.CPUAccessFlags = 0;

InitData.pSysMem = pIndices;

hr = DXUTGetD3D11Device()->CreateBuffer(&bd, &InitData, &m_pIndexBuffer);

}

SAFE_DELETE_ARRAY(pVerts);

SAFE_DELETE_ARRAY(pIndices);

return hr;

In the creation of both the vertex buffer and the index buffer, a D3D11_BUFFER_

DESC structure is used to describe what kind of buffer we are creating. ByteWidth
is set to the number of bytes in the entire buffer. BindFlags is set to either
D3D11_BIND_VERTEX_BUFFER or D3D11_BIND_INDEX_BUFFER. In both cases, a
D3D11_SUBRESOURCE_DATA structure is initialized with a pointer to the data. A
successful result will create an ID3D11Buffer, which you’ll use during rendering.

Still with Me?

This chapter skimmed the surface of 3D basics like a rock skipping on a pond. 3D
math, transforms, frustums, lighting, textures, and geometry—all in just a few pages.
I know it isn’t nearly enough information, and there is a lot more depth to all those
subjects. I encourage you to go find out more about them, but know you’ll at least
have a little more knowledge and experience, and maybe you won’t feel quite so
lost. You’ll also recognize a lot more code in the Direct3D 11 samples and tutorials.

Next, you’ll learn how all of the resources you learned about in this chapter get sent
into vertex and pixel shaders. Get ready for another run across the pond.

Still with Me? 497

This page intentionally left blank

Chapter 15

by Mike McShaffry

3D Vertex and Pixel Shaders

Shaders are rapidly dominating 3D graphics architecture. There are a few platforms
out there that don’t support shaders, such as the Nintendo Wii, which still uses fixed-
function pipelines. But when even smart phones start to use shaders, it is high time
to dig in and figure them out. Much of my own learning about them was pretty frus-
trating. It seemed there was no middle ground between drawing a very lame triangle
and drawing fur. I hope the following introduction will help you see a path to getting
started with shaders.

A shader is a program that can affect the position of a vertex, the color of a pixel, or
both. Shaders can create interesting effects by manipulating geometry, as is frequently
done for water surfaces, or changing the appearance of something as mundane as a
teapotahedron (see Figure 15.1).

Shaders can be written in assembly or high-level languages. Microsoft developed
HLSL, which stands for High Level Shader Language, for use within DirectX. There
is a standard for OpenGL called GLSL and Nivida’s Cg, or C for Graphics, which are
similar to HLSL. All look and feel a lot like C, but don’t be fooled. They aren’t C.

Just like any high-level language, shaders compile to assembler language. The shader
compiler lives in your graphics drivers, and depending on your graphics card,
the compiler can do some pretty interesting things with the resulting assembly. One
example is loops, which are generally unrolled instead of actually looping in the way
you are used to. Different shader versions have drastically different support for num-
bers of texture coordinates or even the size of the shader.

499

You can compile shaders ahead of time for all the different shader versions and test
them against your video cards, and this is definitely recommended for a commercial
environment. Compiling at runtime is how most programmers develop shaders. In
the example you are about to see, the shader will be loaded and compiled at
runtime.

Compiling Shaders == Lunchtime

I worked at Slipgate on an unannounced MMO. This was a triple-A game with
tons of shaders in it. It took close to an hour to recompile every single shader
for all platforms. Fortunately, this was a very rare occurrence; usually shaders
were modified in small batches, so it wasn’t too bad. There were a few times
during development, however, where we were forced to do this massive
recompile. When that happened, productivity ground to a complete halt. We
just went to lunch.

This chapter will present you with an example of a vertex shader written in HLSL,
the C++ code you need to access it within your game, and the same for a pixel
shader. There are other types of shaders, such as geometry shaders and compute

Figure 15.1
Different effects created by pixel and vertex shaders.

500 Chapter 15 n 3D Vertex and Pixel Shaders

shaders, but those are beyond the scope of this book. Worry not, there’s a set of
further reading at the end of this chapter.

The Vertex Shader and Shader Syntax

A vertex shader is just a program—in fact, very similar to a C program. Its job is to
take vertices from the game, process them, and send them along to the pixel shader.
By process, the thing you see most often in a vertex shader is transformation and
lighting. But you can do much more; any operation supported by the shader syntax
is fair game, even moving the vertices around before you transform them. Vertex
shaders do their work and then send the output on to the pixel shader, which you’ll
see next.

The shader below is relatively simple and doesn’t look completely different from a C
program. Variables, data structures, and functions have a familiar look—but as you
would expect, there are differences. Many of these differences come from the fact that
the shader runs on the GPU in a video card, and that hardware expects data to be
presented in very specific ways. Second, the syntax helps “hook up” the shader with
data sent to it from C++. This chapter will present the shader first and then the C++
code to send it the data it needs to do its work.

The simple vertex shader presented below does the following three things:

n Transforms the position of a vertex from object space into screen space.

n Transforms the normal vector from object space to world space.

n Passes the texture coordinate through as-is.

// —— —

// File: GameCode4_VSMain_VS.hlsl

// The vertex shader file for the GameCode4.

// —— —

// Globals

// —— —

cbuffer cbMatrices : register(b0)

{

matrix g_mWorldViewProjection : packoffset(c0);

matrix g_mWorld : packoffset(c4);

};

cbuffer cbLights : register(b1)

{

float4 g_LightDiffuse[8];

float4 g_LightDir[8];

The Vertex Shader and Shader Syntax 501

float4 g_fAmbient;

int g_nNumLights;

};

cbuffer cbObjectColors : register(b2)

{

float4 g_vDiffuseObjectColor : packoffset(c0);

float4 g_vAmbientObjectColor : packoffset(c1);

bool g_bHasTexture : packoffset(c2.x);

};

// Input / Output structures

// —— —

struct VS_INPUT

{

float4 vPosition : POSITION;

float3 vNormal : NORMAL;

float2 vTexcoord : TEXCOORD0;

};

struct VS_OUTPUT

{

float4 vDiffuse : COLOR0;

float2 vTexcoord : TEXCOORD0;

float4 vPosition : SV_POSITION;

};

// Vertex Shader

// —— —

VS_OUTPUT GameCode4_VSMain(VS_INPUT Input)

{

VS_OUTPUT Output;

float3 vNormalWorldSpace;

float dotProduct;

float4 dottedLightColor;

Output.vPosition = mul(Input.vPosition, g_mWorldViewProjection);

vNormalWorldSpace = mul(Input.vNormal, (float3x3)g_mWorld);

Output.vTexcoord = Input.vTexcoord;

// Compute simple directional lighting equation

float4 vTotalLightDiffuse = float4(0,0,0,0);

for(int i=0; i<g_nNumLights; i++)

{

502 Chapter 15 n 3D Vertex and Pixel Shaders

dotProduct = dot(vNormalWorldSpace, g_LightDir[i]);

dotProduct = max(0, dotProduct);

dottedLightColor = g_LightDiffuse[i] * dotProduct;

vTotalLightDiffuse += dottedLightColor;

}

Output.vDiffuse.rgb = g_vDiffuseObjectColor * vTotalLightDiffuse +

g_vAmbientObjectColor * g_fAmbient;

Output.vDiffuse.a = 1.0f;

return Output;

}

The first thing you notice is a comment, using the familiar syntax of the “//” to begin
one. As always, it is a good idea to comment well. This is especially true in shaders,
where very simple-looking operations can have interesting results.

The next block of code defines a cbuffer, which is very similar to a struct in C,
except that you can define where the data will be stored and how it is packed. In
earlier shader models, each parameter needed by the shader had to be sent individu-
ally, which lowered performance greatly. Starting with shader model 4.0, constant
buffers could group parameters together so they could be submitted to the video
card at once. The maximum size of a constant buffer is 4,096 vectors, each vector
containing up to four 32-bit values. You are limited to 14 constant buffers per pipe-
line stage.

It’s a good idea to group data that changes at the same rate into the same constant
buffer. For example, if you have data that changes only once per frame, such as a
transformation matrix or lighting, store those separately from data that changes
more frequently. A great example of this would be a texture or material, which
could change for each object in your scene.

Packing and storing the cbuffer is done with the register and packoffset key-
word. The register (b0) tells the shader to put the constant buffer into slot zero.
This isn’t truly necessary in this simple shader, but if you had more than one con-
stant buffer, this is a clear way to define which slot it occupies and which you’ll need
to know for your C++ code that sends data to the shader. Packing tells the shader
compiler how you want data stored, especially if you have simple integers or Boo-
leans you want to send to the shader.

The cbuffer cbMatrices structure defined at the top of the shader stores two
4 × 4 matrices. The first, g_mWorldViewProjection, stores the transformation
needed to get from object space to screen space. Each position member of each vertex

The Vertex Shader and Shader Syntax 503

is transformed using this matrix to resolve a 3D position in object space to a pixel in
screen space— a 2D X,Y coordinate and a depth measured into the screen. The sec-
ond matrix, g_mWorld, will be used to transform a normal vector into world space,
which will be used by the pixel shader to calculate lighting on a per-pixel basis.

In addition to transforming vertex positions into screen space, the vertex shader also
combines the defined object color or a piece of its texture with as many as eight
lights defined in the environment. To help with this, the vertex shader defines two
more constant buffers, cbObjectColors and cbLights. cbObjectColors stores
a diffuse and ambient color and whether there is a valid texture, which will be used
later in the pixel shader. cbLights stores the color and direction of up to eight
directional lights, an ambient light color, and the number of valid lights.

Notice the difference in register values for both cbuffer objects. cbObject-
Colors is set to slot one, and cbLights is set to slot two. This isn’t mandatory, as
the shader compiler would automatically set them to those values because of their
order of definition, but it’s good to have this example. cbObjectColors has a
bool that is specifically put into c2.x, which is the first 32-bit member of the
third vector in the structure. The cbLights constant buffer has a similar issue with
the g_nNumLights member not being a full 4 vector, but the packoffset defini-
tions have been left off, so the shader compiler could set them as it wants.

Just as you might pack a structure in C++ to save space or create code that will
access it with more specificity than the defaults, you can use packoffset to over-
ride the shader compiler to create a very tightly defined structure. It’s completely up
to you and your needs. These shaders could have all forgone both register and
packoffset keywords and used the defaults, since there isn’t anything really special
about them.

The next block of code defines the VS_INPUT structure. It stores a position, a nor-
mal, and a texture coordinate and maps to the D3DVertex_UnlitTextured

struct used in the previous chapter to create geometry. Here it is again:

struct D3D11Vertex_UnlitTextured

{

Vec3 Pos;

Vec3 Normal;

Vec2 Uv;

};

One syntax different from C is after the colon for each member: POSITION, NORMAL,
and TEXCOORD0. These are called semantics, and they provide a way to identify each
member so that each member can be linked to the data you define in C++.

504 Chapter 15 n 3D Vertex and Pixel Shaders

The VS_OUTPUT structure is defined similarly, except there is a special semantic,
SV_POSITION. This is a system value semantic, and it tells the shader compiler that
this value will be interpreted as a pixel location on the display. The entire VS_OUTPUT
structure will be sent to the pixel shader.

The next block of code defines a function, GameCode4_VS_Main. This function
accepts VS_INPUT and returns VS_OUTPUT. The syntax is similar to C, and just like
C there are over 100 intrinsic functions you can call upon. The one you see first, mul,
multiplies or concatenates two matrices. Other intrinsic functions perform data type
conversions, vector operations like a dot product, trigonometric functions like cosine,
and even functions to compute high-precision partial derivatives. For now, we’ll stick
to the simple stuff.

The vertex shader function uses mul to transform the vPosition member in
VS_INPUT from object space to screen space, and to transform the vNormal mem-
ber from object space to world space. The vTexcoord member is just sent along as
is. With all the members of VS_OUTPUT assigned, it is returned, and the shader func-
tion exits.

If there are lights to worry about, the shader enters a loop. Another shader-intrinsic
function, dot, calculates the dot product between the light’s direction vector and the
normal vector sent in from the vertex shader. The dot product calculates an angle if
you recall, and if that angle is 90 degrees, the dot product is 0.0f. The max intrinsic
function makes sure that the dot product doesn’t contribute a negative value to the
light calculation. The light’s diffuse color is multiplied by the dot product to scale the
light’s contribution down to zero if the normal is at right angles to the light direction.
The light’s contribution, stored in dottedLightColor, is accumulated in the com-
bined contributions of all the lights, vTotalLightDiffuse.

After the lights are accumulated, the final result is combined with the object’s mate-
rial and stored in Output.vDiffuse. This is one of the simplest lighting models,
where the lights are accumulated for each vertex and combined with the object’s
material, which results in a color for each vertex. The pixel shader, which you will
see shortly, interpolates this color value for each pixel and, if it exists, combines
that with a value sampled from the texture.

Compiling the Vertex Shader

The shader is typically stored in an HLSL text file. To use it, it must be loaded and
compiled. It is possible to precompile shaders, saving some loading time, but it can
be useful to compile them at runtime so that different levels of shaders on the target
machine can be supported.

Compiling the Vertex Shader 505

Compiling a shader file is done with this helper function: CompileShader():

HRESULT CompileShader(

LPCSTR pSrcData,

SIZE_T SrcDataLen,

LPCSTR pFileName,

LPCSTR szEntryPoint,

LPCSTR szShaderModel,

ID3DBlob** ppBlobOut)

{

HRESULT hr = S_OK;

DWORD dwShaderFlags = D3DCOMPILE_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

// Set the D3DCOMPILE_DEBUG flag to embed debug information in the shaders.

// Setting this flag improves the shader debugging experience, but still

// allows the shaders to be optimized and to run exactly the way they will

// run in the release configuration of this program.

dwShaderFlags |= D3DCOMPILE_DEBUG;

#endif

ID3DBlob* pErrorBlob;

hr = D3DX11CompileFromMemory(pSrcData, SrcDataLen,

pFileName, NULL, NULL, szEntryPoint, szShaderModel,

dwShaderFlags, 0, NULL, ppBlobOut, &pErrorBlob, NULL);

if(FAILED(hr))

{

if(pErrorBlob != NULL)

OutputDebugStringA((char*)pErrorBlob->GetBufferPointer());

if(pErrorBlob) pErrorBlob->Release();

return hr;

}

if(pErrorBlob)

pErrorBlob->Release();

return S_OK;

}

This helper function was lifted almost verbatim from the Direct3D11 samples, with
one important modification. Instead of loading the shader straight from a file, this
code loads it from the resource cache. This means that the resource cache is respon-
sible for loading the shader file into memory, and from there you need to send it to

506 Chapter 15 n 3D Vertex and Pixel Shaders

D3DX11CompileFromMemory() to let Direct3D11 compile the shader. The para-
meters you need to send into this function are

n pSrcData: A pointer to the shader in memory

n SrcDataLen: The size of the shader in bytes

n pFileName: The name of the shader file, which will help with debugging

n pDefines: Shader defines, which we have set to NULL

n pInclude: Shader includes, which we have set to NULL

n pFunctionName: The name of the entry point function

n pProfile: A string that defines the shader model

n Flags1: Shader compile flags, which are set at the beginning of the function

n Flags2: Effect compile flags, which we have set to zero

n pPump: A pointer to a thread pump interface, which is NULL

n ppShader: Where the compiled shader will be stored

n ppErrorMsgs: Where error messages will be stored

n pHResult: A pointer to store a return value if pPump is defined

For our simple shaders, most of the advanced parameters can be set to NULL. One
that deserves a little more attention, however, is pProfile. Just as in releases of soft-
ware, each major revision of HLSL brought new capabilities. When you write a shader,
you write to a specific model, and you tell the shader compiler which model it needs
to run on. If you specify vertex shader model 4.0 with vs_4_0 as the pProfile

parameter, and you’ve used anything in the shader that requires shader model 5, the
compile will fail.

Moreover, if you want to specify a version of Direct3D, such as 9.1 or 10.0, you can
append this to the pProfile string. For example, if you want to set the shader com-
piler to compile a vertex shader for model 4.0 with a Direct3D level of 9.1, you would
set the pProfile string to vs_4_0_level_9_1.

C++ Helper Class for the Vertex Shader

Having a compiled shader isn’t much good if you can’t get data to it from your game,
so it makes some sense to design a helper class for the shader. Here’s the helper class
for the vertex shader you saw earlier:

class GameCode4_Hlsl_VertexShader

{

C++ Helper Class for the Vertex Shader 507

public:

GameCode4_Hlsl_VertexShader();

˜GameCode4_Hlsl_VertexShader();

HRESULT OnRestore(Scene *pScene);

HRESULT SetupRender(Scene *pScene, const SceneNode *pNode);

protected:

ID3D11VertexShader* m_pVertexShader;

ID3D11InputLayout* m_pVertexLayout11;

ID3D11Buffer* m_pcbVSMatrices;

ID3D11Buffer* m_pcbVSMaterial;

ID3D11Buffer* m_pcbVSLighting;

bool m_enableLights;

};

The vertex shader needs some data to do its work: the constant buffer with the two
transform matrices, a constant buffer holding the lights affecting the vertices, the
object’s material, and a triangle mesh that describes the geometry the shader will pro-
cess. Look at the protected members of this class. The first defines a pointer to an
object that implements the ID3D11VertexShader interface— basically, this is just
a pointer to the loaded shader. The next member, m_pVertexLayout11, defines
the layout of the vertices the shader expects, essentially what will become VS_INPUT.
The next member, m_pcbVSMatrices, defines a pointer to an ID3D11Buffer that
will hold the two transformation matrices the vertex shader needs, which will present
itself in the shader as cbuffer cbMatrices. The next member, m_pcbVSMaterial,
holds information about the diffuse and ambient colors of the object and whether the
object is textured. The last member, m_pcbVSLighting, holds the color and direction
of up to eight directional lights.

The constructor and destructor for this class are relatively trivial:

GameCode4_Hlsl_VertexShader::GameCode4_Hlsl_VertexShader()

{

m_pVertexLayout11 = NULL;

m_pVertexShader = NULL;

m_pcbVSMatrices = NULL;

m_pcbVSMaterial = NULL;

m_pcbVSLighting = NULL;

m_enableLights = true;

}

GameCode4_Hlsl_VertexShader::~GameCode4_Hlsl_VertexShader()

{

SAFE_RELEASE(m_pVertexLayout11);

508 Chapter 15 n 3D Vertex and Pixel Shaders

SAFE_RELEASE(m_pVertexShader);

SAFE_RELEASE(m_pcbVSMatrices);

SAFE_RELEASE(m_pcbVSMaterial);

SAFE_RELEASE(m_pcbVSLighting);

}

If you don’t call SAFE_RELEASE for those Direct3D objects, you are sure to get one
of those dreaded warning messages at the exit of your game! The two meaty methods
of this class are OnRestore(), which initializes this class, and SetupRender(),
which is called any time the shader is used to render graphics to the screen. Here is
OnRestore():

HRESULT GameCode4_Hlsl_VertexShader::OnRestore()

{

HRESULT hr;

SAFE_RELEASE(m_pVertexLayout11);

SAFE_RELEASE(m_pVertexShader);

SAFE_RELEASE(m_pcbVSMatrices);

SAFE_RELEASE(m_pcbVSMaterial);

SAFE_RELEASE(m_pcbVSLighting);

//= =

// Load and compile the vertex shader. Using the lowest

// possible profile for broadest feature level support

ID3DBlob* pVertexShaderBuffer = NULL;

std::string hlslFileName = “Effects\\GameCode4_VS.hlsl”;

Resource resource(hlslFileName.c_str());

shared_ptr<ResHandle> pResourceHandle =

g_pApp->m_ResCache->GetHandle(&resource); if (FAILED

(CompileShader(pResourceHandle->Buffer(), pResourceHandle->Size(),

hlslFileName.c_str(), “GameCode4_VSMain”, “vs_4_0_level_9_1”,

&pVertexShaderBuffer)))

{

SAFE_RELEASE (pVertexShaderBuffer);

return hr;

}

if (FAILED (DXUTGetD3D11Device()->CreateVertexShader(

pVertexShaderBuffer->GetBufferPointer(),

pVertexShaderBuffer->GetBufferSize(), NULL, &m_pVertexShader)))

{

SAFE_RELEASE (pVertexShaderBuffer);

return hr;

}

C++ Helper Class for the Vertex Shader 509

//= =

// Create the vertex input layout and release the pVertexShaderBuffer object

if (SUCCEEDED (DXUTGetD3D11Device()->CreateInputLayout(

D3D11VertexLayout_UnlitTextured,

ARRAYSIZE(D3D11VertexLayout_UnlitTextured),

pVertexShaderBuffer->GetBufferPointer(),

pVertexShaderBuffer->GetBufferSize(), &m_pVertexLayout11));

{

// =

// Setup the constant buffer for the two transformation matrices

D3D11_BUFFER_DESC Desc;

Desc.Usage = D3D11_USAGE_DYNAMIC;

Desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;

Desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;

Desc.MiscFlags = 0;

Desc.ByteWidth = sizeof(ConstantBuffer_Matrices);

V_RETURN(DXUTGetD3D11Device()->CreateBuffer(&Desc, NULL,

&m_pcbVSMatrices));

Desc.ByteWidth = sizeof(ConstantBuffer_Material);

V_RETURN(DXUTGetD3D11Device()->CreateBuffer(&Desc, NULL,

&m_pcbVSMaterial));

Desc.ByteWidth = sizeof(ConstantBuffer_Lighting);

V_RETURN(DXUTGetD3D11Device()->CreateBuffer(&Desc, NULL,

&m_pcbVSLighting));

}

SAFE_RELEASE (pVertexShaderBuffer);

return S_OK;

}

The first few lines simply release the D3D11 objects, if they happen to contain any-
thing. This might happen if the D3D11 device were lost, which could happen if the
player switched to another application or dragged the game from one monitor to
another.

The next section of code, defined by the comment headers, loads the shader from the
resource cache. The free function, CompileShader(), you’ve seen in the previous
section. The entry point of our shader is set to GameCode4_VSMain. The string
parameter for the shader model is set to vs_4_0_level_9_1, which tells the shader
compiler to support vertex shaders model 4.0, compatible with Direct3D 9.1. The
compiled shader is stored in pVertexShaderBuffer. If the compile fails for any

510 Chapter 15 n 3D Vertex and Pixel Shaders

reason, you’ll know about it here. The vertex shader is then created with a call to
ID3D11Device::CreateVertexShader().

Next, the vertex input layout is defined and set for the shader. Recall the definition
for VS_INPUT in the vertex shader? That input structure needs a layout definition,
which is defined as follows:

// Create our vertex input layout

const D3D11_INPUT_ELEMENT_DESC D3D11VertexLayout_UnlitTextured[] =

{

{ “POSITION”, 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

D3D11_INPUT_PER_VERTEX_DATA, 0 },

{ “NORMAL”, 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,

D3D11_INPUT_PER_VERTEX_DATA, 0 },

{ “TEXCOORD”, 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24,

D3D11_INPUT_PER_VERTEX_DATA, 0 },

};

This is the data structure sent into ID3D11Device::CreateInputLayout (), and
is an array of D3D11_INPUT_ELEMENT_DESC structures. For each member, it defines
a single element of each vertex. The first member of the D3D11_INPUT_ ELEMENT_

DESC structure is the SemanticName, which the vertex shader will use to access the
data. The next member, SemanticIndex, enables you to send in more than one
value with the same SemanticName, as you might do if there were multiple texture
coordinates for each vertex. The next member, Format, is a value from the DXGI_

FORMAT enum defined in Direct3D, which has 115 different members. The values
chosen for our vertex format define 3D, 32-bit floating-point vectors for the position
and normal data, and a 2D 32-bit floating-point vector for the texture data. The
fourth member defines the input slot, which for this simple example with only one
vertex buffer is set to zero. If your shader accepted more than one vertex buffer,
you’d set the input slot to match which vertex buffer the shader should read from.
The fifth member defines the AlignedByteOffset, which you always set to the
byte offset of the data member. The last two members, set to their defaults for this
simple example, are used when a vertex shader can draw instances of the same object
in multiple positions by using additional transformation matrices.

With the input layout defined, it is sent into the ID3D11Device::CreateInput-

Layout() method, which results in the initialization of the m_pVertexLayout11

member of our class. With all that homework complete, the pVertexShaderBuffer

is no longer needed, so it is released.

The next block of code in this shader setup routine creates the data structure that
maps to the cbuffer cbPerObject structure in the vertex shader that holds the

C++ Helper Class for the Vertex Shader 511

two transformation matrices for processing vertex positions into screen space and
vertex normals from object space into world space. Defining a constant buffer for
Direct3D 11 is done by filling in the D3D11_BUFFER_DESC structure and sending
the result into ID3D11Device::CreateBuffer(). This is simply creating a data
buffer with a size sufficient for the data we’re going to copy into it during rendering.
As you might expect, the definition for the ConstantBuffer_Matrices is just the
two transform matrices the vertex shader needs:

struct ConstantBuffer_Matrices

{

Mat4x4 m_WorldViewProj;

Mat4x4 m_World;

};

The results are stored in the m_pcbVSMatrices member of the class. The two C++
structures referenced in the D3D11_BUFFER_DESC for material and lighting are
defined as follows:

struct ConstantBuffer_Material

{

Vec4 m_vDiffuseObjectColor;

Vec4 m_vAmbientObjectColor;

BOOL m_bHasTexture;

Vec3 m_vUnused;

};

struct ConstantBuffer_Lighting

{

Vec4 m_vLightDiffuse[MAXIMUM_LIGHTS_SUPPORTED];

Vec4 m_vLightDir[MAXIMUM_LIGHTS_SUPPORTED];

Vec4 m_vLightAmbient;

UINT m_nNumLights;

Vec3 m_vUnused;

};

There is a notable difference in these structures from the ConstantBuffer_

Matrices structure. At the end of each one, there is a Vec3 m_vUnused member.
The reason for this is that in each case, the previous member occupies only one byte
of the structure, leaving it at a size that can’t be properly aligned. GPU hardware is
notoriously picky about the size of structures, and if you don’t send data to them
aligned on 16-byte boundaries, you’ll get an E_INVALIDARG error coming back
from the call to CreateBuffer().

So here’s a quick review. The shader source code was loaded, compiled, and created
ready to use for rendering. The vertex layout was defined. The constant buffers for

512 Chapter 15 n 3D Vertex and Pixel Shaders

the transform matrices, lighting, and materials were defined. This process only needs
to be done once, as long as the ID3D11Device remains valid.

The next method is run in each frame and initializes all the data for the shader:

HRESULT GameCode4_Hlsl_VertexShader::SetupRender(Scene *pScene, const SceneNode

*pNode)

{

HRESULT hr;

// Set the vertex shader and the vertex layout

DXUTGetD3D11DeviceContext()->VSSetShader(m_pVertexShader, NULL, 0);

DXUTGetD3D11DeviceContext()->IASetInputLayout(m_pVertexLayout11);

// Get the projection & view matrix from the camera class

Mat4x4 mWorldViewProjection =

pScene->GetCamera()->GetWorldViewProjection(pScene);

Mat4x4 mWorld = pScene->GetTopMatrix();

D3D11_MAPPED_SUBRESOURCE MappedResource;

// - - - - - Transform Matrices - - - - -

V(DXUTGetD3D11DeviceContext()->Map(

m_pcbVSMatrices, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource));

ConstantBuffer_Matrices* pVSMatrices =

(ConstantBuffer_Matrices*)MappedResource.pData;

D3DXMatrixTranspose(&pVSMatrices->m_WorldViewProj, &mWorldViewProjection);

D3DXMatrixTranspose(&pVSMatrices->m_World, &mWorld);

DXUTGetD3D11DeviceContext()->Unmap(m_pcbVSMatrices, 0);

// - - - - - Lighting - - - - -

V(DXUTGetD3D11DeviceContext()->Map(m_pcbVSLighting, 0,

D3D11_MAP_WRITE_DISCARD, 0, &MappedResource));

D3D11_MAP_WRITE_DISCARD, 0, &MappedResource));

ConstantBuffer_Lighting* pLighting =

(ConstantBuffer_Lighting*)MappedResource.pData;

if (m_enableLights)

pScene->GetLightManager()->CalcLighting(pLighting, pNode);

else

{

pLighting->m_nNumLights = 0;

pLighting->m_vLightAmbient = Vec4(1.0f, 1.0f, 1.0f, 1.0f);

}

DXUTGetD3D11DeviceContext()->Unmap(m_pcbVSLighting, 0);

C++ Helper Class for the Vertex Shader 513

// - - - - - Material - - - - -

V(DXUTGetD3D11DeviceContext()->Map(m_pcbVSMaterial, 0,

D3D11_MAP_WRITE_DISCARD, 0, &MappedResource));

ConstantBuffer_Material* pPSMaterial =

(ConstantBuffer_Material*)MappedResource.pData;

Color color = pNode->VGet()->GetMaterial().GetDiffuse();

pPSMaterial->m_vDiffuseObjectColor =

Vec4(color.r, color.g, color.b, color.a);

color = (m_enableLights) ?

pNode->VGet()->GetMaterial().GetAmbient() :

Color(1.0f, 1.0f, 1.0f, 1.0f);

pPSMaterial->m_vAmbientObjectColor =

Vec4(color.r, color.g, color.b, color.a);

pPSMaterial->m_bHasTexture = false;

DXUTGetD3D11DeviceContext()->VSSetConstantBuffers(0, 1, &m_pcbVSMatrices);

DXUTGetD3D11DeviceContext()->VSSetConstantBuffers(1, 1, &m_pcbVSLighting);

DXUTGetD3D11DeviceContext()->VSSetConstantBuffers(2, 1, &m_pcbVSMaterial);

return S_OK;

}

This code looks a little more complicated than it is. Each time the vertices are ren-
dered, the ID3D11DeviceContext is informed of the shader being used and the
vertex layout it expects. The nearly dozen lines of code following grab the two trans-
form matrices we need from a class you will be introduced to in the next chapter, the
Scene class. The matrices are transposed, an operation that flips the rows into col-
umns and columns into rows. This is because the native format used by the DXUT

matrix structure isn’t what is expected by the video card hardware. The D3D11_

MAPPED_SUBRESOURCE structure is what is defined and sent into the ID3D11Device
Context::Map() method to create a buffer space the transposed matrices can be
sent to.

I admit, I’m cheating a bit by giving you a peek at some objects you’ll see in the next
chapter. I’m talking about the Scene object stored in pScene. For now, just know
that this defines a scene in your game, and a part of that scene includes lights. The
SceneNode object stored in pNode stores a renderable object in that scene—in fact,
the very object that the pixel shader is about to render. A part of the SceneNode

class defines the material applied to the object. The call to pScene->

GetLightManager()->CalcLighting() is what fills the lighting structure with
all the information about what lights are currently affecting the vertices sent to the
shader.

514 Chapter 15 n 3D Vertex and Pixel Shaders

Take a closer look at the calls to ID3D11DeviceContext::VSSetConstant

Buffers() at the end. I purposely moved them together to make a point: When
there are more multiple constant buffers in a shader, you must use the first parame-
ter, StartSlot, to identify which constant buffer you are setting. Since the
cbMatrices structure in the vertex shader is defined as being in register zero, the
slot number in VSSetConstantBuffers() is set to zero. For the lights, it is set to
slot one, and the materials are set to slot two. If the register directive weren’t used,
the slots you would specify would simply be in the order in which the constant
buffers were declared in the shader.

The Pixel Shader

A pixel shader is responsible for painting pixels, or rasterization. Every pixel on the
screen is a combination of an object’s color, the texture color if one exists, and light-
ing. The pixel shader below is an example of one that calculates all of these values on
a per-pixel basis.

// —— —

// File: GameCode4_PS.hlsl

// The pixel shader file for GameCode4

// —— —

// —— —

// Globals

// —— —

cbuffer cbObjectColors : register(b0)

{

float4 g_vDiffuseObjectColor : packoffset(c0);

float4 g_vAmbientObjectColor : packoffset(c1);

bool g_bHasTexture: packoffset(c2.x);

};

// Textures and Samplers

// —— —

Texture2D g_txDiffuse : register(t0);

SamplerState g_samLinear : register(s0);

// Input structure

// —— —

struct PS_INPUT

{

float4 vDiffuse : COLOR0;

float2 vTexcoord : TEXCOORD0;

};

The Pixel Shader 515

// Pixel Shader

// —— —

float4 GameCode4_PSMain(PS_INPUT Input) : SV_TARGET

{

float4 vOutputColor;

if (g_bHasTexture)

vOutputColor =

g_txDiffuse.Sample(g_samLinear, Input.vTexcoord) * Input.vDiffuse;

else

vOutputColor = Input.vDiffuse;

return vOutputColor;

}

The pixel shader is much simpler than the vertex shader, since all it has to do is mix
a texture sample with the diffuse color sent in from the vertex shader.

Since this pixel can process a texture, there are globals that store a Texture2D struc-
ture and a SamplerState, which map to the ID3D11ShaderResourceView and
ID3D11SamplerState resources you learned about in the texturing section earlier.

The VS_INPUT structure defines the data that is output from the vertex shader,
which will be the diffuse color calculated by the vertex shader and the texture coor-
dinate at the pixel location. The call to Sample grabs the texel from the texture,
based on the value of Input.vTexcoord. This value is multiplied by
Input.vDiffuse to blend the light, object color, and texture together. If no texture
is defined, vOutputColor is simply set to the Input.vDiffuse value.

C++ Helper Class for the Pixel Shader

Just as you saw with the vertex shader, there is a C++ class designed to set up the
pixel shader and communicate data to it.

class GameCode4_Hlsl_PixelShader

{

public:

GameCode4_Hlsl_PixelShader(std::string textureResource);

~GameCode4_Hlsl_PixelShader();

HRESULT OnRestore(Scene *pScene);

HRESULT SetupRender(Scene *pScene, const SceneNode *pNode);

HRESULT SetTexture(std::string textureName);

HRESULT SetTexture(ID3D11ShaderResourceView* const *pDiffuseRV,

ID3D11SamplerState * const *ppSamplers);

void EnableLights(bool enableLights) { m_enableLights = enableLights; }

516 Chapter 15 n 3D Vertex and Pixel Shaders

protected:

ID3D11PixelShader* m_pPixelShader;

ID3D11Buffer* m_pcbPSMaterial;

std::string m_textureResource;

};

The class definition is somewhat similar to the one you saw for the vertex shader, just
simpler. The differences include an additional ID3D11Buffer * member, since this
shader accepts two constant buffers: one for the material definition and the other for
lighting. It also defines the string used to grab the texture from the resource cache
and a Boolean that controls whether the lights are active. The constructor and
destructor are fairly trivial and similar to the vertex shader class:

GameCode4_Hlsl_PixelShader::GameCode4_Hlsl_PixelShader(

std::string textureResource)

{

m_textureResource = textureResource;

m_pPixelShader = NULL;

m_pcbPSMaterial = NULL;

}

GameCode4_Hlsl_PixelShader::~GameCode4_Hlsl_PixelShader()

{

SAFE_RELEASE(m_pPixelShader);

SAFE_RELEASE(m_pcbPSMaterial);

}

As before, the shader is set up and is very similar to the vertex shader, with the one
difference that there are two constant buffers to create:

HRESULT GameCode4_Hlsl_PixelShader::OnRestore(Scene *pScene)

{

HRESULT hr;

SAFE_RELEASE(m_pPixelShader);

SAFE_RELEASE(m_pcbPSMaterial);

//= =

// Set up the pixel shader and related constant buffers

ID3DBlob* pPixelShaderBuffer = NULL;

std::string hlslFileName = “Effects\\GameCode4_PS.hlsl”;

Resource resource(hlslFileName.c_str());

shared_ptr<ResHandle> pResourceHandle =

g_pApp->m_ResCache->GetHandle(&resource);

if (FAILED (CompileShader(pResourceHandle->Buffer(),

C++ Helper Class for the Pixel Shader 517

pResourceHandle->Size(),

hlslFileName.c_str(), “GameCode4_PSMain”,

“ps_4_0_level_9_1”, &pPixelShaderBuffer)))

{

SAFE_RELEASE (pPixelShaderBuffer);

return hr;

}

if (SUCCEEDED (DXUTGetD3D11Device()->CreatePixelShader(

pPixelShaderBuffer->GetBufferPointer(),

pPixelShaderBuffer->GetBufferSize(), NULL, &m_pPixelShader)))

{

// Setup constant buffer

D3D11_BUFFER_DESC Desc;

Desc.Usage = D3D11_USAGE_DYNAMIC;

Desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;

Desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;

Desc.MiscFlags = 0;

Desc.ByteWidth = sizeof(ConstantBuffer_Material);

hr = DXUTGetD3D11Device()->

CreateBuffer(&Desc, NULL, &m_pcbPSMaterial);

}

SAFE_RELEASE(pPixelShaderBuffer);

return hr;

}

This is very similar to the vertex shader, except that the shader model string is set to
ps_4_0_level_9_1. This lets the shader compiler know it is compiling to pixel
shader model 4.0, compatible with Direct3D 9.1. And of course, instead of calling
CreateVertexShader(), CreatePixelShader() is called. The code for setting
up the constant buffer for the object’s material is exactly the same as you saw in the
vertex shader.

Just before rendering, the following method is called to set up the data for the pixel
shader— very similar to the vertex shader’s helper, only simpler since there is only
one constant buffer to set up:

HRESULT GameCode4_Hlsl_PixelShader::SetupRender(Scene *pScene, const SceneNode

*pNode)

{

HRESULT hr;

DXUTGetD3D11DeviceContext()->PSSetShader(m_pPixelShader, NULL, 0);

D3D11_MAPPED_SUBRESOURCE MappedResource;

V(DXUTGetD3D11DeviceContext()->Map(

518 Chapter 15 n 3D Vertex and Pixel Shaders

m_pcbPSMaterial, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource));

ConstantBuffer_Material* pPSMaterial =

(ConstantBuffer_Material*)MappedResource.pData;

Color color = pNode->VGet()->GetMaterial().GetDiffuse();

pPSMaterial->m_vDiffuseObjectColor = Vec4(color.r, color.g,

color.b, color.a);

if (m_textureResource.length() > 0)

pPSMaterial->m_bHasTexture = true;

else

pPSMaterial->m_bHasTexture = false;

DXUTGetD3D11DeviceContext()->Unmap(m_pcbPSMaterial, 0);

DXUTGetD3D11DeviceContext()->PSSetConstantBuffers(

0, 1, &m_pcbPSMaterial);

// Set up the texture

SetTexture(m_textureResource);

return S_OK;

}

The last methods are utility methods for setting the texture, either from a texture
name that must be loaded from the resource cache, or a texture that is already
loaded:

HRESULT GameCode4_Hlsl_PixelShader::SetTexture(std::string textureName)

{

m_textureResource = textureName;

if (m_textureResource.length() > 0)

{

Resource resource(m_textureResource);

shared_ptr<ResHandle> texture = g_pApp->m_ResCache->GetHandle(&resource);

if (texture)

{

shared_ptr<D3DTextureResourceExtraData11> extra =

static_pointer_cast<D3DTextureResourceExtraData11>(texture->GetExtra());

SetTexture(extra->GetTexture(), extra->GetSampler());

}

}

return S_OK;

}

HRESULT GameCode4_Hlsl_PixelShader::SetTexture(

ID3D11ShaderResourceView* const *pDiffuseRV,

ID3D11SamplerState * const *ppSamplers)

{

C++ Helper Class for the Pixel Shader 519

DXUTGetD3D11DeviceContext()->PSSetShaderResources(0, 1, pDiffuseRV);

DXUTGetD3D11DeviceContext()->PSSetSamplers(0, 1, ppSamplers);

return S_OK;

}

The first method uses the resource cache and the texture loader to grab the raw bits
of the texture and create a D3DTextureResourceExtraData11 object, as you saw
in the texture section in this chapter. That class defines both the ID3DShaderRe-

sourceView and the ID3D11SamplerState the pixel shader will use to sample
the texture and set the right color for any textured pixel it draws.

Rendering with the Shader Helper Classes

So far all you’ve done is set up everything, but nothing in the code you’ve seen in this
or the previous chapter has rendered a single pixel yet. There’s one bit of code you
need to actually engage both shaders and make pretty things appear on your screen.

From the last chapter, you learned how to define a vertex buffer and an index buffer
that holds your geometry. You’ll use those now. You’ll also use an instantiated Game-

Code4_Hlsl_VertexShader object and a GameCode4_Hlsl_PixelShader

object— each of which has already had the OnRestore() method called to initialize
it. With those four objects, you render to the screen with this code:

m_VertexShader.SetupRender(pScene, pNode);

m_PixelShader.SetupRender(pScene, pNode);

// Set vertex buffer

UINT stride = sizeof(D3D11Vertex_UnlitTextured);

UINT offset = 0;

DXUTGetD3D11DeviceContext()->

IASetVertexBuffers(0, 1, &m_pVertexBuffer, &stride, &offset);

// Set index buffer

DXUTGetD3D11DeviceContext()->

IASetIndexBuffer(m_pIndexBuffer, DXGI_FORMAT_R16_UINT, 0);

// Set primitive topology

DXUTGetD3D11DeviceContext()->

IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

DXUTGetD3D11DeviceContext()->DrawIndexed(m_numPolys * 3, 0, 0);

Here’s the cast of characters:

n m_VertexShader is an instantiation of the GameCode4_Hlsl_VertexShader
class.

520 Chapter 15 n 3D Vertex and Pixel Shaders

n m_PixelShader is an instantiation of the GameCode4_Hlsl_VertexShader
class.

n m_pVertexBuffer and m_pIndexBuffer are ID3D11Buffer objects initial-
ized as you saw in the last chapter.

n pScene and pNode are cameos from the next chapter, and they describe the
scene your game is drawing and the particular object being rendered by the
shader.

The vertex and index buffer are set, and then the primitive topology is set. The topol-
ogy in this example is a triangle list, but many others are also supported. The topol-
ogy defines how the indexes refer into your vertex buffer, and if you are clever, you
can use this to optimize the size of your index buffer or draw different primitives like
lines instead of triangles. Definitely look further into books written specifically for
Direct3D 11 or into the samples to learn more.

Shaders— It’s Just the Beginning

You’ve seen enough to be really dangerous in Direct3D 11 and perhaps even be dan-
gerous in any other renderer you choose, such as OpenGL. The concepts I presented
are the same. The only things different are the function calls, the coordinate systems,
the texturing support, how they expect your geometry, and so on. This chapter’s goal
was pretty aggressive, but even so I’ve only scratched the surface.

I suggest that you go play around a bit in Direct3D 11’s sample projects and get your
bearings. With what you learned, you’ll probably be more at ease with them, and
maybe you won’t get as lost as I did when I first learned Direct3D 11. Even while
writing this book, I spent plenty of hours cursing at E_INVALIDARG errors and
black screens. With any luck, you’ve got just enough knowledge in your head to per-
form some of your own twisting and cursing, but hopefully a little less that I did.

Further Reading

n Programming Vertex and Pixel Shaders, Wolfgang Engel

n Practical Rendering and Computation with Direct3D 11, Jason Zink, Matt
Pettineo, Jack Hoxley

Further Reading 521

This page intentionally left blank

Chapter 16

by Mike McShaffry

3D Scenes

In the previous pages, you learned something about how to draw 3D geometry, but
there’s much more to a 3D game than drawing a few triangles. Even a relatively bor-
ing 3D game has characters, interesting environments, dynamic objects, and a few
special effects here and there. Your first attempt at a 3D engine might be to just
draw everything. You might think that your blazing-fast Nvidia video card can han-
dle anything you throw at it, but you’d be wrong. It turns out to be pretty tricky to
get 3D scenes to look right and draw quickly.

This chapter exposes you to one solution for architecting a 3D engine—something
that can organize all the visible components of your game world and hopefully
draw them fast. Commercial 3D engines are highly optimized and pretty compli-
cated, but there are basic architectural ideas that ring true. With any luck, you’ll
end this chapter with a healthy respect for the programmers who build 3D engines
and have a little knowledge you can use to play with your very own.

Scene Graph Basics

A scene graph is a dynamic data structure, similar to a multiway tree. Each node
represents an object in a 3D world or perhaps an instruction to the renderer. Every
node can have zero or more children nodes. The scene graph is traversed every frame
to draw the visible world. Many commercial renderers use a scene graph as their
basic data structure. Before you get too excited, what you are about to see is a basic

523

introduction to the concepts and code behind a scene graph—think of this as a scene
graph with training wheels.

ISceneNode Interface Class

The base class for all nodes in the scene graph is the interface class ISceneNode.
Everything else inherits from that class and extends the class to create every part of
your 3D world, including the simple geometry, meshes, a camera, and so on. Here’s
the ISceneNode class:

class ISceneNode

{

public:

virtual const SceneNodeProperties * const VGet() const=0;

virtual void VSetTransform(const Mat4x4 *toWorld,

const Mat4x4 *fromWorld=NULL)=0;

virtual HRESULT VOnUpdate(Scene *pScene, DWORD const elapsedMs)=0;

virtual HRESULT VOnRestore(Scene *pScene)=0;

virtual HRESULT VPreRender(Scene *pScene)=0;

virtual bool VIsVisible(Scene *pScene) const=0;

virtual HRESULT VRender(Scene *pScene)=0;

virtual HRESULT VRenderChildren(Scene *pScene)=0;

virtual HRESULT VPostRender(Scene *pScene)=0;

virtual bool VAddChild(shared_ptr<ISceneNode> kid)=0;

virtual bool VRemoveChild(ActorId id)=0;

virtual HRESULT VOnLostDevice(Scene *pScene)=0;

virtual ~ISceneNode() { };

};

Each node has certain properties that affect how the node will draw, such as its mate-
rial, its geometric extents, what game actor it represents, and so on. We’ll cover the
details of the SceneNodeProperties structure in the next section.

As you learned previously, every object in a 3D universe needs a transform matrix.
The matrix encodes the orientation and position of the object in the environment. In
a scene graph, this idea is extended to a hierarchy of objects. For example, imagine a
boat with people on it, and those people have guns in their hands. When the boat
moves, all the people on the boat move with it. Their position and orientation stay
the same relative to the boat. When the people aim their weapons, the bones of their
arms move and the guns move with them.

524 Chapter 16 n 3D Scenes

This effect is done by concatenating matrices. Every node in the hierarchy has a
matrix that describes position and orientation relative to its parent node. As the
scene graph is traversed, the matrices are multiplied to form a single matrix that per-
fectly describes the position and orientation of the node in the 3D world—even if it is
a gun attached to a hand attached to a forearm attached to a shoulder attached to a
guy standing on a boat.

Take notice that the VSetTransform() method takes two Mat4x4 objects, not just
one. It turns out to be really convenient to store two matrices for each scene node—
the first one we just discussed about transforming object space to the space of its
parent (usually world space if there’s no complicated hierarchy involved). This is
the toWorld parameter in the SetTransform() and GetTransform() APIs.
The second one does the opposite: It transforms 3D world back into object space.
This is great if you want to know where a bullet strikes an object. The bullet’s trajec-
tory is usually in world space, and the fromWorld transform matrix will tell you
where that trajectory is in object space.

This can be a little confusing, so if your brain is swimming a bit, don’t worry. Mine
did too when I first read it. You can imagine this by thinking about your hand as a
self-contained hierarchical object. The root would be your palm, and attached to it
are five children—the first segment of each of your five fingers. Each of those finger
segments has one child, the segment without a fingernail. Finally, the segment with
the fingernail attaches, making the palm its great-grandfather. If the transform matrix
for one of those finger segments is rotated around the right axis, the finger should
bend, carrying all the child segments with it. If I change the translation or rotation
of the palm (the root object), everything moves. That is the basic notion of a hierar-
chical animation system.

That’s Gotta Hurt!

It’s common for artists to create human figures with the hips, or should I say,
groin, as the root node. It’s convenient because it is close to the center of the
human body and has three children: the torso and two legs. One fine day the
Ultima VIII team went to the park for lunch and played a little Ultimate
Frisbee. As happens frequently in that game, two players went to catch the
Frisbee at the same time and collided, injuring one of the players. He was
curled up on the ground writhing in pain, and when I asked what happened I
was told that he took a blow to the root of his hierarchy.

The call to VSetTransform() will calculate the inverse transform matrix for you if
you don’t send it in. Yes, it’s somewhat expensive. If you’ve ever seen the formula for
calculating the determinant of a 4 × 4 matrix, you know what I’m talking about. If

Scene Graph Basics 525

you’ve never seen it, just imagine an entire case of alphabet soup laid out on a recur-
sive grid. It’s gross.

The two methods, VOnRestore() and VOnUpdate(), simply traverse their children
nodes and recursively call the same methods. When you inherit from SceneNode

and create a new object, don’t forget to call the base class’s VOnRestore() or
VOnUpdate() if you happen to overload them. If you fail to do this, your children
nodes won’t get these calls. The VOnRestore() method is meant to re-create any
programmatically created data after it has been lost. This is a similar concept to the
section on lost 2D DirectDraw surfaces.

The VOnUpdate() method is meant to handle animations or anything else that is
meant to be decoupled from the rendering traversal. That’s why it is called with the
elapsed time, measured in milliseconds. You can use the elapsed time to make sure
animations or other movements happen at a consistent speed, regardless of computer
processing power. A faster CPU should always create a smoother animation, not nec-
essarily a faster one!

The VPreRender() method is meant to perform any task that must occur before
the render, such as setting render states. The VIsVisible() method performs a vis-
ibility test. The VRender() method does exactly what it advertises: it renders the
object. A recursive call to VRenderChildren() is made to traverse the scene
graph, performing all these actions for every node. The VPostRender() method is
meant to perform a postrendering action, such as restoring a render state to its origi-
nal value.

The VAddChild() method adds a child node. You’ll see different implementations
of this interface class add children in different ways. No, you shouldn’t attach a node
to itself; you’ll run out of stack space in your infinitely recursive scene graph before
you know what happened.

SceneNodeProperties and RenderPass

When I first designed the ISceneNode class and the implementation class you’ll see
in a few pages, SceneNode, the first attempt, loaded the class full of virtual accessor
methods: VGetThis(), VGetThat(), and VGetTheOtherDamnThing(). What I
really wanted was a structure of these properties and a single virtual accessor that
would give me read-only access to the data in that structure. The structure, Scene-
NodeProperties, is defined as follows:

typedef unsigned int ActorId;

class SceneNodeProperties

526 Chapter 16 n 3D Scenes

{

friend class SceneNode;

protected:

ActorId m_ActorId;

std::string m_Name;

Mat4x4 m_ToWorld, m_FromWorld;

float m_Radius;

RenderPass m_RenderPass;

Material m_Material;

AlphaType m_AlphaType;

void SetAlpha(const float alpha)

{ m_AlphaType=AlphaMaterial; m_Material.SetAlpha(alpha); }

public:

const ActorId &ActorId() const { return m_ActorId; }

Mat4x4 const &ToWorld() const { return m_ToWorld; }

Mat4x4 const &FromWorld() const { return m_FromWorld; }

void Transform(Mat4x4 *toWorld, Mat4x4 *fromWorld) const;

const char * Name() const { return m_Name.c_str(); }

bool HasAlpha() const { return m_Material.HasAlpha(); }

virtual float Alpha() const { return m_Material.GetAlpha(); }

RenderPass RenderPass() const { return m_RenderPass; }

float Radius() const { return m_Radius; }

Material const &GetMaterial() const { return m_Material; }

};

void SceneNodeProperties::Transform(Mat4x4 *toWorld, Mat4x4 *fromWorld) const

{

if (toWorld)

*toWorld = m_ToWorld;

if (fromWorld)

*fromWorld = m_FromWorld;

}

All of the accessors to this class are const, which gives the read-only access I
wanted. The implementation of SceneNode will perform all of the modifying,
which is important since modifying some of these values can have repercussions
throughout the scene graph.

Scene Graph Basics 527

The first two data members, m_ActorId and m_Name, help to relate the scene node
to an object in your game logic and identify the scene node or the scene node type.
Just as you learned in Chapter 6, “Game Actors and Component Architecture,” game
engines typically assign unique identifiers to objects in the game.

The Mat4x4 data members, m_ToWorld and m_FromWorld, define the transform
matrices. Transform() copies the member variables into memory you pass in. Gener-
ally, you don’t want to just allow direct access to the transform matrices because chang-
ing them directly might break something. Various inherited classes of SceneNode or
ISceneNode might filter or otherwise set the transforms themselves.

The next data member, m_Radius, defines the radius of a sphere that includes the
visible geometry of a scene node. Spheres are really efficient for various tests, such
as visibility tests or ray-intersection tests. The only problem with spheres is that
they don’t closely match most geometry, so you can’t use them alone. Some commer-
cial games actually do this, though, and you can tell when you play. An easy way to
tell is if gunshots seem to hit, even though you aimed too far to the left or right.
Better games will use the sphere as a first pass test, since it is so fast, and go to
other more expensive tests if needed.

Instead of Bounding Spheres, Use Axis-Aligned Bounding Boxes

A great optimization to this simple idea would be to replace the sphere with
something called an axis-aligned bounding box, or AABB. This is a shape that
is a rectangular solid, but its faces are always aligned parallel to the X-, Y-,
and Z-axes. As objects move and rotate, the dimensions of the AABB change
to make sure the visible geometry is always inside the smallest possible AABB.
They aren’t hard to code, but they do take a little more work than a simple
sphere. I’ll leave that to you as an exercise.

When a scene graph is traversed, like most tree-like data structures, it is traversed in
a particular order. This order, when combined with various render state settings, cre-
ates different effects or enables an efficient rendering of the entire scene. Every node
of your scene graph belongs to one of a few different possible render passes—one for
static objects, one for dynamic objects, one for the sky, and perhaps others.

The reason you want to do this is mainly for efficiency. The goal is to minimize re-
drawing pixels on the screen each frame. It makes sense to draw your scenery,
objects, and sky in whatever order approaches this goal, hoping to draw things
mostly from front to back to get all your closest objects drawn first. With any luck,
by the time you get to your sky, you won’t have to render hardly any pixels from it at
all. After everything, you run through your transparent objects from back to front to
make sure they look right. The m_RenderPass data member keeps track of which

528 Chapter 16 n 3D Scenes

render pass your scene node belongs to and should hold one value from the follow-
ing enumeration:

enum RenderPass

{

RenderPass_0, // A constant to define the starting pass

RenderPass_Static = RenderPass_0, // environments and level geometry

RenderPass_Actor, // objects and things that can move

RenderPass_Sky, // the background ‘behind’ everything

RenderPass_NotRendered, // objects that don’t render but exist

RenderPass_Last // not used - a counter for for loops

};

Notice the member RenderPass_NotRendered? You might wonder why that is in
there at all, but there is a reason. Some objects in your scene graph need to be there
so they can be included in the scene, but they aren’t actually processed in any specific
render pass. A good example of these kinds of objects might be those that only show
up in your game editor, like trigger areas or spawn points.

SceneNode—It All Starts Here

That’s it for the basics. You’ve seen the design for the ISceneNode interface and
what each scene node is supposed to implement. You’ve also seen SceneNodePro-

perties and how it stores data that affects how the scene node draws. You’ve also
seen how the RenderPass setting groups renderable objects into broad categories of
renderability and render order.

Here’s the base implementation of SceneNode that inherits from the ISceneNode

interface class:

typedef std::vector<shared_ptr<ISceneNode> > SceneNodeList;

class SceneNode : public ISceneNode

{

friend class Scene;

protected:

SceneNodeList m_Children;

SceneNode *m_pParent;

SceneNodeProperties m_Props;

public:

SceneNode(ActorId actorId,

std::string name,

RenderPass renderPass,

Scene Graph Basics 529

const Color &diffuseColor,

const Mat4x4 *to,

const Mat4x4 *from=NULL)

{

m_pParent= NULL;

m_Props.m_ActorId = actorId;

m_Props.m_Name = name;

m_Props.m_RenderPass = renderPass;

m_Props.m_AlphaType = AlphaOpaque;

VSetTransform(to, from);

SetRadius(0);

m_Props.m_Material.SetDiffuse(diffuseColor);

}

virtual ~SceneNode();

virtual const SceneNodeProperties * const VGet() const { return &m_Props; }

virtual void VSetTransform(

const Mat4x4 *toWorld, const Mat4x4 *fromWorld=NULL);

virtual HRESULT VOnRestore(Scene *pScene);

virtual HRESULT VOnUpdate(Scene *, DWORD const elapsedMs);

virtual HRESULT VPreRender(Scene *pScene);

virtual bool VIsVisible(Scene *pScene) const;

virtual HRESULT VRender(Scene *pScene) { return S_OK; }

virtual HRESULT VRenderChildren(Scene *pScene);

virtual HRESULT VPostRender(Scene *pScene);

virtual bool VAddChild(shared_ptr<ISceneNode> kid);

virtual bool VRemoveChild(ActorId id);

void SetAlpha(float alpha) { m_Props.SetAlpha(alpha); }

float GetAlpha() const { return m_Props.Alpha(); }

Vec3 GetPosition() const { return m_Props.m_ToWorld.GetPosition(); }

void SetPosition(const Vec3 &pos) { m_Props.m_ToWorld.SetPosition(pos); }

Vec3 GetDirection(const Vec3 &pos) const

{ return m_Props.m_ToWorld.GetDirection (pos); }

void SetRadius(const float radius) { m_Props.m_Radius = radius; }

void SetMaterial(const Material &mat) { m_Props.m_Material = mat; }

};

Every scene node has an STL vector<> of scene nodes attached to it. These child
nodes, child nodes of child nodes, and so on create the scene graph hierarchy. Most

530 Chapter 16 n 3D Scenes

of the scene graph will be pretty flat, but some objects, such as articulated vehicles
and characters, have a deep hierarchy of connected parts.

You might wonder why I chose an STL vector<> instead of a list<>. It’s an easy
choice because all scene nodes tend to keep a similar number of children. Even if the
number of children changes, say when a car loses a wheel in a crash, it’s easy enough
to make the node invisible. Lists are much better for structures that need fast inser-
tion and deletion, and vectors are fastest for iteration and random access, which
makes them a better candidate to store child nodes. There’s nothing stopping you,
of course, from creating a special scene node that uses STL list<> to store its
children.

Here’s how the SceneNode class implements the VSetTransform method:

void SceneNode::VSetTransform(const Mat4x4 *toWorld, const Mat4x4 *fromWorld)

{

m_Props.m_ToWorld = *toWorld;

if (!fromWorld)

m_Props.m_FromWorld = m_Props.m_ToWorld.Inverse();

else

m_Props.m_FromWorld = *fromWorld;

}

If the calling routine already has the fromWorld transform, it doesn’t have to be cal-
culated with a call to the expensive D3DXMatrixInverse function. The fromWorld
transformation is extremely useful for things like picking, which is finding the exact
intersection of a ray with a polygon on a scene node. You might decide that some
objects in your scene don’t need this, but in this “training wheels” scene graph, it is
convenient for every node to have it.

This kind of picking is similar to the ray cast provided by most physics systems, but
this one is for visible geometry, not physical geometry. Most games actually consoli-
date the calls to both, giving the caller the opportunity to grab the right target based
on what it looks like or how it is physically represented in the game world. These are
usually very different, since the visible geometry is often finely detailed, and the phys-
ical geometry is a simplified version of that.

The VOnRestore() and VOnUpdate() implementations iterate through m_Children

and call the same method; child classes will usually do something useful, such as cre-
ate geometry, load textures, or handle animations and call these methods of Scene-
Node to make sure the entire scene graph is handled:

HRESULT SceneNode::VOnRestore(Scene *pScene)

{

Scene Graph Basics 531

SceneNodeList::iterator i = m_Children.begin();

SceneNodeList::iterator end = m_Children.end();

while (i != end)

{

(*i)->VOnRestore(pScene);

++i;

}

return S_OK;

}

HRESULT SceneNode::VOnUpdate(Scene *pScene, DWORD const elapsedMs)

{

SceneNodeList::iterator i = m_Children.begin();

SceneNodeList::iterator end = m_Children.end();

while (i != end)

{

(*i)->VOnUpdate(pScene, elapsedMs);

++i;

}

return S_OK;

}

The next two methods, VPreRender() and VPostRender(), call some of the scene
graph’s matrix management methods. They deal with setting the world transform
matrix before the render and then restoring it to its original value afterward. You’ll
see how this is done in detail when I talk about the Scene class in the next section.

HRESULT SceneNode::VPreRender(Scene *pScene)

{

pScene->PushAndSetMatrix(m_Props.m_ToWorld);

return S_OK;

}

HRESULT SceneNode::VPostRender(Scene *pScene)

{

pScene->PopMatrix();

return S_OK;

}

VIsVisible() is responsible for visibility culling. In real commercial games, this is
usually a very complicated and involved process, much more than you’ll see here.
You have to start somewhere, though, and you can find a staggering amount of mate-
rial on the Internet that will teach you how to test for object visibility in a 3D ren-
dered scene. What’s really important is that you know that you can’t ignore it, no
matter how simple your engine is. Here is VIsVisible():

532 Chapter 16 n 3D Scenes

bool SceneNode::VIsVisible(Scene *pScene) const

{

// transform the location of this node into the camera space

// of the camera attached to the scene

Mat4x4 toWorld, fromWorld;

pScene->GetCamera()->VGet()->Transform(&toWorld, &fromWorld);

Vec3 pos = VGet()->ToWorld().GetPosition();

pos = fromWorld.Xform(pos);

Frustum const &frustum = pScene->GetCamera()->GetFrustum();

return frustum.Inside(pos, VGet()->Radius());

}

If you recall the Frustum class, you’ll realize that this object was in camera space,
with the camera at the origin and looking down the positive Z-axis. This means we
can’t just send the object location into the Frustum::Inside() routine; we have to
transform it into camera space first. The first lines of code in VIsVisible() do
exactly that. The location of the scene node is transformed into camera space and
sent into the frustum for testing. If the object passes the visibility test, it can be
rendered.

Any class that inherits from SceneNode will overload VRender() and do some-
thing useful like communicate with a shader. I’ll get to that when I talk about differ-
ent child classes of SceneNode, such as CameraNode or SkyNode.

VRenderChildren() is responsible for iterating the other scene nodes stored in
m_Children and calling the main rendering methods:

HRESULT SceneNode::VRenderChildren(Scene *pScene)

{

// Iterate through the children....

SceneNodeList::iterator i = m_Children.begin();

SceneNodeList::iterator end = m_Children.end();

while (i != end)

{

if ((*i)->VPreRender(pScene)==S_OK)

{

// You could short-circuit rendering

// if an object returns E_FAIL from

// VPreRender()

// Don’t render this node if you can’t see it

if ((*i)->VIsVisible(pScene))

{

Scene Graph Basics 533

float alpha = (*i)->VGet()->m_Material.GetAlpha();

if (alpha==fOPAQUE)

{

(*i)->VRender(pScene);

}

else if (alpha!=fTRANSPARENT)

{

// The object isn’t totally transparent...

AlphaSceneNode *asn = GCC_NEW AlphaSceneNode;

assert(asn);

asn->m_pNode = *i;

asn->m_Concat = *pScene->GetTopMatrix();

Vec4 worldPos(asn->m_Concat.GetPosition());

Mat4x4 fromWorld = pScene->GetCamera()->VGet()->FromWorld();

Vec4 screenPos = fromWorld.Xform(worldPos);

asn->m_ScreenZ = screenPos.z;

pScene->AddAlphaSceneNode(asn);

}

}

(*i)->VRenderChildren(pScene);

}

(*i)->VPostRender(pScene);

++i;

}

return S_OK;

}

Every child scene node in the m_Children vector gets the same processing. First,
VPreRender() is called, which at a minimum pushes the local transform matrix
onto the matrix stack. Since code called in VPreRender() might alter an object’s
visibility, it is called before the visibility check, which is made with VIsVisible().
If this method returns false, the scene node isn’t visible and doesn’t need to be
drawn. If it is visible, the scene node is checked if it is in any way transparent,
because the renderer draws them after everything else. If the scene node is 100 per-
cent opaque, VRender() is called to draw the object. Then, regardless of opacity,
VRenderChildren() is called to render child nodes, followed by VPostRender().

Transparent objects need to draw after everything else in a special render pass. If they
drew in the regular order, they wouldn’t look right, since some of the background
objects might actually draw after the transparent objects. What needs to happen is
this: All transparent objects get stuck in a special list, and after the scene graph has

534 Chapter 16 n 3D Scenes

been completely traversed, the scene nodes in the alpha list get drawn. But wait,
there’s more. You can’t just stick a pointer to the scene node in a list. You have to
remember a few more things, like the value of the top of the matrix stack. When the
list gets traversed, it won’t have the benefit of the entire scene graph and all the calls
to VPreRender() and VPostRender() to keep track of it. To make things easy,
there’s a little structure that can help remember this data:

struct AlphaSceneNode

{

shared_ptr<ISceneNode> m_pNode;

Mat4x4 m_Concat;

float m_ScreenZ;

// For the STL sort...

bool const operator < (AlphaSceneNode const &other)

{ return m_ScreenZ < other.m_ScreenZ; }

};

typedef std::list<AlphaSceneNode *> AlphaSceneNodes;

The m_ScreenZ member stores the depth of the object in the scene. Larger values
are farther away from the camera and are therefore farther away. When you draw
transparent objects together, such as a forest of trees with transparent textures on
them, you have to draw them from back to front or they won’t look right. The list
of alpha objects is stored in the Scene class, which you’ll see in the next section.

You might wonder why the RenderPass enumeration doesn’t just have a special
pass for transparent objects. The reason is that objects can dynamically change from
opaque to transparent at runtime, such as when a creature you just killed fades away
from sight. If there were some objects that were guaranteed to have translucency,
never to change, then a fair optimization to this design could make use of a special
render pass for those objects.

There’s only VAddChild() left, and besides adding a new scene node to the
m_Children member, it also sets a new radius for the parent. If the child node
extends geometry beyond the parent’s radius, the parent’s radius should be extended
to include the children:

bool SceneNode::VAddChild(shared_ptr<ISceneNode> kid)

{

m_Children.push_back(kid);

// The radius of the sphere should be fixed right here

Vec3 kidPos = kid->VGet()->ToWorld().GetPosition();

Vec3 dir = kidPos - m_Props.ToWorld().GetPosition();

Scene Graph Basics 535

float newRadius = dir.Length() + kid->VGet()->Radius();

if (newRadius > m_Props.m_Radius)

m_Props.m_Radius = newRadius;

return true;

}

Don’t forget that SceneNode is just a base class. You’ll need to inherit from it to get
anything useful to draw on the screen. I’ll show you the Scene class, which manages
the entire scene graph, and then move on to some interesting types of scene nodes.

The Scene Class

The top-level management of the entire scene node hierarchy rests in the capable
hands of the Scene class. It serves as the top-level entry point for updating, render-
ing, and adding new SceneNode objects to the scene hierarchy. It also keeps track of
which scene nodes are visible components of dynamic actors in your game.

Here is the definition of the Scene, a container for SceneNode objects of all shapes
and sizes:

typedef std::map<ActorId, shared_ptr<ISceneNode> > SceneActorMap;

class CameraNode;

class SkyNode;

class LightNode;

class LightManager;

class Scene

{

protected:

shared_ptr<SceneNode> m_Root;

shared_ptr<CameraNode> m_Camera;

shared_ptr<IRenderer> m_Renderer;

ID3DXMatrixStack *m_MatrixStack;

AlphaSceneNodes m_AlphaSceneNodes;

SceneActorMap m_ActorMap;

LightManager *m_LightManager;

void RenderAlphaPass();

public:

Scene();

virtual ~Scene();

536 Chapter 16 n 3D Scenes

HRESULT OnRender();

HRESULT OnRestore();

HRESULT OnLostDevice();

HRESULT OnUpdate(const int deltaMilliseconds);

shared_ptr<ISceneNode> FindActor(ActorId id);

bool AddChild(ActorId id, shared_ptr<ISceneNode> kid)

{

if (id.valid())

{

// This allows us to search for this later based on actor id

m_ActorMap[*id] = kid;

}

shared_ptr<LightNode> pLight = dynamic_pointer_cast<LightNode>(kid);

if (pLight != NULL &&

m_LightManager->m_Lights.size()+1 < MAXIMUM_LIGHTS_SUPPORTED)

{

m_LightManager->m_Lights.push_back(pLight);

}

return m_Root->VAddChild(kid);

}

bool RemoveChild(ActorId id)

{

if (id == INVALID_ACTOR_ID)

return false;

shared_ptr<ISceneNode> kid = FindActor(id);

shared_ptr<LightNode> pLight = dynamic_pointer_cast<LightNode>(kid);

if (pLight != NULL)

m_LightManager->m_Lights.remove(pLight);

m_ActorMap.erase(id);

return m_Root->VRemoveChild(id);

}

// Camera accessor / modifier

void SetCamera(shared_ptr<CameraNode> camera) { m_Camera = camera; }

const shared_ptr<CameraNode> GetCamera() const { return m_Camera; }

void PushAndSetMatrix(const Mat4x4 &toWorld);

void PopMatrix()

const Mat4x4 *GetTopMatrix() ;

LightManager *GetLightManager() { return m_LightManager; }

Scene Graph Basics 537

void AddAlphaSceneNode(AlphaSceneNode *asn)

{ m_AlphaSceneNodes.push_back(asn); }

};

The Scene class has seven data members:

n m_Root: The root scene node of the entire visible world. It has no parents, and
everything that is drawn is attached either as a child or to a descendant scene
node.

n m_Camera: The active camera. In this simple scene graph, there is only one
camera, but there’s nothing that says you can’t have a list of these objects.

n m_MatrixStack: A nifty DirectX object that manages a stack of transform
matrices, this data structure holds the current world transform matrix as the
scene graph is traversed and drawn.

n m_AlphaSceneNodes: A list of structures that holds the information necessary
to draw transparent scene nodes in a final render pass.

n m_ActorMap: An STL map that lets the scene graph find a scene node matched
to a particular ActorId.

n m_LightManager: A helper class to manage multiple directional lights in the
scene.

The root node, m_Root, is the top-level scene node in the entire scene graph. There
is some special code associated with the root node, which I’ll show you shortly. For
now, you can consider the root node as the same kind of object that all tree-like data
structures have.

The camera node is a little special. It could be attached anywhere in the scene graph,
especially if it is a first- or third-person camera that targets a particular object. All the
same, the scene graph needs quick access to the camera node, because just before ren-
dering the scene, the scene graph uses the camera location and orientation to set the
view transform you learned about in Chapter 14, “3D Graphics Basics.” I’ll show you
how that is done when I talk about the CameraNode class, in “A Simple Camera”
later on in this chapter.

The interesting bit that you might not have seen before is a Direct3D matrix stack.
You’ve already seen that matrix concatenation is a common task in 3D graphics. Any
number of matrices could be multiplied, or concatenated, to create any bizarre and
twisted set of rotation and translation operations. In the case of a hierarchical
model like a human figure, these matrix concatenations can get tedious unless you

538 Chapter 16 n 3D Scenes

can push them onto and pop them from a stack. The ID3DXMatrixStack helps us
do exactly that as the scene graph is being traversed.

The next data member is the actor map. This is an STL map that relates unique actor
IDs (really just a plain old unsigned integer) with a particular scene node. This is
necessary when the scene graph needs to change a scene node based on an ActorId.
A good example of this is when the physics system bounces something around. Since
the physics system doesn’t know or care anything about a pointer to a scene node, it
will inform game subsystems of the bouncing via an event with an ActorId. When
the scene graph hears about it, it uses the ActorId to find the right scene node to
manipulate.

The final data member is for a light manager to manage a list of lights that illuminate
the scene. These lights inherit from SceneNode to add information about how the
light illuminates objects. You’ll learn about the LightNode class a little later in the
“Putting Lights in Your Scene” section of this chapter.

Here’s the implementation of the Scene class:

Scene::Scene()

{

m_Root.reset(GCC_NEW RootNode());

m_LightManager = GCC_NEW LightManager;

D3DXCreateMatrixStack(0, &m_MatrixStack);

}

Scene::~Scene()

{

SAFE_RELEASE(m_MatrixStack);

SAFE_DELETE(m_LightManager);

}

The constructor and destructor are simple enough. They simply manage the creation
and release of the root node, the DirectX matrix stack object, and the LightMana-

ger. The other data structures have default constructors and are managed by smart
pointers, so there is a little more happening here behind the scene. Yes, that was a
terrible pun, but I’m not sorry.

Let’s now look at OnRender(), OnRestore(), and OnUpdate():

HRESULT Scene::OnRender()

{

if (m_Root && m_Camera)

{

// The scene root could be anything, but it

Scene Graph Basics 539

// is usually a SceneNode with the identity

// matrix

m_Camera->SetViewTransform(this);

m_LightManager->CalcLighting(this);

if (m_Root->VPreRender(this)==S_OK)

{

m_Root->VRender(this);

m_Root->VRenderChildren(this);

m_Root->VPostRender(this);

}

}

RenderAlphaPass();

return S_OK;

}

HRESULT Scene::OnRestore()

{

if (!m_Root)

return S_OK;

return m_Root->VOnRestore(this);

}

HRESULT Scene::OnUpdate(const int deltaMilliseconds)

{

if (!m_Root)

return S_OK;

static DWORD lastTime = timeGetTime();

DWORD elapsedTime = 0;

DWORD now = timeGetTime();

elapsedTime = now - lastTime;

lastTime = now;

return m_Root->VOnUpdate(this, elapsedTime);

}

These methods clearly use the root node for all the heavy lifting. (I’ll bet you thought
there was going to be a little more meat to these methods!)

You’ll notice that OnRender() must first check for the existence of a root node and
a camera. Without either of these, there’s not much more that can be done. If

540 Chapter 16 n 3D Scenes

everything checks out fine, the camera’s SetViewTransform() method is called
to send the camera position and orientation into the rendering device. The Light-

Manager::CalcLighting() method runs through the list of lights and calculates
data that will be sent to shaders during this frame. Then the rendering methods of
the root node are called, which in turn propagate throughout the entire scene
graph. Finally, the scene graph calls the RenderAlphaPass() method to handle
any scene nodes that were found to have some translucency during this render.

The OnRestore() method is so trivial I think I can trust you to figure it out. There
is one trick, though. The camera node must clearly be attached to the scene graph as
a child of a scene node, in addition to having it as a member of the scene graph. If it
isn’t, it would never have its critical virtual functions called properly.

Lastly, OnUpdate() is what separates rendering from updating. Updating is gener-
ally called as fast as possible, where the render pass might be delayed to keep a par-
ticular frame rate. Rendering is usually much more expensive than updating, too.
You’ll also notice that the update pass is called with a delta time in milliseconds,
where the render is called with no parameters. That in itself is telling since there
shouldn’t be any time-variant code running inside the render pass, such as anima-
tions. Keep that stuff inside the update pass, and you’ll find your entire graphics sys-
tem will be flexible enough to run on pokey hardware and still have the chops to
blaze on the fast machines.

void Scene::PushAndSetMatrix(const Mat4x4 &toWorld)

{

m_MatrixStack->Push();

m_MatrixStack->MultMatrixLocal(&toWorld);

DXUTGetD3DDevice()->SetTransform(D3DTS_WORLD, m_MatrixStack->GetTop());

}

void Scene::PopMatrix()

{

m_MatrixStack->Pop();

DXUTGetD3DDevice()->SetTransform(D3DTS_WORLD, m_MatrixStack->GetTop());

}

const Mat4x4 *Scene::GetTopMatrix()

{

return static_cast<const Mat4x4 *>(m_MatrixStack->GetTop());

}

Remember matrix concatenation? I don’t think I’ve gone two paragraphs without men-
tioning it. There’s a useful thing in both Direct3D and OpenGL called a matrix stack,
and it is used to keep track of matrices in a hierarchy. The call to VPreRender()

Scene Graph Basics 541

pushes a new matrix on the matrix stack and then concatenates it with what was
already there, creating a new matrix. Once that is done, the new matrix is used to
draw anything sent into the render pipeline.

This is a little confusing, and I won’t ask you to visualize it because when I tried I got
a pounding headache—but here’s the gist of it. The matrix that exists at the top of
the stack is either the identity matrix or the result of all the concatenated matrices
from the hierarchy in your scene nodes in the scene graph. Before you traverse
child nodes, the parent’s current matrix is pushed on the stack. Each child concate-
nates its matrix with the parent on the top of the stack. When all the children are
done, the stack is popped, and the parent’s matrix is restored.

As you can see, this is quite efficient and extremely flexible for implementing hierar-
chical objects. The push/pop methods are called by the SceneNode::VPreRender()
and SceneNode::VPostRender(), respectively. The GetTopMatrix() method
gives you read-only access to the top matrix, which is useful for storing off the
world matrix of a scene node during the render pass.

Here’s how the Scene class implements FindActor():

shared_ptr<ISceneNode> Scene::FindActor(ActorId id)

{

SceneActorMap::iterator i = m_ActorMap.find(id);

if (i==m_ActorMap.end())

{

return shared_ptr<ISceneNode>();

}

return (*i).second;

}

This is pretty standard STL <map> usage, and since we have defined the ActorId to
be unique, we don’t have to worry about finding multiple actors for a particular scene
node.

The last method of the Scene class is RenderAlphaPass. This method is called
after the normal rendering is done, so all the transparent scene nodes will draw on
top of everything else. Here’s basically what happens in this method:

n The current world transform is saved off.

n Z-sorting is disabled.

n Alpha blending is turned on.

n The alpha nodes in the alpha list are sorted.

542 Chapter 16 n 3D Scenes

n Each node in the alpha list is rendered and then removed from the list.

n The old render states are restored to their old values.

void Scene::RenderAlphaPass()

{

D3DRendererAlphaPass11 alphaPass;

m_AlphaSceneNodes.sort();

while (!m_AlphaSceneNodes.empty())

{

AlphaSceneNodes::reverse_iterator i = m_AlphaSceneNodes.rbegin();

DXUTGetD3DDevice()->SetTransform(D3DTS_WORLD, &((*i)->m_Concat));

(*i)->m_pNode->VRender(this);

delete (*i);

m_AlphaSceneNodes.pop_back();

}

}

There is a special class, D3DRendererAlphaPass11, that manages setting the
ID3D11DeviceContext for alpha blending. Upon construction the device settings
are set, and upon destruction the device is returned to the state it was previously in.

When you want to do an alpha pass in Direct3D 11, or actually any other kind of
blending, you define it with the D3D11_BLEND_DESC structure, create the blend
state by calling ID3D11Device::CreateBlendState(), and set the blend state
with a call to ID3D11DeviceContext::OMSetBlendState(). You can tell just
by looking at the blend state structure that blending is a large subject, one that is
best covered by a dedicated 3D graphics book. The parameters sent into the blend
state used here involve a simple alpha blend, using the source pixel’s alpha value.

class D3DRendererAlphaPass11

{

protected:

ID3D11BlendState* m_pOldBlendState;

FLOAT m_OldBlendFactor[4];

UINT m_OldSampleMask;

ID3D11BlendState* m_pCurrentBlendState;

public:

D3DRendererAlphaPass11();

~D3DRendererAlphaPass11();

};

D3DRendererAlphaPass11::D3DRendererAlphaPass11()

{

Scene Graph Basics 543

DXUTGetD3D11DeviceContext()->OMGetBlendState(&m_pOldBlendState,

m_OldBlendFactor, &m_OldSampleMask);

m_pCurrentBlendState = NULL;

D3D11_BLEND_DESC BlendState;

ZeroMemory(&BlendState, sizeof(D3D11_BLEND_DESC));

BlendState.AlphaToCoverageEnable = false;

BlendState.IndependentBlendEnable = false;

BlendState.RenderTarget[0].BlendEnable = TRUE;

BlendState.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA;

BlendState.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA;

BlendState.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;

BlendState.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ZERO;

BlendState.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;

BlendState.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;

BlendState.RenderTarget[0].RenderTargetWriteMask =

D3D11_COLOR_WRITE_ENABLE_ALL;

DXUTGetD3D11Device()->CreateBlendState(&BlendState, &m_pCurrentBlendState);

DXUTGetD3D11DeviceContext()->OMSetBlendState(m_pCurrentBlendState, 0,

0xffffffff);

}

If you set a material color to 75% red, 50% translucency, you set the values of the
Color structure to (0.75f, 0.0f, 0.0f, 0.5f). That’s 75% red, 0% for blue and green,
and 50% for alpha. This value makes its way into the pixel shader where it is blended
with lights, as you saw in the previous chapter. If the ID3D11DeviceContext has a
blending state set, then the pixel just calculated by the pixel shader is blended with
the pixel value already on in the display buffer. The types and methods of blending
are pretty mind boggling, actually, so when you learn about them, have some
patience. When the alpha pass is done, the destructor of the class simple restores
the previous blending state:

D3DRendererAlphaPass11::~D3DRendererAlphaPass11()

{

DXUTGetD3D11DeviceContext()->OMSetBlendState(m_pOldBlendState,

m_OldBlendFactor, m_OldSampleMask);

SAFE_RELEASE(m_pCurrentBlendState);

SAFE_RELEASE(m_pOldBlendState);

}

You will see this technique again for setting and restoring device context states for
the skybox, which comes a little later.

544 Chapter 16 n 3D Scenes

Special Scene Graph Nodes

The SceneNode class doesn’t draw anything at all. It just performs a lot of
Direct3D11 and scene graph homework. We need some classes that inherit from
SceneNode to construct an interesting scene. Here are the ones I’ll show you:

n class RootNode: Manages children as separate render passes for different
kinds of scene nodes.

n class CameraNode: Manages the camera and view frustum culling.

n class LightNode: Creates a directional diffuse light in your scene.

n class SkyNode: Creates a sky that appears to be infinitely far away.

n class D3DShaderMeshNode11: Wraps a Direct3D SDKMESH file.

Implementing Separate Render Passes

Different render passes help optimize rendering or create interesting full-screen
effects. Drawing things in the right order can do wonders for performance. Fill rate
performance, or the lack of it, means that the more times you completely overdraw a
pixel, the more valuable time you’ve wasted. Figuring out when you can safely ignore
a pixel, or all the pixels in a polygon, or all the polygons in a mesh can get pretty
complicated. One obvious way to do this is not to draw any pixels that are
completely behind other pixels by using a depth test and generally drawing big fore-
ground stuff first and small background stuff later. Draw the sky last, but draw it
before your transparent objects, since it could cover the entire screen. One way to
do this is by creating a special scene node that manages all this, and that scene
node happens to be the root node of the entire scene graph:

class RootNode : public SceneNode

{

public:

RootNode();

virtual bool VAddChild(shared_ptr<ISceneNode> kid);

virtual HRESULT VRenderChildren(Scene *pScene);

virtual bool VIsVisible(Scene *pScene) const { return true; }

};

RootNode::RootNode()

: SceneNode(optional_empty(), “Root”, RenderPass_0, &Mat4x4::g_Identity)

{

m_Children.reserve(RenderPass_Last);

shared_ptr<SceneNode> staticGroup(

Special Scene Graph Nodes 545

new SceneNode(INVALID_ACTOR_ID,

“StaticGroup”, RenderPass_Static, g_White, &Mat4x4::g_Identity));

m_Children.push_back(staticGroup); // RenderPass_Static = 0

shared_ptr<SceneNode> actorGroup(

new SceneNode(INVALID_ACTOR_ID,

“ActorGroup”, RenderPass_Actor, g_White, &Mat4x4::g_Identity));

m_Children.push_back(actorGroup); // RenderPass_Actor = 1

shared_ptr<SceneNode> skyGroup(

new SceneNode(INVALID_ACTOR_ID,

“SkyGroup”, RenderPass_Sky, g_White, &Mat4x4::g_Identity));

m_Children.push_back(skyGroup); // RenderPass_Sky = 2

shared_ptr<SceneNode> invisibleGroup(

GCC_NEW SceneNode(INVALID_ACTOR_ID,

“InvisibleGroup”, RenderPass_NotRendered, g_White,

&Mat4x4::g_Identity));

m_Children.push_back(invisibleGroup); // RenderPass_NotRendered = 3

}

The root node has child nodes that are added directly as a part of the constructor—
one child for each render pass you define. In the previous case, there are three ren-
der passes: one for static actors, one for dynamic actors, and one for the sky. When
other scene nodes are added to the scene graph, the root node actually adds them to
one of these children, based on the new scene node’s m_RenderPass member
variable:

bool RootNode::VAddChild(shared_ptr<ISceneNode> kid)

{

// Children that divide the scene graph into render passes.

// Scene nodes will get added to these children based on the value of the

// render pass member variable.

RenderPass pass = kid->VGet()->RenderPass();

if ((unsigned)pass >= m_Children.size() || !m_Children[pass])

{

GCC_ASSERT(0 && _T(“There is no such render pass”));

return false;

}

return m_Children[pass]->VAddChild(kid);

}

546 Chapter 16 n 3D Scenes

This lets the root node have a very fine control over when each pass gets rendered and
even what special render states get set for each one:

HRESULT RootNode::VRenderChildren(Scene *pScene)

{

for (int pass = RenderPass_0; pass < RenderPass_Last; ++pass)

{

switch(pass)

{

case RenderPass_Static:

case RenderPass_Actor:

m_Children[pass]->VRenderChildren(pScene);

break;

case RenderPass_Sky:

{

D3DRendererSkyBoxPass11 skyBoxPass;

m_Children[pass]->VRenderChildren(pScene);

break;

}

}

}

return S_OK;

}

For static and dynamic actors, the root node doesn’t do anything special other than
draw them. The sky node needs a little extra attention since it is something that looks
infinitely far away, even though if you were to see it the way it actually existed in the
3D world, it would look like it was a box worn over the viewer’s head. That requires
a little Direct3D trickery.

The trickery involves changing the normal operation of the depth stencil, which is
also called a Z-buffer. When pixels are transformed into screen space, the X and Y
values map directly to the X and Y coordinates of the display. The Z value is set to
something that determines its depth into the scene as compared to the front and rear
clipping planes of the view frustum. Any pixel “deeper” in the scene will get covered
by one in the same location, but shallower. This gives the viewer the impression that
a 3D world really exists, even though it is projected onto a 2D screen, since every
pixel of every object sorts just the way it should.

The skybox is actually something that is geometrically small, like a box hovering
around the camera. But because it resets the depth stencil, it always looks like it is

Special Scene Graph Nodes 547

behind every other object. Here’s the helper class that sets the ID3DDeviceContext
for rendering a skybox:

D3DRendererSkyBoxPass11::D3DRendererSkyBoxPass11()

{

// Depth stencil state

D3D11_DEPTH_STENCIL_DESC DSDesc;

ZeroMemory(&DSDesc, sizeof(D3D11_DEPTH_STENCIL_DESC));

DSDesc.DepthEnable = TRUE;

DSDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;

DSDesc.DepthFunc = D3D11_COMPARISON_LESS;

DSDesc.StencilEnable = FALSE;

DXUTGetD3D11Device()->CreateDepthStencilState(&DSDesc,

&m_pSkyboxDepthStencilState);

DXUT_SetDebugName(m_pSkyboxDepthStencilState, “SkyboxDepthStencil”);

UINT StencilRef;

DXUTGetD3D11DeviceContext()->OMGetDepthStencilState(

&m_pOldDepthStencilState, &StencilRef);

DXUTGetD3D11DeviceContext()->OMSetDepthStencilState(

m_pSkyboxDepthStencilState, 0);

}

D3DRendererSkyBoxPass11::~D3DRendererSkyBoxPass11()

{

DXUTGetD3D11DeviceContext()->OMSetDepthStencilState(

m_pOldDepthStencilState, 0);

SAFE_RELEASE(m_pOldDepthStencilState);

SAFE_RELEASE(m_pSkyboxDepthStencilState);

}

The goal for the skybox is to simulate drawing in the far background, without actu-
ally being in the far background. This little trick requires changing the depth stencil
settings to draw the polygons of the sky without affecting the current Z values of the
display buffer. Depth stencil state, just like blending states, has a wide range of cool
effects you can create, this being but one very simple one.

A Simple Camera

You’ll need a camera if you want to take pictures, right? The camera in a 3D scene
inherits from SceneNode just like everything else and adds some data members to
keep track of its viewable area, the projection matrix, and perhaps a target scene node
that it will follow around:

class CameraNode : public SceneNode

{

548 Chapter 16 n 3D Scenes

public:

CameraNode(Mat4x4 const *t, Frustum const &frustum)

: SceneNode(INVALID_ACTOR_ID, “Camera”, RenderPass_0, g_Black, t),

m_Frustum(frustum),

m_bActive(true),

m_DebugCamera(false),

m_pTarget(shared_ptr<SceneNode>()),

m_CamOffsetVector(0.0f, 1.0f, -10.0f, 0.0f)

{

}

virtual HRESULT VRender(Scene *pScene);

virtual HRESULT VOnRestore(Scene *pScene);

virtual bool VIsVisible(Scene *pScene) const { return m_bActive; }

virtual HRESULT SetViewTransform(Scene *pScene);

const Frustum &GetFrustum() { return m_Frustum; }

void SetTarget(shared_ptr<SceneNode> pTarget)

{

m_pTarget = pTarget;

}

void ClearTarget() { m_pTarget = shared_ptr<SceneNode>(); }

shared_ptr<SceneNode> GetTarget() { return m_pTarget; }

Mat4x4 GetWorldViewProjection(Scene *pScene);

HRESULT SetViewTransform(Scene *pScene);

Mat4x4 GetProjection() { return m_Projection; }

Mat4x4 GetView() { return m_View; }

void SetCameraOffset(const Vec4 & cameraOffset)

{

m_CamOffsetVector = cameraOffset;

}

protected:

Frustum m_Frustum;

Mat4x4 m_Projection;

Mat4x4 m_View;

bool m_bActive;

bool m_DebugCamera;

shared_ptr<SceneNode> m_pTarget;

Vec4 m_CamOffsetVector;

};

Special Scene Graph Nodes 549

The VRender() method calls the Frustum::Render() method to draw the cam-
era’s viewable area, but only if the debug camera is enabled:

HRESULT CameraNode::VRender(Scene *pScene)

{

if (m_DebugCamera)

{

m_Frustum.Render();

}

return S_OK;

}

Create a Special Camera for Debugging

When I was working on Thief: Deadly Shadows, it was really useful to have a special “debug” camera
that moved about the scene without affecting the code that was being checked against the “real”
camera. The process worked like this: I would key in a special debug command, and the debug camera
would be enabled. I could free-fly it around the scene, and the “normal” camera was visible because the
view frustum of the normal camera would draw, and I could visually debug problems like third-person
movement issues, scene culling issues, and so on. It was kind of like having a backstage pass to the
internals of the game!

The VOnRestore() chain can be called when the player resizes the game screen to a
different resolution. If this happens, the camera view frustum shape will probably
change, and so will the projection matrix, which is really a Mat4x4 structure that
describes the shape of the view frustum in a transform matrix. Notice the D3DXMa-

trixPerspectiveFovLH call—the LH stands for “left-handed.”

virtual HRESULT CameraNode::VOnRestore(Scene *pScene)

{

m_Frustum.SetAspect(DXUTGetWindowWidth() / (FLOAT) DXUTGetWindowHeight());

D3DXMatrixPerspectiveFovLH(&m_Projection, m_Frustum.m_Fov,

m_Frustum.m_Aspect, m_Frustum.m_Near, m_Frustum.m_Far);

return S_OK;

}

The camera’s SetView() method is called just before rendering the scene. It reads
the “from world” transform stored in the scene node and sends that into the render-
ing device:

HRESULT CameraNode::SetView(Scene *pScene)

{

//If there is a target, make sure the camera is

//rigidly attached right behind the target

550 Chapter 16 n 3D Scenes

if(m_pTarget.valid())

{

Mat4x4 mat = (*m_pTarget)->VGet()->ToWorld();

Vec4 at = m_CamOffsetVector;

Vec4 atWorld = mat.Xform(at);

Vec3 pos = mat.GetPosition() + Vec3(atWorld);

mat.SetPosition(pos);

VSetTransform(&mat);

}

return S_OK;

}

The simple example above also implements a bare-bones third-person follow
camera—the camera’s position and orientation are sucked from the target scene
node and moved based on the m_CamOffsetVector. This is the classic “pole cam”

technique, which actually works fairly well considering it involves only the complex-
ity of a single vector offset. Of course, a real third-person camera would detect
environment geometry and have all kinds of interpolators to make sure the camera
movement was smooth and pleasing to the player. I’ll leave that happy work as an
exercise for you, but if you are smart you’ll reserve a few months for it! It’s much
more complicated than you think.

Putting Lights in Your Scene

Lighting has been described previously, but not in the context of being an object that
sits in the scene graph. In the “men on boats” example at the beginning of this chap-
ter, you could imagine that those men carried torches. As the boat slid by objects on
the shore, you would expect those torches to affect those objects, making them more
visible as the boat approached and fading into darkness as it continued. This task is
easily accomplished by making a light part of the scene graph, so that whenever it
moves or its parent node moves or reorients, it will affect objects in the way that
you would expect.

Since the base class, SceneNode, already defines a material color as a part of Sce-
neNodeProperties, the LightNode class only needs to define lighting specific
properties, which are stored in the LightProperties structure:

struct LightProperties

{

float m_Attenuation[3]; /* Attenuation coefficients */

float m_Range;

float m_Falloff;

float m_Theta;

Special Scene Graph Nodes 551

float m_Phi;

};

These parameters can be set and sent into vertex and pixel shaders by the Light-

Manager class, which you’ll see shortly. Here is the definition of the LightNode

class:

class LightNode : public SceneNode

{

protected:

LightProperties m_LightProps;

public:

LightNode(const ActorId actorId, std::string name, const LightProperties &props,

const Color &diffuseColor, const Mat4x4 *t)

const LightProperties &props, const Color &diffuseColor,

const Mat4x4 *t)

: SceneNode(actorId, name, RenderPass_NotRendered, diffuseColor, t)

{

m_LightProps = props;

}

};

The heavy lifting of the LightNode class is really done by SceneNode, since it
already contains the material that defines the light’s color and the transformations
that describe the location and orientation of the light in the 3D world.

Getting lighting information into shaders is done by the LightManager class.

typedef std::list<shared_ptr<LightNode> > Lights;

class LightManager

{

friend class Scene;

protected:

Lights m_Lights;

Vec4 m_vLightDir[MAXIMUM_LIGHTS_SUPPORTED];

Color m_vLightDiffuse[MAXIMUM_LIGHTS_SUPPORTED];

Vec4 m_vLightAmbient;

public:

int GetLightCount(const SceneNode *node) { return m_Lights.size(); }

const Vec4 *GetLightAmbient(const SceneNode *node)

{ return &m_vLightAmbient; }

const Vec4 *GetLightDirection(const SceneNode *node) { return m_vLightDir; }

const Color *GetLightDiffuse(const SceneNode *node)

{ return m_vLightDiffuse; }

552 Chapter 16 n 3D Scenes

void CalcLighting(Scene *pScene);

void CalcLighting(ConstantBuffer_Lighting* pLighting, SceneNode *pNode);

};

The LightManager exists to pull relevant lighting information out of all the lights
in the scene and send just the lighting data affecting an individual object into the
shaders. In this simple example, the class assumes that all lights affect all objects.
But the architecture supports something more complicated—all that needs to be
done is to write code in the Get methods to return just the lighting information for
the SceneNode in question.

In each frame, the LightManager iterates over all the lights in the scene and
reads their color, position, and orientation information. It can also pull additional
information, such as what is contained in the LightProperties structure
for a more complicated lighting model. The method that accomplishes this task is
CalcLighting():

void LightManager::CalcLighting(Scene *pScene)

{

pScene->GetRenderer()->VCalcLighting(&m_Lights, MAXIMUM_LIGHTS_SUPPORTED);

int count = 0;

GCC_ASSERT(m_Lights.size() < MAXIMUM_LIGHTS_SUPPORTED);

for(Lights::iterator i=m_Lights.begin();

i!=m_Lights.end();

++i, ++count)

{

shared_ptr<LightNode> light = *i;

if (count==0)

{

// Light 0 is the only one we use for ambient lighting. The rest are

// ignored in the simple shaders used for GameCode4.

Color ambient = light->VGet()->GetMaterial().GetAmbient();

m_vLightAmbient = Vec4(ambient.r, ambient.g, ambient.b, 1.0f);

}

Vec3 lightDir = light->GetDirection();

m_vLightDir[count] = D3DXVECTOR4(lightDir.x, lightDir.y, lightDir.z,

1.0f);

m_vLightDiffuse[count] = light->VGet()->GetMaterial().GetDiffuse();

}

}

Special Scene Graph Nodes 553

The next method is called to initialize the constant buffer used in the pixel shader
introduced in the previous chapter. This method is called from GameCode4_Hlsl_-

PixelShader::SetupRender() for each SceneNode:

void LightManager::CalcLighting(ConstantBuffer_Lighting* pLighting,

SceneNode *pNode)

{

int count = GetLightCount(pNode);

if (count)

{

pLighting->m_vLightAmbient = *GetLightAmbient(pNode);

memcpy(pLighting->m_vLightDir, GetLightDirection(pNode),

sizeof(Vec4) * count);

memcpy(pLighting->m_vLightDiffuse, GetLightDiffuse(pNode),

sizeof(Vec4) * count);

pLighting->m_nNumLights = count;

}

}

All this method does is copy precalculated values into a structure that will be sent
into the shader. This simple lighting model is vertex based but calculated per pixel
because of the code in the pixel shader. Many more interesting models are possible,
especially those that operate as a separate render pass after the objects have been
drawn. With this basic introduction into how lights can be added into scenes, how
they can be managed with a light manager class, and how they communicate with
shaders, you can now explore some great lighting experiments.

Rendering the Sky

The sky in computer games is usually a very simple object, such as a cube or faceted
dome. The trick to making the sky look like it is infinitely far away is to keep its
position coordinated with the camera. The following class implements a cube-
shaped sky. The textures that are placed on the cube are created to give the players
the illusion they are looking at a dome-shaped object. You’ve already seen how the
depth stencil gets set to make the effect work, but that’s not the whole job.

As you look out the window of a moving car, it seems that the sky isn’t moving rela-
tive to anything else. It is moving, of course, but it moves so slowly that you can’t
perceive it. In computer games, this effect is simulated by having the sky literally
move as the camera moves but still keep its orientation. Here’s the class to make that
work.

class D3DSkyNode11 : public SceneNode

{

554 Chapter 16 n 3D Scenes

protected:

DWORD m_numVerts;

DWORD m_sides;

const char * m_textureBaseName;

shared_ptr<CameraNode> m_camera;

bool m_bActive;

ID3D11Buffer* m_pIndexBuffer;

ID3D11Buffer* m_pVertexBuffer;

GameCode4_Hlsl_VertexShader m_VertexShader;

GameCode4_Hlsl_PixelShader m_PixelShader;

public:

D3DSkyNode11(const char *textureFile, shared_ptr<CameraNode> camera);

virtual ~ D3DSkyNode11 ();

HRESULT VOnRestore(Scene *pScene);

HRESULT VRender(Scene *pScene);

HRESULT VPreRender(Scene *pScene);

bool VIsVisible(Scene *pScene) const { return m_bActive; }

};

This class makes use of the vertex and pixel shader classes you learned about in the
previous chapter. The constructor and destructor are fairly simple. Note that the text
string sent into the pixel shader constructor is empty—that’s because the sky node is
going to do something a little special.

D3DSkyNode11::D3DSkyNode11 (const char *pTextureBaseName,

shared_ptr<CameraNode> camera)

: SceneNode(INVALID_ACTOR_ID “Sky”, RenderPass_Sky, g_White,

&Mat4x4::g_Identity)

, m_camera(camera)

, m_bActive(true)

, m_PixelShader(““)

{

m_textureBaseName = pTextureBaseName;

m_pVertexBuffer = NULL;

m_pIndexBuffer = NULL;

m_PixelShader.EnableLights(false);

}

D3DSkyNode11::~D3DSkyNode11 ()

{

SAFE_RELEASE(m_pVertexBuffer);

SAFE_RELEASE(m_pIndexBuffer);

}

Special Scene Graph Nodes 555

This sky node needs five textures: one each for the north, east, south, west, and top
sides of the box. The texture base name sent into the constructor lets a programmer
set a base name, like “Daytime” or “Nighttime,” and the textures that are actually
read append side name suffixes to the actual texture filename. You’ll see how this is
used in the VRender() method. VOnRestore() creates the vertex and index buffers
for the skybox. To do this, two triangles are created from four vertices, and then they
are transformed to make the four other sides. First, a 90-degree rotation around the
vertical makes the east, south, and west sides of the box. Then a 90-degree rotation
around the horizontal creates the top side.

HRESULT SkyNode::VOnRestore(Scene *pScene)

{

HRESULT hr;

V_RETURN (SceneNode::VOnRestore(pScene));

SAFE_RELEASE(m_pVertexBuffer);

SAFE_RELEASE(m_pIndexBuffer);

V_RETURN (m_VertexShader.OnRestore(pScene));

V_RETURN (m_PixelShader.OnRestore(pScene));

m_numVerts = 20;

// Fill the vertex buffer. We are setting the tu and tv texture

// coordinates, which range from 0.0 to 1.0

D3D11Vertex_UnlitTextured *pVertices =

GCC_NEW D3D11Vertex_UnlitTextured[m_numVerts];

GCC_ASSERT(pVertices && “Out of memory in D3DSkyNode11::VOnRestore()”);

if (!pVertices)

return E_FAIL;

D3D11Vertex_UnlitTextured skyVerts[4];

D3DCOLOR skyVertColor = 0xffffffff;

float dim = 50.0f;

skyVerts[0].Pos = Vec3(dim, dim, dim); skyVerts[0].Uv = Vec2 (1.0f, 0.0f);

skyVerts[1].Pos = Vec3(-dim, dim, dim); skyVerts[1].Uv = Vec2 (0.0f, 0.0f);

skyVerts[2].Pos = Vec3(dim,-dim, dim); skyVerts[2].Uv = Vec2 (1.0f, 1.0f);

skyVerts[3].Pos = Vec3(-dim,-dim, dim); skyVerts[3].Uv = Vec2(0.0f, 1.0f);

Vec3 triangle[3];

triangle[0] = Vec3(0.f,0.f,0.f);

triangle[1] = Vec3(5.f,0.f,0.f);

triangle[2] = Vec3(5.f,5.f,0.f);

556 Chapter 16 n 3D Scenes

Vec3 edge1 = triangle[1]-triangle[0];

Vec3 edge2 = triangle[2]-triangle[0];

Vec3 normal;

normal = edge1.Cross(edge2);

normal.Normalize();

Mat4x4 rotY;

rotY.BuildRotationY(D3DX_PI/2.0f);

Mat4x4 rotX;

rotX.BuildRotationX(-D3DX_PI/2.0f);

m_sides = 5;

for (DWORD side = 0; side < m_sides; side++)

{

for (DWORD v = 0; v < 4; v++)

{

Vec4 temp;

if (side < m_sides-1)

{

temp = rotY.Xform(Vec3(skyVerts[v].Pos));

}

else

{

skyVerts[0].Uv = Vec2(1.0f, 1.0f);

skyVerts[1].Uv = Vec2 (1.0f, 1.0f);

skyVerts[2].Uv = Vec2 (1.0f, 1.0f);

skyVerts[3].Uv = Vec2 (1.0f, 1.0f);

temp = rotX.Xform(Vec3(skyVerts[v].Pos));

}

skyVerts[v].Pos = Vec3(temp.x, temp.y, temp.z);

}

memcpy(&pVertices[side*4], skyVerts, sizeof(skyVerts));

}

D3D11_BUFFER_DESC bd;

ZeroMemory(&bd, sizeof(bd));

bd.Usage = D3D11_USAGE_DEFAULT;

bd.ByteWidth = sizeof(D3D11Vertex_UnlitTextured) * m_numVerts;

bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;

bd.CPUAccessFlags = 0;

D3D11_SUBRESOURCE_DATA InitData;

ZeroMemory(&InitData, sizeof(InitData));

InitData.pSysMem = pVertices;

Special Scene Graph Nodes 557

hr = DXUTGetD3D11Device()->CreateBuffer(&bd, &InitData, &m_pVertexBuffer);

SAFE_DELETE(pVertices);

if(FAILED(hr))

return hr;

// Loop through the grid squares and calc the values

// of each index. Each grid square has two triangles:

//

// A - B

// | / |

// C - D

WORD *pIndices = GCC_NEW WORD[m_sides * 2 * 3];

WORD *current = pIndices;

for (DWORD i=0; i<m_sides; ++i)

{

// Triangle #1 ACB

*(current) = WORD(i*4);

*(current+1) = WORD(i*4 + 2);

*(current+2) = WORD(i*4 + 1);

// Triangle #2 BCD

*(current+3) = WORD(i*4 + 1);

*(current+4) = WORD(i*4 + 2);

*(current+5) = WORD(i*4 + 3);

current+=6;

}

bd.Usage = D3D11_USAGE_DEFAULT;

bd.ByteWidth = sizeof(WORD) * m_sides * 2 * 3; //// each side has 2 triangles

bd.BindFlags = D3D11_BIND_INDEX_BUFFER;

bd.CPUAccessFlags = 0;

InitData.pSysMem = pIndices;

hr = DXUTGetD3D11Device()->CreateBuffer(&bd, &InitData, &m_pIndexBuffer);

SAFE_DELETE_ARRAY(pIndices);

if(FAILED(hr))

return hr;

return S_OK;

}

The vertex buffer is created first using the rotation transformations; then the index
buffer is created. This code is actually very similar to what you saw in Chapter 14
to create the index buffer for the grid object. If you have trouble visualizing it, it

558 Chapter 16 n 3D Scenes

might be a good idea to get out the graph paper. To be honest, that’s how I created
this code in the first place!

The real trick to making the sky node special is the code inside VPreRender():

HRESULT SkyNode::VPreRender(Scene *pScene)

{

Vec3 cameraPos = m_camera->VGet()->ToWorld().GetPosition();

Mat4x4 mat = m_Props.ToWorld();

mat.SetPosition(cameraPos);

VSetTransform(&mat);

return SceneNode::VPreRender(pScene);

}

This code grabs the camera position and moves the sky node exactly as the camera
moves. This gives a completely convincing illusion that the objects like sun, moon,
mountains, and other backgrounds rendered into the sky textures are extremely far
away, since they don’t appear to move as the player moves.

The code to render the sky should look a little familiar, since you saw snippets of it at
the end of the previous chapter:

HRESULT D3DSkyNode11::VRender(Scene *pScene)

{

HRESULT hr;

V_RETURN (m_VertexShader.SetupRender(pScene));

V_RETURN (m_PixelShader.SetupRender(pScene, this));

// Set vertex buffer

UINT stride = sizeof(D3D11Vertex_UnlitTextured);

UINT offset = 0;

DXUTGetD3D11DeviceContext()->

IASetVertexBuffers(0, 1, &m_pVertexBuffer, &stride, &offset);

// Set index buffer

DXUTGetD3D11DeviceContext()->

IASetIndexBuffer(m_pIndexBuffer, DXGI_FORMAT_R16_UINT, 0);

// Set primitive topology

DXUTGetD3D11DeviceContext()->

IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

for (DWORD side = 0; side < m_sides; side++)

{

const char *suffix[] =

{ “_n.jpg”, “_e.jpg”, “_s.jpg”, “_w.jpg”, “_u.jpg” };

Special Scene Graph Nodes 559

std::string name = m_textureBaseName;

name += suffix[side];

m_PixelShader.SetTexture(name);

DXUTGetD3D11DeviceContext()->DrawIndexed(6, side * 6, 0);

}

return S_OK;

}

First, the vertex and pixel shaders have their SetupRender() methods called. This
is what sets up the transformation matrices in the vertex shader and the lighting and
material constant buffers in the pixel shader. Then the vertex and index buffers are
sent into the ID3D11DeviceContext, and the primitive topology is set to a triangle
list, which is how we’ve set up the indices into the vertex buffer. Then a loop begins
that sets the pixel shader’s texture, and a call to DrawIndexed() is made to draw
one side of the skybox.

If you read this and said to yourself, “What a fool—McShaffry is setting a different
texture for each face of the sky and that’s too expensive!” you’d be absolutely right.
There is a better way to do this, although it does require some advanced shader code
and a different kind of texture, called a cube map. A cube map is basically a large
texture with all faces present, so there’s only one texture to manage. As an exercise,
try writing the shaders to use a cube map, create the C++ helper classes to interface
with the shaders, and convert this sky node class to use it. That will utilize almost
every 3D graphics topic you’ve learned so far.

Using Meshes in Your Scene

A 3D game would be pretty boring with nothing but grids and sky. If you want inter-
esting shapes, you’ll need to create them in a modeling tool like 3ds Max, Maya, or
ZBrush. Modeling tools are precise tools for creating shapes for your game levels or
dynamic objects. Direct3D can’t read files from these modeling tools directly, but it
can read SDKMESH files, which are used in the Direct3D samples and tutorials.

This file format isn’t meant for commercial games, but it can be used to get used to
the idea of how to read them, create a SceneNode around them, and put them into a
3D world. The first task is to load the mesh, and like many other things you’ve seen,
it is convenient to be able to load meshes from the resource cache. The raw bits of
the SDKMESH file can’t be used directly by Direct3D 11. It is loaded into a Direct3D
utility class, CDXUTSDKMesh. That means we have to define a resource loader class
that will help the resource cache load the raw bits into an object directly usable by
Direct3D 11.

560 Chapter 16 n 3D Scenes

class D3DSdkMeshResourceExtraData11 : public IResourceExtraData

{

friend class SdkMeshResourceLoader;

public:

D3DSdkMeshResourceExtraData11() { };

virtual ~D3DSdkMeshResourceExtraData11() { }

virtual std::string VToString() { return “D3DSdkMeshResourceExtraData11”; }

CDXUTSDKMesh m_Mesh11;

};

class SdkMeshResourceLoader : public IResourceLoader

{

public:

virtual bool VUseRawFile() { return false; }

virtual bool VDiscardRawBufferAfterLoad() { return false; }

virtual unsigned int VGetLoadedResourceSize(char *rawBuffer, unsigned int

unsigned int rawSize)

{ return rawSize; }

virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize,

shared_ptr<ResHandle> handle);

virtual std::string VGetPattern() { return “*.sdkmesh”; }

};

bool SdkMeshResourceLoader::VLoadResource(char *rawBuffer,

unsigned int rawSize,

shared_ptr<ResHandle> handle)

{

shared_ptr<D3DSdkMeshResourceExtraData11> extra =

shared_ptr<D3DSdkMeshResourceExtraData11>(

GCC_NEW D3DSdkMeshResourceExtraData11());

// Load the Mesh

if (SUCCEEDED (extra->m_Mesh11.Create(DXUTGetD3D11Device(),

(BYTE *)rawBuffer, (UINT)rawSize, true)))

{

handle->SetExtra(shared_ptr<D3DSdkMeshResourceExtraData11>(extra));

}

return true;

}

This loader is trivial. All it really does is call the Create() method of the
CDXUTSDKMesh class with the raw bits of the SDKMESH file as inputs.

Special Scene Graph Nodes 561

There’s one subtle thing about the resource loaded code above that you haven’t seen
before. This is the first time that VDiscardRawBufferAfterLoad() has returned
false. Here’s why: the CDXUTSDKMesh class refers to the raw bits in the mesh, so if
they were discarded after the resource was loaded, the mesh would have invalid data
in it. It just goes to show that not every DXUT class or any SDK class from any ven-
dor out there operates similarly to others in the same library!

Meet the D3DShaderMeshNode11 class:

class D3DShaderMeshNode11 : public SceneNode

{

public:

D3DShaderMeshNode11(const ActorId actorId,

std::string name,

std::string sdkMeshFileName,

RenderPass renderPass,

const Color &color,

const Mat4x4 *t)

: SceneNode(actorId, name, renderPass, diffuseColor, t),

m_PixelShader(““)

{

m_sdkMeshFileName = sdkMeshFileName;

}

virtual ~D3DShaderMeshNode11();

virtual HRESULT VOnRestore(Scene *pScene);

virtual HRESULT VOnLostDevice(Scene *pScene) { return S_OK; }

virtual HRESULT VRender(Scene *pScene);

protected:

std::string m_sdkMeshFileName;

GameCode4_Hlsl_VertexShader m_VertexShader;

GameCode4_Hlsl_PixelShader m_PixelShader;

};

This class looks somewhat similar to the SkyNode class—it has the two C++ shader
helper classes you’ve come to know and love, but there is no vertex or index buffer
defined. That’s because the CDXUTSDKMesh class already has them. Note also that the
constructor doesn’t have a specific texture to send in to the pixel shader.

The VOnRestore() method is very simple—all it does is call the VOnRestore()

methods of the SceneNode parent class and the two shaders before making a call to
the resource cache to reload the SDKMESH file.

HRESULT D3DShaderMeshNode11::VOnRestore(Scene *pScene)

{

562 Chapter 16 n 3D Scenes

HRESULT hr;

V_RETURN(SceneNode::VOnRestore(pScene));

V_RETURN (m_VertexShader.OnRestore(pScene));

V_RETURN (m_PixelShader.OnRestore(pScene));

// Force the Mesh to reload

Resource resource(m_sdkMeshFileName);

shared_ptr<ResHandle> pResourceHandle =

g_pApp->m_ResCache->GetHandle(&resource);

shared_ptr<D3DSdkMeshResourceExtraData11> extra =

static_pointer_cast<D3DSdkMeshResourceExtraData11>(

pResourceHandle->GetExtra());

return S_OK;

}

The really interesting bit happens in VRender(). After the calls to the shader Setup
Render() methods, notice how the vertex and index buffers get set:

HRESULT D3DShaderMeshNode11::VRender(Scene *pScene)

{

HRESULT hr;

V_RETURN (m_VertexShader.SetupRender(pScene));

V_RETURN (m_PixelShader.SetupRender(pScene, this));

//Get the Mesh

Resource resource(m_sdkMeshFileName);

shared_ptr<ResHandle> pResourceHandle =

g_pApp->m_ResCache->GetHandle(&resource);

shared_ptr<D3DSdkMeshResourceExtraData11> extra =

static_pointer_cast<D3DSdkMeshResourceExtraData11>(

pResourceHandle->GetExtra());

//IA setup

UINT Strides[1];

UINT Offsets[1];

ID3D11Buffer* pVB[1];

pVB[0] = extra->m_Mesh11.GetVB11(0, 0);

Strides[0] = (UINT)extra->m_Mesh11.GetVertexStride(0, 0);

Offsets[0] = 0;

DXUTGetD3D11DeviceContext()->IASetVertexBuffers(0, 1, pVB, Strides,

Offsets);

DXUTGetD3D11DeviceContext()->IASetIndexBuffer(extra->m_Mesh11.GetIB11(0),

extra->m_Mesh11.GetIBFormat11(0), 0);

Special Scene Graph Nodes 563

//Render

D3D11_PRIMITIVE_TOPOLOGY PrimType;

for(UINT subset = 0; subset < extra->m_Mesh11.GetNumSubsets(0); ++subset)

{

// Get the subset

SDKMESH_SUBSET *pSubset = extra->m_Mesh11.GetSubset(0, subset);

PrimType = CDXUTSDKMesh::GetPrimitiveType11(

(SDKMESH_PRIMITIVE_TYPE)pSubset->PrimitiveType);

DXUTGetD3D11DeviceContext()->IASetPrimitiveTopology(PrimType);

ID3D11ShaderResourceView* pDiffuseRV = extra->m_Mesh11.GetMaterial(

pSubset->MaterialID)->pDiffuseRV11;

DXUTGetD3D11DeviceContext()->PSSetShaderResources(0, 1, &pDiffuseRV);

DXUTGetD3D11DeviceContext()->DrawIndexed((UINT)pSubset->IndexCount, 0,

(UINT)pSubset->VertexStart);

}

return S_OK;

}

Rendering geometry requires setting the vertex and index buffers, defining a primi-
tive topology, setting texture resources, and finishing with a draw call. In the case of a
mesh, you may have many different types of geometry using multiple textures. That’s
why there’s a loop, similar to what you saw earlier with the skybox, except all the
skybox did was reset the texture. This shows that in the case of a mesh, you can
even reset the primitive topology. That implies something really important: A single
vertex buffer and a single index buffer can contain multiple primitive topologies! Tri-
angle lists, strips, line lists, strips, and others can all be represented in a single vertex
and index buffer pair.

Watch Those Long Load Times

Balancing load times and runtime frame rate is one of the trickiest problems
in game development. Load times tend to be slow because the files are
intentionally stripped down to the bare bones and compressed to pack as
many game assets on the digital media as possible. Frame rate suffers if the
game assets have to be tweaked every frame or if they simply aren’t
formatted for the fastest rendering on the player’s hardware. Here’s a good
rule of thumb: Don’t make the player wait more than 60 seconds for a load
for every 30 minutes of gameplay. And whatever you do, make sure you have
a nice screen animation during the load so players don’t confuse your long
load times with a game crash!

564 Chapter 16 n 3D Scenes

What’s Missing?

That is all you need to create a simple scene graph. It may seem like an extremely
simplistic architecture, but it’s more flexible than you’d think. Each node you design
can add functionality and special effects to all its children nodes. Here are some
examples:

n Billboard node: Sets the transform matrix of all the child nodes such that they
always face the camera. Use this for trees or light glare.

n Level of detail node: A node that chooses one node in its child list for rendering
based on the node’s distance from the camera.

n BSP node: A node that sets its visibility based on which side of the BSP plane
the camera is and where it is facing.

n Material node: Sets the default material for all children nodes.

n World sector node: Defines a 3D volume that completely contains all of its
children nodes. You use it to determine if any children need to be drawn based
on camera direction or interposed opaque world sectors.

n Mirror node: Defines a portal through which the scene is re-rendered from a
different point of view and stenciled onto a texture.

n Lots more shader effects!

I’m sure you can come up with other cool stuff.

Still Hungry?

When the last three chapters were first outlined, I knew that I was going to leave
plenty of questions completely unanswered. The chapters covered too much in too
few pages. My publisher being willing, I could have spent more pages on 3D gra-
phics, shaders, and architecture, but even if I doubled or tripled my coverage of
these subjects I would still only scratch the surface. As with other chapters in this
book, my goal is to give you just enough knowledge to be dangerous and point you
to the next steps.

Further Reading

n 3D Game Engine Design, David H. Heberly

n 3D Game Engine Architecture, David H. Heberly

Further Reading 565

This page intentionally left blank

Chapter 17

by Mike McShaffry

Collision and Simple Physics

Even the simplest 2D game needs collision. After all, if the objects in a game can’t
interact, how fun could the game possibly be? Breakout is a great example of a sim-
ple game. A ball bounces off walls, bricks, and the paddle. If you look at it this way,
the core of the game experience is created by the 2D collision algorithm. It’s almost
impossible to design a game without at least some rudimentary collision. Perhaps a
text adventure like Zork is one example, but hey, it hasn’t exactly been flying off the
shelves lately. If you are familiar with Zork, that’s great because you know your
game history. If you’ve actually played Zork, well, then you are probably as “mature”
as I am.

Collision is a purely mathematical calculation to determine the spatial relationship
between objects such as points, lines, planes, or polygonal models. I’ll point you to
some great resources outside of this book that provide good solutions. I’m not
going to pretend I can offer something better.

Physics, on the other hand, is a much more complicated beast altogether. A physics
simulation in your game will make it possible to stack objects on top of each other,
fall down slopes and stairs accurately, and interact with other dynamic objects in a
visually realistic fashion. It can also create motion under force such as you’d see
with motors and springs. It can constrain the movements of objects similar to a
door on hinges or a pendulum swinging in a grandfather clock.

In the spring of 2004, I worked on Thief: Deadly Shadows. This game used the Havok
physics engine on every movable object, including rag dolls for characters. Thief

567

might not use physics as its core game experience, but it certainly creates a convinc-
ing illusion of a complete world in which the player can interact with objects in a
meaningful way and affect the events of the game. Here’s an example: You could
knock a barrel down a flight of stairs, and each impact reported by the collision sys-
tem would trigger a sound effect that you heard through the speakers. The actions
would also trigger sound events in the AI subsystem. This would bring curious
guards around to investigate the noise.

You might think for a moment that you could have a similar game experience
without a complicated physics simulation, and you are right. The aforementioned
barrel could have simply shattered into bits when you knocked into it, and the
same guard could have investigated it. The fundamental difference is one of realism
and how far the player has to go to imagine what happens versus seeing it in front
of his eyes.

Many games don’t have super-accurate physics simulations, something you’ve prob-
ably suspected, but perhaps you’ve wondered why the designers and programmers
stopped short of doing. A truly accurate physics simulation for every game object
is an expensive proposition, CPU-wise. Every game will make reasonable optimiza-
tions to make things faster. For example, most physics simulations assume that
buildings and other architecture are essentially infinite weight and impossible to
break. Load any racing game, like Project Gotham 4, and try running into a barri-
cade with a Ferrari at over 200 mph and tell me that a real barricade would survive
that impact without being horribly mangled. It won’t, and therefore that simulation
isn’t completely accurate.

But it is quite a bit of fun to rebound off barricades in games like Project Gotham at
high speed to get around corners faster, isn’t it? The point I’m trying to make is that
you have to understand your game before you decide that a physics simulation will
actually add to the fun. A game like Thief benefited from accurate physics, but Project
Gotham would have been remiss to create something perfectly accurate in every way,
even if it could have afforded the CPU budget.

Think about this for a moment: Is it better to have the pendulum in a grandfather
clock act under a completely realistic physics simulation or a simple scripted anima-
tion? The answer is completely dependent on your game, and by the end of this
chapter, hopefully you’ll be able to answer that question for yourself.

Since I only have one chapter to talk about collision and physics, I only have time to
show you how to use an existing system (specifically the open source library, Bullet)
in your game. We’ll cover the basics and get right into how you can best use these
complicated pieces of technology.

568 Chapter 17 n Collision and Simple Physics

Mathematics for Physics Refresher

I don’t know about you, but every time I read anything that has anything to do with
math, I somehow feel all of the intelligence leak right out of my skull. I think it has
something to do with the presentation. I hope to do better here because if you can’t
get past understanding these concepts, you’ll be pretty lost when you get around to
debugging physics and collision code.

Meters, Feet, Cubits, or Kellicams?

What you are about to read is true (even though you might not believe it), so read it
over and over until you have no doubt:

Units of measure don’t matter in any physics calculation. All the formulas will work,
as long as you are consistent.

I’m sure you remember the unfortunate story about the Mars Lander that crashed
because two different units of measurement were used? One team used meters, and
the other team used feet. This error is frighteningly simple to make, so don’t laugh
too hard. It’s not just the programmers who need to agree on the units of measure
for a game project. Artists use units of measurement, too, and they can cause all
kinds of trouble by choosing the wrong ones.

A unitless measure of distance can therefore be anything you like: meters, feet,
inches, and so on. There are two other properties that can also be unitless: mass
and time. You’ll generally use kilograms or pounds for mass, and I’ll go out on a
limb here and suggest you use seconds for time. Whatever you use, just be consistent.
All other measurements, such as velocity and force, are derived from various combi-
nations of distance, mass, and time.

By the way, if you are wondering how I knew how to spell Kellicams (the unit of
measure used by the Klingon Empire), I did what any author would do: I searched
Google and chose the spelling that gave me the most returns.

Distance, Velocity, and Acceleration

When you need to work with objects moving through space, you’ll be interested in
their position, velocity, and acceleration. Each one of these is represented by a 3D
vector:

Vec3 m_Pos;

Vec3 m_Vel;

Vec3 m_Accel;

Mathematics for Physics Refresher 569

Velocity is the change in position over time, and likewise acceleration is the change
in velocity over time. You calculate them like this:

Vec3 CalcVel(const Vec3 &pos0, const Vec3 &pos1, const float time)

{

return (pos1 - pos0) / time;

}

Vec3 CalcAccel(const Vec3 &vel0, const Vec3 &vel1, const float time)

{

return (vel1 - vel0) / time;

}

This is fairly pedantic stuff, and you should remember this from the math you
learned in high school. In computer games, you frequently need to go backward.
You’ll have the acceleration as a vector, but you’ll want to know what happens to
the position of an object during your main loop. Here’s how to do that:

inline Vec3 HandleAccel(Vec3 &pos, Vec3 &vel, const Vec3 &accel, float time)

{

vel += accel * time;

pos += vel * time;

return pos;

}

Notice that when the acceleration is handled, both the velocity and the position change.
Both are sent into HandleAccel() as references that will hold the new values.

Now that you’ve seen the code, take a quick look Table 17.1, which contains mathemat-
ical formulas for calculating positions and velocities. Hopefully, you won’t pass out.

You probably recognize these formulas. When you first learned these formulas, you
were using scalar numbers representing simple one-dimensional measurements like

Table 17.1 Formulas for Calculating Positions and Velocities

Formula Description

p = p0 + vt Find a new position (p) from your current position (p0),
velocity (v), and time (t)

v = v0 + at Find a new velocity (v) from your current velocity (v0),
acceleration (a), and time (t)

p = p0 + v0t + (at2)/2 Find a new position (p) from your current position (p0),
velocity (v0), acceleration (a), and time (t)

570 Chapter 17 n Collision and Simple Physics

distance in feet or meters. In a 3D world, we’re going to use the same formulas, but the
inputs are going to be 3D vectors to represent position, speed, and acceleration in 3D
space. Luckily, these vectors work exactly the same as scalar numbers in these equations,
because they are only added together or multiplied by time, a scalar number itself.

Mass, Acceleration, and Force

Whenever I have a particularly nasty crash when mountain biking, some joker in my
mountain biking group quips, “F=ma, dood. You okay?” This formula is Newton’s
Second Law of Motion and says that force is calculated by multiplying the mass of
the object in question with its acceleration. In the case of an unfortunate mountain
biker taking an unexpected exit from the bike, the acceleration is the change in the
biker’s velocity over time, or deceleration actually, multiplied by the biker’s weight.
Crashing at the same speed, the heavier biker gets hurt more. If the same biker
crashes while riding downhill, the slightly faster speed does quite a bit more damage
because acceleration has a time squared component and is therefore much more seri-
ous than a change in mass.

Force is typically measured in Newtons. One Newton, symbolized by the letter N, is
defined as the force required to accelerate a mass of one kilogram at a rate of one
meter per second squared.

N ¼ ðkgÞm=s
2

Try not to confuse acceleration and force. Gravity is a force, and when it is applied to
an object, it causes acceleration. Galileo discovered an interesting property about this
acceleration by dropping things from the Leaning Tower of Pisa: It doesn’t matter
how much something weighs because they all fall at the same rate, excepting any
large differences in air resistance. This is extremely unintuitive until you remember
that even though more massive objects exert a greater gravitational force, this
force is used to accelerate the larger mass, and therefore the acceleration remains
the same. The only way you get higher acceleration is with stronger gravitational
fields. Feel free to find a black hole and experiment—I’ll watch from a few light years
away.

Who Wins, a Tissue or the Planet?

While it might not feel this way to you, gravitation is an incredibly weak force
compared to something like electricity. You can prove it to yourself by placing
an object, like your cell phone, on a piece of tissue paper. Grab both sides of
the tissue paper and lift it, suspending your cell phone over the ground. The
force that keeps the cell phone from tearing through the tissue paper is
the electrical force binding the material of the tissue paper together. So the

Mathematics for Physics Refresher 571

electrical bonds present in that tiny piece of tissue paper are sufficient to withstand the gravitational force
exerted on the cell phone by the entire planet Earth.

Heavier things exert a larger force in a gravitational field, such as when you place a
weight on your chest. At sea level, Earth’s gravity causes an acceleration of exactly
9.80665 meters/s2 on every object. Thus, a one kilogram object exerts a force of
9.80665N. To get an idea of how big that force is, lie down and set this book on
your chest. It turns out to be around 1.5 kilograms, give or take Chapter 5, so you
will experience a force of about 1.5N. So one Newton is not all that big, really, if
you are the size of a human being and the force is somewhat distributed over a
book-sized area. Balance this book on a fork, tines downward, and you’ll see how
that distribution will change your perception of one Newton. Area, as it seems,
makes a huge difference.

Let’s look at the code that would apply a constant acceleration, like gravity, to an
object. We’ll also look at code that applies an instantaneous force. Forces are vectors
and are therefore additive, so multiple forces (f0, f1, f2, …) on one object are added
together to get an overall force (f):

f0 + f1 + f2 +…

or in shorthand, we write

F ¼ ∑
n

x¼0

f x

Just so you know, the C++ version of that math formula is a simple for loop:

Vec3 AddVectors(const Vec3 *f, int n)

{

Vec3 F = Vec3(0,0,0);

for (int x = 0; x < n; x++)

F += f[x];

return F;

}

A constant force over time equates to some acceleration over time, depending on the
object’s mass. An impulse is instantaneous, so it only changes the acceleration once.
Think of it like the difference between the force of a rocket motor and the force of
hitting something with a golf club: One happens over time, and the other is instanta-
neous. Take a look at a simple game object class:

typedef std::list<Vec3> Vec3List;

572 Chapter 17 n Collision and Simple Physics

class GameObject

{

Vec3 m_Pos;

Vec3 m_Vel;

Vec3 m_Accel;

Vec3List m_Forces;

Vec3List m_Impulses;

float m_Mass;

void AddForce(const Vec3 &force) { m_Forces.push_back(force); }

void AddImpulse(const Vec3 &impulse) { m_Impulses.push_back(impulse); }

void OnUpdate(const float time);

};

This class contains 3D vectors for position, velocity, and acceleration. It also has two
lists: one for constant forces and the other for impulses, each of which is modified by
accessor methods that push the force or impulse onto the appropriate list. The real
action happens in the OnUpdate() call.

void GameObject::OnUpdate(const float time)

{

if (m_Mass == 0.0f)

return;

// Add constant forces...

Vec3 F(0,0,0);

Vec3List::iterator it;

for (it=m_Forces.begin(); it!=m_Forces.end(); it++)

{

F += *it;

}

// Also add all the impulses, and then clear the list

for (it=m_Impulses.begin(); it!=m_Impulses.end(); it++)

{

F += *it;

}

m_Impulses.clear();

// calculate new acceleration

m_Accel = F / m_Mass;

m_Vel += m_Accel * time;

m_Pos += m_Vel * time;

}

Mathematics for Physics Refresher 573

The two loops add all the forces being applied to the game object. The first loop just
iterates through and accumulates a result. The second loop is different, because as it
accumulates the result, the list is emptied. This is because the forces are impulses, and
thus they only happen once. The resulting acceleration is calculated by dividing the accu-
mulated force (F) by the object’s mass. Once that is done, you can update the object’s
velocity and position. I’ll leave the implementation of RemoveForce() up to you.

Physics Engines Are Very Time Sensitive

You must be extremely careful with the value of time. If you send in a value
either too big or too small, you’ll get some unpredictable results. Very small
values of time can accentuate numerical imprecision in floating-point math,
and since time is essentially squared in the position calculation, you can run
into precision problems there, too. If your physics system is acting strangely,
check how often it is being called first.

Rotational Inertia, Angular Velocity, and Torque

When an object moves through space, its location always references the center of
mass. Intuitively, you know what the center of mass is, but it is interesting to note
some special properties about it. For one thing, when the object rotates freely, it
always rotates about the center of mass. If the object is sitting on the ground, you
can tip it, and it will only fall when the center of mass is pushed past the base of
the object. That’s why it’s easier to knock over a cardboard tube standing on its end
than a pyramid sitting on its base.

Different objects rotate very differently, depending on their shape and how their
weight is distributed around the volume of the shape. A Frisbee spins easily when I
throw it, but it doesn’t spin as well end-over-end, like when my youngest nephew
throws it! Mathematically, this property of physical objects is called the inertia tensor.
It has a very cool name, and you can impress your friends by working it into
conversations.

The inertia tensor is something that is calculated ahead of time and stored in the
physical properties of the object. It’s pretty expensive to create at runtime. It is a
3 × 3 matrix, describing how difficult it is to rotate an object on any possible axis.
An object’s shape, density, and mass are all used to compute the inertia tensor; it is
usually done when you create an object. It’s much more preferable to precompute the
inertia tensor and store it. This calculation isn’t trivial. As you might expect, the iner-
tia tensor is to orientation as mass is to position; it is a property of the object that
will affect how the object rotates.

574 Chapter 17 n Collision and Simple Physics

Angular velocity is a property of physics objects that describes the axis of spin and
the speed at the same time in one 3D vector. The magnitude of the vector is the
spin in whatever units per second, and the direction of the vector shows the rota-
tional axis.

Angular force is called torque and is measured by a force applied about a spin radius.
Think of a wrench. As you push on it to get a bolt loose, you apply a certain force to
the end of a wrench of some length. A particularly stubborn bolt might come loose if
you put a long pipe over the end of your wrench, but the wise mechanic knows that
you have a pretty good chance to break the end right off that nice wrench. This is a
good reason to buy Craftsman.

Torque is measured by force, specified in Newton-meters for the metric system or
foot-pounds for the medieval system. As you might expect, 5 Newton-meters is a
5 Newton force applied about a 1 meter length.

Distance Calculations and Intersections

The best resource I’ve found for calculating distances is a website, and it would
be crazy of me to simply regurgitate the content they have. Just visit www.
realtimerendering.com/intersections.html. This resource is so great because it has col-
lected the best of the best in finding these collisions and intersections and listed them
all in a big matrix. This took a lot of research, and I’d be completely remiss if I didn’t
point you to it.

As of this printing, this website is a great resource for finding collisions/intersections
between any of the following objects:

n Ray

n Plane

n Sphere

n Cylinder

n Cone

n Triangle

n Axis-Aligned Bounding Box (AABB)

n Oriented Bounding Box (OBB)

n Viewing Frustum

n Convex Polyhedron

Mathematics for Physics Refresher 575

www.realtimerendering.com/intersections.html
www.realtimerendering.com/intersections.html

If you want to perform collision detection on arbitrary static and dynamic meshes,
such as a teapot against a stairway, you’ll need more firepower. For that, I’d suggest
going straight to a real physics SDK.

Choosing a Physics SDK

There are a lot of options these days for programmers who don’t want to write their
own collision system or a system to handle dynamics. Some of these systems have really
interesting components for handling nonrigid bodies like bowls of Jell-o or vehicles.

Whether you choose to grab one off-the-shelf or write your own, it should have the
following minimum set of features:

n Allow user data to relate physics objects with your game objects.

n Optimize collisions for static actors or geometry.

n Trap and report collision events.

n Provide a fast raycaster.

n Draw debug information visually.

n Output errors in a rational way.

n Allow custom memory allocators.

n Add and remove objects, or regions of objects, from the physics simulation
for optimal CPU usage.

n Save and load its own state.

As the physics system simulates the movements of physical objects in a game, it will
need some way to associate objects in its data structures to actual objects in your
game. This is especially true since the physics object will usually have a simpler
geometry than the visible object—a good reason to keep them separate. When phys-
ics objects are created, look for a way to provide a reference, or special user data, to
these objects so you can figure out which physics and game object pairs match.

Most physics systems allow static, or unmovable, actors by setting their mass to zero.
These objects would be the geometry that makes the walls, floors, terrain, and the rest
of the environment, as well as any really heavy object that will never be moved, like a
tree. Most physics systems take advantage of static actors to speed dynamics calculations.

Besides moving objects around, you’ll want to know if and when they collide. You’ll
also want to know all kinds of things about the collision, such as the force of the
collision, the collision normal, and the two objects that collided. All these things are

576 Chapter 17 n Collision and Simple Physics

great for playing back sounds, spawning particle effects, or imparting damage and
destruction to the objects concerned.

Any game is going to need a good raycaster. A raycaster is something that returns
one or more objects that intersect with a probe ray. It is an extremely useful rou-
tine for finding out whether objects are in the line of sight of an AI process, deter-
mining where to put bullet holes, and probing the surrounding geometry for
moving cameras, objects, or characters. If possible, you should also be able to do
something called a shapecast, which takes an entire object, like a sphere, and
casts it instead of a simple ray. This kind of thing is invaluable for creating good
third-person cameras. Depending on your physics system, raycasts or shapecasts
can be expensive.

Most physics SDKs can send lots of debug information into your rendering pipeline
so that things like collision shapes, acceleration vectors, and contact points are drawn
so you can actually see their magnitudes and directions. Watching physics data struc-
tures visually is the only way to debug physics. You simply can’t just look at the data
structures and diagnose problems easily. Consider this example: Two objects seem to
react in unexpected ways when they collide. When you look at the collision mesh
data, you find that they look correct in the debugger’s watch window. When you
turn the physics debug renderer on, you might notice that one of the collision hulls
is simply the wrong shape and needs to be fixed. You’d never figure this out looking
at a long list of points in 3D space.

Most physics errors come from bad data or misuse of the API. For this reason, any
decent physics SDK should have a good way to report errors back to you in the
debug build. DirectX does this by sending error or informational messages to the
debugger’s output window. A good physics system should do the same thing. If
your artists have created a collision mesh the physics system can’t handle, it’s nice
to know right away rather than after you’ve spent all night debugging the problem.

Memory allocation is always a concern in computer games. They simply don’t use
memory in the manner that best suits the standard C-runtime memory allocator,
and for that reason, most games write their own memory allocation scheme. A phys-
ics system can be just as hard on memory as a graphics subsystem, and thus it needs
to use the same optimized memory system as the rest of your game. Look for hooks
in the SDK that let you circumvent the default memory allocator with your own.

Physics is expensive enough that you only want to simulate areas of the game the
player can actually see or be affected by. For this reason, most good physics systems
have easy ways for groups of objects to be enabled or disabled as a group, which
allows you to turn on and off areas to make the very best use of your CPU budget.

Choosing a Physics SDK 577

A physics system should be able to stream so that you can save and load its state.
Even if your game doesn’t have a load/save feature, it is likely that your game editor
has a save feature; otherwise, it wouldn’t be much of a game editor. In many game
editors, physics objects are placed in the level and simulated until they find a stable
position. Usually, you’d do this for candles sitting on tables and other props, but you
could do it for something as complicated as a stone bridge. It might be fun to blow
up something like that in your game! Either way, you can’t count on designers to
place the objects with such accuracy, so it’s best to let the physics system simulate it
until it stabilizes and then save the state.

Now that you’ve acquired a physics SDK with everything on your checklist, let’s talk
a little about how to actually use it.

Object Properties

Physical objects have properties that affect their movement and interactions with
other objects. We’ve already talked about mass, position, velocity, force, the inertia
tensor, angular velocity, and torque. These properties describe object motion under
force in free space. When objects bump into each other or into infinitely heavy
objects, their reactions are dependent on three more properties: restitution, static fric-
tion, and dynamic friction.

Restitution is the amount of bounce that an object has when it hits something and is
usually expressed in a positive floating-point number. A good way to think of this is
how high a ball will bounce when you drop it. If the restitution is 0.0f, you’ve got a
piece of playdough, and when it hits it will simply stick to the ground. If you’ve got
something like 0.99f, you’ve got a nice superball that will bounce around for a long
time. It’s a bad idea to assign restitutions of greater than 1.0f, since the object will
simply continue to gain energy forever.

Static friction and dynamic friction describe how much energy is lost when two
materials are in contact and at rest or are in relative motion. Oddly enough, friction
changes drastically in these two conditions. This is why it’s so hard to regain con-
trol of a car once it’s in a skid—the dynamic friction is lower than the static fric-
tion. You experience this same issue when pushing heavy objects; it’s easier to keep
them moving than it is to get them moving initially. Note that most physics imple-
mentations support only a single coefficient of friction and don’t accommodate
both types.

The coefficient of friction, usually represented by �, is a number that is calculated by
the ratio of the force (F) required to move an object over the normal force (N), which

578 Chapter 17 n Collision and Simple Physics

on a flat surface is simply the mass of the object multiplied by the acceleration due to
gravity:

F ¼ μN

μ ¼ F=N

So if it took a 700N force to move an object that weighed 100Kg (thus exerting a
980N force on whatever surface it was sitting on), the coefficient of static friction
would be about 0.714f. Once the object was moving, if all you had to apply was
490N to keep it moving at a steady speed, the coefficient of dynamic friction (or slid-
ing friction) would be 0.5f.

Intuitively, the friction between two objects has everything to do with what those
objects are made of. Many physics systems let you specify this coefficient on a
material-by-material basis, which isn’t exactly accurate. If you look on the Web,
you’ll find that these numbers are presented in tables that match two materials
together, such as steel on steel or brass on oak or steel on ice. In other words, you’ll
likely need to tweak values for your objects until they seem right. A good safety tip is
to make this a data file somewhere that you can tweak at runtime. Trust me, you will
need to do this.

Here are some of the examples of this used in the GameCode4 code base, defined in
Dev/Assets/Config/physics.xml:

<PhysicsMaterials>

<PlayDough friction=“0.9” restitution=“0.05”/>

<Normal friction=“0.5” restitution=“0.25”/>

<Bouncy friction=“0.5” restitution=“0.95”/>

<Slippery friction=“0.0” restitution=“0.25”/>

</PhysicsMaterials>

This XML file is eventually read in by the physics engine into this structure:

struct MaterialData

{

float m_restitution;

float m_friction;

MaterialData(float restitution, float friction)

{

m_restitution = restitution;

m_friction = friction;

}

};

Object Properties 579

One final note on the properties of restitution and friction: You’d better have a phys-
ics SDK that can assign these materials to specific triangles of a mesh. While this isn’t
that critical for dynamic objects, it is surely needed for your environment mesh, or
you might have to decide to make your entire world out of plastic!

The next material property is density, a measure of an object’s mass per unit of vol-
ume. This is typically represented by a floating-point number, with 1.0 representing
the density of pure water. This value is usually called specific gravity. These figures
can easily be saved in an XML file, allowing your game objects to be described with
something other than a number:

<DensityTable>

<!-- specific gravity -->

<air>0.0013</air>

<water>1.000</water>

<!-- Synthetics -->

<styrofoam>0.0100</styrofoam>

<!-- Woods -->

<balsa>0.0170</balsa>

<bamboo>0.3500</bamboo>

<pine>0.5000</pine>

<!-- Biologic -->

<blood>1.060</blood>

<bone>1.800</bone>

<!-- Metals and Stone -->

<silicon>2.400</silicon>

<aluminum>2.650</aluminum>

<!-- Many more can follow! -->

</DensityTable>

Collision Hulls

Your physics objects will require representations in the physical world, and these
might be very different from their visible geometry. For example, a perfect sphere is
a mathematical construct in a physical world and has only a location and a radius,
whereas a visible representation might need quite a few polygons to look good. You
should use mathematical representations in the physical world where and when you
can, and you’ll save memory and CPU time.

580 Chapter 17 n Collision and Simple Physics

The trade-off is whether things will act like they appear. In the case of the sphere
object representing a bowling ball in your game, you’ll be quite happy. If the same
sphere were representing a box or a crate, I think you’d be a lot less happy. That
example is pretty trivial to make a point, but there are tougher problems. Before we
cover some of those, let’s talk about how collision geometry is built. You’ll need to
know this if you want to use a mesh editor such as Blender or 3ds Max.

Requirements of Good Collision Geometry

A collision mesh has to have a few properties to make the math in the physics SDK
efficient, or even possible. First, the mesh has to be convex. Good examples of convex
meshes are those that represent any regular solid such as a sphere, cube, or even
dodecahedron. Concave meshes, on the other hand, have valleys and holes.

The classic teapot is a good example of a concave mesh (see Figure 17.1). If I had the
actual teapot in front of me, and I had a piece of string, it would be trivial for me to
place the string on two parts of the object and observe the string cross empty space.
On a convex mesh, this can’t be done anywhere on the object’s surface. An easier
way to remember is by using the name concave because, simply put, it has caves.

Another requirement of a collision hull is that it be manifold, a mathematical term
that describes how the triangles fit together and form edges. A manifold edge has
exactly two triangles on either side. A manifold mesh has no holes or dangling

Figure 17.1
The classic teapot is concave.

Collision Hulls 581

polygons. It represents a completely solid object. It also has no T-joints on any trian-
gle edge. This usually isn’t a problem for artists because they know it screws up the
object’s lighting anyway.

This might be hard to visualize, so I’ve dusted off my Photoshop skills and made a
drawing for you (see Figure 17.2). The left-hand triangles are clearly non-manifold
because of the T-joint. The triangles on the right satisfy the requirement that each
edge must border exactly two triangles. The remaining requirement is that the mesh
be completely closed and have no holes in it.

If you’re worried that it might be tough to make meshes that always satisfy the
requirements of your physics system, you’re right. It’s sometimes easy for artists to
forget what the requirements are, especially when the heat is on and they’re trying
to get a ton of work done. The best thing is to make sure that your artists double-
check their work, hopefully by actually importing their work into the game and see-
ing for themselves if anything is awry.

Visible Geometry Versus Collision Geometry

It’s a good thing to note that while the position and orientation of a physics object are
related to the visual position and orientation, they aren’t necessarily the same. They
are probably the same for symmetrical objects like a sphere or a cube, but not much
else. The position of an object in the physical world is always the center of mass, and
that might not be the anchor point of the visible geometry. When you set the location
for a 3D object, it is the anchor point on that object that will be positioned precisely
at the new location. Likewise, the default orientation of an object in the physics simu-
lation is usually an inertia tensor, such that it aligns with the X-, Y-, and Z-axes.

Figure 17.2
The left-hand triangles are non-manifold—the right-hand triangles are okay.

582 Chapter 17 n Collision and Simple Physics

Maybe you can visualize this, but I certainly can’t, and it won’t necessarily match a
reasonable orientation for the object for programmers and artists, such as orienting a
gun with the barrel pointed straight down one of the X-, Y-, or Z-axes. Therefore,
you’ll probably need to apply a transformation to get from the orientation and posi-
tion of your physics object to find the correct position and orientation for your visible
geometry.

Asymmetric Objects Are Great for Testing

One test object you should definitely create is a completely asymmetric object.
A good example is a cube with three corner vertices pulled or pushed around,
as long as the shape is still convex. This will help you if you think your
physical and visible coordinate systems are out of whack. If they are, the
wireframe for the physical geometry won’t match the visible geometry. If you
integrate a new physics SDK with your game engine, and you use only balls or
cubes as test objects, there’s almost no way to tell if your transforms are
correct. Use a crazy, convex object, and you’ll notice problems right away.

If the collision and visible geometry are different, and they usually are, there are a
couple of things you’ll want to keep in mind:

n If you can simplify the physical geometry without sacrificing too much in the
way of geometrical accuracy, go for it.

n Lean on the side of making physical geometry a little smaller than the visible
geometry for objects and static environment meshes. This will create some
graphical errors, but the objects that move won’t get stuck so much or appear to
hit something that isn’t there.

Collision Hulls for Human Characters

You might think that you’d want to represent a human character by a rag doll. If the
character is unconscious or dead and is therefore under complete control of the
physics system, that is probably okay. However, while the character is under kine-
matic control, in other words under control of the animation system, you may want
something a lot simpler, trading accuracy in the simulation for some CPU cycles. The
same thing goes for the player character as human AIs. Take a look at Figure 17.3,
which is a simple capsule shape.

This simple shape has some great advantages and just a few disadvantages. First, the
rounded hemisphere at the top keeps most objects from stacking on top of a charac-
ter. The rounded hemisphere at the bottom allows for fairly natural looking ascent or
descent of stairs and curbs. The cylinder that makes up the torso creates a convenient

Collision Hulls 583

shape for sliding around objects or having objects slide around the character. Of
course, anytime the collision geometry doesn’t match the visible geometry, you’ll
see some anomalies. One of these is when a character’s arm or leg pokes out of the
capsule—this will show up in the game as characters sinking into walls and doors. If
the capsule is too large, the character might not fit through doorways or be able to
slip past other characters.

Crowded Games Require Smaller Collision Hulls

If you’ve played Valve’s Left 4 Dead, you probably recognize that the collision
hulls for the player characters and the zombies don’t interact with each other
that much, or at least not so that you can tell. That’s because there are so
many human characters running around that large collision hull
circumferences would cause you to get stuck behind your fellow AIs and
cause all manner of frustration. Also, if you notice the game environments,
there are not a lot of vertical objects like pipes or beams to get stuck on.
Make sure you take your game design into careful consideration when
designing the collision hulls, and that will influence the design of your game
environment.

Just in case I wasn’t clear, the character hull isn’t under physics control. It is a shape
that you move around yourself and check the physics system for collisions only when
you move it. How you move the hull is completely dependent on your game. You
could choose to allow the animation data to help you and minimize foot sliding. Or
you could find some flexibility by having a totally analog movement system tied right

Figure 17.3
A collision hull for a human character.

584 Chapter 17 n Collision and Simple Physics

to the controller and have the animation system queue off the distance you actually
moved. You’ll still get some feet sliding, but you’ll also have some freedom to move
exactly how you want. The choice is yours.

I could probably write a whole chapter just on character movement. It’s a big subject,
and it’s not one to be tackled lightly. One bit of advice, if you are just starting out:
Don’t worry about sliding feet, and certainly don’t worry about hovering feet above
stairs and ramps, at least at first. Some games solve this problem, but they also tend
to have huge budgets. The important bit is to make your game fun first. You can
spend any amount of money on cool ankle blending on your main character, but
no one will give a damn if your game isn’t fun to start with.

The Movement Gym

As part of this tuning process, you should create a special map level in your game that looks like an
obstacle course. Create every kind of environment and object your character can navigate: stairs,
ladders, slopes, ledges, doorways, and windows of every width, a forest of trees or columns,
crawlspaces, and anything else you can think of. Every time you make a change to any code or data,
including the shape of the character hull, run through the obstacle course and make sure that
everything still works. You’ll be surprised how easy it is to tweak something and completely break your
entire character movement system.

Special Objects: Stairs, Doorways, and Trees

Some objects need special collision hulls because they interact with characters or
objects in ways that don’t necessarily have a direct correlation to their visible shape.
Good examples of these objects are stairs, doorways, and trees.

Stairs are tough because you really want two completely different collision shapes,
depending on the dynamic object interacting with them. Most objects like crates
and barrels would use a pretty similar, although simplified, version of the visible
geometry. When they fall or roll down stairs, they’ll react to the edges and corners
and bounce around exactly as you’d expect. Characters, on the other hand, are usu-
ally a different story.

When you watch a character ascend or descend a staircase, the head doesn’t follow a
sharp square wave. Instead, it bobs smoothly with each step, but not too much. This
bobbing is even less when the character is moving quickly, such as running. If you
put a naive solution in your character/physics model, your character would probably
follow the exact shape of the stairway, causing a very unnatural and jerky movement.
The easiest solution to this problem is to make two collision hulls for stairs—one for
characters and one for every other kind of object. The collision hull for characters

Collision Hulls 585

should be a simple ramp, which will create a nice movement when characters move
up and down stairs. The second collision hull for the stairway will look like stairs,
although perhaps a very low polygon version of them for efficiency. Using this sec-
ond collision hull, normal objects will roll and bounce, instead of sliding. Using two
hulls for stairways is a good economical trick to make your game look good for char-
acters and objects.

Get Character Movement Done Early

Your character movement really is at the heart of your game, if you think about
it. You should therefore make sure that your character movement system is
scheduled extremely early in development before the level geometry is built.
Then designers will be able to test everything against a completely final
character movement system. Wait too long, and the designers will have to
guess how high your character can jump or what slopes it can climb. Believe
me, you don’t want them to guess on stuff like that.

I like running through doorways in games, which is probably why I get fragged a lot.
Your artists probably don’t know this, but it’s easy to create a door that’s hard to
walk through by making it too small or by having odd door jamb geometry. Doors
should be a little bigger than you experience every day. This helps the player have
some leeway on either side when walking through. If the character is running all
the time, you’ll want even more slop in the door size, or the collision hull will get
caught on the sides too easily. Rebounding is a possible solution, but if the door is
too small, you’ll just hit the other side and come to a complete halt.

Vegetation, especially trees, should have collision geometry for the big woody parts
like the trunk, but be sure to leave it completely off the foliage. These objects are
usually part of the physics simulation as static objects, and as such, they won’t
move even if they are hit by a huge force. This includes landing a 1969 Buick in the
canopy of something as wispy as an ornamental pear tree. Basically, any object stuck
in a tree in your game will likely look a little stupid or be annoying.

Using a Collision System

Any collision system worth its salt should be able to do a few basic things: report colli-
sion events, perform raycasts and shapecasts, and handle phantom objects. Collision
events have more than just a location and two objects, and this extra information will
help you spawn some important game logic changes or game view changes. Raycasting
and shapecasting are important for a number of reasons, some of which will become
apparent shortly. Phantom volumes that can detect entry and exit events, sometimes
called triggers, are usually simple enough to be handled with your own code, unless

586 Chapter 17 n Collision and Simple Physics

they aren’t simple shapes. Finally, a good collision system should support collision
groups because not every object needs to be able to collide with every other object.

A collision event should give you at a very minimum the following data: the two
objects that collided (or separated), the sum normal of the collision, and the force
of the collision. While it might not have occurred to you yet, objects separating are
equally as important in computer games as objects colliding. If two objects collide,
the game might impart damage to them or cause a sound effect to play. The force
of the collision might alter these events. You might want to run some kind of
particle-effect animation for forceful collisions, for example.

Some collision systems will give you more data, such as a list of contact points and
the collision normal for each of those points. This might be useful for spreading out
the particle effect or determining whether one object had sufficient force at one point
to penetrate the other object or cause some kind of special damage. I admit that last
example is a bit of a reach. I can’t think of any game that really goes that far just yet,
but someone might figure out a good use for this data.

Raycasting is both a savior and a curse. It stabs a ray from a start location in your
game world to any other point and gives you the collision information for anything it
intersects along the way. This is really useful for detecting line of sight from an AI
creature to your player’s character, or perhaps it can be used to probe the surround-
ing geometry to figure out where to place a third-person camera. The problem with
raycasting is that it’s only accurate to a point.

I know that was a horrible pun, but I’m actually serious. The ray is infinitely thin,
and it can therefore slip through the smallest cracks in your geometry. If you want
to know something about the general shape of the local geometry, such as if your
character is standing next to an open window, you can make a few stabs with these
rays, but they might miss something important, such as bars over the windows. Your
raycasts could instruct your character animation system to allow your player to climb
right through those bars.

I’ll give you one more example. Let’s say you want to make a single raycast to deter-
mine if an AI creature can see your player. You could easily hide behind the thinnest
pole, if you were lucky enough to stand in exactly the right place. The ray could
intersect the pole, causing it to believe there was a solid object in the way. A simple
hack uses more raycasts from the center of the creature’s forehead to various parts of
the player’s body, like an arm or a foot. Then it’s very difficult to hide, but those
raycasts are more performance intensive. Everything is a trade-off.

This can get expensive fast, though. Raycasts can be pretty expensive, especially if you
want a list of objects sorted by distance, rather than a simple yes or no answer to the

Using a Collision System 587

“did my ray hit anything” question. Back to the line-of-sight question—a good trick
is to cache the results of multiple raycasts over many game loops. If you cast one ray
per loop from an AI character, and your game is running at 30Hz, that’s 30 rays per
second you can cast! Since human beings can only perceive delays lasting longer than
about 100ms, or 1/10th of a second—a good general rule—you can even spread these
raycasts out farther to once every other frame or perhaps more. This is a game tuning
thing, and you’ll just have to play with it.

Another option is the shapecast. Think of this as pushing a geometrical shape from a
start location in your game world along a straight line to somewhere else. This is
more expensive than a single raycast, but it can be much more accurate if you are
moving an object in your game and want it to follow geometry closely. A good exam-
ple of this is a wall-following scheme, where your character closely follows the geom-
etry of a wall, including beams and wall sconces. Once you’ve validated the move
direction, move the character away from the wall a bit and shape cast it back into
the wall. If something like a beam or sconce is in the way, the new position of your
character will accommodate the annoying geometry. This is exactly how the wall-
flattening algorithm worked in Thief: Deadly Shadows.

Phantom objects, or triggers, are usually pretty simple to code without a physics or
collision system. They are usually simple proximity alarms that fire when some
dynamic object gets within range or leaves the active area. You use these things to
open automatic doors, or perhaps fire poison darts, or something like that. If you
have a physics system, however, you can make these areas into any arbitrary shape,
as long as it is convex. This can be really useful for tuning triggers into tight areas in
your level. If all your trigger shapes have to be spheres or cubes, you’d have to make
enough room for them to stay out of other rooms or hallways nearby.

The idea behind a collision group is simple: It optimizes the entire collision system.
As you might expect, a collision system’s algorithmic complexity grows with the
complexity of the geometry in question. Remove some of this geometry, and you
speed up your simulation. This is done by sorting objects into collision groups, essen-
tially lists of objects that can collide with one another and those that can’t. For exam-
ple, objects like a bunch of crates on the first floor can’t collide with another group of
crates on the second floor if they are physically separated by something like an eleva-
tor. Set those objects into different collision groups, and your physics system will
thank you for it by running a few milliseconds faster.

Integrating a Physics SDK

Most programmers aren’t going to write their own physics system. They’ll most
likely grab a physics SDK off the shelf and integrate it into their game. Since I’m

588 Chapter 17 n Collision and Simple Physics

probably describing most of the readers of this book, let’s discuss this important
integration task.

Note that the code presented in this section is only a tiny part of integrating a phys-
ics SDK into a complete game. The functionality here won’t get you much past
bouncing balls on a ground plane, so don’t expect more than that. The goal is to
show you how a third-party physics system fits into the game architecture presented
in this book. It’s up to you to extend this class for additional functionality or use a
different SDK than the one I chose.

It helps to discuss an interface class for a simple physics system. The interface shown
here creates a few objects and manages their movements. If you want to abstract an
entire physics system, you’d extend this class quite a lot. Actually, you’d extend this inter-
face and probably create a few new ones. We’ll keep it simple for now, just to get you
started. After the interface discussion, we’ll implement it using the Bullet Physics SDK
available from www.bulletphysics.com, which is available for free under the Zlib license.

class IGamePhysics

{

public:

// Initialization and Maintenance of the Physics World

virtual bool VInitialize()=0;

virtual void VOnUpdate(float deltaSeconds) = 0;

virtual void VSyncVisibleScene() = 0;

// Initialization of Physics Objects

virtual void VAddSphere(float radius,

WeakActorPtr actor, const Mat4x4& initialTransform,

const std::string& densityStr, const std::string& physicsMaterial)=0;

virtual void VAddBox(const Vec3& dimensions,

WeakActorPtr gameActor, const Mat4x4& initialTransform,

const std::string& densityStr, const std::string& physicsMaterial) = 0;

virtual void VRemoveActor(ActorId id)=0;

// Debugging

virtual void VRenderDiagnostics() = 0;

// Physics world modifiers

virtual void VCreateTrigger(WeakActorPtr gameActor, const Vec3 &pos,

const float dim)=0;

virtual void VApplyForce(const Vec3 &dir, float newtons, ActorId aid)=0;

virtual void VApplyTorque(const Vec3 &dir, float newtons, ActorId aid)=0;

virtual bool VKinematicMove(const Mat4x4 &mat, ActorId aid)=0;

}

Integrating a Physics SDK 589

www.bulletphysics.com

The first method, VInitialize(), initializes the physics system. VOnUpdate()
starts the physics simulation, which recalculates new positions and orientations for
moving objects and queues physics event callbacks like collision or trigger events.
The next method, VSyncVisibleScene(), is responsible for iterating through all
of the physics objects and updating the visible geometry with new locations and
orientations.

The methods responsible for adding objects to the physics simulation come next. Each
takes parameters that describe the geometry of the object, a weak pointer to the actor,
the actor’s initial position, and of what density and material the object is made.

The VRenderDiagnostics() method is a special routine that draws physics debug
data to the renderer. It is a critical tool for you to debug physics problems. The
remaining interface methods create different physics objects and attach them to the
simulation, such as a sphere. It is through methods like VCreateSphere() that you
add physical presence to your game objects so they can move just like they would in
the real world.

Here’s the implementation of that interface using the Bullet Physics SDK. You’ll see
the term rigid body in the code, which is how Bullet refers to solid objects in the
physics simulation.

class BulletPhysics : public IGamePhysics, GCC_noncopyable

{

// these are all of the objects that Bullet uses to do its work.

// see BulletPhysics::VInitialize() for some more info.

btDynamicsWorld* m_dynamicsWorld;

btBroadphaseInterface* m_broadphase;

btCollisionDispatcher* m_dispatcher;

btConstraintSolver* m_solver;

btDefaultCollisionConfiguration* m_collisionConfiguration;

BulletDebugDrawer* m_debugDrawer;

// tables read from the XML

typedef std::map<std::string, float> DensityTable;

typedef std::map<std::string, MaterialData> MaterialTable;

DensityTable m_densityTable;

MaterialTable m_materialTable;

void LoadXml();

float LookupSpecificGravity(const std::string& densityStr);

MaterialData LookupMaterialData(const std::string& materialStr);

// keep track of the existing rigid bodies: To check them for updates

// to the actors’ positions, and to remove them when their lives are over.

590 Chapter 17 n Collision and Simple Physics

typedef std::map<ActorId, btRigidBody*> ActorIDToBulletRigidBodyMap;

ActorIDToBulletRigidBodyMap m_actorIdToRigidBody;

btRigidBody * FindBulletRigidBody(ActorId id) const;

// also keep a map to get the actor id from the btRigidBody*

typedef std::map<btRigidBody const *, ActorId>BulletRigidBodyToActorIDMap;

BulletRigidBodyToActorIDMap m_rigidBodyToActorId;

ActorId FindActorID(btRigidBody const *) const;

// Data used to store which collision pair (bodies that are touching) need

// Collision events sent. When a new pair of touching bodies are

// detected, they are added to m_previousTickCollisionPairs and an event

// is sent. When the pair is no longer detected, they are removed

// and another event is sent.

typedef std::pair< btRigidBody const *, btRigidBody const * > CollisionPair;

typedef std::set< CollisionPair > CollisionPairs;

CollisionPairs m_previousTickCollisionPairs;

// helpers for sending events relating to collision pairs

void SendCollisionPairAddEvent(btPersistentManifold const * manifold,

btRigidBody const * body0, btRigidBody const * body1);

void SendCollisionPairRemoveEvent(btRigidBody const * body0,

btRigidBody const * body1);

// common functionality used by VAddSphere, VAddBox, etc

void AddShape(StrongActorPtr pGameActor, btCollisionShape* shape,

float mass, const std::string& physicsMaterial);

// helper for cleaning up objects

void RemoveCollisionObject(btCollisionObject * removeMe);

// callback from bullet for each physics time step. set in VInitialize

static void BulletInternalTickCallback(

btDynamicsWorld * const world, btScalar const timeStep);

public:

BulletPhysics() { };

virtual ~BulletPhysics();

// Initialization and Maintenance of the Physics World

virtual bool VInitialize() override;

virtual void VSyncVisibleScene() override;

virtual void VOnUpdate(float deltaSeconds) override;

// Initialization of Physics Objects

virtual void VAddSphere(float radius, WeakActorPtr pGameActor,

Integrating a Physics SDK 591

const std::string& densityStr,

const std::string& physicsMaterial) override;

virtual void VAddBox(const Vec3& dimensions, WeakActorPtr pGameActor,

const std::string& densityStr,

const std::string& physicsMaterial) override;

virtual void VRemoveActor(ActorId id) override;

// Debugging

virtual void VRenderDiagnostics()override;

// Physics world modifiers

virtual void VCreateTrigger(WeakActorPtr gameActor, const Vec3 &pos,

const float dim) override;

virtual void VApplyForce(const Vec3 &dir, float newtons,

ActorId aid) override;

virtual void VApplyTorque(const Vec3 &dir, float newtons,

ActorId aid) override;

virtual bool VKinematicMove(const Mat4x4 &mat, ActorId aid) override;

};

You’ll notice our new class wraps the Bullet data structures for the SDK and a set of
components, including a world, a collision dispatcher, a constraint solver, and other
components of the Bullet physics system. They are created separately, so the user
(that’s you!) can easily customize the various behaviors of Bullet.

For our example, we’ll use the most common default components that Bullet provides:
btBroadphaseInterface, btCollisionDispatcher, btConstraintSolver,
and btDefaultCollisionConfiguration. I’ll describe these components in more
detail in a second.

You’ll also notice when you look at the code that our physics system uses a physics
system-specific vector class, btvec, and a transform matrix, btTransform. It is
quite common for a physics system to have its own data structures or classes for
common fundamental mathematics: vectors, matrices, and so on. This can be some-
what annoying, but it is a small price to pay for not having to write your own physics
system from scratch.

The next data structures hold the density and materials tables, which are read in from
XML during initialization. This is a great way to let your physics materials be data
driven. These data structures are accompanied by some helper functions, Lookup-
SpecificGravity() and LookupMaterialData(), which return data for match-
ing a name with the floating-point density or the restitution and friction, respectively.

Two std::map structures come next. The game engine refers to actors by their ID,
which needs to be mapped to the core Bullet representation of an actor, the

592 Chapter 17 n Collision and Simple Physics

btRigidBody. As these objects are manipulated internally by the physics system,
the second map provides an easy way to map events like collisions back on to the
actors.

Components of the Bullet SDK

The most important component managed by Bullet is the btDynamicsWorld object.
This is the parent object that manages the other components and provides the main
interface point to Bullet’s internal physics system. When btDynamicsWorld’s con-
structor is called, we pass in pointers to the other components in order to specify our
desired behavior.

One of those components is a subclass of btBroadphaseInterface. This class
manages the “broad phase” of collision detection, which is the first test. This phase
is fast but inaccurate, using simple axis-aligned bounding boxes as placeholders for
actual collision geometry. This implementation uses Bullet’s btDbvtBroadphase,
which has good default behavior. Once a possible collision has passed this test, it is
sent to the “narrow phase,” managed by btCollisionDispatcher.

The btCollisionDispatcher handles very precise collision detection between
objects in the system. Detecting collisions this way can be very slow, however, so
it only tests collisions that have passed the broad phase. Once collisions are
detected, this object also dispatches the collision pairs to the world to be handled,
hence the name.

Next, let’s look at the subclass of btConstraintSolver. In Bullet, a “constraint” is
a spring, hinge, or motor—basically anything that restricts an object’s freedom of
motion. You can have hinge constraints on a door, slider constraints like a piston,
or basically anything you can think of. The btSequentialImpulseConstraint-

Solver manages these. Unfortunately, the scope of our physics system is too narrow
to really demonstrate constraints, but trust me, they’re cool.

The final initialization component is btDefaultCollisionConfiguration. This
object manages some aspects of memory usage for the physics system. We’re using
the default configuration because we don’t want to do anything fancy with memory
allocation. A good exercise for you would be to implement your own pooled memory
manager and have Bullet use it. If you have a free weekend, of course.

The last object created here is BulletDebugDrawer, which actually handles debug-
ging tasks for your game engine. After all, a physics system can’t draw a line with a
renderer it knows nothing about, so you get to help it along. The same goes with
error reporting. Your game should be able to define how it wants to handle physics
system errors or informational messages.

Integrating a Physics SDK 593

For more information about any of these classes, consult the Bullet documentation or,
better yet, read the Bullet source code and examples. Open source is great that way!

Initialization

Let’s take a look at the implementation of the IGamePhysics interface, Bullet-
Physics. The init function for this implementation class runs through the follow-
ing tasks:

n Initializes the btDynamicsWorld and components’ members.

n Creates the internal tick callback, which is used to send collision events.

n Sets debug rendering parameters.

bool BulletPhysics::VInitialize()

{

LoadXml();

// this controls how Bullet does internal memory management

m_collisionConfiguration = GCC_NEW(btDefaultCollisionConfiguration();

// manages how Bullet detects precise collisions between objects

m_dispatcher =

GCC_NEW btCollisionDispatcher(m_collisionConfiguration.get());

// Bullet uses this to quickly (imprecisely) detect collisions between

// objects. Once a possible collision passes the broad phase, it will be

// passed to the slower but more precise narrow-phase collision detection

// (btCollisionDispatcher).

m_broadphase = GCC_NEW btDbvtBroadphase();

// Manages constraints which apply forces to the physics simulation.

// Used for e.g. springs, motors. We don’t use any constraints right

// now.

m_solver = GCC_NEW btSequentialImpulseConstraintSolver;

// This is the main Bullet interface point. Pass in all these components

// to customize its behavior.

m_dynamicsWorld = GCC_NEW

btDiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver,

m_collisionConfiguration);

// also set up the functionality for debug drawing

m_debugDrawer = GCC_NEW BulletDebugDrawer;

if(!m_collisionConfiguration jj !m_dispatcher jj !m_broadphase jj

!m_solver jj !m_dynamicsWorld jj !m_debugDrawer)

594 Chapter 17 n Collision and Simple Physics

{

GCC_ERROR(“BulletPhysics::VInitialize failed!”);

return false;

}

m_dynamicsWorld->setDebugDrawer(m_debugDrawer);

// and set the internal tick callback to our own method

// “BulletInternalTickCallback”

m_dynamicsWorld->setInternalTickCallback(BulletInternalTickCallback);

m_dynamicsWorld->setWorldUserInfo(this);

return true;

}

This method looks more complicated than it is. This function loads the XML file
holding the materials and density tables, and then it creates the components of the
physics system and passes them into the constructor of the physics world. Bullet
has a wide array of initialization parameters, as you might expect, so all this code is
setting up what components Bullet will use.

One important piece of code in the initialize function turns on a few rendering diag-
nostics by setting up the BulletDebugDrawer, which has the capability of visibly
rendering collision shapes, contact points, and contact normals. Depending on what
your problem is, you might want other things, but this is a good basic set. If you were
really smart, you’d create a little command line debug console in your game and be
able to turn on/off different physics debug information at a whim. That’s exactly
what we had for Thief: Deadly Shadows, and it saved our butts on more than one
occasion. You don’t want to draw them all because there’s too much information.
In fact, you might even want to filter the information for particular objects, which
is something you can do in the debug renderer class you write yourself.

Shutdown

Shutting down the physics system is pretty easy. Clean up all of the btRigidBody

objects that you’ve allocated and added to the physics system and then delete the
physics system components.

BulletPhysics::~BulletPhysics()

{

// delete any physics objects which are still in the world

// iterate backwards because removing the last object doesn’t affect the

// other objects stored in a vector-type array

Integrating a Physics SDK 595

for (int i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0; --i)

{

btCollisionObject * const obj

= m_dynamicsWorld->getCollisionObjectArray()[i];

RemoveCollisionObject(obj);

}

m_actorBodies.clear();

SAFE_DELETE(m_debugDrawer);

SAFE_DELETE(m_dynamicsWorld);

SAFE_DELETE(m_solver);

SAFE_DELETE(m_broadphase);

SAFE_DELETE(m_dispatcher);

SAFE_DELETE(m_collisionConfiguration);

}

Updating the Physics System

Inside BaseGameLogic::VOnUpdate(), you’ll call two methods of this physics
class to update the physics simulation and sync the visible scene to the results of
any movement under the control of the physics system.

if (m_pPhysics)

{

m_pPhysics->VOnUpdate(deltaMilliseconds);

m_pPhysics->VSyncVisibleScene();

}

Let’s look at the guts of these methods:

void BulletPhysics::VOnUpdate(float const deltaSeconds)

{

// Bullet uses an internal fixed timestep (default 1/60th of a second)

// We pass in 4 as a max number of sub steps. Bullet will run the

// simulation in increments of the fixed timestep until “deltaSeconds”

// amount of time has passed, but will only run a maximum of 4 steps

// this way.

m_dynamicsWorld->stepSimulation(deltaSeconds, 4);

}

Simple, eh? The important thing to know here is that Bullet’s stepSimulation()
function makes sure that even if your game is running slower than 60Hz, the physics
system is always ticked at a maximum time delay of 1/60th of a second. This is
important because a large time delay can create instability in the simulation. Physics

596 Chapter 17 n Collision and Simple Physics

systems generally don’t deal well with deep interpenetrations of objects, which hap-
pens a lot when objects move a large distance in between simulation steps.

The Incredible Bouncing Camera

Physics systems are horribly sensitive to frame rate. When I was working on
Thief: Deadly Shadows, I had to program a simple spring attached to the
camera system, which created a smooth movement of the camera under lots
of game situations, for example, when the main character jumped off a wall.
On my first attempt, I noticed that the camera could easily bounce out of
control, as if the spring were getting more and more energy until the camera
system crashed. After a little debugging, I noticed the system crashed more
easily in areas with a low frame rate. The problem was that my spring
system wasn’t being ticked at a high enough frame rate, say 60Hz, and the
spring calculation would accumulate energy. The solution was pretty easy. I
just called the spring calculation in a tight loop, with a delay of no more than
1/60th of a second, and everything was fine.

The trade-off is that ticking your physics simulation multiple times in one game loop
is expensive, so try your best to keep enough CPU budget around for everything: ren-
dering, AI, sound decompression, resource streaming, and physics.

Another important note is that Bullet automatically calls an “internal callback” once every
internal time step. This callback is specified by the user. For our purposes, let’s set it as
BulletInternalTickCallback. This function handles dispatching collision events.

After the physics system has updated itself, you can grab the results and send them to
your game’s data structures. Any decent physics system lets you set a user data mem-
ber of its internal physics objects. Doing this step is critical to getting the new posi-
tion and orientation data to your game. First, take a look at a small helper class called
ActorMotionState:

struct ActorMotionState : public btMotionState

{

Mat4x4 m_worldToPositionTransform;

ActorMotionState(Mat4x4 const & startingTransform)

: m_worldToPositionTransform(startingTransform) { }

// btMotionState interface: Bullet calls these

virtual void getWorldTransform(btTransform& worldTrans) const

{ worldTrans = Mat4x4_to_btTransform(m_worldToPositionTransform); }

virtual void setWorldTransform(const btTransform& worldTrans)

{ m_worldToPositionTransform = btTransform_to_Mat4x4(worldTrans); }

};

Integrating a Physics SDK 597

This class makes it easy to convert the transform matrices returned from Bullet to the
one used in the game engine, Mat4x4. The conversion functions themselves aren’t all
that exciting, so you can look them up in the GameCode4 source code. Now you can
take a look at how VSyncVisibleScene() works:

void BulletPhysics::VSyncVisibleScene()

{

// check all the existing actor’s bodies for changes.

// If there is a change, send the appropriate event for the game system.

for (ActorIDToBulletRigidBodyMap::const_iterator it =

m_actorBodies.begin();

it != m_actorBodies.end();

++it)

{

ActorId const id = it->first;

// Get the ActorMotionState. This object is updated by Bullet.

// It’s safe to cast the btMotionState to ActorMotionState,

// because all the bodies in m_actorBodies were created through

// AddShape()

ActorMotionState const * const actorMotionState =

static_cast<ActorMotionState*>

(it->second->getMotionState());

GCC_ASSERT(actorMotionState);

StrongActorPtr pGameActor =

MakeStrongPtr(g_pApp->m_pGame->VGetActor(id));

if (pGameActor && actorMotionState)

{

shared_ptr<TransformComponent> pTransformComponent =

MakeStrongPtr(pGameActor->GetComponent<TransformComponent>

(TransformComponent::g_Name));

if (pTransformComponent)

{

if (pTransformComponent->GetTransform() !=

actorMotionState->m_worldToPositionTransform)

{

// Bullet has moved the actor’s physics object.

// Sync the transform and inform the game an actor has moved

pTransformComponent->SetTransform(

actorMotionState->m_worldToPositionTransform);

IEventManager::Get()->VQueueEvent(

GCC_NEW EvtData_Move_Actor(id,

actorMotionState->m_worldToPositionTransform));

598 Chapter 17 n Collision and Simple Physics

}

}

}

}

}

In Bullet, each physics actor has a btMotionState that manages how the physics sys-
tem communicates with the game engine. As Bullet processes the physics world, it
updates the position and orientation stored in each btMotionState for each actor.
The class ActorMotionState converts the Bullet’s transform matrices to Mat4x4.

So once you get to VSyncVisibleScene, you loop through all the motion states.
Each actor with a motion state should also have a TransformComponent, which
stores just one data member, a Mat4x4, representing an actor’s position and orientation.
For each motion state that has different data from the TransformComponent, the
physics system overwrites the actor’s transform and sends an event to any game system
that cares about the object moving.

You might wonder if this breaks the game view and game logic architecture. It does
not, and here’s why. When you hand an object over to the physics system, it becomes
the de facto authority on the movements of that actor. Other subsystems like the ren-
derer simply need to know that the actor has moved.

Creating a Simple Physics Object

Bullet represents all nondynamic physical bodies with the btRigidBody class. Let’s take
a look at how you’d create a sphere object, given a radius and a related game actor:

void BulletPhysics::VAddSphere(float const radius, WeakActorPtr pGameActor,

const std::string& densityStr, const std::string& physicsMaterial)

{

StrongActorPtr pStrongActor = MakeStrongPtr(pGameActor);

if (!pStrongActor)

return;

// create the collision body, which specifies the shape of the object

btSphereShape * const collisionShape = new btSphereShape(radius);

// calculate absolute mass from specificGravity

float specificGravity = LookupSpecificGravity(densityStr);

const float volume = (4.f / 3.f) * GCC_PI * radius * radius * radius;

const btScalar mass = volume * specificGravity;

AddShape(pStrongActor, collisionShape, mass, physicsMaterial);

}

Integrating a Physics SDK 599

void BulletPhysics::AddShape(StrongActorPtr pGameActor,

btCollisionShape* shape, float mass, const std::string& physicsMaterial)

{

GCC_ASSERT(pGameActor);

ActorId actorID = pGameActor->GetId();

GCC_ASSERT(m_actorIdToRigidBody.find(actorID) ==

m_actorIdToRigidBody.end() && “Actor with more than one physics body?”);

// lookup the material

MaterialData material(LookupMaterialData(physicsMaterial));

// localInertia defines how the object’s mass is distributed

btVector3 localInertia(0.f, 0.f, 0.f);

if (mass > 0.f)

shape->calculateLocalInertia(mass, localInertia);

Mat4x4 transform = Mat4x4::g_Identity;
shared_ptr<TransformComponent> pTransformComponent =

MakeStrongPtr(pGameActor->GetComponent<TransformComponent>

(TransformComponent::g_Name));

GCC_ASSERT(pTransformComponent);

if (!pTransformComponent)

// Physics can’t work on an actor that doesn’t have a TransformComponent!

return;

transform = pTransformComponent->GetTransform();

// set the initial transform of the body from the actor

ActorMotionState * const myMotionState =

GCC_NEW ActorMotionState(transform);

btRigidBody::btRigidBodyConstructionInfo rbInfo(

mass, myMotionState, shape, localInertia);

// set up the material properties

rbInfo.m_restitution = material.m_restitution;

rbInfo.m_friction = material.m_friction;

btRigidBody * const body = new btRigidBody(rbInfo);

m_dynamicsWorld->addRigidBody(body);

// add it to the collection to be checked for changes in VSyncVisibleScene

m_actorIdToRigidBody[actorID] = body;

m_rigidBodyToActorId[body] = actorID;

}

600 Chapter 17 n Collision and Simple Physics

Most physics systems have easy ways to create basic shapes like spheres, boxes, and
capsules. In Bullet, spheres are represented by the btSphereShape class. Creating
an object in the physics system is as simple as creating the object’s shape and then
passing that shape to a new btRigidBody.

You’ll notice that we’ve separated out the creation of the shape in VAddSphere()

and the creation of the body in AddShape(). This is good practice because you can
then reuse the code in AddShape() when you create other types of objects.

Although we don’t do it in this example, physics actors can be described with multi-
ple base shapes, which is a great feature. You could describe a hammer quite accu-
rately with two bodies, each with different sizes, shapes, and properties. In this case,
we only have the one sphere shape. The mass is calculated based on the volume and
density of the material, so the user can customize whether he wants an object that is
dense like iron or light like styrofoam.

Next comes the position, which is sucked right out of the actor’s TransformComponent.
You pass this in to a new ActorMotionState, which tracks any actor being moved
by the physics engine. You pass this motion state along with other configuration info
into the constructor for the new btRigidBody and add the btRigidBody object to
the physics system.

Creating a Convex Mesh

Spheres are nice, but they aren’t all that interesting. You’ll probably want to create an
object that has a more interesting shape, and one way to do that is to use a convex
mesh. This is an object that has an arbitrary shape, with one restriction: it can’t have
any holes or empty space in between parts of the same object. So a potato is a convex
mesh, but a donut is not.

Creating them in Bullet is pretty easy:

void BulletPhysics::VAddPointCloud(Vec3 *verts,

int numPoints,

WeakActorPtr *pGameActor,

const std::string densityStr,

const std::string physicsMaterial)

{

StrongActorPtr pStrongActor = MakeStrongPtr(pGameActor);

if (!pStrongActor)

return;

btConvexHullShape * const shape = new btConvexHullShape();

Integrating a Physics SDK 601

// add the points to the shape one at a time

for (int ii=0; ii<numPoints; ++ii)

shape->addPoint(Vec3_to_btVector3(verts[ii]));

// approximate absolute mass using bounding box

btVector3 aabbMin(0,0,0), aabbMax(0,0,0);

shape->getAabb(btTransform::getIdentity(), aabbMin, aabbMax);

const btVector3 aabbExtents = aabbMax - aabbMin;

const float volume = aabbExtents.x() * aabbExtents.y() * aabbExtents.z();

const btScalar mass = volume * specificGravity;

AddShape(pStrongActor, shape, mass, physicsMaterial);

}

Notice we’re using our friend AddShape() to avoid duplicating work.

What this does is add the vertices of the convex mesh one by one, and Bullet will
create a shrink-wrap of polygons that represents the minimum volume object that
contains all the points. It will even reorder the polygons from your rendering repre-
sentation, so it might turn out more efficient for the collision system’s algorithms.
That’s cool!

The aabbMin and aabbMax are the extents of the shape’s axis-aligned bounding
box. It isn’t a great measure of actual volume by any stretch, but it’s better than
nothing, and it’s a good thing to know how to get these values from Bullet if you
need them.

Creating a Trigger

Another useful object is the trigger. A trigger is something that gives you a callback if
objects enter or leave it, which can be very useful for many things. For example, you
can spawn some AIs when the player moves through a certain doorway.

Bullet triggers are the same as other objects, except they have no mass, and they don’t
collide with anything. Not colliding means that objects will move straight through
them as if they’re not even there. The only thing they need to do is generate an
event for the game system when something touches them.

void BulletPhysics::VCreateTrigger(WeakActorPtr pGameActor,

const Vec3 &pos, const float dim)

{

StrongActorPtr pStrongActor = MakeStrongPtr(pGameActor);

if (!pStrongActor)

return;

602 Chapter 17 n Collision and Simple Physics

// create the collision body, which specifies the shape of the object

btBoxShape * const boxShape

= new btBoxShape(Vec3_to_btVector3(Vec3(dim,dim,dim)));

// triggers are immovable. 0 mass signals this to Bullet.

btScalar const mass = 0;

// set the initial position of the body from the actor

Mat4x4 triggerTrans = Mat4x4::g_Identity;

triggerTrans.SetPosition(pos);

ActorMotionState * const myMotionState

= GCC_NEW ActorMotionState(triggerTrans);

btRigidBody::btRigidBodyConstructionInfo

rbInfo(mass, myMotionState, boxShape, btVector3(0,0,0));

btRigidBody * const body = new btRigidBody(rbInfo);

m_dynamicsWorld->addRigidBody(body);

// a trigger is just a box that doesn’t collide with anything. That’s

// what “CF_NO_CONTACT_RESPONSE” indicates.

body->setCollisionFlags(

body->getCollisionFlags() j btRigidBody::CF_NO_CONTACT_RESPONSE);

m_actorIdToRigidBody[pStrongActor->GetId()] = body;

m_rigidBodyToActorId[body] = pStrongActor->GetId();

}

Of course, as long as the mesh components are convex, you can create a complicated
trigger zone on virtually any shape at all. Zones like that can be quite useful if you
want something to fire the trigger when it is in exactly the right place and yet not
intruding on other spaces, perhaps behind walls.

Applying Force and Torque

So far, the only force that would be represented in the physics simulation is gravity,
which Bullet sets for you automatically to Earth-gravity, 9.8m/s2, in the direction of
negative Y, which is exactly how our game world is set up. Getting anything to move
requires the application of a linear force, or a torque. Here are the two methods for
doing that:

void BulletPhysics::VApplyForce(const Vec3 &dir, float newtons, ActorId aid)

{

btRigidBody * pRigidBody = FindBulletRigidBody(actorId);

GCC_ASSERT(pRigidBody);

Integrating a Physics SDK 603

if (!pRidigBody)

return;

btVector3 const force(dir.x * newtons,

dir.y * newtons,

dir.z * newtons);

body->applyCentralImpulse(force);

}

void BulletPhysics::VApplyTorque(const Vec3 &dir, float magnitude, ActorId aid)

{

btRigidBody * pRigidBody = FindBulletRigidBody(actorId);

GCC_ASSERT(pRigidBody);

if (!pRidigBody)

return;

btVector3 const torque(dir.x * magnitude,

dir.y * magnitude,

dir.z * magnitude);

body->applyTorqueImpulse(torque);

}

These are both applied as instantaneous force impulses, essentially like smacking
something with a golf club or hitting a wrench with a hammer. Sometimes you also
might like to tell Bullet to stop an actor or move it with a specific velocity.

void BulletPhysics::VStopActor(ActorId actorId)

{

VSetVelocity(actorId, Vec3(0.f, 0.f, 0.f));

}

void BulletPhysics::VSetVelocity(ActorId actorId, const Vec3& vel)

{

btRigidBody * pRigidBody = FindBulletRigidBody(actorId);

GCC_ASSERT(pRigidBody);

if (!pRidigBody)

return;

btVector3 btVel = Vec3_to_btVector3(vel);

pRigidBody->setLinearVelocity(btVel);

}

The Physics Debug Renderer

One other important method of the IPhysics interface is VRenderDiagnostics:

void BulletPhysics::VRenderDiagnostics()

{

604 Chapter 17 n Collision and Simple Physics

m_dynamicsWorld->debugDrawWorld();

}

This method obviously doesn’t do any of the rendering. Part of the BaseGame-

Physics class is a member that does the heavy lifting. Bullet lets you inherit from
one of their base classes and implement your own draw routines.

A physics system can’t know or care how you render your visible geometry. It could
be a text display, and it wouldn’t know any different except for all the extra CPU
time it would get! You simply can’t debug physics problems looking at raw data, so
the easiest debugging technique for physics problems is to draw physics data as visi-
ble geometry. Collision hulls show up as wireframes around your objects. Contact
points and normals are drawn as lines, and forces can be drawn as lines of different
lengths in the direction of the force. Bullet provides an easy way for you to do this.
You simply inherit from the btIDebugDraw class, overload a few methods, and
you’ll see everything you need to debug physics:

class BulletDebugDrawer : public btIDebugDraw

{

public:

// btIDebugDraw interface

virtual void drawLine(const btVector3& from,

const btVector3& to,

const btVector3& color);

virtual void drawContactPoint(const btVector3& PointOnB,

const btVector3& normalOnB,

btScalar distance,

int lifeTime,

const btVector3& color);

virtual void reportErrorWarning(const char* warningString);

virtual void draw3dText(const btVector3& location,

const char* textString);

virtual void setDebugMode(int debugMode);

virtual int getDebugMode() const;

};

Pretty simple. You just overload the provided methods to render on-screen, and
there’s your debug info! There’s an incredible amount of useful stuff you can do
with this data, including histories, averages, and statistics of all sorts. But for this
example, you just draw on-screen in the simplest manner possible.

The code for drawLine() is in the GameCode4 source code in Dev\Source\GCC4\
Physics\PhysicsDebugDrawer.cpp.

Integrating a Physics SDK 605

Don’t Count Memory Used Only for Debugging

This tip might be a little off the subject, but the last paragraph reminded me of
it, so here goes. Whenever you have memory allocated for diagnostic or
debugging purposes, make sure that you don’t count it in your game’s
memory budget! You can send the testers into a panic if they see the
memory budget skyrocket, and the only reason it did so was that you
allocated a couple of megabytes for some debugging routine.

Another simple yet interesting method is reportErrorWarning:

void BulletDebugDrawer::reportErrorWarning(const char* warningString)

{

OutputDebugString(warningString);

}

The reason you want to send errors and warnings to the debug window is pretty sim-
ple; there is a wealth of information that can help you diagnose problems sitting in
the error stream. You must trap it yourself and send it somewhere useful, such as the
output window in the debugger, a log file, or preferably both. While writing this
chapter, I used this very code to figure out that I was sending in incorrect data
while trying to create a collision hull for a test object. If that’s not good advertising,
I don’t know what is.

This version merely forwards the error message to the debug output stream. It’s a
good start, but there’s a whole world of things you can do with this information,
including popping up a dialog box, recording the data in a database, emailing a mes-
sage to your physics programmer, and so on.

Receiving Collision Events

Moving objects around realistically provides a great visual look to your game, but
when objects collide and interact, your game gets really interesting. A collision
event can be defined as when two objects change their contacts either by colliding
or separating. In Bullet, generating these events is a little tricky, but you can do it
by using the internal tick callback. This callback is set up in VInitialize(), and
Bullet calls it once every internal time step. It’s a great place to put any work that
needs to happen continuously within the physics system.

void BulletPhysics::BulletInternalTickCallback(

btDynamicsWorld * const world, btScalar const timeStep)

{

GCC_ASSERT(world);

606 Chapter 17 n Collision and Simple Physics

GCC_ASSERT(world->getWorldUserInfo());

BulletPhysics * const bulletPhysics =

static_cast<BulletPhysics*>(world->getWorldUserInfo());

CollisionPairs currentTickCollisionPairs;

// look at all existing contacts

btDispatcher * const dispatcher = world->getDispatcher();

for (int manifoldIdx=0;

manifoldIdx<dispatcher->getNumManifolds(); ++manifoldIdx)

{

// get the “manifold”, or data corresponding to a contact point

// between two physics objects

btPersistentManifold const * const manifold =

dispatcher->getManifoldByIndexInternal(manifoldIdx);

GCC_ASSERT(manifold);

if (!manifold)

continue;

// Get the two bodies used in the manifold. Bullet stores them as void*,

// so we must cast them back to btRigidBody*s. Manipulating void*

// pointers is usually a bad idea, but we know this

// is safe because we only ever add btRigidBodys to the simulation

btRigidBody const * const body0 =

static_cast<btRigidBody const *>(manifold->getBody0());

btRigidBody const * const body1 =

static_cast<btRigidBody const *>(manifold->getBody1());

// always create the pair in a predictable order

const bool swapped = body0 > body1;

btRigidBody const * const sortedBodyA = swapped ? body1 : body0;

btRigidBody const * const sortedBodyB = swapped ? body0 : body1;

CollisionPair const thisPair =

std::make_pair(sortedBodyA, sortedBodyB);

currentTickCollisionPairs.insert(thisPair);

if (bulletPhysics->m_previousTickCollisionPairs.find(thisPair) ==

bulletPhysics->m_previousTickCollisionPairs.end())

{

// this is a new contact, which wasn’t in our list before.

// send an event to the game.

bulletPhysics->SendCollisionPairAddEvent(manifold, body0, body1);

}

}

Integrating a Physics SDK 607

CollisionPairs removedCollisionPairs;

// Use the STL set difference function to find collision pairs that

// existed during the previous tick but not any more

std::set_difference(bulletPhysics->m_previousTickCollisionPairs.begin(),

bulletPhysics->m_previousTickCollisionPairs.end(),

currentTickCollisionPairs.begin(), currentTickCollisionPairs.end(),

std::inserter(removedCollisionPairs, removedCollisionPairs.begin()));

for (CollisionPairs::const_iterator it = removedCollisionPairs.begin(),

end = removedCollisionPairs.end(); it != end; ++it)

{

btRigidBody const * const body0 = it->first;

btRigidBody const * const body1 = it->second;

bulletPhysics->SendCollisionPairRemoveEvent(body0, body1);

}

bulletPhysics->m_previousTickCollisionPairs = currentTickCollisionPairs;

}

This code does three things: First it collects all of the collision pairs from the physics
system. A collision pair is any two objects whose physics shapes overlap in the phys-
ics world. So a box sitting on the floor is a collision pair, just like an arrow passing
through a tent is a collision pair. The code finds all the pairs of objects that are
touching each other during this tick.

Next, it compares the collision pairs with the previous tick’s collision pairs. If there
are any new ones, then an event is sent indicating that the two objects came into
contact with one another. If there are any pairs that existed in the previous tick but
no longer exist, an event is sent to tell the game system that the objects separated
from each other. Both of these events are quite useful in a game.

The great thing about using an event system for handling collision and separation is
that the physics system doesn’t have to interpret the event and figure out what to do
with it. That should be up to the other game subsystems. The sound system, for
example, might listen for collisions and play sounds based on the force and type of
object. You might have a damage manager that controls things like hit point reduc-
tion or spawning a destruction event. Either way, the physics system doesn’t have to
know or care about all these other things in your game.

The final thing that this internal tick callback does is store the list of collision pairs.
This saves them for you so you can compare them during the next tick.

608 Chapter 17 n Collision and Simple Physics

A Final Word on Integrating Physics SDKs

Throughout this chapter, I’ve described physics in general and one SDK in particular
from Bullet (www.bulletphysics.com). There are certainly others:

n Havok (www.havok.com) An extremely fully featured commercially licensable
physics engine, but expensive and likely out of reach for small game companies
or individuals.

n PhysX (http://www.geforce.com/Hardware/Technologies/physx) A commer-
cial grade physics engine owned by NVidia and optimized for use with GPU-
based physics. A software driver is also available.

n Newton Game Dynamics (http://physicsengine.com) A commercially licens-
able game engine within reach of budget games.

n Open Dynamics Engine (www.ode.org) An open source engine that anyone
can use for free.

n Tokamak Physics Engine (www.tokamakphysics.com) Older versions are free,
and newer versions are commercially licensable and within reach of budget games.

The SDKs are developed so rapidly that an exhaustive review of each of them in this
book would quickly become stale. I suggest you go to their websites, check out the
developer forums and licensing terms, and do a little surfing for others. New ones
come out all the time.

Whatever you do, don’t think for a minute that you can plug in one of these physics
systems in a day or two and completely change the feel of your game. Integrating this
technology is much more than making it link and getting collision events sent
around. You have to write a lot of code to have your game react to what the physics
system does to your dynamic objects and the events it detects. That, my young Feyn-
man, is an amazing amount of work, and you shouldn’t underestimate it.

Super Bouncy Barrels

I think I mentioned before that Thief: Deadly Shadows used the Havok Physics
SDK. Thief’s version of Unreal, Warfare 2.5, didn’t really have a good dynamics
simulation, and Havok seemed to be pretty cool. For the longest time, the
correct impulses created by kinematic animation, such as characters bumping
into things, were drastically exaggerated. These huge impulses would send
huge barrels and crates spinning across the map just by touching them, and
while it was funny at first, after a few weeks everyone just wanted things to
work. The problem was that the two physics programmers were so busy wiring
everything else that they postponed this issue to focus on bigger problems.
Until, of course, an Eidos executive saw a barrel launch into orbit during a

Integrating a Physics SDK 609

www.bulletphysics.com
www.havok.com
http://www.geforce.com/Hardware/Technologies/physx
http://physicsengine.com
www.ode.org
www.tokamakphysics.com

demo and simply demanded this horrible problem be fixed immediately. There was just too much work
and too few people doing it.

But Wait, There’s So Much More

I have to admit to you right now that I changed my major in college from computer
science, science option to the business option because I failed a physics test. Granted,
I had totally forgotten that the test was going to happen, and had I studied for it, I
probably would have stuck with it.

I suggest you have a little more patience than I do. This stuff is devilishly difficult
and is probably one of the most challenging areas of game programming. It tricks
you by making a 20-minute task to get a sphere bouncing around on a checkerboard
floor seem easy and then forces you into six months of solid hell getting elevators to
lift objects properly.

Either way, collision, physics, and dynamics are in our games to stay. The challenge
is making a great physics simulation in your game translate directly to the fun factor.
That’s not as easy as you think, but I have faith, and I can’t wait to see where this
goes.

610 Chapter 17 n Collision and Simple Physics

Chapter 18

by David “Rez” Graham

An Introduction to Game AI

Artificial intelligence (or simply “AI”) is our attempt to make computers think. While
we’ve gotten rather good at mimicking certain behaviors, especially in game develop-
ment where players are willing to suspend disbelief, we have yet to come anywhere
close to truly emulating the human brain. I have no doubt that we will one day
achieve this feat and very much hope that I’m alive to see it. I often wonder what
will become of these artificial creations of ours and how they will be treated. Think
about it—an artificial brain with the capability to think and reason as we do. Will it
also be able to feel? Dream? Love? Hate? If so, what does that say about our own
consciousness?

Artificial intelligence is a very broad subject that covers a number of real-world appli-
cations. Many of them are unrelated to games. A patient may call into a hospital and
speak with an automated representative controlled by complex speech recognition
software and ask about test results. These tests may have been performed by an
expert system written and trained to deal with her particular illness. The fuel she
puts into her car on the way to pick up her prescription is a mixture that’s refined
and processed by complex analysis software. The opponent she curses under her
breath in the video game she plays on her handheld in the waiting room is really
just a set of simple control states with transitional branches between those states,
but it still manages to outmaneuver her troops.

Game AI is in a class all its own. AI programmers have a unique set of problems
because they have to make the game “fun” while not overtaxing the CPU. When I

611

go to the AI roundtables at the Game Developer’s Conference, I’m continually
intrigued by the dichotomy between experienced video game AI developers and
developers coming from academia or other fields of AI. Academics tend to want to
create as intelligent an agent as possible, whereas game developers often just want the
player to have fun. Game AI is not about trying to make something smart; it’s about
making something look smart while still being able to be beaten, though not too eas-
ily. That’s what makes the game fun, and the key to game AI is fun through illusion,
not true intelligence. If you have a military shooter game, who cares whether or not
the enemies really work together as a team as long as the player believes they do? As
AI programmers, we’re the ultimate illusionists. And we have to do it all within a
tiny fraction of CPU time.

AI Techniques

AI programming is one part science and two parts art. I’ve spent most of my career
working on AI for games. Most of the time in AI development is spent trying to bal-
ance everything elegantly so it all behaves in a cohesive fashion. For example, at what
point does a sim get hungry? When should sims start looking for food? What if they
really have to go to the bathroom, or they’re about to pass out? Should food take
priority, and if so, how hungry does a sim have to be before it will get food and
risk passing out? RPGs, shooters, strategy games, and any other game with a signifi-
cant AI presence will need to balance factors appropriate to that title.

AI often works best when you can exploit emergent behavior. In the Sims example,
there are a number of competing systems all weighing against each other to make the
final decision. There’s no if statement saying that if hunger is less than 20, start
finding food. Instead, the sim weighs its desire for food against its desire for every-
thing else and chooses an action based on all of these things. This gives us the emer-
gent behavior of sim prioritizing food over other things. In the game F.E.A.R., it often
appears that the soldiers are working together, but there is absolutely no code to do
this directly. It’s mostly just the clever use of assets and the emergent behavior of the
group from the combined behaviors of the individuals. We’ll talk more about these
concepts later in this chapter.

Hard-Coded AI

In the early days of game programming, AI was often completely hard coded. Let’s
look at a trivial example: that of a light timer. Suppose you want to build a vacation
timer for your lights so that they come on at a specified time and turn off at another
time. The implementation might look something like this:

612 Chapter 18 n An Introduction to Game AI

// Assume this global function sends the status message to actually turn the

// lights on and off.

void SetLightStatus(bool status);

class LightTimer

{

float m_startLightsOn, m_endLightsOn; // a float representing the hour

// e.g., 13.5 == 1:30pm

bool m_lightsOn;

public:

explicit LightTimer(float startTime, float endTime) :

m_startLightsOn(startTime),

m_endLightsOn(endTime),

m_lightsOn(false)

{

}

// assume this is called periodically

void UpdateLights(float currentTime)

{

// the end time doesn’t wrap to the beginning of the day

if (m_endLightsOn >= m_startLightsOn)

{

if (currentTime >= m_startLightsOn && currentTime < m_endLightsOn)

TurnOnLights();

else

TurnOffLights();

}

else // end time wraps to beginning; e.g., start at 7pm and end at 4am

{

if (currentTime >= m_startLightsOn jj currentTime < m_endLightsOn)

TurnOnLights();

else

TurnOffLights();

}

}

private:

void TurnOnLights(void)

{

if (!m_lightsOn)

{

SetLightStatus(true);

m_lightsOn = true;

AI Techniques 613

}

}

void TurnOffLights(void)

{

if (m_lightsOn)

{

SetLightStatus(false);

m_lightsOn = false;

}

}

};

This class is pretty simple. The update function checks to see if the time passed is
within the start and end times and turns on the lights if necessary. It also turns
them off when outside of that time zone. Since time is cyclical, the function takes
into account whether or not the end time has wrapped around back to the
beginning.

This is a good example of hard-coded AI logic. The algorithm is 100% deterministic
and will do its job exactly as asked, but is it optimal? Probably not. If your house is
worth breaking into, the thief may case the place. If he notices that your lights are
always coming on and turning off at exactly the same times over the course of a cou-
ple of days, he can be reasonably sure that it’s just a timer program. How can we
make an AI that outsmarts the thief?

Randomization

The next step is randomization. The easiest implementation would be to instantiate
the LightTimer class with random start times and end times and then do it again
every 24 hours or so. This would certainly solve the problem of being deterministic,
but it falls on the exact opposite side of the spectrum. A thief casing your house will
realize something is very odd since most people do have a schedule when they are
home.

A better solution is to create a random deviation from the start and end times. This
is pretty trivial to implement and gives us what we want: a reasonable pattern with-
out the appearance of being run by a program.

To implement this, two new variables are added: m_desiredStartTime and
m_desiredEndTime. The constructor, TurnOnLights(), and TurnOffLights()

functions all need to change:

614 Chapter 18 n An Introduction to Game AI

explicit LightTimer(float startTime, float endTime) :

m_desiredStartTime(startTime),

m_desiredEndTime(endTime),

m_startLightsOn(GetDeviatedTime(m_desiredStartTime)),

m_endLightsOn(GetDeviatedTime(m_desiredEndTime)),

m_lightsOn(false)

{

}

void TurnOnLights(void)

{

if (!m_lightsOn)

{

SetLightStatus(true);

m_lightsOn = true;

m_startLightsOn = GetDeviatedTime(m_desiredStartTime);

}

}

void TurnOffLights(void)

{

if (m_lightsOn)

{

SetLightStatus(false);

m_lightsOn = false;

m_endLightsOn = GetDeviatedTime(m_desiredEndTime);

}

}

As you can see, m_startLightsOn and m_endLightsOn are set to a deviation
from the desired start and end times. The GetDeviatedTime() function is very
simple:

float GetDeviatedTime(float desiredTime)

{

float normalizedRand = (float)rand() / (float)RAND_MAX;

float deviatedTime = desiredTime + (normalizedRand * 2) – 1;

// wrap deviatedTime if it goes below 0 or above 24

if (deviatedTime < 0.0f)

deviatedTime = 24.f – fmod(fabs(deviatedTime), 24.f));

else if (deviatedTime >= 24.0f)

deviatedTime = fmod(deviatedTime, 24.0f);

return deviatedTime;

}

AI Techniques 615

This function will return a new time that is within one hour in either direction of the
desired time. If you set your start time for 6 p.m. (18.0), then your lights will come
on sometime between 5 p.m. and 7 p.m. This is definitely much better, but it’s still
not perfect. Most people don’t arrive home at a random time like this, but rather they
tend toward a specific time. We could certainly set a smaller deviation, but a better
solution would be to apply a nonlinear curve to the deviation, such as a normal dis-
tribution (also known as a Gaussian distribution, which generates a bell curve). That
would make values closer to the desired number more probable than the ones farther
away. This will make the times the light comes on or turns off a bit more believable.

Weighted Randoms

Weighted randoms are a close cousin to the distribution curve. While a distribution
curve is essentially an analog device, weighted randoms are more “digital.” The idea
is that for some number of possible decisions, each of those decisions is given a
weight. The weights are all added up, and a random number is generated from zero
up to the sum of all weights. This determines which action is chosen. For example,
let’s say I have a creature that can attack, cast a fire spell, or run away. I decide that
60% of the time I want this creature to attack, 30% of the time it should cast the fire
spell, and 10% of the time it should run away. I can decide what to do by generating
a single number from 0–99. If the number is less than 60, the creature attacks. If it’s
greater than or equal to 60 and less than 90, the creature casts the fire spell. Other-
wise, the creature runs. This is a very easy way to create potentially complex
decisions.

Games have been using this technique with great success for years. In fact, the origi-
nal Dragon Warrior for the NES used this exact method for deciding what its oppo-
nents would do. Each monster had a table with a number of behaviors, and a number
was generated to choose a slot randomly. Since multiple slots could contain the same
entry, this gave the weighted random.

Finite State Machines

A finite state machine is a construct that can exist in any number of finite states. For
example, in the previous Dragon Warrior example, each action could actually be
thought of as a state within a state machine. The creature’s state machine has some
number of states that it can possibly exist in, with each state determining a specific
behavior. A video game itself is often managed as a state machine, where the title
screen is one state, playing the game is another state, the options menu may be a
third state, and so on.

616 Chapter 18 n An Introduction to Game AI

Lua to the Rescue

This type of system is a perfect place for a scripting language like Lua.
Features like tables and dynamic typing will save a huge amount of work
when compared to attempting the same implementation in C++. Most of the
examples you’ll see in this chapter are written in Lua using the systems
described in Chapter 12, “Scripting with Lua.” If you need a refresher, now
would be a good time.

Let’s take a look at a basic state machine implementation:

TeapotStateMachine = class(nil,

{

_teapot = nil,

_currentState = nil,

_brain = nil,

});

function TeapotStateMachine:Destroy()

self._currentState = nil;

self._brain = nil;

end

function TeapotStateMachine:SetState(newState)

if (self._currentState == nil or

not self._currentState:IsInstance(newState)) then

self:_InternalSetState(newState);

end

end

function TeapotStateMachine:ChooseBestState()

if (self._brain) then

local newState = self._brain:Think();

self:SetState(newState);

end

end

function TeapotStateMachine:Update(deltaMs)

if (self._currentState) then

self._currentState:Update(deltaMs);

end

end

function TeapotStateMachine:_InternalSetState(newState)

self._currentState = newState:Create({_teapot = self._teapot});

self._currentState:Init();

end

Finite State Machines 617

This class is a bit of a spoiler. I wrote the AI system for the Teapot Wars sample
game you’ll see in Chapter 21, “A Game of Teapot Wars,” while writing this chapter,
so it made sense to use it here as an example of a working state machine. The ene-
mies are all teapots, hence the reference to teapots in the code.

Every teapot is given a state machine instance, which contains a back-reference to the
teapot itself (the Lua script component), a current state, and a brain. The current
state is the state the teapot is in right now. The brain is an object containing a
Think() function that returns the best state for the teapot.

The Destroy() function is self explanatory. The SetState() function checks to
see if the current state is nil or if the new state is not the same as the current
state. If either condition is true, it sets the new state. We need to check to make
sure the states are different because choosing the same state really means choosing
to continue doing what the teapot is doing.

ChooseBestState() tells the state machine to find the best state for the given sit-
uation. This is the AI update function and is called periodically by a script process. If
the teapot has a brain, it calls the Think() function on that brain to find the best
state and attempts to set it. The Update() function runs the current state and is
called every frame by another script process. The _InternalSetState() function
instantiates the state object and calls its Init() function.

States are typically self contained with rules defining how the state machine transi-
tions from one state to another. One of the big advantages of state machines is that
states can often be reused among many different creatures. The chances are good that
you’ll get a lot of use out of a patrol or attack state, and with a bit of parameteriza-
tion you can reuse these states across many different types of creatures.

Let’s say we want to make a guard that patrols an area until the player gets within a
certain radius and then attacks. If the player gets too far away, he resumes his patrol.
If his health gets too low during the fight, he runs away. To do this with a state
machine, you need three states: one that defines the pacing behavior, one for the
attack behavior, and the third for the running away behavior. These states are con-
nected by transitional logic, as shown in Figure 18.1.

Figure 18.1
Guard’s state machine.

618 Chapter 18 n An Introduction to Game AI

States can have any number of implementations but are typically implemented with
an abstract base class that defines an update function. Each state implements this
update function to provide the appropriate behavior for that state. Here’s the base
state class for teapots:

TeapotState = class(nil,

{

_teapot = nil,

_teapotMoveSpeed = 7,

});

function TeapotState:Init()

if (self._teapot == nil) then

print(“Invalid teapot in TeapotState”);

return false;

end

return true;

end

function TeapotState:Update(deltaMs)

error(“Calling unimplemented TeapotState.Update() function”);

end

This defines the interface for all states. The Init() function is called in the state
machine class when the state is set as the current state, and the Update() function
is called every frame. Notice how the Update() function just throws an error. This
is a way of defining a pure virtual function. All subclasses must implement this func-
tion, or this error will get thrown. If we didn’t define this error, a generic “attempting
to call a nil value” error would be thrown instead. At least this error gives us specific
information.

Too Many Script Processes

You might have noticed that the states above look an awful lot like the
ScriptProcess interface. It’s true that these states could all be made into
script processes with their own update tick, but this doesn’t scale very well.
Remember, crossing the Lua/C++ boundary is expensive, especially if you’re
doing it every frame. Having 100 script processes all running is much more
expensive than having a single script process that loops through 100 states.

The basic logical state machine in Figure 18.1 has been fully implemented for the tea-
pots. I’m not going to go through the implementation for each state because it’s more

Finite State Machines 619

trigonometry than AI, but if you’re curious, they all exist in the Game Coding Com-
plete source code at Dev\Assets\Scripts\TeapotStates.lua.

The transitional logic is all encapsulated in the teapot brain, which is owned by the
state machine. The interface for the teapot brain is as follows:

TeapotBrain = class(nil,

{

_teapot = nil,

});

function TeapotBrain:Init()

return true;

end

function TeapotBrain:Think()

error(“Calling unimplemented base class version of TeapotBrain.Think()”);

end

This interface is extremely simple because it just defines an Init() function and a
Think() function. Init() gives the brain a chance to do some initialization. Think()
is called when a new decision needs to be made. It goes through whatever decision-
making processes it uses and returns the most appropriate state. Here’s a hard-coded
brain that implements the transitional logic in Figure 18.1:

HardCodedBrain = class(TeapotBrain,

{

--

});

function HardCodedBrain:Think()

local playerPos = Vec3:Create(g_actorMgr:GetPlayer():GetPos());

local pos = Vec3:Create(self._teapot:GetPos());

local diff = playerPos - pos;

-- player close

if (diff:Length() < 20) then

-- hit points low, run

if (self._teapot.hitPoints <= 1) then

return RunAwayState;

-- hit points not low, attack

else

return AttackState;

end

-- player not close, resume patrol

620 Chapter 18 n An Introduction to Game AI

else

return PatrolState;

end

end

This function subtracts the player’s position from the teapot’s position. If the length
of that vector is less than 20, the player is considered “close.” The teapot then checks
its hit points. If it only has one hit point, it runs away; otherwise, it attacks. If the
player is not close, the teapot patrols.

We can take this a step further by making the transitional logic generic as well. Let’s
say we have a land mine that sits idle until the player gets close and then explodes.
We can define these states, as shown in Figure 18.2.

Notice how the logical condition to switch states is the same here; both the patrol
state of the guard and this idle state check to see if the player is close. The definition
of “close” is likely different in each case, but the logic is the same.

Each of these pieces of transitional logic can be encapsulated into generic functions,
and each state can have a list of one or more of these functions paired with a target
state. Each tick, the state iterates through the list of transitions, and if any transition
returns true, the state it is paired with becomes the new state. Each transition can be
parameterized with whatever is appropriate for that transition. For example, the dis-
tance check for the mine’s idle and the guard’s patrol states can each be set to sepa-
rate distances. You can even create “and” and “or” transitions that are parameterized
with two other transitions, allowing you to set up rather complex logical chains. This
is exactly what I built for Drawn to Life: The Next Chapter.

The basic concept of state machines is rather simple, but they can grow to be
extremely complex. The typical monster in Drawn to Life had around 15–20 states,
each with 2–3 transitions. Most of these states were shared with other enemies, with
one or perhaps two unique states that helped define that particular creature. The iter-
ation time on the enemies was very quick, and most states had fewer than 100 lines
of code. Once the core system was in place, I could crank out the initial implementa-
tion of an enemy in about a day.

While the states in a state machine are meant to implement specific behaviors, the
bulk of decision making tends to come from the transitional logic between states.

Figure 18.2
Mine’s state machine.

Finite State Machines 621

An AI controlled character will be in a particular state and need to decide between
some number of target states he can switch to. Simple AI characters are purely reac-
tionary; for example, they stay in a state until some specific condition is met such as
the player getting too close. Platformer games tend to use reactive AI. The previous
examples were reactive AI as well. Other AIs are active, meaning they will constantly
seek the best possible action to maximize their happiness. A sim from The Sims or an
AI opponent in an RTS are examples of active AIs.

There are many different techniques available when deciding which state to transition
to or which action to run. The hard-coded approach you saw in the previous section
is perfectly fine for simple and somewhat deterministic games. Let’s briefly look at a
few other techniques for decision making.

Decision Trees

A decision tree is a simple way of representing decision making. Each nonleaf node
in the tree is called a decision node, and it represents a single decision with a binary
yes/no answer. Each leaf node is called an action node, and it represents an action. In
our case, this action is a new state.

Decision nodes have a true node and a false node, which can be either another
decision node or an action node. A decision is made by starting at the root node and
recursively walking down the tree until an action node is reached. Figure 18.3 shows

Figure 18.3
Decision tree for guard.

622 Chapter 18 n An Introduction to Game AI

an example of a decision tree that could be used to replace the transitional logic for
the patrolling guard above.

The diamonds represent decision nodes, while the rounded rectangles represent
action nodes. This simple decision tree can be applied each time a decision needs to
be made by the guard. Decision trees can easily be shared, and individual nodes can
be shared across different trees. Decision trees are often built from XML data defini-
tions, which are in turn are generated from visual tools over which designers have
control. The programmer writes different decision nodes and action nodes, while
the designer uses them to build the desired behavior.

Writing a simple decision tree system is relatively simple. Let’s start with a definition
of decision nodes:

DecisionNode = class(nil,

{

_brain = nil,

_trueNode = nil,

_falseNode = nil,

});

function DecisionNode:Decide()

error(“Calling unimplemented function DecisionNode.Decide()”);

return nil;

end

function DecisionNode:SetTrueNode(node)

self._trueNode = node;

end

function DecisionNode:SetFalseNode(node)

self._falseNode = node;

end

A decision node has a back reference to the brain, the true node, and the false

node. Since this is an abstract base class, the Decide() function is defined with the
same error pattern as above. It will eventually return the action to perform, which it
does by recursively calling the appropriate child. This class also defines functions for
adding a true node and false node.

Here is the action node definition:

ActionNode = class(DecisionNode,

{

_action = nil;

});

Decision Trees 623

function ActionNode:Decide()
return self._action;

end

function ActionNode:SetTrueNode(node)

error(“Action nodes cannot have children”);

end

function ActionNode:SetFalseNode(node)

error(“Action nodes cannot have children”);

end

This class inherits from DecisionNode and implements the Decide() function to
simply return the action. This ends the recursive chain and causes the action to be
sent all the way back up to the initial Decide() call. Note that SetTrueNode()
and SetFalseNode() are redefined to kick out errors. Action nodes are leaf nodes
by definition, so attempting to add a child is an error.

Let’s take a look at a couple of decision node implementations so you can get a feel
for how these nodes interact:

IsObjectCloseNode = class(DecisionNode,

{

_testObjId = nil,

_closeDistance = 25, -- default definition for what “close” means

});

function IsObjectCloseNode:Decide()

if (self._testObjId) then

local actor = g_actorMgr:GetActorById(self._testObjId);

if (actor) then

local actorPos = Vec3:Create(actor:GetPos());

local teapotPos = Vec3:Create(self._teapot:GetPos());

local diff = actorPos - teapotPos;

if (diff:Length() <= self._closeDistance) then

return self._trueNode:Decide();

end

end

end

return self._falseNode:Decide();

end

IsHealthLowNode = class(DecisionNode,

{

_lowValuePercentage = 0.34, - - default definition of what “low” means

});

624 Chapter 18 n An Introduction to Game AI

function IsHealthLowNode:Decide()

local hitPointPercentageLeft =

self._teapot.hitPoints / self._teapot.maxHitPoints;

if (hitPointPercentageLeft <= self._lowValuePercentage) then

return self._trueNode:Decide();

else

return self._falseNode:Decide();

end

end

The first node is the IsObjectCloseNode class, and it checks to see if the object ID
stored in _testObjId is “close,” defined by the _closeDistance variable. This
replaces the hard-coded check to see if the player is close with a more generic ver-
sion. This is a great example of how you can parameterize nodes to make them more
reusable. For example, this node could be used to detect how close a health pack is
with no modifications.

The Decide() function is pretty straightforward and very similar to the hard-coded
block you saw earlier. If the object is valid and is found to be within the appropriate
distance, the true node’s Decide() function is called. Otherwise, the false node’s
Decide() function is called. This steps down a level in the tree and starts the pro-
cess again. IsHealthLowNode works in the same way. The only difference is the
actual logic.

Use Percentages Instead of Absolutes

Notice the usage of the _lowValuePercentage variable. You might be
wondering why I’m using a percentage here instead of an absolute value.
Using a percentage allows the max hit points for the teapot to change
without having to update this logic at all. It will always consider anything
less than 34% of the max hit points to be “low.” If I used an absolute value,
I’d have to update it whenever the max hit points of the teapot changed.

The only thing left is the brain itself:

DecisionTreeBrain = class(TeapotBrain,

{

_root = nil,

});

function DecisionTreeBrain:Init()

self:_BuildDecisionTree();

return true;

end

Decision Trees 625

function DecisionTreeBrain:Think()

return self._root:Decide();

end

This class implements the TeapotBrain class. The Init() function calls a private
_BuildDecisionTree() function. My version of this function (which you can see
in the GameCode4 source code at Dev\Assets\Scripts\DecisionTreeBain.lua) manually
creates the tree you saw in Figure 18.3. In a real game, this would load an XML
resource and build the tree from that. You’ve seen XML used quite a bit in this
book, and there are plenty of examples all over the place in the actor system and
the game editor you’ll see in Chapter 22, “A Simple Game Editor in C#.” I leave
this as an exercise for you.

The Think() function of DecisionTreeBrain simply calls the root nodes Decide()
function and returns the results. This function starts the chain of recursion to find the
appropriate state to be in.

Decision trees are extremely useful. The example here is trivial, but it could easily be
expanded into dozens or even hundreds of nodes. The tree is still relatively efficient,
since whole chunks of the decision-making process are culled with each decision.
Assuming a perfectly balanced tree, each decision will cut the possible decisions in
half.

Even if you’re processing hundreds of nodes, the nature of the tree structure means
you can easily make the decision across multiple frames. At each step, you check to
see how much time has passed. If the decision is taking too long, you simply save the
current node and return. The next time, the decision-making process can be picked
up at the last node. Just be careful with this; the decisions already made may no lon-
ger be valid. As long as the decision doesn’t take more than a couple of frames, this is
rarely a problem. You just have to validate the final result at the end. Attempting to
grab a pickup may not be the right decision if the pickup is no longer there.

The decision tree shown here is a binary decision tree where each decision node
results in a yes or no answer that determines where to go next. It’s perfectly valid
to have nonbinary decision trees. You could have a node with multiple children
based on a range of values. For example, the IsHealthLowNode class could be
changed into a ProcessHealthNode class that has three different children. If their
health were low, the AI could find health or run away. If their health were especially
high, they could be much more aggressive. If their health were in the middle some-
where, they could act normally.

626 Chapter 18 n An Introduction to Game AI

Fuzzy Logic

This system works fairly well, but it’s not exactly realistic. The value of “close” is an
absolute value, and humans don’t think in absolutes like that. For example, let’s say I
see Mike on the GDC showroom floor and want to say hello. If I say hello from too
far away, he won’t hear me through the hustle and bustle of the conference, so I need
to walk up to him until I am reasonably “close” before saying anything. What is
“close”? In this case, let’s say it’s about 30 feet. In the system above, I would walk
up to exactly 30 feet away and say hello. If multiple people were all trying to say
hello to Mike, we would all form a perfect 30-foot radius circle around him, which
would look a bit creepy. What we really need is a way to model approximate values,
or fuzzy values.

The basic idea of fuzzy logic is that objects can belong to multiple fuzzy sets by dif-
ferent amounts. For example, let’s say the player is behind some cover. My enemy AI
needs to know how to behave in this situation. If the player is fully behind cover, the
enemy will flush him out with a grenade. If the player is not behind cover at all, the
enemy will fire with his assault rifle. What happens if the player is partly behind
cover? What we really have here are two possible sets the player can belong to—one
where he is behind cover and one where he is not behind cover. The player is able to
belong to both sets by some degree. The amount of belonging is typically represented
by a number between zero and one. In this example, the player might be behind
cover by 0.6 and exposed by 0.4.

Likewise, when I’m walking up to Mike, I am becoming more a part of the close set
and less a part of the far set. When I get to 30 feet away, I might belong to the close
set by 0.5 and the far set by 0.5. Notice how the degrees of membership are adding
up to 1. It’s common in fuzzy logic to have degrees of membership for mutually
exclusive sets add up to 1.

In order to assign degrees of membership within fuzzy sets, some translation needs to
occur. If I am exactly 35.2 feet away from Mike, what is my degree of membership in
the close and far fuzzy sets? In order to find this out, we need to translate my abso-
lute position into these degrees of membership. This is called fuzzification. In order
to process the data to make a decision, we need to go in reverse, which is called
defuzzification.

The simplest way to fuzzify these types of values is to provide a simple cutoff. Let’s
use 20 feet and 40 feet for our cutoff values. If I am less than 20 feet away, I
completely belong to the close set. If I’m more than 40 feet away, I belong completely
to the far set. In the case of anything in between, I will belong to both sets by a

Fuzzy Logic 627

degree of membership equal to a linearly interpolated value between those cutoffs.
This value can be expressed as follows:

degree of membership = (inputValue – lowCutoff) / (highCutoff – lowCutoff)

This formula will give you the degree of membership in the close set. Subtract this
number from 1 to get the degree of membership in the far set.

There are other fuzzification methods, of course. You could apply a logarithmic curve
or Gaussian curve (aka bell curve). Nothing says that your degree of membership
values need to add up to 1, although it is typically best that they do. It makes the
math a bit easier, as you’ll see below.

Defuzzification is a bit trickier. There is rarely a direct mapping from the degree of
membership to a useful value. For example, if the player is behind cover by 0.6 and
exposed by 0.4, what is the correct behavior? We could just generate a random num-
ber and choose to throw the grenade 60% of the time. This works for extremely small
fuzzy sets, but what happens when we’re trying to take into account multiple sets?
For example, let’s say we’re using fuzzy logic to model the personality. The AI
belongs to the aggressive set by 0.4 and the cautious set by 0.6. If the AI is cautious
and the player is behind cover, toss a grenade. Is this AI cautious? Do we just ran-
domly decide if this AI is cautious for this particular decision?

One way of solving this problem is to use the highest degree of membership. In this
cause, the AI would be considered cautious because he belongs to that set more than
the opposing aggressive set. He would also consider the player to be within cover.
This is certainly simple, but it just masks the same problems we had in the first
place with the AI being too predictable.

If the result you’re looking for is a number, a blended approach becomes very useful.
How long the AI will take aim can be directly determined by its degree of member-
ship in the cautious set as well as its degree of membership in the behind cover set.
You could blend these two together, normalize the results, and then apply that as a
multiplier to the maximum time an AI will take to aim. This approach allows the AI
to easily take into account both its own cautious nature and how deep within cover
the player is.

For Boolean results, a cutoff is typically determined. If you belong to a set by more
than the cutoff value, the Boolean value is true. Otherwise, it is false.

The real power of fuzzy logic comes from being able to write logical sentences. You
use logical sentences every day, such as this one:

if (distance < 20 and health > 1) then Attack() end

628 Chapter 18 n An Introduction to Game AI

This is a simple logical sentence with an AND. You could also make OR or even NOT

one of the values. You can apply these same logical operators to fuzzy logic systems:

IF player is close AND I am healthy THEN Attack END

It works exactly the same way, but how do you apply this logic to fuzzy sets? The
magic comes from the attack action, which in itself is a fuzzy set. The AI can belong
to this action set as well as others.

AttackSet = player is close AND I am healthy

RunSet = player is close AND I am hurt

So what are the degrees of membership for the attack set and run set? As it turns out,
you need to redefine AND, OR, and NOT for fuzzy sets.

Given the following sentence:

R = A AND B

The traditional logical AND is defined by the truth table shown in Table 18.1.

You need to maintain this truth table for fuzzy sets as well. The most common defi-
nition of AND for fuzzy sets turns out to be:

R = min(A, B)

In this case, A and B are the degrees of membership in those sets. Assuming that the
degree of membership in both bases is absolute (for example, 1 or 0), then this truth
table still holds true. With mixed values, the truth of the statement A AND B is essen-
tially equal to the least true member.

The reverse can be said about OR, which has the truth table shown in Table 18.2.

Table 18.1 Truth Table for AND

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Fuzzy Logic 629

In this case, the degree of truthfulness of the statement A OR B is equal to the most
true member. Thus, we can define OR as follows:

R = max(A, B)

This same exercise can be continued to define results for NOT, XOR, and other logical
operator you want.

Let’s take a step back and reconsider the attack and run fuzzy sets. Let’s say the
player belongs to the close set by 0.6 and the far set by 0.4. Let’s also say that
the AI guard belongs to the healthy set by 0.3 and the hurt set by 0.7. In this case,
the attack set will be 0.3, and the run set will be 0.6. This could be translated into a
behavior by mixing the results:

attackPercentage = 0.3 / (0.3 + 0.6)

runPercentage = 0.6 / (0.3 + 0.6)

You could use these percentages to find the chance that the AI will run versus staying
and fighting, but a much cooler use of this would be to set up his behavior so that he
spends about 66.7% of the time running and the other 33.3% of the time shooting at
the player. In other words, he does both behaviors at the same time, just in different
degrees. The overall behavior you’d see is that as the player approached and wounded
the enemy, he would fall back and continue firing. Eventually, his health would drop
low enough that he wouldn’t belong to the healthy fuzzy set at all, and he would just
run without attacking.

Hopefully, this example shows you a little bit of the power of fuzzy logic. You can
take these techniques further by applying fuzzy action sets to all sorts of things to
create extremely complex behavior with just a handful of actions.

Utility Theory

Stuart Russell and Peter Norvig provide an excellent definition for utility theory in
their book Artificial Intelligence: A Modern Approach: “Utility theory says that every

Table 18.2 Truth Table for OR

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

630 Chapter 18 n An Introduction to Game AI

state has a degree of usefulness, or utility, to an agent and that the agent will prefer
states with higher utility.”

With this definition, you can see that every possible state has a utility value assigned
to it, which is calculated every time a decision needs to be made and is based on how
much happier the agent will be in the new state compared to its current state. Calcu-
lating the utility value is done by taking the current world state and seeing what the
anticipated world state is after performing some action. The delta in happiness
between those two states is the utility of that action. The action with the highest util-
ity is then chosen.

Determining how useful a particular state is or how happy the agent will be in that
state depends on the game. In The Sims, the ideal state is calculated using motives
like hunger, energy, fun, social, and so on. In games like Chess, an analysis of the
board is performed, which could include material, pawn structure, piece positioning,
king safety, and so on. A strategy game might take any number of things into
account, like the safety of the workers, troop strength, and research. Coming up
with a strong utility function is one of the most important steps.

My Favorite Topic

I must admit that the utility theory is one of my favorite topics in AI. That’s
probably why I work on Sims games these days. Whenever I go to the Game
Developer’s Conference and meet up with colleagues, there are certain
architectural cliques that people form. Some people love decision trees and
refuse to believe that anything else is better. Others, like me, believe that
utility theory is the way to go. The reality is that none of these sides are
wrong; it’s just a matter of preference.

The basic algorithm for determining an action is as follows (in pseudocode):

function GetBestAction()

bestUtility = 0

bestAction = none

for action in currentWorldState.GetPossibleActions()

tempWorldState = currentWorldState

tempWorldState.ApplyAction(action)

utility = tempWorldState.Utility()

if utility > bestUtility

bestAction = action

bestUtility = utility

return bestAction

Utility Theory 631

This algorithm loops through all possible actions given the current world state. The
world state is then copied and an action applied to it. The utility of the new state is
then compared to the best utility value found so far. The action that produces the
highest amount of utility is chosen.

Updating a model of the world may seem like overkill, but it’s actually an important
step. For example, an action to make and eat dinner in The Sims could take an hour
or so in sim time. During that time, the sim’s other motives are decaying, so the sim
needs to take that into account. Furthermore, the sim could choose between two dif-
ferent meals, one that takes longer but tastes better than the other. Utility is often
calculated by utility-over-time.

The world model doesn’t have to be (and really shouldn’t be) a complete one. For
The Sims, a sim typically only cares what an action will do for that sim and not
what effect it may have on others. This means that the utility is defined as a function
of the delta between the sim’s current state and the sim’s state after the action is per-
formed. Every game determines this state differently.

As an example, let’s consider a turn-based RPG, similar to Final Fantasy or the old
Dragon Warrior games. These were fairly popular on the NES and SNES. The player
chooses an action to attack, run away, or heal. This has an effect, followed by the
monster being able to do the same. Attacking does some random amount of damage,
healing heals a random amount of damage and costs a magic point, while running
away gives you a 50% chance to flee. In this model, you might have the following
function to decide what to do:

function Teapot:Decide(opponent)

local bestUtility = 0;

local bestAction = nil;

for i, action in ipairs(self._actions) do

-- build the world state

local tempWorldState = WorldState:Create();

tempWorldState:Build(self, opponent);

-- apply the action

tempWorldState:ApplyAction(action, self, opponent);

-- grab the utility

local utility = tempWorldState:GetUtility();

if (utility > bestUtility) then

bestUtility = utility;

bestAction = action;

end

632 Chapter 18 n An Introduction to Game AI

end

return bestAction;

end

In this case, the world state is built every loop. This is not entirely uncommon in
situations where the world state is small and keeping track of it isn’t necessary. The
Build() function’s job is to grab what it needs from the world (in this case, the
teapot and the opponent) so the AI function can do its thing. Here’s a possible
Build() function:

function WorldState:Build(teapot, opponent)

self.opponentHp = opponent:GetHp();

self.opponentMp = opponent:GetMp();

self.survivalChance =

self:_CalculateSurvivalChance(teapot:GetHp(), opponent);

self.killChance =

1 - self:_CalculateSurvivalChance(opponent:GetHp(), teapot);

end

function WorldState:_CalculateSurvivalChance(defenderHp, attacker)

if (defenderHp > attacker:GetMaxDamage()) then

return 1;

elseif (defenderHp <= attacker:GetMinDamage()) then

return 0;

else

local range = attacker:GetMaxDamage() - attacker:GetMinDamage();

local chance = (defenderHp - attacker:GetMinDamage()) / range;

return chance;

end

end

The Build() function retrieves the hit points of the two combatants. It also calcu-
lates the survival chance of the teapot and the kill chance for the opponent (player).
The survival chance is the chance that the character can survive another round. The
kill chance is the reverse of that.

Finally, with the world state built, you can apply an action and get the utility from it.
Applying an action causes the AI to apply the average effect; in other words, the AI
considers that it will be healed the average amount of hit points or will inflict the
average amount of damage. A state in which the teapot attempts to run away gives
the agent a 50% survival chance, which makes it look pretty good as a last resort
when the hit points are low. Here’s a sample utility function applied to a given world
state:

Utility Theory 633

function WorldState:GetUtility()

local lifeScore = 100 * self.survivalChance;

local attackScore = 100 - self.opponentHp;

attackScore = attackScore + (attackScore * self.killChance);

return lifeScore + attackScore;

end

The first line of this function considers the agent’s chance for life. It multiplies 100
(the max hit points) by the survival chance of the agent. The attack score considers
the agent’s desire to kill the player. It is equal to the amount of damage done (max
hit points minus current hit points). The attack score is further modified by the kill
chance. The kill chance is the percentage chance that another attack on the following
turn will result in the player’s death. If there is no chance, it has no effect on the
score. If there is a 100% chance, it will double the attack score. Anything in between
is possible. Finally, the life score and attack score are added together and returned.
Each line of code in this utility function directly affects the behavior and personality
of this agent.

n The agent prefers states in which it is alive and has a good chance at remaining
so.

n The agent prefers states in which the player is more injured.

n The agent greatly prefers states in which the player is near death.

This is by far the simplest utility-based system I’ve ever written, but it does a great
job showing how all the pieces fit together. In order to test this out during the writing
of this chapter, I created a mini combat RPG game. It’s not part of the Teapot Wars
code like everything else in this chapter has been; it’s a stand-alone console program
that runs a single Lua file. I’ve included it with the GameCode4 source code in case
you want to play around with it. You can find it at \Dev\Extra\UtilityDemo\. The
utility.lua file contains all the code. Just run the UtilityDemo.exe program to play the
game.

Agents Can Complain About Work Just Like Us

Rat Race used a system called UtilEcon, which stood for Utility Economy. The
system was designed to be a goal-oriented system where agents would
wander around the world and trade utility with each other through speech.
We had a speech system tied into this, so there were different types of
utility for different types of conversations. That way you’d tend to hear the
gossipy people in the office say the gossip lines, while the workaholics
would say the work lines. The system worked really well and added quite a
bit to the atmosphere. “Oh look, there’s Joy complaining again.”

634 Chapter 18 n An Introduction to Game AI

Goal-Oriented Action Planning

Utility theory is a great technique for deciding what an agent wants to do, but it’s not
as good for deciding how an agent should perform this action. Goal-Oriented Action
Planning, or GOAP, is a popular methodology that helps solve this particular prob-
lem. It centers on the idea of goals, which are desirable world states that the agent
wants to achieve. It achieves these states through actions, much like you saw previ-
ously. An example of a goal might be to kill the player. An action that satisfies this
goal could be attacking the player. An agent often has multiple goals, although only
one is typically active at any given time. The AI update is then split into two stages:
The first selects the most relevant goal, and the second attempts to solve that goal by
choosing an action or sequence of actions.

This first step of choosing a goal can be elegantly solved by applying utility theory,
decision trees, or any other method you’ve seen thus far in this chapter. The second
part is often a bit trickier. For example, let’s say you’ve decided that the goal you
want to solve is eating a meal. Unfortunately, you don’t have any food, so you need
to formulate a plan, or a series of actions, that will get you to the goal state of eating
food. This could involve finding your car keys, driving to the store, purchasing food,
and then returning to cook said food.

The idea behind GOAP is that each action has a set of conditions it can satisfy, as
well as a set of preconditions that must be true in order to be satisfied. For example,
eating food will satisfy my goal of eating, but it has the precondition of requiring
cooked food. The action of cooking food satisfies this goal, but it has the precondi-
tion of having a raw food object. When a final action is chosen, the algorithm walks
backward from the goal action through the preconditions, searching for actions that
will solve each one. Finally, at the end of the search, you’re left with an action
sequence that can be executed to achieve the original goal. GOAP is extremely flexi-
ble. As long as a sequence of actions exists to solve a goal, the agent will find a way.

One problem with GOAP (and most forms of advanced AI) is world representation.
This is very much the same problem we had when talking about utility theory. How
can you represent the world in a compact manner? Goals are often expressed as
desirable world states. I desire a world state in which my hunger level is fully satis-
fied. The teapot agent desires a world state in which the player is dead. This world
state then needs to be generated, complete with preconditions and effects.

The other problem is how to search through the action space to find the desirable
world state. Fortunately, there are a number of search algorithms that can help you.
The best one I’ve heard was Jeff Orkin’s talk at the Game Developer’s Conference in
2006, where he proposed using the A* algorithm, a common search algorithm used

Goal-Oriented Action Planning 635

in pathfinding, to search through the action space for the sequence of actions that
would satisfy the world state. Considering that we’re literally looking for a “path”
through a graph of actions, this one makes total sense.

A full implementation of GOAP is beyond the scope of this book, but there are a
number of texts written on the subject. The best I’ve read is in AI Game Program-
ming Wisdom 2. The article is called “Applying Goal-Oriented Action Planning to
Games,” written by Jeff Orkin. I highly recommend you check it out.

PathFinding

I get a lot of questions about pathfinding with regards to AI. I find this a little strange
since I honestly don’t consider pathfinding to be an AI problem. Pathfinding is really
just an optimized search algorithm across a data structure, typically a graph. The
same algorithm can apply to many classifications of problems, including generating
an action plan from a GOAP model. On The Sims, pathfinding is handled by a
completely different team called MoTech (Motion Technology; they handle things
like animation programming), while the sim behavior AI is handled by me on the
gameplay team. This is fairly common in most companies where I’ve worked: A sys-
tems engineer handles a lot of the pathing, while someone on the gameplay team
handles the behaviors.

The problem of finding a valid path through terrain is one of simplification. The
world itself is simplified into a graph of nodes (or a mesh with edges; either way,
the principle is the same) that is then traversed with a search algorithm to find a
good path between two nodes in that graph. This graph or mesh represents the
walkable terrain. This is the technique we used at Super-Ego Games in Rat Race
(see Figure 18.4).

So how do you go about creating such a system? Let’s start with the nodes. A node
describes a point in space that the agent must reach. Nodes are connected by arcs,
which are essentially straight lines. For most pathing graphs, an agent may freely
move between any two nodes directly connected by an arc. Thus, in order to move
from one node to its neighboring node, all you need to do is rotate to face the correct
direction and move in a straight line as described earlier in this chapter.

There’s a slight problem with this method. Since the nodes are all connected by
straight lines, it’s possible that the agent’s motion will look a bit robotic, especially
if the graph is laid out like a grid. If the agent wanted to move onto a perpendicular
arc, it would walk to the node, make a 90-degree turn, and then walk to the next
point. This doesn’t look natural at all. There are two things you can do to combat
this problem. The first is to ensure that the nodes are not placed in an obvious

636 Chapter 18 n An Introduction to Game AI

grid-like fashion. Place a few nodes around a turn to create a curve instead of simply
placing the corner node with two perpendicular arcs. I like to make a little Y-shaped
triangle of nodes and arcs near such corners.

The second thing you can do is allow each node to have a tolerance that describes
how close the agent has to be to the node in order to be considered to have hit it.
Using these two techniques together, you can get a much smoother path. If you really
want to go for broke, you can do a little prediction and figure out when to start turn-
ing and how sharply you need to turn. This will give your agents a very smooth
curve, though perhaps it will be too smooth in some instances. For example, when
someone is near a wall and turns a corner, there is very little curve. Another alterna-
tive would be to add that information into the node classes, but this may be a bit
much to ask of designers (who typically create and tweak these graphs). I’ve found
that you can get pretty decent results with the first two methods.

Now you need to describe the arc that connects these nodes. You could make arcs
unidirectional, bidirectional, or both. You could give each arc a weight that gives a
rough description of the difficulty for traversing that area. You could even allow mul-
tiple arcs to connect the same nodes but have different weights on those arcs for dif-
ferent types of agents. For example, you could have one arc used by ground-based

Figure 18.4
Pathing graph for Rat Race.

PathFinding 637

agents and another used by flying agents. That way, you could easily have it so the
ground agents tend to stick to the roads, while the flying agents don’t really care. The
weights can even be dynamic. Let’s say you’re making a real-time strategy game, and
you want the flying units to avoid the guard towers the player sets up. One way of
solving this problem would be to have the guard towers themselves increase the
weight of nearby arcs. The flying units would tend to avoid them.

Rude NPC Behavior Should Be Corrected

When I was working at Super-Ego Games, I worked on an adventure game for
the PlayStation 3 called Rat Race, which was set in an office. Being an
adventure game, one of the major things you did was talk to the NPCs.
Unfortunately, other NPCs would plow right through the middle of these
conversations. We ended up creating conversation pathing objects that would
spawn in the middle of conversations, which would significantly raise the
weight of any arcs within a radius around that point. We also forced NPCs
with affected arcs in their path to replan. This caused NPCs to do the polite
thing and walk around the conversation.

A* (A-Star)

There are many different searching algorithms to choose from, but A* (pronounced
A-Star) happens to be one of the most common used for this purpose. When most
people think of pathfinding, they think of A*. As I mentioned, A* is really just a
general-purpose search algorithm that happens to fit the problem of pathfinding
really well. It will find a path with a relatively small cost and do it fairly quickly.
There are many different implementations of A*, but they all come from the
same basic algorithm. A* was first described in 1968 by Peter Hart, Nils Nilsson,
and Bertram Raphael.

The A* algorithm works by analyzing each node and assigning it three values. The
first is the total cost to this node by the current path so far. This value is usually
referred to as g, or goal. The second value is an estimated cost from this node to
the goal. It’s often referred to as h, or heuristic. The third value is an estimated cost
from the start of the path through this node to the goal, which is really just g + h.
This value is often called f, or fitness.

The point of these three values is to keep track of your progress so you know how
well you’re doing. The value of g is something you know for sure since it’s a calcu-
lated value (the sum of the costs of every node in the path so far), but how do you
find out how to calculate h and, by extension, f? The only rule for calculating h is
that it can’t be greater than the actual cost between this node and the goal node. Of

638 Chapter 18 n An Introduction to Game AI

course, the more accurate the guess, the faster you can find a path. In this case, a
simple distance check will suffice:

diff = pathingNodePosition – goalNodePosition

heuristic = diff.Length()

This allows us to easily calculate f.

The algorithm also maintains a priority queue called the open set. The open set is a
list of nodes that are being considered, and the node with the lowest fitness score is
at the front of the queue. The process starts with the node nearest the starting loca-
tion. During each iteration of the algorithm, the front node is popped off the queue.
The neighbors of this node are evaluated (potentially updating their magic values)
and added to the open set. This process continues until the node removed from the
queue is the goal node. Note that it’s quite possible to see the goal node from a par-
ticular neighbor and ignore it if its f score is not low enough. This simply means that
you haven’t found the best path yet. Once you have processed a node, you mark it as
closed. This allows you to ignore neighbors you’ve already processed. If the open set
ever becomes empty before finding the goal node, it means you’re done, and no path
could be found.

You Can’t Always Get There from Here

No matter how solid you think the data is, there are times when you won’t be
able to find a path. Make sure that you have a graceful recovery plan.

Agents Can Be Stubborn

While working on Rat Race for Super-Ego Games, our solution to failing to find
a path was to re-run the higher decision-making logic. Unfortunately, the
decision was almost always to try and do the exact same thing. Since AI was
only updating once a second, the NPC would take a half step, stop, play a
confused-looking idle animation (many of our idle animations were confused
looking; it was a comedy game after all), and then repeat the process. Our
solution was to have them abandon that particular decision, which meant that
they couldn’t choose it the second time around.

I’ve written a complete (albeit simple) pathfinding system that’s included with the
source code for this book. It’s a bit lengthy to reprint here, but you can check it out
yourself. The code is highly commented, and if you have any questions, you can

PathFinding 639

always ask me. I frequent the Game Coding Complete forums quite often. The code
lives in pathing.h and pathing.cpp in the Dev\Source\GCC4\AI\ directory.

Keep in mind that this is by no means the only way to navigate through the world.
Remember, the key to successful navigation is to simplify the agents’ view of the
world so you can cut down on how much you have to process. A few hundred or
even a few thousand pathing nodes are much faster to process than trying to deal
with world geometry at runtime.

Another very common technique is something called a navigation mesh, which is a
simple mesh that can be built by the artists or designers and represents the walk-
able terrain. The concept is really no different than the graph above. The center of
each triangle is a node, and the edges that connect to other triangles are the arcs.
There will probably have to be a bit more smoothing involved or else the paths
may not look good, but if your meshes are dense enough with decent tolerances,
it may not be much of an issue. Game Programming Gems has an article called
“Simplified 3D Movement and Pathfinding Using Navigation Meshes” that serves
as a great introduction to using navigation meshes if you find yourself interested
in learning more.

Dynamic Avoidance

Most of the time, you’ll probably want to have multiple agents all navigating through
the world at once. What happens if two or more agents are trying to hit the same
node at the same time? What about two agents coming toward each other along the
same arc? Figure 18.5 shows exactly what could happen.

The simplest solution to both of these issues is to turn off the node or arc in ques-
tion. As soon as an agent starts traveling down an arc, give it exclusive access to that
arc. If another agent happens to reach a point in its path where it has to travel down
that same arc in the opposite direction, force it to replan from its current node to its
target node, ignoring that particular arc.

The above scenario works well for relatively open areas, but what happens when your
agents are in a confined space such as an office building? When I worked on Rat
Race, we had this exact problem. There were over a dozen agents in a small office
building, all pathing around the world. It was okay most of the time, but there were
several choke points where it all just broke down, like the stairwell. The solution to
this problem was to implement a dynamic avoidance algorithm. Each agent was
given a personal comfort radius around it. If another agent entered that radius and
they were both moving, they would calculate how much they had to turn to avoid

640 Chapter 18 n An Introduction to Game AI

each other’s comfort zones. This ended up working really well and solved most of
our issues concerning people running into each other.

Having multiple agents all moving around using complex pathing graphs can be very
taxing on the system. In larger game worlds, a common practice is to allow the A*
algorithm to stop at any time so that a single path can be built across multiple
frames. This is easy enough to implement with the system you’ve built. All you
need to do is to store the AStar object for each path being built and have an event
sent when the path is done. This sounds like a perfect job for a Process object. In
Chapter 20, “Introduction to Multiprogramming,” you’ll learn an even better solution
using threads.

Further Reading

Here is a short list of books I’ve found very helpful in becoming a better AI
programmer:

n Artificial Intelligence for Games, Ian Millington, published by The Morgan
Kaufmann Series in Interactive 3D Technology

Figure 18.5
Multiple agents trying to reach a single node.

Further Reading 641

n Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig,
published by Prentice-Hall, Inc.

n The AI Game Programming Wisdom series, Charles River Media

n The Game Programming Gems series, Charles River Media

642 Chapter 18 n An Introduction to Game AI

Chapter 19

by Mike McShaffry

Network Programming for

Multiplayer Games

I remember the very moment the Internet became relevant to my job, and it
completely changed the way I worked. A colleague of mine walked into my office
and showed me a website for the very first time. He’d made it himself, and although
it was very simple, I knew right away that the Internet was going to change the
world. Well, maybe it wasn’t quite that clear. I missed out on the Netscape IPO, but
it was certainly clear after that.

At the time, computer games could be played via modem or over a LAN, but they
were quite the bear to program. Once gamers started playing online game, companies
started using the Internet, and the communications protocols it uses, for hooking up
fragfests. Now, whether you’re playing with a buddy in the next office or a friend
from overseas, or just checking out the latest game on Facebook, pretty much all net-
work games use Internet protocols to communicate.

As it turns out, getting two computers to talk to each other is pretty easy. The trouble
happens when you try to make some sense of the bits coming in from the other side:
keeping track of them and their memory buffers, changing the raw data stream into
useful game data, and trying to create a plug-in architecture that doesn’t care if you
are playing locally or from afar.

This chapter covers moving bits across the network, how you come up with the bits
to send, and how you transform that raw data back into something your game can
use just as if there were no network at all. First, we’ll start with a little primer on the

643

Internet and its two most common Internet protocols: the transport control protocol
(TCP) and the user datagram protocol (UDP).

How the Internet Works

You probably have some familiarity with TCP and UDP. You might have heard that
UDP is what all good network games use, and TCP is for chat windows. The truth, as
usual, is a little more complicated than that. TCP is a guaranteed, full-duplex proto-
col. It looks and feels just as if there were no remote connection at all. You can write
code that simply pulls bits out just as they were sent in, in the right order, with noth-
ing missing and no duplications. It is easier to program because you don’t have to
worry so much about wacky Internet problems that can happen during packet trans-
mission: packet loss, packet splitting, or even corruption. The best analogy is a pipe—
what goes in will come out the other side, or you’ll receive an error telling you some-
thing bad happened to the connection. The possibility of problems exists, and you
should watch out for socket exceptions. Unlike files or UNIX-style pipes, you won’t
get an “end of file” marker.

UDP is a little more like sending messages by using those crazy bicycle messengers
you see in downtown areas. You don’t know when or even if your package will get
to its destination. You also won’t be informed if the package (your data) was split
into multiple pieces during the transmission. I guarantee you that if you required a
bicycle messenger to carry a 10,000-page document, that person would get friends
to help, and it would be up to the receiver to make some sense of it when it all
arrived.

By design, UDP is fairly lightweight, but the messages aren’t guaranteed to arrive at
their destination in any order, to arrive in one piece, or to arrive at all. TCP, the
guaranteed delivery service, doesn’t give its guarantees of a pipe-like connection
lightly. It does its work by having the receiver acknowledge the reception of a com-
plete, uncorrupted packet of data by sending a message back, essentially saying,
“OK, I got packet #34, and it checks out, thanks.” If the sender doesn’t receive an
acknowledgement, or an ACK, it will resend the missing or otherwise corrupted
packet.

Of course, you don’t have to wait to receive the ACK before sending another mes-
sage; you can set your TCP connection to allow you to stuff data in as fast as you
want. It will send the data as quickly as possible and worry about keeping track of
the ACKs internally. This kind of socket is called a nonblocking socket because it
operates asynchronously. A blocking socket can be useful if you want to enforce a
rigid exchange between two computers, something like talking over a two-way

644 Chapter 19 n Network Programming for Multiplayer Games

radio. One computer sends data, and it blocks until the data is received by the other
side. When I say “blocks,” I mean exactly that—the socket function that sends data
will not return until the data actually gets to the other side. You can see that this kind
of thing would be bad for servers or clients; you generally want to send and receive
data without waiting for the other side to get it and answer. This is the same, regard-
less of whether you use TCP or UDP.

Winsock or Berkeley?

You may have heard about Berkeley sockets, or the Berkeley implementation of the
sockets API. It’s called that because it was developed for the Berkeley UNIX operat-
ing system, and it is a commonly used implementation of the TCP/UDP protocols.
Of course, Microsoft developed an implementation of TCP/UDP as well, called Win-
Sock. You might wonder which one is better and debate endlessly about it, but I’ll
leave it to the experts and Internet forums. I like to use Berkeley sockets for multi-
player games, even under Windows. There’s a caveat to that, and I’ll clue you in on
it later.

Here is why I like to use Berkeley. When there’s a more standard API out there that
works, I tend to gravitate toward it. Forgive me for an example that will show my
age—but it’s really a little like why Sony VHS won over Betamax. It had more to do
with the fact that more people were using VHS and nothing at all to do with the fact
that Betamax was a superior format. Actually, the people who were using VHS
represented the porn industry, and some say that’s why it succeeded so quickly!
But I digress.

You are free to use Berkley-style sockets on a Windows machine, as I have done
throughout this chapter. Since space is such a premium—God knows this book is
heavy enough to give you cramps if you hold it too long—I’ll show you how to use
TCP to get your game running as a multiplayer game. You can investigate UDP once
you’ve mastered TCP. First, you have to know something about the Internet. After
all, you can’t send data to another computer on the Internet until you connect to
the computer, and you can’t connect to it until you can identify it uniquely from
every other computer on the Net.

You are free to use WinSock or Berkeley sockets to connect to other computers,
regardless of their choice of sockets implementation. As long as you send and receive
data formatted as both sides expect, you can set up network communications with
any other computer on the Internet. You can use your program to connect to Web

How the Internet Works 645

servers, FTP sites, whatever you want. You just have to know what IP address to con-
nect to, how to format the bytes you send, and how to parse the bytes you receive.

Internet Addresses

Every computer that has TCP/IP installed has an IP address to identify the com-
puter on the network. I say “the network” and not “the Internet” very specifically
because not every network is visible to the Internet. Some, like the one in my
house and the network where I work, are hidden from the Internet at large. They
act like their very own mini-Internets. The computers on these mini-Internets only
need a unique IP address for their network. Other computers, like the one that hosts
my website, are attached directly. These computers need a unique IP address for the
Internet at large.

Right now there are two common Internet protocols, IPv4 and IPv6. IPv4 has been
around since the early 1980s and is most commonly used throughout the world. But
that is beginning to change because the address space of IPv4 is quickly running out.
IPv6 increases the address size from 32 bits to 128 bits, basically giving every person
on the planet Earth approximately 4.8 × 1028 addresses for his personal use. There
are many other improvements and differences, which after you read this chapter
you’ll have enough knowledge to absorb. Since IPv6 is still fairly new and not every-
one can use it, this chapter will focus on IPv4.

The IPv4 address is a 4-byte number, something you can store in an unsigned int.
Here’s the address for the computer that hosts my website, for example:
3486000987, or expressed in hexadecimal: 0xCFC8275B. People usually write Internet
addresses in dotted decimal format to make them easier to remember. The above
address would be expressed like this: 207.200.39.91. This may be easier to remember
than 3486000987, but it’s still no cakewalk.

This address has two parts: the network ID number and the host ID number. The
host ID is the individual computer. Different networks have different sizes, and the
designers of the Internet were wise to realize this. If they had simply chosen to use
two bytes to represent the network ID and the host ID, the Internet would be limited
to 65,536 networks and 65,536 computers on each network. While that might have
seemed fine back in 1969 when the first four computers inaugurated ARPANET, as
it was called, it would hardly seem sufficient now. The solution was to separate the
network into address classes, as shown in Table 19.1.

Table 19.1 provides a summary of the IP address classes that are used to create IP
addresses. The total size of the Internet, if you have a calculator handy, is about 3.7
billion computers on 2.1 million networks of various sizes, most of them very small.

646 Chapter 19 n Network Programming for Multiplayer Games

Here’s a quick example of some of the holders of Class A address blocks on the
Internet:

n General Electric Company

n Level 3 Communications

n Army Information Systems Center

n IBM Corporation

n DoD Intel Information Systems, Defense Intelligence Agency

n AT&T

n Xerox Palo Alto Research Center

n Hewlett-Packard Company

n Apple Computer, Inc.

n Massachusetts Institute of Technology

n Ford Motor Company

n Computer Sciences Corporation

n U.S. Defense Information Systems Agency

n UK Ministry of Defense

n Halliburton

Interesting list of organizations, isn’t it? It’s a virtual who’s who of the military indus-
trial complex.

As you might have guessed, there’s a central authority for handing out unique net-
work ID numbers to those who want to get on the Net. This authority is called the
Internet Corporation for Assigned Names and Numbers (ICANN). Once the network
ID is assigned, it’s up to the local network administrator to hand out unique host
IDs. In the case of the network in my house, the unique host IDs are handed out

Table 19.1 IP Address Classes

Class Network ID Bytes Hosts on Network Networks on Internet

A 1 16,777,216 127

B 2 65,536 16,384

C 3 254 2,097,152

How the Internet Works 647

by a device I have hooked up to my network. Whenever one of my computers boots,
it is assigned a host ID automatically. The device that hands out the addresses is
called a Dynamic Host Configuration Protocol (DHCP) server and is exactly what
you find on most wireless routers. If I didn’t have one of these devices, I’d have to
assign each of my computers a unique IP address. What a hassle.

There are some special IP addresses you should know about, as well as some special
network IDs (see Table 19.2).

The Domain Name System

When you browse the Web, your Web browser program attaches to another com-
puter on the Internet, downloads a Web page and anything attached to it, and ren-
ders the Web page so you can see it. But when you browse the Web, you don’t go to
http://207.46.131.43, do you? If you put this specific address in your browser, you’ll
be rewarded with Microsoft’s Web page.

Luckily for us, there’s an easier way to find computers on the Internet. Clearly,
www.microsoft.com is easier to read and remember than 207.46.131.43. The
designers of the Internet designed a distributed database called the Domain Name
System, or DNS.

This system is structured like a hierarchical tree. The first level of the tree consists of
the top-level domains (TLD), some of which are listed in Table 19.3.

TLDs are also available for foreign countries to use, although they are generally used
in as free and open a manner as the rest of the Internet. For example, .uk is used for

Table 19.2 Special IP Addresses and Network IDs

Address Description

127.0.0.1 Called the loopback address and always refers to
your computer. It is also called the localhost.

127.x.x.x Loopback subnet; this network ID is used for
diagnostics.

255.255.255.255 This IP address refers to all hosts on the local
network.

10.x.x.x
172.(16-31).x.x
192.168.x.x

Private networks; any address with these network
IDs is considered on the local network, and not on
the Internet at large. Use these addresses for your
home or local company network if they don’t
need to be visible on the Internet.

648 Chapter 19 n Network Programming for Multiplayer Games

www.microsoft.com

the United Kingdom, and .cn is used for mainland China. Funny, the Pacific island of
Tuvalu that sits midway between Hawaii and Australia got lucky and pulled .tv as its
TLD. The television industry has made excellent use of these addresses.

As you can tell from Table 19.3, some of these TLDs are restricted and either man-
aged by ICANN or somehow sponsored by an authority agreed upon to manage
assigning unique names within their domain. The open, general-use TLDs like .com,
.net, and .org are managed by ICANN.

Domain names within these top-level domains are issued by ICANN or another
sponsoring authority. When you register for a domain name, you have to provide
all kinds of information, but the really important piece of information is the primary
name server. The primary name server is the IP address of the computer that retains
the authoritative version of your domain name. It propagates this information to
other name servers all over the Internet. Name servers generally update themselves
every few hours. Any new or changed domain name takes a few days to register
with enough name servers to be resolved quickly by anyone on the Internet.

I’ll show you how to use the sockets API to find Internet addresses in just a bit.

Useful Programs and Files

There are a few useful programs you’ll find installed on virtually any computer,
UNIX or Windows. You’ll use them for checking Internet connectivity and other use-
ful things. They are listed in Table 19.4.

Table 19.3 Top-Level Domains

TLD Description

.edu Educational institutions, mainly in the U.S. (reserved)

.gov United States government (reserved)

.int International organizations (reserved)

.mil United States military (reserved)

.com Commercial (open for general use)

.net Networks (open for general use)

.org Organizations (open for general use)

How the Internet Works 649

Sockets API

Well, I’ve now given you enough knowledge to be dangerous. All you need is some
source code. The sockets API is divided into a few different useful areas of code.

n Utility functions

n Domain Name Service (DNS) functions

n Initialization and shutdown

n Creating sockets and setting socket options

n Connecting client sockets to a server

n Server functions

n Reading and writing from sockets

Table 19.4 Useful Programs and Files for Internet Work

Name Description

ping This little program attempts to send information to another computer
and tells you the time in milliseconds it took for the packets to arrive.
The other computer must be set up to answer, which might not be the
case if the computer is behind a firewall.

netstat This program can show you the state of current sockets on your com-
puter. It can tell you if they are listening for connections, connected, or
about to be closed.

tracert This program tells you what Internet hops your packets have to make
before they are received by the host computer.

Telnet This program attaches to a host computer and sends/receives text mes-
sages. It can be great for debugging network code if your debug code
can send/receive in text mode.

hosts This is a file that holds locally overridden DNS information. If you want to
force a DNS name like goober.mcfly.com to be any legal IP address, you
can do it in this file. On Windows machines, look for it in the system32\

drivers\etc directory. Windows machines also have a file lmhosts, which
stands for LanManHosts, which is used by the Windows peer networking
protocol, or SMB protocol. UNIX machines running the free Samba server
may also have an lmhosts file.

650 Chapter 19 n Network Programming for Multiplayer Games

Sockets Utility Functions

There are some useful conversion functions that help you deal with Internet
addresses and data that has been sent by another computer. The first two functions,
inet_addr() and inet_ntoa(), perform conversions from a text string dotted
decimal IP address and the four-byte unsigned integer. You’ll notice the input
parameter for inet_ntoa() is a structure called in_addr:

The in_addr structure is something that helps you break up IP addresses into their
component parts. It’s not just a normal unsigned integer, because the values of the
bytes are in a specific order. This might seem confusing until you recall that different
machines store integers in Big-endian or Little-endian order. In a Big-endian system,
the most significant value in the sequence is stored at the lowest storage address (for
example, “big end first”). In a Little-endian system, the least significant value in the
sequence is stored first. Take a look at how the two systems store the 4-byte integer
0x80402010:

Big-endian 80 40 20 10

Little-endian 10 20 40 80

They are exactly backward from each other. Intel processors use Little-endian, and
Motorola processors use Big-endian. The Internet standard is Big-endian. Some pro-
cessors such as ARM and PowerPC are actually bi-endian and have the ability to
switch between the two, typically on startup. This means that you have to be really
careful with the data you get from strange computers because it might be in the
wrong order. For certain sockets data structures, you are also expected to put things
in network order. Luckily, there are some helper functions for that.

unsigned long inet_addr(

const char* cp

);

Takes a string value like 127.0.0.1 and con-
verts it to an unsigned integer you can use as
an IP address.

char* FAR inet_ntoa(

struct in_addr in

);

Takes an in_addr structure and converts it to a
string. Note: Copy the string from the return
pointer; don’t assume it will be there for long.
It points to a static char buffer and may be
overwritten the next time a socket’s function is
called.

Sockets API 651

The Rules Are There for a Reason

It’s a good idea to always use the converter functions, even if you know you’ll
never have an Internet application that has to talk to something with a
different endian-ness. After all, there were a lot of programmers in the
1960s that never thought they’d need more than two digits to store the
year, right?

The helper functions convert 4-byte and 2-byte values to and from network order:

Here’s a short bit of code that uses the utility/conversion functions:

unsigned long ipAddress = inet_addr(“128.64.16.2”);

struct in_addr addr;

addr.S_un.S_addr = htonl(0x88482818);

char ipAddressString[16];

strcpy(ipAddressString, inet_ntoa(addr));

printf(“0x%08x 0x%08x %s\n:”, ipAddress, addr.S_un.S_addr, ipAddressString);

The output, on my decidedly Little-endian Intel-powered Dell laptop, is this:

0x02104080 0x18284888 136.72.40.24

u_long htonl(

u_long hostlong

);

Converts a 4-byte value from host-byte order to
network-byte order.

u_long ntohl(

u_long hostlong

);

Converts a 4-byte value from network-byte order to
host-byte order.

u_short htons(

u_short hostshort

);

Converts a 2-byte value from host-byte order to
network-byte order.

u_short ntohs(

u_short hostshort

);

Converts a 2-byte value from network-byte order to
host-byte order.

652 Chapter 19 n Network Programming for Multiplayer Games

The first value, 0x02104080, is the unsigned long that is the converted IP address for
128.64.16.2. This is already in network order, so you can use it in socket functions
without converting it. The next value, 0x18288488, shows you what happens when
you send 0x88482818 through the htonl() function on my Dell. Your mileage
may vary if you happen to use a non-Intel–based machine! The last string on the
output line is 136.72.40.24, which is the dotted decimal format for the IP address
given by htonl(0x88482818).

This can be devilishly confusing, so choose a nice calm day to start playing with net-
work programming.

Domain Name Service (DNS) Functions

The next set of functions helps you make use of DNS:

Both of these functions look up host information based on an address, either a text
string in dotted-decimal notation or an IP address in network order. Don’t let the
const char * fool you in gethostbyaddr() because it doesn’t want a text string.
Here’s a quick example of using both of these:

const char *host = “ftp.microsoft.com”;

struct hostent *pHostEnt = gethostbyname(host);

if (pHostEnt == NULL)

fprintf(stderr, “No such host”);

else

{

struct sockaddr_in addr;

memcpy(&addr.sin_addr,pHostEnt->h_addr,pHostEnt->h_length);

printf(“Address of %s is 0x%08x\n”, host, ntohl(addr.sin_addr.s_addr));

}

struct hostent* FAR gethostbyname(

const char* name

);

Retrieves host information, such as IP
address, from a dotted-decimal format
string, such as “www.yahoo.com.” If the
host doesn’t exist, you’ll get back NULL.

struct hostent* FAR gethostbyaddr(

const char* addr,

int len,

int type

);

Retrieves host information, such as IP
address, from an in_addr structure for
IPv4 or in6_addr structure for IPv6. If the
host doesn’t exist, you’ll get back NULL.

Sockets API 653

www.yahoo.com

Both functions return a pointer to a data structure, hostent. The data structure
stores information about the host, such as its name, IP address, and more. The struc-
ture is allocated and managed by the sockets system, so don’t do anything other than
read it. Notice the liberal sprinkling of network-to-host conversion functions.

The output of the code is this line:

Address of ftp.microsoft.com is 0xcf2e858c

Instead of using the gethostbyname() function, I could have used these lines and
used gethostbyaddr():

unsigned int netip = inet_addr(“207.46.133.140”);

pHostEnt = gethostbyaddr((const char *)&netip, 4, PF_INET);

The DNS lookup functions make it easy for you to specify IP addresses in a human-
readable form, which is important for setting up a server IP address in an options file
or in a dialog box without getting out the calculator.

DNS Functions Failing?

You can call the conversion functions anytime you want, but the DNS lookup
functions will fail if you try to call them before you’ve initialized the sockets
API.

Sockets Initialization and Shutdown

Even if you are programming Berkeley-style sockets on a Windows machine, you’ll
call the Windows Sockets API to initialize the sockets system and shut it down:

In the first function, WSAStartup(), you send in the version number of the sockets
implementation you want. At this writing, the most recent version of sockets is ver-
sion 2.2, and it has been that way for years. Notice that you want to send in the

int WSAStartup(

WORD wVersionRequested,

LPWSADATA lpWSAData

);

Initializes the Sockets API; you must call it
before calling any other sockets function.

int WSACleanup(void); Call this to deregister the application from
using sockets, usually in your application
cleanup code.

654 Chapter 19 n Network Programming for Multiplayer Games

minor version number in the high order byte and the major version in the low order
byte. If for some reason you wanted to initialize Windows Sockets version 2.0, you’d
send 0x0002 into the WSAStartup() function. As you can see below, you can also
use the MAKEWORD macro to set the version number properly.

WORD wVersionRequested = MAKEWORD(0, 2); // set to 2.0

WSADATA wsaData;

int err = WSAStartup(wVersionRequested, &wsaData);

WSAStartup() also takes a pointer to the WSADATA structure. This structure is filled
with data that describes the socket implementation and its current status, but that’s
about it.

WSACleanup() is called when you are ready to shut down your application.

Creating Sockets and Setting Socket Options

The embodiment of a socket is the socket handle. You should already be familiar
with using handles from working with resources in the resource cache. The difference
comes in the multistep manner in which you create a connected socket. The easiest
connection style is a client-side connection. Doing this requires three steps. First, you
ask the sockets API to create a socket handle of a particular type. You have the
option of changing socket options, which tells the sockets API more information
about how you want the socket to act. After that, you can connect the socket with
another computer. It is a little more involved than opening a file, but sockets are a
little more complicated.

socket()

The following is the API to create a socket, interestingly enough:

SOCKET socket (int address_family, int socket_type, int protocol);

Parameters:

n Address Family: Will always be PF_INET for communicating over the Internet
using IPv4. Other address families include PF_IPX, PF_DECnet, PF_APPLE-
TALK, PF_ATM, and PF_INET6.

n Socket Type: Use SOCK_STREAM for connected byte streams. SOCK_DGRAM is
for connectionless network communication, and SOCK_RAW is for raw sockets,
which lets you write socket programs at a lower level than TCP or UDP. You
will generally use SOCK_STREAM.

n Protocol: Use IPPROTO_TCP for TCP and IPPROTO_UDP for UDP sockets.

Sockets API 655

Return Value

The socket() function returns a valid handle for a socket if one was created or
INVALID_SOCKET if there was some kind of error.

Here’s an example of how to create a TCP socket handle:

SOCKET sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if ((sock == INVALID_SOCKET)

{

// handle error!

}

setsockopt()

Now that you have a socket handle, you can decide how you’d like the socket to act
when it is open. You do this by setting the socket options through a function called
setsockopt(). There is a wide variety of options, and I’m happy to show you some
common ones, specifically the ones used in the client/server code in this chapter.
Make sure you look at the complete sockets documentation for socket options. I’m
only scratching the surface here.

int setsockopt (

SOCKET socket,

int level,

int optionName,

const char* optionValue,

int optLen);

Parameters:

n Socket: A valid socket handle.

n Level: Either SOL_SOCKET or IPPROTO_TCP, depending on the option chosen.

n Option Name: The identifier of the socket option you want to set.

n Option Value: The address of the new value for the option. For Boolean values,
you should send in a 4-byte integer set to either 1 or 0.

n Option Length: The length in bytes of the option value.

Return Value:

Returns zero if the option was set or SOCKET_ERROR if there was an error.

Here are some examples of setting socket options:

int value = 1;

setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(value));

656 Chapter 19 n Network Programming for Multiplayer Games

setsockopt(sock, SOL_SOCKET, SO_DONTLINGER, (char *)&value, sizeof(value));

setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, (char *)&value, sizeof(value));

The first option, TCP_NODELAY, disables an internal buffering mechanism in an
attempt to sacrifice some network bandwidth for a speedier sending of packets. It is
especially important when you want to send a high number of small packets, as is
common in many multiplayer computer games.

The next option, SO_DONTLINGER, ensures a speedy return from a call to close the
socket. The socket will be closed gracefully, but the call will essentially happen in the
background. This is a clear win for any application that has to support a high num-
ber of connections, but it is still good for a computer game, no matter how many
connections you have.

The last one of interest is SO_KEEPALIVE. It sends a packet of data at regular inter-
vals if no other data has been sent. The default interval is two hours, but on some
systems it can be configurable. This is probably only useful for a server system that
supports a high number of connections. In a multiperson shooter, it will be pretty
obvious if someone’s remote connection goes dark.

ioctlsocket()

Another useful socket control function is ioctlsocket(), which has a few uses, but
the most important one to you, the fledgling multiplayer game programmer, is to set
whether a socket is a blocking socket or a nonblocking socket:

int ioctlsocket(SOCKET s, long command, u_long* argumentPointer);

Parameters:

n Socket: A valid socket handle.

n Command: FIONBIO controls blocking. FIONREAD will return the number of
bytes ready in the socket’s input buffer, and SIOCATMARK will tell you if there is
any out-of-band (OOB) data to be read. OOB data is only available for sockets
that have the SO_OOBINLINE socket options set.

n Argument Pointer: A pointer to a u_long that holds the argument to the
command or stores the result of the command.

Return Value:

Returns zero if the option was set or SOCKET_ERROR if there was an error.

A blocking socket is one that will wait to send or receive data. A nonblocking socket
performs these tasks asynchronously. When you call the socket’s function to receive
data on a blocking socket, it won’t return until there is actually data to receive.

Sockets API 657

Blocking sockets are easier to program, but they aren’t nearly as useful in game pro-
gramming. Imagine using a blocking socket on a multiplayer game. Each client would
be completely stopped, frozen in place, until some data was received. A nonblocking
socket is the only way a game can continue processing anything in the same thread,
which is why it is used overwhelmingly over the blocking sort.

Here’s how you call the ioctlsocket() function to set your socket to nonblocking:

unsigned long val = 1; // 1=non blocking, 0=blocking

ioctlsocket(m_sock, FIONBIO, &val);

There’s one thing you should watch out for, however. You can only call this function
on a “live” socket, meaning that it is a client socket that has been connected to a
server or a server socket that is listening for clients.

Connecting Sockets to a Server and Understanding Ports

Once you have a socket handle and set the options with ioctlsocket(), the socket
will be ready to connect to another computer. For a socket to connect, the computer
accepting the connection must be listening for it. This differentiates server-side sock-
ets from client-side sockets, even though they all use the same SOCKET handle struc-
ture and they all use the same functions to send and receive data.

For now, imagine you are simply creating a socket to attach to something like an FTP
server, such as ftp.microsoft.com. Here you are, over a dozen pages into a networking
chapter, and I haven’t even mentioned ports yet. Well, I can’t put it off any longer.

The designers of the Internet realized that computers on the Internet might have multi-
ple connections to other computers simultaneously. They facilitated this by adding ports
to the IP protocol. In addition to specifying an IP address of a computer, you must
specify a port as well. Ports can be numbered from 1 to 65535, where 0 is reserved.
Various client/server applications like FTP and Telnet use well-known port assignments,
which is simply an agreement that certain server applications will use certain ports.
Most popular server applications like Telnet and FTP use ports in the 0–1024 range,
but new server applications, like those for common chat programs and multiplayer
games, use higher port numbers. For example, Doom used port 666—quite appropriate!
The choice of port is fairly arbitrary. The only real limitation is that you can’t have two
different applications on the same server listening on the same port number.

If you are creating a server, it’s up to you to choose a good port that isn’t already
dominated by something else that everyone uses. There are plenty to go around,
and some quick searches on the Internet will give you plenty of current information
about which applications are using which port.

658 Chapter 19 n Network Programming for Multiplayer Games

The port and IP address make a unique connection identifier. A server that listens on a
particular port, like 21 for FTP, can accept many hundreds, if not thousands, of con-
nections. A client can even make multiple connections to the same server on the same
port. The IP protocol distinguishes actual connections internally, so they don’t get con-
fused, although I’d hate to be a programmer trying to debug an application like that!

connect()

Enough already. Here’s the API for actually connecting a socket to a server that is
listening for connections:

int connect(SOCKET s, const struct sockaddr* name, int namelen);

Parameters:

n Socket: A valid socket handle.

n Name: A structure that holds the address family, port, and address of the server.

n NameLen: Always sizeof(struct sockaddr).

Return Value:

Returns zero if the function succeeded or SOCKET_ERROR if there was an error.

Here’s an example of how you connect a socket:

struct sockaddr_in sa;

sa.sin_family = AF_INET;

sa.sin_addr.s_addr = htonl(ip);

sa.sin_port = htons(port);

if (connect(m_sock, (struct sockaddr *)&sa, sizeof(sa)))

{

// HANDLE ERROR HERE

}

The address family is set to AF_INET since we’re using the Internet. The IP address
and port are set, and the structure is sent into the connect() function along with
the socket handle. If this didn’t work for some reason, there are two things to try to
help figure out what the problem is.

n First, try connecting with Telnet, one of the utility programs you can access
from the command line. If it doesn’t work, there’s something wrong with the
address or port, or perhaps your network can’t see the remote computer.

n If Telnet works, try reversing the byte order of the port or IP address. This is
easy to screw up.

Sockets API 659

Server Functions

You’ve seen how to create sockets on the client side, so now you’re ready to create a
server-side socket. You create the socket handle with the same socket() function
you saw earlier, and you are free to also call the setsockopt() function to set the
options you want. Instead of calling connect(), though, you call two other func-
tions: bind() and listen().

bind()

A server has to bind a socket to a particular IP address and port within the system
before it can accept connections. After it is bound to an address and a port, you call
listen() to open the server side for client connections:

int bind(SOCKET s, const struct sockaddr* name, int namelen);

Parameters:

n Socket: A valid socket handle.

n Name: A structure that holds the address family, port, and address of the server.

n NameLen: Always sizeof(struct sockaddr).

Return Value:

Returns zero if the function succeeded or SOCKET_ERROR if there was an error.

Here’s an example of how you bind a socket to a particular port using the local IP
address of the server. The port is specified in the struct sockaddr in network byte
order. The address family is AF_INET for Internet addresses, and since we want the
socket to be bound to the local IP address, the address member is set to ADDR_ANY.

struct sockaddr_in sa;

sa.sin_family = AF_INET;

sa.sin_addr = ADDR_ANY;

sa.sin_port = htons(portnum);

if (bind(m_sock, (struct sockaddr *)&sa, sizeof(sa)))

{

// HANDLE ERROR HERE

}

listen()

After you’ve bound a socket to a particular port, you can open it up to accept con-
nections with the listen() function:

int listen(SOCKET s, int backlog);

660 Chapter 19 n Network Programming for Multiplayer Games

Parameters:

n Socket: A valid socket handle.

n Backlog: The maximum length of the queue of incoming connections. Set it to
SOMAXCONN if you want the underlying service provider to use its default value.
If a client attempts to connect and the backlog is full, the connection will be
refused.

Return Value:

Returns zero if the function succeeded or SOCKET_ERROR if there was an error.

Here’s an example of using listen() to set the backlog to 256:

if (listen(m_sock, 256) == SOCKET_ERROR)

{

// HANDLE ERROR HERE

}

accept()

When a remote client attaches to the listen socket with connect(), the server side
will detect input on the listen socket. Exactly how this happens you’ll see in a
moment with the select() function. Once input is detected on a listen socket,
you call accept() to establish the connection.

SOCKET accept(SOCKET listenSock, const struct sockaddr* name, int namelen);

Parameters:

n Listen Socket: A valid socket handle to a listen socket.

n Name: A structure that receives the address of the connecting client.

n NameLen: Always sizeof(struct sockaddr).

Return Value:

Returns zero if the function succeeded or INVALID_SOCKET if there was an error.

There are a few things to be aware of when using accept(). First and foremost, it
will block if there are no client connections ready and the listen socket is set to block-
ing. If the listen socket is set to nonblocking and there are no client connections
ready, it will return an error and could put the listen socket in an unusable state.
Basically, don’t call accept() until you have input on the listen socket connection
and you can be sure you have at least one client ready to start talking. You can check
for this by calling the select() function, which is up next.

Sockets API 661

select()

The last server-side method is select(). This function lets you poll the state of all
your open sockets. You create three arrays of socket pointers that will be polled. The
first set will be polled for input, the second set for output, and the third set for excep-
tions. Here’s the fd_set structure definition and the definition for select().

typedef struct fd_set {

u_int fd_count;

SOCKET fd_array[FD_SETSIZE];

} fd_set;

int select(

int nfds,

fd_set* readfds,

fd_set* writefds,

fd_set* exceptfds,

const struct timeval* timeout);

Parameters:

n nfds: Ignored in WinSock; only included for compatibility with Berkeley sockets.

n readfds, writefds, exceptfds: The arrays of pointers to sockets to be
polled for input, output, and exceptions.

n timeout: A pointer to a timeout structure. Set it to NULL if you want
select() to block until something happens on one of the sockets, or set it to a
valid timeout structure with all zeros to make a quick poll.

Return Value:

Returns zero if the function timed out, SOCKET_ERROR if there was an error, or the
number of sockets contained within the structures that are ready to process.

This function is a real boon for the server-side programmer. It helps with servers that
have tons of client connections and you don’t want to block on any of them, whether
they are set to blocking or nonblocking. This function can tell your program which
sockets are ready to read from, write to, or have suffered an exception of some kind.

Maximum Client Connections Is 64 by Default

By default, the fd_set structure can hold 64 sockets. That size is defined as
FD_SETSIZE in the WINSOCK2.H header file. In C++, you can define your own
FD_SETSIZE, as long as it’s defined before the WINSOCK2 header file is included.
You can set this compiler #define in the command line or project properties. If it
is defined anywhere after #include WinSock2.h, it will break horribly.

662 Chapter 19 n Network Programming for Multiplayer Games

Socket Reading and Writing

The two most common functions used for sending and receiving data are send() and
recv(). They each take similar parameter lists, with the exception that they use dif-
ferent flags, and one of them will clearly stomp all over the buffer you send in.

int send(SOCKET s, const char* buffer, int length, int flags);

int recv(SOCKET s, char* buffer, int length, int flags);

Parameters:

n Socket: A valid socket handle.

n Buffer: Either the source data buffer for sending or the destination buffer for
receiving.

n Length: The size of the buffer in bytes.

n Flags:

l For send: MSG_DONTROUTE informs sockets you don’t want the data routed,
which can be ignored on WinSock. MSG_OOB tells sockets to send this packet
as out-of-band data.

l For recv: MSG_PEEK peeks at the data but doesn’t remove it from the input
buffer, and MSG_OOB processes out-of-band data.

Return Value:

Returns the number of bytes actually sent or received or SOCKET_ERROR if there was
an error. The recv() function will return 0 if the socket was gracefully closed.

There are a few points to clarify. If you have a 10-byte receive buffer, and there are
20 bytes ready to read, the remaining 10 bytes will be there when you call recv() a
second time. Conversely, if you have a 10-byte buffer, and there are only 5 bytes
ready to read, the function will dutifully return 5, and the first 5 bytes of your buffer
will have new data.

That’s certainly a whirlwind tour of the most used socket functions. There are cer-
tainly more of them to learn, but what you just read will give you an excellent start.
What you are about to see next is one way to organize these C functions into a usable
set of classes designed to make your single-player game a multiplayer game.

Making a Multiplayer Game with Sockets

If you’ve followed the advice in this book, you’ve organized your game into three
major components: the application layer, the game logic layer, and the game view
layer. The game logic and game view can call directly into the application layer for

Making a Multiplayer Game with Sockets 663

performing tasks like opening files and allocating memory. The game view and game
logic talk to each other through an event system, as described in Chapter 11, “Game
Event Management.”

If you guessed that the socket classes belong in the application layer, you’d be exactly
right. They are similar to files, really, in that they provide a stream of data your game
can use. Sockets also tend to be slightly different on Windows and UNIX platforms,
which is another good reason to stick them in the application layer.

I provided an important diagram in Chapter 2, “What’s in a Game?,” to describe how
the logic/view architecture could easily support a networked game. Figure 19.1 shows
this diagram again so that you don’t have to go all the way back to Chapter 2.

Recall that this game architecture supports game logic and multiple views of that logic.
These might include a human player view, an AI player view, and a remote player
view. The events that are being generated by the authoritative machine acting as the
game server can be serialized, sent over the Internet, and reconstructed as the same
events on the remote machine. The remote machine can also send events in the form
of game commands, like “fire my 105mm cannon at the n00b,” back to the server.

While this high-level explanation seems easy, the reality is, as always, a bit more
complicated. I’ll take you through the whole thing, step-by-step. I’m going to break
this job into four pieces so your brains don’t explode.

n Packet Classes: Create objects to handle packets of data that will be sent and
received through socket connections.

n Core Socket Classes: Create base objects to handle client connections.

n Core Server Classes: Create base objects to handle server connections.

n Wire Socket Classes into the Event System: Create an event forwarder that lis-
tens to events locally and sends them on to a remote computer.

Figure 19.1
A remote game client attaching to a server.

664 Chapter 19 n Network Programming for Multiplayer Games

One thing you should know right away—all the code samples in this chapter assume
a single-threaded environment. There are plenty of network programming examples
out there that use one thread per connection and blocking calls to every socket. This
may be an easy way to implement network communications, but it isn’t the most
efficient way.

Packet Classes

Data that is sent or received via sockets has a format, just like any file you read from
beginning to end. The format of the data will usually come in chunks, or packets, of
discrete units, each of which is essentially a stand-alone piece of data. The format and
interpretation of these packets is totally up to you. Just as you define the structure of
your data files, you can define the structure of your packet stream. These packets
might carry username and password data, data for events like “Change Game State”
or “Move Actor,” or game commands like “Set Throttle to 100%.”

As your program reads data from a socket, it needs to have some way of determining
what kind of packet is coming in and how many bytes to expect. When the correct
number of bytes is ready, the packet is read from the socket as an atomic unit, encap-
sulated with a C++ packet object, and then handled by your game.

The exact opposite happens when you want to send a packet. The block of bytes that
makes up the packet is assembled, or streamed, into a memory buffer. The size of the
buffer is sent along with the packet as well

Most multiplayer games send binary data over network connections. This is because the
information in the packets contains things like game events, movement deltas, and
game commands that can be encoded very efficiently in a binary format. If this data
were sent in clear text, it would be much larger. Think of it as the same thing as storing
your data in a database or XML. XML might be easier to read, but it takes more space.

This packet class is for binary formatted packets. It allocates its own buffer of bytes
and stores the size of the buffer in the first four bytes, but note that it stores them in
network order. This is generally a good idea, even though I know I might never be
using this system on anything other than my Dell.

class BinaryPacket

{

protected:

char *m_Data;

public:

inline BinaryPacket(char const * const data, u_long size);

inline BinaryPacket(u_long size);

Making a Multiplayer Game with Sockets 665

virtual ~BinaryPacket() { SAFE_DELETE(m_Data); }

virtual char const * const VGetData() const { return m_Data; }

virtual u_long VGetSize() const { return ntohl(*(u_long *)m_Data); }

inline void MemCpy(char const *const data, size_t size, int destOffset);

};

Here I’ve defined two different constructors, both of which take the size of the buffer
as an expected parameter. The first one takes a pointer to a data buffer that the
BinaryPacket object will copy into its own buffer. The second expects the API pro-
grammer, that’s you, to make repeated calls to MemCpy() to fill the buffer.

Here’s the implementation of the constructors and MemCpy():

inline BinaryPacket::BinaryPacket(char const * const data, u_long size)

{

m_Data = GCC_NEW char[size + sizeof(u_long)];

assert(m_Data);

*(u_long *)m_Data = htonl(size+sizeof(u_long));

memcpy(m_Data+sizeof(u_long), data, size);

}

inline BinaryPacket::BinaryPacket(u_long size)

{

m_Data = GCC_NEW char[size + sizeof(u_long)];

assert(m_Data);

*(u_long *)m_Data = htonl(size+sizeof(u_long));

}

inline void BinaryPacket::MemCpy(char const *const data, size_t size, int destOffset)

{

assert(size+destOffset <= VGetSize()-sizeof(u_long));

memcpy(m_Data + destOffset + sizeof(u_long), data, size);

}

Core Socket Classes

As you might expect, I’ve written a class to encapsulate a socket handle. It has four
virtual functions that can be overridden by implementers of child classes, or the class
can even be used as-is.

#define MAX_PACKET_SIZE (256)

#define RECV_BUFFER_SIZE (MAX_PACKET_SIZE * 512)

class NetSocket

{

friend class BaseSocketManager;

typedef std::list< shared_ptr <IPacket> > PacketList;

666 Chapter 19 n Network Programming for Multiplayer Games

public:

NetSocket(SOCKET new_sock, unsigned int hostIP);

virtual ~NetSocket();

bool Connect(unsigned int ip, unsigned int port, bool forceCoalesce = 0);

void SetBlocking(bool blocking);

void Send(shared_ptr<IPacket> pkt, bool clearTimeOut=1);

virtual int VHasOutput() { return !m_OutList.empty(); }

virtual void VHandleOutput();

virtual void VHandleInput();

virtual void VTimeOut() { m_timeOut=0; }

void HandleException() { m_deleteFlag j= 1; }

void SetTimeOut(unsigned int ms=45*1000) { m_timeOut = timeGetTime() + ms; }

int GetIpAddress() { return m_ipaddr; }

protected:

SOCKET m_sock; // the socket handle

int m_id; // a unique ID given by the socket manager

// note: if deleteFlag has bit 2 set, exceptions only close the

// socket and set to INVALID_SOCKET, and do not delete the NetSocket

int m_deleteFlag;

PacketList m_OutList; // packets to send

PacketList m_InList; // packets just received

char m_recvBuf[RECV_BUFFER_SIZE]; // receive buffer

unsigned int m_recvOfs, m_recvBegin; // tracking the read head of

// the buffer

int m_sendOfs; // tracking the output buffer

unsigned int m_timeOut; // when will the socket time out

unsigned int m_ipaddr; // the ipaddress of the remote connection

int m_internal; // is the remote IP internal or external?

int m_timeCreated; // when the socket was created

};

The class is relatively self-documenting, but there are a couple of things worthy of
discussion. The m_deleteFlag member helps handle reconnections if the remote
side drops out for a little while. Next, the input and output lists are ordered lists of
packets to be sent and received, and they are implemented as STL lists. There is no
output buffer, since it can use the already allocated memory of the packets in the
output list. There is an input buffer, since you’ll use it to compose packets as they
stream in from the remote computer.

Making a Multiplayer Game with Sockets 667

Also, note the maximum packet size and the size of the receive buffer defined just
before the class. These sizes are totally up to you and what you expect to receive in
the way of packets from the remote computers. Your mileage may vary with different
choices, especially in terms of server memory. If you expect to have a few hundred
clients attached, this memory buffer can get pretty big indeed.

Here are the constructors and destructor:

NetSocket::NetSocket()

{

m_sock = INVALID_SOCKET;

m_deleteFlag = 0;

m_sendOfs = 0;

m_timeOut = 0;

m_recvOfs = m_recvBegin = 0;

m_internal = 0;

m_bBinaryProtocol = 1;

}

NetSocket::NetSocket(SOCKET new_sock, unsigned int hostIP)

{

// set everything to zero

m_deleteFlag = 0;

m_sendOfs = 0;

m_timeOut = 0;

m_recvOfs = m_recvBegin = 0;

m_internal = 0;

// check the time

m_timeCreated = timeGetTime();

m_sock = new_sock;

m_ipaddr = hostIP;

// ask the socket manager if the socket is on our internal network

m_internal = g_pSocketManager->IsInternal(m_ipaddr);

setsockopt (m_sock, SOL_SOCKET, SO_DONTLINGER, NULL, 0);

}

NetSocket::~NetSocket()

{

if (m_sock != INVALID_SOCKET)

{

closesocket(m_sock);

668 Chapter 19 n Network Programming for Multiplayer Games

m_sock = INVALID_SOCKET;

}

}

The two different constructors handle two different cases when creating network
connections. The default constructor handles the case where a client wishes to con-
nect to a server. The second constructor, using an already initialized socket handle,
handles the server side.

The next method is called when you want to connect a new NetSocket to a server
listening for connections.

bool NetSocket::Connect(unsigned int ip, unsigned int port, bool forceCoalesce)

{

struct sockaddr_in sa;

int x = 1;

// create the socket handle

if ((m_sock = socket(AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)

return false;

// set socket options - in this case turn off Nagle algorithm if desired

if (!forceCoalesce)

setsockopt(m_sock, IPPROTO_TCP, TCP_NODELAY, (char *)&x, sizeof(x));

// last step - set the IP address and port of the server, and call connect()

sa.sin_family = AF_INET;

sa.sin_addr.s_addr = htonl(ip);

sa.sin_port = htons(port);

if (connect(m_sock, (struct sockaddr *)&sa, sizeof(sa)))

{

closesocket(m_sock);

m_sock = INVALID_SOCKET;

return false;

}

return true;

}

Just as described in the socket primer earlier in this chapter, the process for connect-
ing a socket to a server has three steps. First, you create the socket handle. Second,
you call the socket options. In this case, NetSocket supports disabling the packet-
grouping algorithm by default. This increases network traffic, but it can improve per-
formance if you send/receive tons of tiny packets, like games tend to do. Finally, you
connect the socket to the remote server.

Making a Multiplayer Game with Sockets 669

Right after the socket is connected, you probably want to set it to nonblocking.
Here’s a method that does exactly that, and it is exactly like you saw in the primer:

void NetSocket::SetBlocking(bool blocking)

{

unsigned long val = blocking ? 0 : 1;

ioctlsocket(m_sock, FIONBIO, &val);

}

It’s now time to learn how this class sends packets to the remote computer. When-
ever you have a packet you want to send, the Send() method simply adds it to the
end of the list of packets to send. It doesn’t send the packets right away. This is done
once per update loop by the Send() method:

void NetSocket::Send(shared_ptr<IPacket> pkt, bool clearTimeOut)

{

if (clearTimeOut)

m_timeOut = 0;

m_OutList.push_back(pkt);

}

The VHandleOutput() method’s job is to iterate the list of packets in the output list
and call the socket’s send() API until all the data is gone or there is some kind of
error.

void NetSocket::VHandleOutput()

{

int fSent = 0;

do

{

GCC_ASSERT(!m_OutList.empty());

PacketList::iterator i = m_OutList.begin();

shared_ptr<IPacket> pkt = *i;

const char *buf = pkt->VGetData();

int len = static_cast<int>(pkt->VGetSize());

int rc = send(m_sock, buf+m_sendOfs, len-m_sendOfs, 0);

if (rc > 0)

{

g_pSocketManager->AddToOutbound(rc);

m_sendOfs += rc;

fSent = 1;

}

else if (WSAGetLastError() != WSAEWOULDBLOCK)

670 Chapter 19 n Network Programming for Multiplayer Games

{

HandleException();

fSent = 0;

}

else

{

fSent = 0;

}

if (m_sendOfs == pkt->VGetSize())

{

m_OutList.pop_front();

m_sendOfs = 0;

}

} while (fSent && !m_OutList.empty());

}

The idea behind reading the socket for input is similar, but there’s some buffer man-
agement to worry about. For efficiency’s sake, there’s a single monolithic buffer for
each NetSocket object. Depending on how the remote sends data, you might get
your packet in chunks. TCP is guaranteed to send things in the right order, and it
won’t split them up, but you might attempt to send something large, like a movie
file. In any case, you want to collect bytes in the read buffer until you have a valid
packet and then copy those bytes into a dynamic data structure like BinaryPacket
so your game can process it.

Since you might receive multiple packets in a single read, the read buffer operates in
a round-robin fashion. The read/write heads continually advance until they get too
close to the end of the buffer, and then they copy any partial packets to the beginning
of the buffer and start the whole process over.

void NetSocket::VHandleInput()

{

bool bPktReceived = false;

u_long packetSize = 0;

int rc = recv(m_sock,

m_recvBuf+m_recvBegin+m_recvOfs,

RECV_BUFFER_SIZE-(m_recvBegin+m_recvOfs), 0);

if (rc==0)

return;

if (rc == SOCKET_ERROR)

{

m_deleteFlag = 1;

Making a Multiplayer Game with Sockets 671

return;

}

const int hdrSize = sizeof(u_long);

unsigned int newData = m_recvOfs + rc;

int processedData = 0;

while (newData > hdrSize)

{

packetSize = *(reinterpret_cast<u_long*>(m_recvBuf+m_recvBegin));

packetSize = ntohl(packetSize);

// we don’t have enough new data to grab the next packet

if (newData < packetSize)

break;

if (packetSize > MAX_PACKET_SIZE)

{

// prevent nasty buffer overruns!

HandleException();

return;

}

if (newData >= packetSize)

{

// we know how big the packet is...and we have the whole thing

shared_ptr<BinaryPacket> pkt(

GCC_NEW BinaryPacket(

&m_recvBuf[m_recvBegin+hdrSize], packetSize-hdrSize));

m_InList.push_back(pkt);

bPktRecieved = true;

processedData += packetSize;

newData -= packetSize;

m_recvBegin += packetSize;

}

}

g_pSocketManager->AddToInbound(rc);

m_recvOfs = newData;

if (bPktRecieved)

{

if (m_recvOfs == 0)

{

m_recvBegin = 0;

672 Chapter 19 n Network Programming for Multiplayer Games

}

else if (m_recvBegin + m_recvOfs + MAX_PACKET_SIZE > RECV_BUFFER_SIZE)

{

// we don’t want to overrun the buffer - so we copy the leftover bits

// to the beginning of the receive buffer and start over

int leftover = m_recvOfs;

memcpy(m_recvBuf, &m_recvBuf[m_recvBegin], m_recvOfs);

m_recvBegin = 0;

}

}

}

Easy to Read or Super Efficient? Do Both!

When you define your packet definitions and protocols, make sure you can
easily switch between a tight, efficient packet definition and an easy-to-read
definition such as clear text. You’ll use one for production, but the other is
invaluable for debugging.

A Socket Class for Listening

A listen socket is an easy extension of the NetSocket class. It adds the capability to
listen for client connections and accept them, adding new sockets to the global socket
manager:

class NetListenSocket: public NetSocket

{

public:

NetListenSocket() { };

NetListenSocket(int portnum) { port = 0; Init(portnum); }

void Init(int portnum);

SOCKET AcceptConnection(unsigned int *pAddr);

unsigned short port;

};

There are five steps to create a listen socket: You create a socket handle, set the
socket options, bind the socket to a listen port, set it to nonblocking, and finally call
listen().

void NetListenSocket::Init(int portnum)

{

struct sockaddr_in sa;

int value = 1;

Making a Multiplayer Game with Sockets 673

// create socket handle

if ((m_sock = socket(AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)

{

GCC_ERROR(“NetListenSocket Error: Init failed to create socket handle”);

}

// set socket options to reuse server socket addresses even if they are

// busy - this is important if your server restarts and you don’t want

// to wait for your sockets to time out.

if (setsockopt(m_sock, SOL_SOCKET, SO_REUSEADDR,

(char *)&value, sizeof(value))== SOCKET_ERROR)

{

closesocket(m_sock);

m_sock = INVALID_SOCKET;

GCC_ERROR(“NetListenSocket Error: Init failed to set socket options”);

}

memset(&sa, 0, sizeof(sa));

sa.sin_family = AF_INET;

sa.sin_addr.s_addr = ADDR_ANY;

sa.sin_port = htons(portnum);

// bind to port

if (bind(m_sock, (struct sockaddr *)&sa, sizeof(sa)) == SOCKET_ERROR)

{

closesocket(m_sock);

m_sock = INVALID_SOCKET;

GCC_ERROR(“NetListenSocket Error: Init failed to bind”);

}

// set nonblocking - accept() blocks under some odd circumstances otherwise

SetBlocking(false);

// start listening

if (listen(m_sock, 256) == SOCKET_ERROR)

{

closesocket(m_sock);

m_sock = INVALID_SOCKET;

GCC_ERROR(“NetListenSocket Error: Init failed to listen”);

}

port = portnum;

}

If the listen socket gets any input, it means there’s a client ready to attach. The method
that handles the attachment and creates a new socket handle is AcceptConnection().

674 Chapter 19 n Network Programming for Multiplayer Games

SOCKET NetListenSocket::AcceptConnection(unsigned int *pAddr)

{

SOCKET new_sock;

struct sockaddr_in sock;

int size = sizeof(sock);

if ((new_sock = accept(m_sock, (struct sockaddr *)&sock, &size))==

INVALID_SOCKET)

return INVALID_SOCKET;

if (getpeername(new_sock, (struct sockaddr *)&sock, &size) == SOCKET_ERROR)

{

closesocket(new_sock);

return INVALID_SOCKET;

}

*pAddr = ntohl(sock.sin_addr.s_addr);

return new_sock;

}

This method is a simple wrapper around accept(), which does all the heavy lifting.
There’s a utility function, getpeername(), which basically grabs the IP address of
the new client and returns it in an output parameter.

You should be asking two questions right now. First, why don’t I simply create a
NetSocket() object right here and return that? Second, who or what actually calls
this AcceptConnect() method? The answer to the first question is: I don’t return a
NetSocket object because I assume you’ll want to create your own child class that
inherits from NetSocket but overloads the VHandleInput() and VHandleOut-

put() methods. You’ll see a class that does exactly that when I show you some more
server-side code. Here’s the answer to the second question: The server-side code
itself! You’ll see that in a few pages.

A Socket Manager Class

Sockets need a socket manager, whether they are on a client or on a server. A socket
manager organizes multiple sockets into a manageable group, takes care of handling
the initialization and shutdown of the sockets system, and provides some useful util-
ity functions. It also provides a useful base class for more specialized socket managers
for servers and clients.

class BaseSocketManager

{

public:

BaseSocketManager();

virtual ~BaseSocketManager() { Shutdown(); }

Making a Multiplayer Game with Sockets 675

bool Init();

void Shutdown();

int AddSocket(NetSocket *socket);

void RemoveSocket(NetSocket *socket);

bool Send(int sockId, shared_ptr<IPacket> packet);

void DoSelect(int pauseMicroSecs, int handleInput = 1);

void SetSubnet(unsigned int subnet, unsigned int subnetMask)

{

m_Subnet = subnet;

m_SubnetMask = subnetMask;

}

bool IsInternal(unsigned int ipaddr);

unsigned int GetHostByName(std::string hostName);

const char *GetHostByAddr(unsigned int ip);

void AddToOutbound(int rc) { m_Outbound += rc; }

void AddToInbound(int rc) { m_Inbound += rc; }

protected:

WSADATA m_WsaData; // describes sockets system implementation

typedef std::list<NetSocket *> SocketList;

typedef std::map<int, NetSocket *> SocketIdMap;

SocketList m_SockList; // a list of sockets

SocketIdMap m_SockMap; // a map from integer IDs to socket handles

int m_NextSocketId; // a ticker for the next socket ID

unsigned int m_Inbound; // statistics gathering - inbound data

unsigned int m_Outbound; // statistics gathering - outbound data

unsigned int m_MaxOpenSockets; // statistics gathering - max open sockets

unsigned int m_SubnetMask; // the subnet mask of the internal network

unsigned int m_Subnet; // the subnet of the internal network

NetSocket *FindSocket(int sockId);

};

One of the core features of the socket manager is the notion that each socket has a
companion identifier. In this implementation of the manager, a counter is used to
guarantee a unique ID for each socket in the system. This is different than a handle
because this ID could be something much more significant, such as a player ID

676 Chapter 19 n Network Programming for Multiplayer Games

number or an account ID number or whatever. On Ultima Online, this ID was a
unique player ID number that was assigned to it by the account login system when
new accounts were created. You can use whatever you want, but it is a good thing to
associate an unchanging ID number with each socket, since socket handles can
change if the socket is dropped and reconnected.

Another thing that the socket manager tracks is statistics for socket traffic and the
maximum number of sockets the manager has managed at one time. This can be
useful if you decide to track that sort of thing in production or even after release.
As an example, Ultima Online tracked all manner of statistics about player activity,
network activity, and so on.

If you set the subnet members, the socket manager can tell if a socket is coming from
an internal IP address. For example, it can ensure that an IP address is on the local
network and deny access from an IP address coming from the Internet. This feature
proved to be pretty useful to mask off special functions, like the “God” commands in
Ultima Online, from anyone outside of the development team.

Like other members of the application layer, the socket manager is a singleton object.
It can manage both client and listen sockets, although the implementations in this
chapter favor a straight client or straight server paradigm.

BaseSocketManager *g_pSocketManager = NULL;

BaseSocketManager::BaseSocketManager()

{

m_Inbound = 0;

m_Outbound = 0;

m_MaxOpenSockets = 0;

m_SubnetMask = 0;

m_Subnet = 0xffffffff;

g_pSocketManager = this;

ZeroMemory(&m_WsaData, sizeof(WSADATA));

}

bool BaseSocketManager::Init()

{

if (WSAStartup(0x0202, &m_WsaData)==0)

return true;

else

{

GCC_ERROR(“WSAStartup failure!”);

return false;

}

Making a Multiplayer Game with Sockets 677

}

void BaseSocketManager::Shutdown()

{

// Get rid of all those pesky kids...

while (!m_SockList.empty())

{

delete *m_SockList.begin();

m_SockList.pop_front();

}

WSACleanup();

}

You’ve seen before that performing any task that can fail in a constructor is generally
a bad idea. Therefore, the socket manager class uses an initialization method that can
return a Boolean value. It also uses a Shutdown() method apart from the destructor
so you can have more control over the life and death of sockets in your application.

Once a NetSocket object exists, it is added to the socket manager with the
AddSocket() method. It adds the socket to the socket list, updates the map of
socket IDs to socket handles, and updates the maximum number of sockets opened.
The RemoveSocket() method removes the socket from the list and the map, and
then it frees the socket.

int BaseSocketManager::AddSocket(NetSocket *socket)

{

socket->m_id = m_NextSocketId;

m_SockMap[m_NextSocketId] = socket;

++m_NextSocketId;

m_SockList.push_front(socket);

if (m_SockList.size()) > m_MaxOpenSockets)

++m_MaxOpenSockets;

return socket->m_id;

}

void BaseSocketManager::RemoveSocket(NetSocket *socket)

{

m_SockList.remove(socket);

m_SockMap.erase(socket->m_id);

SAFE_DELETE(socket);

}

Your game needs a high-level function to send a packet to a particular socket ID.
High-level game systems certainly won’t care to have a direct reference to a socket

678 Chapter 19 n Network Programming for Multiplayer Games

handle, so they use the socket ID to figure out which socket is going to get the
packet. In the case of a server system with hundreds of attached clients, this function
makes short work of finding a socket handle that corresponds to a generic socket ID.

NetSocket *BaseSocketManager::FindSocket(int sockId)

{

SocketIdMap::iterator i = m_SockMap.find(sockId);

if (i==m_SockMap.end())

return NULL;

return (*i).second;

}

bool BaseSocketManager::Send(int sockId, shared_ptr<IPacket> packet)

{

NetSocket *sock = FindSocket(sockId);

if (!sock)

return false;

sock->Send(packet);

return true;

}

The real meat of the socket manager class is DoSelect(). There are four stages of
this method:

n Set up which sockets are going to be polled for activity.

n Call the select() API.

n Handle processing of any socket with input, output, or exceptions.

n Close any sockets that need closing.

void BaseSocketManager::DoSelect(int pauseMicroSecs, int handleInput)

{

timeval tv;

tv.tv_sec = 0;

// 100 microseconds is 0.1 milliseconds or .0001 seconds

tv.tv_usec = pauseMicroSecs;

fd_set inp_set, out_set, exc_set;

int maxdesc;

FD_ZERO(&inp_set);

FD_ZERO(&out_set);

FD_ZERO(&exc_set);

maxdesc = 0;

Making a Multiplayer Game with Sockets 679

// set everything up for the select

for (SocketList::iterator i = m_SockList.begin();

i != m_SockList.end(); ++i)

{

NetSocket *pSock = *i;

if ((pSock->m_deleteFlag&1) jj pSock->m_sock == INVALID_SOCKET)

continue;

if (handleInput)

FD_SET(pSock->m_sock, &inp_set);

FD_SET(pSock->m_sock, &exc_set);

if (pSock->VHasOutput())

FD_SET(pSock->m_sock, &out_set);

if ((int)pSock->m_sock > maxdesc)

maxdesc = (int)pSock->m_sock;

}

int selRet = 0;

// do the select (duration passed in as tv, NULL to block until event)

selRet = select(maxdesc+1, &inp_set, &out_set, &exc_set, &tv) ;

if (selRet == SOCKET_ERROR)

{

GCC_ERROR(“Error in DoSelect!”);

return;

}

// handle input, output, and exceptions

if (selRet)

{

for (SocketList::iterator i = m_SockList.begin();

i != m_SockList.end(); ++i)

{

NetSocket *pSock = *i;

if ((pSock->m_deleteFlag&1) jj pSock->m_sock == INVALID_SOCKET)

continue;

if (FD_ISSET(pSock->m_sock, &exc_set))

pSock->HandleException();

if (!(pSock->m_deleteFlag&1) && FD_ISSET(pSock->m_sock, &out_set))

pSock->VHandleOutput();

680 Chapter 19 n Network Programming for Multiplayer Games

if (handleInput

&& !(pSock->m_deleteFlag&1) && FD_ISSET(pSock->m_sock, &inp_set))

{

pSock->VHandleInput();

}

}

}

unsigned int timeNow = timeGetTime();

// handle deleting any sockets

SocketList::iterator i = m_SockList.begin();

while (i != m_SockList.end())

{

pSock = *i;

if (pSock->m_timeOut && pSock->m_timeOut < timeNow)

pSock->VTimeOut();

if (pSock->m_deleteFlag&1)

{

switch (pSock->m_deleteFlag)

{

case 1:

g_pSocketManager->RemoveSocket(pSock);

i = m_SockList.begin();

break;

case 3:

pSock->m_deleteFlag = 2;

if (pSock->m_sock != INVALID_SOCKET)

{

closesocket(pSock->m_sock);

pSock->m_sock = INVALID_SOCKET;

}

break;

}

}

i++;

}

}

Notice the liberal use of FD_ZERO, FD_SET, and FD_ISSET. These are accessors to
the fd_set structures that are sent into the select() method and store the results.
This method’s job is to poll all the sockets you send into it for input, output, and
exceptions. The socket list is iterated three times in this method, which may seem

Making a Multiplayer Game with Sockets 681

inefficient. The truth is if you use select(), which polls sockets, the real ineffi-
ciency is inside the select statement itself. The other code doesn’t really take
that much more time. Sockets could also have their delete flags set inside calls to
VHandleInput() or VHandleOutput(), so it makes sense to iterate through
them after those methods are finished.

The code at the end of the method has two kinds of socket shutdown. The first, if the
delete flag is set to 1, removes the socket entirely from the socket manager. This
would occur if the socket were shut down elegantly from both sides, perhaps by trad-
ing an “L8R” packet or something. The second case allows the NetSocket object to
exist, but the socket handle will be shut down. This allows for a potential reconnec-
tion of a socket if a player drops off the game for a moment but then comes back. If
that happened, the unsent packets still in the NetSocket object would still be ready
to send to the newly reconnected player.

The DoSelect() method is the only thing you need to call in your main loop to
make the entire sockets system work. You’ll want to call this method after you tick
the Event Manager but before updating the game, assuming you are using the socket
system to send events across the network:

// allow event queue to process for up to 20 ms

IEventManager::Get()->VUpdate(20);

if (g_pApp->m_pBaseSocketManager)

g_pApp->m_pBaseSocketManager->DoSelect(0); // pause 0 microseconds

g_pApp->m_pGame->VOnUpdate(fTime, fElapsedTime);

The last three methods in the socket manager class are some utility methods. The
first one uses the subnet and subnet mask members to figure out if a particular IP
address is coming from the internal network or from somewhere outside.

bool BaseSocketManager::IsInternal(unsigned int ipaddr)

{

if (!m_SubnetMask)

return false;

if ((ipaddr & m_SubnetMask) == m_Subnet)

return false;

return true;

}

The next two methods wrap the DNS functions you already know how to use:
gethostbyname() and gethostbyaddr().

682 Chapter 19 n Network Programming for Multiplayer Games

unsigned int BaseSocketManager::GetHostByName(const std::string &hostName)

{

struct hostent *pHostEnt = gethostbyname(hostName.c_str());

struct sockaddr_in tmpSockAddr; //placeholder for the ip address

if(pHostEnt == NULL)

{

GCC_ERROR(“Error occurred”);

return 0;

}

memcpy(&tmpSockAddr.sin_addr,pHostEnt->h_addr,pHostEnt->h_length);

return ntohl(tmpSockAddr.sin_addr.s_addr);

}

const char *BaseSocketManager::GetHostByAddr(unsigned int ip)

{

static char host[32];

int netip = htonl(ip);

struct hostent *lpHostEnt = gethostbyaddr((const char *)&netip, 4, PF_INET);

if (lpHostEnt)

{

strcpy(host, lpHostEnt->h_name);

return host;

}

return NULL;

}

The BaseSocketManager class is about 99 percent of what you need to create a
client-side socket manager or a server-side socket manager. Classes that inherit
from it can make it easy to create connections between clients and servers.

Core Client-Side Classes

An easy example of an extension of the BaseSocketManager class is a class to
manage the client side of a game. Its job is to create a single socket that attaches to
a known server.

class ClientSocketManager : public BaseSocketManager

{

std::string m_HostName;

unsigned int m_Port;

public:

ClientSocketManager(const std::string &hostName, unsigned int port)

Core Client-Side Classes 683

{

m_HostName = hostName;

m_Port = port;

}

bool Connect();

};

bool ClientSocketManager::Connect()

{

if (!BaseSocketManager::Init())

return false;

RemoteEventSocket *pSocket = GCC_NEW RemoteEventSocket;

if (!pSocket->Connect(GetHostByName(m_HostName), m_Port))

{

SAFE_DELETE(pSocket);

return false;

}

AddSocket(pSocket);

return true;

}

I haven’t shown you the RemoteEventSocket class yet, so hang tight because you’ll
see it shortly. All you need to know for now is that RemoteEventSocket is an
extension of the NetSocket class, and it handles all the input and output for the
local game client. In practice, you define whatever socket you want to handle all
your client packets and initialize it in your version of the ClientSocketManager

class.

Here’s an example of how you might use this class to create a client connection to a
server at shooter.fragfest.com, listening on port 3709:

ClientSocketManager *pClient =

GCC_NEW ClientSocketManager(“shooter.fragfest.com”, 3709);

if (!pClient->Connect())

{

GCC_ERROR(“Couldn’t attach to game server.”);

}

Core Server-Side Classes

The server side is a little trickier, but not terribly so. The complexity comes from how
sockets work on the server side. Let’s review what happens on the server side once
the sockets system is running and the server has a listen socket open.

684 Chapter 19 n Network Programming for Multiplayer Games

n Initialize the server socket manager and attach a listen socket.

n Call DoSelect() on the server socket manager.

n If there’s input on the listen socket, create a new socket and attach it to the
socket manager.

n Handle input/output exceptions on all other sockets.

What we need is a class that extends NetListenSocket by overloading VHandle-

Input() to create new clients. The clients are encapsulated by the RemoteEvent-

Socket, which is the final piece to this puzzle. Its job is to send game events
generated on the server to a remote client and fool the client into thinking that the
events were actually generated locally.

class GameServerListenSocket: public NetListenSocket

{

public:

GameServerListenSocket(int portnum) { Init(portnum); }

void VHandleInput();

};

void GameServerListenSocket::VHandleInput()

{

unsigned int theipaddr;

SOCKET new_sock = AcceptConnection(&theipaddr);

int value = 1;

setsockopt(new_sock, SOL_SOCKET, SO_DONTLINGER,

(char *)&value, sizeof(value));

if (new_sock != INVALID_SOCKET)

{

RemoteEventSocket * sock =

GCC_NEW RemoteEventSocket(new_sock, theipaddr);

int sockId = g_pSocketManager->AddSocket(sock);

int ipAddress = g_pSocketManager->GetIpAddress(sockdId);

shared_ptr<EvtData_Remote_Client> pEvent (

GCC_NEW EvtData_Remote_Client(sockId, ipAddress));

IEventManager::Get()->VQueueEvent(pEvent);

}

}

Notice another cameo from Chapter 11? Here, the method calls the Event Manager’s
VQueueEvent() with a new event: EvtData_Remote_Client. The event takes
the socket ID and the IP address and passes them onto any game subsystem that is

Core Server-Side Classes 685

listening. This is how the game attaches new players. It relates the socket ID to an
object or actor in the game and a new kind of game view that fools the server into
thinking that the client is actually a human player playing on the same system.

You are now ready to see the final piece of this puzzle—how the sockets system ties
into the event system and the game views.

Wiring Sockets into the Event System

Let’s take inventory. What have you learned so far in this chapter?

n NetSocket() and ClientSocketManager() work together to create the
generic client side of the network communications.

n NetListenSocket() and BaseSocketManager() work together to create
the generic server side of the network communications.

n GameServerListenSocket() is a custom server-side class that creates special
sockets that can take network data and translate them into events that game
systems can listen to, just like you saw in Chapter 10, “User Interface
Programming.”

So what’s left? A few things, actually. You need a socket that can translate network
data into events, and you also need a class that can take events and create network
packets to be sent along to remote computers—client or server. Both the client and
the server will do this because they both generate and listen for events coming from
the other side.

Translating C++ objects of any kind requires streaming. There are tons of useful
implementations of streams out there, and in my great practice of doing something
rather stupid to make a point, I’m going to show you how to use STL istrstream

and ostrstream templates.

Even though I’m an old-school C hound and still use printf() everywhere, I’m
sure many of you have seen streams like this:

char nameBuffer[64];

cout << “Hello World! What is your name?”;

cin >> nameBuffer;

The istrstream and ostrstream work very similarly. Think of them as a string-
based memory stream that you can read from and write to very easily. At some point
in this book, I mentioned how useful it was to use streams to initialize C++ objects
and use them to save them out to disk for saved games. Well, here’s an example of
what this looks like with a simple C++ object:

686 Chapter 19 n Network Programming for Multiplayer Games

class EvtData_Remote_Client : public BaseEventData

{

int m_socketId;

int m_ipAddress;

public:

static const EventType sk_EventType;

// Note – only VSerialize and VDeserialze are included here to save trees!

virtual void VSerialize(std::ostrstream &out) const

{

out << m_socketId << “ “;

out << m_ipAddress;

}

virtual void VDeserialize(std::istrstream &in)

{

in >> m_socketId;

in >> m_ipAddress;

}

};

This is a portion of the EvtData_Remote_Client object: It stores the socket ID
and the IP address of the remote client. Notice two virtual functions for serializing
the object, either in or out, with streams. My choice for the stream class being
string based and not binary makes my network packets completely enormous, but
they are easy on my eyes and easy to debug. The best thing is, once the basic system
is running, I can even replace these text stream objects with something better, such as
a class that compresses binary streams on the fly. Look on the Internet, and you’ll
find neat stream technology out there.

Back to the task at hand, you’ve seen a quick introduction into using streams to turn
C++ objects into raw bits that can be sent to a disk or across the Internet. Now
you’re ready to see the RemoteEventSocket class, which converts the network
socket data into events that can be sent on to the local event system. There are only
two methods in this class: One overloads to VHandleInput(), and the other takes
the incoming packets and turns them into events.

class RemoteEventSocket: public NetSocket

{

public:

enum

{

NetMsg_Event,

Wiring Sockets into the Event System 687

NetMsg_PlayerLoginOk,

};

// server accepting a client

RemoteEventSocket(SOCKET new_sock, unsigned int hostIP)

: NetSocket(new_sock, hostIP) { }

// client attach to server

RemoteEventSocket() { };

virtual void VHandleInput();

protected:

void CreateEvent(std::istrstream &in);

};

void RemoteEventSocket::VHandleInput()

{

NetSocket::VHandleInput();

// traverse the list of m_InList packets and do something useful with them

while (!m_InList.empty())

{

shared_ptr<IPacket> packet = *m_InList.begin();

m_InList.pop_front();

const char *buf = packet->VGetData();

int size = static_cast<int>(packet->VGetSize());

std::istrstream in(buf+sizeof(u_long), (size-sizeof(u_long)));

int type;

in >> type;

switch(type)

{

case NetMsg_Event:

CreateEvent(in);

break;

case NetMsg_PlayerLoginOk:

{

int serverSockId, actorId;

in >> serverSockId;

in >> actorId;

shared_ptr<EvtData_Network_Player_Actor_Assignment> pEvent

(GCC_NEW EvtData_Network_Player_Actor_Assignment(actorId,

serverSockId));

IEventManager::Get()->VQueueEvent(pEvent);

688 Chapter 19 n Network Programming for Multiplayer Games

break;
}

default:

GCC_ERROR(“Unknown message type.”);

}

}

}

You’ll see that I’ve created a little handshaking. There are two types of messages in
this simple design. The first is a normal event, in which case the packet is sent on to
CreateEvent(). The second is a special case message from the server that tells the
local client what its socket ID is. This is how different clients, all playing the same
multiplayer game, tell each other apart, because their server socket IDs must all be
unique. If they didn’t do this, it would be difficult for the server to know which
actor is controlled by which remote player, or which player’s score to tally when
there is a successful kill.

The CreateEvent() method looks in the stream for an event type, which is sent in
string format. The event type is used to create a new event object, which then uses
the stream to initialize itself.

void RemoteEventSocket::CreateEvent(std::istrstream &in)

{

EventType eventType;

in >> eventType;

IEventDataPtr pEvent(CREATE_EVENT(eventType));

if (pEvent)

{

pEvent->VDeserialize(in);

IEventManager::Get()->VQueueEvent(pEvent);

}

else

{

GCC_ERROR(“ERROR Unknown event type from remote: 0x” +

ToStr(eventType, 16));

}

}

This event was generated on a remote machine, sent over the network, re-created from
the bit stream, and put back together again just like Dr. McCoy in a transporter beam.
Recipients of the event really have no idea it was generated from afar and sent across
the Internet. You’ll notice some nice trickery with a call to CREATE_EVENT. This
method uses a very useful template class, GenericObjectFactory. Its purpose is to
take some kind of unique identifier and call the constructor of a class that matches that
identifier. The source code for this class is in the companion source code to this book,

Wiring Sockets into the Event System 689

in Dev\Source\GCC4\Utilities\templates.h, and it isn’t too hard to follow. This kind of
construction can be used for any class and makes it much easier to add new C++ clas-
ses that will be streamed, whether by the Internet or perhaps a save game file.

One last thing—you need to see how local events are sent into the network. If you
think I’m going to use streams again, you are right. The class holds a socket ID,
which will be used when sending the event to the network classes. The Forward-

Event() implementation creates a stream that has the event message identifier
first, followed by the event type (which is really the name of the event), followed
finally by the event itself. This stream object now contains the serialized event and
enough data to be reconstructed on the remote computer.

class NetworkEventForwarder

{

public:

NetworkEventForwarder(int sockId) { m_sockId = sockId; }

void ForwardEvent(IEventDataPtr pEventData);

protected:

int m_sockId;

};

void NetworkEventForwarder::ForwardEvent(IEventDataPtr pEventData)

{

std::ostrstream out;

out << static_cast<int>(RemoteEventSocket::NetMsg_Event) << “ “;

out << pEventData->VGetEventType() << “ “;

pEventData.VSerialize(out);

out << “\r\n”;

shared_ptr<BinaryPacket> eventMsg(

GCC_NEW BinaryPacket(out.rdbuf()->str(), out.pcount()));

g_pSocketManager->Send(m_sockId, eventMsg);

}

You Can’t Serialize Pointers

You have to be really careful when designing any C++ objects that are going to
be serialized. For one thing, they can’t contain pointers. If a local C++ object had
a direct pointer to another game data structure like an actor or a sound, once it
got to the remote computer the pointer would surely point to garbage. This is
why you see so many handles, ID numbers, and other stuff that refers to objects
indirectly through a manager of some sort. An actor ID should be guaranteed to
be unique on the server, and thus it will be unique on all the clients, too.

690 Chapter 19 n Network Programming for Multiplayer Games

There’s one last class you need to know about—the NetworkGameView. This is a
“fake” view that fools the authoritative game server into thinking someone is sitting
right there playing the game, instead of a few hundred milliseconds by photon away.
As you can see, it’s not much more than a pretty face.

class NetworkGameView : public IGameView

{

public:

// IGameView Implementation - everything is stubbed out.

virtual HRESULT VOnRestore() { return S_OK; }

virtual void VOnRender(double fTime, float fElapsedTime) { }

virtual void VOnLostDevice() { }

virtual GameViewType VGetType() { return GameView_Remote; }

virtual GameViewId VGetId() const { return m_ViewId; }

virtual void VOnAttach(GameViewId vid, ActorId aid)

{ m_ViewId = vid; m_PlayerActorId = aid; }

virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg) { return 0; }

virtual void VOnUpdate(int deltaMilliseconds) { };

void SetPlayerActorId(ActorId actorId) { m_ActorId = actorId; }

void AttachRemotePlayer(int sockID);

int HasRemotePlayerAttached() { return m_SockId != -1; }

NetworkGameView(int sockId)

protected:

GameViewId m_ViewId;

ActorId m_ActorId;

int m_SockId;

};

NetworkGameView::NetworkGameView()

{

m_SockId = -1;

m_ActorId = INVALID_ACTOR_ID;

IEventManager::Get()->VAddListener(

MakeDelegate(this, &NetworkGameView::NewActorDelegate),

EvtData_New_Actor::sk_EventType);

}

The constructor registers to listen for a single event when new actors are created. For
the game-specific events, you’ll create a NetworkEventForwarder class both on the
server side and on the client side to listen for events and forward them to the other
computer across the Internet.

Wiring Sockets into the Event System 691

There’s really only one method, AttachRemotePlayer(), which is called by the
game logic when new remote views are added. This is where the NetMsg_Player-

LoginOk message is generated by the server, which contains the unique socket ID
number down to the client so all the players of a multiplayer game don’t get
confused.

void NetworkGameView::AttachRemotePlayer(int sockID)

{

m_SockId = sockID;

std::ostrstream out;

out << static_cast<int>(RemoteEventSocket::NetMsg_PlayerLoginOk) << “ “;

out << m_SockId << “ ”;

out << m_ActorId << “ ”;

out << “\r\n”;

shared_ptr<BinaryPacket> gvidMsg(GCC_NEW BinaryPacket(out.rdbuf()->str(),

(u_long)out.pcount()));

g_pSocketManager->Send(m_SockId, gvidMsg);

}

Gosh, if It’s That Easy

There is much more to network programming than I’ve had the pages to teach you
here. First, remote games need to be very smart about handling slow Internet connec-
tivity by predicting moves and handing things elegantly when those predictions are
wrong. For enterprise games like World of Warcraft, you have to take the simple
architecture in this book and extend it into a hierarchy of server computers. You
also have to create technology that prevents cheating and hacking. These tasks
could, and do, fill volumes on the subject.

Still, I hope you feel that what you’ve seen in this chapter is an excellent start. Cer-
tainly, if you want to learn network programming without starting from scratch, the
code in this chapter and on the book’s website will give you something you can play
with. You can experiment with it, break it, and put it back in good order. That’s the
best way to learn.

That is, of course, how I started, only I believe the little record player I ruined when I
was a kid never did work again. Sorry, Mom!

692 Chapter 19 n Network Programming for Multiplayer Games

Chapter 20

by Mike McShaffry

Introduction to

Multiprogramming

The general term for creating software that can figuratively or actually run in multi-
ple, independent pieces simultaneously is multiprogramming.

There are few subjects in programming as tricky as this. It turns out to be amazingly
simple to get multiple threads chewing on something interesting, like calculating π to
1,000,000 digits. The difficulty comes in getting each of these jobs to play nicely with
each other’s memory and getting them to send information to each other so that the
results of their work can be put to good use.

The code you will learn in this chapter will work on single or multiprocessor Win-
dows systems, but it is easy enough to port to others. The concepts you will learn are
also portable to any system that has threading built into the operating system.

The first question you should ask is why should we bother with multithreading at all?
Isn’t one thread on one CPU enough?

What Multiprogramming Does

A CPU is amazingly fast, and many desktop CPUs are now sitting solidly in the
2–3GHz range, and some systems on the market are peaking over 5GHz. If you hap-
pen to have a really nice lab and can get your transistors down to near absolute zero,
you can get it to switch at 500GHz like IBM and Georgia Tech did back in 2006. But
what does that really mean?

693

Gigahertz, as it is applied to CPUs, measure the clock speed of the CPU. The clock
speed is the basic measure of how fast things happen—anything from loading a bit of
memory into a register to doing a mathematical operation like addition. Different
instructions take different cycles, or ticks, of the clock. Different types of processors,
such as GPUs, are highly optimized for certain kinds of operations, such as floating-
point division, and can perform multiple operations in a single tick of the system
clock.

In the Georgia Tech experiment, they were able to get a transistor to switch at
500GHz, but that does not mean you could pile those transistors onto a super-cooled
chip and have a CPU run at that speed. Sorry to throw cold water on the party, but
the transistors in a chip have to carefully coordinated. Think of it like this—just
because I can create a vehicle capable of rocketing across a dry lake bed faster than
the speed of sound doesn’t mean I can take millions of those same vehicles and try to
do the same on a regular-surface street.

Many processors are capable of executing instructions in parallel in a single core if
they use different parts of the processor. With the advent of multicore processors, it
is even possible to perform more than one instruction in a single cycle. Most new
computers now have two or even four cores. Some processors are even capable of
out-of-order execution, where the processor executes instructions in an order governed
by availability of input data rather than the order set by the programmer or compiler.

As fast as CPUs are and the tricks they pull to keep busy, they spend most of their
time waiting around. Take a look at Figure 20.1, a snapshot of the CPU load running
Teapot Wars, which you’ll see in Chapter 21, “A Game of Teapot Wars.”

The figure shows a few spikes, but there’s still plenty of headroom. So what’s going
on? Is Teapot Wars written so efficiently? Hardly. The CPU, or CPUs in this case,
spends most of its time waiting for the video hardware to draw the scene. This is a
pretty common thing in computer game software, since preparing the scene and
communicating to the video card take so much time.

It turns out there is a solution for this problem, and it involves multithreading.
Instead of creating a monolithic program that runs one instruction after another,
the programmer splits the program into multiple, independent pieces. Each piece is
launched independently and can run on its own. If one piece, or thread, becomes
stuck waiting for something, like the optical media drive to spin up so a file can be
read, the processor can switch over to another thread and process whatever instruc-
tions it has.

If you think this is similar to what happens when you run 50 different applications
on your desktop machine, you are very close to being right. Each application exists

694 Chapter 20 n Introduction to Multiprogramming

independently of other applications and can access devices like your hard drive or
your network without any problems at all, at least until you run out of memory
or simply bog your system down.

Under Windows and most operating systems, applications run as separate processes,
and the operating system has very special rules for switching between processes since
they run in their own memory space. This switching is relatively expensive, since a
lot of work has to happen so that each application believes it has the complete and
full attention of the CPU.

The good news is that under Windows and other operating systems each process can
have multiple threads of execution, and switching between them is relatively cheap.
Each thread has its own stack space and full access to the same memory as the other
threads created by the process. Being able to share memory is extremely useful, but it
does have its problems.

The operating system can switch from one thread to another at any time. When a
switch happens, the values of the current thread’s CPU registers are saved. They are

Figure 20.1
CPU load running Teapot Wars.

What Multiprogramming Does 695

then overwritten by the next thread’s CPU registers, and the CPU begins to run the
code for the new thread. This leads to some interesting behaviors if multiple threads
manipulate the same bit of memory. Take a look at the assembly for incrementing a
global integer:

++g_ProtectedTotal;

006D2765 mov eax,dword ptr [g_ProtectedTotal (9B6E48h)]

006D276A add eax,1

006D276D mov dword ptr [g_ProtectedTotal (9B6E48h)],eax

There are three instructions. The first loads the current value of the variable from
main memory into eax, one of the general purpose registers. The second increments
the register, and the third stores the new value back into memory. Remember that
each thread has full access to the memory pointed to by g_ProtectedTotal, but
its copy of eax is unique. A thread switch can happen after each assembler level
instruction completes.

If a dozen or so threads were running these three instructions simultaneously, it
wouldn’t be long before a switch would happen right after the add instruction but
before the results were stored back to main memory.

In my own experiments, the results were pretty sobering: 20 threads each increment-
ing the variable 100,000 times created an end result of 902,149. This means 1,097,851
additions were completely missed. I ran this experiment on a Windows 64-bit system
equipped with an Intel Core i7-2600 CPU.

Lucky for you and everyone else out there wanting to take full advantage of their
CPUs, there are ways to solve this problem. But first, you should know how you cre-
ate the thread in the first place.

Creating Threads

Under Windows, you use the CreateThread() API. For you programmers who
desire a more portable solution, you can also choose the _beginthread() call or
the threading calls in the Boost C++ library.

DWORD g_maxLoops = 20; // shouldn’t be on a stack!

DWORD g_UnprotectedTotal = 0; // the variable we want to increment

DWORD WINAPI ThreadProc(LPVOID lpParam)

{

DWORD maxLoops = *static_cast<DWORD *>(lpParam);

DWORD dwCount = 0;

while(dwCount < maxLoops)

{

696 Chapter 20 n Introduction to Multiprogramming

++dwCount;

++g_UnprotectedTotal;

}

return TRUE;

}

void CreateThreads()

{

for (int i=0; i<20; i++)

{

CreateThread(

NULL, // default security attributes

0, // default stack size

(LPTHREAD_START_ROUTINE) ThreadProc,

&g_maxLoops, // thread parameter is how many loops

0, // default creation flags

NULL); // receive thread identifier

}

}

To create a thread, you call the CreateThread() API with a pointer to a function
that will run as the thread procedure. The thread will cease to exist when the thread
procedure exits or something external stops the thread, such as a call to Terminate-

Thread(). The thread procedure, ThreadProc, takes one variable, a void pointer that
you may use to send any bit of data your thread procedure needs. In the previous exam-
ple, a DWORD was set to the number of loops and used as the thread parameter. The
thread can be started in a suspended state if you set the default creation flags to CRE-

ATE_SUSPENDED, in which case you’ll need to call ResumeThread(m_hThread) to
get it started.

Take special note of where the parameter to the thread process is stored, because it is
a global. Had it been local to the CreateThreads() function, it would have been
stored on the stack. The address of this would have been passed to the thread proce-
dures, and goodness knows what it would have in it at any given moment. This is a
great example of how something seemingly trivial can have a huge effect on how
your threads run.

The Stack Can Be a Dangerous Place

Be careful about where you store data that will be accessed by thread
procedures. The stack is right out, since it will be constantly changing.
Allocate specific memory for your thread procedures or store them globally.

Creating Threads 697

When you have multiple threads running in your game, you can debug each of them,
to a point. In Visual Studio, you can show the Threads window by selecting
Debug→Window→Threads from the main menu (see Figure 20.2).

When you hit a breakpoint, all threads stop execution. If you double-click on a row
in the Threads window, you will see where execution has stopped in that thread. You
can easily set breakpoints in the thread procedure, but if you run multiple threads
using the same procedure, you can never tell which thread will hit the breakpoint
first! It can become a little confusing.

Creating a thread is pretty trivial, as you have seen. Getting these threads to work
together and not wipe out the results of other threads working on the same memory
is a little harder.

Process Synchronization

There’s really no use in having threads without having some way to manage their
access to memory. In the early days of computing, programmers tried to solve this
with algorithms and logic. When I was in college, one of my favorite instructors,
Dr. Rusinkiewicz, had a ridiculous story he told to show us how these engineers
tried to create a heuristic to handle this problem.

Imagine two railways that share a tunnel in the Andes Mountains in South America.
One railway runs in Bolivia, and the other runs in neighboring Peru. The tunnel was
filled with curves, and it was impossible for either engineer to see an oncoming train
in time to stop. But both governments agreed that the trains were never in the tunnel
long enough for there to be any real risk, so they allowed the trains to run. For a few
months, nothing bad happened, but one day the trains crashed head-on in the tun-
nel. The governments of the two countries agreed that what they were doing wasn’t
safe, and something must be done.

Figure 20.2
The Threads window in Visual Studio.

698 Chapter 20 n Introduction to Multiprogramming

A bowl was placed at the beginning of the shared section of track. When an engineer
arrived, he would check the bowl. If it was empty, he would put a rock in it and drive
into the tunnel. He would then walk back, remove the rock, and continue on his trip.
This worked for a few days, and then the Peruvians noticed that their train never
arrived. Fearing the worst, a search team was sent out to find the train. It was waiting
at the junction, and as the search team watched, the Bolivian train roared by, not
even stopping. The Bolivian engineer ignored the rules, just put a rock in the bowl,
and never intended to take it out. He was fired and another, more honest, Bolivian
engineer replaced him.

For years nothing bad happened, but one day neither train arrived. A team was sent
to investigate, and they found that the trains had crashed, and two rocks were in the
bowl. Somehow both engineers must have passed each other in the dark tunnel while
placing their rocks. The two countries decided that the current system wasn’t work-
ing, and something must be done to fix the problem. They decided that the bowls
were being used the wrong way. The Bolivian engineer would put a rock in the
bowl when he was driving across, and the Peruvian engineer would always wait
until the bowl was empty before driving across.

This didn’t even work for a single day. The Peruvian train had until this time run
twice per day, and the Bolivian train once per day. The new system prevented
crashes, but now each train could only run once per day since it relied on trading
permission to run through the pass. Again, the governments put their best minds at
work to solve the problem.

They bought another bowl.

Now, two bowls were used at the pass. Each engineer had his own bowl. When he
arrived, he would drop a rock into his bowl, walk to the other engineer’s bowl, and
check it. If there was a rock there, he would go back to his bowl, remove the rock,
and take a siesta. This seemed to work for many years, until both trains were so late a
search team was sent out to find out what happened.

Luckily, both trains were there, and both engineers were simultaneously dropping
rocks into their bowls, checking the other, finding a rock, and then taking a siesta.
Finally, the two governments decided that bowls and rocks were not going to solve
this problem.

What they needed was a semaphore.

Test and Set, the Semaphore, and the Mutex

The computer software version of a semaphore relies on a low-level hardware
instruction called a test-and-set instruction. It checks the value of a bit, and if it is

Process Synchronization 699

zero, it sets the bit to one, all in one operation that cannot be interrupted by the CPU
switching from one thread to another.

Traditionally, a semaphore is set to an integer value that denotes the number of
resources that are free. When a process wishes to gain access to a resource, it decre-
ments the semaphore in an atomic operation, using a test-and-set. When it is done
with the resource, it increments the semaphore in the same atomic operation. If a
process finds the semaphore equal to zero, it must wait.

A mutex is a binary semaphore, and it is generally used to give a process exclusive
access to a resource. All others must wait.

Windows has many different ways to handle process synchronization. A mutex can
be created with CreateMutex(), and a semaphore can be created with Create

Semaphore(). But since these synchronization objects can be shared between Win-
dows applications, they are fairly heavyweight and shouldn’t be used for high perfor-
mance thread safety in a single application, like our game. Windows programmers
should use the critical section.

The Windows Critical Section

The critical section under Windows is a less expensive way to manage synchroniza-
tion among the threads of a single process. Here’s how to put it to use:

DWORD g_ProtectedTotal = 0;

DWORD g_maxLoops = 20;

CRITICAL_SECTION g_criticalSection;

DWORD WINAPI ThreadProc(LPVOID lpParam)

{

DWORD maxLoops = *static_cast<DWORD *>(lpParam);

DWORD dwCount = 0;

while(dwCount < maxLoops)

{

++dwCount;

EnterCriticalSection(&g_criticalSection);

++g_ProtectedTotal;

LeaveCriticalSection(&g_criticalSection);

}

return TRUE;

}

void CreateThreads()

{

700 Chapter 20 n Introduction to Multiprogramming

InitializeCriticalSection(&g_criticalSection);

for (int i=0; i<20; i++)

{

HANDLE m_hThread = CreateThread(

NULL, // default security attributes

0, // default stack size

(LPTHREAD_START_ROUTINE) ThreadProc,

&g_maxLoops, // thread parameter is how many loops

0, // default creation flags

NULL); // receive thread identifier

}

}

The call to InitializeCriticalSection() does exactly what it advertises—it
initializes the critical section object, declared globally as CRITICAL_SECTION

g_criticalSection. You should treat the critical section object as opaque and
not copy it or attempt to modify it. The thread procedure makes calls to Enter-

CriticalSection() and LeaveCriticalSection() around the access to the
shared global variable, g_ProtectedTotal.

If another thread is already in the critical section, the call to EnterCritical-

Section() will block and wait until the other thread leaves the critical section. Win-
dows does not guarantee any order in which the threads will get access, but it will be
fair to all threads. Notice that the critical section is made as small as possible—not
even the increment to the dwCount member variable is inside. This is to illustrate an
important point about critical sections: In order to achieve the maximum throughput,
you should minimize the time spent in critical sections as much as possible.

If you want to check the critical section and only enter it if it is not locked, you can
call TryEnterCriticalSection(). This function will return true only if the crit-
ical section is validly entered by the calling thread.

There are two useful C++ classes that help manage the creation and use of critical
sections, CriticalSection and ScopedCriticalSection.

class CriticalSection : public GCC_noncopyable

{

public:

CriticalSection() { InitializeCriticalSection(&m_cs); }

˜CriticalSection(){ DeleteCriticalSection(&m_cs); }

void Lock() { EnterCriticalSection(&m_cs); }

void Unlock() { LeaveCriticalSection(&m_cs); }

protected:

Process Synchronization 701

mutable CRITICAL_SECTION m_cs;

};

class ScopedCriticalSection : public GCC_noncopyable

{

public:

ScopedCriticalSection(CriticalSection & csResource)

: m_csResource(csResource)

{ m_csResource.Lock(); }

˜ScopedCriticalSection() { m_csResource.Unlock(); }

private:

CriticalSection & m_csResource;

};

If you had a bit of code that needed to be thread safe, you would first declare a
CriticalSection object and use the ScopedCriticalSection object in your
threads to block until the critical section was free.

CriticalSection g_Cs;

void ThreadSafeFunction()

{

ScopedCriticalSection(&g_Cs);

// do dangerous things here!

}

Because the ScopedCriticalSection object locks the critical section in the con-
structor and unlocks it in the destructor, the code in the same scope of this object is
now thread safe and easy to read at the same time. You’ll see this class used in a
better example shortly.

Interesting Threading Problems

There are a number of interesting threading problems you should be aware of: racing,
starvation, and deadlock.

Racing is a condition where two or more threads are reading or writing shared data,
and the final result requires the threads to run in a precise order, which can never be
guaranteed. The classic problem is the writer-reader problem, where a writer thread
fills a buffer, and a reader thread processes the buffer. If the two threads aren’t syn-
chronized properly, the reader will overtake the writer and read garbage.

The solution to this problem is easy with a shared count of bytes in the buffer, chan-
ged only by the writer thread using a critical section.

702 Chapter 20 n Introduction to Multiprogramming

Starvation and deadlock is a condition where one or more threads gains access to a
shared resource and continually blocks access to the starving thread. The classic illus-
tration of this problem is called the dining philosophers’ problem, first imagined by
Tony Hoare, a British computer scientist best known for creating the Quicksort algo-
rithm. It goes like this. Five philosophers sit around a circular table, and they are
doing one of two things: eating or thinking. When they are eating, they are not
thinking, and when they are thinking, they are not eating. The table has five chop-
sticks, one sitting between each philosopher. In order to eat, each person must grab
two chopsticks, and he must do this without speaking to anyone else.

You can see that if every philosopher grabbed the chopstick on his left and held onto
it, none of them could ever grab a second chopstick, and they would all starve. This
is analogous to a deadlock.

If they were eating and thinking at different times, one philosopher could simply get
unlucky and never get the chance to get both chopsticks. He would starve, even
though the others could eat. That is similar to process starvation.

The solution to the dining philosophers problem might sound familiar since I men-
tioned something about it in Chapter 5, “Game Initialization and Shutdown.” If you
want to avoid deadlock in any shared resource situation, always ask for resources in a
particular order and release them in the reverse order.

With the dining philosophers, things are a little more complicated because of their
arrangement and how the resources are used. The solution involves numbering the

Figure 20.3
The dining philosophers.

Interesting Threading Problems 703

philosophers. Even-numbered philosophers should attempt to pick up their left chop-
stick first, and odd-numbered philosophers must pick up their right chopstick first. If
they can’t acquire both chopsticks, they must relinquish the one they have and try
again later. This solution, and those to other interesting problems of this sort, can
be found in Andrew Tannenbaum’s book, Modern Operating Systems.

If you find yourself at a table with four other people and only five chopsticks between
you, simply agree to pick up the left chopstick first and the right chopstick second.
When you are ready to stop eating and start thinking, put them down in reverse
order. Believe it or not, no deadlock will happen, and no one will starve.

There are a number of these interesting problems, which you should look up and try
to solve on your own:

n Cigarette smokers’ problem

n Sleeping barbers’ problem

n Dining cryptographers’ protocol

Thread Safety

As you might imagine, there are often more things you shouldn’t do in a thread than
you should. For one thing, most STL and ANSI C calls are not thread safe. In other
words, you can’t manipulate the same std::list or make calls to fread() from
multiple threads without something bad happening to your program. If you need to
do these things in multiple concurrent threads, either you need to use the thread safe
equivalent of these calls or you need to manage the calls with critical sections. A good
example of this is included in the GameCode4 source code, which manages any
std::basic_ostream< char_type, traits_type> and allows you to safely
write to it from multiple threads. Look in the Multicore\SafeStream.h file for the tem-
plate class and an example of how it can be used.

Multithreading Classes in GameCode4

You are ready to see how these concepts are put to work in the GameCode4 architec-
ture. There are two systems that make this easy: the Process Manager and the Event
Manager. If you recall from Chapter 7, “Controlling the Main Loop,” the Process-
Manager is a container for cooperative processes that inherit from the Process

class. It is simple to extend the Process class to create a real-time version of it,
and while the operating system manages the thread portion of the class, the data
and existence of it are still managed by the ProcessManager class. This turns out
to be really useful, since initialization and process dependencies are still possible,
even between normal and real-time processes.

704 Chapter 20 n Introduction to Multiprogramming

Communication between real-time processes and the rest of the game happens
exactly where you might expect—in the Event Manager. A little bit of code has to
be written to manage the problem of events being sent to or from real-time processes,
but you’ll be surprised how little. Passing messages is a great way to synchronize pro-
cesses running in different threads, and it also avoids problems that arise with shared
data.

After the basic classes are written, you’ll see how you can write a background real-
time process to handle decompression of part of a Zip file.

The RealtimeProcess Class

The goal with the RealtimeProcess class is to make it really easy to create real-
time processes. Here’s the class definition:

class RealtimeProcess : public Process

{

protected:

HANDLE m_hThread;

DWORD m_ThreadID;

int m_ThreadPriority;

public:

// Other prioities can be:

// THREAD_PRIORITY_ABOVE_NORMAL

// THREAD_PRIORITY_BELOW_NORMAL

// THREAD_PRIORITY_HIGHEST

// THREAD_PRIORITY_TIME_CRITICAL

// THREAD_PRIORITY_LOWEST

// THREAD_PRIORITY_IDLE

//

RealtimeProcess(int priority = THREAD_PRIORITY_NORMAL)

: Process(PROC_REALTIME)

{

m_ThreadID = 0;

m_ThreadPriority = priority;

}

virtual ~RealtimeProcess() { CloseHandle(m_hThread); }

static DWORD WINAPI ThreadProc (LPVOID lpParam);

protected:

virtual void VOnInit();

virtual void VOnUpdate(unsigned long deltaMs) { }

virtual void VThreadProc(void) = 0;

};

Multithreading Classes in GameCode4 705

The members of this class include a Windows HANDLE to the thread, the thread ID,
and the current thread priority. This is set to THREAD_PRIORITY_NORMAL, but
depending on what the process needs to do, you might increase or decrease the pri-
ority. Note that if you set it to THREAD_PRIORITY_TIME_CRITICAL, you’ll likely
notice a serious sluggishness of the user interface, particularly the mouse pointer.
It’s a good idea to play nice and leave it at the default or even put it at a lower
priority.

Thread Priority Shuffle

While working on Barbie, one of the engineers built a multithreaded loader
that would load the data needed for the game in the background while the
intro movie played. Unfortunately, on single-core machines, the intro movie
got really choppy and would cut in and out. We considered delaying the
start of the background loading until after the movie, although that would
defeat the purpose. On a whim, one engineer tried lowering the priority of
the loader thread. It worked perfectly, and the choppiness was completely
gone.

The thread process is defined by ThreadProc, which is called by the operating sys-
tem when the thread is created. That, in turn, will call VThreadProc, which will be
defined by an inherited class. The RealtimeProcess class is meant to be a base
class. Child classes will write their own thread process and send a pointer to it in the
constructor.

Notice that the class does implement a VOnUpdate() method, but it is just a stub.
All of the real processing in this class will be done by a thread function pointed to by
m_lpRoutine.

VOnInit() is where the call to CreateThread() happens:

void RealtimeProcess::VOnInit(void)

{

Process::VOnInit();

m_hThread = CreateThread(

NULL, // default security attributes

0, // default stack size

ThreadProc, // thread process

this, // thread parameter is a pointer to the process

0, // default creation flags

&m_ThreadID); // receive thread identifier

if(m_hThread == NULL)

{

706 Chapter 20 n Introduction to Multiprogramming

GCC_ERROR(“Could not create thread!”);

Fail();

return;

}

SetThreadPriority(m_hThread, m_ThreadPriority);

}

DWORD WINAPI RealtimeProcess::ThreadProc(LPVOID lpParam)

{

RealtimeProcess *proc = static_cast<RealtimeProcess *>(lpParam);

proc->VThreadProc();

return TRUE;

}

Note the thread parameter in the call to CreateThread()? It is a pointer to the
static ThreadProc method, which casts the thread parameter back to a pointer to
the process instance. All the base classes must do is define the VThreadProc mem-
ber function.

The only new call you haven’t seen yet is the call to SetThreadPriority(), where
you tell Windows how much processor time to allocate to this thread.

Here’s how you would create a real-time process to increment a global integer, just
like you saw earlier:

class ProtectedProcess : public RealtimeProcess

{

public:

static DWORD g_ProtectedTotal;

static CRITICAL_SECTION g_criticalSection;

DWORD m_MaxLoops;

ProtectedProcess(DWORD maxLoops)

: RealtimeProcess(ThreadProc)

{ m_MaxLoops = maxLoops; }

virtual void VThreadProc(void);

};

DWORD ProtectedProcess::g_ProtectedTotal = 0;

CriticalSection ProtectedProcess::g_criticalSection;

void ProtectedProcess::VThreadProc(void)

{

DWORD dwCount = 0;

while(dwCount < m_MaxLoops)

Multithreading Classes in GameCode4 707

{

++dwCount;

{

// Request ownership of critical section.

ScopedCriticalSection locker(g_criticalSection);

++g_ProtectedTotal;

}

}

Succeed();

}

The thread process is defined by VThreadProc(). Two static members of this class
are the variable the process is going to increment and the critical section that will be
shared between multiple instances of the real-time process. Just before the thread
process returns, Succeed() is called to tell the Process Manager to clean up the pro-
cess and launch any dependent processes.

As it turns out, you instantiate a real-time process in exactly the same way you do a
cooperative process:

for(i=0; i < 20; i++)

{

shared_ptr<Process> proc(GCC_NEW ProtectedProcess(100000));

procMgr->AttachProcess(proc);

}

The above example instantiates 20 processes that will each increment the global vari-
able 100,000 times. The use of the critical sections ensures that when all the processes
are complete, the global variable will be set to exactly 2,000,000.

Sending Events from Real-Time Processes

There’s probably no system in the GameCode4 architecture that uses STL containers
more than the EventManager class. Given that STL containers aren’t thread safe by
themselves, there’s one of two things that can be done.

We could make all the containers in the Event Manager thread safe. This includes
two std::map objects, three std::pair objects, and two std::list objects.
This would be a horrible idea, since the vast majority of the event system is accessed
only by the main process and doesn’t need to be thread safe. A better idea would be
to create a single, thread-safe container that could accept events that were sent by
real-time processes. When the event system runs its VUpdate() method, it can
empty this queue in a thread-safe manner and handle the events sent by real-time
processes along with the rest.

708 Chapter 20 n Introduction to Multiprogramming

A thread-safe queue was posted by Anthony Williams on www.justsoftwaresolutions.
co.uk.

template<typename Data>

class concurrent_queue

{

private:

std::queue<Data> the_queue;

CriticalSection m_cs;

HANDLE m_dataPushed;

public:

concurrent_queue() { m_dataPushed = CreateEvent(NULL, TRUE, FALSE, NULL);

void push(Data const& data)

{

{

ScopedCriticalSection locker(m_cs);

the_queue.push(data);

}

PulseEvent(m_dataPushed);

}

bool empty() const

{

ScopedCriticalSection locker(m_cs);

return the_queue.empty();

}

bool try_pop(Data& popped_value)

{

ScopedCriticalSection locker(m_cs);

if(the_queue.empty())

{

return false;

}

popped_value=the_queue.front();

the_queue.pop();

return true;

}

void wait_and_pop(Data& popped_value)

{

ScopedCriticalSection locker(m_cs);

while(the_queue.empty())

{

WaitForSingleObject(m_dataPushed);

Multithreading Classes in GameCode4 709

www.justsoftwaresolutions.co.uk
www.justsoftwaresolutions.co.uk

}

popped_value=the_queue.front();

the_queue.pop();

}

};

The m_dataPushed handle is a mechanism that allows one thread to notify another
thread that a particular condition has become true. Without it, a reader thread
manipulating the queue would have to lock the mutex, check the queue, find that it
was empty, release the lock, and then find a way to wait for a while before checking it
all over again. When WaitForSingleObject() is called, the thread blocks until
there is something to read. The call to PulseEvent signals there is something
there. This increases concurrency immensely.

Here’s how the EventManager class you saw in Chapter 11, “Game Event Manage-
ment,” needs to change to be able to receive events from real-time processes:

typedef concurrent_queue<IEventDataPtr> ThreadSafeEventQueue;

class EventManager : public IEventManager

{

// Add a new method and a new member:

public:

virtual bool VThreadSafeQueueEvent (const IEventDataPtr &pEvent);

private:

ThreadSafeEventQueue m_RealtimeEventQueue;

}

bool EventManager::VThreadSafeQueueEvent (const IEventDataPtr &pEvent)

{

m_RealtimeEventQueue.push(inEvent);

return true;

}

The concurrent queue template is used to create a thread-safe queue for IEvent-

DataPtr objects, which are the mainstay of the event system. The method VThread-

SafeQueueEvent() can be called by any process in any thread at any time. All that
remains is to add the code to EventManager::VTick() to read the events out of the
queue:

bool EventManager::VUpdate (unsigned long maxMillis)

{

unsigned long curMs = GetTickCount();

unsigned long maxMs =

710 Chapter 20 n Introduction to Multiprogramming

maxMillis == IEventManager::kINFINITE

? IEventManager::kINFINITE

: (curMs + maxMillis);

EventListenerMap::const_iterator itWC = m_registry.find(0);

// This section added to handle events from other threads

// -

IEventDataPtr pRealtimeEvent;

while (m_RealtimeEventQueue.try_pop(pRealtimeEvent))

{

VQueueEvent(pRealtimeEvent);

curMs = GetTickCount();

if (maxMillis != IEventManager::kINFINITE)

{

if (curMs >= maxMs)

{

GCC_ERROR(“A realtime process is spamming the event manager!”);

}

}

}

// -

// swap active queues, make sure new queue is empty after the

// swap ...

// THE REST OF VUpdate() IS UNCHANGED!!!!

There is a new section of code at the top of the method to handle events from real-
time processes. The call to try_pop() grabs an event out of the real-time queue if it
exists, but if the queue is empty, it returns immediately. Since real-time processes can
run at a higher priority, it is possible they could spam the Event Manager faster than
the Event Manager could consume them, so a check is made to compare the current
tick count against the maximum amount of time the Event Manager is supposed to
run before exiting.

Receiving Events in Real-Time Processes

Real-time processes should also be able to receive events from other game subsys-
tems. This requires the same strategy as before, using a thread-safe queue. Here’s
the definition of a real-time process that can listen for events:

class EventReaderProcess : public RealtimeProcess

{

public:

Multithreading Classes in GameCode4 711

EventReaderProcess() : RealtimeProcess(ThreadProc)

{

IEventManager::Get()->VAddListener(

MakeDelegate(this, &EventReaderProcess::UpdateTickDelegate),

EvtData_Update_Tick::sk_EventType);

}

void UpdateTickDelegate(IEventDataPtr pEventData);

virtual void VThreadProc(void);

protected:

static ThreadSafeEventQueue m_RealtimeEventQueue;

};

void EventReaderProcess::UpdateTickDelegate(IEventDataPtr pEventData)

{

IEventDataPtr pEventClone = pEventData->VCopy();

m_RealtimeEventQueue.push(pEventClone);

}

DWORD g_EventsRead = 0;

void EventReaderProcess::VThreadProc(void)

{

// wait for all threads to end

while (m_EventsRead < 100000)

{

IEventDataPtr e;

if (m_RealtimeEventQueue.try_pop(e))

++m_EventsRead;

}

Succeed();

}

Note that this process has its own thread-safe event queue, to make this example
much simpler. The Event Manager has a real-time event queue of its own to receive
events from real-time processes, but it doesn’t have one to manage sending events to
real-time processes. It would be a great assignment to refactor this system so that the
Event Manager could manage the reception and sending of all events, real-time or
otherwise. This trivial example simply waits until 100,000 EvtData_Update_Tick

events are seen in the thread-safe event queue. One thing you should notice is that
when the event is received by the delegate, it is copied before being sent in to the
real-time event queue. That is because shared_ptr<> objects are not thread safe,
so the event is cloned to avoid any problems.

712 Chapter 20 n Introduction to Multiprogramming

With those tools, you have everything you need to write your own real-time pro-
cesses, including having them send and receive events from other threads and game
subsystems.

Background Decompression of a Zip File

One classic problem in game software is how to decompress a stream without halting
the game. The stream could be anything from a portion of a music file to a movie to
level data. The following class and code show how you can set up a background pro-
cess to receive requests from the game to decompress something in the background
and send an event when the decompression is complete.

class DecompressionProcess : public RealtimeProcess

{

public:

EventListenerPtr m_pListener;

static void Callback(int progress, bool &cancel);

DecompressionProcess() : RealtimeProcess(ThreadProc)

{

IEventManager::Get()->VAddListener(

MakeDelegate(this, &DecompressionProcess::DecompressRequestDelegate),

EvtData_Decompress_Request::sk_EventType);

}

virtual ˜DecompressionProcess()

{

IEventManager::Get()->VRemoveListener(

MakeDelegate(this, &DecompressionProcess::DecompressRequestDelegate),

EvtData_Decompress_Request::sk_EventType);

}

virtual void VThreadProc(void);

ThreadSafeEventQueue m_RealtimeEventQueue;

// event delegates

void DecompressRequestDelegate(IEventDataPtr pEventData)

{

IEventDataPtr pEventClone = pEventData->VCopy();

m_RealtimeEventQueue.push(pEventClone);

}

};

The DecompressionProcess class is a real-time process that registers to listen for
an event, the EvtData_Decompress_Request event, which simply stores the name

Background Decompression of a Zip File 713

of the Zip file and the name of the resource in the Zip file to decompress. It is
declared exactly the same as other events you’ve seen.

Here’s VThreadProc():

void DecompressionProcess::VThreadProc(void)

{

while (1)

{

// check the queue for events we should consume

IEventDataPtr e;

if (m_RealtimeEventQueue.try_pop(e))

{

// there’s an event! Something to do….

if (EvtData_Decompress_Request::sk_EventType == e->VGetEventType())

{

shared_ptr<EvtData_Decompress_Request> decomp =

static_pointer_cast<EvtData_Decompress_Request>(e);

ZipFile zipFile;

bool success = FALSE;

if (zipFile.Init(decomp->m_zipFileName.c_str()))

{

int size = 0;

int resourceNum = zipFile.Find(decomp->m_fileName.c_str());

if (resourceNum >= 0)

{

char *buffer = GCC_NEW char[size];

zipFile.ReadFile(resourceNum, buffer);

// send decompression result event

IEventDataPtr e(

GCC_NEW EvtData_Decompression_Progress (

100, decomp->m_zipFileName,

decomp->m_fileName, buffer));

IEventManager::Get()->VThreadSafeQueueEvent(e);

}

}

}

}

else

{

Sleep(10);

714 Chapter 20 n Introduction to Multiprogramming

}

}

Succeed();

}

This process is meant to loop forever in the background, ready for new decompres-
sion requests to come in from the Event Manager. Once the decompression request
comes in, the method initializes a ZipFile class, exactly as you saw in Chapter 8,
“Loading and Caching Game Data.”

After the resource has been decompressed, an event is constructed that contains the
progress (100%), the Zip file name, the resource name, and the buffer. It is sent to
the Event Manager with VThreadSafeQueueEvent() method.

The event can be handled by any delegate in the usual way.

const EvtData_Decompression_Progress & castEvent =

static_cast< const EvtData_Decompression_Progress & >(event);

if (castEvent.m_buffer != NULL)

{

const void *buffer = castEvent.m_buffer;

// do something with the buffer!!!!

}

Note that I’m bending one of my own rules here by allowing a pointer to sit in an
event. The only reason that I can sleep at night is that I know that this particular
event won’t ever be serialized, so the pointer will always be good. I also know that
this process doesn’t have an exit condition and will happily sit in the while (1) as
long as the game is running. If this keeps you up at night, you could implement a
new event that would shut down the process cleanly.

Further Work

One improvement you could make to the real-time event processor is to double-
buffer the events, just as the regular event queue does. This would help protect the
real-time event queue from being spammed by a misbehaving event sender.

Decompressing a data stream is a good example, but there are plenty of other tasks
you could use this system for if you had a spare weekend. These include rendering,
physics, AI tasks such as pathfinding, and others.

Rendering is probably the most common subsystem besides audio that is run in a
separate thread. It is already highly compartmentalized, especially if you use the
architecture in this book. Much of the rendering pipeline prepares data that is sent

Further Work 715

to the video hardware, and this preparation can be quite CPU intensive. As long as
you protect any shared data with the game logic, such as the location and orientation
of objects, you should achieve a good performance boost by doing this.

AI is a great choice to put in a background process. Whether you are programming a
chess game or calculating an A* solution in a particularly dense path network, doing
this in its own thread might buy you some great results. The magic length of time a
human can easily perceive is 1/10th of one second, or 100 milliseconds. A game run-
ning at 60 frames per second has exactly 16 milliseconds to do all the work needed to
present the next frame, and believe me, rendering and physics are going to take most
of that. This leaves AI with a paltry 2–3 milliseconds to work. Usually, this isn’t
nearly enough time to do anything interesting.

So, running a thread in the background, you can still take those 2–3 milliseconds per
frame, spread them across 10 or so frames, and all the player will perceive is just a
noticeable delay between the AI changing a tactic or responding to something new.
This gives your AI system much more time to work, and the player just notices a
better game.

Running physics in a separate thread is a truly interesting problem. On one hand, it
seems like a fantastic idea, but the moment you dig into it, you realize there are sig-
nificant process synchronization issues to solve. Remember that physics is a member
of the game logic, which runs the rules of your game universe. Physics is tied very
closely with the game logic, and having to synchronize the game logic and the phys-
ics systems in two separate threads seems like an enormous process synchronization
problem, and it is.

Currently, the physics system sends movement events when actors move under phys-
ics control. Under a multithreaded system, more concurrent queues would have to
buffer these movement events, and since they would happen quite a bit, it might
drop the system’s efficiency greatly.

One solution to this would be to tightly couple the physics system to the game logic
and have the game logic send movement messages to other game subsystems, like AI
views or human views. Then it might be possible to detach the entire game logic into
its own thread, running separately from the HumanView. With a little effort, it may
even be possible to efficiently separate each view into its own thread. I’ll leave that
exercise to a sufficiently motivated reader with a high tolerance for frustrating bugs.

716 Chapter 20 n Introduction to Multiprogramming

About the Hardware

Games have had multiple processors since the early 1990s, but the processors were
very dedicated things. They were a part of audio hardware first, and then in the
mid to late 1990s, the advent of dedicated floating-point (FPU) and video processors
revolutionized the speed and look of our games. Both were difficult for programmers
to deal with, and in many ways, most game programmers, except for perhaps John
Miles, the author of the Miles Sound System, were happily coding in a completely
single-threaded environment. They let the compiler handle anything for the FPU
and pawned tough threading tasks off to gurus who were comfortable with the
reader/writer problems so common with sound systems.

The demands of the gaming public combined with truly incredible hardware from
Intel, IBM, and others has firmly put those days behind us. Mostly, anyway. The
Nintendo Wii is the only holdout of the bunch, sporting a single-core PowerPC
CPU built especially for the Wii by IBM.

The other consoles have much more interesting and capable hardware. The PS3 has
a Cell processor jointly designed by IBM, Sony Computer Entertainment, and
Toshiba. The main processor, the Power Processing Element, or PPE, is a general
purpose 64-bit processor and handles most of the workload on the PS3. In addition,
there are eight other special-purpose processors called Synergistic Processing
Elements, or SPEs. Each has 256KB of local memory that may be used to store
instructions and data. Each SPE runs at 3.2GHz, which is quite amazing since there
are eight of them.

To get the best performance out of the PS3, a programmer would have to create very
small threads on each one to handle one step of a complicated task. That last sen-
tence, I assure you, was about 1,000,000 times easier for me to write than it would
be to actually accomplish on a game.

The Xbox360 from Microsoft has a high-performance processor, also designed by
IBM, based on a slightly modified version of the Cell PPE. It has three cores on one
die, runs at 3.2GHz each, and has six possible total hardware threads available to the
happy engineer writing the next Xbox360 blockbuster.

While it doesn’t take a math genius to see that the PS3 Cell processor seems to have
the upper hand on the Xbox360 Xenon, from a programming perspective, the Xenon
is a much friendlier programming environment, capable of handling general purpose
threads that don’t need to fit in a tiny 256KB space.

About the Hardware 717

About the Future

Looking at the past, it is easy to see a trend. Smaller sizes and higher speeds are get-
ting exponentially more difficult for companies like IBM to achieve on new processor
designs. It seems the most cost-effective solution for consumers is to simply give the
box more CPUs, albeit extremely capable ones. The ITRS, or International Technol-
ogy Roadmap for Semiconductors, predicts that by 2020 we could see CPUs with
1,000 cores. The truth is that programmers who haven’t played in the somewhat
frightening but challenging multiprogramming arena are going to be left behind. It
takes an order of magnitude of more planning and sincere care and dedication to
avoid seriously difficult bugs in this kind of environment.

At some point, we can all hope that compilers will become smart enough or will
develop languages specifically for the purpose of handling tricky multiprogramming
problems. There have been attempts, such as Modula and concurrent Pascal, but
nothing so far seems to be winning out over us monkeys smashing our femur bones
on the monolith of C++. C# is certainly a rising star in my opinion, but even it
doesn’t seem to have any syntax or structures to make multiprogramming a brain-
dead proposition. Perhaps in a future release of NET, we’ll see something.

Perhaps a reader of this book will think about that problem and realize we don’t need
new techniques, but simply a new language to describe new techniques.

Either way, multiprogramming is in your future whether you like it or not. So go,
play carefully, and learn.

Further Reading

Modern Operating Systems, Andrew Tannenbaum

718 Chapter 20 n Introduction to Multiprogramming

Chapter 21

by David “Rez” Graham

A Game of Teapot Wars!

You’ve seen a lot of source code in this book, including everything from resource
management to rendering to network code. All of this code has come directly from,
or has been adapted from, a computer game that actually saw real players and some
time in the sun. The one thing you haven’t seen yet is how to put it all together into
a cohesive engine and how to actually build a game. Seeing how everything fits
together is extremely important to understanding the motives behind all these sys-
tems and abstractions we’ve been drilling into your head for this entire book.

The game we’ve created is called Teapot Wars, which you can see in Figure 21.1.

Teapot Wars is a game where teapots battle each other to the death utilizing their
fearsome spout cannon. This game features the use of advanced physics, networked
multiplayer, AI, and everything else you’ve learned. This is a simple game, but in this
simplicity is hidden nearly all of the code you’ve seen in this book. It ties together the
architecture we’ve been pushing; it uses the application layer, the game logic, and
game views as a basis for the game and ties them together with the event system. It
uses Lua for most of the gameplay code and AI and XML for data-driven actors. The
game even works as a multiplayer game over the Internet.

The teapot has an interesting history. You might wonder why you see it virtually
everywhere in computer graphics. DirectX even has a built-in function to create
one. I did a little research on the Internet and found this explanation:

“Aside from that, people have pointed out that it is a useful object to test with. It’s
instantly recognizable, it has complex topology, it self-shadows, there are hidden

719

surface issues, it has both convex and concave surfaces, as well as ‘saddle points.’ It
doesn’t take much storage space—it’s rumored that some of the early pioneers of
computer graphics could type in the teapot from memory,” quoted directly from
http://www.sjbaker.org/wiki/index.php?title=The_History_of_The_Teapot.

Some 3D graphics professionals have even given this shape a special name—the
“teapotahedron.” It turns out that the original teapot that has come to be the official
symbol of SIGGRAPH now lies in the Ephemera Collection of the Computer History
Museum in Mountain View, California. These lovely teapots, in a way, are the found-
ing shapes of the 3D graphics industry and therefore the computer game industry.
It’s quite fitting that we make them the heroes of our game.

Making a Game

The first step in making a game from the GameCode4 engine is to create the game
project. This project should be separate from the engine and under no circumstances
should any code from the engine include any files from your game project. In the
Dev/Source directory, you’ll find the TeapotWars folder. This folder contains all of

Figure 21.1
Teapot Wars—the next AAA game on the Xbox360!

720 Chapter 21 n A Game of Teapot Wars!

http://www.sjbaker.org/wiki/index.php?title=The_History_of_The_Teapot

the game-specific C++ code for the entire game. Notice how there aren’t many files
here. Most of the game’s complexity comes from the engine itself and the Lua game-
play code. You’ll find the solution file in Dev/Source/TeapotWars/Msvc. The directory
structure of Teapot Wars (see Figure 21.2) should look very familiar; it’s the exact
same directory structure Mike showed you in Chapter 4, “Building Your Game.”

Once you have the game project set up, it’s time to create the core classes used to
manage the game. These classes are extensions of the application, logic, and view
classes you saw in previous chapters, and they manage your game-specific C++
code and override any virtual functions that need overriding.

The next major components to the game project are the event system and process
system. You are likely to have many game-specific events and processes that will
need to be written. They should all go here as well.

The majority of your gameplay systems should be written (or at least prototyped) in
Lua. You will need to decide how these systems will be structured and distributed.
You may need to write some game-specific Lua glue functions, although much of
the communication can and should happen through the event system.

Figure 21.2
Teapot Wars directory structure.

Making a Game 721

Finally, you’ll need to decide how to handle your resources and scripts. This includes
deciding on the directory structure, level structure, and how it will all be stored and
loaded.

In this chapter, you’ll see how each of these challenges was approached for the game
of Teapot Wars. Before we start digging into the internals of the game, you should
take the time to download the code base and get it running on your system if you
haven’t already. I won’t be able to cover every single line of code in detail, but I can
offer a guided tour of how this game came together. It works best if you can follow
along in the code.

Creating the Core Classes

In the GameCode4 engine, there are several core classes that control the entire game.
They are GameCodeApp, BaseGameLogic, and HumanView. These three core classes
are meant to be used as base classes for your game-specific code. Many of the func-
tions defined in the base classes are meant to be overridden here as well. Let’s take a
look at the Teapot Wars classes and see how they’re defined.

The Teapot Wars Application Layer

The application layer is the place that holds all the operating system-dependent code like
initialization, strings, the resource cache, and so on. Teapot Wars creates the Teapot

WarsApp class, which extends the GameCodeApp class you saw in Chapter 5, “Game
Initialization and Shutdown.” Here’s the definition of TeapotWarsApp:

class TeapotWarsApp : public GameCodeApp

{

protected:

virtual BaseGameLogic *VCreateGameAndView();

public:

virtual TCHAR *VGetGameTitle() { return _T(“Teapot Wars”); }

virtual TCHAR *VGetGameAppDirectory()

{

return _T(“Game Coding Complete 4\\Teapot Wars\\4.0”);

}

virtual HICON VGetIcon();

protected:

virtual void VRegisterGameEvents(void);

virtual void VCreateNetworkEventForwarder(void);

virtual void VDestroyNetworkEventForwarder(void);

};

722 Chapter 21 n A Game of Teapot Wars!

As you can see, there’s really not a lot to this class. In fact, its entire purpose is to
override various virtual functions from the base class. It acts as a configuration class
of sorts. The BaseGameApp class calls these functions (some of which have no mean-
ingful base class implementation) and expects that they will do the appropriate thing.
For example, VRegisterGameEvents() is defined like this in BaseGameApp:

virtual void VRegisterGameEvents(void) {}

This function is called in BaseGameApp::InitInstance(), and its purpose is to
allow the game-specific subclass to register all of its game events in the appropriate
place during game initialization. This is a very common design pattern called the
Template Method Pattern (not to be confused with C++ templates).

The VCreateGameAndView() function is responsible for creating the concrete,
game-specific logic and human view objects. This is one of the functions you abso-
lutely must override in your subclass since it’s defined as pure virtual in the base
class. The other three are VGetGameTitle(), VGetGameAppDirectory(), and
VGetIcon(). You can see these functions in TeapotWars.h and TeapotWars.cpp.

That’s all there is to the Teapot Wars application layer. The base class GameCodeApp
does almost all the work for you.

The Game Logic

The game logic is where all of the C++ game logic resides, and it is where most of
your gameplay events will get handled and where a lot of the game management will
take place. In Teapot Wars, this class is called TeapotWarsLogic, and it is derived
from BaseGameLogic. As you learned in Chapter 2, “What’s in a Game?”, the game
logic represents the game itself, separated from the operating system and rendering.

Before we dig into the internals of the game logic, let’s take a look at how the Teapot
Wars game itself is organized. Every game of Teapot Wars starts with the main
menu, which you can see in Figure 21.3.

The player is presented with two main options: He can create a new game, or he can
join an existing game. If you create a new game, you choose the level XML file you
want to load, the number of AI teapots, and the number of players involved. If you
choose to join a game, all you need to do is fill out the port number and host name.
When everything is set, you click on the Start Game button at the bottom. This will
take you right into the game.

In reality, there’s a lot more going on under the hood when you click on Start Game.
First, the game environment is loaded. If this is a network game, the host tells each
attached client which level XML file to load, but all loading happens from your local

Creating the Core Classes 723

machine. Telling the clients to load a single level file is much better than spamming a
bunch of “new actor” events across the network.

Once the level has been loaded, the game needs to wait for all the expected clients to
connect. After that, all the teapots are created by the server and distributed to each
client. Then the game waits for all players to spawn into their level and gain control
of their teapots. Then the game starts running, and it’s every teapot for itself!

Each of these stages is separated into different states for processing by the game logic.
The states are represented by the BaseGameState enum:

enum BaseGameState

{

BGS_Invalid,

BGS_Initializing,

BGS_MainMenu,

BGS_WaitingForPlayers,

BGS_LoadingGameEnvironment,

BGS_WaitingForPlayersToLoadEnvironment,

BGS_SpawningPlayersActors,

BGS_Running

};

Each of these values corresponds to a different state the game can be in. All of these
states are managed by the game logic classes. Most of the processing happens in

Figure 21.3
Teapot Wars main menu.

724 Chapter 21 n A Game of Teapot Wars!

BaseGameLogic, and any game-specific processing that needs to occur is put in the
TeapotWarsLogic class. Let’s take a look at the TeapotWarsLogic class:

class TeapotWarsLogic : public BaseGameLogic

{

protected:

std::list<NetworkEventForwarder*> m_networkEventForwarders;

public:

TeapotWarsLogic();

virtual ˜TeapotWarsLogic();

// Update

virtual void VSetProxy();

virtual void VMoveActor(const ActorId id, Mat4x4 const &mat);

// Overloads

virtual void VChangeState(BaseGameState newState);

virtual void VAddView(shared_ptr<IGameView> pView,

ActorId actorId=INVALID_ACTOR_ID);

virtual shared_ptr<IGamePhysics> VGetGamePhysics(void) {return m_pPhysics;}

// set/clear render diagnostics

void ToggleRenderDiagnostics() {m_RenderDiagnostics = !m_RenderDiagnostics;}

// event delegates

void RequestStartGameDelegate(IEventDataPtr pEventData);

void GameStateDelegate(IEventDataPtr pEventData);

void RemoteClientDelegate(IEventDataPtr pEventData);

void NetworkPlayerActorAssignmentDelegate(IEventDataPtr pEventData);

void NewGameDelegate(IEventDataPtr pEventData);

protected:

virtual bool VLoadGameDelegate(TiXmlElement* pLevelData);

private:

void RegisterAllDelegates(void);

void RemoveAllDelegates(void);

void CreateNetworkEventForwarder(const int socketId);

void DestroyAllNetworkEventForwarders(void);

};

Much like TeapotWarsApp, this class mostly overrides virtual functions to change
or augment the behavior of the game logic. One big difference between this class
and the application layer is that TeapotWarsLogic defines a number of delegate
functions. These are the listener functions for various game events that it needs to

Creating the Core Classes 725

process. If you have game-specific logic systems in C++, this is how you would com-
municate with them.

The game states are handled by two functions: VOnUpdate() and VChangeState().
VOnUpdate() is the heart of the game logic. This function is responsible for proces-
sing the game state, updating all objects, and performing any per-frame operations the
game logic needs to perform. Here is the VOnUpdate() function defined in
BaseGameLogic:

void BaseGameLogic::VOnUpdate(float time, float elapsedTime)

{

int deltaMilliseconds = int(elapsedTime * 1000.0f);

m_Lifetime += elapsedTime;

switch(m_State)

{

case BGS_Initializing:

// If we get to here we’re ready to attach players

VChangeState(BGS_MainMenu);

break;

case BGS_MainMenu:

break;

case BGS_LoadingGameEnvironment:

if (!g_pApp->VLoadGame())

{

GCC_ERROR(“The game failed to load.”);

g_pApp->AbortGame();

}

break;

case BGS_WaitingForPlayersToLoadEnvironment:

if (m_ExpectedPlayers + m_ExpectedRemotePlayers <= m_HumanGamesLoaded)

{

VChangeState(BGS_SpawningPlayersActors);

break;

}

case BGS_SpawningPlayersActors:

VChangeState(BGS_Running);

break;

case BGS_WaitingForPlayers:

if (m_ExpectedPlayers + m_ExpectedRemotePlayers ==

m_HumanPlayersAttached)

726 Chapter 21 n A Game of Teapot Wars!

{

VChangeState(BGS_LoadingGameEnvironment);

}

break;

case BGS_Running:

m_pProcessManager->UpdateProcesses(deltaMilliseconds);

// update the physics

if(m_pPhysics && !m_bProxy)

{

m_pPhysics->VOnUpdate(elapsedTime);

m_pPhysics->VSyncVisibleScene();

}

break;

default:

GCC_ERROR(“Unrecognized state.”);

}

// update all game views

for (GameViewList::iterator it = m_gameViews.begin();

it != m_gameViews.end(); ++it)

{

(*it)->VOnUpdate(deltaMilliseconds);

}

// update game actors

for (ActorMap::const_iterator it = m_actors.begin();

it != m_actors.end(); ++it)

{

it->second->Update(deltaMilliseconds);

}

}

The function begins by updating the lifetime of the object. Then it processes the
game state in a big switch statement. Any logic that needs to happen every frame
while in a specific state can happen here. For example, the Process Manager and
physics system are only updated during the BGS_Running state. After that, the
views are all updated, followed by all the actors. The views and actors must all be
updated regardless of what state the game is in.

State processing often needs to occur when one state transitions to a new state. This
logic is placed into the VChangeState() function.

Creating the Core Classes 727

void BaseGameLogic::VChangeState(BaseGameState newState)

{

if (newState==BGS_WaitingForPlayers)

{

// Get rid of the Main Menu…

m_gameViews.pop_front();

// Note: Split screen support would require this to change!

m_ExpectedPlayers = 1;

m_ExpectedRemotePlayers = g_pApp->m_Options.m_expectedPlayers - 1;

m_ExpectedAI = g_pApp->m_Options.m_numAIs;

if (!g_pApp->m_Options.m_gameHost.empty())

{

VSetProxy();

m_ExpectedAI = 0; // the server will create these

m_ExpectedRemotePlayers = 0; // the server will create these

if (!g_pApp->AttachAsClient())

{

// Throw up a main menu

VChangeState(BGS_MainMenu);

return;

}

}

else if (m_ExpectedRemotePlayers > 0)

{

BaseSocketManager *pServer = GCC_NEW BaseSocketManager();

if (!pServer->Init())

{

// Throw up a main menu

VChangeState(BGS_MainMenu);

return;

}

pServer->AddSocket(

new GameServerListenSocket(g_pApp->m_Options.m_listenPort));

g_pApp->m_pBaseSocketManager = pServer;

}

}

m_State = newState;

}

VChangeState() is called whenever the game state needs to be changed. For Base-
GameLogic, all it really cares about is detecting when the game begins waiting for

728 Chapter 21 n A Game of Teapot Wars!

players. It starts by popping the front game view, which is assumed to be the main menu
since the main menu is the only thing that can transition to this state. Then it reads the
options from the application layer to find out how many objects it can expect.

The main menu code itself is relatively straightforward, and it can be found in
Dev/Source/TeapotWars/TeapotWarsView.h and TeapotWars.cpp.

The next block takes care of networking. The game logic really has two modes: It can
either be a full game logic, or it can be a proxy that pretends to be a game logic. If
you’re playing a multiplayer game, only the server gets a true game logic object; all
the other players get proxies. This proxy is responsible for serializing events coming
in from the local game views and forwarding them to the server. When the server
game logic sends events, these are caught by the proxy game logics and forwarded
to the appropriate places. There’s a flag on BaseGameLogic that is set to true if
this game logic is just a proxy.

The first part checks to see if the application layer has a listed game host. Some
methods, such as a menu interface or simple game options file, will set the game
host before the BGS_WaitingForPlayers state is entered. If the game is a remote
client, the logic is set to a proxy logic by calling VSetProxy(), which sets the
m_bProxy member of the BaseGameLogic class to true. After that point, most of
the game logic is short-circuited, and the game events will simply come in from the
remote server.

If the game is an authoritative server expecting remote players, a new socket manager
is created and initialized. This class was covered in Chapter 19, “Network Program-
ming for Multiplayer Games.”

If either case fails, the game goes back to the main menu. If this is neither a client
nor a server, it is considered to be a single-player game.

The game-specific logic class will often need to handle processing states and state
changes. The VOnUpdate() and VChangeState() functions can be overridden
for just that purpose. In Teapot Wars, only the VChangeState() function needs
to be overridden to handle actor spawning.

void TeapotWarsLogic::VChangeState(BaseGameState newState)

{

BaseGameLogic::VChangeState(newState);

switch(newState)

{

case BGS_WaitingForPlayers:

{

Creating the Core Classes 729

// spawn all local players (should only be one, though we might

// support more in the future)

GCC_ASSERT(m_ExpectedPlayers == 1);

for (int i = 0; i < m_ExpectedPlayers; ++i)

{

shared_ptr<IGameView> playersView(

GCC_NEW TeapotWarsHumanView(g_pApp->m_Renderer));

VAddView(playersView);

if (m_bProxy)

{

// if we are a remote player, all we have to do is spawn

// our view - the server will do the rest.

return;

}

}

// spawn all remote players’ views on the game

for (int i = 0; i < m_ExpectedRemotePlayers; ++i)

{

shared_ptr<IGameView> remoteGameView(GCC_NEW NetworkGameView);

VAddView(remoteGameView);

}

// spawn all AI’s views on the game

for (int i = 0; i < m_ExpectedAI; ++i)

{

shared_ptr<IGameView> aiView(

GCC_NEW AITeapotView(m_pPathingGraph));

VAddView(aiView);

}

break;

}

case BGS_SpawningPlayersActors:

{

if (m_bProxy)

{

// only the server needs to do this.

return;

}

for (auto it = m_gameViews.begin(); it != m_gameViews.end(); ++it)

{

730 Chapter 21 n A Game of Teapot Wars!

shared_ptr<IGameView> pView = *it;

if (pView->VGetType() == GameView_Human)

{

StrongActorPtr pActor =

VCreateActor(“actors\\player_teapot.xml”, NULL);

if (pActor)

{

shared_ptr<EvtData_New_Actor> pNewActorEvent(

GCC_NEW EvtData_New_Actor(

pActor->GetId(), pView->VGetId()));

IEventManager::Get()->VTriggerEvent(pNewActorEvent);

}

}

else if (pView->VGetType() == GameView_Remote)

{

shared_ptr<NetworkGameView> pNetworkGameView =

static_pointer_cast<NetworkGameView, IGameView>(pView);

StrongActorPtr pActor =

VCreateActor(“actors\\remote_teapot.xml”, NULL);

if (pActor)

{

shared_ptr<EvtData_New_Actor> pNewActorEvent(

GCC_NEW EvtData_New_Actor(pActor->GetId(),

pNetworkGameView->VGetId()));

IEventManager::Get()->VQueueEvent(pNewActorEvent);

}

}

else if (pView->VGetType() == GameView_AI)

{

shared_ptr<AITeapotView> pAiView =

static_pointer_cast<AITeapotView, IGameView>(pView);

StrongActorPtr pActor =

VCreateActor(“actors\\ai_teapot.xml”, NULL);

if (pActor)

{

shared_ptr<EvtData_New_Actor> pNewActorEvent(

GCC_NEW EvtData_New_Actor(

pActor->GetId(), pAiView->VGetId()));

IEventManager::Get()->VQueueEvent(pNewActorEvent);

}

}

}

break;

Creating the Core Classes 731

}

}

}

The first thing this function does is to call the base class version. This is extremely
important because there is a lot of important processing that happens there.

If the BGS_WaitingForPlayers state is the state being transitioned to, the code
spawns all the local players, unless this is a proxy. If this is a proxy, there is very little
to do except attach a view. Otherwise, the appropriate type of view is created for that
type of player and added to the list of views the game logic maintains. These views
are often game-specific views tied directly to that game.

The BGS_SpawningPlayersActors state signals that it’s time to spawn all the
actors into the world. It loops through all the game views and creates the appropriate
type of actor. It also sends the EvtData_New_Actor event to let other systems
know that an actor has been created.

Let’s take a look at a few examples of how the engine handles some of the events sent
from the game layer. In the Scene class (which you saw in Chapter 16, “3D Scenes”),
there are two delegates that respond to the creation and destruction of actors. Here’s
the one for new actors:

void Scene::NewRenderComponentDelegate(IEventDataPtr pEventData)

{

shared_ptr<EvtData_New_Render_Component> pCastEventData =

static_pointer_cast<EvtData_New_Render_Component>(pEventData);

ActorId actorId = pCastEventData->GetActorId();

shared_ptr<SceneNode> pSceneNode(pCastEventData->GetSceneNode());

//TODO: Add real error handling here.

if (FAILED(pSceneNode->VOnRestore(this)))

{

GCC_ERROR(“Failed to add scene node to the scene for actorid ” +

ToStr(actorId));

return;

}

AddChild(actorId, pSceneNode);

}

This delegate is registered to receive the EvtData_New_Render_Component event,
which is sent from the render component. Any actor that has a render component
will trigger this event, which includes the actor ID and the scene node for the actor.

732 Chapter 21 n A Game of Teapot Wars!

This delegate calls VOnRestore() on the scene node to get it into a renderable state
and adds it as a child to the scene.

When an actor is destroyed, the EvtData_Destroy_Actor event is sent. The scene
must also catch this event to properly remove the child:

void Scene::DestroyActorDelegate(IEventDataPtr pEventData)

{

shared_ptr<EvtData_Destroy_Actor> pCastEventData =

static_pointer_cast<EvtData_Destroy_Actor>(pEventData);

RemoveChild(pCastEventData->GetId());

}

The Game View for a Human Player

The game view’s job is to present the game, accept input, and translate that input
into commands for the game logic. There are three kinds of views that can attach
to Teapot Wars: a view for a local human player, a view for an AI player, and a
view that represents a player on a remote machine. The last one, NetworkGame-
View, was presented at the end of Chapter 19.

The view for the human player is responsible for the 3D graphics, audio, and user
interface of the game. There are two classes that make this system work. The first is
TeapotWarsHumanView, which inherits from the HumanView class presented in
Chapter 10, “User Interface Programming.” This class hooks into the Windows appli-
cation layer message pump for user interface processing and organizes user interface
objects, like buttons and text strings on top of a 3D scene background. The second
class is TeapotController, which reads input from the keyboard and mouse and
translates input into commands that are sent to the game logic.

The code for the TeapotWarsHumanView is quite a bit longer. It has a lot of work
to do, keeping track of the 3D scene, audio, graphical object creation, and presenting
the user interface.

class TeapotWarsHumanView : public HumanView

{

protected:

bool m_bShowUI; // If true, it renders the UI control text

std::wstring m_gameplayText; // text being displayed at the top-center

shared_ptr<TeapotController> m_pTeapotController;

shared_ptr<MovementController> m_pFreeCameraController;

shared_ptr<SceneNode> m_pTeapot;

shared_ptr<StandardHUD> m_StandardHUD;

Creating the Core Classes 733

public:

TeapotWarsHumanView(shared_ptr<IRenderer> renderer);

virtual ˜TeapotWarsHumanView();

virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg);

virtual void VRenderText();

virtual void VOnUpdate(unsigned long deltaMs);

virtual void VOnAttach(GameViewId vid, ActorId aid);

virtual void VSetControlledActor(ActorId actorId);

virtual bool VLoadGameDelegate(TiXmlElement* pLevelData) override;

// event delegates

void GameplayUiUpdateDelegate(IEventDataPtr pEventData);

void SetControlledActorDelegate(IEventDataPtr pEventData);

private:

void RegisterAllDelegates(void);

void RemoveAllDelegates(void);

};

This class manages a number of view objects and relies on the HumanView class to
handle most of the heavy lifting It has a reference to the TeapotController for
handling player input, a MovementController that implements the debug free-fly
camera, a teapot scene node, which represents the currently controlled teapot, and a
StandardHUD object for UI rendering.

Like the application layer and game logic, most of the functions defined in this class
are either overridden virtual functions or event handler delegates. The delegates han-
dle events coming from the Lua code. You’ll see those later in this chapter. The other
functions are implementations of techniques you’ve learned on how to render text
and manage a scene in Direct3D. The TeapotWarsHumanView class can be found at
Dev/Source/TeapotWars/TeapotWarsView.h and TeapotWarsView.cpp.

A game view that presents the game to a human needs a way for that human to affect
the game. It’s a common practice to factor control systems that have a particular
interface, like the keyboard WASD controls, into a class that can be attached and
detached as necessary. This controller class isn’t exactly WASD, since the A and D
keys control steering rather than strafing, but I’m sure you’ll forgive the departure.

class TeapotController : public IPointerHandler, public IKeyboardHandler

{

protected:

bool m_bKey[256]; // Which keys are up and down

shared_ptr<SceneNode> m_object;

734 Chapter 21 n A Game of Teapot Wars!

public:

TeapotController(shared_ptr<SceneNode> object);

void OnUpdate(const DWORD elapsedMs);

public:

virtual bool VOnPointerMove(const CPoint &mousePos, const int radius)

{

return true;

}

virtual bool VOnPointerButtonDown(const CPoint &mousePos, const int radius,

const std::string &buttonName);

virtual bool VOnPointerButtonUp(const CPoint &mousePos, const int radius,

const std::string &buttonName)

{

return (buttonName == “PointerLeft”);

}

bool VOnKeyDown(const BYTE c) { m_bKey[c] = true; return true; }

bool VOnKeyUp(const BYTE c) { m_bKey[c] = false; return true; }

};

TeapotController::TeapotController(shared_ptr<SceneNode> object)

: m_object(object)

{

memset(m_bKey, 0x00, sizeof(m_bKey));

}

As you can see from the class definition, really the only methods that have any meat
to them are the response to the left mouse button and OnUpdate(). Keyboard
events are recorded as they happen, which are used in OnUpdate().

Here’s what happens when the player presses the left mouse button:

bool TeapotController::VOnPointerButtonDown(const CPoint &mousePos,

const int radius, const std::string &buttonName)

{

if (buttonName != “PointerLeft”)

return false;

ActorId actorId = m_object->VGet()->ActorId();

GCC_ASSERT(actorId != INVALID_ACTOR_ID &&

“The teapot controller isn’t attached to a valid actor!”);

shared_ptr<EvtData_Fire_Weapon> pFireEvent(

GCC_NEW EvtData_Fire_Weapon(actorId));

IEventManager::Get()->VQueueEvent(pFireEvent);

return true;

}

Creating the Core Classes 735

The code queues a “Fire Weapon” event. Note that in a commercial game, this
wouldn’t be hard-coded to the left mouse button necessarily. Instead, there would
be an intermediate layer that translated specific user interface events into mappable
game events, which enables the user to set up his keyboard and mouse the way he
likes it.

Hard-Coded WASD

The first game I worked on as an engineer was Barbie Diaries: High School
Mystery. The input system used a hard-coded WASD key configuring. We
were an adventure game company, so key configuration wasn’t a huge issue
for us. Unfortunately, the next project ended up being on the PlayStation 3, so
I was assigned the task of rewriting that system. It was pretty grueling, but I
learned a huge amount about designing an input system API. Sometimes the
painful tasks are the ones you learn the most from.

Here’s the OnUpdate() method of the controller:

void TeapotController::OnUpdate(DWORD const deltaMilliseconds)

{

if (m_bKey[’W’] || m_bKey[’S’])

{

const ActorId actorID = m_object->VGet()->ActorId();

shared_ptr<EvtData_Thrust> pEvent(

GCC_NEW EvtData_Thrust(actorID, m_bKey[’W’]? 1.0f : -1.0f));

IEventManager::Get()->VQueueEvent(pEvent);

}

if (m_bKey[’A’] || m_bKey[’D’])

{

const ActorId actorID = m_object->VGet()->ActorId();

shared_ptr<EvtData_Steer> pEvent(

GCC_NEW EvtData_Steer(actorID, m_bKey[’A’]? -1.0f : 1.0f));

IEventManager::Get()->VQueueEvent(pEvent);

}

}

The controller keeps a record of what keys are down on the keyboard, and it
responds to the mouse-down event as well. Since the controller implements the
IMouseHandler and IKeyboardHandler interfaces, it wires in nicely to the base
HumanView class. The interface events are translated into the two gameplay events
that are handled in Lua: ”Thrust” and “Steer.” You’ll see their definitions later on in
this chapter.

736 Chapter 21 n A Game of Teapot Wars!

Game Events

You’ve already seen most of the events that will be fired during a highly addictive ses-
sion of Teapot Wars. When objects collide, for example, the physics system sends a col-
lision event just like the one you saw in Chapter 17, “Collision and Simple Physics.”
There are five new events that are specific to Teapot Wars: EvtData_Fire_Weapon,
EvtData_Thrust, EvtData_Steer, EvtData_Gameplay_UI_Update, and Evt

Data_SetControlledActor. Each of these events inherits from ScriptEvent and
is exposed to Lua using the techniques you learned in Chapter 12, “Scripting with Lua.”

You’ve already seen how the “Fire Weapon,” “Thrust,” and “Steer” events are trig-
gered from the TeapotController event previously in this chapter. The other
two events are triggered from script and handled by the TeapotWarsHumanView

class. The “Set Controlled Actor” event is sent during initialization to tell the view
which actor is the controlled actor. The “Gameplay UI Update” event is sent when-
ever the gameplay code needs to update the text at the top of the screen.

There’s nothing new or special about these events; they work exactly like all the other
events you’ve seen. You can find them in Dev/Source/TeapotWars/TeapotEvents.h.

Gameplay

The vast majority of the gameplay in Teapot Wars is defined in Lua. You can find
these Lua scripts in Dev/Assets/Scripts. If you are using Decoda, there’s even a Decoda
project file there for you to use. Before digging too deeply into the gameplay imple-
mentation, I’d like to talk a bit about the design.

The level is a simple grid where you and one of enemies face off in a battle to the
death. Multiple teapots enter, but only one will survive. If any teapot falls off the
grid, that teapot dies. Each teapot can take three hits before being destroyed,
although everyone is periodically healed.

AI teapots in the world are controlled by the decision tree you saw in Chapter 18,
“An Introduction to Game AI.” Teapots will patrol two points on the grid until one
of their foes approaches; then they attack! If the AI teapot drops to one hit point, it
will run until it gets healed.

Now that you have a little context, load up the game and play around with it for a
bit. Come back when you’re ready, and I’ll show you how the level is loaded.

Loading the Level

When the game starts up, a level XML file is loaded to determine which actors to
create and where to create them. It also determines which script files to load. For

Gameplay 737

Teapot Wars, the level files exist are created in the Dev/Assets/World directory. Here’s
an example of a level file:

<World>

<!-- A list of static actors to load. Static actors have no

game view attached. This is for stuff like level geometry.- ->

<StaticActors>

<Actor resource=“actors\grid.xml” />

<Actor resource=“actors\light.xml” />

<Actor resource=“actors\afternoon_sky.xml” />

<Actor resource=“actors\music.xml” />

</StaticActors>

<Script preLoad=“scripts\LevelInit.lua” postLoad=“scripts\LevelPostInit.lua”/>

</World>

The first block defines all of the static actors, which have no game view. The grid
geometry, lights, the skybox, and even the background music are all stored as static
entities. The second block is the script configuration. This element defines a preload
script and a postload script. The preload script is executed as the very first thing dur-
ing a level load. The postload script happens at the very end. This is useful to get the
dependency order correct. These two scripts are the only scripts the level automati-
cally executes. Let’s take a look at the preload script:

require(“scripts\\ActorManager.lua”);

g_actorMgr = ActorManager:Create();

function AddPlayer(scriptObject)

g_actorMgr:AddPlayer(scriptObject);

end

function RemovePlayer(scriptObject)

g_actorMgr:RemovePlayer(scriptObject);

end

function AddEnemy(scriptObject)

g_actorMgr:AddEnemy(scriptObject);

end

function RemoveEnemy(scriptObject)

g_actorMgr:RemoveEnemy(scriptObject);

end

738 Chapter 21 n A Game of Teapot Wars!

function AddSphere(scriptObject)

g_actorMgr:AddSphere(scriptObject);

end

function RemoveSphere(scriptObject)

g_actorMgr:RemoveSphere(scriptObject);

end

The first line calls require(), which executes the ActorManager.lua script if it
hasn’t already been executed. This is similar to C++ #include statements. The next
line instantiates a global ActorManager class. The rest of the file defines a number
of add and remove functions for various types of actors. These are called from the
XML-defined constructor and destructor for various game actors, as described at
the end of Chapter 12. It allows actors to be automatically added to and removed
from the Lua actor manager when they are created and destroyed.

The Actor Manager

Most of the action takes place in the actor manager. Here’s the class definition:

ActorManager = class(nil,

{

_player = nil, -- this will be filled automatically when

-- player_teapot.xml is loaded

_enemies = {}, -- a map of enemy teapots; key = actor id

_spheres = {}, -- a map of spheres; key = actor id

-- processes

_enemyProcesses = nil;

_enemyHealer = nil, -- process that periodically heals all enemies

_enemyThinker = nil, -- process that causes enemies to make a new decision

_enemyUpdater = nil, -- process that updates all enemy states

});

The first three variables track the different types of actors in the world. The remain-
ing four handle special script processes that apply various gameplay effects, as
described in the comments next to each one.

When an AI teapot is created, the script component calls the constructor function,
which in turn calls ActorManager:AddEnemy().

function ActorManager:AddEnemy(scriptObject)

-- add the enemy to the list of enemies

local actorId = scriptObject:GetActorId();

if (self._enemies[actorId] ˜= nil) then

Gameplay 739

print(“Overwriting enemy actor; id = ” .. actorId);

end

self._enemies[actorId] = scriptObject;

-- set up some sample game data

scriptObject.maxHitPoints = 3;

scriptObject.hitPoints = scriptObject.maxHitPoints;

-- create the teapot brain

local brain = nil;

if (TEAPOT_BRAIN) then

brain = TEAPOT_BRAIN:Create({_teapot = scriptObject});

if (not brain:Init()) then

print(“Failed to initialize brain”);

brain = nil;

end

end

-- set up the state machine

scriptObject.stateMachine =

TeapotStateMachine:Create({_teapot = scriptObject, _brain = brain});

-- set the initial state

scriptObject.stateMachine:SetState(PatrolState);

-- increment the enemy count and create the enemy processes if necessary

if (self._enemyProcesses == nil) then

self:_CreateEnemyProcesses();

end

-- make sure the UI is up to date

self:UpdateUi();

end

The scriptObject parameter is a table that contains an __object pointer back to
the C++ BaseScriptComponent object (see Chapter 12 for details).

The first block checks to see if the enemy has already been added to the map. If it
has, the code simply overwrites it. The next block sets up some variables on the
enemy object. Keep in mind that this only sets the variables on the Lua table wrap-
ping the C++ object, so these variables won’t be available in C++.

The next block of code creates the brain for the teapot. It looks at the global
TEAPOT_BRAIN constant and instantiates an object of that type, passing in the script
object to the constructor. TEAPOT_BRAIN is defined at the top of this file:

TEAPOT_BRAIN = DecisionTreeBrain;

740 Chapter 21 n A Game of Teapot Wars!

This was done so you could easily experiment with the other brains you saw in
Chapter 18. You can also create your own brain if you feel so inclined.

All teapots are controlled by a state machine where their current state defines their
behavior. The next two lines create that state machine and set the initial state to
PatrolState.

Next, there’s a check to see if the enemy processes have been created for periodically
healing, running AI, and allowing the state to run its update logic. If these processes
have been created, they are created here. Finally, the UI is updated since a new teapot
has just arrived.

Sending and Receiving Events

Events and processes are extremely important in Lua. Events are your main method
of communication to and from the C++ code. Without events, your scripts are deaf,
blind, and mute. Nothing special was added to make events work with Teapot Wars;
it uses the same mechanisms you saw in Chapter 11, “Game Event Management,”
and Chapter 12. Let’s take a look at all works in Teapot Wars by examining the
UpdateUi() function you saw at the bottom of AddEnemy(). This function pro-
vides a good example of sending an event from the gameplay code out to C++.

function ActorManager:UpdateUi()

-- Build up the UI text string for the human view

local uiText = “”;

if (self._enemies ˜= nil) then

for id, teapot in pairs(self._enemies) do

uiText = uiText .. “Teapot ” .. id .. “ HP: ” ..

teapot.hitPoints .. “\n”;

end

end

QueueEvent(EventType.EvtData_Gameplay_UI_Update, uiText);

end

This function loops through all enemies and builds a string that lists the actor’s ID
along with its current hit points. After that, it calls the exported C++ QueueEvent()

function to send it out. This event will be caught by the TeapotWarsHumanView

class in C++. Here’s the delegate registered to listen for this event:

void TeapotWarsHumanView::GameplayUiUpdateDelegate(IEventDataPtr pEventData)

{

shared_ptr<EvtData_Gameplay_UI_Update> pCastEventData =

static_pointer_cast<EvtData_Gameplay_UI_Update>(pEventData);

Gameplay 741

if (!pCastEventData->GetUiString().empty())

m_gameplayText = s2ws(pCastEventData->GetUiString());

else

m_gameplayText.clear();

}

This event delegate is pretty simple: It just casts the event to the proper type and
reads it from the event. The s2ws() function converts the ASCII string into a
std::wstring, which is then stored in a member variable. During the next render
pass, this string is rendered to the top-middle portion of the screen.

This is great for sending events, but what about receiving them? It is often useful to
have all of the event listeners in one place since most event listeners just call into
another system. Teapot Wars has an Events.lua file for just that purpose:

function OnPhysicsCollision(eventData)

g_actorMgr:OnPhysicsCollision(eventData);

end

function OnFireWeapon(eventData)

g_actorMgr:OnFireWeapon(eventData);

end

function RegisterListeners()

if (EventType.EvtData_PhysCollision ˜= nil) then

RegisterEventListener(EventType.EvtData_PhysCollision,

OnPhysicsCollision);

end

if (EventType.EvtData_Fire_Weapon ˜= nil) then

RegisterEventListener(EventType.EvtData_Fire_Weapon, OnFireWeapon);

end

end

This file declares three functions. The first two are event listener delegates, and the
third is called to register those listeners. Let’s say a collision is registered by the phys-
ics system in C++. This will trigger the EvtData_PhysCollision event, which will
be handled by OnPhysicsCollision(). That function calls into the actor manager.

function ActorManager:OnPhysicsCollision(eventData)

local actorA = self:GetActorById(eventData.actorA);

local actorB = self:GetActorById(eventData.actorB);

-- one of the actors isn’t in the script manager

if (actorA == nil or actorB == nil) then

742 Chapter 21 n A Game of Teapot Wars!

return;

end

local teapot = nil;

local sphere = nil;

if (actorA.actorType == “Teapot” and actorB.actorType == “Sphere”) then

teapot = actorA;

sphere = actorB;

elseif (actorA.actorType == “Sphere” and actorB.actorType == “Teapot”) then

teapot = actorB;

sphere = actorA;

end

-- needs to be a teapot and sphere collision for us to care

if (teapot == nil or sphere == nil) then

return;

end

-- If we get here, there was a collision between a teapot and a

-- sphere. Damage the teapot.

self:_DamageTeapot(teapot);

-- destroy the sphere

self:RemoveSphere(sphere);

QueueEvent(EventType.EvtData_Request_Destroy_Actor, sphere:GetActorId());

-- play the hit sound

QueueEvent(EventType.EvtData_PlaySound, “audio\\computerbeep3.wav”);

end

This function checks the types of the actors (defined in the actor XML), and if one is
a teapot and the other is a sphere, it causes the teapot to take damage. The sphere is
destroyed by sending an event out to the engine. A sound is also played by sending
an event.

As you can see, events are the key to interacting with the C++ code.

Processes

Processes are what give your scripts a heartbeat. Without processes, your script
would be lifeless. Like the event system, nothing special was done to the process sys-
tem for Teapot Wars—it uses the same system described in Chapter 7, “Controlling
the Main Loop” and the ScriptProcess you saw in Chapter 12.

Gameplay 743

A great example of where a process is needed is in the AI update for the teapots.
Teapots need a way to periodically update their states and make decisions. This all
starts with the _CreateEnemyProcesses() function you saw in AddEnemy().

function ActorManager:_CreateEnemyProcesses()

self._enemyProcesses = {};

-- Create all enemy processes. Each process is appended to the end of

-- the _enemyProcesses list.

self._enemyProcesses[#self._enemyProcesses+1] =

EnemyUpdater:Create({_enemies = self._enemies});

self._enemyProcesses[#self._enemyProcesses+1] =

EnemyHealer:Create({_enemies = self._enemies, frequency = 15013});

self._enemyProcesses[#self._enemyProcesses+1] =

EnemyThinker:Create({_enemies = self._enemies, frequency = 3499});

-- attach all the processes

for i, proc in ipairs(self._enemyProcesses) do

AttachProcess(proc);

end

end

This function is responsible for creating the three processes used by the actor man-
ager, which are stored in the _enemyProcesses table. Once the processes have been
created, the function loops through the list and calls the exported C++ function
AttachProcess() to attach it to the game logics Process Manager.

Use Prime Numbers

In the _CreateEnemyProcesses() function, you may note the use of
some odd frequency values. Why would I use 3499 instead of 3500? Those
frequencies are all being set to prime numbers that are close to the value I
want. This makes the processes tend to update on separate frames. It’s not
perfect, but without a process scheduling system, it works well enough.

The processes themselves are rather simple. Here’s the EnemyThinker process, used
to run an AI update:

EnemyThinker = class(ActorManagerProcess,

{

--

});

744 Chapter 21 n A Game of Teapot Wars!

function EnemyThinker:OnUpdate(deltaMs)

print(“Running AI update for enemies”);

for id, actor in pairs(self._enemies) do

actor.stateMachine:ChooseBestState();

end

end

This class only has the OnUpdate() function, which loops through all the actors and
calls ChooseBestState() on their state machine, just like you saw in Chapter 19.

Don’t Cross the Streams

One alternative to the design above would be to make every AI state into a
ScriptProcess object. This would certainly work, but it would cause a lot
more traffic across the C++/Lua boundary. It’s much better to have only a
few ScriptProcess objects that do more work than to have a bunch of
ScriptProcess objects that do very little work.

An Exercise Left to the Reader

It may not look like it, but Teapot Wars is an excellent example of how to make a
game. I’ve worked on a lot of projects in my career, and they all looked very much
like Teapot Wars in the early days. The excellence isn’t in the game itself, it’s in the
potential. If you took this game and spent six months to a year on it, you could easily
have something to compete in the Independent Games Festival.

I get emails from budding game developers all the time asking me what they can do
to make a game. The answer to this question is simple: Make a game. You can read
every book in the world on game development, go to a school specializing in game
programming, play every game under the sun, post on every message board, and talk
to everyone about game development. None of it takes the place of actually sitting
down and making something. Conversely, don’t bite off more than you can chew.
Games take a long time to make, even simple ones. Start really simply (like Teapot
Wars) and build from that.

To use a video game analogy, making games is a lot like leveling up in Ultima VII. In
Ultima VII, you would gain experience by killing monsters, which would cause you
to level up. Leveling up didn’t do anything except give you training points; you’d
have to find a trainer to spend those training points and make your character better.
Visiting a trainer is useless without the experience to back it up, and gaining experi-
ence isn’t productive without the benefits of a trainer.

An Exercise Left to the Reader 745

This book is like the trainer from Ultima VII, and making games is like killing mon-
sters. This book is a great guide to help temper your own experience, but it’s doesn’t
do much good until you really sit down and build a game from start to finish.

It is my sincere hope that Teapot Wars gives you a starting point. Knowing where
and how to start is often the hardest part. Once you have a leg up, you can gain
momentum and tear through huge amounts of code. You can build system after sys-
tem and add level after level. When you finally look up, you’ll notice that the sun is
coming up and wonder if you should possibly get to bed. It’s an amazing feeling to be
in the zone like that.

So, as one final exercise from me to you, I challenge you to make Teapot Wars better.
Add some more gameplay elements, expand the level, improve the AI, and add some
models and animation. Take it as far as you can and then post the results here:

http://www.mcshaffry.com/GameCode/

I can’t wait to see what you come up with.

746 Chapter 21 n A Game of Teapot Wars!

http://www.mcshaffry.com/GameCode/

Chapter 22

by Mike McShaffry

A Simple Game Editor in C#

Assembling the thousands of assets needed for a game is not a job for Visual Studio.
Instead, the 3D models, shaders, textures, scripts, audio files, and other data are typi-
cally assembled in a game editor. Sometimes called a level editor, this tool manages
the assets, creates a great environment for game designers to practice their craft,
and ultimately packages everything into a form that the game engine can consume.

One of the most popular game editors, the Unreal Editor, allows its users to have
control over things like lighting, scripted camera control, shader creation, and basic
geometry placement. Let’s not forget about saving and loading the levels, which is
also pretty important. Some editors allow you to view animations on characters,
while other engines break things like that into separate tools. For our purposes, we
want to make sure that our editor handles the most essential task for a level editor
—adding objects to our level, adjusting its properties, and saving the level to a file.

You’ll see things you’ve learned over the previous chapters, while adding a new wrin-
kle. The application layer, view, and logic will be written in C++, but the editor appli-
cation itself will be written in C#.

Why C#?

Why would anyone want to write an editor in C#? C# is arguably slower than C++,
but it is improving all the time. However, C# enables you to develop complicated

747

Windows applications very quickly, and as a very wise programmer once said, “Engi-
neers are expensive, upgrading your CPU is cheap.” C# has great GUI integration,
database support, and tons of example code and open source classes for you to play
with. C# code also looks much cleaner than writing Windows Forms using C++. So
for tools programming, C# is hard to beat.

But, you say, the game engine is written in C++, how can that work? It turns out that
this isn’t much of a problem at all.

How the Editor Is Put Together

I’m going to let you in on a personal bias—no matter what language the editor is
written in, it should always be an extension of the game engine. I’ve probably spent
more time in my programming career creating tools, including game editors, and this
philosophy has worked for me every time. The reason I like this idea so much is that
if the game editor is using all the technology in the game to do its work, then the
game technology ends up being pretty well tested and stable.

Of course, there is a dark side to this problem, too, which is where other toolsmiths
decide to write the game editor as a parallel technology. You see, if the core of the
game editor is under rapid development, it can become a very unstable tool and cre-
ate quite dangerous situations for the editor programmer. Designers can be, well,
energetic in their ability to explain to you the details of how many hours of work
they just lost in the latest editor crash.

There are three steps to creating a game editor. First, the editor architecture is cre-
ated in C++, including the application layer, the logic layer, and the view layer. Next,
a C++ DLL is created that wraps key editor classes and methods with C free func-
tions that create an easy interface into the DLL. Finally, a C# application is created
that can load the DLL and use these free functions to access the editor DLL and cre-
ate game worlds.

The Editor Architecture

Just like you’ve seen in the game architecture, you need to create the application,
logic, and view layers for the editor. They’ll be written in C++, since they create a
performance-critical interface to the rest of the game engine. There’s some trickiness
involved in getting C# to talk to C++, but we’ll handle that further down the line.

748 Chapter 22 n A Simple Game Editor in C#

The Editor Is an Extension of the Game

As you review the code for the application, logic, and view layers, you’ll notice
that their classes look very similar to their Teapot Wars counterparts. When
writing a real editor, you’ll want your level editor to use the same engine
that runs your game. In our case, the classes look like simplified versions of
their Teapot Wars counterparts to make it easier to explain how the level
editor works.

The Application Layer

The level editor’s application layer is a very simple extension of the GameCodeApp

class.

class EditorApp : public GameCodeApp

{

public:

EditorApp() : GameCodeApp() { m_bIsEditorRunning = true; }

TCHAR *VGetGameTitle() { return _T(“GameCode4 Editor”); }

TCHAR *VGetGameAppDirectory()

{ return _T(“Game Coding Complete 4\\Editor\\1.0”); }

HICON VGetIcon()

{ return LoadIcon(GetInstance(), MAKEINTRESOURCE(IDI_ICON1));

protected:

BaseGameLogic *VCreateGameAndView();

};

BaseGameLogic* EditorApp::VCreateGameAndView()

{

BaseGameLogic *game = GCC_NEW EditorLogic();

game->VInit();

shared_ptr<IGameView> gameView(GCC_NEW EditorHumanView(g_pApp->m_Renderer));

game->VAddView(gameView);

return game;

}

This should be pretty familiar, because you looked at code like this in Chapter 5,
“Game Initialization and Shutdown.” This code creates an instance of the game
logic class, EditorLogic, which will inherit from BaseGameLogic. It also creates
a view class, EditorHumanView.

The Editor Architecture 749

The Editor’s Logic Class

The editor logic is pretty simple. Since this is a basic level editor, it doesn’t need
physics. In a level editor for a commercial game, a running physics system will ensure
legal placement of objects and make sure they settle properly. In the example below,
there is a physics system, but it is completely empty of code—a NULL physics sys-
tem. I’ll leave implementing a real physics system in the editor to you as an exercise.
Any calls to the physics system will just end in stubs and not do anything at all.

The EditorLogic class will look familiar to you if you’ve looked over the Teapot-
WarsBaseLogic class in the previous chapter:

class EditorLogic : public BaseGameLogic

{

public:

EditorLogic();

~EditorLogic() { }

virtual bool VLoadGame(const char* levelName);

const std::string &GetProjectDirectory(void) { return m_ProjectDirectory; }

// We need to expose this information so that the C# app can

// know how big of an array to allocate to hold the list of

// actors

int GetNumActors() { return (int)m_actors.size(); }

// Exposes the actor map so that the global functions

// can retrieve actor information

const ActorMap& GetActorMap() { return m_actors; }

shared_ptr<EditorHumanView> GetHumanView();

protected:

std::string m_ProjectDirectory;

};

As you can see, most of the EditorLogic class is defined right in the constructor.
EditorLogic is a thin wrapper around BaseGameLogic, since all it has to do is pro-
vide some accessor methods to the actor lists and manage a view. Here’s the constructor:

EditorLogic::EditorLogic()

: BaseGameLogic()

{

m_ProjectDirectory = getcwd(NULL, 0);

int slashGamePos = m_ProjectDirectory.rfind(“\\Game”);

m_ProjectDirectory = m_ProjectDirectory.substr(0, slashGamePos);

750 Chapter 22 n A Simple Game Editor in C#

m_pPhysics.reset(CreateNullPhysics());

}

The constructor initializes the m_ProjectDirectory member with the assumption
that the current working directory is where the final game asset files are built. This is
pretty common even among commercial editors. Assuming a little bit about a valid
directory structure can actually save a ton of headaches down the road, especially
considering where your raw game assets are stored. The physics system is initialized
with a NULL physics stub. The NULL physics class implements all of the pure virtual
functions of the IGamePhysics interface with empty stubs.

bool EditorLogic::VLoadGame(const char* levelName)

{

while (m_actors.size() > 0)

{

ActorId id = m_actors.begin()->first;

VDestroyActor(id);

}

if (!BaseGameLogic::VLoadGame(levelName))

{

return false;

}

VChangeState(BGS_Running);

return true;

}

shared_ptr<EditorHumanView> EditorLogic::GetHumanView()

{

GCC_ASSERT(m_gameViews.size()==1);

shared_ptr<IGameView> pGameView = *m_gameViews.begin();

shared_ptr<EditorHumanView> editorHumanView =

static_pointer_cast<EditorHumanView>(pGameView);

return editorHumanView;

}

VLoadGame() simply destroys all the existing actors before calling the overloaded
method of BaseGameLogic. GetHumanView() returns a pointer to the view that cre-
ates a rendered image of the contents of the game universe. Since we don’t have any AIs
or extra players, we’ll only have one view for the editor, which simplifies things greatly.

The Editor View

The classes for the editor view are very similar to their Teapot Wars counterparts.

The Editor Architecture 751

In a normal game, the human view is responsible for the sound manager, drawing
the world, and grabbing user input. The editor view is simpler in one way, not need-
ing a sound system, but more complicated since it receives input from the C# side of
things. The following code is in Source\Editor\EditorGameView.cpp:

EditorHumanView::EditorHumanView(shared_ptr<IRenderer> renderer)

: HumanView(renderer)

{ }

void EditorHumanView::VOnUpdate(unsigned long deltaMilliseconds)

{

// Much like TeapotWarsView::VOnUpdate, except

// we only have one controller in the editor

HumanView::VOnUpdate(deltaMilliseconds);

if (m_pFreeCameraController)

{

m_pFreeCameraController->OnUpdate(deltaMilliseconds);

}

}

This is similar to, but simpler than, the parallel functions in the TeapotWarsHuman-
View class. Both call into the HumanView class, which creates the 3D scene, attaches
a camera, and registers delegates for events. The only real difference between the two
is TeapotWarsHumanView attaches a main menu for choosing the level and setting
up other game parameters. VOnUpdate() is also very simple, only calling Human-

View::OnUpdate() and ticking the camera controller.

Here’s what the view does when a new level is loaded:

bool EditorHumanView::VLoadGameDelegate(TiXmlElement* pLevelData)

{

if (!HumanView::VLoadGameDelegate(pLevelData))

return false;

// The MovementController is hooked up to the keyboard and mouse

// handlers, since this is our primary method for moving the camera around.

m_pFreeCameraController.reset(

GCC_NEW MovementController(m_pCamera, 90, 0, true));

m_pCamera->ClearTarget();

m_KeyboardHandler = m_pFreeCameraController;

m_PointerHandler = m_pFreeCameraController;

752 Chapter 22 n A Simple Game Editor in C#

m_pScene->VOnRestore();

return true;

}

The only task here is to hook up the keyboard and mouse handlers and then restore
the scene to make sure all the resources are loaded and ready to draw when the first
frame is rendered. If you don’t do that here, you might see a black window in the
game view area before the editor is fully initialized.

As you learned in Chapter 21, “A Game of Teapot Wars,” the Scene class registers
delegates to listen for events, such as when a new actor is created. Actors like AI
spawn points or trigger zones are invisible in the game but should most certainly be
visible in the editor. Render components are a great example of how some compo-
nents may be “editor only” and get stripped out when the game files are built. In
this simple editor, there are no editor only components, but that would be a great
extension to the component system.

Functions to Access the Game Engine

While it is possible to instantiate objects in C++ and pass their pointers to C#, doing
so requires a lot of preparation work, and it makes this sample editor a lot more com-
plicated. Instead of creating an instance of the editor application layer and passing
that pointer to the C# editor app, I’ll use C-style functions that will access the global
instance of the application layer and communicate data between the two with simple
data structures like XML. This not only simplifies the code and my explanation of it,
but it also makes the editor extensible without modifying much, if any, C# code.

These C++ functions are all going to be exported and exposed in a DLL that the C#
application will load and call into. These free functions fall into a few general catego-
ries of functionality: the editor framework, accessing actor data, and modifying
actors. I’ll start with the editor framework.

Editor Framework Functions

One of the functions that definitely needs to be exposed is the entry point to the
application, which you read about back in Chapter 5. It is very similar to the original
GameCode4() function, but it has a different beginning and ending.

int EditorMain(int *instancePtrAddress,

int *hPrevInstancePtrAddress,

int *hWndPtrAddress,

int nCmdShow,

int screenWidth, int screenHeight)

{

// C# passes HINSTANCE and HWND values to C++ DLL as (int *)

The Editor Architecture 753

HINSTANCE hInstance = (HINSTANCE)instancePtrAddress;

HINSTANCE hPrevInstance = (HINSTANCE) hPrevInstancePtrAddress;

HWND hWnd = (HWND)hWndPtrAddress;

WCHAR *lpCmdLine = L“”;

// Note – you can and should put your _CrtSetDebugFlag() calls right here

// to track any memory corruptions or leaks...

Logger::Init(“logging.xml”);

g_pApp->m_Options.Init(“EditorOptions.xml”, lpCmdLine);

DXUTSetCallbackMsgProc(GameCodeApp::MsgProc);

DXUTSetCallbackFrameMove(GameCodeApp::OnUpdateGame);

DXUTSetCallbackDeviceChanging(GameCodeApp::ModifyDeviceSettings);

DXUTSetCallbackD3D11DeviceAcceptable(GameCodeApp::IsD3D11DeviceAcceptable);

DXUTSetCallbackD3D11DeviceCreated(GameCodeApp::OnD3D11CreateDevice);

DXUTSetCallbackD3D11SwapChainResized(GameCodeApp::OnD3D11ResizedSwapChain);

DXUTSetCallbackD3D11SwapChainReleasing(

GameCodeApp::OnD3D11ReleasingSwapChain);

DXUTSetCallbackD3D11DeviceDestroyed(GameCodeApp::OnD3D11DestroyDevice);

DXUTSetCallbackD3D11FrameRender(GameCodeApp::OnD3D11FrameRender);

// Show the cursor and clip it when in full screen

DXUTSetCursorSettings(true, true);

// Perform application initialization

if (!g_pApp->InitInstance (hInstance, lpCmdLine, hWnd,

screenWidth, screenHeight))

return FALSE;

// This is where the game would normally call the main loop, but the

// C# application will control this, so we don’t need to call

// DXUTMainLoop() here.

return true;

}

The first few lines of EditorMain() cast some integer pointers into Windows han-
dles for the application instance and window. C# pointers are very different beasts
because the Common Language Runtime (CLR) uses managed memory. The C#
application will pass the correct values into this function as integers.

At the very end of the function, instead of starting the main loop with DXUTMain-

Loop(), the function simply exits. The C# editor will handle its own main loop, call-
ing the DXUT functions to render and update the game. If you called

754 Chapter 22 n A Simple Game Editor in C#

DXUTMainLoop() here, the C# editor wouldn’t get any control until DXUTMainLoop()
returned.

If the C# editor application’s main loop is going to be responsible for handling mes-
sages, the editor needs to expose a few other functions as C free functions.

void WndProc(int *hWndPtrAddress, int msg, int wParam, int lParam)

{

HWND hWnd = (HWND)hWndPtrAddress;

DXUTStaticWndProc(hWnd, msg, WPARAM(wParam), LPARAM(lParam));

}

void RenderFrame()

{

DXUTRender3DEnvironment();

}

int Shutdown()

{

DXUTShutdown();

return g_pApp->GetExitCode();

}

RenderFrame() exposes the rendering call, DXUTRender3DEnvironment(), to
the C# application so it can render a frame if the editor isn’t handling any other mes-
sages. WndProc() exposes the C++ side message handling function so that the editor
can forward any appropriate messages to be handled by the editor game engine, such
as user input to move the camera position around. Finally, Shutdown() shuts down
the DirectX device and exits the editor.

The next method opens an existing level file, but before you see that, you need to
know a little more about how to pass strings between C# and C++, since they store
strings differently. One method is to use a type common to both, the BSTR type,
which is also used by COM. BSTR strings are converted easily to std::wstring

objects, which the game engine can convert to a std::string with ws2s.

std::string ws2s(const std::wstring& s)

{

int slength = (int)s.length() + 1;

int len = WideCharToMultiByte(CP_ACP, 0, s.c_str(), slength, 0, 0, 0, 0)-1;

std::string r(len, ‘\0’);

WideCharToMultiByte(CP_ACP, 0, s.c_str(), slength, &r[0], len, 0, 0);

return r;

}

The Editor Architecture 755

Its companion function does the opposite and converts a std::string back to a
std::wstring.

std::wstring s2ws(const std::string &s)

{

int slength = (int)s.length() + 1;

int len = MultiByteToWideChar(CP_ACP, 0, s.c_str(), slength, 0, 0)-1;

std::wstring r(len, ‘\0’);

MultiByteToWideChar(CP_ACP, 0, s.c_str(), slength, &r[0], len);

return r;

}

Now you can take a look at the OpenLevel() function, which converts the filename
sent by C# to something the EditorLogic class can load.

void OpenLevel(BSTR fullPathLevelFile)

{

std::string levelFile = ws2s(std::wstring(fullPathLevelFile,

SysStringLen(fullPathLevelFile)));

EditorLogic* pEditorLogic = (EditorLogic*)g_pApp->m_pGame;

if (pEditorLogic)

{

std::string assetsDir = “\\Assets\\”;

int projDirLength = pEditorLogic->GetProjectDirectory().length()

+ assetsDir.length();

g_pApp->m_Options.m_Level =

levelFile.substr(projDirLength, levelFile.length()-projDirLength);

pEditorLogic->VChangeState(BGS_LoadingGameEnvironment);

}

}

Note again the assumption of a specific directory structure. I’ve taken a cue from
other commercial editors that assume where all their game assets are stored, and in
truth, it makes sense to store them all under a commonly structured directory hier-
archy. Once the filename has been constructed from the input parameter, it is copied
into the game option’s object, and the editor logic’s current state is set to BGS_

LoadingGameEnvironment. This will start the loading process.

Actor Accessor Functions

There are five functions the editor uses to access actor data so that it can be pre-
sented in the editors user interface: The first two retrieve the number of actors in
the actor list and an array of their IDs.

756 Chapter 22 n A Simple Game Editor in C#

int GetNumActors()

{

EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

return (pGame) ? pGame->GetNumActors() : 0;

}

void GetActorList(int *ptr, int numActors)

{

EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

if (pGame)

{

ActorMap::const_iterator itr;

int actorArrayIndex;

for (itr = pGame->GetActorMap().begin(), actorArrayIndex = 0;

itr != pGame->GetActorMap().end() && actorArrayIndex < numActors;

++itr,

++actorArrayIndex)

{

ActorId actorId = itr->first;

ptr[actorArrayIndex] = actorId;

}

}

}

GetNumActors() is pretty simple. It uses the global application layer pointer to get
to the game logic. Once it has a pointer to the game logic, it gets the number of
actors in the level and returns that. The reason why you need the number of actors
is that the C# editor application will be allocating space for an array of integers. The
editor will use the number of actors to determine how large of an array to allocate.
GetActorList() fills that array with the actors in this level by iterating through the
actor data structure stored in the editor logic.

The next two functions get XML information from a specific actor.

int GetActorXmlSize (ActorId actorId)

{

StrongActorPtr pActor = MakeStrongPtr(g_pApp->m_pGame->VGetActor(actorId));

if (!pActor)

{

return 0;

}

std::string xml = pActor->ToXML();

return xml.length();

}

The Editor Architecture 757

void GetActorXml (int *actorXMLAddress, ActorId actorId)

{

StrongActorPtr pActor = MakeStrongPtr(g_pApp->m_pGame->VGetActor(actorId));

if (!pActor)

{

return;

}

std::string xml = pActor->ToXML();

strncpy_s(reinterpret_cast<char *>(actorXMLAddress),

xml.length()+1, xml.c_str(), xml.length());

}

Both methods get a strong pointer to the actor, and they call Actor::ToXML(). C#
needs to be able to know how much memory to allocate before retrieving the XML
data, which is why there are two functions. The address to the memory allocated by
C# is sent in as a pointer to an integer, which is a common method for sending an
unknown amount of data across the C++/C# barrier.

The ToXML() method uses TinyXML to run through all the components attached to
an actor to create the complete definition of an actor that will, at some point, be
saved to a level file.

std::string Actor::ToXML()

{

TiXmlDocument outDoc;

// Actor element

TiXmlElement* pActorElement = GCC_NEW TiXmlElement(“Actor”);

pActorElement->SetAttribute(“type”, m_type.c_str());

// components

for (auto it = m_components.begin(); it != m_components.end(); ++it)

{

StrongActorComponentPtr pComponent = it->second;

TiXmlElement* pComponentElement = pComponent->VGenerateXml();

pActorElement->LinkEndChild(pComponentElement);

}

outDoc.LinkEndChild(pActorElement);

TiXmlPrinter printer;

outDoc.Accept(&printer);

return printer.CStr();

}

758 Chapter 22 n A Simple Game Editor in C#

Each component has its own definition of VGenerateXML(), but for the sake of
completeness, here’s the definition for the TransformComponent, which stores the
position and orientation of an actor:

TiXmlElement* TransformComponent::VGenerateXml(void)

{

TiXmlElement* pBaseElement = GCC_NEW TiXmlElement(VGetName());

TiXmlElement* pPosition = GCC_NEW TiXmlElement(“Position”);

Vec3 pos(m_transform.GetPosition());

pPosition->SetAttribute(“x”, ToStr(pos.x).c_str());

pPosition->SetAttribute(“y”, ToStr(pos.y).c_str());

pPosition->SetAttribute(“z”, ToStr(pos.z).c_str());

pBaseElement->LinkEndChild(pPosition);

TiXmlElement* pDirection = GCC_NEW TiXmlElement(“YawPitchRoll”);

Vec3 orient(m_transform.GetYawPitchRoll());

orient.x = RADIANS_TO_DEGREES(orient.x);

orient.y = RADIANS_TO_DEGREES(orient.y);

orient.z = RADIANS_TO_DEGREES(orient.z);

pDirection->SetAttribute(“x”, ToStr(orient.x).c_str());

pDirection->SetAttribute(“y”, ToStr(orient.y).c_str());

pDirection->SetAttribute(“z”, ToStr(orient.z).c_str());

pBaseElement->LinkEndChild(pDirection);

}

The resulting XML for a particular actor might look like this:

<Actor type=“Grid”>

<TransformComponent>

<Position x=“0” y=“0” z=“0”/>

<YawPitchRoll x=“0” y=“0” z=“0”/>

</TransformComponent>

<PhysicsComponent>

<Shape>Box</Shape>

<Density>Infinite</Density>

<PhysicsMaterial>Normal</PhysicsMaterial>

<RigidBodyTransform>

<Scale x=“50” y=“0.01” z=“50” />

</RigidBodyTransform>

</PhysicsComponent>

<GridRenderComponent>

<Color r=“0.4” g=“0.4” b=“0.4” a=“1.0”/>

<Texture>art\grid.dds</Texture>

<Division>100</Division>

The Editor Architecture 759

</GridRenderComponent>

</Actor>

This particular actor is a Grid, the type that forms the floor and walls of the Teapot
Wars game. It has three components: a TransformComponent that stores its loca-
tion and orientation, a PhysicsComponent that tells the physics engine how it
behaves in the game world, and a GridRenderComponent that tells the rendering
engine how it appears.

Throughout the rest of this chapter, I’ll be referring to components, their definitions,
and how the editor interacts with them to do its work.

Every game editor needs a method to select an actor from the visual display. To do
this requires a special bit of technology called a raycaster, which mathematically cal-
culates which objects in the game world are intersected by a ray given two endpoints.
PickActor() is a function that does exactly this.

int PickActor(int *hWndPtrAddress)

{

HWND hWnd = (HWND)hWndPtrAddress;

CPoint ptCursor;

GetCursorPos(&ptCursor);

// Convert the screen coordinates of the mouse cursor into

// coordinates relative to the client window

ScreenToClient(hWnd, &ptCursor);

RayCast rayCast(ptCursor);

EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

if (!pGame)

return INVALID_ACTOR_ID;

shared_ptr<EditorGameView> gameView = pGame->GetHumanView();

if (!pView)

return INVALID_ACTOR_ID;

// Cast a ray through the scene. The RayCast object contains an array of

// Intersection objects.

pView->GetScene()->Pick(&rayCast);

rayCast.Sort();

// If there are any intersections, get information from the first

// intersection.

if (!rayCast.m_NumIntersections)

{

return INVALID_ACTOR_ID;

}

760 Chapter 22 n A Simple Game Editor in C#

Intersection firstIntersection = rayCast.m_IntersectionArray[0];

return firstIntersection.m_actorId;

}

PickActor() will take the current cursor position and convert the position into
coordinates relative to the editor window. If you remember the Frustum class from
Chapter 14, “3D Graphics Basics,” the ray will go from the camera location through
the near clipping plane at exactly the mouse position.

The RayCast class is designed with this purpose in mind, and it is a part of the
GameCode4 source code. RayCast::Pick() will fill member variables, indicating
the number of intersections and the actor information of all actors intersected by
the ray, sorted by their distance from the camera. The code grabs the first actor ID
in the list of intersection and returns the actor ID. This will allow users to click on
objects in the world and then find out information about them.

Actor Modification Functions

A game editor wouldn’t be much of an editor without the ability to create, modify,
and remove actors from the game world. Here are those functions:

void CreateActor(BSTR bstrActorXMLFile)

{

std::string actorResource = ws2s(std::wstring(bstrActorXMLFile,

SysStringLen(bstrActorXMLFile)));

StrongActorPtr pActor = g_pApp->m_pGame->VCreateActor(actorResource, NULL);

if (!pActor)

return INVALID_ACTOR_ID;

// fire an event letting everyone else know that we created a new actor

shared_ptr<EvtData_New_Actor> pNewActorEvent(

GCC_NEW EvtData_New_Actor(pActor->GetId()));

IEventManager::Get()->VQueueEvent(pNewActorEvent);

return pActor->GetId();

}

The CreateActor() function creates actors just as you saw in the previous chapter.
The call to VCreateActor() is made with the name of the actor resource sent from
the editor, and it uses NULL for the override options, which you’ll see more about
later. Once the actor is created, an event is sent to inform all other game systems,
especially the Scene class in the editor’s view, that a new actor is ready. The actor
ID is returned to the editor.

Next up is ModifyActor(), which the editor calls any time the properties of an
actor are changed.

The Editor Architecture 761

void ModifyActor (BSTR bstrActorModificationXML)

{

std::string actorModificationXML =

ws2s(std::wstring(bstrActorModificationXML,

SysStringLen(bstrActorModificationXML)));

TiXmlDocument doc;

doc.Parse(actorModificationXML.c_str());

TiXmlElement* pRoot = doc.RootElement();

if (!pRoot)

return;

g_pApp->m_pGame->VModifyActor(atoi(pRoot->Attribute(“id”)), pRoot);

}

The BSTR parameter sent from the editor is a bit of XML data the editor creates to
tell the game engine exactly how the actor is changing. Basically, the XML contains a
snippet of the component XML you saw previously, but only the part that has chan-
ged. For example, if the editor changed the orientation of a Grid actor to rotate 90
degrees around the Y-axis, the XML sent from the editor would look like this:

<Actor type=“Grid”>

<TransformComponent>

<YawPitchRoll x=“0” y=“90” z=“0”/>

</TransformComponent>

</Actor>

The BaseGameLogic::VModifyActor() method finds the actor and calls a mem-
ber of the ActorFactory class you’ve never seen before, which is very similar to the
ActorFactory::VCreateComponent() method that initializes a new actor. It runs
through the XML above, either creates or finds the components, and initializes them.

void ActorFactory::ModifyActor(StrongActorPtr pActor, TiXmlElement* overrides)

{

// Loop through each child element and load the component

for (TiXmlElement* pNode = overrides->FirstChildElement();

pNode; pNode = pNode->NextSiblingElement())

{

ComponentId componentId = ActorComponent::GetIdFromName(pNode->Value());

StrongActorComponentPtr pComponent =

MakeStrongPtr(pActor->GetComponent<ActorComponent>(componentId));

if (pComponent)

{

pComponent->VInit(pNode);

}

762 Chapter 22 n A Simple Game Editor in C#

else

{

pComponent = VCreateComponent(pNode);

if (pComponent)

{

pActor->AddComponent(pComponent);

pComponent->SetOwner(pActor);

}

}

}

}

The trick here is that a component doesn’t need a complete XML description to be
initialized—just the members that are either different from the default values
defined in the C++ component class or those members that have been recently
modified.

For the previous XML snippet, the code would find the TranformComponent of the
Grid actor and call VInit(), which would save the new orientation of the actor.

The last function that modifies actors is simply one that destroys an actor given its
ID.

void DestroyActor(ActorId actorId)

{

g_pApp->m_pGame->VDestroyActor(actorId);

}

With all the accessor functions defined, it is time to create the DLL.

Creating the DLL

When you create a DLL, you usually want to expose functions to any consumer of
that DLL. This is done with the _declspec keyword in a C++ header file. Here’s
how this looks:

#include “Editor.h”

#define DllExport _declspec(DLLexport)

// Editor Framework Functions

extern “C” DllExport int EditorMain(

int *instancePtrAddress,

int *hPrevInstancePtrAddress,

int *hWndPtrAddress,

The Editor Architecture 763

int nCmdShow, int screenWidth, int screenHeight);

extern “C” DllExport void RenderFrame();

extern “C” DllExport int Shutdown();

extern “C” DllExport void OpenLevel(BSTR lFileName);

// Actor accessor functions

extern “C” DllExport int GetNumActors();

extern “C” DllExport void GetActorList(int *actorIdArrayPtr, int size);

extern “C” DllExport int PickActor(int *hWndPtrAddress);

extern “C” DllExport int GetActorXmlSize (ActorId actorId);

extern “C” DllExport void GetActorXml (int *actorXmlPtrAddress,

ActorId actorId);

// Actor XML functions

extern “C” DllExport void RemoveActor(ActorId actorId);

extern “C” DllExport void CreateActor(BSTR bstrActorResource);

extern “C” DllExport void ModifyActor (BSTR bstrActorModificationXML);

Each exported function must have extern “C” _declspec(DLLexport) before
the declaration. The macro at the top of the last code segment helps keep the code
looking cleaner. As you read the remainder of this chapter, more C functions will be
added to this list as the C# editor side is explored.

The editor project settings are exactly the same as those set for the project that cre-
ated Teapot Wars, with one exception. Under Configuration Properties->General, the
Configuration Type should be set to “Dynamic Library (.dll)” instead of “Application
(.exe).”

Wrapping Up the Editor Architecture

The editor application, logic, and view classes are thin extensions of the base classes
you’ve seen in earlier chapters. They can add actors to a scene, render them, and
receive events on how to modify the actors, either by moving them around or delet-
ing them. The editor doesn’t need too much more than that, at least from the game
engine itself. It does, however, need a fairly complicated user interface, a way to load
and save levels, create and modify actor properties, and package everything to be
used by the game engine. For that, we need to wrap the C++ editor implementation
with C#.

Getting that to work means the C# application needs to send information to and
retrieve information from the C++ code. This gets a little tricky, and for context, we
need to go over differences between managed and unmanaged code.

764 Chapter 22 n A Simple Game Editor in C#

Fast Iteration Makes Games More Fun

In a commercial game editor, rather than using a stripped-down version of the
game, many editors completely surround and extend the game. This enables
content developers like level designers and artists to run the game inside the
editor so they can test their work. Editors that don’t work this way force
content developers to change something in the editor, save the level, load
the game, find the spot they changed, see the change in the game, and
decide whether they like what they did. If they don’t like it, and I guarantee
they won’t, they exit the game, load the editor, find the spot they changed
again, and start the whole process over.

tuning.reload

On The Sims, we have a magic console command called tuning.reload,
which allows us to make a change in the tuning editor, save out the data
files, and run this command to reload the tuning files while the game is
running. A common path when iterating on a gameplay feature is to make a
tuning change, reload the tuning, and test the feature. This process is repeated
until the feature is working as expected without having to reload the game.
There are similar console commands to reload parts of the world and other
data. We even have one to reload any scripts that were changed.

Being able to modify the game while it is running is a huge benefit to the
gameplay engineers and designers. It means that they can theoretically work
on their feature without ever having to spend time waiting for the game to
load, and it makes developing features extremely fast.

The C# Editor Application

When the editor is complete, it should look like Figure 22.1.

Many commercial game editors look fairly similar to this design. The window on the
left side is what you created at the beginning of this chapter, a panel that forms the
surface for DirectX to render the game world. The panel on the right side has an
upper and a lower part. The upper part is a tabbed view, showing either all the assets
in the editor’s Assets folder or a list of all the actors in the scene. The lower panel
displays all of the components of any selected actor. This particular design was
inspired somewhat by the Unity 3 editor, which is rapidly increasing in popularity,
even among professional game developers.

The C# Editor Application 765

One Window Isn’t Enough

Most commercial game editors have multiple windows rendering
simultaneously. One of these windows looks like the rendered window in
Figure 21.2 and looks pretty much as you would expect the game to look.
Other windows show the world in wireframe, usually directly along the X-,
Y-, and Z-axes. This can really help content creators see exactly where an
object is placed in the world. In many of these editors, each window is
completely configurable, too, allowing the user to set up his display panels
in exactly the right way to help him work quickly and correctly.

Fewer Clicks Make Happier Game Developers

In any software development, from websites to tool development, it makes
sense to do everything you can to minimize the number of mouse clicks it
takes to do anything. This is especially true with the most commonly used
features. Put buttons for them right on the main menu and provide hot keys.

Differences Between Managed Code and
Unmanaged Code

With .NET, managed code is not actually compiled into machine code but is instead
written into an intermediary format. The .NET common language runtime (CLR)

Figure 22.1
The final product—a C# editor using a C++ DLL.

766 Chapter 22 n A Simple Game Editor in C#

compiles the intermediary code into machine code at the time of execution. Unman-
aged code is compiled directly into machine code similar to a C++ compiler. Some of
the benefits from managed code are that it is portable to any machine that has the
.NET CLR installed, and the CLR can even detect the state of the machine to maximize
performance. This managed environment comes at some cost of performance. In addi-
tion, C# uses a garbage-collecting memory manager, meaning that programs are not
responsible for cleaning up memory after themselves, although there are exceptions.

C# cannot load static libraries, only dynamically linked libraries. Any unmanaged
code that you call from C# will have to live inside a DLL. Before you see the guts of
some C# Windows Forms, you need to see how C# gains access to the C++ DLL.

NativeMethods Class

The NativeMethods class declares hooks into the DLL so they can be called from
C#. There are a few ways to go about this, but one of the easiest is to declare a C#
static class and then declare all the C free functions in a manner that C# can call
them.

static class NativeMethods

{

const string editorDllName = “GCC4EditorDLL_2010.dll”;

// Editor Framework – initializing, message processing, rendering, shutdown

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public unsafe static extern int EditorMain(

IntPtr instancePtrAddress, IntPtr hPrevInstancePtrAddress,

IntPtr hWndPtrAddress, int nCmdShow, int screenWidth, int screenHeight);

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public unsafe static extern void WndProc(

IntPtr hWndPtrAddress, int msg, int wParam, int lParam);

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public static extern void RenderFrame();

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public static extern int Shutdown();

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public static extern void OpenLevel([MarshalAs(UnmanagedType.BStr)]

string lFileName);

// Actor accessor functions

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

The C# Editor Application 767

public static extern int GetNumActors();

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public unsafe static extern void GetActorList(IntPtr actorIdArrayPtrAddress,

int size);

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public unsafe static extern int GetActorXmlSize(uint actorId);

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public unsafe static extern void GetActorXml(IntPtr actorXMLPtrAddress,

uint actorId);

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public unsafe static extern int PickActor(IntPtr hWndPtrAddress);

// Actor modification functions

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public static extern int CreateActor([MarshalAs(UnmanagedType.BStr)]

string lactorResource);

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public static extern void ModifyActor([MarshalAs(UnmanagedType.BStr)]

string lactorModXML);

[DllImport(editorDllName, CallingConvention = CallingConvention.Cdecl)]

public unsafe static extern void DestroyActor(uint actorId);

}

There are a few things you should notice. First, the DLL to be loaded is explicitly
declared. Next, [DllImport(editorDllName, CallingConvention = Calling

Convention.Cdecl)] is declared prior to the function. The DllImport attribute
imports the function from the DLL, and it matches the export declarations in the
C++ code you saw previously. This is part of the Platform Invocation Services, or
PInvoke. Next, all of these functions are declared unsafe. The C++ game engine
runs in unmanaged code, which basically means there is no memory tracking, gar-
bage collection, and other safety systems built into the CLR. That’s why this code is
declared unsafe.

Program Class

The Program class is the entry point of the C# application.

using System;

using System.Collections.Generic;

using System.Windows.Forms;

namespace EditorApp

{

static class Program

768 Chapter 22 n A Simple Game Editor in C#

{

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

EditorForm form = new EditorForm();

MessageHandler messageHandler = form.GetMessageHandler();

Application.AddMessageFilter(messageHandler);

Application.Idle +=

new EventHandler(messageHandler.Application_Idle);

Application.Run(form);

}

}

}

The first two lines are typical of C# Windows Forms applications, and they ensure
that the window, buttons, menus, and other visual components draw as you would
expect them to. The next line creates the EditorForm, which contains all of the
user interface elements of the editor.

The next three lines are critical to shepherding Windows messages, like WM_MOUSE,
from the C# application to the C++ side of things. Lastly, the call to
Application.Run(form) gets everything running.

MessageHandler Class

To get Windows messages from the C# application to C++, you need to set up a spe-
cial helper class. If a mouse button is clicked on the rendered image of the game, the
message shouldn’t go to the placeholder panel on the C# Windows Form, but rather
it should be trapped and sent to the C++ game engine. Luckily, there’s an interface
class for exactly that, the IMessageFilter interface. As messages are trapped, they
are converted to Windows messages that the C++ game engine can consume, and
they are sent in to the WndProc() free function defined in the DLL. It is called by
using the NativeMethods class, which imports all of the exposed DLL functions.

using System;

using System.Collections.Generic;

The C# Editor Application 769

using System.Text;

using System.Windows.Forms;

namespace EditorApp

{

public class MessageHandler : IMessageFilter

{

const int WM_LBUTTONDOWN = 0x0201;

const int WM_LBUTTONUP = 0x0202;

const int WM_LBUTTONDBLCLK = 0x0203;

const int WM_RBUTTONDOWN = 0x0204;

const int WM_RBUTTONUP = 0x0205;

const int WM_RBUTTONDBLCLK = 0x0206;

const int WM_MBUTTONDOWN = 0x0207;

const int WM_MBUTTONUP = 0x0208;

const int WM_MBUTTONDBLCLK = 0x0209;

const int WM_KEYDOWN = 0x0100;

const int WM_KEYUP = 0x0101;

const int WM_SYSKEYDOWN = 0x0104;

const int WM_SYSKEYUP = 0x0105;

const int WM_CLOSE = 0x0010;

IntPtr m_formHandle;

IntPtr m_displayPanelHandle;

EditorForm m_parent;

// We take both the EditorForm’s handle and its

// displayPanel handle, since messages will sometimes be for the

// form or the display panel.

public MessageHandler(IntPtr formHandle,

IntPtr displayPanelHandle, EditorForm parent)

{

m_formHandle = formHandle;

m_displayPanelHandle = displayPanelHandle;

m_parent = parent;

}

public bool PreFilterMessage(ref Message m)

{

// Intercept messages only if they occur for the EditorForm

// or its display panel.

if (m.HWnd == m_displayPanelHandle ∣∣ m.HWnd == m_formHandle)

{

770 Chapter 22 n A Simple Game Editor in C#

switch (m.Msg)

{

case WM_LBUTTONDOWN:

case WM_LBUTTONUP:

case WM_LBUTTONDBLCLK:

case WM_RBUTTONDOWN:

case WM_RBUTTONUP:

case WM_RBUTTONDBLCLK:

case WM_MBUTTONDOWN:

case WM_MBUTTONUP:

case WM_MBUTTONDBLCLK:

case WM_KEYDOWN:

case WM_KEYUP:

case WM_SYSKEYDOWN:

case WM_SYSKEYUP:

case WM_CLOSE:

{

NativeMethods.WndProc(m_displayPanelHandle,

m.Msg, m.WParam.ToInt32(), m.LParam.ToInt32());

// If the left mouse button is up, try doing a

// raycast to see if it intersects with an actor

if (m.Msg == WM_LBUTTONUP)

{

m_parent.SelectActor();

}

return true;

}

}

}

return false;

}

This class determines if the window handle for these messages matches either the
handle for the EngineDisplayForm, which contains the entire editor interface, or
the DisplayPanel, which is a placeholder for the graphics display rendered by the
EditorHumanView. If this were a message that occurred on another part of the edi-
tor, such as the game assets tree or the component editor, PreFilterMessage()
would simply ignore the message.

One message that the C# editor application needs to trap is WM_LBUTTONUP. This
will call EngineDisplayForm::SelectActor() so that you can click directly on
the actor you are interested in and have its properties show up in the
ActorPropertiesForm.

The C# Editor Application 771

Similar to the main loop in C++, when the editor application isn’t processing mes-
sages, it is idle and can do other jobs like render the 3D world.

public void Application_Idle(object sender, EventArgs e)

{

try

{

// Render the scene if we are idle

NativeMethods.RenderFrame();

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

m_parent.Invalidate();

}

}

Application_Idle() calls into NativeMethods.RenderFrame(). This function
is called when the application is idle. At the end of the Application_Idle(),
m_parent.Invalidate() invalidates the entire surface of the editor, so it will be
redrawn and display any changes to actor lists or actor components.

The C# Editor User Interface

You’ve been looking at a lot of code that wraps a C++ game engine with a C# Win-
dows Form application. As interesting as that might have been, all of this work is just
setting up the basics of a very extendable and data-driven editor.

Go Learn C# Windows Forms!

If you haven’t done any programming in C# or especially Windows Forms, the
following sections are going to be fairly confusing. They assume you know
how to create a Windows Form and add methods to handle events, such as
when control data changes or when a control has been clicked on, and much
more.

The EditorForm Class

The EditorForm class holds all of the controls of the game editor. It handles the
following tasks:

772 Chapter 22 n A Simple Game Editor in C#

n Reserving a space for the game engine to draw the game world and accept input,
such as mouse clicks or drags to move the view or modify actors.

n Displaying and managing a complete list of all available game assets, such as
textures, audio files, Lua scripts, and so on.

n Reading actor information from the game engine and sending any changes to
actor components back to the game engine.

n Displaying a complete list of all the actors in the current scene and allowing
them to be selected for modification.

n Displaying the components of the currently selected actor so it can be modified.

n Displaying a menu for opening levels, creating new components on selected
actors, and so on.

I’ll cover each of these areas in the next few sections.

public partial class EditorForm : Form

{

private string m_ProjectDirectory;

private string m_AssetsDirectory;

private string m_CurrentLevelFile;

private List<XmlNode> m_ActorsXmlNodes = new List<XmlNode>();

private int m_SelectedActorId = 0;

private MessageHandler m_messageFilter;

private ActorComponentEditor m_ActorComponentEditor;

public EditorForm()

{

var currentDirectory = Directory.GetCurrentDirectory();

var parentDirectory = Directory.GetParent(currentDirectory);

m_ProjectDirectory = parentDirectory.FullName;

m_AssetsDirectory = m_ProjectDirectory + “\\Assets”;

InitializeComponent();

try

{

// This is how we get the instance handle for our C# app.

System.IntPtr hInstance = Marshal.GetHINSTANCE(this.GetType().Module);

// This is how we get the window handle for

// the panel we’ll be rendering into.

IntPtr hwnd = this.DisplayPanel.Handle;

The C# Editor User Interface 773

// Call into our Dll main function, which will set up an

// instance of the EditorApp project.

NativeMethods.EditorMain(

hInstance, IntPtr.Zero, hwnd, 1,

this.DisplayPanel.Width, this.DisplayPanel.Height);

InitializeAssetTree();

m_messageFilter = new MessageHandler(

this.Handle, this.DisplayPanel.Handle, this);

m_ActorComponentEditor = new ActorComponentEditor(

Panel_ActorComponents, m_ProjectDirectory);

}

catch(Exception e)

{

MessageBox.Show(“Error: ” + e.ToString());

}

}

}

The first lines initialize the m_ProjectsDirectory and m_AssetsDirectory

members, which are constructed assuming the editor application is running in the
directory where the game assets will eventually be saved. The member m_Current

LevelFile is set only after a level file has been loaded.

The call to InitializeComponent() is what C# Windows Forms use to create and
attach all the menus, panels, or other user interface objects. This function is gener-
ated code by Visual Studio anytime you add or remove these components within the
Forms Designer.

The call to GetHINSTANCE() grabs the instance handle for this application, and the
next line gets the window handle for the panel that will become the main rendering
area on the C# form. These handles are converted into integer values and then passed
into the EditorMain function in the unmanaged C++ DLL.

The next line calls InitializeAssetTree(), reads the project directory, and
populates a tree view with all the filenames. A tree view of every game asset is conve-
nient for anyone using the editor to easily browse and edit the files that can be used
to create the game.

The next two lines initialize some helper classes for the EditorForm. The first of
these initializes the MessageHandler object, which you read about in the previous
section. The next object, ActorComponentEditor, you’ll read about in the next
section.

774 Chapter 22 n A Simple Game Editor in C#

The Asset Tree

The asset tree is the complete list of every file in the Assets directory (see Figure 22.2).
The editor will eventually package all of these files into a Zip file that will be loaded by
the game’s resource cache.

One of the components on the EditorForm is a TreeView, named TreeView_As-

sets. The editor walks the entire directory, and for each file or directory, it adds a
TreeNode. The code to do this is called when the editor is initialized.

private void InitializeAssetTree()

{

TreeView_Assets.Nodes.Clear();

var stack = new Stack<TreeNode>();

var rootDirectory = new DirectoryInfo(m_AssetsDirectory);

var node = new TreeNode(rootDirectory.Name) { Tag = rootDirectory };

stack.Push(node);

while (stack.Count > 0)

{

var currentNode = stack.Pop();

var directoryInfo = (DirectoryInfo)currentNode.Tag;

Figure 22.2
The asset tree for Teapot Wars.

The C# Editor User Interface 775

foreach (var directory in directoryInfo.GetDirectories())

{

FileAttributes attributes = File.GetAttributes(directory.FullName);

if ((attributes & FileAttributes.Hidden) == 0)

{

var childDirectoryNode = new TreeNode(directory.Name);

childDirectoryNode.Tag = directory;

currentNode.Nodes.Add(childDirectoryNode);

stack.Push(childDirectoryNode);

}

}

foreach (var file in directoryInfo.GetFiles())

{

FileAttributes attributes = File.GetAttributes(file.FullName);

if ((attributes & FileAttributes.Hidden) == 0)

{

var childNode = new TreeNode(file.Name);

childNode.Tag = file.FullName;

currentNode.Nodes.Add(childNode);

}

}

}

TreeView_Assets.Nodes.Add(node);

}

First, notice that the method uses an iterative algorithm rather than a recursive one,
which isn’t absolutely required when walking a directory tree but is typically a safer
way to initialize a tree structure. A recursive algorithm uses stack space to store data
and therefore opens the possibility of overflowing the stack. Iterative algorithms can
do the same work in less memory, although they are a little harder to read. Second,
if hidden files are found in the directory structure, they aren’t added to the tree.
Ignoring hidden files can be really useful if you use a source code repository like
SVN, which stores additional information in hidden .svn directories. Finally, for con-
venience, the TreeNode.Tag member is initialized to the full file path of the
filename.

Notice the var keyword used to declare variables? That is C#’s equivalent of C++’s
auto keyword, which can be a real convenience without losing strong typing.

A game editor should always make it convenient to open an asset file, which can be
managed easily with the following code:

private void TreeView_Assets_MouseDoubleClick(object sender, MouseEventArgs e)

{

776 Chapter 22 n A Simple Game Editor in C#

TreeNode node = TreeView_Assets.SelectedNode;

if (node != null && node.Nodes.Count == 0)

{

string file = node.Tag.ToString();

if(File.Exists(file))

{

Process.Start(file);

}

}

}

This code is hooked up to the TreeView’s MouseDoubleClick event handler. The
full file name associated with the TreeNode is sent into Process.Start(), which
launches any application associated with the file.

Actors List

After the editor loads a level, it needs to initialize a data member that stores the XML
representation of each actor. This member is a C# List of XmlNode objects. At the
same time, a TreeView will also receive information about each actor so that actors
can be selected by name. For a very simple level with three Grid objects and a Light,
the actor TreeView would look like Figure 22.3.

Right away, you’ll notice a problem, I bet. The three Grid actors look exactly the
same in the actor list, even though they are different actors. In a commercial game,
there might be hundreds or even thousands of objects all deriving from the same
actor archetype. That’s why most commercial editors allow objects to get custom
name attributes, not only to make working on the game easier for game designers,
but you could also use this custom name to search the actor list in the game. That
might make a good weekend project!

The editor code must initialize the TreeView and the List<XmlNode> data mem-
ber, m_ActorsXmlNodes, by getting data from the game engine. First, an array of

Figure 22.3
The actor list for a very simple level.

The C# Editor User Interface 777

valid ActorID objects is accessed, and for each actor ID, the editor asks the game
engine for its XML definition. The actor ID list is accessed with the following code:

private int[] GetActorList()

{

// We need to know how many actors there are,

// in order to find out how much memory to allocate

int numActors = NativeMethods.GetNumActors();

IntPtr tempArray = Marshal.AllocCoTaskMem(numActors * sizeof(uint));

NativeMethods.GetActorList(tempArray, numActors);

// Copy the memory into an array of ints and dispose of our

// our memory.

int[] actorList = new int[numActors];

Marshal.Copy(tempArray, actorList, 0, numActors);

Marshal.FreeCoTaskMem(tempArray);

return actorList;

}

The editor uses the NativeMethods class to make calls to the game engine, first to
find out how many actors there are and then to fill the array with their actor IDs.
The memory buffer used for this purpose is allocated from the COM task memory
allocator, which is a good way to pass data from an unmanaged C++ DLL to a man-
aged C# application. When the data has been read into managed memory, the
tempArray buffer is freed.

Retrieving the XML definition from an actor is done in a similar way.

private XmlElement GetActorXml(uint actorId)

{

int xmlSize = NativeMethods.GetActorXmlSize(actorId);

if (xmlSize == 0)

return null;

IntPtr tempArray = Marshal.AllocCoTaskMem((xmlSize + 1) * sizeof(char));

NativeMethods.GetActorXml(tempArray, actorId);

string actorXml = Marshal.PtrToStringAnsi(tempArray);

Marshal.FreeCoTaskMem(tempArray);

XmlDocument actorDoc = new XmlDocument();

actorDoc.Load(new StringReader(actorXml));

return actorDoc.DocumentElement;

}

778 Chapter 22 n A Simple Game Editor in C#

It follows a similar pattern as before: When obtaining data from unmanaged C++,
the code asks for the size of memory needed with GetActorXmlSize(). Then a
temporary unmanaged memory buffer of that size is allocated, the data is copied
into that buffer with a call to the C++ DLL, and finally the results are processed
into managed memory.

The processing includes a call to Marshal.PtrToStringAnsi(), which can con-
vert an unmanaged ANSI string into a managed C# string. Once that is done, the
string is converted into an XmlElement, which is a very useful class to read and
write XML. You’ll be seeing much more of XmlElement shortly because it is the
backbone data structure for the editor.

The next method uses GetActorList() and GetActorXml() to initialize the actor
TreeView and the List<XmlNode>.

private void InitializeActors()

{

TreeView_Actors.Nodes.Clear();

int[] actorList = GetActorList();

// Game starts actors at Id=1, so we’ll make a space for a null actor here.

m_ActorsXmlNodes.Add(null);

// Add each actor as its own node in the treeview.

for (int i = 0; i < actorList.GetLength(0); i++)

{

uint actorId = Convert.ToUInt32(actorList[i]);

TreeNode node = new TreeNode();

XmlElement actorXml = GetActorXml(actorId);

if (actorXml != null)

{

node.Name = actorList[i].ToString();

m_ActorsXmlNodes.Add((XmlNode)actorXml);

node.Text = actorXml.GetAttribute(“type”);

}

else

{

node.Text = “<undefined actor - no xml>”;

}

TreeView_Actors.Nodes.Add(node);

}

}

The C# Editor User Interface 779

When an actor in the actor list is clicked, the editor needs to show its properties and
allow them to be changed. That is the job of the class you’ll see next, the ActorCom-
ponentEditor. It is informed of the selected actor with a method that is hooked
into the AfterSelect event of the actor TreeView.

private void TreeView_Actors_AfterSelect(object sender, TreeViewEventArgs e)

{

TreeNode node = TreeView_Actors.SelectedNode;

if (node != null)

{

m_SelectedActorId = node.Index + 1; // Game starts Actor Ids at 1

m_ActorComponentEditor.ShowActorComponents(

m_SelectedActorId, GetActorXml(m_SelectedActorId));

}

}

The Menu Bar

The EditorForm has a menu bar attached, which is used for all manner of editor
functions. Making these functions work is a matter of hooking up a method to each
menu item through the C# Windows Forms Designer. Double-clicking on any menu
item automatically jumps to the handler code or adds it if it doesn’t exist. Not every
method of the editor’s menu bar will be discussed here, as many of them are
extremely simple. Three worth mentioning are for opening a level, saving a level,
and building the project.

private void openLevelToolStripMenuItem_Click(object sender, EventArgs e)

{

OpenFileDialog dialog = new OpenFileDialog();

dialog.InitialDirectory = m_AssetsDirectory + “\\World”;

dialog.Filter = “XML files (*.xml)j*.xml”;

dialog.FilterIndex = 1;

dialog.RestoreDirectory = true;

if (dialog.ShowDialog() == DialogResult.OK)

{

string fileName = dialog.FileName;

NativeMethods.OpenLevel(fileName);

InitializeActors();

}

}

Opening a level is actually done by the C++ DLL. Once the level load is complete,
InitializeActors() will reinitialize the actor list.

780 Chapter 22 n A Simple Game Editor in C#

Saving a level requires creating and writing an XML file like this:

private void saveLevelToolStripMenuItem_Click(object sender, EventArgs e)

{

XmlDocument levelXml = new XmlDocument();

XmlElement world = levelXml.CreateElement(“World”);

levelXml.AppendChild(world);

XmlElement staticActors = levelXml.CreateElement(“StaticActors”);

world.AppendChild(staticActors);

int[] actorList = GetActorList();

for (int i = 0; i < actorList.GetLength(0); i++)

{

uint actorId = Convert.ToUInt32(actorList[i]);

XmlElement actorXml = GetActorXml(actorId);

if (actorXml != null)

{

staticActors.AppendChild(

staticActors.OwnerDocument.ImportNode(actorXml, true));

}

}

// Save the document to a file and auto-indent the output.

XmlTextWriter writer = new XmlTextWriter(m_CurrentLevelFile, null);

writer.Formatting = Formatting.Indented;

levelXml.Save(writer);

}

The level file format is basically a list of actors and their components.

<World>

<StaticActors>

<Actor type=“Grid”>

…component XML definitions go here

</Actor>

<Actor type=“Light”>

…component XML definitions go here

</Actor>

</StaticActors>

</World>

The root level element, World, contains the actor list defined by the StaticActors
element. A good extension for this format might add level specific information, such
as a definition for background music or where the level chains to after it is com-
pleted. In this simple example, just the actor list is shown.

The C# Editor User Interface 781

The XmlDocument is responsible for creating new elements by calling CreateEle-

ment(), and each element can have multiple children, which are attached with the
AppendChild() method. Notice the call to ImportNode() inside the loop? This
call is required to create a copy of an XmlElement created in a different XmlDocu-
ment object.

Once the entire XmlDocument object is ready, it is saved by creating an XmlText-

Writer. The formatting is set so that it makes for easier human reading and editing.

The last menu action is for building the Zip file that contains the entire Assets direc-
tory. For that, a helper class, ZipFileUtility, is needed.

private void buildProjectToolStripMenuItem_Click(object sender, EventArgs e)

{

ZipFileUtility.Create(m_AssetsDirectory,

m_ProjectDirectory + “\\Assets.zip”);

}

System.IO.Packaging has a convenient class called ZipPackaging, which can
create or read Zip files, and will form the basis of the ZipFileUtility class.

class ZipFileUtility

{

public static void Create(string rootDirectoryName, string zipFileName)

{

DirectoryInfo rootDirectory = new DirectoryInfo(rootDirectoryName);

int rootDirLen = rootDirectory.FullName.Length;

using (Package package = ZipPackage.Open(zipFileName, FileMode.Create))

{

var stack = new Stack<string>();

stack.Push(rootDirectory.FullName);

while (stack.Count > 0)

{

var currentNode = stack.Pop();

var directoryInfo = new DirectoryInfo(currentNode);

foreach (var directory in directoryInfo.GetDirectories())

{

FileAttributes attributes =

File.GetAttributes(directory.FullName);

if ((attributes & FileAttributes.Hidden) == 0 &&

directory.Name != “Editor”)

{

stack.Push(directory.FullName);

}

782 Chapter 22 n A Simple Game Editor in C#

}

foreach (var file in directoryInfo.GetFiles())

{

FileAttributes attributes = File.GetAttributes(file.FullName);

if ((attributes & FileAttributes.Hidden) == 0)

{

string relativeFromRoot =

file.FullName.Substring(rootDirLen);

Uri relUri = GetRelativeUri(relativeFromRoot);

PackagePart packagePart = package.CreatePart(

relUri, System.Net.Mime.MediaTypeNames.Application.Octet,

CompressionOption.Maximum);

using (FileStream fileStream = new FileStream(file.FullName,

FileMode.Open, FileAccess.Read))

{

CopyStream(fileStream, packagePart.GetStream());

}

}

}

}

}

}

The Create() method uses an iterative algorithm to walk the entire directory tree.
Any directories it finds, except for those named Editor, are processed. Ignoring any-
thing named Editor allows editor-specific data to be stored in the Assets directory but
excluded from the final Zip file that the game will read with its resource cache. As
you saw previously with the assets tree, hidden files are also excluded.

For each included file, a PackagePart object is created and written to the Zip file.
There are three helper methods that are a part of the ZipFileUtility class, and all
are called from the Create method. The first is CopyStream, which reads a target
stream and copies it in chunks to a target stream—it can be extremely useful for large
files.

private static void CopyStream(Stream source, Stream target)

{

const int bufSize = 16384;

byte[] buf = new byte[bufSize];

int bytesRead = 0;

while ((bytesRead = source.Read(buf, 0, bufSize)) > 0)

target.Write(buf, 0, bytesRead);

}

The C# Editor User Interface 783

The second helper method is GetRelativeUri(), which constructs a properly for-
matted filename to be included into the Zip file. It requires the filename to be relative
to the root of the Zip file and not contain any illegal characters.

private static Uri GetRelativeUri(string currentFile)

{

string pastBackslashes = currentFile.Substring(currentFile.IndexOf(‘\\’));

string nukeDoubleBackslash = pastBackslashes.Replace(‘\\’, ‘/’);

string nukeSpaces = nukeDoubleBackslash.Replace(“ ’, ‘_’);

return new Uri(RemoveAccents(relPath), UriKind.Relative);

}

private static string RemoveAccents(string input)

{

string normalized = input.Normalize(NormalizationForm.FormKD);

Encoding removal = Encoding.GetEncoding(Encoding.ASCII.CodePage,

new EncoderReplacementFallback(“”),

new DecoderReplacementFallback(“”));

byte[] bytes = removal.GetBytes(normalized);

return Encoding.ASCII.GetString(bytes);

}

Always Use Relative Path Names

Learning from someone else’s mistakes is vastly better than learning from your
own. Did you notice the code in the GetRelativeUri() previous code
example? Not only is this important for making well-formed Zip files, but it
also enables your entire project to be stored in a way that a game developer
likes. Not everyone stores his development projects on his C:\ drive, and it can
be extremely inconvenient to assume a specific location for the project root
directory. Store your filenames as relative to the project root, and everyone
will be much happier.

The ActorComponentEditor Class

So far you’ve seen the basic framework of the C# editor, but nothing yet has actually
been able to view or modify all of the properties of an actor, such as its color, posi-
tion, or texture filename. This is the job of the ActorComponentEditor class,
shown in Figure 22.4.

Before jumping in to the code, it makes some sense to explain the idea behind the
design. If you remember from Chapter 6, “Game Actors and Component Architec-
ture,” actors are containers for components. These components are represented by

784 Chapter 22 n A Simple Game Editor in C#

C++ classes, such as the TransformComponent, which stores position and orienta-
tion, or the GridRenderComponent, which stores the color, texture filename, and size
of a grid scene node. Each of these components has member data that should be exposed
to the editor. Exposing these data members to the editor would mean creating controls
like a text box to edit a filename or a combo box to make a selection from a list.

One method might be to simply write some C# code that mirrors each C++ compo-
nent. It does create a weakness in the editor, however. If the C++ component changes
by adding or removing data members, the editor must be changed, recompiled, and
redistributed to anyone using it. Wouldn’t a better solution be data driven?

Imagine an XML file that defined components from the editor’s point of view:

<Components>

<Component name=“TransformComponent”>

<Element name=“Position” type=“Vec3” fieldNames=“x,y,z” />

<Element name=“YawPitchRoll” type=“Vec3” fieldNames=“x,y,z” />

</Component>

<Component name=“GridRenderComponent”>

<Element name=“Color” type=“RGBA” />

<Element name=“Texture” type=“File”

extensions=“Image Files(*.JPG;*.GIF;*.DDS)∣*.JPG;*.GIF;*.DDS” />

<Element name=“Division” type=“int” />

</Component>

</Components>

Figure 22.4
The ActorComponentsEditor showing two components.

The C# Editor User Interface 785

Each component definition has a name and multiple elements. Each element has a
name, a type, and optional attributes that the editor will use when creating dynamic
controls. For example, the file type needs to know what kinds of extensions are legal
for the file. Each component definition exactly mirrors the component definitions in
the actor XML files. For example, here is a partial definition for the Grid actor:

<Actor type=“Grid”>

<TransformComponent>

<Position x=“0” y=“0” z=“0”/>

<YawPitchRoll x=“0” y=“0” z=“0”/>

</TransformComponent>

<GridRenderComponent>

<Color r=“0.4” g=“0.4” b=“0.4” a=“1.0”/>

<Texture>art\grid.dds</Texture>

<Division>100</Division>

</GridRenderComponent>

<!--other components follow! -->

</Actor>

The ActorComponentsEditor could then read each component’s definition and
know exactly what controls to create so each component could be edited. Then the
only time the editor must be changed is when a new data type is introduced.

Keep the Game and Editor in Sync

You can try very hard to limit dependencies between the game and the editor,
but there will inevitably be a few. Even though the components and elements
are defined as XML data for the editor to read, there are still dependencies on
the existence of the components in C++, how their XML is structured, and
more. When this type of dependency is inevitable, it makes good sense to put
comments in the C++ and C# code specifying exactly how to keep the editor
and the game in perfect harmony.

Data Members and Initialization

The ActorComponentEditor has data members that keep track of the component’s
definition, the selected actor, and the C# Windows Form, a Panel, that will contain
the dynamically created controls.

class ActorComponentEditor

{

Dictionary<string, XmlNode> m_ComponentsByName;

XmlDocument m_SelectedActorComponents;

int m_SelectedActorId;

786 Chapter 22 n A Simple Game Editor in C#

XmlNode m_ActorXml;

string m_AssetsDirectory;

const int g_LabelColumnWidth = 160;

int m_LineSpacing;

Panel m_Panel;

public ActorComponentEditor(Panel panel, string projectDirectory)

{

m_ComponentsByName = new Dictionary<string, XmlNode>();

m_Panel = panel;

m_LineSpacing = m_Panel.Font.Height * 2;

m_AssetsDirectory = projectDirectory + “\\Assets”;

XmlDocument componentsXML = new XmlDocument();

componentsXML.Load(m_AssetsDirectory + “\\Editor\\components.xml”);

XmlElement root = componentsXML.DocumentElement;

XmlNodeList components = root.SelectNodes(“child::*”);

foreach (XmlNode component in components)

{

m_ComponentsByName[component.Attributes[“name”].Value] = component;

}

}

Take a look at the use of the XmlElement method, SelectNodes(). The parameter
passed in to this method is an XPath, which is commonly used to specify or search
for elements or attributes of an XML document.

A Quick XPath Tutorial

The ActorComponentEditor makes heavy use of XPath because the same XPath
definition can be used to match elements in the actor XML and the editor compo-
nents’ XML.

For example, the Division element of the GridRenderComponent in the Grid
actor could be defined as “/Actor/GridRenderComponent/Division.” XPath also allows
searching elements by their number. Since this same element is the third element of
the second child of the root node, the XPath would be “/*[1]/*[3]/*[4]”.

Since XmlElements can be traversed, it is a simple matter to write a utility class to
create XPath descriptions.

class XPathUtility

{

The C# Editor User Interface 787

static int GetNodePosition(XmlNode child)

{

int count = 1;

for (int i = 0; i < child.ParentNode.ChildNodes.Count; i++)

{

if (child.ParentNode.ChildNodes[i] == child)

{

// XPath starts counting at 1, not 0

return count;

}

if (child.ParentNode.ChildNodes[i].Name == child.Name)

{

++count;

}

}

// child node not found in its parent’s ChildNodes property.

throw new InvalidOperationException();

}

public static string GetXPathToNode(XmlNode node)

{

if (node.NodeType == XmlNodeType.Attribute)

{

// attributes have an OwnerElement, not a ParentNode; also they have

// to be matched by name, not found by position

return String.Format(

“{0}/@{1}”,

GetXPathToNode(((XmlAttribute)node).OwnerElement),

“*” //node.Name

);

}

if (node.ParentNode == null)

{

// the only node with no parent is the root node, which has no path

return “”;

}

// the path to a node is the path to its parent, plus “/*[n]”, where

// n is its position among its siblings.

return String.Format(

“{0}/{1}[{2}]”,

GetXPathToNode(node.ParentNode),

“*”,

GetNodePosition(node)

788 Chapter 22 n A Simple Game Editor in C#

);

}

}

GetNodePosition() traverses siblings until it finds the matching XmlElement. If
it isn’t found, then it throws an exception, probably just a result of some late-night
programming. GetXPathToNode() uses a recursive implementation, calling itself to
create the XPath for parent nodes.

Showing Actor Components

When an actor is selected, the actor components are read to create all the controls
needed to edit their values.

public unsafe void ShowActorComponents(int selectedActorId, XmlNode actorXml)

{

m_SelectedActorId = selectedActorId;

m_ActorXml = actorXml;

m_SelectedActorComponents = new XmlDocument();

XmlNode editorComponents = m_SelectedActorComponents.CreateElement(“Actor”);

m_SelectedActorComponents.AppendChild(editorComponents);

m_Panel.Controls.Clear();

XmlNodeList actorValueComponents = m_ActorXml.SelectNodes(“child::*”);

int lineNum = 0;

foreach (XmlNode actorValueComponent in actorValueComponents)

{

XmlNode sourceEditorComponent =

m_ComponentsByName[actorValueComponent.Name];

XmlDocument ownerDoc = editorComponents.OwnerDocument;

XmlNode editorComponent = ownerDoc.ImportNode(sourceEditorComponent,true);

editorComponents.AppendChild(editorComponent);

lineNum = AddComponentUI(actorValueComponent, editorComponent, lineNum);

}

}

The m_ActorXml member holds the actor XML values that are read in from the
game and stored in the level XML file. The m_SelectedActorComponents mem-
ber is initialized to hold a parallel XML structure that mirrors the actor XML, but
instead of storing actor values, it stores the component names, element names, and
element types of each component. For each component, the AddComponentUI()

method is called to create all the controls.

The C# Editor User Interface 789

public int AddComponentUI(XmlNode actorComponentValues,

XmlNode editorComponentValues, int lineNum)

{

string componentName = actorComponentValues.Name.ToString();

string componentXpath = XPathUtility.GetXPathToNode(actorComponentValues);

try

{

AddElementLabel(componentName, lineNum);

++lineNum;

int elementNum = 0;

foreach (XmlNode inputField in editorComponentValues)

{

string xpath = XPathUtility.GetXPathToNode(inputField);

string elementName = inputField.Attributes[“name”].Value;

string elementType = inputField.Attributes[“type”].Value;

XmlNode actorValues = actorComponentValues.ChildNodes[elementNum];

AddElementLabel(“ ” + elementName, lineNum);

switch (elementType)

{

case “Vec3”:

AddVec3(actorValues, xpath, lineNum);

++lineNum;

break;

case “RGBA”:

AddRGBA(actorValues, xpath, lineNum);

++lineNum;

break;

case “File”:

AddFileElement(actorValues, xpath, lineNum);

++lineNum;

break;

// Imagine more code here to initialize more types!

default:

AddElementLabel(“ ” + elementName + “: ”

+ elementType + “ (unknown!)”, lineNum);

++lineNum;

break;

}

790 Chapter 22 n A Simple Game Editor in C#

++elementNum;

}

}

catch (Exception e)

{

MessageBox.Show(“Error in ComponentName ” + componentName + “\n”) ;

}

return lineNum;

}

The idea behind adding a dynamic control and attaching it to code that runs when it
changes is pretty similar, no matter what type of data you are editing. Let’s take a
look at the code needed to select a file:

public void AddFileElement(XmlNode actorValues, string xpath, int lineNum)

{

const int boxWidth = 160;

const int horizSpacing = 20;

TextBox textBox = new TextBox();

Drawing.Point location = new Drawing.Point(

g_LabelColumnWidth, lineNum * m_LineSpacing);

textBox.Name = xpath;

textBox.Location = location;

textBox.Text = actorValues.FirstChild.Value;

textBox.TextChanged += new EventHandler(FileElementChanged);

m_Panel.Controls.Add(textBox);

Button button = new Button();

location = new Drawing.Point(

g_LabelColumnWidth + boxWidth + horizSpacing, lineNum * m_LineSpacing);

button.Name = xpath + “Button”;

button.Text = “Browse…”;

button.Location = location;

button.MouseClick += new MouseEventHandler(SelectFile);

m_Panel.Controls.Add(button);

}

A text box is created with the value set to the value stored in
actorValues.FirstChild.Value. Since file elements are defined in XML like
this, <Texture>art\grid.dds</Texture>, the first child is the text
“art.grid.dds.” The name of the text box is the XPath of the element in the XML.
Because there may be multiple text boxes created, this is a convenient way to

The C# Editor User Interface 791

distinguish which control goes with which XML element. Even better, the XPath can
be used to find both the actor values and the editor’s component definition. An event
handler is also attached that will run anytime the value of the text box is changed.

A button is also created next to the text box that will bring up the typical open file
dialog box. Its name is set to the XPath of the actor element as well, but with “But-
ton” attached to the end. This will not only uniquely identify the button in case there
are multiple file elements in the actor, but it will enable us to find the exact text box
control the button is associated with.

Editing Actor Components

The C# Windows Form holds the controls for editing different element types, but
there needs to be a way to actually change these values and have them reflect in
visual display. Some controls can be edited directly, such as those for position.
Others, like a choice of color or a filename, can make good use of helper dialog
boxes. Here is SelectFile(), the code that will run when the Browse button is
pressed:

private void SelectFile(object sender, MouseEventArgs e)

{

OpenFileDialog openFile = new OpenFileDialog();

Button button = (Button)sender;

string buttonDesc = “Button”;

string textBoxElementName =

button.Name.Substring(0, button.Name.Length - buttonDesc.Length);

XmlNode fileElement = FindEditorElementFromXPath(textBoxElementName);

openFile.Filter = fileElement.Attributes[“extensions”].Value;

openFile.ShowDialog();

if (openFile.FileNames.Length > 0)

{

try

{

string fileName = openFile.FileNames[0];

if (fileName.StartsWith(m_AssetsDirectory))

{

TextBox textBox = (TextBox)m_Panel.Controls[textBoxElementName];

textBox.Text = fileName.Substring(m_AssetsDirectory.Length + 1);

}

else

{

792 Chapter 22 n A Simple Game Editor in C#

MessageBox.Show(“Error - This file isn’t a part of this ” +

“project (it must be in ” + m_AssetsDirectory + “).”);

}

}

catch

{

MessageBox.Show(“ElementName is incorrect in SelectFile”);

}

}

}

This code would get run anytime a button associated with a file element is pressed.
The first order of business is to find the actual name of the text box control. Since the
button has the same name as its companion text box control, with “Button” added to
the end, a call to Substring() quickly finds the text box name. Later on, this string
will be used to find the actual control by accessing m_Panel.Controls with the
name of the text box. Since this is a file element, it is important to find the allowed
extensions for the file. In the case of a texture file, extensions might be DDS, JPG,
BMP, and so on. A helper function, FindEditorElementFromXPath(), uses the
XPath name of the control to find the XmlElement the editor uses to get hints
about how the element needs to be edited.

private XmlNode FindEditorElementFromXPath(string xpath)

{

XmlNode root = m_SelectedActorComponents.FirstChild;

XmlNodeList nodeList = root.SelectNodes(xpath);

return nodeList[0];

}

Recall that the m_SelectedActorComponents member was initialized when the
actor was selected, and for each component defined in the actor, this XmlElement
received a child node from the editor’s components definition. The XPath names of
the controls map each control to the value stored in the actor and the hints to the
editor on how it is edited.

The last method in this trio is FileElementChanged(), which is called anytime
the value in the text box changes. Its job is to construct an XML string that will be
sent to the C++ EditorLogic class.

private void FileElementChanged(object sender, EventArgs e)

{

TextBox textBox = (TextBox)sender;

string xPath = textBox.Name;

string newValue = textBox.Text;

The C# Editor User Interface 793

XmlDocument xmlDoc = new XmlDocument();

XmlElement xmlActor = xmlDoc.CreateElement(“Actor”);

xmlDoc.AppendChild(xmlActor);

XmlAttribute xmlActorId = xmlDoc.CreateAttribute(“id”);

xmlActorId.InnerText = m_SelectedActorId.ToString();

xmlActor.Attributes.Append(xmlActorId);

XmlNode elementNode = FindActorElementFromXPath(xPath);

XmlNode componentNode = elementNode.ParentNode;

string componentName = componentNode.Name;

string elementName = elementNode.Name;

XmlElement xmlComponent = xmlDoc.CreateElement(componentName);

xmlActor.AppendChild(xmlComponent);

XmlElement xmlElementName = xmlDoc.CreateElement(elementName);

xmlComponent.AppendChild(xmlElementName);

xmlElementName.InnerText = newValue;

NativeMethods.ModifyActor(xmlDoc.InnerXml);

}

private XmlNode FindActorElementFromXPath(string xpath)

{

XmlNodeList nodeList = m_ActorXml.SelectNodes(xpath);

return nodeList[0];

}

This code grabs the text box control and creates a snippet of XML. Assume for the
sake of argument that the component being modified is the <Texture> element of
the GridRenderComponent. Also assume that the actor ID is 1, and the new tex-
ture name is art\sky.jpg. Here is the XML that would be created:

<Actor id=“1”>

<GridRenderComponent>

<Texture>art\sky.jpg</Texture>

</GridRenderComponent>

</Actor>

Once the XML is created, it is sent into NativeMethods.ModifyActor(). If you
recall from the earlier section “Actor Modification Functions,” this will cause the
GridRenderComponent of the actor to be reinitialized, but since the only part of
the XML that is defined is the texture name, only that element will be modified. All
the other values currently in the actor remain the same.

794 Chapter 22 n A Simple Game Editor in C#

Editors Need Robust Error Checking

One thing that is missing is checks on the data types. This occurred because
the author was focusing most of his time on getting C# and C++ to play nice
and trying to stamp out linker errors! However, you should make sure that
data being passed to the editor game engine is all legitimate. You don’t
want to send any data that isn’t appropriate to the unmanaged DLL. At best,
nothing happens. At worst, the entire application crashes, taking with it
several hours of work! There is nothing more dangerous to a programmer’s
well being than a person whose finest work has been lost by an editor bug.

Future Work

The editor framework presented in this chapter is a great beginning, but there are
plenty of projects ahead for the would-be tools programmer. Remember that a
game editor’s purpose is to enable rapid development and iteration. It should also
be able to optimize the level files so that the game’s data is always as small as possi-
ble. Here are a few projects you can work on that will push this simple editor toward
that goal:

n Create mouse controls for moving and positioning actors in the game world.
Follow the lead of many commercial editors and create a tool bar that can set
the display panel to move objects instead of the camera.

n Allow object picking with the mouse—this requires some additional cooperation
between the display panel, the EditorHumanView, and the C# application.

n Allow multiple visual displays with a wireframe mode to let game designers have
a fine degree of accuracy when placing actors.

n Create level properties that can be added into the level file for adding back-
ground music or level chaining.

n Create new actor components.

n Add the physics system so objects will already be stable when the game begins
running, and the editor can be sure not to place objects interpenetrating each
other.

n Create the ability for actor components themselves to be instanced so that
if actors only use the default values of the XML definitions in the Assets\
Actors*.xml files, it doesn’t take up more memory in the game or the save
game file.

Future Work 795

n Most importantly, allow the game to be running in the background while the
editor is changing or viewing actor property values. Being able to launch the
game and run from any position in a level file can really speed development.

That list should keep you, and me, plenty busy.

Further Reading

n http://msdn.microsoft.com/: A lot of the reference material in MSDN is hair-
rippingly frustrating, but they’ve got some good examples on how to set up C#
projects.

n http://blogs.msdn.com/csharpfaq/default.aspx/: And while we’re talking about
C#, this FAQ is a helpful guide to some common questions.

n http://www.swig.org/: It was sometimes frustrating getting the code to run in a
managed environment. As you can see, I eventually went with exporting C-style
functions, but ideally you’d want to be able to export entire classes. SWIG will
take your C++ classes and wrap them in a manner that is usable from C#. Not
only that, but it will wrap your classes for other languages as well!

n http://www.unity3d.com/: This is currently one of my favorite game develop-
ment environments, and it’s no surprise the simple editor built in this chapter
was inspired from Unity’s design.

796 Chapter 22 n A Simple Game Editor in C#

http://msdn.microsoft.com/
http://blogs.msdn.com/csharpfaq/default.aspx/
http://www.swig.org/
http://www.unity3d.com/

Chapter 23

by David “Rez” Graham

Debugging and Profiling

Your Game

By the end of any game development project, the programmers and their teammates
spend all of their time fixing bugs and tweaking performance. As important as
debugging is (especially in game development), techniques in debugging are rarely
taught. They tend to just come from experience or are traded around the program-
ming team. Since I’m communicating to you through a book, we can’t trade much,
but since you bought the book, I think we can call it even.

Games are complicated pieces of software, and they push every piece of hardware in
the system. Bugs are usually pilot error, but there are plenty of cases where bugs trace
their roots to the compiler, operating system, drivers, and even specific pieces of
hardware. Bugs also happen as a result of unexpected interactions in code written
by different programmers; each module functions perfectly in a unit test, but failures
are seen after they are integrated. Programmers spend lots of time hunting down
issues in code they didn’t write.

If you are going to have any chance at all of fixing broken code, whether you wrote it or
not, you should have a few ideas and techniques in your toolbox. It’s not uncommon to
spend more time debugging than writing new code, especially toward the end of a project.

I need to warn you up front that you’re going to see some assembly code and other
heavy metal in this chapter. You simply can’t perform the task of debugging without
a basic working knowledge of assembly code and how the CPU really works. This is
not a gentle chapter because we’re not discussing a gentle problem. However, it’s not
brutally hard to learn assembly, and you have an excellent teacher—your debugger.

797

Most C++ debuggers, Visual Studio included, let you look at your source code at the
same time as the assembly code. Take some time to learn how each C++ statement is
broken down into its assembly instructions, and you’ll end up being a much better
programmer for it. Fear not—I’m with you in spirit, and I wasn’t born with a full
knowledge of assembly.

Atari 2600 Games for Fun and Profit

I first learned x86 assembly language in college on an old 8088 processor. We
created little assembly language programs that would write to the serial port and
control different circuits we built on breadboards. It was a huge amount of fun! In
an attempt to teach myself another form of assembly (6502 in this case), I started
working on a small game for the Atari 2600. Using assembly language for fun little
projects like these is a great way to teach yourself this useful tool.

The Art of Handling Failure

If you are looking for some wisdom about handling personal failure, stop reading and
call a shrink. My focus here is to discuss application failure, the situation where some
defensive code has found an anomaly and needs to handle it. There’s a great conver-
sation you can start with a group of programmers about how to handle errors or fail-
ures in games. The subject has more gray area than you’d think, and therefore it
doesn’t have a single best strategy. The debate starts when you ask if games should
ignore failures or if they should stop execution immediately.

I’m talking about the release build, of course. The debug build should always report
any oddity so that programmers can catch more bugs in the act. The release build
strips asserts, so there’s a good question about what should happen if the assert con-
dition would have been satisfied in the release build. Does the game continue, or
should it halt? As with many things, there’s no right answer. Here’s an example of
two functions that handle the same error in two different ways:

void DetectFixAndContinue(int variable)

{

if (variable < VARIABLE_MINIMUM)

{

variable = VARIABLE_MINIMUM;

GCC_ERROR(“Parameter is invalid”);

}

// More code follows...

}

void DetectAndBail(int variable)

798 Chapter 23 n Debugging and Profiling Your Game

{

if (variable < VARIABLE_MINIMUM)

{

throw (“Parameter is invalid”);

}

// More code follows...

}

The first function resets the errant variable and calls the GCC_ERROR() macro to
alert a programmer that something has gone wrong. The execution continues, since
the variable now has a legal value. The second function throws an exception, clearly
not allowing the execution to continue.

The debate most programmers have goes something like this: If you ever reach code
where an assert condition in debug mode evaluates to false, then something has gone
horribly wrong. Since you can’t predict the nature of the failure, you must assume a
worst-case scenario and exit the program as elegantly as possible. After all, the failure
could be bad enough to corrupt data, save game files, or worse.

The other side of the argument takes a kinder, gentler approach. Failures can and will
happen, even in the shipping product. If the program can fix a bogus parameter or
ignore corrupt data and continue running, it is in the best interests of the player to
do so. After all, he might get a chance to save his game and reload it later without a
problem. Since we’re working on computer games, we have the freedom to fudge
things a little; there are no human lives at stake, and there is no property at risk
due to a program failure. Both arguments are valid. I tend to favor the second argu-
ment because computer games are frequently pushed into testing before they are
ready and released way before testing is completed. Bugs will remain in the software,
and if the game can recover from them it should.

Some Bugs Are Acceptable, Aren’t They?

Never forget that your game’s purpose is entertainment. You aren’t keeping
an airplane from getting lost, and you aren’t reporting someone’s heartbeat.
Remember that games can get away with lots of things that other software
can’t. If you are relatively sure that you can make a choice to allow the
game to continue instead of crash, I suggest you do it.

Of course, this is true unless you work on a massive multiplayer title,
and you are working on anything server side. Bugs here affect everyone on
the server, and they can result in actual lost value for players and, in turn,
the company. In that case, you get to code and test every bit as carefully
as the programmer down the street working on banking software.

The Art of Handling Failure 799

That’s not to say that games can’t find themselves in an unrecoverable situation. If a
game runs out of memory, you’re hosed. You have no choice but to bring up a dialog
and say, “Sorry dude. You’re hosed,” and start throwing exceptions. If you’re lucky,
your exit code might be able to save the game into a temporary file, much like Micro-
soft Word sometimes does when it crashes. When the game reloads, it can read the
temporary file and attempt to begin again just before everything went down the toi-
let. If this fails, you can exit again and lose the temporary file. All hope is lost. If it
succeeds, your players will worship the ground you walk on. Trust me, as many times
as Microsoft Word has recovered pieces of this book after my laptop’s batteries ran
out of electrons, I can appreciate a little data recovery.

Use @err,hr in Your Watch Window

If a Windows function fails, you must usually call GetLastError() to determine the exact nature of
the error. Instead, simply put @err,hr in your debugger’s watch window. This will show you a string-
formatted version of the error.

Debugging Basics

Before you learn some debugging tricks, you should know a little about how the
debugger works and how to use it. Almost every computer has special assembly lan-
guage instructions or CPU features that enable debugging. The Intel platform is no
exception. A debugger works by stopping execution of a target program and
associating memory locations and values with variable names. This association is pos-
sible through symbolic information that is generated by the compiler. One human
readable form of this information is a MAP file. Here’s an example of a MAP file
generated by the linker in Visual Studio:

Sample

Timestamp is 3c0020f3 (Sat Nov 24 16:36:35 2001)

Preferred load address is 00400000

Start Length Name Class

0001:00000000 000ab634H .text CODE

0001:000ab640 00008b5fH .text$AFX_AUX CODE

0001:000b41a0 0000eec3H .text$AFX_CMNCTL CODE

0002:00000000 000130caH .rdata DATA

0002:000130d0 00006971H .rdata$r DATA

0002:000275d0 00000000H .edata DATA

0003:00000000 00000104H .CRT$XCA DATA

0003:00000104 00000109H .CRT$XCC DATA

0003:00001120 00026e6aH .data DATA

0003:00027f90 00011390H .bss DATA

800 Chapter 23 n Debugging and Profiling Your Game

0004:00000000 00000168H .idata$2 DATA

0004:00000168 00000014H .idata$3 DATA

0005:00000000 00000370H .rsrc$01 DATA

Address Publics by Value Rva+Base Lib:Object

0001:00000b80 ??0GameApp@@QAE@XZ 00401b80 f GameApp.obj

0001:00000ca0 ??_EGameApp@@UAEPAXI@Z 00401ca0 f i GameApp.obj

0001:00000ca0 ??_GGameApp@@UAEPAXI@Z 00401ca0 f i GameApp.obj

0001:00000d10 ??1GameApp@@UAE@XZ 00401d10 f GameApp.obj

0001:00000e20 ?OnClose@GameApp@@UAEXXZ 00401e20 f GameApp.obj

0001:00000ec0 ?OnRun@GameApp@@UAE_NXZ 00401ec0 f GameApp.obj

0001:00001a10 ??0CFileStatus@@QAE@XZ 00402a10 f i GameApp.obj

0001:00001d00 ?OnIdle@GameApp@@UAEHJ@Z 00402d00 f GameApp.obj

0001:00001e30 ?Update@GameApp@@UAEXK@Z 00402e30 f GameApp.obj

The file maps the entire contents of the process as it is loaded into memory. The first
section describes global data. The second section, which is much more interesting
and useful, describes the memory addresses of methods and functions in your game.

Notice first that the symbol names are “munged.” These are the actual names of the
methods after the C++ symbol manager incorporates the class names and variable
types into the names. The number that appears right after the name is the actual
memory address of the entry point of the code. For example, the last function in
the MAP file is ?Update@GameApp@@UAEXK@Z and is loaded into memory address
0 × 00402e30. You can use that information to track down crashes.

Have you ever seen a crash that reports the register contents? Usually you’ll see the
entire set of registers: EAX, EBX, and so on. You’ll also see EIP, the extended instruction
pointer. You may have thought that this dialog box was nothing more than an annoy-
ance—a slap in the face that your program is flawed. Used with the MAP file, you can at
least find the name of the function that caused the crash. Here’s how to do it:

1. Assume the crash dialog reported an EIP of 0x00402d20.

2. Looking at the MAP file above, you’ll see that GameApp::OnIdle has an entry
point of 0 × 00402d00 and GameApp::Update has an entry point of
0 × 00402e30.

3. The crash thus happened somewhere inside GameApp::OnIdle, since it is
located in between those two entry points.

A debugger uses a much more complete symbol table. For example, Visual Studio
stores these symbols in a PDB file, or program database file. That’s one of the reasons
it’s so huge—because it stores symbolic information of every identifier in your

Debugging Basics 801

program. The debugger can use this information to figure out how to display the
contents of local and global variables and figure out what source code to display as
you step through the code. This doesn’t explain how the debugger stops the debugged
application cold in its tracks, however. That trick requires a little help from the CPU
and a special interrupt instruction. If you use Visual Studio and you are running on
an Intel processor, you can try this little program:

void main()

{

__asm int 3

}

You may have never seen a line of code that looks like this. The __asm keyword tells
the compiler that the rest of the line should be treated as an assembly language
instruction. Alternatively, you can follow the __asm keyword with curly braces.
Everything inside these curly braces is parsed as assembly. The int 3 assembly state-
ment evokes the breakpoint interrupt. Without dragging you through all the gory
details of interrupt tables, it suffices to say that a program with sufficient privileges
can “trap” interrupts so that when they are evoked, a special function is called. This
is almost exactly like registering a callback function, but it happens at a hardware
level. DOS-based games used to grab interrupts all the time to redirect functions
such as the mouse or display system to their own evil ends. Debuggers trap the
breakpoint interrupt, and whenever you set a breakpoint, the debugger overwrites
the opcodes, or the machine level instructions, at the breakpoint location with those
that correspond to int 3. When the breakpoint is hit, control is passed to the
debugger, and it puts the original instructions back. If you press the “Step into” or
“Step over” command, the debugger finds the right locations for a new breakpoint
and simply puts it there without you ever being the wiser.

Hard-Coded Breakpoints Are Cool

I’ve found it useful to add hard-coded breakpoints, like the one in the earlier
code example, to functions in the game. It can be convenient to set one to
make sure that if control ever passes through that section of code, the
debugger will always trap it. Be careful, though! If a debugger is not
present, the program may crash. There’s also a Windows function called
SetDebugBreak() that does the same thing but is processor independent.

So now you have the most basic understanding of how a debugger does its work. It
has a mechanism to stop a running program in its tracks, and it uses a compiler and
linker-generated data file to present symbolic information to programmers.

802 Chapter 23 n Debugging and Profiling Your Game

Using the Debugger

When you debug your code, you usually set a few breakpoints and watch the con-
tents of variables. You have a pretty good idea of what should happen, and you’ll
find bugs when you figure out why the effect of your logic isn’t what you planned.
This assumes a few things. First, you know where to set the breakpoints, and second,
you can interpret the effect the logic has on the state of your game. These two things
are by no means trivial in all cases. This problem is made difficult by the size and
complexity of the logic.

Where Is That Bug Anyway?

A screwed-up sound effect may have nothing at all to do with the sound
system. It could be a problem with the code that loads the sound from the
game data files, or it could be random memory corruption that changed the
sound effect after it was loaded. The problem might also be a bad sound
driver, or it might even be a bogus sound effect file from the original
recording. Knowing where to look first has more to do with gut feeling than
anything else, but good debugger skills can certainly speed up the process of
traversing the fault tree—a catch phrase NASA uses to describe all possible
permutations of a possible systems failure.

Debuggers like the one in Visual Studio can present an amazing amount of informa-
tion, as shown in Figure 23.1.

The debugger provides some important windows beyond the normal source code
window you will use all of the time.

n Call stack: From bottom to top, this window shows the functions and para-
meters that were used to call them. The function at the top of the list is the one
you are currently running. It’s extremely useful to double-click on any row of
the call stack window; the location of the function call will be reflected in the
source code window. This helps you understand how control passes from the
caller to the called.

n Watch/Locals/etc: These windows let you examine the contents of variables.
Visual Studio has some convenient debug windows like “Locals” and “Autos”
that keep track of specific variables so you don’t have to type them in yourself.

n Breakpoints: This window shows the list of breakpoints. Sometimes you want to
enable/disable every breakpoint in your game at once or perform other bits of
homework.

n Threads: Most games run multiple threads to manage the sound system,
resource caching, or perhaps the AI. If the debugger hits a breakpoint or is

Debugging Basics 803

stopped, this window will show you what thread is running. It’s the only way to
distinguish between different threads of execution, and it is critical to debugging
multithreaded applications. If you double-click on any line in this window, the
source window will change to show the current execution position of that
thread.

n Disassembly: This is a window that shows the assembly code for the current
function. Sometimes you need to break a C++ statement down into its compo-
nents to debug it or perhaps skip over a portion of the statement. I’ll have more
to say about these techniques later.

Beyond the windows, there are some actions that you’ll need to know how to
perform:

n Set/clear breakpoints: A basic debugging skill.

n Stepping the instruction pointer: These are usually controlled by hot keys
because they are so frequently used. Debuggers will let you execute code one line
at a time and either trace into functions or skip over them (F11 and F10,

Figure 23.1
Using the Visual Studio debugger.

804 Chapter 23 n Debugging and Profiling Your Game

respectively). There’s also a really useful command that will let you step out of a
current function (Shift-F11) without having to watch each line execute.

n Setting the instruction pointer: This takes a little care to use properly, since
you can mess up the stack. I like to use it to skip over function calls or skip back
to a previous line of code so that I can watch it execute again.

As we run through some debugging techniques I’ll refer to these windows and
actions. If you don’t know how to do them in your debugger, now is a good time to
read the docs and figure it out.

Installing Windows Symbol Files

If you’ve ever had a program crash deep in some Windows API call, your call stack
might look like this:

ntdll.dll!77f60b6f()

ntdll.dll!77fb4dbd()

ntdll.dll!77f79b78()

ntdll.dll!77fb4dbd()

Useless, right? Yes, that call stack is useless, but only because you didn’t install the
Windows symbol files. Even though I write letters to Bill Gates every day, Microsoft
still hasn’t published the source code for pretty much anything they ever wrote. Yet
they have, in their infinite wisdom, graciously supplied the next best thing.

You can install the debug symbols for your operating system, and that indecipherable
call stack will turn into something you and I can read. Here’s the same debug stack
after the debug symbols have been installed:

ntdll.dll!_RtlDispatchException@8() + 0x6

ntdll.dll!_KiUserExceptionDispatcher@8() + 0xe

00031328()

ntdll.dll!ExecuteHandler@20() + 0x24

ntdll.dll!_KiUserExceptionDispatcher@8() + 0xe

000316f4()

ntdll.dll!ExecuteHandler@20() + 0x24

ntdll.dll!_KiUserExceptionDispatcher@8() + 0xe

00031ac0()

You might not know exactly what that call stack represents, but now you have a
function name to help you, so you can search the Web or MSDN for help, whereas
before you installed the debug symbols, you had nothing but a number.

Debugging Basics 805

There are a few ways to install debug symbols. You can install them from the Visual
Studio CD-ROM, or you can download them from MSDN. Search for “System
Debug Symbols,” and you’re sure to find them. Once you have the right symbols
installed for your OS, the debugger will happily report the loaded symbols when
you begin a debug session:

‘TeapotWars.exe’: Loaded ‘C:\WINDOWS\system32\ntdll.dll’, Symbols loaded.

‘TeapotWars.exe’: Loaded ‘C:\WINDOWS\system32\kernel32.dll’, Symbols loaded.

‘TeapotWars.exe’: Loaded ‘C:\WINDOWS\system32\gdi32.dll’, Symbols loaded.

Etc., etc.

The problem with this solution is that the symbols you install will eventually become
stale since they won’t reflect any changes in your operating system as you update it
with service packs. You can find out why symbols aren’t loading for any EXE or DLL
with the help of DUMPBIN.EXE, a utility included with Visual Studio. Use the
/PDBPATH:VERBOSE switch as shown here:

Microsoft (R) COFF/PE Dumper Version 7.00.9466

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\windows\system32\user32.dll

File Type: DLL

PDB file ‘c:\windows\system32\user32.pdb’ checked. (File not found)

PDB file ‘user32.pdb’ checked. (File not found)

PDB file ‘C:\WINDOWS\symbols\dll\user32.pdb’ checked. (PDB signature mismatch)

PDB file ‘C:\WINDOWS\dll\user32.pdb’ checked. (File not found)

PDB file ‘C:\WINDOWS\user32.pdb’ checked. (File not found)

Summary

2000 .data

4000 .reloc

2B000 .rsrc

54000 .text

Do you see the “PDB signature mismatch” line about halfway down this output?
That’s what happens when the user32.pdb file is out of sync with the user32.dll
image on your computer. It turns out this is easy to fix, mainly because Microsoft
engineers had this problem multiplied by about 100,000. They have thousands of
applications out there with sometimes hundreds of different builds. How could they
ever hope to get the debug symbols straight for all these things? They came up with a
neat solution called the Microsoft Symbol Server. It turns out you can use this server,
too. Here’s how to do it.

First, install the Microsoft Debugging Tools, which can be found at www.microsoft.
com/ddk/debugging. Use the SYMCHK utility to pull the latest symbol information

806 Chapter 23 n Debugging and Profiling Your Game

www.microsoft.com/ddk/debugging
www.microsoft.com/ddk/debugging

from Microsoft that matches a single EXE or DLL, or all of the ones in your Win-
dows directory. Don’t grab them all, though, if you can help it because you’ll be
checking and downloading hundreds of files. Here’s how to grab an individual file:

C:\Program Files\Debugging Tools for Windows>symchk

c:\windows\system32\user32.dll /s

SRV*c:\windows\symbols*http://msdl.microsoft.com/download/symbols

SYMCHK: FAILED files = 0

SYMCHK: PASSED + IGNORED files = 1

This crazy utility doesn’t actually put the new USER32.DLL where you asked. On my
system, it actually stuck it in C:\WINDOWS\Symbols\user32.pdb\3DB6D4ED1, which
Visual Studio will never find. The reason it does this is to keep all the USER32.PDB
files from different operating systems or different service packs apart. If you installed
the Windows symbols from MSDN into the default location, you’ll want to copy it
back into C:\Windows\Symbols\dll, where Visual Studio will find it.

You can also set up your own symbol server and even include symbols for your own
applications. To find out how to do this, go up to http://msdn.microsoft.com and
search for “Microsoft Symbol Server.”

Debugging Full-Screen Games

Back when Mike wrote the first edition of this book, multiple monitor setups were
rare. Now I walk around my workplace, and that’s all I see. If you can afford it, a
multiple monitor setup is the easiest way to debug full-screen applications, and it is
the only way to develop console applications.

As much work as the Microsoft DirectX team has put into its efforts to help you debug
full-screen games, this still doesn’t work very well if you have a single monitor setup.
This has nothing to do with the folks at DirectX; it has more to do with Visual Studio
not overriding exclusive mode of the display. One manifestation of the problem occurs
when your game hits a breakpoint while it’s in full-screen mode. The game stops cold,
but the computer doesn’t switch focus to the debugger. Basically, the only thing you can
do at this point is to tap the F5 button to resume execution of the game.

If your game runs exclusively in full-screen mode, your only solution is a multimo-
nitor setup. Every programmer should have two monitors: one for displaying the
game screen and the other for displaying the debugger. DirectX will use the primary
display for full-screen mode by default. It is possible to write code that enumerates
the display devices so your game can choose the best display. This is a good idea
because you can’t count on players to set up their display properties in the way that
benefits your game. If your game runs in windowed mode as well as full-screen
mode, you have a few more options, even in a single monitor setup.

Debugging Basics 807

http://msdn.microsoft.com

Deal with DirectX Lost Devices and Resources

Most of the bugs in full-screen mode happen as a result of switching from full-
screen to windowed mode or vice versa. This happens because DirectX features
are lost and need to be restored after the switch, something that is easily
forgotten by coders. Another problem that happens as a result of the switch is
that surfaces can have the wrong pixel format. There’s no guarantee that the
full-screen pixel depth and format are identical to that of windowed mode.
When the switch happens, lost or invalid surfaces refuse to draw and return
errors. Your program might handle these errors by exiting or attempting to
restore all the surfaces again. Of course, since the surface in question won’t
get restored in the first place, your game might get caught in a weird
obsessive and repetitive attempt to fix something that can’t be fixed.

It would be nice if you could simulate this problem entirely in windowed mode. To a
large extent, you can. If you’ve followed the advice of the DirectX SDK, you always
should check your display surfaces to see if they have been lost before you perform
any action on them. It turns out that if you change your display settings while your
game is running in windowed mode, you will essentially simulate the event of switch-
ing between windowed mode and full-screen mode. There are a few windows mes-
sages your game should handle to make this a little easier. You can see how to do
this in the GameCode4 source code. Just look for WM_ and you’ll see how all these
messages are handled. You’ll need to handle WM_DISPLAYCHANGE, the message that
is sent when the display changes, and WM_ACTIVATE, the message that signifies gain
and loss of focus.

Got Full-Screen Display Bugs?

About 90 percent of all full-screen display bugs can be found and solved with a
single monitor setup using windowed mode. Just start your game, change the
bit depth, and see what happens. The other 10 percent can only be solved with
a multimonitor setup or via remote debugging. It’s much easier to debug these
problems on a multimonitor rig, so make sure that at least one programmer
has two monitors.

Remote Debugging

One solution for debugging full-screen-only games is remote debugging. The game
runs on one computer and communicates to your development box via your net-
work. One interesting thing about this setup is that it is as close to a pristine runtime
environment as you can get. (Another way of saying it’s very close to the environ-
ment people have when actually playing the game.) I don’t know about you, but peo-
ple like my Mom don’t have a copy of Visual Studio lying around. The presence of a

808 Chapter 23 n Debugging and Profiling Your Game

debugger can subtly change the runtime environment, something that can make the
hardest, nastiest bugs very difficult to find.

Remote debugging is a pain, not because it’s hard to set up but because you have to
make sure that the most recent version of your game executable is easily available for
the remote machine. Most debuggers have a mechanism for remote debugging, and
Visual Studio is no exception.

To Copy or to Share, That Is the Question

Any wired or even a wireless network can allow you to share a directory on
your development machine and have the remote machine read your game’s
executable and data files right where you develop. If your network is really
slow or your game image is huge, it’s going to be faster to copy the entire
image of your game over to the test machine and run it from there. The only
problem with this solution is that you have to constantly copy files from your
development box over to the test machine, and it’s easy to get confused
regarding which files have been copied where. On a fast network, you can
also eliminate file copying by sharing your development directory so the
remote machine can directly access the most recent build.

On the remote system, you will run a little utility that serves as a communications
conduit for your debugger. This utility for Visual Studio is called MSVSMON.EXE.
Run a search for this file where you installed Visual Studio and copy the contents
of the entire directory to a shared folder on your primary development machine.
The utility runs on the remote machine, and a convenient way to get it there is to
place it in a shared spot on your development machine. MSVSMON.EXE requires
some of the DLLs in that directory, and it’s small enough to just copy the whole
thing to the remote machine.

Since the methods for running the remote debugger change with updates to Visual
Studio, the best way to learn how to do this is to go up to MSDN and search for
“Set Up Remote Debugging.” There are a few steps you need to follow. First, you
share or copy your application to the remote machine. Next, run MSVSMON.EXE
on the remote machine to start the remote debugging monitor (see Figure 23.2).
Back on your development machine, set your debugging properties to launch a
remote debugger and the remote debugging properties to find your remote machine.
Make sure that you have the right permissions or an administrator account on the
remote machine, or you won’t be able to connect. You’ll also need to open ports in
your firewall.

Debugging Basics 809

Once you get the connection madness out of the way, the remote machine is ready to
start your game. Start the debugging session on your development machine (F5 in
Visual Studio), and you’ll see your game initialize on the remote machine. When
you find a bug and rebuild your application, make sure that the remote machine
has access to the most recent bits.

Debugging Minidumps

UNIX programmers have had a special advantage over Windows programmers since the
beginning of time because when a UNIX program crashes, the operating system copies
the entire memory image of the crashed program to disk. This is called a core dump.

Needless to say, the core dump is usually quite large. UNIX debuggers can read the
core dump and allow a programmer to look at the state of the process at the moment
the crash occurred. Assuming the symbol files for the executable in question are
available, they can see the entire call stack and even find the contents of local vari-
ables. This doesn’t always expose the bug entirely, as some crashes can happen as a
result of a bug’s misbehavior in a completely separate part of the program, but this
information is much better than a tester just telling you the game crashed.

Windows dump files have been debuggable by a little-known Windows debugger
called WinDBG since the Windows NT days. These dump files were just as huge as
the UNIX core dumps. It didn’t matter very much, since most Windows developers
didn’t even know that WinDBG even existed—they always used the debugger in
Visual Studio.

Figure 23.2
Running MSVSMON with the /noauth switch.

810 Chapter 23 n Debugging and Profiling Your Game

Since Windows XP, applications don’t just crash and burn. A little dialog box
appears, asking you if you want to send the crash information to Microsoft. One but-
ton click and a few short seconds later, and the dialog thanks you for your coopera-
tion. What in the heck is going on here? Windows is sending a minidump of the
crashed application to Microsoft. A minidump, as the name implies, is a tiny version
of the UNIX-style core dump. You can generate one yourself by going into the
Debug menu under Visual Studio and selecting Save Dump As when your applica-
tion is sitting at a breakpoint. This tiny file stores enough information to give you
some clues about the crash.

For Windows geeks, it’s time to let you in on a little secret: Visual Studio can debug
these very same minidump files. Here’s how to reload it, because it isn’t exactly obvi-
ous. Double-click on the minidump file in Windows Explorer, and it will launch a
surprisingly blank-looking Visual Studio. The trick is to execute the minidump by
pressing F5. Visual Studio will prompt you to save a solution file. Go ahead and
save it alongside the minidump. Once you save, the last state of your debugged pro-
cess will appear before your very eyes.

Keep Your Source Tree and PDBs Forever

The minidump is really convenient, but there are a few gotchas to using
minidumps. First, you must ensure that the minidump file matches exactly
with the source code and symbol tables that were used to build the
executable that crashed. This means that for any version of the executable
that goes into your test department, you must save a complete build tree
with source code and PDB files or the minidump will be useless. Second, the
minidump’s SLN file might need a hint about where to find the symbols. If
the source window shows up with nothing but an assembler, it’s likely that
your source code tree can’t be located. Open the properties page, and you’ll
see only one item under the Configuration tree: Debugging. Set the Symbol
Path to the directory containing your PDB files, and you’ll see the source tree.

The only thing left out of this discussion is how to save your game-generated mini-
dump files when bad goes to worse. You’ll need to call the MiniDumpWriteDump()
in your general exception handler, which is one of the functions exported from
DBGHELP.DLL. This call will generate a DMP file. You can add more information
to the DMP file if you define a callback function that can insert more information
into the dump file, such as some specific game state information that might give a
programmer a leg up on investigating the crash.

Debugging Basics 811

Minidumps Rock

On The Sims Medieval, we ran multiple soak tests every night. This is where
one or more people ran the game and just let it simulate all night. If the
game crashed or threw an exception, a minidump file was automatically
generated. These files were all posted to a particular shared drive (along
with the PDB files) so that the tech director and lead engineer could sift
through them. We found and fixed a huge number of very difficult bugs
this way.

Another trick we used was that whenever the build machine created a new
build, it would save all the PDB files with it. If QA ever hit a nasty crash, they
could give us the dump file and tell us the build number. This allowed us to
pull the appropriate build (complete with PDBs) and load up the dump to see
exactly where they crashed.

There’s a simple and extremely useful class in the GameCode4 codebase called
MiniDumper that you can use to generate minidumps. You can find it in the
Dev\Source\GCC4\Debugging folder.

Graphics and Shader Debugging

DirectX, OpenGL, and consoles are all moving away from the fixed-function pipeline
and into the world of shaders. Shaders can be extremely complex and are a complete
nightmare to debug if you don’t have the proper tools. Fortunately, you have several
to choose from, depending on your particular hardware setup. Personally, I’m partial
to nVidia’s PerfHUD, and if you have an nVidia card, I suggest checking it out. If
you use DirectX, you can take a look at PIX, which comes with the DirectX SDK.

Since this book uses DirectX, let’s take a look at PIX. You can find it in the DirectX
SDK folder. When you start up the program, you see an uninteresting blank screen.
Go to File → New Experiment, and you will be presented with a number of options.
One of the more useful options is “A single-frame capture of Direct3D whenever F12
is pressed.” When you select this option and run your game through PIX, every time
you press F12, the data for that rendering call will be saved. Once you exit the pro-
gram, PIX will show you all the frames you captured, and you can walk through the
entire graphics pipeline call-by-call and watch the scene being built before your eyes.
You can examine the various D3D objects, inspect the shaders, and even see the
shader assembly code that your HLSL code produced.

This is only the beginning. In the Render tab, you can right-click anywhere and select
“Debug this pixel” to watch exactly how that single pixel color was built. You can see
every vertex shader, pixel shader, and Direct3D call that had any effect on that pixel
and see them applied in order. You can even debug the HLSL shader code directly!

812 Chapter 23 n Debugging and Profiling Your Game

Just click the “Debug Pixel (x, y)” link, and you’ll be inside the shader debugger. You
can single-step through the shader and watch exactly how it executed.

PIX is an extremely powerful tool. I strongly suggest you check out a few tutorials
and get acquainted with it if you plan to do any graphics programming at all.

Debugging Techniques

I think I could write an entire book about debugging. Certainly many people have,
and for good reason. You can’t be a good programmer unless you have at least pass-
able debugging skills. Imagine for a moment that you are a programmer who never
writes buggy code. Hey, stop laughing. I also want you to close your eyes and imag-
ine that you have absolutely no skill at debugging. Why would you? Your code is
always perfect! But the moment you are assigned to a team of programmers, your
days are numbered. If you can’t solve logic problems caused by another program-
mer’s code, you are useless to a team.

If you have good debugging skills, you’ll have much more fun programming. I’ve
always looked at really tough bugs as a puzzle. Computers are deterministic, and
they execute instructions without interpretation. That truth paves your way to solve
every bug if you devote enough patience and skill to the problem.

Debugging Is an Experiment

When you begin a bug hunt, one implication is that you know how to recognize a
properly running program. For any piece of code, you should be able to predict its
behavior just by carefully reading each line. Debugging a program requires that you
figure out why the behavior of the program is different than what you expect. Cer-
tainly the computer’s CPU isn’t surprised. It executes exactly what you instructed.
This delta is the cornerstone of debugging. As each instruction executes, the pro-
grammer tests the new state of the process against the predicted state by looking at
memory and the contents of variables. The moment the prediction is different than
the observed, the programmer has found the bug.

Clearly, you have to be able to predict the behavior of the system given certain sti-
muli, such as user input or a set of game data files. You should be able to repeat the
steps to watch the behavior on your machine or anyone else’s machine. When the
bug manifests itself as a divergence from nominal operation, you should be able to
use what you observed to locate the problem or at least narrow the source of the
problem. Repeat these steps enough times, and you’ll find the bug. What I’ve just
described is the method any scientist uses to perform experiments.

Debugging Techniques 813

It might seem odd to perform experiments on software, certainly odd when you
wrote the software in question. Scientists perform experiments on complicated phe-
nomena that they don’t understand in the hopes that they will achieve knowledge.
Why then must programmers perform experiments on systems that spawned from
their own minds? The problem is that even the simplest, most deterministic systems
can behave unpredictably given particular initial states. If you’ve never read Stephen
Wolfram’s book, A New Kind of Science, take a few months off and try to get through
it. This book makes some surprising observations about complex behavior of simple
systems. I’ll warn you that once you read it, you may begin to wonder about the
determinism of any system, no matter how simple!

Hypothesis, Experimentation, and Analysis

Debugging is a serious scientific endeavor. If you approach each debugging
task as an experiment, just like you were taught in high school, you’ll find
that debugging is more fun and less frustrating.

Complex and unpredicted behavior in computer programs requires setting up good
debugging experiments. If you fell asleep during the lecture in high school on the
scientific method, now’s a good time to refresh your memory. The examples listed
in Table 23.1 show you how to run a successful experiment, but there’s a lot more
to good debugging than blindly running through the experimental method.

The first step seems easy: Observe the behavior of the system. Unfortunately, this is not
so easy. The most experienced software testers I know do their very best to accurately
observe the behavior of a game as it breaks. They record what keys they pressed, what
options they turned off, and as best they can exactly what they did. In many cases, they
leave out something innocuous. One of the first things I do when I don’t observe
the same problem a tester observed is go down to the test lab and watch them
reproduce the bug myself. Sometimes, I’ll notice a little wiggle of the mouse or the fact
that they’re running in full-screen mode and have a “Eureka” moment.

Bugs in Games Are Extremely Tricky to Find

Unlike most software systems, games rely not only on random numbers but also
change vast amounts of data extremely quickly in seemingly unpredictable ways.
The difficulty in finding game bugs lies in the simple fact that games run so
much code so quickly that it’s easy for a bug to appear to come from any of
the many subsystems that manipulate the game state.

814 Chapter 23 n Debugging and Profiling Your Game

Table 23.1 How to Run a Successful Debugging Experiment

Scientific Method as
It Applies to Software
Systems Example #1 Example #2

Step 1: Observe the
behavior of a computer
game.

Observation: A call to
OpenFile() always fails.

Observation: The game
crashes on the low-end
machine when it tries to
initialize.

Step 2: Attempt to explain
the behavior that is
consistent with your
observations and your
knowledge of the system.

Hypothesis: The input
parameters to OpenFile()

are incorrect, specifically
the filename.

Hypothesis: The game is
crashing because it is
running out of video
memory.

Step 3: Use your
explanation to make
predictions.

Predictions: If the proper
filename is used, OpenFile()
will execute successfully.

Predictions: If the amount
of video memory were
increased, the game would
initialize properly. The
game will crash when the
original amount of video
memory is restored.

Step 4: Test your predictions
by performing experiments
or making additional
observations. Modify the
hypothesis and predictions
based on the results.

Experiment: Send the
fully qualified path name
of the file and try
OpenFile() again.

Experiment: Switch the
current video card with
others that have more
memory.

Step 5: Repeat steps three
and four until there is no
discrepancy between your
explanations and the
observations.

Results: OpenFile()
executed successfully
with a fully qualified
path name.

Results: The game properly
initializes with a better
video card installed.

Step 6: Explain the results. Explanation: The current
working directory is
different than the
location of the file in
question. The path name
must be fully qualified.

Explanation: Video memory
requirements have grown
beyond expectations.

Debugging Techniques 815

The second step, attempt to explain the behavior, can be pretty hard if you don’t
know the software like the back of your hand. It’s probably safe to say that you
should know the software, the operating system, the CPU, video hardware, and
audio hardware pretty well, too. Sound tough? It is. It also helps to have a few years
of game programming under your belt so that you’ve been exposed to the wacky
behavior of broken games. This is probably one of the most frustrating aspects of
programming in general: A lack of understanding and experience can leave you shak-
ing your head in dismay when you see your game blow up in your face. Everybody
gets through it, though, usually with the help of, dare I say, more experienced
programmers.

Steps three through five represent the classic experimental phase of debugging. Your
explanation will usually inspire some sort of test, input modification, or code change
that should have predictable results. There’s an important trick to this rinse and
repeat cycle: Take detailed notes of everything you do. Inevitably, your notes will
come in handy as you realize that you’re chasing a dead-end hypothesis. Your notes
should send you back to the point where your predictions were accurate. This will
put you back on track.

Change One Thing at a Time—and Don’t Rewrite Anything—Yet

Another critical aspect to the experiment-driven debugging process is that
you should try to limit your changes to one small thing at a time. If you
change too much during one experiment cycle, you won’t be able to point
to the exact change that fixed the problem. Change for change’s sake is a
horrible motivation to modify buggy code. Resist that temptation.
Sometimes there is a desire to rip a subsystem out altogether and replace it
without truly understanding the nature of the problem. This impulse is
especially strong when the subsystem in question was written by a
programmer who has less than, shall we say, stellar design and coding
skills. The effect of this midnight remodeling is usually negative because it
isn’t guaranteed to fix the bug, and you’ll demoralize your teammate at the
same time.

Assuming that you follow Table 23.1, you’ll eventually arrive at the source of the
problem. If you’re lucky, the bug can be fixed with a simple tweak of the code. Per-
haps a loop exited too soon or a special case wasn’t handled properly. You make your
mod, rebuild the game, and perform your experiments one last time. Congratula-
tions, your bug is fixed. Not every programmer is so lucky, and certainly I haven’t
been. Some bugs, once exposed in their full glory, tell you things about your game
that you don’t want to hear. I’ve seen bugs that told us we had to completely redesign
the graphics system we were using. Other bugs enjoy conveying the message that

816 Chapter 23 n Debugging and Profiling Your Game

some version of Windows can’t be supported without sweeping modifications. Others
make you wonder how the game ever worked in the first place.

If this ever happens to you, and I’m sure it will, I feel your pain. Grab some caffeine
and your sleeping bag; it’s going to be a long week.

Reproducing the Bug

A prerequisite of observing the behavior of a broken game is reproducing the bug.
I’ve seen bug reports that say things like, “I was doing so-and-so, and the game
crashed. I couldn’t get it to happen again.” In light of an overwhelming number of
reports of this kind, you might be able to figure out what’s going on. Alone, these
reports are nearly useless. You cannot fix what you cannot observe. After all, if you
can’t observe the broken system with certainty, how can you be sure you fixed the
problem? You can’t.

Most bugs can be reproduced easily by following a specific set of steps, usually
observed and recorded by a tester. It’s important that each step, however minor, is
recorded from the moment the game is initialized. Anything missing might be
important. Also, the state of the machine, including installed hardware and software,
might be crucial to reproducing the bug’s behavior.

Reduce Complexity to Increase Predictability

Bugs are sometimes tough to nail down. They can be intermittent or disappear
altogether as you attempt to create a specific series of steps that will always
result in a manifestation of the problem. This can be explained in two ways:
Either an important step or initial state has been left out, or the bug cannot
be reproduced because the system being tested is too complex to be
deterministic. Even if the bug can be reproduced exactly, it might be difficult
to create an explanation of the problem. In both of these cases, you must
find a way to reduce the complexity of the system; only then can the problem
domain become small enough to understand.

Eliminating Complexity

A bug can only manifest itself if the code that contains it is executed. Eliminate the
buggy code, and the bug will disappear. By the process of elimination, you can nar-
row your search over a series of steps to the exact line of code that is causing the
problem. You can disable subsystems in your game, one by one. One of the first
things to try is to disable the entire main loop and have your game initialize and
exit without doing anything else. This is a good trick if the bug you’re hunting is a

Debugging Techniques 817

memory leak. If the bug goes away, you can be sure that it only exists in the main
loop somewhere.

You should be able to creatively disable every major system at a time, such as anima-
tion, AI, and sound. Once these systems are stubbed out, your game will probably act
pretty strangely, and you don’t want this strangeness to be interpreted as the bug you
are looking for. You should have a pretty complete understanding of your game
before you embark on excising large pieces of it from execution.

If your game has an options menu for sound, animation, and other subsystems, you
can use these as debugging tools without having to resort to changing code. Turn
everything off via your game options and try to reproduce the bug. Whether the
bug continues to exist or disappears, the information you’ll gain from the experiment
is always valuable. As always, keep good records of what you try and try to change
only one option at a time.

You can take this tactic to extremes and perform a binary search of sorts to locate a
bug. Stub out half of your subsystems and see if the bug manifests itself. If it does,
stub out half of what remains and repeat the experiment. Even in a large code base,
you’ll quickly locate the bug.

If the bug eludes this process, it might depend on the memory map of your applica-
tion. Change the memory contents of your game, and the bug will change, too.
Because this might be true, it’s a good idea to stub out subsystems via a simple Bool-
ean value, but leave their code and global data in place as much as possible. This is
another example of making small changes rather than large ones.

Setting the Next Statement

Most debuggers give you the power to set the next statement to be executed, which is
equivalent to setting the instruction pointer directly. This can be useful if you know
what you are doing, but it can be a source of mayhem when applied indiscriminately.
You might want to do this for a few reasons. You may want to skip some statements
or rerun a section of code again with different parameters as a part of a debugging
experiment. You might also be debugging through some assembler, and you want to
avoid calling into other pieces of code.

You can set the next statement in Visual Studio by right-clicking on the target state-
ment and selecting Set Next Statement from the pop-up menu. In other debuggers,
you can bring up a register window and set the EIP register, also known as the
instruction pointer, to the address of the target statement, which you can usually
find by showing the disassembly window. You must be mindful of the code that
you are skipping and the current state of your process. When you set the instruction

818 Chapter 23 n Debugging and Profiling Your Game

pointer, it is equivalent to executing an assembly level JMP statement, which simply
moves the execution path to a different statement.

In C++, objects can be declared inside local scopes such as for loops. In normal exe-
cution, these objects are destroyed when execution passes out of that scope. The C++
compiler inserts the appropriate code to do this, and you can’t see it unless you look
at a disassembly window. What do you suppose happens to C++ objects that go out
of scope if you skip important lines of code? Let’s look at an example:

class MyClass

{

public:

int num;

char* str;

MyClass(int const n)

{

num = n;

str = new char[128];

sprintf(str, “%d ”, n);

}

~MyClass() { delete str; }

};

void SetTheIP()

{

char buffer[2048];

buffer[0] = 0;

for (int a = 0; a < 128; ++a)

{

MyClass m(a);

strcat(buffer, m.str); // START HERE...

}

} // JUMP TO HERE...

Normally, the MyClass object is created and destroyed once for each run of the for
loop. If you jump out of the loop using Set Next Statement, the destructor for
MyClass never runs, leaking memory. The same thing would happen if you jumped
backward to the line that initializes the buffer variable. The MyClass object in scope
won’t be destroyed properly.

Debugging Techniques 819

Luckily, you don’t have to worry about the stack pointer as long as you do all your
jumping around within one function. Local scopes are creations of the compiler; they
don’t actually have stack frames. That’s a good thing, because setting the next state-
ment to a completely different function is sure to cause havoc with the stack. If you
want to skip the rest of the current function and keep it from executing, just right-
click on the last closing brace of the function and set the next statement to that point.
The stack frame will be kept intact.

Assembly Level Debugging

Inevitably, you’ll get to debug through some assembly code. You won’t have source
code or even symbols for every component of your application, so you should under-
stand a little about the assembly window. Here’s the assembly for the SetTheIP()

function we just talked about. Let’s look at the debug version of this code:

void SetTheIP()

{

00411A10 55 push ebp

00411A11 8B EC mov ebp,esp

00411A13 81 EC E8 08 00 00 sub esp,8E8h

00411A19 53 push ebx

00411A1A 56 push esi

00411A1B 57 push edi

00411A1C 8D BD 18 F7 FF FF lea edi,[ebp-8E8h]

00411A22 B9 3A 02 00 00 mov ecx,23Ah

00411A27 B8 CC CC CC CC mov eax,0CCCCCCCCh

00411A2C F3 AB rep stos dword ptr [edi]

char buffer[2048];

buffer[0] = 0;

00411A2E C6 85 F8 F7 FF FF 00 mov byte ptr [buffer],0

for (int a=0; a<128; ++a)

00411A35 C7 85 EC F7 FF FF 00 00 00 00 mov dword ptr [a],0

00411A3F EB 0F jmp SetTheIP+40h (411A50h)

00411A41 8B 85 EC F7 FF FF mov eax,dword ptr [a]

00411A47 83 C0 01 add eax,1

00411A4A 89 85 EC F7 FF FF mov dword ptr [a],eax

00411A50 81 BD EC F7 FF FF 80 00 00 00 cmp dword ptr [a],80h

00411A5A 7D 35 jge SetTheIP+81h (411A91h)

{

MyClass m(a);

00411A5C 8B 85 EC F7 FF FF mov eax,dword ptr [a]

00411A62 50 push eax

820 Chapter 23 n Debugging and Profiling Your Game

00411A63 8D 8D DC F7 FF FF lea ecx,[m]

00411A69 E8 9C FA FF FF call MyClass::MyClass (41150Ah)

strcat(buffer, m.string);

00411A6E 8B 85 E0 F7 FF FF mov eax,dword ptr [ebp-820h]

00411A74 50 push eax

00411A75 8D 8D F8 F7 FF FF lea ecx,[buffer]

00411A7B 51 push ecx

00411A7C E8 46 F7 FF FF call @ILT+450(_strcat) (4111C7h)

00411A81 83 C4 08 add esp,8

}

00411A84 8D 8D DC F7 FF FF lea ecx,[m]

00411A8A E8 76 FA FF FF call MyClass::~MyClass (411505h)

00411A8F EB B0 jmp SetTheIP+31h (411A41h)

}

00411A91 52 push edx

00411A92 8B CD mov ecx,ebp

00411A94 50 push eax

00411A95 8D 15 B6 1A 41 00 lea edx,[(411AB6h)]

00411A9B E8 FA F6 FF FF call @ILT+405(@_RTC_CheckStackVars@8) (41119Ah)

00411AA0 58 pop eax

00411AA1 5A pop edx

00411AA2 5F pop edi

00411AA3 5E pop esi

00411AA4 5B pop ebx

00411AA5 81 C4 E8 08 00 00 add esp,8E8h

00411AAB 3B EC cmp ebp,esp

00411AAD E8 F0 F8 FF FF call @ILT+925(__RTC_CheckEsp) (4113A2h)

00411AB2 8B E5 mov esp,ebp

00411AB4 5D pop ebp

00411AB5 C3 ret

One thing you’ll realize immediately is that the disassembly window can be a big help
in beginning to understand what assembly language is all about. I wish I had more
time to go over each statement, addressing modes, and whatnot, but there are better
resources for that anyway.

Notice first the structure of the disassembly window. The column of numbers on the
left-hand side of the window is the memory address of each instruction. The list of
one to ten hexadecimal codes that follows each address represents the machine code
bytes. Notice that the address of each line coincides with the number of machine code
bytes. The more readable instruction on the far right is the assembler statement. Each
group of assembler statements is preceded by the C++ statement that they compiled

Debugging Techniques 821

from, if the source is available. You can see that even a close brace can have assembly
instructions, usually to return to the calling function or to destroy a C++ object.

The first lines of assembly, pushing various things onto the stack and messing with
EBP and ESP, establish a local stack frame. The value 8E8h is the size of the stack
frame, which is 2,280 bytes.

Check out the assembly code for the for loop. The beginning of the loop has seven
lines of assembly code. The first two initialize the loop variable and jump over the
lines that increment the loop variable. Skip over the guts of the loop for now and
check out the last three assembly lines. Collectively, they call the destructor for the
MyClass object and skip back to the beginning part of the loop that increments
the loop variable and performs the exit comparison. If you’ve ever wondered
why the debugger always skips back to the beginning of for loops when the exit con-
dition is met, there’s your answer. The exit comparison happens at the beginning.

The inside of the loop has two C++ statements: one to construct the MyClass object
and another to call strcat(). Notice the assembly code that makes these calls work.
In both cases, values are pushed onto the stack by the calling routine. The values are
pushed from right to left, that is to say that the last variable in a function call is
pushed first. What this means for you is that you should be mindful of setting the
next statement. If you want to skip a call, make sure that you skip any assembly
statements that push values onto the stack, or your program will lose its mind.

One last thing: Look at all the code that follows the closing brace of SetTheIP(). There
are two calls here to CheckStackVars() and CheckESP(). What the heck are those
things? These are two functions inserted into the exit code of every function in debug
builds that perform sanity checks on the integrity of the stack. You can perform a little
experiment to see how these things work. Put a breakpoint on the very first line of Set-
TheIP(), skip over all the stack frame homework, and set the next statement to the one
where the buffer gets initialized. The program will run fine until the sanity check code
runs. You’ll get a dialog box telling you that your stack has been corrupted.

It’s nice to know that this check will keep you from chasing ghosts. If you mistakenly
screw up the stack frame by moving the instruction pointer around, these sanity
checks will catch the problem.

Peppering the Code

If you have an elusive bug that corrupts a data structure or even the memory system,
you can hunt it down with a check routine. This assumes that the corruption is
somewhat deterministic, and you can write a bit of code to see if it exists. Write
this function and begin placing this code in strategic points throughout your game.

822 Chapter 23 n Debugging and Profiling Your Game

A good place to start this check is in your main loop and at the top and bottom of
major components like your resource cache, draw code, AI, or sound manager. Place
the check at the top and bottom to ensure that you can pinpoint a body of code that
caused the corruption. If a check succeeds before a body of code and fails after it, you
can begin to drill down into the system, placing more checks, until you nail the exact
source of the problem. Here’s an example:

void BigBuggySubsystem()

{

BuggyObject crasher;

CheckForTheBug(“Enter BigBuggySubSystem.”);

DoSomething();

CheckForTheBug(“Calling DoSomethingElse”);

DoSomethingElse();

CheckForTheBug(“Calling CorruptEverything”);

CorruptEverything();

CheckForTheBug(“Leave BigBuggySubSystem”);

}

In this example, CheckForTheBug() is a bit of code that will detect the corruption,
and the other function calls are subsystems of the BigBuggySubsystem. It’s a good
idea to put a text string in your checking code so that it’s quick and easy to identify
the corruption location, even if the caller’s stack is trashed.

Since there’s plenty of C++ code that runs as a result of exiting a local scope, don’t
fret if your checking function finds a corruption on entry. You can target your search
inside the destructors of any C++ objects used inside the previous scope. If the
destructor for the BuggyObject code was wreaking some havoc, it won’t be caught
by your last call to your checking function. You wouldn’t notice it until some other
function called your checking code.

Draw Debug Information

This might seem incredibly obvious, but since I forget it all the time myself, I figure it
deserves mentioning. If you are having trouble with graphics- or physics-related bugs,
it can be invaluable to draw additional information on your screen such as wire-
frames, direction vectors, or coordinate axes. This is especially true for 3D games,
but any game can find visual debug helpers useful. Here are a few ideas:

n Hot areas: If you are having trouble with user interface code, you can draw
rectangles around your controls and change their color when they go active.
You’ll be able to see why one control is being activated when you didn’t
expect it.

Debugging Techniques 823

n Memory/frame rate: In debug versions of your game, it can be very useful to
draw current memory and frame rate information every few seconds. Don’t do it
every frame because you can’t really see things that fast, and it will affect your
frame rate.

n Coordinate axes: A classic problem with 3D games is that the artist will create
3D models in the wrong coordinate system. Draw some additional debug
geometry that shows the positive X-axis in red, the positive Y-axis in green, and
the positive Z-axis in blue. You’ll always know which way is up!

n Wireframe: You can apply wireframe drawing to collision geometry to see if
they match up properly. A classic problem in 3D games is when these geome-
tries are out of sync, and drawing the collision geometry in wireframe can help
you figure out what’s going on.

n Targets: If you have AI routines that select targets or destinations, it can be
useful to draw them explicitly by using lines. Whether your game is 3D or 2D,
line drawing can give you information about where the targets are. Use color
information to convey additional information such as friend or foe.

Every 3D Game Needs a Test Object

In 3D games, it’s a good idea to construct a special test object that is asymmetrical on all three
coordinate axes. Your game renderer and physics system can easily display things like cubes in a
completely wrong way, but they will look right because a cube looks the same from many different
angles. A good example of an asymmetrical object is a shoe, since there’s no way you can slice it and
get a mirror image from one side to another. In your 3D game, build something with similar properties,
but make sure the shape is so asymmetrical that it will be obvious if any errors pop up.

Lint and Other Code Analyzers

These tools can be incredibly useful. Their best application is one where code is being
checked often, perhaps each night. Dangerous bits of code are fixed as they are
found, so they don’t get the chance to exist in the system for any length of time. If
you don’t have Lint, make sure that you ramp up the warning level of the compiler as
high as you can stand it. It will be able to make quite a few checks for you and catch
problems as they happen.

A less useful approach involves using code analysis late in your project with the hope
that it will pinpoint a bug. You’ll probably be inundated with warnings and errors,
any of which could be perfectly benign for your game. The reason this isn’t as useful
at the end of your project is that you may have to make sweeping changes to your
code to address every issue. This is not wise. It is much more likely that sweeping
changes will create a vast set of additional issues, the aggregate of which could be

824 Chapter 23 n Debugging and Profiling Your Game

worse than the original problem. It’s best to perform these checks often and through-
out the life of your project.

Nu-Mega’s BoundsChecker and Runtime Analyzers

BoundsChecker is a great program, and every team should have at least one copy. In
some configurations, it can run so slowly that your game will take three hours to
display a single screen. Rather, use a targeted approach and filter out as many checks
as you can and leave only the checks that will trap your problem.

Disappearing Bugs

The really nasty bug seems to actually possess intelligence, as well as awareness of
itself and your attempts to destroy it. Just as you get close, the bug changes, and it
can’t be reproduced using your previously observed steps. It’s likely that recent
changes such as adding checking code have altered the memory map of your process.
The bug might be corrupting memory that is simply unused. This is where your
notes will really come in handy. It’s time to backtrack, remove your recent changes
one at a time, and repeat until the bug reappears. Begin again, but try a different
approach in the hopes you can get closer.

Bugs Fixing Themselves?

Another version of the disappearing bug is one where a known failure simply
disappears without any programmer actually addressing it. The bug might have
been related to another issue that someone fixed—you hope. The safest thing to
do is to analyze recent changes and attempt to perform an autopsy of sorts.
Given the recent fixes, you might even be able to re-create the original
conditions and code that made the bug happen, apply the fix again, and prove
beyond a shadow of a doubt that a particular fix addressed more than one bug.

What’s more likely is that the number of changes to the code will
preclude the possibility of this examination, especially on a large team. Then you have
a decision to make: Is the bug severe enough to justify a targeted search through all
the changes to prove the bug is truly fixed? It depends on the seriousness of the bug.

Tweaking Values

A classic problem in programming is getting a constant value “just right.” This is
usually the case for things such as the placement of a user interface object like a but-
ton or perhaps the velocity value of a particle stream. While you are experimenting
with the value, put it in a static variable in your code:

void MyWeirdFountain::Update()

{

Debugging Techniques 825

static float dbgVelocity = 2.74f;

SetParticleVelocity(dbgVelocity);

// More code would follow....

}

It then becomes a trivial thing to set a breakpoint on the call to SetParticle

Velocity() to let you play with the value of dbgVelocity in real time. This is
much faster than recompiling and even faster than making the value data driven,
since you won’t even have to reload the game data.

Once you find the values you’re looking for, you can take the time to put them in a
data file.

Caveman Debugging

If you can’t use a debugger, you get to do something I call caveman debugging. You
might be curious as to why you wouldn’t be able to use a debugger, and it’s not
because you work for someone so cheap that they won’t buy one. Sometimes you’ll
see problems only in the release build of the application. These problems usually
result from uninitialized variables or unexpected or even incorrect code generation.
The problem simply goes away in the debug version. You might also be debugging
a server application that fails intermittently, perhaps after hours of running nomi-
nally. It’s useless to attempt debugging in that case.

Logging Is Your Friend

Make good use of stderr if you program in UNIX or OutputDebugString() if you program under
Windows. These are your first and best tools for caveman debugging. Most games have a relatively
complex logging system that uses a number of different logging and caveman techniques for displaying
debug information. You should do the same.

In both cases, you should resort to the caveman method. You’ll write extra code to
display variables or other important information on the screen, in the output win-
dow, or in a permanent log file. As the code runs, you’ll watch the output for signs
of misbehavior, or you’ll pore over the log file to try to discern the nature of the bug.
This is a slow process and takes a great deal of patience, but if you can’t use a
debugger, this method will work.

Being Hypnotized by the Ultima Online Login Servers…

When I was on Ultima Online, one of my tasks was to write the UO login servers. These servers were the
main point of connection for the Linux game servers and the SQL server, so login was only a small
portion of what the software actually did. An array of statistical information flowed from the game

826 Chapter 23 n Debugging and Profiling Your Game

servers, was collated in the login server, and was written to a SQL database.
The EA executives liked pretty charts and graphs, and we gave them what they
wanted. Anyway, the login process was a Win32 console application, and to
help me understand what was going on, I printed debug messages for logins,
statistics data, and anything else that looked reasonable. When the login
servers were running, these messages were scrolling by so fast that I certainly
couldn’t read them, but I could feel them. Imagine me sitting in the UO server
room, staring blankly at three login server screens. I could tell just by the shape
of the text flowing by whether or not a large number of logins were failing or a
UO server was disconnected. It was like looking at the Matrix in its raw form.

Debugging with Music

The best caveman debugging solution I ever saw was one that used the PC
speaker. Herman was a programmer who worked on Ultima V through
Ultima IX, and one of his talents was perfect pitch. He could tell you the
difference between a B and a B flat and get it right every time. He used this
to his advantage when he was searching for the nastiest crasher bugs of them
all—they didn’t even allow the debugger window to pop up. He wrote a
special checker program that output specific tones through the PC speaker
and peppered the code with these checks. If you walked into his office while
his spiced-up version of the game was running, it sounded a little like raw
modem noise, until the game crashed. Because the PC speaker wasn’t
dependent on the CPU, it would remain emitting the tone of his last check.
“Hmm…that’s a D,” he would say, and zero in on the line of code that
caused the crash.

When All Else Fails

So you tried everything and hours later you are no closer to solving the problem than
when you started. Your boss is probably making excuses to pass by your office and
ask you cheerily, “How’s it going?” You suppress the urge to jump up and make an
example of his annoying behavior, but you still have no idea what to do. Here are a
few last resort ideas.

First, go find another programmer and explain your problem. It doesn’t really matter
if you can find John Carmack or the greenest guy in your group, just find someone.
Walk them through each step, explaining the behavior of the bug and each hypothe-
sis you had—even if it failed. Talk about your debugging experiments and step
through the last one with him (or her) watching over your shoulder. For some odd
reason, you sometimes find the solution to your problem without that person ever
even speaking a single word. It will just come as if it were handed to you by the

Debugging Techniques 827

universe itself. I’ve never been able to explain that phenomenon, but it’s real. This
will solve half of the unsolvable bugs.

Another solution is static code analysis. You should have enough observations to
guess at what is going on, but you just can’t figure out how the pieces of the puzzle
fit together. Print out a suspect section of code on paper—the flat stuff you find in
copy machines—and take it away from your desk. Study it and ask yourself how the
code could fail. Getting away from your computer and the debugger helps to open
your mind a bit, and it removes your dependency on them.

If you get to this point and you still haven’t solved the problem, you’ve probably been
at it for a few solid hours, if not all night. It’s time to walk away—not from the prob-
lem, but from your computer. Just leave. Do something else to get your mind off the
problem. Drive home. Eat dinner. Introduce yourself to your family. Take a shower.

The last one is particularly useful for me, not that I need any of you to visualize me
in the shower. The combination of me being away from the office and in a relaxing
environment frees a portion of my mind to continue working on the problem with-
out adding to my stress level. Sometimes a new approach to the problem or, even
better, a solution will simply deposit itself in my consciousness. That odd event has
never happened to me when I’m under pressure sitting at the computer. It’s scary
when you’re at dinner, it dawns on you suddenly, and you’ve solved a bug just by
getting away from it.

Building an Error Logging System

Every game needs to have a robust logging system. You can only go so far with the
assert() macro from the standard C libraries. With the sheer size of games, you
need the ability to define different levels of errors. Some errors are more important
than others, and you want the ability to define different severities for them. You also
need a way to disable certain errors altogether. Finally, these errors should be ignored
in the release version of the game.

Logging informational messages is another thing we’ll need. This is how we’ll pepper
the code to find out what’s happening inside a particular system. This logging will be
based on tags; you can turn certain tags on or off, which enables or disables logs for
that tag. For example, the event system may have its own tag. Enabling this tag will
allow you to see what’s happening inside the event system as it updates without hav-
ing to step through breakpoints.

For this logging system, there will be three basic levels of logging. The first is error,
the second is warning, and the third is info. Logs at the error level will display a dia-
log box showing the error string along with the function name, filename, and line

828 Chapter 23 n Debugging and Profiling Your Game

number. There will be three buttons; Abort, Retry, and Ignore. Choosing Abort will
cause the program to break into the debugger using the hard-coded breakpoint trick
you saw previously in this chapter. Retry will cause the program to continue as if
nothing happened. If this error is not recoverable, your game will probably crash.
Choosing Ignore will cause the program to continue as well, but it will also flag that
error as disabled. If that line is hit again, the error will not trigger. This is extremely
useful for asserts and errors that are placed inside loops. Figure 23.3 shows what the
error dialog looks like.

Warnings are less urgent errors. They shouldn’t be ignored, but they aren’t as dire as
errors. A warning will log all the same information as an error, but it doesn’t display
a dialog box. Instead, it displays in the output window in Visual Studio.

Log messages at Info level are also displayed in the output window, but they don’t
include any of the extra debug information like function, filename, and line number.
Info messages just show the message text.

Every log is tied to a tag that determines the behavior of any messages logged under
that tag. There are a few hard-coded tags, but most are user defined. The hard-coded
tags are “ERROR,” “WARNING,” and “INFO,” which are used when throwing an
error, a warning, or a generic info message. You can log to any other tag as well
and set up flags for how those logs should be handled by the system. We’ll see how
that works later in this chapter.

With this design, we can now create a simple interface.

namespace Logger

{

class ErrorMessenger

{

Figure 23.3
Debug error message.

Building an Error Logging System 829

bool m_enabled;

public:

ErrorMessenger(void);

void Show(const std::string& errorMessage, bool isFatal,

const char* funcName, const char* sourceFile,

unsigned int lineNum);

};

// construction; must be called at the beginning and end of the program

void Init(const char* loggingConfigFilename);

void Destroy(void);

// logging functions

void Log(const std::string& tag, const std::string& message,

const char* funcName, const char* sourceFile,

unsigned int lineNum);

void SetDisplayFlags(const std::string& tag, unsigned char flags);

}

Namespace > Class with Static Functions

Notice the namespace above and how it’s essentially acting like a class. In fact,
this could have been written as a class with all static members, but using a
namespace allows for several advantages. First, you have the ability to break
up the namespace among multiple different files, similar to partial classes in C#
and other languages. Second, since you can alias one namespace to another,
you can set up conditionally compiled classes in a cleaner manner.

This namespace acts as the public interface for the logging system. Under the covers,
there is another class called LogMgr that handles all the internals of actually logging.
This class lives in Dev\Source\GCC4\Debugging\Logger.cpp and is not accessed outside
this system. You can think of it as a private class. We’ll examine this class a little later.

To start using this system, you must call the Logger::Init() function. This instanti-
ates the internal LogMgr singleton class and initializes it. Logger::Destroy() must
be called before the program exits to ensure this internal class is destroyed.

There are two basic ways to display a log with this system. The first is to instantiate a
Logger::ErrorMessenger object and call the Show() function. This is used for
error logs and will display the error message in the dialog box you saw in Figure
23.3. If the user presses the Ignore button, it will automatically set the m_enabled

variable to false, and further calls to Show() will not do anything. Here’s an exam-
ple of how that might work:

if (somethingBadHappened)

{

830 Chapter 23 n Debugging and Profiling Your Game

static Logger::ErrorMessenger* pErrorMessenger =

GCC_NEW Logger::ErrorMessenger;

pErrorMessenger->Show(“Something bad happened”, true,

__FUNCTION__, __FILE__, __LINE__);

}

In practice, you don’t ever type this out; rather, you put the whole thing in a macro.
I’ll show you how to do this later on.

The second way to log something is to call Logger::Log(). This will display the
message according to the rules of that tag. The SetDisplayFlags() function is
used to set those rules. Currently, the display flags are defined as follows:

const unsigned char LOGFLAG_WRITE_TO_LOG_FILE = 1 << 0;

const unsigned char LOGFLAG_WRITE_TO_DEBUGGER = 1 << 1;

If LOGFLAG_WRITE_TO_LOG_FILE is set for a given tag, the text is logged to a
log file. If LOGFILE_WRITE_TO_DEBUGGER is set, the log is written to the output
window in Visual Studio. These flags can be changed at any time by calling the
SetDisplayFlags() function, but it’s usually more convenient to set up a config-
uration file. That’s what the parameter of Logger::Init() is for; you can pass it an
XML file that defines the initial flags set for each tag. The default for most tags is 0,
which means that tags will not display by default. The exception is for “ERROR,”
“WARNING,” and “INFO,” which are all set to display in the debugger by default.

Here’s a sample logging configuration file:

<Logging>

<Log tag=“Script” debugger=“1” file=“0”/>

<Log tag=“Lua” debugger=“1” file=“0”/>

</Logging>

This configuration file will turn on debug logging for anything tagged with “Script”
or “Lua.” Such logs will be sent to the output window in Visual Studio.

Now that you have an understanding of the logging system interface, let’s dig into the
internals of it a bit. Here is the LogMgr class I promised to show you:

class LogMgr

{

public:

enum ErrorDialogResult

{

LOGMGR_ERROR_ABORT,

LOGMGR_ERROR_RETRY,

LOGMGR_ERROR_IGNORE

};

Building an Error Logging System 831

typedef std::map<string, unsigned char> Tags;
typedef std::list<Logger::ErrorMessenger*> ErrorMessengerList;

Tags m_tags;

ErrorMessengerList m_errorMessengers;

// thread safety

CriticalSection m_tagCriticalSection;

CriticalSection m_messengerCriticalSection;

public:

// construction

LogMgr(void);

~LogMgr(void);

void Init(const char* loggingConfigFilename);

// logs

void Log(const string& tag, const string& message, const char* funcName,

const char* sourceFile, unsigned int lineNum);

void SetDisplayFlags(const std::string& tag, unsigned char flags);

// error messengers

void AddErrorMessenger(Logger::ErrorMessenger* pMessenger);

LogMgr::ErrorDialogResult Error(const std::string& errorMessage,

bool isFatal, const char* funcName,

const char* sourceFile,

unsigned int lineNum);

private:

// log helpers

void OutputFinalBufferToLogs(const string& finalBuffer,

unsigned char flags);

void WriteToLogFile(const string& data);

void GetOutputBuffer(std::string& outOutputBuffer, const string& tag,

const string& message, const char* funcName,

const char* sourceFile, unsigned int lineNum);

};

At the top is the ErrorDialogResult enum, which defines the three possible
results of an error dialog box. The m_tags variable is a map of tag strings to display
flags. Whenever a log is triggered, this map is queried to find out the rules for dis-
playing it. The m_errorMessengers variable is a list of all Logger::ErrorMes-
senger objects. Whenever an ErrorMessenger object is created, it’s added to this
list so that it can be destroyed when the program exits. The next two variables are
critical sections needed to ensure that the logging system is thread safe.

LogMgr::Log() is called from Logger::Log(), which is just a wrapper function. It’s
responsible for building up the final output string, figuring out where it needs to go by

832 Chapter 23 n Debugging and Profiling Your Game

querying the m_tags map, and sending it to those places. LogMgr::SetDisplay-
Flags() finds the tag in the m_tags map and updates the display flags. If there is
no tag in the map, it creates one. Logger::SetDisplayFlags() is just a wrapper
for this function.

LogMgr::AddErrorMessenger() is called whenever a new ErrorMessenger

object is created. It simply adds the ErrorMessenger object to the m_error

Messengers list. The LogMgr::Error() function is called from the Error

Messenger::Show() function to display the appropriate dialog box. The return
value of this function is used by ErrorMessenger::Show() to update the
m_enabled flag, which determines whether or not the dialog is displayed next time.

The final three functions are private helpers.

This logging system is pretty neat, but it’s missing two key things. First, it’s not very
easy to use. The code listing I showed you previously for using the ErrorMessen-

ger class is a great example. Something like that really should be a single line of
code. Second, and perhaps more importantly, there’s no easy way to get rid of these
errors and logs in release mode. Fortunately, there’s a simple solution that will solve
both of these issues. All you need to do is create a few macros to wrap the public
interface of the logging system. These macros can encapsulate the coding overhead
of using the logging system and can be completely compiled out in release mode.

Macros are a double-edged sword; they are typically harder to understand and debug
since the compiler can’t step into them. They can cause unforeseen problems as well.
The compiler literally takes the macro call and replaces it with the macro text. For
example, consider the following code:

#define MULT(x, y) x * y

int value = MULT(5 + 5, 10);

What would you expect value to be? It may not be what you think; in the code
above, value will be 55, not 100. Since MULT() is a macro that replaces the call
with the macro text, it ends up expanding to this:

int value = 5 + 5 * 10;

If MULT() were a function, it would behave as expected and return 100 because the
parameters are evaluated before being pushed onto the stack. This is just one example
of how a macro can bite you.

Here is the final version of the GCC_ERROR() macro:

#ifndef NDEBUG

#define GCC_ERROR(str) \

do \

{ \

Building an Error Logging System 833

static Logger::ErrorMessenger* pErrorMessenger = \

GCC_NEW Logger::ErrorMessenger; \

std::string s((str)); \

pErrorMessenger->Show(s, false, __FUNCTION__, __FILE__, __LINE__); \

} \

while (0)\

#else // NDEBUG is defined

#define GCC_ERROR(str) do { (void)sizeof(str); } while(0)

#endif // !defined NDEBUG

The first line is a preprocessor check to see if NDEBUG is not defined. NDEBUG is only
defined on release builds, so the full version of this macro is only defined on nonre-
lease versions of the game. The only parameter is str, which is the error string to
send. First, the macro creates a new Logger::ErrorMessenger static instance.
It’s only created the first time this error is reached. The constructor of ErrorMes-
senger adds it to the list in LogMgr so that it gets cleaned up properly when Log-

ger::Destroy() is called. This could just as easily be a static bool, but having a
class gives you a lot more flexibility for the data you store at each GCC_ERROR()

invocation. The next line wraps the str variable in an STL string. This is important
because str can be an expression or even a naked char*. This forces str to be the
format that you want. The last line inside the do statement calls the Show() function
on the ErrorMessenger object to show the dialog box.

Notice how that whole block is wrapped in a do...while(0) block. The reason for
this is to force the expanded macro (the code it becomes when the compile replaces
the macro call) to be treated as a single statement. One thing people often try is to
wrap it in curly braces, which will create a scope, but consider the following code:

if (fail)

GCC_ERROR(“Fail”);

else

DoSomethingGood();

If GCC_ERROR() used braces instead of a do...while(0) statement, attempting to
compile this code, Visual Studio 2010 would give you the following error:

error C2181: illegal else without matching if

The reason is because of that semicolon on the end of the statement. The macro
would expand as follows:

if (fail)

{

static Logger::ErrorMessenger* pErrorMessenger =

GCC_NEW Logger::ErrorMessenger;

834 Chapter 23 n Debugging and Profiling Your Game

std::string s((str))

pErrorMessenger->Show(s, false, __FUNCTION__, __FILE__, __LINE__);

}; // <-- NOTICE THE SEMICOLON HERE!!

else

DoSomethingGood();

The semicolon after the if block closes that if statement, so the else is illegal. You
could solve it by removing the semicolon from the call, like this:

if (fail)

GCC_ERROR(“Fail”) // no semicolon

else

DoSomethingGood();

This creates inconsistent code and calling conventions. Using the do...while(0)

trick solves this problem completely since the semicolon is now just ending the
while loop. The compiler is smart enough to know that while(0) will never loop,
so it doesn’t bother checking to see if it needs to go back. The performance is exactly
the same. In fact, it generates the exact same assembly code.

The other debug and logging macros work in a similar fashion. They are all defined
in Dev\Source\GCC4\Debugging\Logger.h. You can find the rest of the logging code
in Dev\Source\GCC4\Debugging\Logger.cpp.

Different Kinds of Bugs

Tactics and technique are great, but that only describes debugging in the most
generic sense. You should build a taxonomy of bugs, a dictionary of bugs as it were,
so that you can instantly recognize a type of bug and associate it with the beginning
steps of a solution. One way to do this is to constantly trade “bug” stories with other
programmers—a conversation that will bore nonprogrammers completely to death.

Memory Leaks and Heap Corruption

A memory leak is caused when a dynamically allocated memory block is “lost.” The
pointer that holds the address of the block is reassigned without freeing the block,
and it will remain allocated until the application exits. This kind of bug is especially
problematic if this happens frequently. The program will chew up physical and vir-
tual memory over time, and eventually it will fail. Here’s a classic example of a mem-
ory leak. This class allocates a block of memory in a constructor but fails to declare a
virtual destructor:

class LeakyMemory : public SomeBaseClass

{

Different Kinds of Bugs 835

protected:

int *leaked;

LeakyMemory() { leaked = new int[128]; }

~LeakyMemory() { delete [] leaked; }

};

This code might look fine, but there’s a potential memory leak in there. If this class is
instantiated and is referenced by a pointer to SomeBaseClass, the destructor will
never get called.

void main()

{

LeakyMemory *ok = new LeakyMemory;

SomeBaseClass *bad = new LeakyMemory;

delete ok;

delete bad; // MEMORY LEAK RIGHT HERE!

}

You fix this problem by declaring the destructor in LeakyMemory as virtual. Mem-
ory leaks are easy to fix if the leaky code is staring you in the face. This isn’t always
the case. A few bytes leaked here and there as game objects are created and destroyed
can go unnoticed for a long time until it is obvious that your game is chewing up
memory without any valid reason.

Memory bugs and leaks are amazingly easy to fix, but tricky to find, if you use a
memory allocator that doesn’t have special code to give you a hand. Under Windows,
the C runtime library lends a hand under the debug builds with the debug heap. The
debug heap sets the value of uninitialized memory and freed memory.

n Uninitialized memory allocated on the heap is set to 0xCDCDCDCD.

n Uninitialized memory allocated on the stack is set to 0xCCCCCCCC. This is
dependent on the /GX compiler option in Microsoft Visual Studio.

n Freed heap memory is set to 0xFEEEFEEE, before it has been reallocated.
Sometimes, this freed memory is set to 0xDDDDDDDD, depending on how the
memory was freed.

n The lead byte and trailing byte to any memory allocated on the heap is set to
0xFDFDFDFD.

Windows programmers should commit these values to memory. They’ll come in
handy when you are viewing memory windows in the debugger.

836 Chapter 23 n Debugging and Profiling Your Game

The C-Runtime debug heap also provides many functions to help you examine the
heap for problems. I’ll tell you about three of them, and you can hunt for the rest
in the Visual Studio help files or MSDN.

n _CrtSetDbgFlag(int newFlag): Sets the behavior of the debug heap.

n _CrtCheckMemory(void): Runs a check on the debug heap.

n _CrtDumpMemoryLeaks(void): Reports any leaks to stdout.

Here’s an example of how to put these functions into practice:

#include <crtdbg.h>

#if defined _DEBUG

#define GCC_NEW new(_NORMAL_BLOCK,__FILE__, __LINE__)

#endif

int main()

{

// get the current flags

int tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

// don’t actually free the blocks

tmpDbgFlag |= _CRTDBG_DELAY_FREE_MEM_DF;

// perform memory check for each alloc/dealloc

tmpDbgFlag |= _CRTDBG_CHECK_ALWAYS_DF;

_CrtSetDbgFlag(tmpDbgFlag);

char *gonnaTrash = GCC_NEW char[15];

_CrtCheckMemory(); // everything is fine....

strcpy(gonnaTrash, “Trash my memory!”); // overwrite the buffer

_CrtCheckMemory(); // everything is NOT fine!

delete gonnaTrash; // This brings up a dialog box too…

char *gonnaLeak = GCC_NEW char[100]; // Prepare to leak!

_CrtDumpMemoryLeaks(); // Reports leaks to stderr

return 0;

}

Notice that the new operator is redefined. A debug version of new is included in the
debug heap that records the file and line number of each allocation. This can go a
long way toward detecting the cause of a leak.

The first few lines set the behavior of the debug heap. The first flag tells the debug
heap to keep deallocated blocks around in a special list instead of recycling them
back into the usable memory pool. You might use this flag to help you track a mem-
ory corruption or simply alter your processes’ memory space in the hopes that a

Different Kinds of Bugs 837

tricky bug will be easier to catch. The second flag tells the debug heap that you want
to run a complete check on the debug heap’s integrity each time memory is allocated
or freed. This can be incredibly slow, so turn it on and off only when you are sure it
will do you some good.

The output of the memory leak dump looks like this:

Detected memory leaks!

Dumping objects ->

c:\tricks\tricks.cpp(78) : {42} normal block at 0x00321100, 100 bytes long.

Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD

Object dump complete.

The program ‘[2940] Tricks.exe: Native’ has exited with code 0 (0x0).

As you can see, the leak dump pinpoints the exact file and line of the leaked bits.
What happens if you have a core system that allocates memory like crazy, such as a
custom string class? Every leaked block of memory will look like it’s coming from the
same line of code, because it is. It doesn’t tell you anything about who called it, which
is the real perpetrator of the leak. If this is happening to you, tweak the redeclaration
of new and store a self-incrementing counter instead of __LINE__:

#include <crtdbg.h>

#if defined _DEBUG

static int counter = 0;

#define GCC_NEW new(_NORMAL_BLOCK,__FILE__, counter++)

#endif

The memory dump report will tell you exactly when the leaky bits were allocated,
and you can track the leak down easily. All you have to do is put a conditional break-
point on GCC_NEW and break when the counter reaches the value that leaked.

The Task Manger Lies About Memory

You can’t look at the Task Manager under Windows to determine if your game
is leaking memory. The Task Manager is the process window you can show if
you press Ctrl-Alt-Del and then click the Task Manager button. This window
lies. For one thing, memory might be reported wrong if you have set the
_CRTDBG_DELAY_FREE_MEM_DF flag. Even if you are running a release
build, freed memory isn’t reflected in the process window until the window is
minimized and restored. Even the Microsoft test lab was stymied by this one.
They wrote a bug telling us that our game was leaking memory like crazy, and
we couldn’t find it. It turned out that if you minimize the application window
and restore it, the Task Manager will report the memory correctly, at least for a
little while.

838 Chapter 23 n Debugging and Profiling Your Game

If you happen to write your own memory manager, make sure that you take the time
to write some analogs to the C runtime debug heap functions. If you don’t, you’ll
find chasing memory leaks and corruptions a full-time job.

Don’t Ignore Memory Leaks—Ever

Make sure that your debug build detects and reports memory leaks, and
convince all programmers that they should fix all memory leaks before they
check in their code. It’s a lot harder to fix someone else’s memory leak than
your own.

COM objects can leak memory, too, and those leaks are also painful to find. If you
fail to call Release() on a COM object when you’re done with it, the object will
remain allocated because its reference count will never drop to zero.

Here’s a neat trick. First, put the following function somewhere in your code:

int Refs (IUnknown* pUnk)

{

pUnk->AddRef();

return pUnk->Release();

}

You can then put Refs(myLeakingResourcePtr) in the watch window in your
debugger. This will usually return the current reference count for a COM object. Be
warned, however, that COM doesn’t require that Release() return the current ref-
erence count, but it usually does.

Game Data Corruption

Most memory corruptions are easy to diagnose. Your game crashes, and you find
funky trash values where you were used to seeing valid data. The frustrating thing
about memory corrupter bugs is that they can happen anywhere, anytime. Since the
memory corruption is not trashing the heap, you can’t use the debug heap functions,
but you can use your own homegrown version of them. You need to write your own
version of _CrtCheckMemory(), built especially for the data structures being van-
dalized. Hopefully, you’ll have a reasonable set of steps you can use to reproduce the
bug. Given those two things, the bug has only moments to live. If the trasher is inter-
mittent, leave the data structure check code in the game. Perhaps someone will begin
to notice a pattern of steps that cause the corruption to occur.

Different Kinds of Bugs 839

The Best Hack I Ever Saw

I recall a truly excellent hack we encountered on Savage Empire, an Ultima VI
spin-off that Origin shipped in late 1990. Origin was using Borland’s 3.1 C
Compiler, and the runtime module’s exit code always checked memory
location zero to see if a wayward piece of code accidentally overwrote that
piece of memory, which was actually unused. If it detected that the memory
location was altered, it would print out “Error: (null) pointer assignment” at
the top of the screen. Null pointer assignments were tough to find in those
days because the CPU just happily assumed you knew what you were doing.
Savage Empire programmers tried in vain to hunt down the null pointer
assignment until the very last day of development. Origin’s QA had signed
off on the build, and Origin execs wanted to ship the product, since
Christmas was right around the corner. Steve, one of the programmers, “fixed” the problem with an
amazing hack. He hex edited the executable, savage.exe, and changed the text string “Error:
(null) pointer assignment.” to another string exactly the same length: “Thanks for playing Savage
Empire.”

If the memory corruption seems random—writing to memory locations here and
there without any pattern—here’s a useful but brute force trick: Declare an enormous
block of memory and initialize it with an unusual pattern of bytes. Write a check
routine that runs through the memory block and finds any bytes that don’t match
the original pattern, and you’ve got something that can detect your bug.

The Infamous Barge Bug

Ultima games classically stored their game data in large blocks of memory,
and the data was organized as a linked list. If the object lists became
corrupted, all manner of mayhem would result. A really bad one happened
to me on my very first project, Martian Dreams. QA was observing a bug
that made the Martian barges explode. The objects and their passengers
would suddenly shatter into pieces, and if you attempted to move one step
in any direction that game would crash. I tried again and again to fix this bug.
Each time I was completely sure that the barge bug was dead. QA didn’t
share my optimism, and for four versions of the game I would see the bug
report come back: “Not fixed.”

The fourth time I saw the bug report, my exhausted mind simply snapped. I
don’t need to tell you what happened, because an artist friend of mine, Denis, drew this picture of me in
Figure 23.4:

840 Chapter 23 n Debugging and Profiling Your Game

Stack Corruption

Stack corruption is evil because it wipes evidence from the scene of the crime. Take a
look at this lovely code:

void StackTrasher()

{

char hello[10];

memset(hello, 0, 1000);

}

The call to memset() never returns, since it wipes the stack clean, including the
return address. The most likely thing your computer will do is break into some
crazy, codeless area—the debugger equivalent of shrugging its shoulders and leaving
you to figure it out for yourself. Stack corruptions almost always happen as a result of
sending bad data into an otherwise trusted function, like memset(). Again, you must
have a reasonable set of steps you can follow to reproduce the error.

Begin your search by eliminating subsections of code, if you can. Set a breakpoint at the
highest level of code in your main loop and step over each function call. Eventually, you
should be able to find a case where stepping over a function call will cause the crash.
Begin your experiment again, only this time step into the function and narrow the list
of perpetrators. Repeat these steps until you’ve found the call that causes the crash.

Figure 23.4
Artist’s rendering of earwax blowing out of Mr. Mike’s ears.

Different Kinds of Bugs 841

Notice carefully with each step the call stack window. The moment it is trashed, the
debugger will be unable to display the call stack. It is unlikely that you’ll be able to
continue or even set the next statement to a previous line for retesting, so if you
missed the cause of the problem, you’ll have to begin again. If the call that causes
that stack to go south is something trusted like memset(), study each input parame-
ter carefully. Your answer is there: One of those parameters is bogus.

Cut and Paste Bugs

This kind of bug doesn’t have a specific morphology, an academic way of saying
“pattern of behavior.” It does have a common source, which is cutting and pasting
code from one place to another. I know how it is; sometimes it’s easier to cut and
paste a little section of code rather than factor it out into a member of a class or
utility function. I’ve done this myself many times to avoid a heinous recompile. I
tell myself that I’ll go back and factor the code later. Of course, I never get around
to it. The danger of cutting and pasting code is pretty severe.

First, the original code segment could have a bug that doesn’t show up until much
later. The programmer who finds the bug will likely perform a debugging experiment
where a tentative fix is applied to the first block of code, but he misses the second
one. The bug may still occur exactly as it did before, convincing our hero that he
has failed to find the problem, so he begins a completely different approach. Second,
the cut-and-pasted code might be perfectly fine in its original location but cause a
subtle bug in the destination. You might have local variables stomping on each
other or some such thing.

If you’re like me at all, you feel a pang of guilt every time you press Ctrl-V and you
see more than two or three lines pop out of the clipboard. That guilt is there for a
reason. Heed it and at least create a local free function while you get the logic
straightened out. When you’re done, you can refactor your work, make your change
to game.h, and compile through the night.

Running Out of Space

Everyone hates to run out of space. By space, I mean any consumable resource:
memory, hard drive space, Windows handles, or memory blocks on a console’s mem-
ory card. If you run out of space, your game is either leaking these resources or never
had them to begin with.

We’ve already talked about the leaking problem, so let’s talk about the other case. If
your game needs certain resources to run properly, like a certain amount of hard drive
space or memory blocks for save game files, then by all means check for the appropriate

842 Chapter 23 n Debugging and Profiling Your Game

headroom when your game initializes. If any consumable is in short supply, you should
bail right there or at least warn players that they won’t be able to save games.

Nine Disks Is Way Too Many

In the final days of Ultima VIII, it took nine floppy disks to hold all of the
install files. Origin execs had a hard limit on eight floppy disks, and we had
to find some way of compressing what we had into one less disk. It made
sense to concentrate on the largest file, SHAPES.FLX, which held all of the
graphics for the game.

Zack, one of Origin’s best programmers, came up with a great idea. The
SHAPES.FLX file essentially held filmstrip animations for all the characters in
Ultima VIII, and each frame was only slightly different from the previous
frame. Before the install program compressed SHAPES.FLX, Zack wrote a
program to delta-compress all of the animations. Each frame stored only the
pixels that changed from the previous frame, and the blank space left over was
run-length encoded. The whole shebang was compressed with a general
compression algorithm for the install program.

It didn’t make installation any faster, that’s for sure, but Zack saved Origin a few tens of thousands of
dollars with a little less than a week of hard-core programming.

Release Mode-only Bugs

If you ever have a bug in the release build that doesn’t happen in the debug build,
most likely you have an uninitialized variable somewhere. The best way to find this
type of bug is to use a runtime analyzer like BoundsChecker.

Another source of this problem can be a compiler problem, in that certain optimiza-
tion settings or other project settings are causing bugs. If you suspect this, one possi-
bility is to start changing the project settings one by one to look more like the debug
build until the bug disappears. Once you have the exact setting that causes the bug,
you may get some intuition about where to look next.

Multithreading Gone Bad

Multithreaded bugs are really nasty because they can be nigh impossible to reproduce
accurately. The first clue that you may have a multithreaded issue is by a bug’s
unpredictable behavior. If you think you have a multithreaded bug on your hands,
the first thing you should do is disable multithreading and try to reproduce the bug.

A good example of a classic multithreaded bug is a sound system crash. The sound
system in most games runs in a separate thread, grabbing sound bits from the game
every now and then as it needs them. It’s these communication points where two
threads need to synch up and communicate that most multithreading bugs occur.

Different Kinds of Bugs 843

Sound systems like Miles from RAD Game Tools are extremely well tested. It’s much
more likely that a sound system crash is due to your game deallocating some sound
memory before its time or perhaps simply trashing the sound buffer. In fact, this is so
likely that my first course of action when I see a really strange, irreproducible bug is
to turn off the sound system and see if I can get the problem to happen again.

The same is true for other multithreaded subsystems, such as AI or resource preload-
ing. If your game uses multiple threads for these kinds of systems, make sure that
you can turn them off easily for testing. Sure, the game will run in a jerky fashion,
since all the processing has to be performed in a linear fashion, but the added benefit
is that you can eliminate the logic of those systems and focus on the communication
and thread synchronization for the source of the problem.

The Pitch Debugger Comes to the Rescue

Ultima VIII had an interrupt-driven multitasking system, which was something
of a feat in DOS 5. A random crash was occurring in QA, and no one could
figure out how to reproduce it, which meant there was little hope of it
getting fixed. It was finally occurring once every 30 minutes or so—way too
often to be ignored.

We set four or five programmers on the problem—each one attempting to
reproduce the bug. Finally, the bug was reproduced by a convoluted path.
We would walk the avatar character around the map in a specific sequence,
teleporting to one side of the map, then the other, and the crash would
happen. We were getting close.

Herman, the guy with perfect pitch, turned on his pitch debugger. We followed the steps exactly, and
when the crash happened, Herman called it: A B-flat meant that the bug was somewhere in the memory
manager.

We eventually tracked it down to a lack of protection in the memory system—two threads were
accessing the memory management system at the same time, and the result was a trashed section of
memory. Since the bug was related to multithreading, it never corrupted the same piece of memory
twice in a row.

Had we turned multithreading off, the bug would have disappeared, causing us to focus our effort on
any shared data structure that could be corrupted by multiple thread access. In other words, we were
extremely lucky to find this bug, and the only thing that saved us was a set of steps we could follow
that made the bug happen.

Weird Ones

There are some bugs that are very strange, either by their behavior, intermittency, or
the source of the problem. Driver-related issues are pretty common, not necessarily
because there’s a bug in the driver. It’s more likely that you are assuming the

844 Chapter 23 n Debugging and Profiling Your Game

hardware or driver can do something that it cannot. Your first clue that an issue is
driver related is that it only occurs on specific hardware, such as a particular brand of
video card. Video cards are sources of constant headaches in Windows games
because each manufacturer wants to have some feature stand out from the pack and
do so in a manner that keeps costs down. More often than not, this will result in
some odd limitations and behavior.

Weird bugs can also crop up in specific operating system versions, for exactly the
same reasons. Windows 9x–based operating systems are very different than Windows
2000 and Windows XP, which in turn are very different than Windows Vista
and Windows 7. These different operating systems make different assumptions
about parameters, return values, and even logic for the same API calls. If you don’t
believe me, just look at the bottom of the help files for any Windows API like
GetPrivateProfileSection(). That one royally screwed me.

Again, you diagnose the problem by attempting to reproduce the bug on a different
operating system. Save yourself some time and try a system that is vastly different. If
the bug appears in Windows 7, try it again in Windows XP. If the bug appears in
both operating systems, it’s extremely unlikely that your bug is OS specific.

A much rarer form of the weird bug is a specific hardware bug, one that seems to
manifest as a result of a combination of hardware and operating systems, or even a
specific piece of defective or incompatible hardware. These problems can manifest
themselves most often in portable computers, oddly enough. If you’ve isolated the
bug to something this specific, the first thing you should try is to update all the rele-
vant drivers. This is a good thing to do in any case, since most driver-related bugs
will disappear when the fresh drivers are installed.

Finally, the duckbilled platypus of weird bugs is the ones generated by the compiler.
It happens more often than anyone would care to admit. The bug will manifest itself
most often in a release build with full optimizations. This is the most fragile section
of the compiler. You’ll be able to reproduce the bug on any platform, but it may dis-
appear when release mode settings are tweaked. The only way to find this problem is
to stare at the assembly code and discern that the compiler-generated code is not
semantically equal to the original source code. This scenario occurs most often
when you’re doing something extremely tricky, which can expose an edge-case in
the optimizer’s logic. Finding this bug is not that easy, especially in fully optimized
assembly.

By the way, if you are wondering what you do if you don’t know assembly, here’s a
clue: Go find a programmer who knows assembly. Watch that person work and learn

Different Kinds of Bugs 845

something. Then convince yourself that maybe learning a little assembly is a good
idea.

Report Every Compiler Bug You Find

If you happen to be lucky (or unlucky) enough to find a weird compiler problem (especially one that
could impact other game developers), do everyone a favor and write a tiny program that isolates the
compiler bug and post it so that everyone can watch out for the problem. You’ll be held in high regard
if you find a workaround and post that, too. Be really sure that you are right about what you see. The
Internet lasts forever, and it would be unfortunate if you blamed the compiler programmers for
something they didn’t do. In your posts, be gentle. Rather than say something like, “Those idiots who
developed the xyz compiler really screwed up and put in this nasty bug …,” try, “I think I found a
tricky bug in the xyz compiler ….”

Profiling

Profiling is the act of improving the execution speed of your program and removing
any bottlenecks from the code. This can be accomplished by measuring how long
different parts of your code take to execute and rewriting the slow algorithms to be
more efficient. Bottlenecks are particularly long frames that manifest as a momentary
hitch in performance. They can occur if you have to wait for a piece of hardware, like
waiting for the hard drive after suffering a cache miss, or if you’re trying to do too
much in a single frame.

Measuring Performance

The first step in profiling is measuring the performance of your game. You can’t fix
what you can’t see. There are a number of different programs available for measuring
performance. Some are free, while others cost a lot of money. VTune by Intel is one
of the better-known tools. It’s extremely powerful but also very expensive. Luke
Stackwalker is a program I use on my own projects that works pretty well. It’s not
as powerful as VTune or other commercial applications, but it has the huge advan-
tage of being free.

Another method of measuring performance is to use a “poor man’s profiler.” This
involves measuring the time between function calls with a high-resolution timer and
logging the results. A function like GetTickCount() won’t work since it’s too low
resolution, causing inaccurate results. One method I’ve used in the past is to take
advantage of the ×86 Time Stamp Counter. The Time Stamp Counter is a high-
resolution 64-bit counter that counts the number of CPU cycles since the computer
was reset. You can read the value of this timer before a block of code and then read it
again afterward to find out how many CPU cycles it took to execute. This isn’t

846 Chapter 23 n Debugging and Profiling Your Game

perfect because you’ll get different results on different CPUs, but the results should
be relatively accurate when run on the same CPU. All you’re looking for is a delta so
you can see if you were able to speed up some particularly complex algorithm.

Optimizing Code

Once you’ve isolated the offending algorithm, it’s time to fix the code. Optimizing
code is very much an art form. You need to examine the code and try to understand
why it’s so slow. For example, consider the following code:

// assume this is defined

std::list<Actor*> actorList;

Actor* FindActor(ActorId id)

{

for (auto it = actorList.begin(); it != actorList.end(); ++actorList)

{

Actor* pActor = (*it);

if (pActor->GetId() == id)

return pActor;

}

return NULL; // actor not found

}

This function loops through a list of actors to find the one that matches the ID. On
the surface, it may appear okay, but this function is extremely inefficient. Once you
have a few hundred or even a few dozen actors in the world, this function will cause
some major performance issues in your game.

Computer scientists use a form of notation to estimate the performance cost of an
algorithm with relation to the data that it operates on. This is called Big-O notation.
The algorithm above is O(n), where n is the number of elements in the data struc-
ture. This means that as n goes up, so does the amount of time it takes to run this
algorithm. In other words, the time it takes to run this algorithm scales linearly with
the number of items in the list.

Let’s say for the sake of argument that the evaluation of each iteration through the
list costs 1ms. That means that if there are 100 elements in the list, it would cost
100ms to go through the entire list in the worst case.

The easiest fix for this problem is to create a map, which is typically implemented as
a balanced binary tree (specifically a red-black tree for Visual Studio). Here is the
revised code:

// assume this is defined

std::map<ActorId, Actor*> actorMap;

Profiling 847

Actor* FindActor(ActorId id)

{

auto it = actorMap.find(id);

if (if != actorMap.end())

return it->second;

return NULL;

}

This function uses the map’s find() function, which searches the tree for the key. A
binary tree is a divide-and-conquer data structure, so as long as the tree remains bal-
anced, you won’t visit every node. This type of algorithm is O(log2n), which means
that the time the algorithm takes to run is proportional to the base-2 log of the num-
ber of elements. If visiting each node takes 1ms and there are 100 nodes, the node
has a worst-case time of about 6.64ms. That’s much better than the 100ms that list
was going to take! This is a huge improvement, assuming that the actor data struc-
ture is accessed often enough using the ActorId as the key.

The final optimization technique I want to talk about is with scripting languages like
Lua. Scripting languages execute code slower than a compiled language like C++. One
thing you can do is move some of the more expensive script functions into C++. This is
commonly done for heavy math functions. For example, you probably don’t want to do
your pathing algorithm in Lua. This should be in C++ and called from Lua.

Tradeoffs

Not every optimization is going to be as simple as swapping out an STL data struc-
ture. Most of the time, you’ll have to make a trade. The classic trade is memory ver-
sus performance. In the actor example you saw in the previous section, you might do
some tests and find that about 25 percent of the time, you’re searching for the
player’s Actor object. One optimization would be to cache that actor directly so
that retrieving the player is a simple getter function that doesn’t have to go into the
actor map at all. The cost of this is the memory required to store the extra pointer,
which is probably worth it.

Caching values is a very common optimization. In general, you could precompute and
cache everything you can, especially right before a big algorithm is about to run. On The
Sims Medieval, we cached certain routing paths in the pathing system that were both
extremely common and very expensive. This cost us a bit of memory because we had
to store those paths, but many of our long-distance routes didn’t have to run the expen-
sive path-finding algorithm, it just had to verify that the path hadn’t become invalid.

Another common optimization is to sacrifice reactivity for performance stability. A
good example of this can be found in the event system in Chapter 11, “Game Event

848 Chapter 23 n Debugging and Profiling Your Game

Management.” The EventManager::VUpdate() takes in a maxMillis parameter
that only lets the Event Manager process for that amount of time. If it goes over that
amount, the rest of the events are queued for the next frame, but it helps ensure that
the Event Manager doesn’t “spike” (for example, take a particularly long amount of
time, causing a hitch in the frame rate). The cost is that events don’t always get pro-
cessed on the frame they are sent. Most of the time, this isn’t a big deal, but it
becomes possible to starve the Event Manager of CPU time. If you consistently
push more events to the Event Manager than it can handle, the delay between events
will grow until it’s unmanageable and the poor Event Manager can’t catch up!

Sims Are a Bit More Thoughtful

One of the big spikes in The Sims Medieval was the AI update tick. If you had a
Sim in an area with a large amount of expensive objects, the AI tick could cause
the game to visibly hitch. We fixed this issue by spreading the update across
multiple frames, which got rid of the spikes but caused Sims to stand around
and do nothing for a few frames. This was only noticeable on really low-end
machines with a single-core processor and a lot of Sims in the world. The Sims
appeared more “thoughtful,” as if they were considering their actions.

Over-Optimization

Optimization must be done in a triage fashion. Just because you can make an algorithm
10 times faster doesn’t mean that you should, especially if this algorithm isn’t showing
up in your profiles. If the algorithm only takes 0.01ms, making it take 0.001ms won’t do
you much good. You should only concentrate on the top two or three issues at a time
because those will give you the biggest overall performance gain.

Most of the time when you first run your game through the profiler, you’ll be sur-
prised at which algorithms show up the most. You might be calling an innocent get-
ter function that’s doing an inefficient search, or you might be calculating something
in a large loop that you can easily cache. You can often make a big difference in per-
formance with small changes.

The point is, you have to profile your game to see where the performance issues are
and only concentrate on the biggest ones.

Parting Thoughts

An important thing to keep in mind when debugging is that computers are at their
core deterministic entities. They don’t do things unless instructions are loaded into
the CPU. This should give you hope, since the bug you seek is always findable.

Parting Thoughts 849

You know that with enough time and effort, you’ll squash that bug. That thought
alone can be a powerful motivating force.

Further Reading

Reversing: Secrets of Reverse Engineering, Eldad Eilam

850 Chapter 23 n Debugging and Profiling Your Game

Chapter 24

by Mike McShaffry

Driving to the Finish

At some point in your project, you begin to realize that you’re a lot closer to the end
than the beginning. While the calendar tells no lies about this, somehow your work-
load seems to increase exponentially. For every task that goes final, two or three seem
to take its place. For a time, you and the team can take the added work with gusto—
but after this drags on for a few weeks or months, everyone becomes exhausted. It’s
about that time the boss walks in and tells everyone another work weekend is ahead.
Does this sound familiar?

This phenomenon is pretty common in many project-oriented businesses, but games
are especially susceptible because there’s something games are required to deliver that
doesn’t exist anywhere else. Games have to be fun.

I’ve said it a few times in this book already, but it deserves another mention. You
can’t schedule fun, and you can’t predict fun. Fun is the direct result of a few things:
a great vision, lots of iteration, a mountain of effort, lots of playtesting and redesign,
and a flexible plan. I’ve also recently begun to believe there is a very healthy dose of
luck involved, too. Any one of these things in abundance can make up for something
lacking in the others. Most game companies simply rely on the effort component—
a valiant but somewhat naive mistake.

If you’ve ever been in a sustained endurance sport like biking, you know that you
start any event with lots of excitement and energy. Toward the end of the ride,
you’ve probably suffered a few setbacks, like a flat tire or running out of water, mak-
ing it hard to keep your rhythm. Your tired body begins to act robotically, almost as

851

if your brain has checked out, and the highest thinking you are doing is working a
few muscle groups. You refuse food and water, believing you don’t need it. Then
things really start to go wrong. You’ll be lucky to cross the finish line.

The same thing happens to game development teams after a long stretch of overtime.
Tired minds can’t think, and not only do they make mistakes, but they don’t even
recognize them when they happen, and they attempt to solve the entire mess with
even more mandatory overtime. This death march is not only damaging for the
team and their families, but it is also a choice doomed to fail.

Getting a project over the finish line is tough, and you’ll be called upon to solve some
sticky problems along the way. Some of these problems will happen fast, too fast for
you to have a solution in your back pocket. You’ll have to think on your feet—not
unlike someone who happens upon an emergency situation. When you learn first aid,
you are taught that you must be able to recognize a problem when you see it, have
the skills to do something about it, and most importantly, you must decide to act.

I can give you the first two. The final one is up to you.

Finishing Issues

If your project is going well, you’ll likely only need a few tweaks here and there to
make sure you “stick the landing,” so to speak. You can recognize this on your proj-
ect by looking for a few telltale signs:

n Your bug count is under control. Your developers have fewer than four
active bugs to fix per day until the “zero bugs” date.

n Everyone is in good spirits.

n Bugs are easy to find and fix. This is likely due to a lot of work on your
game engine at the beginning of the project. Nice job!

n The game is fun to play, performs well, and has only polishing issues remaining.

If this describes your project, congratulations! But don’t get too cocky, because there
are some easy missteps you can make, even at this late stage.

Quality

Perhaps the two biggest questions you and everyone else on the team asks at this
point are likely to be: “Is the game good enough? Is it fun?” If a bug comes out of
the testing group, it’s because they want something changed to make the game better.
Anyone on the development team can motivate a change as well, and they should do
so if they think the game will become better because of it.

852 Chapter 24 n Driving to the Finish

Smoking the Build at Red Fly Studio

Red Fly Studio never had enough of anything we needed, especially testers.
Our typical game took about five hours to play all the way through, which
divided among three or four testers meant that each new build of our game
took more than an hour for our testers to do a quick playthrough. Combine
that with the problem of testing on multiple platforms or in multiple
languages, and the testing time went up pretty fast. Because a build-
breaking bug could happen at any time, we decided to have the entire team
join in and help the testers play through the entire game, in every language.
Split this job into as many as 20 or 30 developers and even our longer games
got smoke tested in about 20 minutes.

A Full-Time Job

At EA, we have a complicated build promotion process. Whenever you check
something in, the build machine will sync up and build it. If the build passes,
your change gets promotion to “latest,” which means if anyone syncs to the
“latest” data through the data tool, they will get your changes. Everyday, a
few QA testers are assigned the task of promoting the last “latest” data to
“LKG,” or “Last Known Good.” A complete smoke test is run with an
established test plan. The whole process takes several hours. Once the
testers sign off, the build is promoted. Anyone can grab the “LKG” data
and have a decent, working copy of the game.

Later in the project, this turns into a full-time job. We had one or two testers
on The Sims Medieval during the last six months or so who would do
nothing but LKG testing. It took both of them the entire day to run through the whole game and write
up bugs. When attempting to promote a major milestone like alpha, the entire test team was dedicated to
running through the entire game, including each play path for the dozens of quests.

There are a lot of good ways to measure how important a particular bug is, one of
which is user pain. Look for this blog article written in 2008 on it: http://www.lost-
garden.com/search/label/User%20Pain. Basically, it measures a bug on many dimen-
sions, such as what kind of bug it is, whether it blocks progress in the game, and how
often it happens. This is boiled down to a number, the calculation of which is
completely up to the team and what they feel is important.

I use a slightly different approach and measure bugs in four categories:

n Class AA: This is “drop everything you are doing and fix this bug,”
as it is significantly hampering the team from getting testing or work
done.

n Class A: This bug must be fixed or the game can’t ship. It might be a persistent
crash during a level load, for example.

Finishing Issues 853

http://www.lostgarden.com/search/label/User%20Pain
http://www.lostgarden.com/search/label/User%20Pain

n Class B: This bug could ship, but players will definitely notice it; however, if
the bug is rare, they will tolerate it. A good example of this might be a
disappearing background object on the common play path.

n Class C: Fixing this bug won’t effectively make any difference to the players—the
team might know it is wrong, however. A good example of this might be the
wrong music being played in a specific area or an incorrect texture on an object
in a junk pile.

The closer the project gets to the scheduled zero bugs milestone, the less likely minor,
C level bugs will actually get fixed. This rule of thumb is directly related to the fact
that any change in content or code induces some risk. I’ve seen a single bug fix create
multiple new bugs. This implies that any high-risk change should either happen
much earlier in the schedule or there has to be some incredibly compelling reason,
like there’s no other choice, and the project is in jeopardy if the change isn’t made.
These problems are usually elevated to the highest level severity in the bug database,
and your game shouldn’t ship if it hasn’t been fixed.

Ghosts Are Supposed to Be Transparent, Aren’t They?

At some point in the final week of Ghostbusters: The Video Game for the Wii
at Red Fly Studio, the producer noticed that none of the ghosts were
transparent anymore. Evidently, a change had gone in weeks before, and
everyone was so exhausted from crunch that no one noticed. The change to
fix the problem was tricky, and it touched quite a few systems. As risky as the
change was, it didn’t take the team long to decide that it was worth fixing.
After all, how can you really know you are seeing Slimer without seeing the
hot dogs in his stomach?

Everyone on a project has his pet feature, something that person really wants to
see in the game. The best time to install these features is before the code complete
milestone (some people call this alpha). There are a few good reasons for this. First,
it gives the team a huge burst of energy. Everyone is working on their top-tier wish
lists, and tons of important features make it into the game at a time where the risk of
these changes is pretty tolerable. Second, it gives the team a message: Either put
your change in now or forever hold your peace. After code complete, nothing new
code-wise should be installed into the game. For artists and other content folks, this
rule is the same, but the milestone is different. They use the content complete mile-
stone (or beta) as their drop-dead date for pet features. One more note about pro-
grammers and artists adding anything: If the game isn’t reaching target performance
goals, it’s a bad idea to add anything. Adding things won’t make your game any

854 Chapter 24 n Driving to the Finish

faster. Make sure the performance issues are completely taken care of before code
complete and monitor those issues closely until the project ships.

Lord British Must Die

It’s a common practice to put inside jokes or “Easter Eggs” into a game. On
Ultima VII, the team installed a special way to kill Lord British, especially since
Richard Garriott wanted Lord British to be completely invincible. You need a
little background first.

Origin was in an office building in the west Austin hill country, and the
building had those glass front doors secured with powerful magnets at the
top of the door. One day, Richard and some other folks were headed out to
lunch, and when Richard opened the door, the large block of metal that
formed a part of the magnetic lock somehow became detached from the
glass and fell right on Richard’s head. Lord British must truly be unkillable,
because that metal block weighed something like 10 pounds and had sharp edges….

The team decided to use that event as an inside way to kill the monarch of Britannia. At noon, the Lord
British character’s schedule took him into the courtyard of the castle. He would pause briefly under the
doorway, right under a brass plaque that read, “Lord British’s Throne Room.” If you double-clicked the
sign, it would fall on his head and kill him straightaway.

Perhaps the weirdest thing about this story is that a few weeks later, the same metal block on the same
door fell on Richard a second time, again with no permanent damage. The guy is truly protected by
some supernatural force, but he did buy a hard-shell construction helmet, and he wasn’t so speedy to
be the first person to open the door anymore.

By the time the team is working solidly to zero bugs, all the code and content is
installed, and there is nothing to do but fix bugs. It’s a good idea to add a few steps
to the bug-fixing protocol. Here’s the usual way bugs get assigned and fixed:

1. A bug is written up in test and assigned to a team member to fix.

2. The bug is fixed and is sent back to test for verification.

3. The bug is closed when someone in test gets a new version and observes the
game behaving properly.

Close to the zero bug date, a bit of sanity checking is in order. This sanity checking
puts some safety valves on the scope of any changes. By this time in the project, it
usually takes two overworked human brains to equal the thinking power of one nor-
mal brain.

1. A bug is written up in test and reviewed by the team lead.

2. If needed, it is saved for a triage team, usually the team leads, to discuss whether
it should be fixed and who should fix it.

Finishing Issues 855

3. If the bug is serious enough, it is assigned to someone on the team to investigate
a solution.

4. Someone investigates a potential solution. If a solution seems too risky, that
person reports back to the triage team for a little advice.

5. The solution is coded and checked on the programmer’s machine by a colleague.
It doesn’t have to be the lead programmer, just anyone with neurons and a
reasonable familiarity with the subsystem being fixed.

6. The bug is sent back to test for verification.

7. The bug is closed when someone in test gets a new version and observes
the game behaving properly.

If you think that the bureaucracy is a little out of control, I understand your con-
cerns. It might be out of control, but it’s out of control for a reason. Many bugs
might never make it out of step #1. For those that do make it to a real fix, it is
reviewed by a colleague who can really help ensure that the bug is fixed correctly,
and it is never seen again by the testers or the team.

Bug Meeting on Martian Dreams

My first experience with bugs in games was on Martian Dreams at Origin
Systems. The whole team gathered in the conference room, and each new bug
from testing was read aloud to the entire team. Sometimes the bugs were so
funny the whole room was paralyzed with laughter, and while it wasn’t the
most efficient way to run a meeting, it sure took the edge off the day.

On Ultima VII, Ultima VIII, and Ultima Online, the teams were simply too big,
and the bugs too numerous, to read aloud in a team meeting. Between the
inevitable laughter and complaining about fixing the object lists again, we’d
probably still be working on those games.

Even on smaller projects, like Bicycle Casino and Magnadoodle, we held bug meetings with the team
leads. It turned out that the rest of the developers would rather spend their time making the game
better and fixing as many bugs as they could than sitting in meetings. Outside of that, time away from
the computer and sleep was a welcome diversion.

Of course, everything hinges on your active bug count. If you are two months away
from your scheduled zero bug date, and you are already sitting at zero bugs (yeah,
right!), then you have more options than a team skidding into their zero bug date
with a high bug count. I hope you find yourself in the former situation someday.
I’ve never seen it myself.

The only hard and fast rule is how many bugs your team can fix per day—this bug
fix rate tends to be pretty predictable all through your testing period. It will be

856 Chapter 24 n Driving to the Finish

different for programmers than artists, because art bugs can be fixed faster and easier.
Programmers tend to fix somewhere between three and ten bugs per day per person,
but your mileage may vary. The point is, measure how fast your bugs are dropping to
zero and draw the line out to see when you’ll actually reach zero. If the date looks
grim or doesn’t even slope toward zero, you’ve got a serious problem on your
hands. If things are looking good, loosen the screws a little and make your game bet-
ter while you can.

Getting to Zero Bugs on Star Wars: The Force Unleashed II

Star Wars: The Force Unleashed II should have been a nightmare project. It had
an incredibly short production schedule and an aggressive scope, and we
feared the worst. But in the same way that a downhill skier brings his “A”
game to any double black diamond slope, everyone on the project did the
same. By the time we hit Beta, the bug count was well under control, the
team wasn’t too exhausted, and the game was behaving well on all levels.
This set us up to be super aggressive with our bug fixing. Nearly every bug
that came in from QA was fixed, leaving only a few that had to be closed as
“Won’t Fix.” On the day we were due to submit our final version to Nintendo,
we all looked at each other and for once agreed that we were ready to let this
game go with no regrets at all.

You could just decide to fix fewer bugs, closing them as “Won’t Fix.” While this will
get your active bug count to zero, the live bugs in your game can create an overall
game experience that seems sloppy. If you have no choice but to do this, make sure
you focus on fixing bugs that materially affect the game experience. Minor graphical
glitches you can ignore, but a repeatable crash on the common play path should get
fixed no matter what.

Code

At the end of every game project, the programmers, game designers, and audio engi-
neers are the ones who are hammered the most. Artists and animators are hit espe-
cially hard during the content complete milestone, but after that their work levels off,
mostly because it is usually more predictable. If you don’t believe me, just ask an art-
ist how long it will take him to tweak the lighting on a model. Or ask a level designer
how long it will take to place a few more power-ups in a level, and she will not only
give you a solid answer, but she will also be right about it. Audio engineers also have
very predictable work, but they tend to get pushed about by way too many late
changes by the rest of the team. Every time an animation gets tweaked, the audio
will typically get tweaked to match.

Finishing Issues 857

Ask a programmer how long it will take to find the random memory trasher bug, and
he will shrug and say something like, “I don’t have any idea! A few hours maybe?”
You may find that same programmer, 48 hours later, bashing his head against the
same bug, no closer to fixing it than when he started.

These setbacks happen all the time, and there’s not much that can be done except to
get as much caffeine into the programmer’s bloodstream as he can stand, get the
other programmers to take up the slack in the bug debt, and maybe lend a few
more neurons to the problem. Don’t forget about the advice earlier in the book:
Any two programmers looking at the same problem are at least three times as
smart as a lone programmer.

When the bug is eventually found, there is often a decision that has to be made about
the nature of the solution. A simple hack may suffice, but a “real” solution exists that
will touch a lot of code and perhaps induce more risk. At the very late stages of a
project, I suggest hacking. Wonton, unabashed hacking.

Some of you may be reeling at this sacrilege, but I’m sure just as many of you are
cheering. The fact is that a well thought-out hack can be the best choice, especially
if you can guarantee the safety and correctness of the change. “Hack” is probably a
bad word to use to fully describe what I’m talking about, because it has somewhat
negative connotations. Let me try to be specific in my definition:

Hack – n. A piece of code written to solve a specific corner case of a specific problem,
as opposed to code written to solve a problem in the general case.

Let me put this in a different light. Everyone should be familiar with searching algo-
rithms, where the choice of a particular search can achieve a “first solution” or a
“best solution” criteria. At the beginning of a project, coding almost always follows
the “best solution” path, because there is sufficient time to code a more complicated,
albeit more general algorithm. At the end of the project, it is frequently the case that
the best solution will lead a programmer down a complete reorganization of an entire
subsystem, if not the entire code base.

Instead, games have a “get-out-of-jail-free” card, because the players don’t generate the
game data. Since the game inputs are fairly predictable, or even static, the problem
domain is reduced to a manageable level. A programmer can be relatively sure that a
specific bit of code can be written to solve a specific problem, on a specific map level,
with specific character attributes. It seems ugly, and to be honest, it is ugly. As a friend
of mine at Microsoft taught me, shipping your game is its most important feature.

The hack doesn’t have to live in the code base forever, although it frequently does. If
your game is even mildly successful, and you get the chance to do a sequel, you

858 Chapter 24 n Driving to the Finish

might have time to rip out the hacks and install an upgraded algorithm. You’ll then
be able to sleep at night.

Hacks in Ultima 7 and Strike Commander

At Origin it was common practice for programmers to add an appropriate
comment if they had to install a hack to fix a bug. A couple of programmers
were discussing which game had the most hacks—Ultima VII or Strike
Commander. There was a certain pride in hacking in those days, since we
were all young, somewhat arrogant, and enjoyed a good hack from time to
time. The issue was settled with grep—a text file search utility. The Strike
Commander team was the clear winner, with well over 500 hacks in their
code.

Ultima VII wasn’t without some great comments, though. My favorite one was
something like, “This hack must be removed before the game ships.” It never
was. What’s more, I think the same hack made it into Ultima VIII.

Baby Maker

In The Sims 3 code base, there’s a file named BabyMakerSceneWindowGhetto
UIDeleteMeSomedayPlease.cs. This was a last-minute hack that survived into
the shipping version of the game and even found its way on The Sims
Medieval! Old hacks are the hardest to kill.

Commenting your code changes is a fantastic idea, especially late in the project. This
is especially true in any script languages, like Lua, that don’t have the same analysis
tools common in C++. After the code complete milestone, the changes come so fast
and furious that it’s easy to lose track of what code changed, who changed it, and
why. It’s not uncommon for two programmers to make mutually exclusive changes
to a piece of code, each change causing a bug in the other’s code. You’ll recognize
this pretty fast, usually because you’ll go into a piece of code and fix a bug, only to
have the same bug reappear a few versions later. When you pop back into the code
you fixed, you’ll see the code has mysteriously reverted to the buggy version. This
might not be a case of source code control gone haywire, as you would first suspect.
It could be another programmer reverting your change because it caused another bug.

That situation is not nearly as rare as you think, but there is a more common sce-
nario. Every now and then, I’ll attempt a bug fix, only to have the testers throw it
back to me saying that the bug still lives. By the time it comes back, I may have for-
gotten why I chose the solution, or what the original code looked like. Even better, I

Finishing Issues 859

may look at the same block of code months later and not have a clue what the fix
was attempting to fix or what test case exposed the bug.

The solution to the problem of short-term programmer memories is comments, as
always, but comments in the late stages of development need some extra information
to be especially useful. Here’s an example of a late-stage comment structure we used
on the Microsoft projects:

if (CDisplay::m_iNumModals == 0)

{

// ET - 04/10/02 - Begin

// Jokerz #2107 - Close() here causes some errors,

// instead use Quit() as it allows the app to shutdown

// gracefully

Quit(); // Close();

// ET - 04/10/02 - End

}

The comment starts with the initials of the programmer and the date of the change.
The entire change is bracketed with the same thing, the only difference between the
two being a “begin” and “end” keyword. If the change is a trivial one-liner with an
ultra-short explanation, the comment can sit on the previous line or out to the right.

The explanation of the change is preceded with the code name for the project and the
bug number that motivated the change. Code names are important because the bug
might exist in code shared between multiple projects, which might be in parallel
development or as a sequel. The explanation of the change follows, and where it
makes sense, the old code is left in but commented out.

The Infamous [rez] Comments

Whenever I write a comment in a system that isn’t mine or make a change
that isn’t straightforward, I always precede my comment with “[rez].” I do
the same thing for asserts and error messages that are on in the debug
builds. That way, people don’t have to hunt through the source control
system to find out who made a particular change; they can just come to
me and ask. This has worked really well for me, and if you’re working on
a project with multiple people, I suggest you do the same.

Most programmers will instantly observe that the source code repository should be
the designated keeper of all this trivia, and the code should be left clean. I respectfully
disagree. I think it belongs in both places. Code reads like a story, and if you are
constantly flipping from one application to another to find out what is going on, it
is quite likely you’ll miss the meaning of the change.

860 Chapter 24 n Driving to the Finish

Each Change Gets a Bug Number

At the end of the project, it’s a good idea, although somewhat draconian, to
convince the team to attach an approved bug number with every change
made to the code. This measure might seem extreme, but I’ve seen changes
“snuck” into the code base at the last minute without any involvement from
the rest of the team. The decision to do that shouldn’t be made by a
programmer at 3 a.m. on Sunday morning. Also, if you come across a
change in code that has a bug number attached, it is a trivial matter to load
up the bug to see what was going wrong and even how the bug can be
reproduced if you have to try an alternate fix.

There are plenty of software companies that employ some form of code review in their
process. The terms “code review” and “computer game development” don’t seem to
belong in the same universe, let alone the same book. This false impression comes
from programmers who don’t understand how a good code review process can turn a
loose collection of individual programmers into a well-oiled team of coding machines.

When most programmers think of code reviews, they picture themselves standing in
front of a bunch of people who laugh at every line of code they present. They think it
will cramp their special programming style. Worst of all, they fear that a bad code
review will kill their chances at a lead position or a raise.

I’ve been working with code reviews in a very informal sense for years, and while it
probably won’t stand up to NASA standards, I think it performs well in creative soft-
ware, especially games. It turns out there are two primary points of process that make
code reviews for games work well: who initiates the review and who performs the
review.

The person who writes the code that needs reviewing should actually initiate the
review. This has a few beneficial side effects. First, the code will definitely be ready
to review, since the person needing it won’t ask otherwise. Programmers hate sur-
prises of the “someone just walked in my office and wants to see my code” kind.
Because the code is ready, the programmer will be in a great state of mind to explain
it. After all, they should take a little pride in their work, right? Even programmers are
capable of craftsmanship, and there’s not nearly enough opportunity to show it off. A
code review should be one of those opportunities.

The person performing the review isn’t the person you think it should be. Most of
you reading this would probably say, “the lead programmer.” This is especially true
if you are the lead programmer. Well, you’re wrong. Any programmer on the team
should be able to perform a code review. Something that is a lot of fun is to have a
junior programmer perform code reviews on the lead programmer’s code. It’s a great

Finishing Issues 861

chance for everyone to share his tricks, experience, and double-check things that are
critical to your project.

This implies that the programmers all trust each other, respect each other, and seek
to learn more about their craft. I’ve had the privilege of working on a programming
team that is exactly like that, and the hell of being on the other side as well. I’ll
choose the former, thank you very much. Find me a team that enjoys (or at least
tolerates) code reviews and performs them often, and I’ll show you a programming
team that will ship their games on time.

When I worked on Microsoft’s casual games, the programmers performed code
reviews for serious issues throughout the project, but they were done constantly after
content complete, for each change, no matter how minor. Most of the time, a pro-
grammer would work all day on five or six bugs and call someone who happened to
be on his way back from the bathroom to do a quick code review before he checked
everything in. This was pretty efficient, since the programmer doing the review was
already away from his computer. Studies have shown that a programmer doesn’t get
back into the “zone” until 30 minutes after an interruption. I believe it, too.

Bottom line: The closer you get to zero bugs, the more checking and double-checking
you do on every semicolon. You even double-check the need to type a semicolon.
This checking installs a governor on the number and the scope of every code change,
and the governor is slowly throttled down to zero until the last bug is fixed. This
increases the quality of every change and the quality of the whole game as a result.
After that, the game is ready to ship.

Code Reviews on The Sims

Code reviews on The Sims are mandatory and somewhat automated. When a
programmer is ready to check in, he right-clicks on the change list in Perforce
and selects “Request code review.” This launches a plug-in that posts the code
review on an internal website and sends an email to the team. The website
shows all the changes side-by-side and allows the reviewer to comment on
any section of code. There’s a check box that says “ship it!” that the
reviewer must check before the code change is allowed to be checked in. This
process must be done for every single change, no matter how small. It creates
a bit of an overhead for each submission, but it ensures that at least one other
person has seen the change and given it his blessing. When you’re working on
a team with over 200 people, this kind of thing is critical.

Content

Programmers aren’t immune to the inevitable discussions, usually late at night, about
adding some extra content into the game at the eleventh hour. It could be something

862 Chapter 24 n Driving to the Finish

as innocuous as a few extra names in the credits, or it could be a completely new
terrain system. You think I’m kidding, don’t you?

Whether it is code, art, sounds, models, map levels, weapons, or whatever makes
your game fun, you’ve got to be serious about finishing your game. You can’t finish
it if you keep screwing with it! If you are really lucky, you’ll wind up at a company
like Valve or Blizzard, who can pretty much release games when they’re damn good
and ready. The rest of us have to ship games when we get hungry, and the desire to
make the best game can actually supersede basic survival. At some point, no matter
how much you tweak it, your game is what it is, and even superhuman effort will
only achieve a tiny amount of quality improvement. If you’ve ever heard of some-
thing called the “theory of diminishing returns,” you know what I’m talking about.
When this happens, you’ve already gone too far. Pack your game up, ship it, and
hope it sells well enough for you to get a second try.

The problem most people have is recognizing when this happens—it’s brutally diffi-
cult. If you’re like me, you get pretty passionate about games, and sometimes you get
so close to a project that you can’t tell when it’s time to call it done and schedule the
Ship Party.

Find Your Own Beta Testers

Microsoft employs late stage beta testers. These people work in other parts of
Microsoft but play their latest games. Beta testers are different from
playtesters because they don’t play the game every day. They are always just
distant enough and dispassionate enough to make a good judgment about
when the game is fun or when it’s not. If you don’t have Microsoft footing
your development bills, find ad hoc testers from just about anywhere. Ask
your friends or family. You don’t need professional testing feedback. You just
need to know if people would be willing to plunk down some money for your
game and spread the word about how good it is.

A Bug Becomes a Feature

When I worked on the Ultima series, it wasn’t uncommon for truly interesting
things to be possible, code-wise, at a very late stage of development. On
Ultima VIII, a particular magic spell had a bug that caused a huge wall of
fire that destroyed everything in its path. It was so cool we decided to leave
it in the game and replace one of the lamer spells. It wasn’t exactly a low-risk
move, completely replacing a known spell with a bug-turned-feature, but it
was an awesome effect, and we all felt the game was better for it.

Finishing Issues 863

The Brave Executioner

The game world of The Sims Medieval has a big pit right in the middle of it
where a horrible tentacled beast lives. If you’ve ever seen Return of the Jedi,
you may remember the Sarlacc pit. The idea is basically the same. One of the
things a hero Sim can do is jump in the pit and fight the beast. If he succeeds,
he gets something special. If he fails, he dies.

There was a bug on The Sims Medieval that read something like this: “I was
watching the executioner feed the pit beast when all of a sudden she just leapt
into the pit! I couldn’t reproduce it.” There was a video attached that showed
the executioner diving into the pit. The designers saw this video and loved it,
so they asked us to figure out why the executioner was choosing to do this
action and to turn it into a feature.

I’m trying my very best to give you some solid advice instead of some wishy-washy
pabulum. The truth is there’s no right answer regarding last-minute changes to your
game. The only thing you can count on is 20-20 hindsight, and only the people that
write the history books are the winners. In other words, when you are faced with a
decision to make a big change late in the game, trust your experience, try to be at
least a little bit conservative and responsible in your choices, and hope like hell that
you are right.

Let the Team Vote on Bugs

On Mushroom Men: The Spore Wars, we did something unusual. We had
already established a “Bug Triage” room where all the team leads could
discuss each bug as it came in from the testing team and either kill it or
assign it to someone. A few weeks before we went into total lockdown
mode, we gathered a list of 100 bugs that the team really wanted to see
fixed and let the entire team vote on them. This took a few rounds, but it
was great to see things that were close to a developer’s heart get fixed. We’ll
do this again.

Dealing with Big Trouble

Murphy is alive and well in the computer game industry, and I’m sure he’s been an
invisible team member on most of my projects. At Origin Systems, I think Murphy
had a corner office. I think his office was nicer than mine!

Big trouble on game projects comes in a few flavors: too much work and too little
time, human beings under too much pressure, competing products in the target mar-
ket, and dead-ends. There aren’t necessarily standard solutions for these problems,
but I can tell you what has been tried and how well it worked or didn’t work, as
the case may be.

864 Chapter 24 n Driving to the Finish

Projects Seriously Behind Schedule

Microsoft has a great way of describing a project behind schedule. They say it’s
“coming in hot and steep.” I know because the first Microsoft Casino project was
exactly like that. We had too much work to do, but too little time to do it. There
are a few solutions to this problem, such as working more overtime or throwing bod-
ies at the problem. Each solution can work, but it can also have a dark side.

The Dreaded Crunch Mode—Working More Hours

It amazes me how many project managers choose to work their teams to death when
the project falls behind schedule.

84-Hour Workweeks at Origin

On my very first day at Origin Systems, October 22, 1990, I walked by a
whiteboard with an ominous message written in block letters: “84-Hour
Workweeks—MANDATORY.” With simple division, I realized that 84 divided
by 7 is 12. Twelve hours per day, seven days per week was Origin’s solution
for shipping Savage Empire for the Christmas 1990 season. To the Savage
Empire team’s credit, they shipped the game a few tortured weeks later, and
this “success” translated into more mandatory overtime to solve problems.

We were all young, mostly in our late 20s, and the amount of overtime that
was worked was bragged about. There was a company award called the “100
Club,” which was awarded to anyone who worked more than 100 hours in a
single workweek. At Origin, this club wasn’t very exclusive.

Welcome to Planet Moon; We’re in Crunch

On my first day at Planet Moon, the project lead for Brain Quest said
“Welcome to Planet Moon, we’re in crunch.” This was after the song and
dance during the interview about how crunch is rare and a thing of the past.

All things considered, the crunch wasn’t too bad until the very end of the
project. We would do one week of 10–12 hour days followed by a week of
8-hour days, which was pretty manageable. Once alpha started to approach,
all bets were off. By the end of the project, leaving the office at 2 a.m. was
considered an early night, with 4 a.m. being much more common. That was
the project that ushered me into the “100 Club.”

Humans are resilient creatures, and under extraordinary circumstances they can go
long stretches with very little sleep or a break from work. During World War II,
Winston Churchill was famous for taking little catnaps in the Cabinet War Rooms
lasting just a cumulative few hours per day, and he did this for years. Mr. Churchill
had good reason to do this. He was trying to lead England in a war against Nazi

Dealing with Big Trouble 865

Germany, and the cost of failure would have been catastrophic for his country and
the entire world.

Game companies consistently ask for a similar commitment on the part of their
employees—to work long hours for months, even years on end. What a crime! It’s
one thing to save a nation from real tyranny, but it’s quite another to make a com-
puter game. This is especially true when the culprit is overscoping the project, blind
to the reality of a situation, and has a lack of skill in project management.

It is a known fact that under a normal working environment, projects can be artifi-
cially time-compressed up to 20 percent by working more hours. This is the equivalent
of asking the entire team to work eight extra hours on Saturday. I define a normal
working environment as one where people don’t have their lives, liberty, or family at
stake. This schedule can be kept up for months if the team is well motivated.

Take a Break—You’ll Be Better for It

It was this schedule that compressed Ultima VIII after a last-minute feature
addition: Origin asked the team to ship the game in two extra languages,
German and French. The team bloated to nearly three times its original
size, adding native German and French speakers to write the tens of
thousands of lines of conversation and test the results. We worked overtime
for five weeks—60 hours per week, and we took the sixth week and worked
a normal workweek, which averaged 50 hours. This schedule went on from
August to March, or eight months. Youth and energy went a long way, and
in the end, we did ship the game when the team thought we were going to
ship the game, but everyone was exhausted beyond their limits.

Weeks later, however, it was clear that the game wasn’t all we wanted it to be. Our collective exhaustion
at the end caused me and others to make some bad decisions about what we should fix. Reviews were
coming in, and they weren’t good. A few months down the road, the team got back together to fix many
of the biggest problems, and we released a patch, which by all accounts was much better.

The moral of this story—it is possible to crunch like crazy, and it may seem like you are achieving your
goals, but in the end, your game will suffer for it. Working overtime works only to solve short-term
problems, not long-term disasters.

Go Home

There’s an odd competition among some game developers concerning how
they deal with crunch. If you sleep in the office, you are somehow more
dedicated than someone who goes home, even if you work the same hours. I
have only slept in the office once in my career. I was 18 years old and working
in QA at Maxis on SimCity 3000. It was late so I decided to get a few hours of
sleep on a large stuffed alligator in the server room. I barely slept at all, I felt
awful, and I probably didn’t smell great since we didn’t have a shower in that
building. It’s not worth it. I would rather sleep in my own bed for four hours
than sleep on a stuffed alligator in the server room for six hours.

866 Chapter 24 n Driving to the Finish

For short periods of time, perhaps a week or two weeks, truly extraordinary efforts
are possible. Twelve-hour days for a short burst can make a huge difference in your
game. Well managed and planned, it can even boost team morale. It feels a little like
summer camp. A critical piece of this strategy is a well-formed goal such as the
following:

n Fix 50 bugs per developer in one week.

n Finish integrating the major subsystems of the game.

n Achieve a playthrough of the entire game without cheating.

The goal should be something the team can see on the horizon, well within sprinting
distance. They also have to be able to see their progress on a daily basis. It can be
quite demoralizing to sprint to a goal you can’t see, because you have no idea how
to gauge your level of effort.

Richard’s Midnight BBQ

On Ultima VII, Richard Garriott was always doing crazy things to support the
development team. One night he brought in steaks to grill on Origin’s BBQ pit.
Another night, very late, he brought in his monster cappuccino machine from
home and made everyone on the team some latte. One Saturday, he surprised
the team and declared a day off, taking everyone sky diving. Richard was long
past the time where he could jump into C++ and write some code, but his
support of the team and simply being there during the wee hours made a
huge difference.

There’s a dark side to overtime in the extreme that many managers and producers
can’t see until it’s too late. It happened at Origin, and it happens all the time in
other companies. When people work enough hours to push their actual pay scale
below minimum wage, they begin to expect something extraordinary in return, per-
haps in the form of end-of-project bonuses, raises, promotions, and so on.

The evil truth is that the company usually cannot pay anything that will equal their
level of effort. The crushing overtime is a result of a project in trouble, and that usu-
ally equates to a company in trouble. If it weren’t so, company managers wouldn’t
push staggering overtime onto the shoulders of the team. At the end of the day, the
project will ship, probably vastly over budget and most likely at a lower quality than
was hoped. Unfortunately, these two things do not translate into huge amounts of
money flowing into company coffers and subsequently into the pockets of the team.

A few months after these nightmare projects ship, the team begins to realize that all
those hours amounted to nothing more than lost time away from home. Perhaps

Dealing with Big Trouble 867

their firstborn took a few wobbling steps or spoke his first words, “Hey where in
the hell is Mommy, anyway?” This frustration works into anger and finally into
people leaving the company for what they think are greener pastures. High turn-
over right after a project ships is pretty common in companies that require tons of
overtime.

Someone once told me that you’ll never find a tombstone with the following epitaph:
“I wish I worked more weekends.” As a team member, you can translate that into a
desire to predict your own schedule as best you can, try to scope your project within
your means, and send up red flags when things begin to get off track. If you ever get
to be a project lead, I hope you realize that there’s a place for overtime, but it can’t
replace someone’s life.

Pixel Fodder—Throw Warm Bodies at the Problem

Perhaps the second most common solution to projects seriously behind schedule is to
throw more developers on the project. Well managed, this can have a positive effect,
but it’s never very cost effective, and there’s a higher risk of mistakes. It turns out
there’s a sweet spot in the number of people who can work on any single project.

More People Make Work Go Faster, Right?

Ultima Online was the poster child of a bloated team. In December of 1996,
the entire Ultima IX team was moved to Ultima Online in the hopes that
throwing bodies at the problem would speed the project to completion. This
ended up being something of a disaster, for a few reasons. First, the Ultima IX
team really wanted to work on Ultima IX. Their motivation to work on another
project was pretty low. Second, the Ultima Online team had a completely
different culture and experience level, and there were clashes of philosophy
and control. Third, Ultima Online didn’t have a detailed project plan,
somewhat due to the fact that no one had ever made a massive multiplayer
game before. This made it difficult to deploy everyone in his area of expertise.
I happened to find myself working with SQL servers, and I didn’t have a shred
of experience!

Through a staggering amount of work—an Origin hallmark—on the part of the original Ultima Online
team and the Ultima IX newcomers, the project went live less than nine months after the team was
integrated. The cost was overwhelming, however, especially in terms of employee turnover in the old
Ultima IX team. Virtually none of the programmers, managers, or designers of Ultima IX remained at
Origin to see it completed.

One effect of overstaffing is an increased need to communicate and coordinate
among the team members. It’s a generally accepted fact that a manager’s effectiveness
falls sharply if he has any more than seven reports, and it is maximized at five

868 Chapter 24 n Driving to the Finish

reports. If you have a project team of 12 programmers, 14 artists, and 10 designers,
you’ll have two programming leads reporting to a technical director and a similar
structure for artists and designers. You’ll likely have a project director as well, creat-
ing a project management staff of 10 people.

If your management staff is anything less than that, you’ll probably run into issues
like two artists working on the same model, or perhaps a programming task that
falls completely through the cracks. To be honest, even with an experienced manage-
ment team, you’ll never be completely free of these issues.

Working in Parallel on Bicycle Cards

Occasionally, you get lucky, and you can add people to a project simply
because a project is planned and organized in the right way. A good
example of this was the Bicycle Cards project, basically a bunch of little
games packaged up in one product. When some of the games began to run
behind schedule, we hired two contractors to take on a few games apiece. The
development went completely smoothly with seven programmers in parallel.
Their work was compartmentalized, communication of their tasks was
covered nearly 100 percent by the design document, and this helped ease
any problems.

They say that nine women can’t make a baby in one month. That’s true. There is also
a documented case of a huge group of people who built an entire house from the
ground up in three days due to an intricately coordinated plan, extremely skilled peo-
ple, and very specialized building techniques. Your project could exist on either side
of these extremes.

Slipping the Schedule

This solution seems de rigueur in the games industry, even with a coordinated appli-
cation of crunch mode and bloating the team. There’s a great poster of Ultima VII
and Strike Commander that Origin published in 1992, in the style of movie posters
that bragged “Coming this Christmas.” It turns out that those posters got the season
right, but they just had the wrong year.

There’s a long list of games that shipped before their time, but perhaps the worst
offender in my personal history was Ultima Online. There was even a lawsuit to
that effect, where some subscribers filed a class action lawsuit against Electronic
Arts for shipping a game that wasn’t ready. Thankfully, it was thrown out of court.
A case like that could have had drastic effects on the industry!

The pressure to ship on schedule is enormous. You might think that companies want
to ship on time because of the additional costs of the development team, and while

Dealing with Big Trouble 869

the weekly burn rate of a gigantic team can be many hundreds of thousands of dol-
lars, it’s not the main motivation. While I worked with Microsoft, I learned that the
manufacturing schedule of our game was set in stone. We had to have master disks
ready by such and such a date or we would lose our slot in the manufacturing facil-
ity. Considering that the other Microsoft project coming out that particular year was
Windows XP, I realized that losing my place in line meant a huge delay in getting the
game out. Console games can have the same problem. If you miss your submission
date to Nintendo, Sony, or Microsoft, you get to go on “standby,” waiting for another
empty slot so they can test your game for technical standards compliance.

While things like manufacturing and submission can usually be worked out, there’s
another, even bigger motivation for shipping on time. Months before the game is
done, most companies begin spending huge money on marketing. Ads are bought
in magazines or television, costing hundreds of thousands or even millions of dollars.
You might not know this, but those special kiosks at the end of the shelves in retail
stores, called endcaps, are bought and paid for like prime rental real estate, usually on
a month-by-month basis. If your game isn’t ready for the moment those ads are pub-
lished or those kiosks are ready to show off your game, you lose the money. No
refunds here!

This is one of the reasons you see the executives poking around your project six to
eight months before you are scheduled to ship. It’s because they are about to start
writing big checks to media companies and game retail chains in the hopes that all
this cash will drive up the sales of your game. The irony is, if the execs didn’t believe
you could finish on time, they wouldn’t spend the big bucks on marketing, and your
game would be buried somewhere on a bottom shelf in a dark corner of the store.
Oh, and no ads either. Your best advertising will be by personal email to all your
friends, and that just won’t cut it. In other words, your game won’t sell.

The difference between getting your marketing pressure at maximum and nothing at
all may only be a matter of slipping a few weeks, or even a few days. What’s worse,
this judgment call is made months before you are at code complete—a time when
your game is crashing every three minutes. Crazy, huh?

Probably the best advice I can give you is to make sure you establish a track record of
hitting each and every milestone on time throughout the life of your project. Keep
your bug count under control, too. These two things will convince the suits that
you’ll ship on time with all the features you promised. Whatever you do, don’t choose
schedule slippage at the last minute. If you must slip, slip it once and make sure you
give the suits enough time to react to all the promises they made on your behalf. This
is probably at least six months prior to your release date, but it could be even more.

870 Chapter 24 n Driving to the Finish

Cutting Features and Postponing Bugs

Perhaps the most effective method of pulling a project out of the fire is reducing the
scope of work. You can do it in two ways: nuke some features of the game or choose
to leave some bugs in their natural habitat, perhaps to be fixed on the sequel. Unless
you’ve been a bit arrogant in your project, the players and the media won’t know
about everything you wanted to install in the game. You might be able to shorten
or remove a level from your game, reduce the number of characters or equipment,
or live with a less accurate physics system.

Clearly, if you are going to cut something big, you have to do it as early in the project
as you can. Game features tend to work themselves into every corner of the project,
and removing them wholesale can be tricky at best, impossible at worst. Also, you
can’t have already represented to the outside world that your game has 10,000
hours of gameplay when you’re only going to have time for a fraction of that. It
makes your team look young and a little stupid.

So, 70 Hours of Gameplay? Really?

Always give yourself some elbow room when making promises to anyone, but
especially the game industry media. They love catching project teams in
arrogant promises. It’s great to tell them things about your game, but try to
give them specifics in those features you are 100 percent sure are going be
finished.

After code complete, the programmers are fixing bugs like crazy. One way to reduce
the workload is to spirit away some of the less important bugs. As the ship date
approaches, management’s desire to “fix” bugs in this manner becomes somewhat
ravenous, even to the point of leaving truly embarrassing bugs in the game, such as
misspelled names in the credits or nasty crashes.

Anything can be bad in great quantities, and reducing your game’s scope or quality is
no exception. One thing is certainly true—your players won’t miss what they never
knew about in the first place.

This One Must Die so That Others May Live

Mushroom Men: The Spore Wars on the Wii was in late development, and one of
the levels was falling behind. Art was unfinished, scripted events were still undone,
and many other things left the team with the distinct impression that getting the
level done was going to take a lot of work. After some serious soul searching,
the team decided to cut the entire level and spend time making the other levels
in the game better. It was a very hard decision, because so much work and care
had already been spent on it—and had it been completed, it would have been one
of the cooler parts of the game. In the end, it was the right decision.

Dealing with Big Trouble 871

It is incredibly difficult to step away from the guts of your project and look at it
objectively from the outside. I’ve tried to do this many times, and it is one of the
most difficult things to do, especially in those final days. Anyone who cares about
his game won’t want to leave a bug unfixed or cut a feature.

Ask yourself three serious questions when faced with this kind of decision: Will my
decision sell more copies? Will the players really notice this change? Will it keep
someone from returning the game? If your answer is yes, do what it takes. Otherwise,
move on and get your game shipped.

Personnel-Related Problems

At the end of a project, everyone on the team is usually stretched to the limit. Good-
natured and even-keeled people aren’t immune to the stresses of overtime and the
pressure of a mountain of tasks. Some game developers are far from good natured
and even keeled! Remember always that whatever happens at the end of a project, it
should be taken in the context of the stresses of the day, not necessarily as someone’s
habitual behavior. After all, if someone loses his cool at 3 a.m. after having worked
36 hours straight, I think a little slack is in order. If this same person loses his cool
on a normal workday after a calm weekend, perhaps some professional adjustments
are a good idea.

Exhaustion

The first and most obvious problem faced by teams is simple exhaustion. Long hours
and missed weekends create pressure at home and a robotic sense of purpose at
work. The team begins to make mistakes, and for every hour they work, the project
slips back three hours. The only solution for this is a few days away from the project.
Hopefully, you and your team won’t let the problem get this bad. Sometimes all it
takes is for someone to stand up and point to the last three days of nonprogress
and notice that the wheels are spinning, but the car isn’t going anywhere. Everyone
should go home for 48 hours, even if it’s Tuesday. You’d be surprised how much
energy people will bring back to the office.

One other thing: They may be away from their desks for 48 hours, but their minds
will still have some background processes mulling over what they’ll do when they get
back to work. Oddly enough, these background thoughts can be amazingly produc-
tive, since they tend to concentrate on planning and the big picture rather than every
curly brace. When they get back, the additional thought works to create an amazing
burst of productivity.

872 Chapter 24 n Driving to the Finish

4 Hours > 15 Seconds

Late in the Magnadoodle project for Mattel Media, I was working hard on a
graphics bug. I had been programming nearly 18 hours per day for the last
week, and I was completely spent. At 3 a.m., I finally left the office,
unsuccessful after four hours working on the same problem, and went to
sleep. I specifically didn’t set my alarm, and I unplugged all the telephones. I
slept. The next morning, I awoke at a disgusting 11 a.m. and walked into the
office with a fresh cup of Starbuck’s in hand. I sat down in front of the code I
was struggling with the night before and instantly solved the problem. The
bug that had eluded me for four hours the day before was solved in less
than 15 seconds. If that isn’t a great advertisement for sleep gaining
efficiency in a developer, I don’t know what is.

Morale

Team morale is directly proportional to their progress toward their goal, and it isn’t
related to their workload. This may seem somewhat counterintuitive, but it’s true. One
theory that has been proposed regarding the people who built the great pyramids of
Egypt is that teams of movers actually competed with each other to see how many
blocks they could move up the ramps in a single day. Their workload and effort were
backbreaking, and their project schedule spanned decades. The constant competition, as
the theory suggests, created high productivity and increased morale at the same time.

Morale can slide under a few circumstances, all of which are completely controllable.
As the previous paragraph suggests, the team must be convinced they are on track to
achieve their goal. This implies that the goal shouldn’t be a constantly moving target.
If a project continually changes underneath the developers, they’ll lose faith that it
will ever be completed. The opposite is also true—a well-designed project that is
under control is a joy to work on, and developers will work amazingly hard to get
to a finish line they can see.

There’s also a lot to be said for installing a few creature comforts for the development
team. If they are working long hours, you’ll be surprised what a little effort toward
team appreciation will accomplish.

Spend a Little Money—It’s Your Team

Get out the company credit card and make sure that people on the project are
well cared for. Stock the refrigerator with drinks and snacks, buy decent
dinners every night, and bring in donuts in the morning. Bring in good coffee
and get rid of the cheap stuff. Every now and then, make sure the evening
meal is a nice one, and send them home afterward instead of burning the
midnight oil for the tenth night in a row.

Dealing with Big Trouble 873

Something I’ve seen in the past that affects morale is the relationship between the devel-
opment team and the testing team. I’ve seen the entire range, from teams that wanted to
beat each other with pipes to others that didn’t even communicate verbally—they simply
read each other’s minds and made the game better. Someone needs to take this pulse
every now and then and apply a little rudder pressure when necessary to keep things
nice and friendly. Some warning signs to watch for include unfriendly japes in the bug
commentary, discussion about the usefulness of an individual on either team or their
apparent lack of skill, or the beginnings of disrespect for anyone.

Perhaps the best insurance against this problem is forging personal relationships
among the development leadership and testing leadership, and if possible, with indi-
viduals on the team. Make sure they get a chance to meet each other in person if at
all possible, which can be difficult since most game developers are a few time zones
away from their test team. Personal email, telephone conversations, conference calls,
and face-to-face meetings can help forge these professional friendships and keep
them going when discussions about bugs get heated.

This leads into something that may have the most serious affect on morale, both posi-
tive and negative. The developers need to feel like they are doing something worth-
while, and that they have the support of everyone. The moment they feel that their
project isn’t worth anything, due to something said in the media or perhaps an unfor-
tunate comment by an executive, you can see the energy drain away to nothing. The
opposite of this can be used to boost morale. Bring in a member of the press to see
some kick-ass previews, or have a suit from the publisher shower the team with praise,
and they’ll redouble their effort. If you happen to work in a company with multiple
projects, perhaps the best thing I’ve seen is one project team telling another that they
have a great game. Praise from one’s closest colleagues is far better than any other.

Other Stuff

Perhaps the darkest side of trouble on teams is when one person crosses the line and
begins to behave in an unprofessional manner. I’ve seen everything from career
blackmail to arrogant insubordination, and the project team has to keep this butthead
on the team or risk losing their “genius.” My suggestion here is to remember that the
team is more important than any single individual. If someone leaves the team, even
figuratively, during the project you should invite him to please leave in a more con-
crete manner. No one is that important.

Your Competition Beats You to the Punch

There’s nothing that bursts your bubble quite as much as having someone walk into
your office with a game in his hand, just released, that not only kicks butt but is

874 Chapter 24 n Driving to the Finish

exactly like your game in every way. You might think I’m crazy, but I’ll tell you that
you have nothing to worry about. The fact is that you can learn a lot from someone
else’s game simply by playing it, studying their graphics system, testing their user
interface, and finding other chinks in their armor. After all, you can still compile
your game, whereas they’ve shipped it and probably moved on to other things.

True, you won’t be the first to market. Yes, you’d better be no later than second
to market, and certainly you’d better make sure that you don’t repeat their
mistakes. At least you have the benefit of having a choice, and you also have the
benefit of dissecting another competitor’s product before you put your game on the
shelf.

Don’t Give Away All Your Secrets

They say that loose lips sink ships, right? This is certainly true in the game
industry. Strike Commander, Origin’s first 3D game, was due out in Christmas
of 1992. In the summer of 1992, Origin took Strike Commander to the big
industry trade show at the time, the Consumer Electronics Show, and made a
big deal of Strike Commander’s advanced 3D technology. They went so far as
to give away technical details of the 3D engine, which the competition
immediately researched and installed in their own games. Origin’s
competitive advantage was trumped by their own marketing department, and
since the team had to slip the schedule past Christmas, the competition had
more time to react. What a disaster!

The game industry tends to follow trends until they bleed out. That’s because there’s
a surprisingly strong aversion to unique content on the part of game executives. If a
particular game is doing well, every company in the industry puts out a clone until
there are 50 games out there that all look alike. Only the top two or three will sell
worth a damn, so make sure you are in that top two or three.

There’s No Way Out—or Is There?

Sometimes, you have to admit there’s a grim reality—your game has coded itself into
a corner. The testers say the game just isn’t any fun. You might have gone down a
dead-end technology track, such as coding your game for a dying platform.

What in the hell do you do now?

Mostly, you find a way to start over. If you’re lucky, you might be able to recycle
some code, art, map levels, or sounds. If you’re really lucky, you might be able to
replace a minor component and save the project. Either way, you have to find the
courage to see the situation for what it is and act. Putting your head in the sand
won’t do any good.

Dealing with Big Trouble 875

I Never Gave Up on Ultima IX

After Ultima IX was put on ice, and I was working hard on the Ultima Online
project, I secretly continued work on Ultima IX at my house in the evenings
and on weekends. My goal wasn’t so much to resurrect Ultima IX or try to
finish it single-handedly. I just wanted to learn more about 3D hardware-
accelerated polygon rasterization, which was pretty new at the time. I was
playing around with Glide, a 3D API from 3DFx that worked on the VooDoo
series of video cards. In a surprisingly little amount of work, I installed a Glide-
compliant rasterizer into Ultima IX, complete with a basic, ultra-stupid, texture
cache.

What I saw was really amazing—Ultima IX running at over 40fps. The best
frame rate I’d seen so far was barely 10fps using our best software rasterizer. I took my work into
Origin to show it off a bit, and the old Ultima IX team just went wild. A few months later, the project
was back in development with a new direction. Ultima IX would be the first Origin game that was solely
written for hardware-accelerated video cards. A bold statement, but not out of character with the Ultima
series. Each Ultima game pushed the limits of bleeding edge technology every time a new one was
published, and Ultima IX was no exception.

One Last Word—Don’t Panic

There are other things that can go terribly wrong on projects, such as when someone
deletes the entire project from the network or when the entire development team walks
out the door to start their own company. Yes, I’ve seen both of these things happen,
and no, the projects in question didn’t instantly evaporate. Every problem can be fixed,
but it does take something of a cool head. Panic and overreaction—some might say
these are hallmarks of your humble author—rarely lead to good decisions.

Try to stay calm, and try to gather as much information about whatever tragedy is
befalling you. Don’t go on a witch hunt. You’ll need every able-bodied programmer
and artist to get you out of trouble. Whatever it is, your problem is only a finite string
of 1s and 0s in the right order. Try to remember that, and you’ll probably sleep better.

The Light—It’s Not a Train After All

It’s a day you’ll remember for every project. At some point, there will be a single
approved bug in your bug database. It will be assigned to someone on the team,
and likely it will be fixed in a crowded office with every team member watching.
Someone will start the build machine, and after a short while, the new game will be
sent to the testing folks. Then the wait begins for the final word the game has been
signed off and sent to manufacturing. You may have to go through this process two
or three times—something I find unnerving but inevitable. Eventually though, the

876 Chapter 24 n Driving to the Finish

phone will ring, and the lead tester will give you the good news. The final build has
been accepted, and the game is going to be manufactured.

Your game is done. There will likely be a free flow of appropriate beverages. I keep a
bottle of nice tequila or maybe a good single-malt scotch in my office for just such an
occasion. You have a few weeks to wait for the channel to push your game into every
store and online site, so what do you do in the meantime?

Test the Archive

The first thing you do is take a snapshot of the build machine and the media files on
your network. Your job is to rebuild the game from scratch, using all your build
scripts, to make sure that if you ever need to, you can restore a backup of the game
source and rebuild your game. Start with a completely clean machine and install the
build machine backup. It should include all the build tools, such as your compiler
and special tools that you used to create your game.

Restore a backup of the network files to a clean spot on your network. This may take
some doing, since your network might be pretty full. It’s a good idea to buy some
extra hard drives to perform this task, since it is the only way you can be 100 percent
sure your project backup will work.

After you have a duplicate of your build machine and a second copy of the network
files, build your game again and compare it to the image that is signed off. If they
compare bit for bit, make some copies of the backups and store them in a cool dark
place, safe for all eternity. If you are working for a game publisher, they will want a
copy of the backup, too, so don’t forget to make enough for them. If the files don’t
match, do your best to figure out why. It wouldn’t be completely unusual for a few
bits to be mysteriously different on the first attempt. The existence of a completely
automated build process usually makes the archive perfectly accurate, which is a
great reason to have it in the first place.

As a last resort, if your files don’t match, the best thing you can do is document the
delta and have your testers run the rebuilt archive through the testing process once
more. This will ensure that at least the game is still in a shippable state, even though
some of the bits are different.

Archive the Bug Database

Don’t forget to back up the bug database in some readable format, such as
an Excel spreadsheet or even a CSV file. Store it along with your project
archive, and if you ever want to start a sequel, the first thing you’ll do is
figure out which postponed bugs you’ll fix.

The Light—It’s Not a Train After All 877

The Patch Build or the Product Demo

It’s not crazy to start working on a patch build or downloadable demo immediately
after the project signs off. The patch build is fairly common on almost every plat-
form. If you know you need to build one, there’s no reason to wait. A downloadable
demo or trial version of your game is always a good idea.

I suggest you leave the patch build in your main line of development in your source
code repository. The patch build should simply be the next minor version of your
game and is exactly what you’ve been doing since your zero bug date. You can release
the thumbscrews a little and consider some slightly more radical solutions to pro-
blems that you wouldn’t have considered just a few days ago—it all depends on
your schedule for the patch.

It wouldn’t be uncommon to wait for initial customer feedback for finalizing the fea-
tures and fixes that you’ll include in your patch. Your customer base will likely find
something your testers missed, or you may discover that a known problem is a much
bigger deal than anyone expected.

The downloadable demo should exist in a separate branch in your source code repos-
itory. This is especially true if you code the demo with #ifdef_DEMO blocks or some
such mechanism to cut your game down to a tiny version of itself. It wouldn’t be
crazy for some programmers to work on the demo and the patch simultaneously,
and a separate code branch will help keep everything organized.

The Postmortem

A good postmortem should be held a few weeks after you sign off your game. There
are tons of ways to handle it, but there are a few common goals. Every project is a
chance to learn about game development, and the postmortem is a mechanism that
formalizes those lessons, which will ultimately change the way you work. It isn’t a
forum to complain about things that went wrong and leave it at that. Instead, your
postmortem should identify opportunities to improve your craft. It is a forum to rec-
ognize a job well done, whether on the part of individuals or as a group.

In postmortems, it’s really easy to get off track because everyone on the team wants
to say his piece about nearly everything. That’s good, but it can degenerate into
a chaotic meeting. It’s also not a crazy idea to split the team into their areas of
expertise and have them conduct mini-postmortems in detail. For example, the pro-
grammers might get together to talk about aspects of the technology or their meth-
odologies, surely stuff that will bore the artists to the point of chewing their own
limbs off to escape the meeting. Each group—programmers, artists, designers,

878 Chapter 24 n Driving to the Finish

producers, and whoever—can submit their detailed report for any other similar group
who wants to learn their lessons.

The team postmortem should focus on the game design, the project schedule, lines of
communication, and team process. If someone believes he has a good idea of how to
improve things, he should speak up, and if the group thinks the idea has merit, then
they should act on the idea.

One thing that isn’t immediately obvious is the fact that you won’t learn everything
in a public meeting. Some of the most important information might be better dis-
cussed in private, in the hopes that someone’s feelings won’t be bruised. If you get
the chance to run a postmortem, don’t forget to follow the public meeting with pri-
vate interviews with the team. It will take a long time, but it’s a good idea.

What to Do with Your Time

When I reached the end of my longest project to date, Ultima VIII, my first act was
to walk outside Origin’s offices, sit down at a picnic table, and enjoy the light, smells,
and sounds of a springtime Texas afternoon. I had been in a dark office working
overtime for two years, and I’d forgotten what daytime was like. I went home and
found a person there. After introductions and reviewing surprising evidence in the
form of a photo album, I realized that the person in my apartment was actually my
wife for over three years. I asked her out on a date, and she accepted. Then I asked
her to accompany me on a diving trip to Cozumel. She accepted that, too.

I suggest you follow my lead. If you don’t have a spouse, go somewhere fun with a
friend. See the world. Get away from your computer at all costs. It will do you some
good and may give you some fun ideas.

You won’t be able to stay away from work forever. The desire to make another great
game will soon overwhelm you. You may embark on a sequel to the game you just
shipped, or you might get to do something entirely new. Either way, you’ll be sur-
prised at the energy level. People on the team who looked like the living dead just a
few weeks ago will be ready to go around again.

There’s nothing quite like starting a new project. You feel renewed and smarter, and
if you’re really lucky, you’ll get to work with the same team. After what you’ve just
been through, it’s likely you’ll have a good portion of mental telepathy worked out,
and you won’t need quite so many meetings.

One thing everyone will quietly do is make excuses to walk into computer game
stores looking for the box. Eventually, you’ll see it for the first time. There’s nothing
like it, holding a shrink-wrapped version of your game in your own hands. I sincerely

The Light—It’s Not a Train After All 879

hope you get the chance to do that someday. Everybody deserves that kind of reward
for such a mammoth effort.

The game industry is a wacky place. The hours are long, and the money isn’t that
great. I know because I’ve been in it up to my neck since games ran on floppy
disks. Somehow I find the energy to keep doing it. Am I just a glutton for
punishment?

I guess there’s a lot to be said for a profession that has one goal—fun. I learned in
scouting that you should always leave a campsite better than you found it. I guess
that working on computer games is a way to do that for much more than a campsite.
My work in the computer game industry has hopefully had an effect on the people
who enjoyed the games with my name somewhere in the credits. My work, and that
of my co-author and friend Rez, on this book has hopefully made working on the
games themselves more fun and more enjoyable for you.

Only time will tell, eh?

880 Chapter 24 n Driving to the Finish

INDEX

{} (Lua curly braces), 346

3D graphics

C++ math classes

clipping planes, 481

matrices, 458–469

matrices, 4X4, 459

matrices, moving objects, 462–469

matrices, multiplying, 463

matrices, rotation, 459–469

matrices, unit circles, 459–461

overview, 456

quaternions, compression, 471

quaternions, Euler angles, 469

quaternions, frustums, 474–478

quaternions, overview, 469–473

quaternions, planes, 473–474

transformations, 478–481

vectors, 456–458, 481–482

colors, 482–484

fixed-function, 445

lighting, 482–484

materials, 484–487

math

axes, 446–447

coordinates, 446–449

floating-point numbers, 447–448

handedness, 449

orientation, 446–447

overview, 445–446

units of measurement, 448

vectors, 449–455

vectors, calculating angles, 450–453

vectors, cross products, 453–455

vectors, dot products, 450–453

vectors, floating-point numbers, 450

vectors, normalizing, 449–450

vectors, scalars, 450

vectors, targets, 452–455

vectors, unit vectors, 449–453

meshes, 494–497

normals, 482–484

overview, 443, 497

pipeline, 444–445

processes, 444–445

programmable, 445

resources, 444

scene graphs. See scene graphs

shaders. See shaders

textures

creating, 487–488

loading, 491–494

mip-mapping, 490–491

resources, 202, 204–205

scintillation, 488–490

subsampling, 488–490

vertices, 487

4X4 matrices (C++ math classes), 459

A
A* (A-Star), 638–640

absolute values (variables), 625

abstractions

hardware abstraction layer, 243–244

Lua classes, 353–355

acceleration

gamepad controls, 261–262

physics, 569–574

accelerometers (Wii controls), 249

881

accessing

actors, 168–170

components, 168–170

memory, optimizing, 78–79

accuracy, targeting, 247–248

architecture (C# editor)

actor functions, 756–763

application layer, 749

DLL, 763–764

framework functions, 753–756

game engines, 753–763

logic class, 750–751

overview, 748–749

views, 751–753

wrapping, 764

action mapping (controls), 245

ActorComponentEditor class

(C# editor), 784–792,

793, 794, 795

actors. See also components; objects

accessing, 168–170

audio, 432

building

component architecture, 159–160

multiple class inheritance, 155–159

C# editor

ActorComponentEditor class, 784–795

actors list, 777–780

editing components, 792–794

functions, 756–763

managing, 784–795

showing components, 789–792

creating, 160–165

creator factory, 171

defined, 155

defining, 165–168, 170–171

events, destroying, 323–324

implementing, 170–171

managing

creating games, 739–741

Lua, 387–389

scene graphs, 539, 542

sharing data

events, 173–174

overview, 171

pointers, 172–174

transforms, 171–172

storing, 168–170

actors list (C# editor interface), 777–780

adding

nodes (scene graphs), 565

team members (schedules), 868–869

addresses (IP addresses), 646–648

advanced techniques. See techniques/tips

AI (artificial intelligence), 45

decision trees, 622–626

finite state machines, 616–622

fuzzy logic, 627–630

game views, 45–46

goal-oriented action planning,

635–636

hard-coding, 612–614

Lua, 617

overview, 611–612

pathfinding

A* (A-Star), 638–640

dynamic avoidance, 640–641

overview, 636–638

randomization, 614–616

utility theory, 630–634

weighted randoms, 616

Asimov, Isaac, 58

algorithms (quadratic equations), 87–88

AlienBrain (source repositories),

114–115

alignment (speed), 80–81

alpha pass

finishing projects, 854

scene graphs, 542–544

Alt keys, 267

ambient audio, 436, 438–439

angles

calculating vectors, 450–453

Euler angles, 469

velocity (physics), 574–575

angular velocity (physics), 574–575

animation

controls, 304

resources, 200–202

animators, 5

APIs

Lua C API, 356

sockets API

connecting sockets, 658–659

creating sockets, 655–659

DNS, 653–654

initialization, 654–655

overview, 650

ports, 658–659

reading sockets, 663

servers, 660–662

shutdown, 654–655

utility functions, 651–653

writing sockets, 663

882 Index

application layer

C# editor, 749

creating games, 722–723

DLLs, 34–35

file system resource caches, 31–33

globalization/localization, 34

initializing, 33–35

CPU speed, 140

creating game logic, 145

creating views, 145

creating windows, 145

DirectX, 145

events, 144–145

GameCodeApp class, 135–136

hard drive storage space, 138–139

hardware quality, 141

loading cache resources, 147

loading text strings, 142–144

memory, 139–140

multiple instances, 137–138

overview, 133

save game directories, 146–147

script managers, 144–145

system resources, 136–137

WinMain, 133–135

initializing resource caches, 141–142

input, reading, 31

main loop, 33–35

memory managers, 33

network communication, 34–35

shutdown, 33–35

strings, 34

system clock, 34

threads, 34–35

applying architecture, 28–31

architecture

applying, 28–31

audio

buffers, 408–414

classes, 408–414

controls, 408–414

defining classes, 399–400

DirectSound, 414–426

handles, 398–408

interfaces, 408–414

launching, 431–432

loading OGG files, 403–408

loading WAV files, 401–403

multithreading, 396–397

overview, 397–398

processes, 426–431

resources, 398–408

streaming, 399

streaming music, 400

components, building actors, 159–160

hardware abstraction layer, 243–244

networks

game logic layer, 47–48

game views, 47

multiplayer games, 48

overview, 46–47

overview, 25–28, 51–54

archives, testing, 877–878

artificial intelligence. See AI

artists, 43

aspect ratio, 290

assembly, 331, 797–798, 820–822, 845–846

asset tree (C# editor interface), 775–777

A-Star (A*), 638–640

audio

actors, 432

ambient, 436, 438–439

architecture

buffers, 408–414

classes, 408–414

controls, 408–414

defining classes, 399–400

DirectSound, 414–426

handles, 398–408

interfaces, 408–414

launching, 431–432

loading OGG files, 403–408

loading WAV files, 401–403

multithreading, 396–397

overview, 397–398

processes, 426–431

resources, 398–408

streaming, 399

streaming music, 400

audio engineers, 6

background, 436, 438–439

backups, 395

class hierarchy, 397–398

controls, 304

data-driven, 437

decibels, 392–393

dialogue/speech, 434–435

background, 436, 438–439

barks, 439–440

lip synching, 440–441

localization, 440

NPCs, 634–638

overview, 439

player objectives, 440

Index 883

audio (continued)

recording, 441

text supplement, 440

DirectX, 50–51

effects, 435–436

formats, 395–396

game views, 43–44

hard-coding, 437

kilohertz, 392

mixing, 434–436

music

composers, 6

debugging techniques/tips, 827, 844

fading, 436

recording, 438

resources, 205–206

streaming, 400

objects, 432

overview, 391–393, 441–442

recording, 393–395

music, 438

volume, 437

reproduction, 393–395

resources, 205–206

sound waves, 394–395

synchronizing, 432–434

synchronizing readers/writers, 396–397

troubleshooting, 434

volume, 434–437

wave forms, 394–395

audio engineers, 6

auto keyword, 164–165

automation

build scripts, 121–122

builds, 120

projects, 98

random number generators, 86–87

troubleshooting, 86–87

Avid AlienBrain (source repositories), 114–115

axes

3D graphics, 446–447

axis-aligned bounding boxes (scene graphs), 528

B
background

audio, 436, 438–439

decompressing (ZIP files), 713–715

dialogue/speech, 436, 438–439

backups

audio files, 395

builds, 120–121

barks (dialogue/speech), 439–440

batching reads (resource caches), 235

benefits, scripting languages, 337–338

Berkeley sockets, 645–646

beta milestone, 854

binding Lua/C++, 356–357

bitmaps

controls, 300–301, 305

resources, 202–205

black objects, 485

bouncing cameras, 597

bounding spheres (scene graphs), 528

BoundsChecker, 825

braces (code styles), 55–56

branching (source repositories), 115–118, 127–128

breakpoints (debugging), 802, 804

breaks

debugging techniques/tips, 828

finishing projects, 879–880

schedules, 866

buffer zones (resource caches), 234

buffers (audio), 408–414

bug numbers, 860–861

bugs. See debugging

building. See also creating

actors

component architecture, 159–160

multiple class inheritance, 155–159

error logging systems, 828–835

projects, 118–120

resource caches, 225–233

builds

automating, 120

backups, 120–121

build scripts

automating, 120–122

Close scripts, 126

milestone builds, 124–127

normal builds, 123–124

Open scripts, 126

updating, 124

computers, 120–121

configurations, 99–100

debug builds

loading, 68

saving, 68

patch builds, 878

process overview, 118–120

promoting, 853

release builds, debugging, 843

time (events), 310

Visual Studio options, 104–108

884 Index

Bullet Physics website, 589, 609

buttons, state, 240

C
C API, 356

C# editor

actors

actor functions, 756–763

ActorComponentEditor, 784–795

actors list, 777–780

editing components, 792–794

managing, 784–795

showing components, 789–792

architecture

actor functions, 756–763

application layer, 749

DLL, 763–764

framework functions, 753–756

game engine, 753–763

logic class, 750–751

overview, 748–749

views, 751–753

wrapping, 764

classes

ActorComponentEditor, 784–795

data members, 786–787

EditorForm, 772–784

initializing, 786–787

logic class, 750–751

MessageHandler, 769–772

NativeMethods, 767–768

Program, 768–769

testing, 795

XPathUtility, 787–789

creating, 748

DLL, methods, 767–768

interface

actors list, 777–780

asset tree, 775–777

controls, 772–784

menu bar, 780–784

managed/unmanaged code comparison, 766–767

messages, handling, 769–772

overview, 747–766

synchronizing, 786

windows, 766

Windows Forms, 772

C++

auto keyword, 164–165

classes (Lua script inheritance), 379

design practices, 59–60

functions (LuaPlus calling), 363–366

helper class

pixel shaders, 516–520

vertex shaders, 507–515

initializing, 130–133

Lua

binding, 356–357

C API, 356

Event Managers, 380–387

luabind, 357

registering functions, classes, 357

script inheritance, 379

tolua++ library, 357

LuaPlus

functions, 363–366

global variables, 361–362

objects, 358–360

overview, 357–358

state, 358

tables, 360–361

math classes

clipping planes, 481

matrices, 458–469

matrices, 4X4, 459

matrices, moving objects, 462–469

matrices, multiplying, 463

matrices, rotation, 459–469

matrices, unit circles, 459–461

overview, 456

quaternions, compression, 471

quaternions, Euler angles, 469

quaternions, frustums, 474–478

quaternions, overview, 469–473

quaternions, planes, 473–474

transformations, 478–481

vectors, 456–458, 481–482

objects

debugging techniques/tips, 819–820

serializing, 690

programming languages history, 331–333

shared_ptr (smart pointers), 71–75

caches

components, 167

CPU (memory), 78–79, 81

resources

batching reads, 235

buffer zones, 234

building, 225–233

DirectX, 233

file systems, 31–33

initializing, 141–142, 147

interfaces, 222

Index 885

caches (continued)

loading, 147, 224–225

managing, 233–237

multiple, 220

overview, 218–222

tracking loaded resources, 222–224

world design, 233–237

calculating angles (vectors), 450–453

callbacks

controls (state), 240

DirectX, 191–193

message queue, 212

camera nodes (scene graphs), 548–551

cameras

bouncing (debugging), 597

scene graphs, 538

camera nodes, 548–551

debugging, 550

capturing (mouse), 249–252

caveman debugging, 826–827

center of mass (physics), 574

changing

game editors, 765

last-minute content changes, 862–864

schedules, 869–870

characters

collisions, 583–586

controls, 248

death, 309

NPC speech, 634, 638

walking/running, 248

check routines, 822–823

choosing

physics SDKs, 576–578, 609

scripting languages, 338

cinematics, 206–209

classes

audio

architecture, 408–414

defining, 399–400

hierarchy, 397–398

C# editor

ActorComponentEditor, 784–795

data members, 786–787

EditorForm, 772–784

initializing, 786–787

logic class, 750–751

MessageHandler, 769–772

NativeMethods, 767–768

Program, 768–769

testing, 795

XPathUtility, 787–789

C++

clipping planes, 481

Lua script inheritance, 379

matrices, 458–469

matrices, 4X4, 459

matrices, moving objects, 462–469

matrices, multiplying, 463

matrices, rotation, 459–469

matrices, unit circles, 459–461

overview, 456

pixel shaders, 516–520

quaternions, compression, 471

quaternions, Euler angles, 469

quaternions, frustums, 474–478

quaternions, overview, 469–473

quaternions, planes, 473–474

transformations, 478–481

vectors, 456–458, 481–482

vertex shaders, 507–515

game views, creating, 271–281

GameCodeApp, 135–136

hierarchies

audio, 397–398

design practices, 60–61

screens, 299

inheritance

building actors, 155–159

design practices, 63

interfaces

controls, 241–243

design practices, 64–65

Lua

abstractions, 353–355

registering, 357

main loops

DelayProcess, 186–187

Process, 178–188

ProcessManager, 183–185

ScriptProcess, 370–379, 619

namespaces (static functions), 830

real-time processes, 705–708

scene graphs

axis-aligned bounding boxes, 528

bounding spheres, 528

camera node class, 548–551

interface class, 524–526

light manager class, 552–554

light node class, 551–554

meshes, 560–564

properties, 526–529

rendering, 526–529

root node class, rendering, 545–548

886 Index

scene class, 536–544

scene class, actors, 539, 542

scene class, alpha pass, 542–544

scene class, cameras, 538

scene class, implementing, 539

scene class, lighting, 539

scene class, matrices, 538–539, 541–542

scene class, rendering, 539–541

scene class, restoring, 539–541

scene class, root nodes, 538, 545

scene class, updating, 539–541

scene node class, 529–536

sky node class, 554–560

clients, sockets, 666–669, 673–675

clipping planes (C++ math classes), 481

Close scripts, 126

closing

Close scripts, 126

modal dialog boxes on shutdown, 150–151

code. See also scripts/scripting languages

assembly code, 820–822

code analyzers, 824–825

comments, 859–862

debugging. See debugging

design practices

C++, 59–60

class hierarchies, 60–61

class inheritance, 63

debug builds, 68

destructors, 59–60

encapsulation, 66–67

factories, 65–66

hidden code, 59–60

initializing objects, 67–68

interface classes, 64–65

non-trivial operations, 59–60

object composition, 61

object inheritance, 61

overview, 58–59

streams, 67

template method design pattern, 63

virtual functions, 61–64

finishing projects, 857–862

hard-coding

AI, 612–614

audio, 437

innovation, 14–15

managed/unmanaged comparison, 766–767

optimizing, 847–849

sharing (multiple projects), 127–128

source repositories

Avid AlienBrain, 114–115

branching, 115–118, 127–128

Microsoft Visual Source Safe,

111–112, 114

overview, 110–111

Perforce, 113–114

sandboxes, 116–118

SneakerNet, 110–111

Subversion, 112–113

TortoiseSVN, 112–113

static code analysis, 828

styles

braces, 55–56

consistency, 56–58

developing, 95

overview, 54

version control

Avid AlienBrain, 114–115

branching, 115–118, 127–128

Microsoft Visual SourceSafe, 111–112, 114

overview, 110–111

Perforce, 113–114

sandboxes, 116–118

SneakerNet, 110–111

Subversion, 112–113

TortoiseSVN, 112–113

code analyzers, 824–825

Code Project website, 313

collision systems, 586–588

collisions

bitmap collisions (controls), 300–301, 305

objects

characters, 583–586

collision systems, 586–588

doors, 585–586

game logic layer, 37–38

geometry, 582–583

hulls, 580–586

meshes, 580–586

properties, 578–580

raycasting, 577, 586–588

shapecasting, 586, 588

stairs, 585–586

testing, 583

time, 585

trees, 585–586

physics. See physics

SDKs. See SDKs

colors

3D graphics, 482–484

resources, 202–205

command interpreters (game logic layer),

40–41

Index 887

comments

code, 859–862

Lua, 340

communication

Lua/C++, 380–387

networks, 34–35

player feedback (cursors), 246–247, 302

competitor releases, 874–875

compilers, debugging, 845

compiling shaders

speed, 500

vertex shaders, 505–507

completing. See finishing

complexity (debugging techniques/tips), 817–818

components. See also actors; objects

accessing, 168–170

architecture, 159–160

building actors, 159–160

caches, 167

creating, 160–165

creator factory, 171

defining, 165–171

editing, 792–794

implementing, 170–171

Lua scripts, 387–389

physics SDKs, 593–594

sharing data

events, 173–174

overview, 171

pointers, 172–174

transforms, 171–172

showing, 789–792

storing, 168–170

composers, 6

composition (design practices), 61

compression

data

performance, 212

Zlib open source, 213–218

lossy compression, 204

quaternions, 471

resources, 204, 208–209

conferences, 13

configuration, 99–100

connecting (sockets)

clients, 666–669, 673–675

servers, 668–670, 684–686

sockets API, 658–659

consistency (code styles), 56–58

consoles (shutdown), 152–153

content, last-minute changes, 862–864

context-sensitive help, 304

controls. See also input

animation, 304

audio, 304, 408–414

bitmap collisions, 300–301, 305

C# editor interface, 772–784

characters (walking/running), 248

context-sensitive help, 304

cursors (player feedback), 246–247, 302

dance pads, 267–268

DirectInput, 243–245

dragging, 304

events. See events

fidelity, 247–248

focus order, 300

gamepads

acceleration, 261–262

dead zones, 256–259

normalizing input, 259–261

one-stick design, 261

overview, 255–256

twitch-looks, 257

two-stick design, 261

hit testing, 300–301, 305

input fidelity, 241

interfaces

defining, 298–300

overview, 297–298

keyboards

Alt keys, 267

events, 262–267

Function keys, 265

hot keys, 303

WASD conrols, 281–283, 736

mapping

action mapping, 245

objects, 243–245

overloading, 246

overview, 239–240

players

discoverability, 247

testing, 247

screen elements, 283–286

state, 301–302

buttons, 240

callbacks, 240

event handlers, 241–243

interface classes, 241–243

managing, 240–243

one-axis controls, 240

polling, 240

three-axis controls, 241

two-axis controls, 241

888 Index

targeting accuracy, 247–248

tooltips, 303

two-axis controls

state, 241

cursors (player feedback), 246–247, 302

mouse capturing, 249–252

mouse dragging, 252–255

state, 241

Wii accelerometers, 249

XInput, 243–245

convex meshes, 601–602

cooperative multitasking, 178–188

coordinates

3D graphics, 446–449

debugging techniques/tips, 824

copying, sharing files comparison, 809

core dumps (debugging), 810

counting (reference counting), 69–70

coworkers. See teams

CPU

caches, 78–79, 81

multithreading, 693–696

speed, initializing, 140

crashing (error handling), 799

creating. See also building

actors, 160–165

C# editor, 748

components, 160–165

creator factory, 171

dialog boxes

message boxes, 286–292

modal dialog boxes, 292–297

game logic, 145

game views, 271–281, 733–736

games

application layer, 722–723

events, 737, 741–745

game logic layer, 723–733

game views, 733–736

loading levels, 737–739

managing actors, 739–741

overview, 719–722

memory managers, 82–84, 232

physics SDKs

convex meshes, 601–602

objects, 599–601

triggers, 602–603

scripting languages, 337

sockets

sockets API, 655–659

writing, 663

textures, 487–488

threads, 696–698

vector objects (Lua), 349–350

views, 145

windows, 145

creator factory, 171

critical section (Windows threads), 700–702

cross products, 453–455

curly braces ({}), 346

cursors (player feedback), 246–247, 302

cut and paste bugs, 842

D
dance pads, 267–268

data. See also files; resources

compression

performance, 212

Zlib open source, 213–218

corruption (debugging memory), 839–840

data members (C# editor classes), 786–787

data structures

debugging techniques/tips, 822–823

game logic layer, 36–37

data-driven audio, 437

data-driven processes (main loops), 187

events, 309–312

packets (sockets), 665–666, 670–673

sharing

events, 173–174

overview, 171

pointers, 172–174

transforms, 171–172

storing (threads), 697

data corruption (debugging memory), 839–840

data members (C# editor classes), 786–787

data structures

debugging techniques/tips, 822–823

game logic layer, 36–37

data-driven audio, 437

data-driven processes (main loops), 187

dead zones (controls), 256–259

deadlock (threads), 703–704

death (managing events), 309

debug builds, 68

debugging. See also optimizing; techniques/tips;

testing; troubleshooting

assembly languages, 797–798, 845–846

breakpoints, 802, 804

bug numbers, 860–861

cameras

bouncing, 597

scene graphs, 550

Index 889

debugging. See also optimizing; techniques/tips;

testing; troubleshooting (continued)

compilers, 845

core dumps, 810

cut and paste bugs, 842

debug builds, 68

DirectX

graphics, 812–813

missing resources, 808

PIX, 812–813

pixels, 808, 812–813

shaders, 812–813

surfaces, 808

drivers, 844–845

errors

error handling, 798–800

error logging systems, 828–835

error message strings, 840

finding, 803

finishing projects, 852–857, 860–861

full-screen games, 807–808

hard drive space, 842–843

hardware, 845

heap, 835–839

instruction pointer, 804–805

MAP files, 800–802

measuring bugs, 853–854

memory, 842–843

data corruption, 839–840

memory leaks, 835–839

stack corruption, 840–842

Task Manager, 839

Microsoft Debugging Tools, 806–807

minidumps, 810–812

multithreading, 843–844

networks, copying/sharing files, 809

operating systems, 845

overview, 797–798

PDB files, 801–802

physics SDKs, 604–606

profiling

optimizing code, 847–849

overview, 846

performance, 846–847

release builds, 843

remote, 808–810

reporting bugs, 846

resources, 842–843

scene graphs, 550

scripts (Lua), 389

single/multiple monitor

comparison, 807–808

smoke testing, 853

System Debug Symbols, 806

techniques/tips

assembly code, 820–822

BoundsChecker, 825

breaks, 828

C++ object scope, 819–820

caveman debugging, 826–827

check routines, 822–823

code analyzers, 824–825

coordinates, 824

coworkers, 827–828

data structures, 822–823

disappearing bugs, 825

drawing, 823–824

experiment-driven process, 813–817

frame rates, 824

instruction pointers, 818–820

Lint, 824–825

logging, 826

login servers, 826–827

memory, 822–824

music, 827, 844

next statements, 818–820

overview, 813

reducing complexity, 817–818

reproducing bugs, 817

runtime analyzers, 825

scientific methodology, 813–817

static code analysis, 828

targets, 824

test objects, 824

values, 825–826

wireframes, 824

testers, 15–16

troubleshooting schedules, 871–872

UNIX, 810

utilities

DUMPBIN.EXE, 806

MSVSMON.EXE, 809–810

SYMCHK, 806–807

video cards, 845

Visual Studio, 806, 808–810

windowed mode, 808

windows, 803–804

Windows

functions, 800

symbol files, 805–807

WinDBG, 810

decibels, 392–393

decision trees (AI), 622–626

decompressing ZIP files, 713–715

890 Index

defining

actors, 165–168, 170–171

classes, audio, 399–400

components, 165–168, 170–171

controls, 298–300

events, 309–312

functions (Lua), 350

DelayProcess class, 186–187

delegates (event handlers), 313–314

demos, 878

design

code

C++, 59–60

class hierarchies, 60–61

class inheritance, 63

debug builds, 68

destructors, 59–60

encapsulation, 66–67

factories, 65–66

hidden code, 59–60

initializing objects, 67–68

interface classes, 64–65

non-trivial operations, 59–60

object composition, 61

object inheritance, 61

overview, 58–59

streams, 67

template method design pattern, 63

virtual functions, 61–64

scripting languages, 335

designers, 5–6

destroying actors, 323–324

destructors (design practices), 59–60

developing

code styles, 95

games

operating systems, 21–22

planning, 18

schedules, 19–21

tools, 17

interfaces, efficiency, 766

scripts (Lua), 389

dialog boxes

controls

defining, 298–300

overview, 297–298

DirectX Dialog Resource Manager, 270–271

message boxes, creating, 286–292

modal dialog boxes

closing on shutdown, 150–151

creating, 292–297

Dialog Resource Manager (DirectX), 270–271

dialogue/speech, 434–435

background, 436, 438–439

barks, 439–440

lip synching, 440–441

localization, 440

NPCs, 634, 638

overview, 439

player objectives, 440

recording, 441

text supplement, 440

dining philosophers’ problem,

703–704

Direct3D (DirectX), 50

DirectInput (DirectX), 51, 243–245

directories

files, 100–103

game engines, 103–104

save game directories, 146–147

tools, 103–104

DirectSound, 50–51, 414–426

DirectX

audio, 50–51

debugging

graphics, 812–813

missing resources, 808

PIX, 812–813

pixels, 808, 812–813

shaders, 812–813

surfaces, 808

Dialog Resource Manager, 270–271

Direct3D, 50

DirectInput, 51, 243–245

DirectSound, 50–51, 414–426

initializing, 145

input, 51

main loops

callback functions, 191–193

overview, 189

rendering displays, 190–191

updating, 191

OpenGL, 50

overview, 49–50

resource caches, 233

Text Helper, 270–271

disappearing bugs, 825

disasters (troubleshooting),

875–876

discoverability (controls)

dragging, 304

players, 247

displays. See screens

distance (physics), 569–576

Index 891

DLLs

application layer, 34–35

C# editor

architecture, 763–764

methods, 767–768

DNS (Domain Name System), 648–649, 653–654

documentation, 98

Domain Name System (DNS), 648–649, 653–654

doors (collisions), 585–586

dot products (vectors), 450–453

dragging

controls, 304

mouse, 252–255

drawing (debugging techniques/tips), 823–824

drivers (debugging), 844–845

DUMPBIN.EXE utility, 806

dumps (debugging), 810–812

dynamic avoidance (AI), 640–641

E
editing (C# editor)

components, 792–794

EditorForm class, 772–784

EditorForm class (C# editor), 772–784

editors

C# editor. See C# editor

changing, 765

testing, 765

effects (audio), 435–436

efficiency (developing interfaces), 766

employees. See teams

encapsulation, 66–67

ending. See finishing

equations (quadratic equations), 87–88

error logging systems, 828–835

errors

crashing, 799

error logging systems, 828–835

error messages, 840

finding, 803

handling, 798–800

Windows functions, 800

Euler angles, 469

event handlers

controls, 241–243

delegates, 313–314

keyboards, 262–267

Alt keys, 267

Function keys, 265

mouse, 249–255

event managers, 314–324, 380–387

events. See also controls

actors, destroying, 323–324

build times, 310

creating games, 737, 741–745

data, 309–312

defining, 309–312

dragging, 304

event handlers

controls, 241–243

delegates, 313–314

keyboards, 262–267

mouse, 249–255

game logic layer, 38–39

GUIDs, 310–312

initializing, 144–145

managing

death, 309

Event Managers, 314–324, 380–387

Lua/C++ communication, 380–387

overview, 307–309

multiplayer games (sockets), 686–692

physics SDKs, 606–608

processes comparison, 326

receiving, 711–713

sending, 708–711

sharing data, 173–174

streams, 311

types of, 324–326

exhaustion, 872–873

exiting. See shutdown

experiment-driven process, 813–817

exporting scripts (Lua), 368–370

F
factories (objects), 65–66

fading music, 436

features, removing, 871–872

feedback (players), 246–247, 302

fidelity (controls), 241, 247–248

file systems (resource caches), 31–33

files. See also data; resources

audio

backups, 395

formats, 395–396

loading, 401–408

copying/sharing debugging

comparison, 809

debugging

MAP files, 800–802

PDB files, 801–802

Windows symbol files, 805–807

892 Index

directories

files, 100–103

game engines, 103–104

save game directories, 146–147

tools, 103–104

file systems (resource caches), 31–33

Internet, 649–650

loading

audio, 401–408

progress bars, 408

time, 564

managing, 15

resources

callback functions, 212

data compression, 212–218

overview, 209–211

packaging, 211

performance, 212

storing (relative paths), 784

Zip (background decompressing), 713–715

filler speech. See barks

finding errors, 803

finishing projects

alpha milestone, 854

beta milestone, 854

breaks, 879–880

code, 857–862

comments, 859–862

debugging, 852–857, 860–861

last-minute content changes, 862–864

overview, 851–852, 876–877

patch builds, 878

performance, 854–855

postmortems, 878–879

product demos, 878

smoke testing, 853

testing archives, 877–878

finite state machines (AI), 616–622

first-to-market releases, 874–875

fixed-function 3D graphics, 445

floating-point numbers (3D graphics), 447–448, 450

flow control (Lua), 346–348

focus

design (scripting languages), 335

order (controls), 300

folders. See directories

fonts (DirectX), 270–271

for statements (Lua), 346–348

force (physics), 571–574, 603–604

formats

audio, 395–396

resources

3D object meshes, 197–200

animation, 200–202

audio, 205–206

bitmaps, 202–205

cinematics, 206–209

colors, 202–205

compression, 208–209

levels, 202

lossy compression, 204

maps, 202

music, 205–206

overview, 197

textures, 202, 204–205

video, 206–209

frame rates, 824

framework functions (C# editor), 753–756

frequencies (process values), 744

frustums (quaternions), 474–478

full-screen games (debugging), 807–808

Function keys, 265

functions

C# editor

actors, 756–763

framework, 753–756

C++, 363–366

callback functions

DirectX, 191–193

message queue, 212

InitInstance, 136–137

Lua, 342–343

defining, 350

exporting, 368–370

registering, 357

LuaPlus, 363–366

namespaces, 830

speed, 167

static functions, 830

virtual functions, 61–64

Windows (error handling), 800

future, multithreading, 718

fuzzy logic (AI), 627–630

G
game editors

C# editor. See C# editor

changing, 765

testing, 765

game engines

C# editor, 753–763

directory structures, 103–104

artist limitations, 43

game logic, initializing, 145

Index 893

game logic layer

collisions, 37–38

command interpreters, 40–41

creating games, 723–733

data structures, 36–37

events, 38–39

networks, 47–48

overview, 35–36

physics, 37–38

process managers, 39

state, 36–37

game views. See interfaces; views; windows

GameCodeApp class, 135–136

gamepads

acceleration, 261–262

dead zones, 256–259

normalizing input, 259–261

one-stick design, 261

overview, 255–256

twitch-looks, 257

two-stick design, 261

games. See also projects

architecture. See architecture

controls. See controls

creating

application layer, 722–723

events, 737, 741–745

game logic layer, 723–733

game views, 733–736

loading levels, 737–739

managing actors, 739–741

overview, 719–722

developing

operating systems, 21–22

planning, 18

schedules, 19–21

tools, 17

game engines

C# editor, 753–763

directory structures, 103–104

artist limitations, 43

initializing. See initialization

input. See input

multiplayer games. See multiplayer games

shutdown

application layer, 33–35

closing modal dialog boxes, 150–151

consoles, 152–153

managing, 148–153

overview, 129, 147–148

physics SDKs, 595–596

sockets API, 654–655

geometry (collisions), 582–583

global memory (RAM), 75

global variables

Lua variables, 356

LuaPlus, 361–362

globalization

application layer, 34

interfaces, 305

GOAP (goal-oriented action planning), 635–636

graphical user interfaces. See interfaces

graphics

3D graphics. See 3D graphics

debugging, 812–813

displays (game views), 41–43

gravity (physics), 571–572

GUIDs (events), 310–312

GUIs. See interfaces

H
HAL (hardware abstraction layer), 243–244

handedness (3D graphics), 449

handlers. See event handlers

handles (audio), 398–408

handling

errors, 798–800

events. See event handlers

messages (C# editor), 769–772

hard drives

debugging space, 842–843

initializing (storage space), 138–139

ticking (troubleshooting), 212

hard-coding

AI, 612–614

audio, 437

hardware

debugging, 845

hardware abstraction layer, 243–244

input. See input

overview, 8

quality, initializing, 141

threads, 717

understanding, 210–211

hardware abstraction layer (HAL), 243–244

heap

debugging, 835–839

RAM, 76

help context-sensitive), 304

hidden code, 59–60

hierarchies (classes)

audio, 397–398

design practices, 60–61

screens, 299

894 Index

history, programming languages

assembly languages, 331

C++, 331–333

overview, 330

hit testing, 300–301, 305

hobbyists, 4

hot keys (controls), 303

hulls (collisions), 580–586

I
if statements (Lua), 346–347

images. See graphics

Impact Software website, 302

implementing

actors, 170–171

components, 170–171

scene graphs, 539

Indie Games Festival website, 246

inertia (physics), 574

inheritance

classes

building actors, 155–159

design practices, 63

Lua/C++, 379

objects (design practices), 61

initializing

application layer, 33–35

CPU speed, 140

creating game logic, 145

creating views, 145

creating windows, 145

DirectX, 145

events, 144–145

GameCodeApp class, 135–136

hard drive storage space, 138–139

hardware quality, 141

loading cache resources, 141–142, 147

loading text strings, 142–144

memory, 139–140

multiple instances, 137–138

overview, 133

resource caches, 141–142, 147

save game directories, 146–147

script managers, 144–145

system resources, 136–137

WinMain, 133–135

C# editor clases, 786–787

C++, 130–133

InitInstance function, 136–137

objects, 67–68

overview, 129–130

physics SDKs, 594–595

sockets API, 654–655

InitInstance function, 136–137

innovation

code, 14–15

interfaces, risks, 246

input. See also controls

controls

fidelity, 241

normalizing, 259–261

DirectX, 51

keyboards

Alt keys, 267

events, 262–267

Function keys, 265

hot keys, 303

WASD conrols, 281–283, 736

reading, 31

screen elements, 283–286

instances (multiple, initializing), 137–138

instruction pointers (debugging), 804–805, 818–820

integrating (physics SDKs)

components, 593–594

creating convex meshes, 601–602

creating objects, 599–601

creating triggers, 602–603

debugging, 604–606

events, 606–608

force, 603–604

initializing, 594–595

overview, 588–593

shutdown, 595–596

torque, 603–604

udating, 596–599

interface class (scene graphs), 524–526

interfaces. See also views; windows

audio (architecture), 408–414

C# editor

actors list, 777–780

asset tree, 775–777

controls, 772–784

menu bar, 780–784

classes

controls, 241–243

design practices, 64–65

interface class (scene graphs), 524–526

controls. See controls

developing (efficiency), 766

dialog boxes. See dialog boxes

globalization, 305

innovation, risks, 246

keyboards

Index 895

interfaces. See also views; windows (continued)

hot keys, 303

WASD conrols, 281–283, 736

localization, 305

open source, 305

overview, 269

players

testing, 247

understanding, 306

resource caches, 222

screens

aspect ratio, 290

class hierarchies, 299

debugging, 807–808

elements, 283–286

full-screen games, 807–808

managing transitions, 284

rendering displays, 190–191

techniques/tips, 304–306

text (DirectX Text Helper), 270–271

internationalization (globalization)

application layer, 34

interfaces, 305

Internet

DNS, 648–649

files, 649–650

IP addresses, 646–648

overview, 643

programs, 649–650

protocols, 644–645

sockets. See sockets

TLDs, 648–649

IP addresses, 646–648

J
jobs

non-disclosure agreements, 2

overview, 1–3

stability, 22–23

joysticks. See two-axis controls

K
keyboards (controls)

Alt keys, 267

events, 262–267

Function keys, 265

hot keys, 303

WASD conrols, 281–283, 736

keyword, auto, 164–165

kilohertz, 392

L
languages

assembly, 331, 797–798, 820–822, 845–846

programming languages. See programming

languages

scripting languages. See scripts/scripting

languages

launching audio, 431–432

layers

application layer. See application layer

game logic layer

collisions, 37–38

command interpreters, 40–41

creating games, 723–733

data structures, 36–37

events, 38–39

networks, 47–48

overview, 35–36

physics, 37–38

process managers, 39

state, 36–37

hardware abstraction layer, 243–244

leadership (schedules), 867

leaks (memory), 148, 835–839

legal matters (non-disclosure agreements), 2

Level of Detail for 3D Graphics website, 237

levels

loading, 737–739

resources, 202

libraries

DLLs

application layer, 34–35

C# editor architecture, 763–764

C# editor methods, 767–768

tolua++, 357

light manager class, 552–554

light node class, 551–554

light nodes, 551–554

lighting

3D graphics, 482–484

scene graphs, 539

light nodes, 551–554

managing, 552–554

limitations

artists, 43

scripting languages, 336–337

Lint, 824–825

lip synching, 440–441

listener registries (Event Managers),

314–324, 380–387

listening (sockets), 673–675

896 Index

loading

debug builds, 68

files

audio, 401–408

progress bars, 408

time, 564

levels, 737–739

resources, 224–225

initializing, 141–142, 147

tracking, 222–224

text strings, 142–144

textures, 491–494

threads, priorities, 706

localization

application layer, 34

dialogue/speech, 440

interfaces, 305

logging

debugging techniques/tips, 826

error logging systems, 828–835

logic

fuzzy logic (AI), 627–630

game logic, initializing, 145

game logic layer

collisions, 37–38

command interpreters, 40–41

creating games, 723–733

data structures, 36–37

events, 38–39

networks, 47–48

overview, 35–36

physics, 37–38

process managers, 39

state, 36–37

logic class (C# editor), 750–751

logic class (C# editor), 750–751

login servers, 826–827

loops

Lua, 346–348

main loops. See main loops

lossy compression, 204

Lua

AI, 617

C++

binding, 356–357

C API, 356

class inheritance, 379

Event Managers, 380–387

functions, 363–366

luabind, 357

registering functions, classes, 357

tolua++ library, 357

comments, 340

curly braces ({}), 346

flow control, 346–348

for statements, 346–348

functions, 342–343

C++ functions, 363–366

defining, 350

if statements, 346–347

loops, 346–348

LuaPlus

functions, 363–366

global variables, 361–362

objects, 358–360

overview, 357–358

state, 358

tables, 360–361

memory, managing, 356

object-oriented programming

class abstractions, 353–355

metatables, 351–353

overview, 349–350

vector objects, 349–350

operators, 348–349

overview, 339–340

scripts

C++ class inheritance, 379

components, 387–389

debugging, 389

developing, 389

exporting, 368–370

managing actors, 387–389

managing process, 370–379, 619

state, managing, 367–368

tables, 343–346

variables, 340–341

global variables, 356

naming, 341, 355

nil value, 341

private variables, 355

public variables, 355

scope, 341

website, 390

while statements, 346–347

luabind, 357

LuaPlus

functions, 363–366

global variables, 361–362

objects, 358–360

overview, 357–358

state, 358

tables, 360–361

Index 897

M
main loops

application layer, 33–35

cooperative multitasking, 178–188

data-driven processes, 187

DelayProcess class, 186–187

DirectX

callback functions, 191–193

overview, 189

rendering displays, 190–191

updating, 191

multithreading, 176–178

operating systems, 188–189

overview, 175–176

Process class, 178–183, 187–188

ProcessManager class, 183–185

ScriptProcess class, 370–379, 619

updating, 176

managed/unmanaged code comparison,

766–767

managers

memory managers

application layer, 33

creating, 82–84, 232

socket managers, 675–684

managing

actors

C# editor, 784–795

creating games, 739–741

Lua scripts, 387–389

code, 766–767

events

death, 309

Event Managers, 314–324

Lua/C++ communication, 380–387

overview, 307–309

files, 15

Lua scripts process, 370–379, 619

memory

application layer, 33

creating, 82–84, 232

Lua, 356

processes (audio), 426–431

resource caches, 233–237

scene graphs (light manager), 552–554

screen transitions, 284

shutdown, 148–153

sockets, 675–684

state

controls, 240–243

Lua, 367–368

MAP files (debugging), 800–802

mapping controls, 243–245

maps (resources), 202

mass (physics), 571–574

materials (3D graphics), 484–487

math

3D graphics

axes, 446–447

coordinates, 446–449

floating-point numbers, 447–448

handedness, 449

orientation, 446–447

overview, 445–446

units of measurement, 448

vectors, 449–455

vectors, calculating angles, 450–453

vectors, cross products, 453–455

vectors, dot products, 450–453

vectors, floating-point numbers, 450

vectors, normalizing, 449–450

vectors, scalars, 450

vectors, targets, 452–455

vectors, unit vectors, 449–453

C++ classes

clipping planes, 481

matrices, 458–469

matrices, 4X4, 459

matrices, moving objects, 462–469

matrices, multiplying, 463

matrices, rotation, 459–469

matrices, unit circles, 459–461

overview, 456

quaternions, compression, 471

quaternions, Euler angles, 469

quaternions, frustums, 474–478

quaternions, overview, 469–473

quaternions, planes, 473–474

transformations, 478–481

vectors, 456–458, 481–482

physics. See physics

matrices

3D graphics (C++ math classes),

458–469

4X4, 459

moving objects, 462–469

multiplying, 463

rotation, 459–469

unit circles, 459–461

scene graphs, 538–539, 541–542

measuring bugs, 853–854

meetings (postmortems), 878–879

898 Index

memory

accessing, 78–79

alignment (speed), 80–81

CPU caches, 78–79, 81

debugging, 842–843

data corruption, 839–840

memory leaks, 835–839

stack corruption, 840–842

Task Manager, 839

debugging techniques/tips, 822–824

initializing, 139–140

leaks, 148, 835–839

managing (Lua), 356

memory managers

application layer, 33

creating, 82–84, 232

memory pools, 88–95

optimizing, 78–79

RAM

global memory, 75

heap, 76

overview, 75–77

stack, 75–76

VRAM (video RAM), 78

scripting languages, 336

threads (smart pointers), 73

types, 75

virtual memory, 33, 81–82

memory pools, 88–95

menu bar (C# editor interface), 780–784

Mersenne Twister pseudo random number

generator, 85–87

meshes

3D graphics, 494–497

3D object meshes, 197–200

convex meshes (physics SDKs), 601–602

object collisions, 580–586

scene graphs, 560–564

message boxes, creating, 286–292

message queue (callback functions), 212

MessageHandler class (C# editor), 769–772

messages

errors (debugging), 840

handling (C# editor), 769–772

message boxes, creating, 286–292

message queue (callback functions), 212

MessageHandler class (C# editor), 769–772

metatables (Lua), 351–353

methods (C# editor), 767–768

Microsoft Debugging Tools, 806–807

milestone builds, 124–127

minidumps (debugging), 810–812

mip-mapping (textures), 490–491

missing resources (debugging), 808

mixing audio, 434–436

modal dialog boxes

closing on shutdown, 150–151

creating, 292–297

monitors, single/multiple debugging

comparison, 807–808

morale, 867, 873–874

mouse. See also two-axis controls

capturing, 249–252

cursors (player feedback), 246–247, 302

dragging, 252–255

event handlers, 249–255

moving objects (C++ math classes), 462–469

MSVSMON.EXE debugging utility, 810

MSVSMON.EXE utility, 809

multiplatform projects, 108–110

multiplayer games

game views, 45

networks, 48

sockets

client connections, 666–669, 673–675

data packets, 665–666, 670–673

events, 686–692

listening, 673–675

overview, 663–665

server connections, 668–670, 684–686

socket managers, 675–684

multiple instances, initializing, 137–138

multiple projects, sharing code, 127–128

multiple resource caches, 220

multiple/single monitor debugging

comparison, 807–808

multiplying matrices (C++ math classes), 463

multiprogramming. See multithreading

multitasking (cooperative multitasking),

178–188

multithreading. See also threads

audio, 396–397

CPU, 693–696

debugging, 843–844

main loops, 176–178

overview, 693

real-time processes

classes, 705–708

loading priorities, 706

overview, 704–705

receiving events, 711–713

sending events, 708–711

Index 899

multithreading. See also threads (continued)

threads

background decompressing Zip files, 713–715

creating, 696–698

deadlock, 703–704

dining philosophers’ problem, 703–704

future, 718

hardware, 717

mutexes, 699–700

racing, 702

safety, 704

semaphores, 699–700

setting, 699–700

stacks, 697

starvation, 703–704

storing data, 697

synchronizing processes, 698–702

techniques/tips, 715–716

testing, 699–700

Windows critical section, 700–702

music

composers, 6

debugging techniques/tips, 827, 844

fading, 436

recording, 438

resources, 205–206

streaming, 400

mutexes (threads), 699–700

N
naked pointers, 68–69

namespaces (static functions), 830

naming Lua variables, 341, 355

NativeMethods class (C# editor), 767–768

networks

architectures

game logic layer, 47–48

game views, 47

multiplayer games, 48

overview, 46–47

communication (application layer), 34–35

debugging (copying/sharing files), 809

outages (SneakerNet), 110–111

next statements (debugging), 818–820

nil value (Lua variables), 341

nodes (scene graphs)

actors, 539, 542

additional, 565

alpha pass, 542–544

camera nodes, 548–551

cameras, 538

light nodes, 551–554

lighting, 539

matrices, 538–539, 541–542

meshes, 560–564

root nodes, 538, 545–548

scene node class, 529–536

sky nodes, 554–560

non-disclosure agreements, 2

non-trivial operations, 59–60

normal builds, 123–124

normalizing

input (controls), 259–261

vectors (3D graphics), 449–450

normals (3D graphics), 482–484

NPCs, dialogue/speech, 634, 638

numbers

algorithms, 87–88

bug numbers, 860–861

floating-point numbers, 447–448, 450

quadratic equations, 87–88

random number generators, 85–87

windows (C# editor), 766

Nu-Mega BoundsChecker, 825

O
objectives (character dialogue/speech), 440

object-oriented programming (Lua)

class abstractions, 353–355

metatables, 351–353

overview, 349–350

vector objects, 349–350

objects. See also actors; components

3D object meshes, 197–200

audio, 432

black, 485

C++

compression, 471

debugging, 819–820

Euler angles, 469

frustums, 474–478

moving, 462–469

overview, 469–473

planes, 473–474

rotating, 459–469

serializing, 690

collisions

characters, 583–586

collision systems, 586–588

doors, 585–586

game logic layer, 37–38

geometry, 582–583

hulls, 580–586

meshes, 580–586

900 Index

physics. See physics

properties, 578–580

raycasting, 577, 586–588

SDKs. See SDKs

shapecasting, 586, 588

stairs, 585–586

testing, 583

time, 585

trees, 585–586

data structures, 36–37

debugging

C++, 819–820

surfaces, 808

test objects, 824

design practices

composition, 61

factories, 65–66

inheritance, 61

initializing, 67–68

events. See events

game logic layer, 36–37

LuaPlus, 358–360

mapping controls, 243, 245

object-oriented programming (Lua)

class abstractions, 353–355

metatables, 351–353

overview, 349–350

vector objects, 349–350

physics

acceleration, 569–574

angular velocity, 574–575

center of mass, 574

collisions, 575–576

distance, 569–571, 575–576

force, 571–574

game logic layer, 37–38

gravity, 571–572

inertia, 574

mass, 571–574

rotation, 574

time, 574

torque, 574–575

units of measure, 569

velocity, 569–571, 574–575

state, 36–37

vector objects (Lua), 349–350

OGG files, 403–408

one-axis controls (state), 240

one-stick design (gamepads), 261

OOP (Lua)

class abstractions, 353–355

metatables, 351–353

overview, 349–350

vector objects, 349–350

Open scripts, 126

open source

data compression (Zlib), 213–218

interfaces, 305

OpenGL, 50

operating systems

debugging, 845

developing games, 21–22

main loops, 188–189

operators (Lua), 348–349

optimizing. See also debugging; techniques/tips;

testing; troubleshooting

code, 847–849

memory access, 78–79

options

builds (Visual Studio), 104–108

game views, 45

orientation

3D graphics, 446–447

objects (C++ math classes)

compression, 471

Euler angles, 469

frustums, 474–478

overview, 469–473

planes, 473–474

OSs (operating systems)

debugging, 845

developing games, 21–22

main loops, 188–189

outages (networks), 110–111

overloading controls, 246

overtime (schedules), 865–868

P
packaging (resources), 211

packets (sockets), 665–666, 670–673

parentheses. See braces

paste bugs, 842

patch builds, 878

pathfinding (AI)

A* (A-Star), 638–640

dynamic avoidance, 640–641

overview, 636–638

PDB files (debugging), 801–802

percentages (variables), 625

Perforce (source repositories), 113–114

performance

finishing projects, 854–855

profiling (debugging), 846–847

resources, 212

Index 901

personnel. See teams

physics

objects

acceleration, 569–574

angular velocity, 574–575

center of mass, 574

collisions, 567–568, 575–576

distance, 569–571, 575–576

force, 571–574

game logic layer, 37–38

gravity, 571–572

inertia, 574

mass, 571–574

rotation, 574

time, 574

torque, 574–575

units of measure, 569

velocity, 569–571, 574–575

SDKs

choosing, 576–578, 609

components, 593–594

creating convex meshes, 601–602

creating objects, 599–601

creating triggers, 602–603

debugging, 604–606

events, 606–608

force, 603–604

initializing, 594–595

integration overview, 588–593

shutdown, 595–596

torque, 603–604

udating, 596–599

pipeline (3D graphics), 444–445

PIX (debugging), 812–813

pixel shaders

C++ helper class, 516–520

overview, 515–516

rendering, 520–521

pixels

debugging, 808, 812–813

pixel shaders

C++ helper class, 516–520

overview, 515–516

rendering, 520–521

PKZIP utility, 196

planes

clipping planes, 481

quaternions, 473–474

planning (developing games), 18

platforms

overview, 8–13

multiplatform projects, 108–110

players

controls. See controls

feedback (cursors), 246–247, 302

game views. See interfaces; views; windows

input. See input

interacting with, 3–4

multiplayer games. See multiplayer games

objectives (character dialogue/speech), 440

testing, 247

understanding, 306

pointers

C++ objects, 690

instruction pointers, 818–820

naked pointers, 68–69

sharing data, 172–174

smart pointers

C++ shared_ptr, 71–75

memory (threads), 73

overview, 68–69

reference counting, 69–70

troubleshooting, 73–75

polling (state), 240

ports (sockets), 658–659

postmortems, 878–879

preloading. See loading

prime numbers (quadratic equations), 87–88

printing error messages (debugging), 840

priorities, loading threads, 706

private variables (Lua), 355

Process class, 178–183, 187–188

process managers

game logic layer, 39

game views, 44

processes

3D graphics, 444–445

audio, 426–431

builds, 118–120

data-driven processes (main loops), 187

events comparison, 326

frequency values, 744

Lua scripts, 370–379, 619

process managers

game logic layer, 39

game views, 44

real-time processes

classes, 705–708

loading priorities, 706

overview, 704–705

receiving events, 711–713

sending events, 708–711

synchronizing (threads), 698–702

ProcessManager class, 183–185

902 Index

producers (teams), 6

product demos, 878

profession. See jobs

professionalism, 874

profiling

optimizing code, 847–849

overview, 846

performance, 846–847

Program class (C# editor), 768–769

programmable 3D graphics, 445

programmers, 4–5

programming languages

defined, 334

history

assembly languages, 331

C++, 331–333

overview, 330

overview, 329

scripting languages comparison, 334, 336–337

programs (Internet), 649–650

progress bars, loading files, 408

project managers, 6

projects. See also games

automating, 98

building overview, 118–120

builds. See builds

directories

files, 100–103

game engines, 103–104

tools, 103–104

documentation, 98

finishing

alpha milestone, 854

beta milestone, 854

breaks, 879–880

code, 857–862

comments, 859–862

debugging, 852–857, 860–861

last-minute content changes, 862–864

overview, 851–852, 876–877

patch builds, 878

performance, 854–855

postmortems, 878–879

product demos, 878

smoke testing, 853

testing archives, 877–878

multiplatform, 108–110

multiple, sharing code, 127–128

restarting, 875–876

starting overview, 97–99

promoting builds, 853

properties

object collisions, 578–580

scene graphs, 526–529

protocols

Internet, 644–645

TCP, 644–645

UDP, 644–645

prototyping (scripting languages), 334–335

psycho-history, 58

public variables (Lua), 355

Python, 338–339

Q
quadratic equations, 87–88

quality, 141

quaternions (C++ math classes)

compression, 471

Euler angles, 469

frustums, 474–478

overview, 469–473

planes, 473–474

queues (callback functions), 212

R
racing (threads), 702

RAD Game Tools website, 50

RAM. See also memory

global memory, 75

heap, 76

overview, 75–77

stack, 75–76

VRAM (video RAM), 78

random number generators, 85–87

random set traversal, 87–88

randomization (AI), 614–616

rapid prototyping (scripting languages), 334–335

raycasting (collisions), 577, 586–588

readers (audio), 396–397

reading

batching (resource caches), 235

input, 31

readers (audio), 396–397

sockets, 663

real-time processes

classes, 705–708

loading priorities, 706

overview, 704–705

receiving events, 711–713

sending events, 708–711

Real-Time Rendering website, 575

receiving events, 711–713

Index 903

recording audio, 393–395

dialogue/speech, 441

music, 438

volume, 437

reducing complexity (debugging), 817–818

reference counting (smart pointers), 69–70

registering Lua functions, classes, 357

relative paths (storing files), 784

release builds (debugging), 843

releases, first to market, 874–875

remote debugging, 808–810

removing features (schedules), 871–872

rendering

displays, 190–191

scene graphs, 526–529

root nodes, 545–548

scene class, 539–541

sky nodes, 554–560

shaders, 520–521

reporting bugs, 846

repositories (source code)

Avid AlienBrain, 114–115

branching, 115–118, 127–128

Microsoft Visual SourceSafe, 111–112, 114

overview, 110–111

Perforce, 113–114

sandboxes, 116–118

SneakerNet, 110–111

Subversion, 112–113

TortoiseSVN, 112–113

reproduction

audio, 393–395

bugs, 817

resources. See also data; files

3D graphics, 444

audio, 398–408

caches

batching reads, 235

buffer zones, 234

building, 225–233

DirectX, 233

file systems, 31–33

initializing, 141–142, 147

interfaces, 222

loading, 224–225

managing, 233–237

multiple, 220

overview, 218–222

tracking loaded resources, 222–224

world design, 233–237

debugging, 808, 842–843

files

callback functions, 212

data compression, 212–218

overview, 209–211

packaging, 211

performance, 212

formats

3D object meshes, 197–200

animation, 200–202

audio, 205–206

bitmaps, 202–205

cinematics, 206–209

colors, 202–205

compression, 208–209

levels, 202

lossy compression, 204

maps, 202

music, 205–206

overview, 197

textures, 202, 204–205

video, 206–209

loading, 141–142, 147

overview, 195–197

storage, 197

restarting projects, 875–876

restoring scene graphs, 539–541

reticles. See cursors

risks, innovation, 246

RNG (random number generators), 85–87

root nodes (scene graphs), 538, 545–548

rotation

C++ math classes, 459–469

physics, 574

running controls, 248

runtime analyzers, 825

S
safety (threads), 704

sandboxes (source repositories), 116–118

saving

debug builds, 68

save game directories, 146–147

scalars (vectors), 450

scene class (scene graphs), 536–544

actors, 539, 542

alpha pass, 542–544

cameras, 538

implementing, 539

lighting, 539

matrices, 538–539, 541–542

rendering, 539–541

restoring, 539–541

904 Index

root nodes, 538, 545

updating, 539–541

scene graphs

axis-aligned bounding boxes, 528

bounding spheres, 528

camera node class, 548–551

debugging, 550

interface class, 524–526

light manager class, 552–554

light node class, 551–554

meshes, 560–564

nodes, additional, 565

overview, 523–524

properties, 526–529

rendering, 526–529

root node class, 545–548

scene class, 539–541

root node class, 545–548

scene class, 536–544

actors, 539–542

alpha pass, 542–544

cameras, 538

implementing, 539

lighting, 539

matrices, 538–539, 541–542

rendering, 539–541

restoring, 539–541

root nodes, 538, 545

updating, 539–541

scene node class, 529–536

sky node class, 554–560

scene node class (scene graphs), 529–536

scenes. See scene graphs

schedules

developing games, 19–21

finishing projects, 862–864

troubleshooting

adding team members, 868–869

breaks, 866

changing, 869–870

debugging, 871–872

leadership, 867

overtime, 865–868

removing features, 871–872

scientific methodology (debugging techniques/tips),

813–817

scintillation (textures), 488–490

scope (Lua variables), 341

screens. See also interfaces

aspect ratio, 290

class hierarchies, 299

debugging, 807–808

elements, 283–286

full-screen games, 807–808

managing transitions, 284

rendering displays, 190–191

Script Creation Utility for Maniac Mansion

(SCUMM), 334

script managers, initializing, 144–145

ScriptProcess class (main loops), 370–379, 619

scripts/scripting languages. See also code

benefits, 337–338

build scripts

automating, 121–122

Close scripts, 126

milestone builds, 124–127

normal builds, 123–124

Open scripts, 126

updating, 124

choosing, 338

creating, 337

defined, 334

design-focused, 335

limitations, 336–337

Lua. See Lua

memory, 336

overview, 329

programming languages comparison, 334, 336–337

Python, 338–339

rapid prototyping, 334–335

Script Creation Utility for Maniac Mansion

(SCUMM), 334

script managers, initializing, 144–145

ScriptProcess class (main loops), 370–379, 619

SCUMM, 334

speed, 336

SCUMM (Script Creation Utility for Maniac

Mansion), 334

SDKs (software development kits), 7

choosing, 576–578, 609

components, 593–594

creating convex meshes, 601–602

creating objects, 599–601

creating triggers, 602–603

debugging, 604–606

events, 606–608

force, 603–604

initializing, 594–595

integration overview, 588–593

shutdown, 595–596

torque, 603–604

udating, 596–599

seeds, 85

semaphores (threads), 699–700

Index 905

sending events, 708–711

serializing (C++ objects), 690

servers

login servers (debugging), 826–827

sockets

connecting, 668–670, 684–686

sockets API, 660–662

sets, random traversal, 87–88

setting threads, 699–700

shaders

compiling (speed), 500

debugging, 812–813

overview, 499–501, 521

pixel shaders

C++ helper class, 516–520

overview, 515–516

vertex shaders

C++ helper class, 507–515

compiling, 505–507

overview, 501–505

rendering, 520–521

shapecasting (object collisions), 586, 588

shared_ptr (C++ smart pointers), 71–75

sharing

code (multiple projects), 127–128

copying files comparison, 809

data

events, 173–174

overview, 171

pointers, 172–174

transforms, 171–172

shared_ptr (C++ smart pointers), 71–75

showing components, 789–792

shutdown

application layer, 33–35

closing modal dialog boxes, 150–151

consoles, 152–153

managing, 148–153

overview, 129, 147–148

physics SDKs, 595–596

sockets API, 654–655

single/multiple monitor debugging comparison,

807–808

sky nodes (scene graphs), 554–560

smart pointers

C++ shared_ptr, 71–75

memory (threads), 73

overview, 68–69

reference counting, 69–70

troubleshooting, 73–75

smoke testing, 853

SneakerNet, 110–111

socket managers, 675–684

sockets

Berkeley, 645–646

Internet, 645–646

multiplayer games

client connections, 666–669, 673–675

data packets, 665–666, 670–673

events, 686–692

listening, 673–675

overview, 663–665

server connections, 668–670, 684–686

socket managers, 675–684

socket managers, 675–684

sockets API

connecting sockets, 658–659

creating sockets, 655–659

DNS, 653–654

initialization, 654–655

overview, 650

ports, 658–659

reading sockets, 663

servers, 660–662

shutdown, 654–655

utility functions, 651–653

writing sockets, 663

Winsock, 645–646

sockets API

connecting sockets, 658–659

creating sockets, 655–659

DNS, 653–654

initialization, 654–655

overview, 650

ports, 658–659

reading sockets, 663

servers, 660–662

shutdown, 654–655

utility functions, 651–653

writing sockets, 663

software development kits. See SDKs

sound. See audio

sound waves, 394–395

source code repositories

Avid AlienBrain, 114–115

branching, 115–118, 127–128

Microsoft Visual SourceSafe, 111–112, 114

overview, 110–111

Perforce, 113–114

sandboxes, 116–118

SneakerNet, 110–111

Subversion, 112–113

TortoiseSVN, 112–113

speech. See dialogue/speech

906 Index

speed. See also time

acceleration

gamepad controls, 261–262

physics, 569–574

CPU, initializing, 140

functions, 167

memory, alignment, 80–81

profiling

optimizing code, 847–849

overview, 846

performance, 846–847

scripting languages, 336

shaders, compiling, 500

velocity (physics), 569–571, 574–575

stability (jobs), 22–23

stack

corruption (debugging memory), 840–842

RAM, 75–76

threads, 697

stairs (collisions), 585–586

starting projects overview, 97–99

starvation (threads), 703–704

state

AI

finite state machines, 617–622

utility theory, 630–634

controls, 301–302

buttons, 240

callbacks, 240

event handlers, 241–243

interface classes, 241–243

managing, 240–243

one-axis controls, 240

polling, 240

three-axis controls, 241

two-axis controls, 241

game logic layer, 36–37

Lua

LuaPlus, 358

managing, 367–368

objects, 36–37

statements

Lua

for statements, 346–348

if statements, 346–347

while statements, 346–347

next statements (debugging), 818–820

static code analysis (debugging), 828

static functions, 830

storage/storing

actors, 168–170

components, 168–170

data (threads), 697

files (relative paths), 784

hard drives, initializing, 138–139

resources, 197

streams

audio, 399

code design practices, 67

events, 311

music, 400

strings

application layer, 34

initializing, 142–144

styles (code)

braces, 55–56

consistency, 56–58

developing, 95

overview, 54

subsampling (textures), 488–490

Subversion, 112–113

surfaces (debugging), 808

symbol files (debugging), 805–807

SYMCHK utility, 806–807

synchronizing. See also time

audio, 432–434

audio readers/writers, 396–397

C# editor, 786

lip synching, 440–441

processes (threads), 698–702

system clock, 34

system clock, 34

System Debug symbols (Visual Studio), 806

system RAM. See RAM

system resources, initializing, 136–137

T
tables (Lua), 343–346

LuaPlus, 360–361

metatables, 351–353

targets

controls, accuracy, 247–248

debugging techniques/tips, 824

vectors (3D graphics), 452–455

Task Manager (debugging memory), 839

TCP protocol, 644–645

teams

animators, 5

audio engineers, 6

composers, 6

designers, 5–6

exhaustion, 872–873

morale, 867, 873–874

Index 907

teams (continued)

postmortems, 878–879

producers, 6

professionalism, 874

programmers, 4–5

project managers, 6

team members

adding, 868–869

debugging techniques/tips, 827–828

testers, 6

techniques/tips. See also debugging;

optimizing; testing;

troubleshooting

debugging

assembly code, 820–822

BoundsChecker, 825

breaks, 828

C++ object scope, 819–820

caveman debugging, 826–827

check routines, 822–823

code analyzers, 824–825

coordinates, 824

coworkers, 827–828

data structures, 822–823

disappearing bugs, 825

drawing, 823–824

experiment-driven process, 813–817

frame rates, 824

instruction pointers, 818–820

Lint, 824–825

logging, 826

memory, 822–824

music, 827, 844

next statements, 818–820

overview, 813

reducing complexity, 817–818

reproducing bugs, 817

runtime analyzers, 825

scientific methodology, 813–817

static code analysis, 828

targets, 824

test objects, 824

UNIX, 826–827

values, 825–826

wireframes, 824

interfaces, 304–306

threads, 715–716

template method design pattern, 63

test objects (debugging), 824

testers

bugs, 15–16

teams, 6

testing. See also debugging; optimizing;

techniques/tips; troubleshooting

archives, 877–878

C# editor, 795

controls, 247

game editors, 765

object collisions, 583

smoke testing, 853

threads, 699–700

text

dialogue/speech supplement, 440

DirectX Text Helper, 270–271

strings, initializing, 142–144

Text Helper (DirectX), 270–271

textures

creating, 487–488

loading, 491–494

mip-mapping, 490–491

resources, 202, 204–205

scintillation, 488–490

subsampling, 488–490

vertices, 487

threads. See also multithreading

application layer, 34–35

background decompressing ZIP

files, 713–715

creating, 696–698

deadlock, 703–704

dining philosophers’ problem, 703–704

future, 718

hardware, 717

memory (smart pointers), 73

mutexes, 699–700

racing, 702

real-time processes

classes, 705–708

loading priorities, 706

overview, 704–705

receiving events, 711–713

sending events, 708–711

safety, 704

semaphores, 699–700

setting, 699–700

stacks, 697

starvation, 703–704

storing data, 697

synchronizing processes, 698–702

techniques/tips, 715–716

testing, 699–700

Windows critical section, 700–702

three-axis controls, 241

ticking hard drives, 212

908 Index

time. See also speed

builds (events), 310

loading files, 564

object collisions, 585

physics, 574

real-time processes

classes, 705–708

loading priorities, 706

overview, 704–705

receiving events, 711–713

sending events, 708–711

synchronizing

audio, 432–434

audio readers/writers, 396–397

C# editor, 786

lip synching, 440–441

processes (threads), 698–702

system clock, 34

tips. See techniques/tips

TLDs (top-level domains), 648–649

tolua++ library, 357

tools

developing games, 17

directory structures, 103–104

tooltips, 303

top-level domains (TLDs), 648–649

torque

physics, 574–575

physics SDKs, 603–604

TortoiseSVN, 112–113

touchscreens. See two-axis controls

tracking loaded resources, 222–224

tradeshows, 13

transforms, sharing data, 171–172

transitions (screens), 284

transformations (C++ math classes), 478–481

traversing sets randomly, 87–88

trees (collisions), 585–586

triggers (collisions), 602–603

troubleshooting. See also debugging; optimizing;

techniques/tips; testing

audio, 434

automation, 86–87

bugs, testers, 15–16

disasters, 875–876

hard drives, ticking, 212

objects, black, 485

random number generators, 86–87

schedules

adding team members, 868–869

breaks, 866

changing, 869–870

debugging, 871–872

leadership, 867

overtime, 865–868

removing features, 871–872

smart pointers, 73–75

twitch-looks, 257

two-axis controls

mouse

capturing, 249–252

cursors (player feedback), 246–247, 302

dragging, 252–255

event handlers, 249–255

state, 241

two-stick design (gamepads), 261

types of

events, 324–326

memory, 75

U
Udating (physics SDKs), 596–599

UDP protocol, 644–645

Umbra Software website, 43

understanding

hardware, 210–211

players, 306

unit circles (C++ math classes), 459–461

unit vectors (3D graphics), 449–453

units of measurement

3D graphics, 448

physics, 569

UNIX (debugging), 810

unmanaged/managed code comparison,

766–767

updating

build scripts, 124

main loops, 176, 191

scene graphs, 539–541

user interfaces. See interfaces

users. See players

utilities

debugging

DUMPBIN.EXE, 806

MSVSMON.EXE, 809–810

SYMCHK, 806–807

PKZIP, 196

utility functions (sockets API),

651–653

utility theory (AI), 630–634

Index 909

V
values

absolute values, 625

debugging techniques/tips, 825–826

nil (Lua variables), 341

percentages, 625

process frequency, 744

variables

absolute values, 625

global variables (LuaPlus), 361–362

Lua, 340–341

global variables, 356

naming, 341, 355

nil value, 341

private variables, 355

public variables, 355

scope, 341

percentages, 625

vector objects (Lua), 349–350

vectors (3D graphics), 449–455

C++ math classes, 456–458, 481–482

calculating angles, 450–453

cross products, 453–455

dot products, 450–453

floating-point numbers, 450

normalizing, 449–450

scalars, 450

targets, 452–455

unit vectors, 449–453

velocity (physics), 569–571, 574–575

version control

Avid AlienBrain, 114–115

branching, 115–118, 127–128

Microsoft Visual SourceSafe, 111–112, 114

overview, 110–111

Perforce, 113–114

sandboxes, 116–118

SneakerNet, 110–111

Subversion, 112–113

TortoiseSVN, 112–113

vertex shaders

C++ helper class, 507–515

compiling, 505–507

overview, 501–505

rendering, 520–521

vertices

textures, 487

vertex shaders

C++ helper class, 507–515

compiling, 505–507

overview, 501–505

rendering, 520–521

video

debugging, 845

resources, 206–209

VRAM (video RAM), 78. See also memory

video RAM, 78. See also memory

views. See also interfaces; windows

AI, 45–46

audio, 43–44

C# editor, 751–753

creating, 145, 271–281

creating games, 733–736

graphics displays, 41–43

interfaces, 44

multiplayer games, 45

networks, 47

options, 45

overview, 41

process managers, 44

virtual functions, 61–64

virtual memory, 33, 81–82

Visual SourceSafe, 111–112, 114

Visual Studio

builds, 104–108

debugging

minidumps, 811

remote debugging, 808–810

System Debug Symbols, 806

volume, 434–437

VRAM (video RAM), 78. See also memory

W
walking (controls), 248

WASD controls, 281–283, 736

WAV files, loading, 401–403

wave forms (audio), 394–395

websites

Bullet Physics, 589, 609

Code Project, 313

Impact Software, 302

Indie Games Festival, 246

Level of Detail for 3D Graphics, 237

Lua, 390

RAD Game Tools, 50

Real-Time Rendering, 575

Umbra Software, 43

Xiph, 408

Zlib, 213

weighted randoms (AI), 616

while statements (Lua), 346–347

Wii accelerometers, 249

WinDBG, 810

910 Index

windowed mode (debugging), 808

windows. See also interfaces; views

creating, 145

debugging, 803–804

number (C# editor), 766

Windows

critical section (threads), 700–702

debugging

symbol files, 805–807

WinDBG, 810

functions (error handling), 800

keyboards

Alt keys, 267

Function keys, 265

input, 262–267

WinMain (initializing), 133–135

Windows Forms (C# editor), 772

WinMain, 133–135

Winsock sockets, 645–646

wireframes (debugging techniques/tips), 824

world design (resource caches), 233–237

wrapping (C# editor), 764

writers (audio), 396–397

writing. See creating

X-Z
XInput (Microsoft), 243–245

Xiph website, 408

XPathUtility class (C# editor), 787–789

Zip files, 713–715

Zlib open source data compression, 213–218

Index 911

This page intentionally left blank

	Cover
	Contents
	Introduction
	Chapter 1 What Is Game Programming Really Like?
	The Good
	The Job
	The Gamers
	Your Coworkers
	The Tools—Software Development Kits (SDKs)
	The Hardware
	The Platforms
	The Show

	The Hard Work
	Game Programming Is Freaking Hard
	Bits and Pieces
	That’s Not a Bug—That’s a Feature
	The Tools

	The Dark Side
	Hitting a Moving Target
	Crunch Mode (and Crunch Meals)
	Bah Humbug
	Operating System Hell
	Fluid Nature of Employment

	It’s All Worth It, Right?

	Chapter 2 What’s in a Game?
	Game Architecture
	Applying the Game Architecture
	Application Layer
	Reading Input
	File Systems and Resource Caching
	Managing Memory
	Initialization, the Main Loop, and Shutdown
	Other Application Layer Code

	Game Logic
	Game State and Data Structures
	Physics and Collision
	Events
	Process Manager
	Command Interpreter

	Game View for the Human Player
	Graphics Display
	Audio
	User Interface Presentation
	Process Manager
	Options
	Multiplayer Games

	Game Views for AI Agents
	Networked Game Architecture
	Remote Game View
	Remote Game Logic

	Do I Have to Use DirectX?
	Design Philosophy of DirectX
	Direct3D or OpenGL
	DirectSound or What?
	DirectInput or Roll Your Own

	Other Bits and Pieces
	Further Reading

	Chapter 3 Coding Tidbits and Style That Saved Me
	General Coding Styles
	Bracing
	Consistency

	Smart Code Design Practices
	Avoiding Hidden Code and Nontrivial Operations
	Class Hierarchies: Keep Them Flat
	Inheritance Versus Composition
	Virtual Functions Gone Bad
	Use Interface Classes
	Consider Using Factories
	Encapsulate Components That Change
	Use Streams to Initialize Objects

	Smart Pointers and Naked Pointers
	Reference Counting
	C++’s shared_ptr

	Using Memory Correctly
	Understanding the Different Kinds of Memory
	Optimizing Memory Access
	Memory Alignment
	Virtual Memory
	Writing Your Own Memory Manager

	Grab Bag of Useful Stuff
	An Excellent Random Number Generator
	Pseudo-Random Traversal of a Set
	Memory Pools

	Developing the Style That’s Right for You
	Further Reading

	Chapter 4 Building Your Game
	A Little Motivation
	Creating a Project
	Build Configurations
	Create a Bullet-Proof Directory Structure
	Where to Put Your Game Engine and Tools
	Setting Visual Studio Build Options
	Multiplatform Projects

	Source Code Repositories and Version Control
	A Little History—Visual SourceSafe from Microsoft
	Subversion and TortoiseSVN
	Perforce by Perforce Software
	AlienBrain from Avid
	Using Source Control Branches

	Building the Game: A Black Art?
	Automate Your Builds
	The Build Machine
	Automated Build Scripts

	Creating Build Scripts
	Normal Build
	Milestone Build

	Multiple Projects and Shared Code
	Some Parting Advice

	Chapter 5 Game Initialization and Shutdown
	Initialization 101
	Some C++ Initialization Pitfalls
	The Game’s Application Layer
	WinMain: The Windows Entry Point
	The Application Layer: GameCodeApp
	InitInstance(): Checking System Resources
	Checking for Multiple Instances of Your Game
	Checking Hard Drive Space
	Checking Memory
	Calculating CPU Speed
	Do You Have a Dirtbag on Your Hands?
	Initialize Your Resource Cache
	Loading Text Strings
	Your Script Manager and the Events System
	Initialize DirectX and Create Your Window
	Create Your Game Logic and Game View
	Set Your Save Game Directory
	Preload Selected Resources from the Cache

	Stick the Landing: A Nice Clean Exit
	How Do I Get Out of Here?
	Forcing Modal Dialog Boxes to Close
	Shutting Down the Game
	What About Consoles?

	Getting In and Getting Out

	Chapter 6 Game Actors and Component Architecture
	A First Attempt at Building Game Actors
	Component Architecture
	Creating Actors and Components
	Defining Actors and Components
	Storing and Accessing Actors
	Putting It All Together
	Data Sharing
	Direct Access
	Events
	The Best of Both Worlds

	Chapter 7 Controlling the Main Loop
	Organizing the Main Loop
	Hard-Coded Updates
	Multithreaded Main Loops
	A Hybrid Technique
	A Simple Cooperative Multitasker
	Very Simple Process Example: DelayProcess
	More Uses of Process Derivatives

	Playing Nicely with the OS
	Using the DirectX 11 Framework
	Rendering and Presenting the Display
	Your Callback Functions for Updating and Rendering

	Can I Make a Game Yet?

	Chapter 8 Loading and Caching Game Data
	Game Resources: Formats and Storage Requirements
	3D Object Meshes and Environments
	Animation Data
	Map/Level Data
	Texture Data
	Bitmap Color Depth
	Sound and Music Data
	Video and Prerendered Cinematics

	Resource Files
	Packaging Resources into a Single File
	Other Benefits of Packaging Resources
	Data Compression and Performance
	Zlib: Open Source Compression

	The Resource Cache
	IResourceFile Interface
	ResHandle: Tracking Loaded Resources
	IResourceLoader Interface and the DefaultResourceLoader
	ResCache: A Simple Resource Cache
	Caching Resources into DirectX et al.
	World Design and Cache Prediction

	I’m Out of Cache

	Chapter 9 Programming Input Devices
	Getting the Device State
	Using XInput or DirectInput
	A Few Safety Tips
	Working with Two-Axis Controls
	Capturing the Mouse on Desktops
	Making a Mouse Drag Work

	Working with a Game Controller
	Dead Zones
	Normalizing Input
	One Stick, Two Stick, Red Stick, Blue Stick
	Ramping Control Values

	Working with the Keyboard
	Mike’s Keyboard Snooper
	GetAsyncKeyState() and Other Evils
	Handling the Alt Key Under Windows

	What, No Dance Pad?

	Chapter 10 User Interface Programming
	DirectX’s Text Helper and Dialog Resource Manager
	The Human’s Game View
	A WASD Movement Controller
	Screen Elements
	A Custom MessageBox Dialog
	Modal Dialog Boxes
	Controls
	Control Identification
	Hit Testing and Focus Order
	Control State
	More Control Properties
	Hot Keys
	Tooltips
	Context-Sensitive Help
	Dragging
	Sounds and Animation

	Some Final User Interface Tips

	Chapter 11 Game Event Management
	Game Events
	Events and Event Data
	The Event Listener Delegates
	The Event Manager
	Example: Bringing It All Together

	What Game Events Are Important?
	Distinguishing Events from Processes
	Further Reading

	Chapter 12 Scripting with Lua
	A Brief History of Game Programming Languages
	Assembly Language
	C/C++
	Scripting Languages

	Using a Scripting Language
	Rapid Prototyping
	Design Focused
	Speed and Memory Costs
	Where’s the Line?

	Scripting Language Integration Strategies
	Writing Your Own
	Using an Existing Language
	Choosing a Scripting Language
	Python
	Lua

	A Crash Course in Lua
	Comments
	Variables
	Functions
	Tables
	Flow Control
	Operators
	What’s Next?

	Object-Oriented Programming in Lua
	Metatables
	Creating a Simple Class Abstraction

	Memory Management
	Binding Lua to C++
	The Lua C API
	tolua++
	luabind
	LuaPlus

	A Crash Course in LuaPlus
	LuaState
	LuaObject
	Tables
	Globals
	Functions
	Calling C++ Functions from Lua

	Bringing It All Together
	Managing the Lua State
	Script Exports
	Process System
	Event System
	Script Component

	Lua Development and Debugging
	Final Thoughts
	Further Reading

	Chapter 13 Game Audio
	How Sound Works
	Digital Recording and Reproduction
	Sound Files
	A Quick Word About Threads and Synchronization

	Game Sound System Architecture
	Sound Resources and Handles
	IAudioBuffer Interface and AudioBuffer Class
	IAudio Interface and Audio Class
	DirectSound Implementations
	Sound Processes
	Launching Sound Effects

	Other Technical Hurdles
	Sounds and Game Objects
	Timing and Synchronization
	Mixing Issues

	Some Random Notes
	Data-Driven Sound Settings
	Background Ambient Sounds and Music
	Speech

	The Last Dance

	Chapter 14 3D Graphics Basics
	3D Graphics Pipeline
	3D Math 101
	Coordinates and Coordinate Systems
	Vector Mathematics

	C++ Math Classes
	Vector Classes
	Matrix Mathematics
	Quaternion Mathematics
	Transformations
	Geometry
	Lighting, Normals, and Color
	Materials
	Textured Vertices
	Texturing
	Subsampling
	Mip-Mapping
	Introducing ID3D11Device and ID3D11DeviceContext
	Loading Textures in D3D11
	Triangle Meshes

	Still with Me?

	Chapter 15 3D Vertex and Pixel Shaders
	The Vertex Shader and Shader Syntax
	Compiling the Vertex Shader
	C++ Helper Class for the Vertex Shader
	The Pixel Shader
	C++ Helper Class for the Pixel Shader
	Rendering with the Shader Helper Classes
	Shaders—It’s Just the Beginning
	Further Reading

	Chapter 16 3D Scenes
	Scene Graph Basics
	ISceneNode Interface Class
	SceneNodeProperties and RenderPass
	SceneNode—It All Starts Here
	The Scene Class

	Special Scene Graph Nodes
	Implementing Separate Render Passes
	A Simple Camera
	Putting Lights in Your Scene
	Rendering the Sky
	Using Meshes in Your Scene

	What’s Missing?
	Still Hungry?
	Further Reading

	Chapter 17 Collision and Simple Physics
	Mathematics for Physics Refresher
	Meters, Feet, Cubits, or Kellicams?
	Distance, Velocity, and Acceleration
	Mass, Acceleration, and Force
	Rotational Inertia, Angular Velocity, and Torque
	Distance Calculations and Intersections

	Choosing a Physics SDK
	Object Properties
	Collision Hulls
	Requirements of Good Collision Geometry
	Visible Geometry Versus Collision Geometry
	Collision Hulls for Human Characters
	Special Objects: Stairs, Doorways, and Trees

	Using a Collision System
	Integrating a Physics SDK
	Components of the Bullet SDK
	Initialization
	Shutdown
	Updating the Physics System
	Creating a Simple Physics Object
	Creating a Convex Mesh
	Creating a Trigger
	Applying Force and Torque
	The Physics Debug Renderer
	Receiving Collision Events
	A Final Word on Integrating Physics SDKs

	But Wait, There’s So Much More

	Chapter 18 An Introduction to Game AI
	AI Techniques
	Hard-Coded AI
	Randomization
	Weighted Randoms

	Finite State Machines
	Decision Trees
	Fuzzy Logic
	Utility Theory
	Goal-Oriented Action Planning
	PathFinding
	A* (A-Star)
	Dynamic Avoidance

	Further Reading

	Chapter 19 Network Programming for Multiplayer Games
	How the Internet Works
	Winsock or Berkeley?
	Internet Addresses
	The Domain Name System
	Useful Programs and Files

	Sockets API
	Sockets Utility Functions
	Domain Name Service (DNS) Functions
	Sockets Initialization and Shutdown
	Creating Sockets and Setting Socket Options
	Server Functions
	Socket Reading and Writing

	Making a Multiplayer Game with Sockets
	Packet Classes
	Core Socket Classes
	A Socket Class for Listening
	A Socket Manager Class

	Core Client-Side Classes
	Core Server-Side Classes
	Wiring Sockets into the Event System
	Gosh, if It’s That Easy

	Chapter 20 Introduction to Multiprogramming
	What Multiprogramming Does
	Creating Threads
	Process Synchronization
	Test and Set, the Semaphore, and the Mutex
	The Windows Critical Section

	Interesting Threading Problems
	Thread Safety
	Multithreading Classes in GameCode4
	The RealtimeProcess Class
	Sending Events from Real-Time Processes
	Receiving Events in Real-Time Processes

	Background Decompression of a Zip File
	Further Work
	About the Hardware
	About the Future
	Further Reading

	Chapter 21 A Game of Teapot Wars!
	Making a Game
	Creating the Core Classes
	The Teapot Wars Application Layer
	The Game Logic
	The Game View for a Human Player

	Game Events
	Gameplay
	Loading the Level
	The Actor Manager
	Sending and Receiving Events
	Processes

	An Exercise Left to the Reader

	Chapter 22 A Simple Game Editor in C#
	Why C#?
	How the Editor Is Put Together
	The Editor Architecture
	The Application Layer
	The Editor’s Logic Class
	The Editor View
	Functions to Access the Game Engine
	Creating the DLL
	Wrapping Up the Editor Architecture

	The C# Editor Application
	Differences Between Managed Code and Unmanaged Code
	NativeMethods Class
	Program Class
	MessageHandler Class

	The C# Editor User Interface
	The EditorForm Class
	The ActorComponentEditor Class

	Future Work
	Further Reading

	Chapter 23 Debugging and Profiling Your Game
	The Art of Handling Failure
	Debugging Basics
	Using the Debugger
	Installing Windows Symbol Files
	Debugging Full-Screen Games
	Remote Debugging
	Debugging Minidumps

	Graphics and Shader Debugging
	Debugging Techniques
	Debugging Is an Experiment
	Reproducing the Bug
	Eliminating Complexity
	Setting the Next Statement
	Assembly Level Debugging
	Peppering the Code
	Draw Debug Information
	Lint and Other Code Analyzers
	Nu-Mega’s BoundsChecker and Runtime Analyzers
	Disappearing Bugs
	Tweaking Values
	Caveman Debugging
	When All Else Fails

	Building an Error Logging System
	Different Kinds of Bugs
	Memory Leaks and Heap Corruption
	Game Data Corruption
	Stack Corruption
	Cut and Paste Bugs
	Running Out of Space
	Release Mode Only Bugs
	Multithreading Gone Bad
	Weird Ones

	Profiling
	Measuring Performance
	Optimizing Code
	Tradeoffs
	Over-Optimization

	Parting Thoughts
	Further Reading

	Chapter 24 Driving to the Finish
	Finishing Issues
	Quality
	Code
	Content

	Dealing with Big Trouble
	Projects Seriously Behind Schedule
	Personnel-Related Problems
	Your Competition Beats You to the Punch
	There’s No Way Out—or Is There?
	One Last Word—Don’t Panic

	The Light—It’s Not a Train After All
	Test the Archive
	The Patch Build or the Product Demo
	The Postmortem
	What to Do with Your Time

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

