OM PLETE

FOURTH EDITION

Mike McShaffry and David “Rez” Graham

GAME CODING
COMPLETE,
FourRTH EDITION

MIKE “*MRMIKE” McSHAFFRY AND DAvID “'"REZ” GRAHAM

Course Technology PTR
A part of Cengage Learning

~ .~ COURSE TECHNOLOGY
CENGAGE Learning"

Australia « Brazil « Japan « Korea « Mexico « Singapore « Spain « United Kingdom « United States

COURSE TECHNOLOGY

CENGAGE Learning"

Game Coding Complete,
Fourth Edition

Mike “MrMike” McShaffry and
David “Rez"” Graham

Publisher and General Manager,
Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Senior Marketing Manager:
Mark Hughes

Acquisitions Editor: Heather Hurley

Project and Copy Editor:
Marta Justak

Technical Reviewers: James Leitch
and Sascha Friedmann

Interior Layout Tech: MPS Limited, a
Macmillan Company

Cover Designer: Tre Ziemann
Cartoon Artist: Steph Laberis
Indexer: Kelly Talbot

Proofreader: Gene Redding

© 2013 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems,
except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Microsoft, Microsoft Windows, Visual Studio, Internet Explorer, Xbox,
Xbox360, and DirectX are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

3ds Max and Maya are either registered trademarks or trademarks of
Autodesk, Inc. in the United States and/or other countries.

Gamecube and Wii are trademarks of Nintendo Company, Ltd. in the
United States and/or other countries.

PlayStation, PlayStation 2, and PlayStation 3 are either registered trade-
marks or trademarks of Sony Corporation in the United States and/or
other countries.

Photoshop is a registered trademark of Adobe Systems Incorporated in
the United States and/or other countries.

Ultima and Ultima Online are either registered trademarks or trademarks of
Electronic Arts, Inc. in the United States and/or other countries

All other trademarks are the property of their respective owners.
All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2012930785

ISBN-13: 978-1-133-77657-4

ISBN-10: 1-133-77657-4

elSBN-10: 1-133-77658-2

Course Technology, a part of Cengage Learning
20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office
at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
12345671312

www.cengage.com/permissions

This page intentionally left blank

Dedication from Mike McShaffry

This book and my life are dedicated to my wife and my
best friend, Robin

Dedication from David Graham

This book is dedicated to my grandfather, William Chace
The potion was just sugar water after all

FoOREWORD

by Warren Spector

For Mike McShaffry

Let me start by admitting a couple of things. First, I've never written a foreword for a
book before. I've written books but never a foreword. Honestly, I usually skip right
over these things when I'm reading a book, so odds are that no one is ever going to
read what I'm writing here anyway. That makes it safe for me to move on to admis-
sion number two: 'm not a programmer. Never have been, and I fear, never will be,
despite some valiant efforts on my part (if I do say so myself). I've done okay despite
not knowing a blessed thing about programming. I'm not looking for sympathy or
anything, but I am here to tell you that a day doesn’t go by when I don’t think,
“Damn, if only I knew my z-buffers from my BSP trees!” If you're already a program-
mer, you've got a huge leg up on me when I tried to get into the electronic game biz!
(And if you're not a programmer, do as I say and not as I do—learn to program
ASAP. Mike has some advice about how to do that in the pages that follow. Pay
attention.)

Okay, so with those two confessions out of the way, I figure there’s a fair chance any
credibility I might have had is pretty well shot. Luckily for you folks, the guy who
wrote this book has credibility to burn. Mike McShaffry (or “Mr. Mike” as he’s
known to most everyone in the game biz) is the real deal. Mike is a genuine survivor.
He is a guy who can talk the talk because, Lord knows, he’s walked the walk enough
times to earn some talking time.

Mike’s experience of game development runs the gamut in a pretty remarkable
way. He was there when teams were a dozen folks, and he’s been around in the era
of 20, 30, and 50-person teams. He’s done the startup thing, worked for the biggest

Vi

Foreword

publishers in the business, worked on “traditional” games and decidedly untraditional
ones—everything from Ultima to Blackjack, single player, multiplayer, online and off,
and just about everything else you can imagine. When it comes to PC games, he
speaks with the authority of someone who’s worn just about every hat it’s possible
to wear—programmer, designer, project leader, director of development, studio
head....

And I've had the privilege of watching him learn and grow with each new project
and each new role. I was there when Mike got his first game job. I was one of the
folks at Origin who interviewed him back in the Bone Ages, back in the 20th century,
way back in 1990, when he applied for a programming job at Origin. (Seems like
forever, doesn’t it, Mike? Whew!)

He started out as “just” a programmer on Martian Dreams, a game I produced for
Origin, but by the end of the project, he was the engine that drove that game to the
finish line. The game wouldn’t have happened without Mike. His drive, dedication,
love of games, knack for on-the-fly design, natural leadership skills, and ability to
combine right brain and left brain (to say nothing of his willingness to work crazy
hours) drove all of us to work that much harder and ensured that the game ended
up something special (at least to those of us who worked on it together—it sure
didn’t sell many copies!).

I honestly don’t even remember if I ever gave Mike the title “Lead Programmer” offi-
cially on Martian Dreams, but he sure deserved it. The guy was a machine, working
longer hours than most people I've worked with (and that’s saying something in the
game business). He also managed to do more and better work in those hours than
any human being should be allowed to. It just ain’t fair to the rest of us mere mor-
tals. When Mike was on, there was no touching him. And he was almost always on—
after Martian Dreams, Mike did it again and again, on Ultima VII, VIII, IX, and a
bunch of others. Scary really.

In retrospect, all those hours and all the hard work that seemed so necessary back in
the days when we were all younger and more foolish than we are now was probably
an indication that Mike, like the rest of us, didn’t have a clue about software devel-
opment or game design or much anything else. (Okay, we had a pretty good handle
on the effects of sugar and caffeine on the human body, but that’s about it.) We had
to work so long and so hard just to have a chance in hell of ending up with some-
thing worthwhile.

Reading this book, I couldn’t help but marvel at how much Mike’s learned over the
years and wonder how much more Mike—and the rest of us—would have gotten
done, how much better our games might have been, if we’d had the benefit of the

vii

viii

Foreword

kind of information in the pages that follow. There just wasn’t anyone around back
then who knew enough about games, programming practices, and software develop-
ment. We were making it up as we went along.

Today, there are plenty of books out there that can teach you the typing part of pro-
gramming. There are even some books that go a bit further and teach you what
makes game coding different from coding a word processing program or a billing
system for your local health care providers (or, as we used to call ’em, “doctors”).
But even now, there just aren’t many books that combine hard-core game program-
ming advice with equally hard-core development processes, debugging, and team-
building information.

Development process? Team building? Who cares about all that? You just want to
write code, right? If you're like a lot of programmers I know, that’s just what you're
thinking. And, man, are you wrong. There might have been a time when coders
could just close their doors and type, not caring about how their work fit into the
bigger picture of a game’s development. Maybe that was true 10 years ago or more
(probably not, but maybe). Well, it sure isn’t true anymore. With teams getting big-
ger all the time, with timelines stretching and budgets bloating, process and team
issues are everyone’s concern nowadays.

Mike gets that, something that becomes clear in the very first chapter, when he says,
“Being the best developer you can be requires that you have intimate knowledge
about the real demands of the industry.” Amen, brother. That, in a nutshell, is what
makes this book special. Most people think enthusiasm and talent are enough to get
them into the game business and to ensure success once they land that all-important
first gig. “I play games all the time,” they say, “and I'm a kickass coder, so what more
is there to know? Sign me up!”

Well, I'm here to tell you that there’s plenty more to know, and that’s probably the
single most valuable lesson this book has to offer. Games are insanely complex, and
their creation involves a unique combination of art and science (some call it “magic,”
and they’re not far wrong). Game development is demanding in a way that can only
be appreciated after a stint in the trenches. At least, I used to think that was the case,
but that’s where Mike comes in. Having been in the trenches, he can save you the
trouble and pain and scars and relationship breakups and company failures that all
too often go along with game development. No matter what you may think, it isn’t all
glory, fame, wealth, and intense personal satisfaction (though there is a better than
fair share of that last item).

There’s a ton of great stuff in Mike’s book. And I love all the insider bits found in
Mike’s “Tales from the Pixel Mines.”

Foreword

Of course, there’s plenty of nuts-and-bolts stuff for folks who are already program-
mers but want to know what makes game programming so special (and believe me, it
is). But even programmers will benefit from the other ton of stuff that often gets
short shrift in the typical programming book—all that Big Picture stuff that doesn’t
involve code samples.

These areas are critical for being the most effective developer you can be, whether
youre a programmer or not. This is all stuff you can’t get just anywhere. You have
to have lived through the process (and the pain!) a bunch of times. Or you have to
find a mentor and spend years sucking his or her brain dry. Or you can stop reading
this foreword and start reading this book.

What are you waiting for?
—Warren Spector,

Founder of Junction Point Studios

FoOREWORD

by Bo Lasater

For David “Rez"” Graham

Rez has done a lot of really cool things in his career and met a lot of great people
along the way. Therefore, I was very honored when he asked me to write the fore-
word for this book.

I think he picked me because I'm one of the keepers of his Origin story. Origin stor-
ies are fun—no matter how many bad guys Spider-Man defeats, the fans still want to
hear about how he was bitten by a radioactive spider—and they are also instructive.
If you are reading this, you too may be thinking about how to craft your own Origin
story that culminates in an exciting career in video game programming. You can
learn a lot from Rez’s story.

I met Rez in 2005 when he came to interview at a little company I was running called
Super-Ego Games. We were convinced back then that people needed an interactive
situation comedy playable on consoles, and we were going to give it to them. (How
we got there and what happened next is an interesting and cautionary tale in and of
itself for another time.) At the time of Rez’s interview, we had convinced a publisher
of the same thing and were ramping up a team of very talented individuals.

Believe it or not, Rez came to us not as an engineering prospect but as a quality
assurance lead with an interest in game design. When Rez walked into our office,
the first thing we noticed wasn’t his height, though he’s very tall, nor his combat
boots, vintage black army jacket, or faded black combat fatigues, but rather his 10-inch
blue mohawk.

Foreword

The next thing we noticed was the ease with which he spoke to the four or five of us
in the room interviewing him. This was a bigger deal than it sounds, because all of us
were more experienced, had bigger degrees from fancier colleges, and were mohawk-
less. And, it was an interview for heaven’s sake!

The third thing we noticed was his passion and knowledge of games. More than just
playing a lot of games, he was extraordinarily thoughtful and articulate about what he

liked and why.

The fourth thing we noticed was Farmer Bill's Almond Farm. This was a demo game
that Rez had built to teach himself game programming. It had simple graphics and a
crude interface for sure, but it was full of original ideas well realized and lots of fun,
nonetheless. We were smart enough to see that a singular talent lay behind it. (If we
were really smart, we would have published the game on Facebook a couple of years
before Farmville came out.)

As you have guessed by now since I'm writing this, we hired Rez. Before I go on
about the next stage, I'd like to call out some things for those of you who are inter-
ested in breaking in to the industry.

First of all, QA is a great way to get into games. The entry hurdles are typically lower
than other positions, and the skills you gain can prepare you well for many disci-
plines in game development—programming, design, project management, and
production.

Second, being able to explain a point of view on what makes games fun is very
important. Many game companies go deep here in interviews for almost any position.
Not only is it to determine if you have the passion to fuel the drive and determina-
tion to make it in games, but more importantly, to see if you “get” the product. A
game studio pulls off this incredible choreography of many and varied talents to cre-
ate a product that is itself a choreography of sounds and pictures, whose purpose is
to engage and delight its user. Decisions made by almost anyone can affect the final
experience of the product. People have to work autonomously, often with limited
oversight and supervision. The best insurance that mistakes don’t get made is making
sure that all of the employees share the same vision and alignment. We’re knowledge
workers, after all. Making smart decisions is what we do.

Getting a product doesn’t mean preferring it or even liking it. Rez and I have made
games for male and female, young and old. We don’t have the luxury or curse of
being all of those things at once, but we can put ourselves in the mindset of our
players and learn what they want. The ability to understand and articulate why a
game will delight its audience is a big part of “getting” a product.

Xi

Xii

Foreword

Third, mohawks are cool in the games industry. We’re creative types by and large
and self-expression is welcome.

Finally, showing up with something you built is awesome. It demonstrates passion,
competence, and vision much better than words alone can. Moreover, making a
demo actually gives you competence and vision and confidence. (By the way, this
book will help you build the demo that will give you real confidence.)

Rez started in QA with a promise from us to make him a designer when he proved
himself a bit. The proving didn’t take long at all. Rez was a diligent checker with lots
of great input. When he took on a nasty group of bugs around our UtilEcon AI sys-
tem, I quickly realized that he should be tweaking the parameters directly instead of
telling us about them. Voila, he was now a designer. Very soon, he started imple-
menting tools to help us visualize and manage the system’s data more easily. Before
long, he had taken over a lot of the coding on the core system itself.

Rez then faced a decision point. He could go down the design path or the engineer-
ing path. In spite of Rez’s keen fashion sense and artistic leanings, he followed his
inner child and became an engineer. Looking back, I realize Rez had figured out
what pros like Sid Meier of Civilization fame knows. Anyone in a game company
can have design input if he has good ideas, but only a programmer gets to tell the
machine exactly what to do without any middle men.

Rez took up coding fulltime, and a star was born! In the months that followed, Rez
integrated himself into many of our key systems like graphics, animation, story
events, and user interface. His hunger to learn was insatiable, he was a pleasure to
work with, and he did what had to be done to get his projects done.

After Super-Ego Games, Rez spent a year at Planet Moon. He worked on a DS game
called Brain Quest, which was a small kid’s game. After that he worked on the Al,
animation, and save game systems for Drawn to Life: The Next Chapter for the Wii.
His next stop was at Slipgate where he worked on an MMO doing client program-
ming and some UI work. Next was Play First where he worked on Diner Dash for the
iPad before it shipped and on Wedding Dash for the iPhone 4. Rez’s latest stop is at
EA where he has worked on AI for the Sims Medieval and the Pirates & Noble
expansion. He is currently the AI programmer for a new unannounced Sims
project.

Anyone who has worked with Rez has the same impression. He has more energy
than anyone has a right to have, and is upbeat and funny even in the grimmest
hours of a project or a company’s life cycle. His enthusiasm is infectious. Hanging
out with him, you realize that game coding is the highest and best calling a human
can have and is definitely the most fun. If you ask Rez to explain his latest project,

Foreword
make sure you had a good night’s sleep the night before and drink a lot of coffee,
because it will be a torrent of words and ideas.

Luckily, you can absorb his thoughts at a more leisurely pace through the pages of
this book. It will give you the benefit of years of interesting and challenging work in
the heart of game development, filtered and focused by a first-class intellect and
guided by a personality who wants nothing more than to share the thrill of this excit-
ing field.

Enjoy!

—Bo Lasater,

Executive Producer at Kixeye

Xiii

ACKNOWLEDGMENTS

MIKE’'s ACKNOWLEDGMENTS
Mom and Grandma Hawker

Thanks for never saying I'd never amount to anything playing games all the time;
you believed in me, and it paid off.

Dad and Lynn

Thanks for showing me I should never be afraid of hard work.

Phil Hawker

Thanks for giving me a sense of humor—I think I put it to good use here.

Warren Spector and Richard Garriott

Thanks for believing a geeky college kid could help make the games I loved to play.
Fourth Edition Beta Testers

James Leitch and Sascha Friedmann

Cover Artist

The cover was created by Tre Ziemann. He is currently a 3D Artist at King’s Isle in
Austin, Texas.

Fourth Edition Editors

Thanks to Heather Hurley, acquisitions editor, for picking up the book for a fourth
edition.

Thanks to my editor Marta Justak for making me look like a writer.

Xiv

Acknowledgments

REZ'S ACKNOWLEDGMENTS

My Father, Robin Graham

Thanks for giving me my first programming book, my very own computer, and
introducing me to science fiction.

My Mother, Susan Angelos

Thanks for letting me walk my own path in life and for never telling me to quit ruin-
ing my life playing video games.

Bo Lasater and Steve Matthews

Thanks for hiring a passionate kid with no degree and no experience. I owe a lot of
my success to your willingness to take a chance on me.

Steph Laberis
Thank you for supporting yet another project that consumed so much of my time.

Cartoons

The cartoon inserts were created by Steph Laberis. She is currently an illustrator and
character designer living in Berkeley, California.

Last but not least, Robin McShaffry
Thank you for letting Mike come out to play.

XV

ABOUT THE AUTHORS

Mike McShaffry , aka “Mr. Mike,” started programming games as soon as he
could tap a keyboard—in fact, he somehow skipped seventh grade math entirely in
favor of writing games in BASIC on an ancient Commodore Pet. In his single-
minded pursuit of programming knowledge, he signed up for an extended stay at
the University of Houston. To his surprise and the Dean of Mathematics, he actually
graduated five and one-half years later. Shortly after graduation, he entered the boot
camp of the computer game industry: Origin Systems. He worked for Warren Spec-
tor and Richard Garriott, aka “Lord British,” on Martian Dreams, Ultima VII: The
Black Gate, Ultima VIII: Pagan, Ultima IX: Ascension, and Ultima Online.

Exactly seven years from the day he was hired, Mike arranged his escape, and in
1997 formed his first company, Tornado Alley. Tornado Alley was a garage startup
whose goal was to create No Grownups Allowed, a massively multiplayer world for
children—something that was sure to land Mike and anyone else at Tornado Alley
front and center of a Congressional hearing. While No Grownups never left the tar-
mac, a kid’s activity program called Magnadoodle by Mattel Media did, and in record
development time.

The entrepreneurial bug, a ravenous and insatiable beast, finally devoured enough of
Mike’s remaining EA stock to motivate him to take a steady gig at Glass Eye Enter-
tainment, working for his friend Monty Kerr, where he produced Microsoft Casino.
Ten short months later, Monty asked Mike and his newly assembled team to start
their own company called Compulsive Development, which worked exclusively with
Microsoft on casual casino and card games.

XVi

About the Authors

Mike served as the primary coffee brewmaster and head of studio, and together with
the rest of the Compulsive folks, 20 great people in all, produced three more casual
titles for Microsoft until August 2002. Compulsive was acquired by Glass Eye Enter-
tainment to continue work on Glass Eye’s growing online casual games business.

Mike was hungry for AAA console work, and in 2003 he got what he wanted: Ion
Storm’s Thief: Deadly Shadows team called Mike in to create their third-person cam-
era technology and to work on fine-tuning character movement at the 11th hour.
What started as a two-week contract turned into almost a year of labor working
side-by-side with programmers who used to call Mike “boss.”

While it was great to be “one of the boys” again, it couldn’t last forever. Mike was
recruited to start an Austin studio for Maryland-based BreakAway Games. Break-
Away Austin’s focus was AAA console development and high-end simulations for the
U.S. military and DoD contractors. Mike and three of the BreakAway Austin team
actually visited the USS Harry S. Truman, one of the U.S. Navy’s CVN class Nuclear
Aircraft Carriers. They flew out, landed on the carrier, spent four days and nights
with the officers and crew, and got launched to go back home. Afterward, they cre-
ated 24 Blue, a training simulator that mimics the insane environment of the deck of
the carrier, jets and everything.

After BreakAway Austin, Mike founded a consulting company called MrMike. He
figured that nearly 18 years in the gaming industry was enough to firmly establish
that as a good identity for the company. For nearly two years, he helped small
game companies choose their game technology, firm up their production practices,
and pitch game ideas to industry publishers like Microsoft, EA, THQ, and others.
One of his clients, Red Fly Studio, made him an offer he couldn’t refuse, and he
jumped back into a full-time gig.

Mike took the position of Executive Producer and helped ship Mushroom Men: The
Spore Wars. He still works at Red Fly Studio as their Director of Product Develop-
ment and sometime coffee maker. He still makes coffee and tries to give good advice
to the programmers, artists, designers, audio guys, and producers working for him.

He still writes code when he can—most recently working with the Unity game
engine, playing around in C#, and writing mad improvements to the GameCode4
engine.
If Mike’s fingers aren’t tapping away at a keyboard, he’s probably either “down-
hilling” on his mountain bike or enjoying good times with his friends in Austin,
Texas.

XVii

XViii

About the Authors

David “Rez” Graham is a self-taught programmer and has been an avid
gamer ever since he could pick up a video game controller. He’s always been fasci-
nated with games and in 1996, his father gave him his very first programming book.
Rez devoured that book with passion and immediately began attempting to write his
very own game. Six months and 5500 lines of code later, Farmer Bill’s Almond Farm
was born. This was a very simple adventure game with crude graphics written for
DOS 6.2. Rez never stopped and kept on writing games.

In 1998, he managed to break into the video games industry as a game tester working
on Sim City 3000 before going to Microprose to work for its tech support team. After
the studio shut down in late 1999, Rez worked outside of the industry at Kodak man-
aging a team of IT professionals to keep their tech support group running.

In late 2005, the time was right to return to the video games industry, and Rez
landed a job at Super-Ego Games, first working on their source control systems as a
QA engineer and quickly moving into design and engineering. In less than a month,
Rez was working on the AI code for RatRace. He spent over two years there and
shipped a kid’s game called Barbie Diaries: High School Mystery, where he worked
on several minigames and expanded the AI systems. The rest of the time, Rez worked
on a variety of systems for Rat Race for the PlayStation 3. In early 2008, Rez left
Super-Ego Games and spent a year working at Planet Moon, where he worked on a
small kid’s game for the Gameboy DS called Brain Quest. After that, Rez worked on
Drawn to Life: The Next Chapter for the Wii doing Al, animation, and game saving.

In 2009, Rez moved to a company called Slipgate, which was a part of Gazillion,
where he worked on the client for an MMO. After leaving Slipgate, Rez went to
work on casual iPhone and iPad games for a company called PlayFirst. He shipped
Diner Dash: Grillin’ Green for the iPad and was the lead engineer for Wedding Dash
for the iPhone 4.

Today, Rez is working at EA as the lead Al programmer for an upcoming Sims game.
He has been at EA since mid-2010, and the last project he shipped was The Sims
Medieval and the Pirates & Nobles Adventure Pack. Rez has spoken at The Game
Developer’s Conference on several occasions and frequently talks to high-school and
college students about how to break into the game industry.

In his spare time, Rez enjoys running table-top RPGs, playing a little music, drawing,
and working on various side projects and Al experiments.

CONTENTS

Chapter 1

Chapter 2

Introduction i e e e XXXiii
What Is Game Programming Really Like?................... 1
The Good e 2
The Job ... e 2
The Gamers e e 3
Your COWOIKerS . . .ttt e e 4
The Tools—Software Development Kits (SDKs). 7
The Hardware e e e 8
The Platforms. e 8
The Show e 13
The Hard Work. e 14
Game Programming Is Freaking Hard. 14
Bitsand Pieces e 15
That's Not a Bug—That'sa Feature 15
The ToOols . ..ot e 17
The Dark Side. e 17
Hitting a Moving Target. 18
Crunch Mode (and Crunch Meals). 19
Bah HumbuUg e 20
Operating System Hell 21
Fluid Nature of Employment 22
It's All Worth It, Right?. 23
What'sinaGame?.iiiiiiirnnnnnnnnnnnnns 25
Game Architecture 26

XX

Contents

Chapter 3

Applying the Game Architecture 28
Application Layer 31
Reading Input. e 31
File Systems and Resource Caching. 31
Managing Memory.t 33
Initialization, the Main Loop, and Shutdown 33
Other Application Layer Code 34
Game LOgiCot e 35
Game State and Data Structures. 36
Physics and Collision. 37
Events. 38
Process Manager it 39
Command Interpreter. e 40
Game View for the Human Player, 41
Graphics Displayo 11
AUIO e 43
User Interface Presentation 44
Process Manager 44
OPtIONS . .o e e 45
Multiplayer Games 45
Game Views for Al Agentso e 45
Networked Game Architecture. 46
Remote Game View 47
Remote Game LogiC. it 47
Do | Have to Use DirectX? e 49
Design Philosophy of DirectX i 49
Direct3D or OpenGL.ot 50
DirectSound or What? 50
Directinput or Roll Your Own. i 51
Other Bits and Pieces i 51
Further Reading 52
Coding Tidbits and Style That Saved Me 53
General Coding Styles. 54
BraCing. . . oo 55
CONSIStENCY. « o oot e 56
Smart Code Design Practicest 58
Avoiding Hidden Code and Nontrivial Operations 59
Class Hierarchies: Keep Them Flat. 60
Inheritance Versus Composition 61

Virtual Functions Gone Bad 61

Chapter 4

Contents

Use Interface Classes. e 64
Consider Using Factories. e 65
Encapsulate Components That Change. 66
Use Streams to Initialize Objects. i L. 67
Smart Pointers and Naked Pointers 68
Reference Counting i 69
CH+'S shared_pEr . .cv i e e e e e e 71
Using Memory Correctly. 75
Understanding the Different Kinds of Memory 75
Optimizing Memory ACCeSS. oot 78
Memory Alignment e 80
Virtual Memory 81
Writing Your Own Memory Manager., 82
Grab Bag of Useful Stuff 84
An Excellent Random Number Generator. 85
Pseudo-Random TraversalofaSet.......... 87
Memory PoOIs 88
Developing the Style That's Right forYou 95
Further Reading o e e 95
Building Your Game. ittt i e 97
A Little Motivation. 98
Creating @ Project. e 99
Build Configurations. 99
Create a Bullet-Proof Directory Structure 100
Where to Put Your Game Engineand Tools. 103
Setting Visual Studio Build Options 104
Multiplatform Projects i 108
Source Code Repositories and Version Control 110
A Little History—Visual SourceSafe from Microsoft 11
Subversion and TortoiseSVN. 112
Perforce by Perforce Software 113
AlienBrain from Avid 114
Using Source Control Branches., 115
Building the Game: A Black Art? 118
Automate Your Builds 120
The Build Machine 120
Automated Build Scripts. 121
Creating Build Scriptso 122
Normal Build 123

Milestone Build 124

XXi

XXii

Contents

Chapter 5

Chapter 6

Multiple Projects and Shared Code. 127
Some Parting AdVice 128
Game Initialization and Shutdown...................... 129
Initialization 101, 130
Some C++ Initialization Pitfalls. 130
The Game's Application Layer i 133
WinMain: The Windows Entry Point 133
The Application Layer: GameCodeApp. « « v v v v v vt vttt e eae e 135
InitInstance(): Checking System Resources. 136
Checking for Multiple Instances of Your Game. 137
Checking Hard Drive Space.ot 138
Checking Memory 139
Calculating CPU Speedt 140
Do You Have a Dirtbag on Your Hands? 141
Initialize Your Resource Cache 141
Loading Text Strings.o 142
Your Script Manager and the Events System 144
Initialize DirectX and Create Your Window 145
Create Your Game Logic and Game View. 145
Set Your Save Game Directory 146
Preload Selected Resources from the Cache 147
Stick the Landing: A Nice Clean Exit. 147
How Do | Get Outof Here? e 148
Forcing Modal Dialog Boxesto Close 150
Shutting Down the Game 151
What About Consoles?. e 152
GettingInand Getting Out 153
Game Actors and Component Architecture 155
A First Attempt at Building Game Actors. 155
Component Architecture 159
Creating Actors and Components.ttt 160
Defining Actors and Components.t 165
Storing and Accessing ACtOrs 168
Putting It All Together 170
Data Sharing e 171
DireCt ACCESS. . . o v ottt e e 172
Events. 173

The Best of Both Worlds. e 173

Chapter 7

Chapter 8

Chapter 9

Contents

Controlling the MainLoop 175
Organizing the Main LoOp oo e et 175
Hard-Coded Updates 176
Multithreaded Main Loops. o 176

A Hybrid Technique 178

A Simple Cooperative Multitasker 180
Very Simple Process Example: DelayProcesscouuuuuun.... 186
More Uses of Process Derivatives 187
Playing Nicely withthe OS 188
Using the DirectX 11 Framework 189
Rendering and Presenting the Display 190
Your Callback Functions for Updating and Rendering 191
Can I Make aGame Yet? it 193
Loading and CachingGameData....................... 195
Game Resources: Formats and Storage Requirements. 197
3D Object Meshes and Environments, 197
Animation Data e 200
Map/Llevel Data 202
Texture Datao e 202
Bitmap Color Depth 202
Soundand MusicDatat 205
Video and Prerendered Cinematics. 206
Resource Files. o 209
Packaging Resources into aSingle File 211
Other Benefits of Packaging Resources. 211
Data Compression and Performance. 212
Zlib: Open Source COmMPressioniineeiineeinnnennn. 213
The Resource Cache i e 218
IResourceFilelnterface i 222
ResHandle: Tracking Loaded Resources. 222
IResourcelLoader Interface and the DefaultResourceloader 224
ResCache: A Simple Resource Cache. 225
Caching Resources into DirectXetal. 233
World Design and Cache Prediction 233
I'mOutof Cache 237
Programming Input Devices iiiirn... 239
Getting the Device State 240
Using XInput or Directlnput e 243
AFew Safety Tips. . ..o 245

Working with Two-Axis Controls 249

XXiii

XXV

Contents

Chapter 10

Chapter 11

Capturing the Mouse on Desktopso, 249
Making a Mouse Drag Work i 252
Working with a Game Controller. 255
Dead ZONES . . . 256
Normalizing Input e 259
One Stick, Two Stick, Red Stick, Blue Stick 261
Ramping Control Values. i 261
Working with the Keyboard. 262
Mike's Keyboard Snooper. e 262
GetAsyncKeyState() and Other Evils., 267
Handling the Alt Key Under Windows 267
What, No Dance Pad?. o 267
User Interface Programming. 269
DirectX's Text Helper and Dialog Resource Manager 270
The Human's Game VieW e 271
A WASD Movement Controller. 281
Screen Elements 283
A Custom MessageBox Dialog. 286
Modal Dialog BOXeSo 292
CoNtrols . o o 297
Control Identification. 298
Hit Testing and Focus Order. s 300
Control State 301
More Control Properties. e 302
Hot Keys. . .. e 303
TOOIPS . o oot 303
Context-Sensitive Help 304
Dragging . . . oo e 304
Sounds and Animation. 304
Some Final User Interface Tipsot o ittt e 304
Game Event Management i, 307
Game Events e 308
Eventsand EventData 309
The Event Listener Delegates 313
The Event Manager i e 314
Example: Bringing It All Together. 323
What Game Events Are Important?, 324
Distinguishing Events from Processes, 326

Further Reading i e e 327

Chapter 12

Contents

ScriptingwithLua i 329
A Brief History of Game Programming Languages 330
Assembly Language 331
L 331
Scripting Languageso e 334
Using a Scripting Languagettt e e 334
Rapid Prototyping 334
Design FOCUSEd.t e 335
Speed and Memory COSESottt 336
Where's the Line?. 336
Scripting Language Integration Strategies 337
Writing YOUr OWNo 337
Using an Existing Language 337
Choosing a Scripting Language 338
Python . .o 338
LUa. . e 339
ACrash Course inLua e e 340
Comments e 340
Variables 340
FUNCLIONSo e 342
Tables. ... e 343
Flow Control. 346
Operatorso e e 348
What's Next? 349
Object-Oriented Programming inLua. 349
Metatables. 351
Creating a Simple Class Abstraction 353
Memory Management 356
Binding Lua to C+. . ..ottt 356
The Lua C APL. 356
tolua++. . oo 357
luabind. 357
LuaPlus. . . . 357
A Crash Course in LuaPlus e 358
LUASTATE « it e it e e e e e 358
LuaObject. e 358
Tables. 360
Globals. 361
FUNCtioNns e 363

XXV

XXVi

Contents

Chapter 13

Chapter 14

Bringing It All Together 366
Managing the Lua State. 367
SCriPt EXPOrtS . o o ot e e e e e 368
Process System 370
Event System 380
Script Component. 387

Lua Development and Debugging i 389

Final Thoughts e 389

Further Reading 390

Game Audio.ot i it i e e e e 391

How Sound Workso 392
Digital Recording and Reproduction. 393
Sound Files. 395
A Quick Word About Threads and Synchronization 396

Game Sound System Architecture. 397
Sound Resourcesand Handles 398
IAudioBuffer Interface and AudioBuffer Class 409
TAudio Interface and Audio Class. 411
DirectSound Implementations., 414
SOUNd ProCesses . . . oo vttt e 426
Launching Sound Effects i 431

Other Technical Hurdles 432
Sounds and Game Objects i 432
Timing and Synchronization. 432
MiXiNg ISSUES oo e 434

Some Random Notes 437
Data-Driven Sound Settings 437
Background Ambient Sounds and Music. 438
Speech . .. 439

The Last Dance. 441

3D Graphics Basics ittt i i i i e 443

3D Graphics Pipeline. 444

3D Math 101 ... 445
Coordinates and Coordinate Systems 446
Vector Mathematics 449

C++ Math Classes oot 456
Vector Classes.ot e 456
Matrix Mathematics 458
Quaternion Mathematicso it e e e 469

Transformationsot e 478

Chapter 15

Chapter 16

Chapter 17

Contents

Geometry 481
Lighting, Normals, and Color 482
Materials 4384
Textured Verticesot 487
TeXtUNING . o oo e 487
Subsampling. 488
Mip-Mappingot e e e 490
Introducing 1D3D11Device and ID3D11DeviceContext 491
Loading Textures in D3D11. e 491
Triangle Meshes 494
Still with Me? . . 497
3D Vertex and Pixel Shaders 499
The Vertex Shader and Shader Syntax 501
Compiling the Vertex Shader i 505
C++ Helper Class for the VertexShader 507
The Pixel Shader. 515
C++ Helper Class for the Pixel Shader. 516
Rendering with the Shader Helper Classes 520
Shaders—It's Just the Beginning. i 521
Further Reading 521
7 0 T o =T 4 = 523
Scene Graph BasiCs oot i 523
ISceneNode Interface Class. i 524
SceneNodeProperties and RenderPass viv e in e neennen. 526
SceneNode—It All StartsHere 529
The Scene Class . ..o v vttt e e e e 536
Special Scene Graph Nodes. i 545
Implementing Separate Render Passes 545
ASimple Camera e 548
Putting Lights in Your Scene 551
Renderingthe SKy 554
Using Meshes in Your Scene. i 560
What's MisSing?ttt e 565
Still HUuNGry . . . 565
Further Reading e e 565
Collision and Simple Physics., 567
Mathematics for Physics Refresher i 569
Meters, Feet, Cubits, or Kellicams? 569

XXVii

XXViii

Contents

Chapter 18

Chapter 19

Mass, Acceleration, and Force. 571
Rotational Inertia, Angular Velocity, and Torque 574
Distance Calculations and Intersections. 575
Choosing a Physics SDK 576
Object Properties e 578
Collision Hulls. 580
Requirements of Good Collision Geometry. 581
Visible Geometry Versus Collision Geometry. 582
Collision Hulls for Human Characters 583
Special Objects: Stairs, Doorways, and Trees. 585
Using a Collision System e 586
Integrating a Physics SDK 588
Components of the Bullet SDK. 593
Initialization 594
Shutdown. . . . 595
Updating the Physics System 596
Creating a Simple Physics Object 599
Creating a Convex Mesh. i 601
Creating a Trigger oot e e 602
Applying Forceand Torquet 603
The Physics Debug Renderer. 604
Receiving Collision Events. i 606
A Final Word on Integrating Physics SDKs 609
But Wait, There's SO Much Moreo e e e i et 610
An Introductionto Game Al., 611
Al Techniques.o e 612
Hard-Coded Al 612
Randomization. 614
Weighted Randoms 616
Finite State Machines 616
DeCiSION TreeS. . o o ittt 622
FUZZY LOGIC. . . ottt 627
Utility Theoryo e 630
Goal-Oriented Action Planning. 635
PathFinding e 636
A% (ASTar) . . 638
Dynamic AvOoidancettt e 640
Further Reading 641
Network Programming for Multiplayer Games. 643

How the Internet Works. o e 644

Chapter 20

Chapter 21

Contents

Winsock or Berkeley? e 645
Internet Addresses e 646
The Domain Name System i 648
Useful Programs and Files. 649
Sockets APL. e 650
Sockets Utility Functions. 651
Domain Name Service (DNS) Functions. i 653
Sockets Initialization and Shutdown. 654
Creating Sockets and Setting Socket Options 655
Server FUNCLIONS e e 660
Socket Reading and Writing. 663
Making a Multiplayer Game with Sockets 663
Packet Classes. . . . oo i it 665
Core Socket Classes.t 666

A Socket Class for Listening, 673

A Socket Manager Classttt 675
Core Client-Side Classest e 683
Core Server-Side Classesot 684
Wiring Sockets into the Event System. 686
Gosh, if It's That Easyo e 692
Introduction to Multiprogramming. 693
What Multiprogramming Does. it 693
Creating Threads it et et 696
Process Synchronization 698
Test and Set, the Semaphore, andthe Mutex. 699
The Windows Critical Section i 700
Interesting Threading Problems 702
Thread Safety. 704
Multithreading Classes in GameCode4 e, 704
The RealtimeProcess Class 705
Sending Events from Real-Time Processes.ovuu... 708
Receiving Events in Real-Time Processes 711
Background Decompression of aZip File 713
Further Work e 715
About the Hardware 717
About the Future 718
Further Readingo 718
A Gameof Teapot Wars!t iinnnnnnn 719
Making @ Game e 720

Creating the Core Classesottt et 722

XXiX

XXX

Contents

Chapter 22

Chapter 23

The Teapot Wars Application Layer 722
The Game LOogiC oot 723
The Game View fora Human Player. 733
Game Events e 737
Gameplay. e 737
Loading the Level. 737
The Actor Managert et et 739
Sending and Receiving Events 741
Processes e 743
An Exercise LefttotheReader. 745
A Simple Game Editor in C#., 747
Why G . 747
How the Editor Is Put Together 748
The Editor Architecture 748
The Application Layer. e 749
The Editor's Logic Class.ottt 750
The Editor Viewo i e e 751
Functions to Access the Game Engine. 753
Creating the DLLt 763
Wrapping Up the Editor Architecture. 764
The C# Editor Application. i 765
Differences Between Managed Code and Unmanaged Code 766
NativeMethods Class.o v vttt e e 767
Program Class . . . v vt n e e e 768
MessageHandTler Class.ottt it it et e e 769
The C# Editor User Interface. i 772
The EditorForm Class. . . . oo vttt et e 772
The ActorComponentEditor Class., 784
Future Work.o 795
Further Reading 796
Debugging and Profiling YourGame 797
The Art of Handling Failure 798
Debugging Basics e 800
Using the Debugger. 803
Installing Windows Symbol Files. 805
Debugging Full-Screen Games i 807
Remote Debuggingt 808
Debugging Minidumps. 810
Graphics and Shader Debugging 812

Debugging Techniques. 813

Chapter 24

Contents

Debugging Is an Experiment 813
Reproducingthe Bug e 817
Eliminating Complexity. 817
Setting the Next Statement 818
Assembly Level Debugging. 820
Pepperingthe Code 822
Draw Debug Information. 823
Lint and Other Code Analyzers. 824
Nu-Mega's BoundsChecker and Runtime Analyzers 825
Disappearing Bugsot e 825
Tweaking Values e 825
Caveman Debugging 826
When All Else Fails 827
Building an Error Logging System 828
Different Kinds of BUGSottt e e e 835
Memory Leaks and Heap Corruption 835
Game Data Corruption. i e e 839
Stack Corruption. 841
Cutand Paste BUGS.ottt e 842
Running Qut of Space 842
Release Mode Only Bugs 843
Multithreading Gone Bad. 843
Weird Ones e 844
Profiling 846
Measuring Performance 846
Optimizing Code e 847
Tradeoffs 848
Over-Optimization i i e e e 849
Parting Thoughts 849
Further Reading 850
Drivingto the Finish. 851
Finishing Issues. 852
Quality . . . 852
Code. . o 857
Content 862
Dealing with Big Trouble 864
Projects Seriously Behind Schedule 865
Personnel-Related Problems 872

Your Competition Beats YoutothePunch....................... 874

XXXi

XXXIi

Contents
There's No Way Out—or IsThere? 875
One Last Word—Don"t Panic, 876
The Light—It's Not a Train After All. 876
Testthe Archive e 877
The Patch Build or the Product Demo 878
The Postmortem. e 878
What to Do with Your Time. i, 879

INTRODUCTION

by Mike McShalffry

WELCOME TO THE FOurRTH EDITION

The first edition of this book was published in the summer of 2003, just as I was
making some big transitions of my own. The first edition gave me a chance to
stand back and show programmers what really goes on in the world of game devel-
opment. Writing the book was a challenge, but the rewards were many. I heard from
programmers all around the world who enjoyed the book and found the stories,
insight, and programming tips to be helpful. The second edition was almost a com-
plete rewrite. The book went from around 700 pages to 1,110, and it was more pop-
ular than the first edition. In 2009, the third edition added AI, multiprogramming,
Lua, and C# with the help of my friends James Clarendon, Jeff Lake, Quoc Tran,
and David “Rez” Graham.

Three years later, I made a call to my publisher, Cengage Learning, and asked if a
fourth edition would be a good idea. They said yes, and somehow I had to figure
out how to find time to write it.

One of my friends, the co-author from the AI chapter of the third edition, and the
only person second to me in posting threads on the book’s website, Rez, was a natu-
ral choice to help me. I called him, but I didn’t get the answer I expected. He not
only wanted to help, but he wanted to do half the book with me and become
partners.

What you hold in your hands is the result.

XXXiii

XXXiV

Introduction

WHERE Is THE CobE? MusT | ACTUALLY TYPE?

Shortly after the publication of the first edition of this book, I made a website to pro-
vide resources and helpful information for readers. This site also became a great place
for downloading the book’s source code examples and all manner of interesting stuff.
The site has really grown since the first edition, and now it has become quite a
resource center. So if you are looking for additional help, the source code, or you
want to share your thoughts with other game programmers, point your browser to
one of these two places:

www.mcshaffry.com/GameCode/
www.courseptr.com/downloads

The book has never included a CD because the source code will get fixed and
tweaked even as this book goes to press and long thereafter. Good suggestions and
fixes even come from readers like you. Grab the code from the GameCode website
(or the publisher’s), and you’ll be assured of getting the latest source code and
information.

How THiIs Book Is ORGANIZED

The book is organized into four parts:

B Game Programming Fundamentals (Chapters 1-4): Exposes some stuft that
you’ll want in your game programming toolbox, like a good random-number
generator. It also introduces the major components of games and how they
interact. After you read the chapters in this part, you’ll have a good working
knowledge of the real architecture that game developers use.

B Get Your Game Running (Chapters 8-9): It's now time to learn how to get all
of the main building blocks of your game together, including the initialization
and shutdown code, the main loop, game actors, user interfaces, and input
device code. You'll find your first meaty game code examples. Often, many
programming books just gloss over this stuff and jump right into the cool 3D
code. But, in reality, this is the stuff you really need to know to create a suc-
cessful game, no matter what type of game you want to build.

B Core Game Technologies (Chapters 10-18): The tougher code examples are in
this section, such as 3D programming, scripting with Lua, game audio, physics,
and Al programming.

B Advanced Topics and Bringing It All Together (Chapters 19-24): In this sec-
tion, you'll find chapters on networking, programming with threads, creating

www.mcshaffry.com/GameCode/
www.courseptr.com/downloads

Introduction

tools in C#, and bringing all the code in the book together to make a little game.
You'll also see some great debugging tricks and an entire chapter on how it feels
to be there when you release a commercial game.

Throughout the book, youll see a few insets that are identified by the following
cartoons:

A "Gotcha" is something to watch out for, most likely because either Rez or |
have already made the mistake for you, and you can avoid it.

Best practices have been figured out through years of hard-won lessons.
Follow these “Best Practice” lessons, and you'll be happier for it.

MIKE’S
L) 'rdIES

from t+he

Both Rez and | have tons of stories won from hard
work and late nights working on real games. We like
to interrupt each other a lot, so you can recognize our :
stories by these cartoons. C 7 (-

Pixe|l Mines Pixel Mines

XXXV

XXXVi

Introduction

WHAT You’'LL NEED

If you're a programmer and you've had some game programming experience, you’ll
be able to follow along nicely. Take a moment to flip through the pages, and you’ll
see this book is written for programmers. Nonprogrammers could probably get
something from the book, too, but there is more code in this book than noncode.

The code is written in C++, Lua, and C#. If you don’t know these languages, you’ll
probably struggle a little with the code samples, but I'll bet you can get enough from
the comments and the explanations to get your money’s worth.

All of the code in this book works under Visual Studio 2010, or at least it did when it
was copied into Microsoft Word, which is how Rez and I wrote the book. Apologies
ahead of time for making no attempt whatsoever to make sure the code worked in
other compilers like CodeWarrior or GNU C++. I hope you’ll forgive us. We figured
our time would be better spent by covering as much technical ground as possible,
instead of working on multicompiler—compatible code.

The Lua code was written using the Decoda IDE. Since Lua isn’t a compiled lan-
guage, you don’t have to use any special editor; Notepad will work just fine. However,
there is a DEPROYJ file included with the Lua scripts so if you happen to use Decoda,
the project is all laid out for you.

The code in this book also has a heavy Windows bias. 'm a Windows programmer,
and I was a DOS programmer before that. I've had some brief forays into UNIX on
the Ultima Online server code, but I'm hardly an expert. Much of the code in this
book assumes that you are using Windows, and I didn’t change the code to support
cross-compiling into other operating systems for much the same reason as I chose a
single compiler. It was simply better for me to cover lots of technical issues than for
me to check my code under LINUX.

As far as graphics APIs are concerned, I assume youll use DirectX 11 or later. The
code supports both Direct3D 9 and Direct3D 11, but only Direct3D 11 is covered in
the book. I don’t have anything against OpenGL, of course, but I'm just not an expert
in the nuances of it. Basically, if you have a good working knowledge in C++, C#,
Windows, and a passing knowledge of DirectX, you'll be fine. You don’t have to be
godlike in your skill, but you should be pretty comfortable coding in these areas.

If you are a complete newbie and perhaps only know a little C++, don’t feel dejected
and don’t return this book! I have a plan for you. Throughout this book, I'll refer to
other tomes of knowledge that helped me learn how to program. They can help you,
too, and you can use them in conjunction with the humble collection of knowledge
you hold in your hands. With a little concentration, you can bootstrap yourself into

Introduction xxxvii

programming prowess. I learned more about programming in C++, DirectX, and
Windows by looking at working code, of which there is plenty included in these
pages for you to enjoy.

THIRD-PARTY LIBRARIES

This book uses STL for common data structures. If you don’t know anything about
STL, you'll see some good examples in this book, and I'm sure you’ll be able to follow
the code. 'm not attempting to teach you STL, which is something that is beyond the
scope of this book. Instead, go read The C++ Standard Library: A Tutorial and Ref-
erence by Nicolai M. Josuttis. After you get your bearings, go read Scott Meyer’s
books on STL because both books are fantastic.

STL is a body of code that is extremely well tested, has a widely understood API, and
is available on almost every development platform. If you haven’t seen it yet, stop
reading right now and do a little research. You'll never have to write code for com-
mon data structures like linked lists, resizable arrays, and trees ever again. I've saved
hours of grief using <1ist>, <vector>, and <map>.

Whatever happens, don’t get caught writing your own linked-list class or tree when
STL would have worked. All implementations are extremely well tested. Every bug or
implementation oddity has already been exposed and discussed on the Internet. Your
own code, on the other hand, is not.

SourRckeE CobeE AND CoDING STANDARDS

I despise technical books that include source code that doesn’t compile. I cursed the
name of every author and editor who created those books, filled with errors and bro-
ken code. 'm now doomed to join their ranks.

Microsoft Word just doesn’t handle C++ source code very well. Since this book is
printed in black and white, the code highlighting has to be turned off. I understand
now why so many programming books are crawling with errors. I apologize to every
author and editor I maligned. Until I wrote this book, I had no idea how difficult it
was, and now Rez feels exactly the same way. Enough groveling! Rez and I will make
a valiant effort to check and recheck the source code in this book, and we’ll do what
we can to set anything right if anything is broken.

Now that my conscience is at ease, you should know something about how to read
the source code in this book.

xxxviii Introduction

WHERE THE Cobe CoMES FrRoMm

Every line of source code has its beginning in an actual game. Of course, the code is
not 100 percent verbatim. My front door would be knocked down by a wave of law-
yers from Microsoft, Electronic Arts, Mattel, Eidos, and who knows what else. You
should see the agreements from EA that Rez had to sign before working on this
project! Instead, the code has been sufficiently tweaked to protect my intellectual
property and everyone else who was crazy enough to employ Rez and me. The origi-
nal code is much harder to read anyway. It usually contained optimizations and
external references that I couldn’t easily include in any form. Since they came from
over 30 years of combined coding experience, you can imagine the wide variety of
style and structure. If you want to make your own game, the source code in this
book should give you a head start. You'll find some great skeletal work on which
you can hang your own code. 'm even hoping that some of the code in here will
save you some headaches so you can concentrate on your game.

The code in this book was written and tested on the Windows platform under Visual
Studio 2010 using the DirectX 9 and 11 applications framework. Console program-
ming is a different beast, and where it makes sense, these differences are pointed out.
If you're looking to use this code on a Windows box but want to know how pro-
gramming the same thing on the Xbox 360, PS3, or the Wii is different, you're hold-
ing the right book.

The source code is covered under the GNU Lesser General Public License. You can
read about this license here: http://www.gnu.org/licenses/lgpl.html, but basically it
means that you can do what you like with the code as long as you give Rez and me
credit. If you are crazy enough, you can even use this code in a commercial game.
But don’t say Rez and I didn’t warn you.

CODING STANDARDS AND STYLE

Source code standards are important. 'm not necessarily a standards dictator. I can
find room for other opinions on code style, and I'm happy to adopt reasonable stan-
dards when and where I must. I look at it like trying to learn a bit of the local lan-
guage if you travel abroad. The locals will appreciate it, and you might even learn
something.

Origin Systems didn’t have company-wide coding standards. I was part of no less
than three standards committees while I was there, to no avail. Every time we
attempted to discuss C++ bracing style, the meeting simply broke down into a
screaming match. There were many programmers at Origin who simply wouldn’t
adapt to anyone else’s style. It got so bad that somebody wrote a little utility that

http://www.gnu.org/licenses/lgpl.html

Introduction

would parse a source file and change the bracing style from one to the other.
Madness!

Your coding standards and style exist solely to communicate useful information to
other programmers and sometimes a future version of yourself.

Rez and I use a coding style in this book extremely similar to what we use profes-
sionally. The only departures are those that make the code simpler to read. For
example, the source code in the book frequently eliminates obvious error detection
and handling. If we used every line of source code exactly as it appeared in real pro-
jects, this book would have to be twice as long. It was a tough trade-off, but it’s better
to have more examples and leave the obvious stuff out of the book.

UsING PREFIXES

Modern IDEs like Visual Studio expose the type of an identifier with a tooltip, so
programmers don’t have to clutter the prefix with redundant information. Instead,
the prefixes show scope, primarily. Here they are:

B g: Use with global variables—g_Counter

B m: Use with member variables—m_Counter
B p: Use with pointer variables—m_pActor

B V: Use with virtual functions—VDraw()

B I: Use with Interface classes—class IDrawable

I've seen some crazy use of prefixes that attach three or more characters to the front
of any identifier. It must be hard to program in Hungary. The problem with this style
is that every identifier that has the same prefix looks exactly alike. That’s why the
prefix should be as small as possible and separated from the identifier with an under-
score—it conveys useful information without overpowering the identity of the vari-
able name. In your own code, feel free to add more prefixes to this list as you find
good use for them. Just don’t go overboard!

Prefixing variables for scope is an excellent use for prefixes. Programmers who
change the value of something with global scope need to be slapped in the face so
they can take proper precautions. Class member variables have a different scope
than local variables. The “m” prefix is a clean way to differentiate locals and members
when they are used in the same method, such as constructors.

XXXiX

x|

Introduction

Virtual functions are powerful, and therefore dangerous when used to evil ends. A
prefix on virtual functions reminds programmers that they should call the parent’s
overloaded virtual function, and that the cost of calling the function is high.

I find it useful to apply a prefix to interface classes, ones that only define pure virtual
functions and no data members, so programmers feel safe multiply inheriting from
them. I avoid multiple inheritance of noninterface classes, and I advise you to do
the same. The resulting code can be very confusing and hard to maintain.

CAPITALIZATION

I use capitalization to distinguish different classes of identifiers and make identifiers
easier to read.

B Variables and Parameters: Always start with lowercase and use a capital letter
for each compound word—g_BufferLength, m_BufferLength,
returnValue.

B (Classes, Functions, Typedefs, and Methods: Always start with uppercase and
capitalize each compound word—SoundResource, MemoryFile.

B Macros & Constants: Use all capitals and separate compound words with
underscores—SAFE_DELETE, MAX_PATH.

The first two capitalization styles help programmers distinguish between definitions
of class and instances of those classes:

SoundResource soundResource;
MemoryFile memoryFile;

Macros, a source of frequent pain and suffering, should boldly state their existence in
all capitals. If you want to find the definition of a macro, it’s easy to search for the
jidefine MACRO_NAME. This sets them apart from functions or methods.

CoNsT CorrECT CoODE

I try my best to make code const correct, and the code in this book is no exception.
I'm sure some of you hard-core const correct programmers will be able to throw a
few thousand const keywords in where I've forgotten them. Const correctness is a
pain, but it’s important. Adding const to member variables, function returns, poin-
ters, and references communicates important information to other programmers.

Introduction

STRINGS AND LOCALIZATION

If you make your game for English speakers only, you're slashing your sales. Europe
and Asia, especially mainland China, are hungry for quality games. Most players will
put up with English, but they’d rather get their hands on a good translation in their
native language. Good localization technique deserves an entire book and a master’s
degree in foreign cultures.

I tend to use std::string and std::wstring throughout the book. It is an
incredibly useful string class, and while not everyone agrees, it’s the one I'm most
comfortable with.

One final note about strings in real game code: Debug strings or names for objects
are fine as literals. You can declare them at will:

if (impossibleError ==true)
{
QutputDebugString(_T("Someone enabled the impossible error flag!"));

}

COMMENTING

Really good code comments itself, and I'm hoping the code in this book does exactly
that. Good variable names and logic should obviate the need for wordy explanations.
In this book, I'll sprinkle comments in the code where I think they do some good,
but you’ll usually find some meaty explanation immediately after the code sample.

In a real game, the meaty explanation should be inserted into the code, perhaps at
the beginning of the file, so that other programmers can figure out what’s going on.
What seems obvious the moment you type the code degrades linearly with time to a
confusing mess. For me, total confusion sets in approximately three months after I
write the code. How could I possibly expect anyone else to understand it if I'm
completely lost in something I wrote myself?

I always start projects with the intention of putting good comments in my code. I
always end projects disappointed in other programmers and myself—we just didn’t
have enough time. That happens. Projects under pressure will see comments disap-
pear because the programmers are spending 100 percent of their time coding like
mad. The best policy is to start with a lean, light commenting policy and keep it up
as long as you can. If there comes a point in the project where comments are dwin-
dling, try to make a good effort to go back in the code base after the project releases
to document the code. A good friend of mine at Microsoft told me that shipping the
product was a good feature. I agree.

xli

xlii

Introduction

ERROR HANDLING

There is very little error handling code in this book, so little that when I look at it, I
cringe. The fact is that robust error code gets a little wordy, and I wanted to spend
time on the lines of code that will teach you about making games. You can use any
form of error checking you want, and I talk about some different options in the
chapter on debugging.

Every hard exit in your game should have an error message that is presented to the
player: “Bummer — your game is hosed because of some bug in objectdata.cpp, line
6502”. Use FILE and LINE to identify the offending code. Unique error codes are a
hassle to maintain. This data can be invaluable for the development team and cus-
tomer service after the game ships. Many a patch or workaround traces its roots to
a few hundred telephone calls and emails that finger a particular error code.

Most games create their own assert() macros and error logging system, and this
book is no different. Throughout the code in the book, youll see GCC_ASSERT(),
which replaces the typical CRT assert() macro. It functionally behaves in the
same way. You may also see GCC_ERROR() and GCC_LOG(). The first will display
an error message, while the second will log the string to the debugger, assuming
you have the correct tag enabled. This is described in detail in Chapter 23, “Debug-
ging and Profiling Your Game.”

MEMORY LEAK DETECTION

Most everywhere in the source code, you will see memory allocations use GCC_NEW:
m_PCMBuffer = GCC_NEW char[bytes];

GCC_NEW is defined in debug builds as:

fidefine GCC_NEW new(_NORMAL_BLOCK,__FILE__, _ LINE_)

You'll learn more about this in Chapter 23, but suffice it to say for now that doing

this helps you find memory leaks.

GOTO: NOT JUST A BAD IDEA—IT WAS NONEXISTENT!

MIKE’S
., Tales

from the

At Origin Systems, a particular programmer on Martian Dreams used goto at
a frequency you'd find unpleasantly surprising. The new version of the Borland
compiler was on everyone's desks, fresh from the presses. He'd just finished
installing it and went to lunch. | went to his machine and edited the
compiler executable. | changed the keyword goto to goat. When he came
back from lunch, three or four of us were poring over the Borland docs in my
office. We told him that Borland's software engineers decided to eliminate goto
from their implementation of C. He didn't believe us until he compiled a

- 1

Pixel Mines

Introduction

small test program in his newly installed compiler and received “unexpected identifier or keyword: goto”
message for his trouble. We told him the truth before he reached someone at Borland’s customer service
department.

CoMPANION WEBSITE DOWNLOADS

Visit the companion website for this book at http://www.mcshaffry.com/GameCode/,
where you can find the most up-to-date resources for this book, especially the source
code.

The source code for this book is hosted by Google Code at this address:
http://code.google.com/p/gamecode4/

You may download the companion website files from www.courseptr.com/downloads.
Please note that you will be redirected to the Cengage Learning site.

xliii

http://www.mcshaffry.com/GameCode/
http://code.google.com/p/gamecode4/
www.courseptr.com/downloads

This page intentionally left blank

CHAPTER 1

by Mike McShaffry

WHAT Is GAME PROGRAMMING
REALLY LIKE?

Programming games can be very different from other kinds of programming. Some
of the good aspects of game programming have to do with the bleeding edge chal-
lenges you run across and the fact that sometimes you actually see your name scroll
across a credits screen. Games are cool, and everybody loves them. If you meet a fan
at a computer game store, that person is usually really happy to meet you. You get to
play with some great technology from manufacturers like Nintendo, Microsoft, Sony,
Apple, and others. Software development kits from companies like Unity, Havok,
Epic, Valve, and others are also a lot of fun to play with. They can give you a real
boost in game development and can bootstrap your game from nothing to something
cool in record time.

The not-so-cool side of professional game programming involves the inherent
unknowns that come with your work. The sweaty underbelly of this industry can be
blamed mostly on insane deadlines and work hours, project management problems,
ever-changing SDKs, hardware and operating systems, the tricky problem of creating
“fun,” and intense competition from other game developers. Hopefully, this book can
give you some perspective on the industry and at the same time show you the fun
and not-so-fun aspects of game development. I'll try to point out some things that
I've learned over the past few years. Read this chapter, and you might be able to
dodge a few of these problems.

Chapter 1 B What Is Game Programming Really Like?

THE Goob

Programming jobs in the games industry change fast. In fact, they’ve even changed
with each new edition of this book. Programming used to be a really broad activity
because there were so many problems to solve and there were so few good and expe-
rienced game programmers out there who could solve them. In the real early days,
game programmers did everything: code, art, sound, and game design. Now you
tend to see very specialized game programmers for niche areas of game technology:
Character movement, network communications, database, physics, and audio are just
a few. When I accepted my first job in the computer game industry, my second
choice was a job with American General Life Insurance. They wore ties. Their
employees took drug tests. I would have had the distinct privilege of working on a
beta version of Microsoft’s C++ compiler, programming little sales tools for insur-
ance agents. Did I make the right decision or what?

Face it—most programming jobs are downright boring. If you know where to look,
you can still find really interesting ones even outside the games industry. They might
be jobs you can’t talk about, working on ultra high budget simulations and control
software, finding cures for disease through molecular protein folding analysis, and
games. Everything else falls quickly into the “Did you put a cover sheet on your
TPS report?” category.

- REZ’S

T Tales

from the

The Games Industry Is More Secretive Than the Pentagon

In 2010 | was approached by Electronic Arts to work at their Sims studio on
"a brand new Sims game.” That was all they would tell me. It wasn't until |
went into the on-site interview and signed a non-disclosure agreement that
they told me this new game was The Sims Medieval. The project I'm
working on as of the writing of this book is even more secretive. We don't
tell potential candidates anything at all except that it's a Sims game, even @
after signing a non-disclosure agreement.

The Job

Here’s my bottom line: Games are great to work on because they are as much about
art as they are science. When I wrote the first edition of this book, I put a lot of
thought into why I found game programming immensely satisfying even with all of
the pressures and challenges. I came to the following conclusion—I like blending the
artsy side of my left brain and the engineering side of my right brain, especially when
I'm in new territory. When I was on Thief: Deadly Shadows, 1 got to work on charac-
ter movement—talk about a tweak fest. I had to look carefully at the character move-
ment and understand why it “felt” wrong. I played tons of Splinter Cell to see how

The Good

they solved some sticky problems. The “art” involved understanding how character
movement was supposed to “feel.” Once I had a clue, I had to convert that feeling
to a piece of code that fixed the problem—that was science, mostly math. Two sides
of your brain working together can solve some really cool problems. Even if you
understand the science, sometimes it’s up to you to tweak it, like an artist tweaks a
smile on a portrait.

It’s great to take a game design discussion with you to lunch. You can have a heated
debate on whether the master zombie characters came from outer space or originated
here on Earth—the result of some tragic experiment. You get the weirdest looks, as
someone screams, “Damn it, everyone knows that it’s better for the zombies to come
from space!”

I have the most fun coding, especially when things are going well. Game code can be
pretty difficult stuff, and you frequently have to break some new ground here and
there. This is especially true when you are playing with new hardware like the latest
console development kits. When working at Red Fly Studio on Thor 3DS, no one had
worked on stereoscopic 3D rendering before, and it was both fun and tricky to figure
out how to do it right. Sometimes you can break new ground when you figure out
how to implement a customized version of a classic algorithm so that it runs fast
enough to be in a game instead of a textbook.

Probably the best part of game coding is starting from scratch and allowing every-
thing in your libraries to be refreshed and rewritten if necessary. While you are fin-
ishing, you can’t make drastic changes, and you are forced to live with some
annoying hacks and hastily designed objects. When the project is done and you are
starting the next one, there’s nothing better than throwing off those shackles. Refac-
toring, reorganizing, and rewriting an older system so that it really shines is
extremely rewarding. Games probably offer more freedom than other types of pro-
gramming projects because game code can have a very short shelf life. Of course, I
say that knowing full well that some of my code might very well still be alive in
Ultima Online, 10 years after it went live. Still, the state of the art moves pretty fast,
and as a game developer you'll be pedaling as fast as you can.

The Gamers

If you work in the games industry, people want to know about your company and
your projects. They talk to you about your job because it’s high profile. They want
to know when they can play your game. Depending on the company you work for
and what game you are working on, you may not be able to say a single word
about it. (Secrecy can be very important when working with companies like Nintendo

Chapter 1 B What Is Game Programming Really Like?

or LucasArts.) Every now and then, you'll find someone who played a game you
worked on and enjoyed it. It’s great when fans get a buzz going about a game that’s
still in the design phase, or they start talking about the next version before you're
back from vacation. They set up websites devoted to your game and argue endlessly
about stuff that even the development team finds minor.

Another category of people you come into contact with is the hopeful would-be game
programmer. I enjoy these folks, and I do everything I can for anyone who has talent
and is willing to increase his or her skills—if I didn’t, you wouldn’t be reading this
book! With today’s independent development scene and increasingly savvy hobbyists,
there is also an increase in amateur developers. These developers are taking things a
step beyond the more casual hobbyist level to create things that are intensely interest-
ing. Some even graduate to cult status, or better yet, to the professional ranks. With
iTunes, the Android Marketplace, Xbox Live Arcade, Steam, and Facebook, anyone
can make his own game, actually sell it, and potentially make a living. The best
revenge is being able to tell your parents that playing all those games actually did
you some good.

MIKE’S
Tales

from the

A Demo Is Better Than a Resume

One of the best programmers | ever worked with started out as a dedicated
amateur. This guy was so dedicated that he rewrote a large portion of Ultima
Vil on his own time and actually made a fantastic graphics engine that had
Z-sprites before | even knew what they were. He showed us a demo that
simply blew the minds of the Ultima programming team. We hired him.

Pixel Mines
Your Coworkers

The best people are those closest to you—the development team. By the end of a project,
they’re like your family. Certainly you’ve seen them more than your family, and I've even
seen teammates become family. Programmers, artists, animators, designers, audio
engineers, composers, testers, and project managers make an odd mix of people.
You wouldn’t think that these people could all hang out and get along. But they do,
mostly anyway.

Most of your interactions in game programming are with other programmers. One
big difference between the game industry and other more traditional programming
jobs is that there’s a significant portion of programmers who are self-taught in
games. I believe that game programmers as a whole look more to a person’s skill
than a university diploma. That’s not to say that self-taught coders are slackers by
any shake of the stick. Instead, they tend to be absolutely brilliant. One difference

The Good

between the self-taught hackers and the programmer with formal training is that
hackers tend to design and code things before they realize that someone has already
solved the problem. Sometimes, you'll catch them describing a cool data structure
they just came up with, and you’ll realize they are talking about a B+ tree. Their
strength comes from their amazing ability to see right to the heart of a problem
and fearlessly begin to solve it. One of the most brilliant programmers I ever met
never graduated high school.

The creative insight that artists conjure up makes working with them so fantastic.
Probably the weirdest thing about working with artists on computer games is that
you realize that artists and programmers are the same kind of people working with
different sides of their brain. Artists can push you hard to achieve the look they are
going for. Sometimes on a busy day, your first reaction to them asking crazy things
of you is to brush them off. Instead, take a moment to visualize their goal and see if
there’s a way to make it happen. At Red Fly Studio, artists ruled the roost (the CEO
was an artist), and our games always benefited from programmers trying hard to
make the artists happy. One bit of advice, though—artists find it very difficult to
remember that not every texture needs to be 2048 x 2048, and they will sometimes
create assets that couldn’t run on an army of computers, much less one that a normal
person owns. When that happens, try to be patient and give them gentle reminders.

Animators have intense relationships with programmers, because getting a character
to act in the game as the animator intends can be pretty tricky. The programmer
working with a character animator has to constantly balance how good the character
looks with how responsive the character feels. Take jumping, for example. When
players press the jump button, they want the character to jump immediately, but in
practice that looks a little goofy, since there’s no time for the character to “wind up”
to the jump as a real person would. Detecting the character’s surroundings and ani-
mating to make him react properly to it can also be a challenge. Finally, animators
love to change animations to make them better, but the problems of changing some-
thing critical, like jump distance, can have a drastic effect on level design—making
easy things impossible or vice versa. Again, gentle corrections and good communica-
tion are key.

Game designers are a truly special breed of people. Almost every other discipline in
game development has easy access to work in other industries—programmers, artists,
composers, even producers can work using the same tools and thought processes as
they do making games. Game designers, however, tend to transform into writers,
playwrights, movie directors, historians, teachers, philosophers, poets, and any num-
ber of other things. Great game designers bring an amazing understanding of what

Chapter 1 B What Is Game Programming Really Like?

drives human behavior and what fantasies humans would like to have. All this, as
you might expect, can create some very interesting personalities—from the collabora-
tive inspirer to the egomaniacal dictator. As a programmer working among designers,
being able to understand their vision and help them create it is likely one of the most
important skills you can have beyond the technical ones.

I've always enjoyed working with audio engineers and composers. One thing I can
pass on is that the last content that gets tweaked or made in games is generally
audio. Story is usually told through voice-over, sometimes with well-known actors.
Final sound effects can’t really be perfected until all the animations and particle
effects are completely and absolutely final. What this means to you is that anytime
something you are working on runs a little behind, you basically steal a little time
from the guys who work last, which tends to be audio. Even so, you'll never find a
more laidback and fun group of people. How they can be so pressed and keep a bet-
ter attitude than almost everyone else on the whole team I'll never know.

I've tried very hard to have a great relationship with game testers. They can be every-
thing from a high school kid working part-time to a real test engineer formally
trained in software quality assurance. Either way, they are your last, best hope to
release a game that will be fun to play and free of game-stopping defects. They can
sometimes be frustrated game designers, but most of the time they are just game
enthusiasts who really know the difference between fun and “meh.” Listen to them,
try to be patient when they keep telling you your code is broken, again, and they’ll
save you from introducing some bug that gets mentioned in a Metacritic review.

Producers, or project managers, I know the best because I've spent probably as much
if not most of my career managing as I have coding. They are typically obsessive-
compulsive organizers, energetic, gregarious, and team cheerleaders. They can also
be like that guy in Office Space asking you where your weekly report is, which never
goes over very well. Best advice I can give you is to put yourself in their shoes—play-
ing a live action resource allocation game and trying to get thousands or even mil-
lions of creative works all completed in the right order and the right time, hopefully
without asking everyone on the team to work every weekend for the next two years.
Most producers want the best game possible without killing the team, and with any
luck, they want to see that the team has some fun while doing it. Remember that, and
you'll see their pesky questions in a new light.

All told, this group of people brings an incredible amount of talent and diversity to a
team—and that is something you just can’t get in many other jobs.

The Good

The Tools—Software Development Kits (SDKs)

One of the most popular SDKs is DirectX from Microsoft. It provides APIs useful for
creating game software, albeit only on devices that run Microsoft operating systems.
There are many more: SDKs for physics, SDKs for rendering 3D graphics, SDKs for
audio, networking, even Al You probably could make a professional game without
using any of them, but I wouldn’t recommend it. You don’t need all of them, but
most certainly you’ll use one or two. They boost your development schedule and
give you some confidence that your graphics or audio system has been well tested
and might even be well known by other programmers that will help you make your
game.

When I first started writing this section, it was in “The Dark Side” section at the end
of this chapter. I felt a little guilty about giving SDKs such a bad rap. After all, if they
are really useless, why do I use them on every project? The truth is that SDKs give
you a huge leg up. The source code that accompanies this book could never have
been written or maintained without them. That said, they can also be a huge pain
in the butt. SDKs are widely used, so they can’t appeal to the odd needs of every
project. Some of the expensive ones come with source code as you see with open
source SDKs, which is critical for debugging problems. You can even make changes
and recompile the SDK, but any customizations you perform might be invalidated by
their next version. Most of the time, you have to be satistied with begging and plead-
ing the company that created it to add your wacky feature or just support the custom
mod yourself. Perhaps the SDK engineers will find your idea interesting and add
your idea to the mix.

The real hassle comes when you grab their latest version. You'll usually find that the
new version isn’t compatible with your code base, and you’ll spend hours or days
getting your game to compile again. In writing the fourth edition of this book, this
happened to me—many SDKs needed some code changes to become functional again
or to take advantage of new features and capabilities. Basically, if you don’t have to
upgrade for some compelling reason, don’t bother. Spend the time making your game
better. As they say, “If it ain’t broke, don’t fix it.”

Do yourself a favor and try to find SDKs that that are widely used or are from com-
panies that commit to support earlier APIs or have become stable enough that you
only have to change your code to utilize new additions, rather than random changes
to old APIs. Anything else is madness.

8

Chapter 1 B What Is Game Programming Really Like?

Self-Inflicted Wounds MIKE’S

. Tales

from the

Red Fly used TRI's Infernal Engine for all our games until about 2011. During
that time, the programmers at Red Fly were improving the engine almost at
the same speed as the TRI programmers—but not in the same way or even
with the same programming philosophy. Ultimately, the two engines had to
be brought back together because the Gen3 version of the engine had
platform support for Sony PlayStation 3 and Nintendo 3DS. It took one .
programmer almost six months to reintegrate tens of thousands of individual & =

changes so Red Fly could have the best of both worlds. 'Pix&l Mi&

The Hardware

Games run on cool hardware. Well, most games do. At Red Fly, the Thor project was
one of the first games released on Nintendo’s 3DS system, featuring stereoscopic 3D
rendering. Thief: Deadly Shadows used the very latest in audio and video hardware
for the PC, especially the new 5.0 EAX environmental audio system from Creative,
and it also ran on the fairly new Xbox. Way back in the day, the Ultima games
from Origin Systems pushed hardware so hard that players would usually buy a
new computer every time an Ultima came out. At the time, this was like spending
$2,500 on a new game. Many of the big-budget PC titles are created on hardware
that has yet to reach any serious market penetration, which means that the hardware
manufacturers are constantly sending game developers the latest greatest stuff and
even a T-shirt every now and then. An established developer can still call any hard-
ware company out there and get on their developer program. You don’t exactly get
free hardware anymore, but you do get access to the developer forums, news about
updates, and other things youll find useful. That can save your day if you find
that your game crashes on the hottest video card or with one of the latest new
controllers—you can’t fix the bug just by hoping it goes away.

The developer programs offered by hardware manufacturers are a great resource.
Most of them have special developer websites and prerelease hardware programs.
They also have dedicated engineers who can help you with a specific problem. An
engineer at ATI verified a particular bug on one of the Microsoft projects I worked
on, and they had a new driver ready in a few days. Of course, I was happy to have
the big gorilla named Microsoft standing behind us, but most hardware companies
are really responsive when it comes to diagnosing weird driver problems.

The Platforms

There is a wide variety of gaming platforms, and they never stop growing. For many
years, we only had to deal with consoles and desktops. Since 2001, games have

The Good

popped up on handheld devices like the Nintendo 3DS, Sony’s Vita, the iPhone/iPad,
Android devices, and many others. The biggest growth in gaming from the third edi-
tion of this book to the fourth edition by far is Web-based gaming, especially Face-
book and Google+.

At the time of this writing, the big consoles on the market are the Wii from Nin-
tendo, the Xbox 360 from Microsoft, and the PlayStation 3 from Sony. At first, the
battle seemed to sway to Nintendo, which came in third place during the PS2/Game-
cube/Xbox era. Late in the cycle, Microsoft and Sony seem to be winning. Since the
1950s and the very first computers, it was always software that sold the hardware,
which is a fact that will never change. PlayStation 2 won the last time because it
had the best games, period. The Wii came out strong because of its wide appeal to
gamers of all ages. But due to the fact that Microsoft and Sony strongly support all
their developers, not just their internal teams, they have gained ground, and it looks
like the Wii is fading. Still, if it weren’t for Nintendo taking a big risk on the Wii
motion controls, we probably wouldn’t have seen them from the much more conser-
vative Microsoft or Sony. Fading or not, they are still influential, and the games
industry is used to surprises from Nintendo.

My Nephew Makes Mushroom Men Better

MIKE’S
Tales

from the

One thing most games go through is something called blind playtesting.
This is when you let someone who has never seen the game come in and
give it a try. Usually, this happens with some developers watching and
cringing, as they see a new player have trouble with something they
designed. My then 10-year-old nephew, Sam, was a blind playtester for
Mushroom Men: The Spore Wars and actually found a pretty important
bug. It turned out that the special weapons Pax could build could only & s
be used while standing in one place—and my nephew immediately S 4 g
noticed this. One of the programmers, Kain, was able to fix the bug and Pixel Mines
show Sam how his comments made the game better.

The best part of developing for consoles is the fact that you’ll never have to worry
about supporting a hellish grid of operating system and hardware configurations
that are guaranteed to change at least twice during your development cycle. You do
have to deal with standards compliance with the console manufacturers, which can
be quite difficult if you've never had the experience.

Tables 1.1 and 1.2 list the various platforms on the market and their hardware
specifications.

Chapter 1 B What Is Game Programming Really Like?

Table 1.1 Capabilities of Last Generation Consoles

Platform Xbox PS2 GameCube

CPU 733MHz 294 9MHz 485MHz

Graphics Processor 250MHz 147.5MHz 162MHz

Maximum Resolution 1920 x 1080 1280 x 1024 Up to HDTV

Memory 64MB RAM 40MB RAM 43MB RAM

Controller Ports 4 2 (4 optional) 4

Media 4x DVD-ROM 5x DVD-ROM 3x DVD-ROM
(3.2-6.4GB) (3.2-6.4GB) (1.5GB)

Digital Sound Dolby 5.1 DTS in Dolby Pro Logic Il Dolby 5.1 for DVDs
gameplay

Hardware Audio 64 48 64

Channels

Hard Disk Yes—8GB Add-on No

Internet 10/100 Ethernet Optional modem/ Optional modem/
port broadband broadband

DVD Movies Yes Yes No

There’s a serious leap in capability from that first table to the second, isn’t there? The
change from the PS2 to the PS3 is nothing short of remarkable. But hardware capa-
bility doesn’t mean you’ll sell more—a great lesson that sometimes less is more.

When I wrote the second edition in 2004, I had a line about desktop hardware that
said: “After all, you can’t find CPUs topping 2GHz in the console world....” Funny
how times change—today that statement is completely wrong. A few years after this
edition is published, it will be wrong again! I also wrote that consoles were always
lacking behind desktops for raw processing and graphics power. That statement
isn’t as true in the PS3/Xbox360 era and certainly won’t remain true when their suc-
cessors start to emerge.

Desktops are still ahead when it comes to memory and hard drive storage, but they
are falling behind in cool controllers, like you see with the Wii. With all the consoles
being Internet-capable and having space on their hard drives, consoles even get to
send updates. The lines are definitely blurring. But the cool controllers aren’t driving
the popularity of PC games anymore; instead, it is social gaming on sites like

Table 1.2 Capabilities of Next-Generation Consoles

The Good

Platform Xbox360 PS3 Wii
CPU 3.2GHz PowerPC 3.2GHz cell—Also 729MHz IBM
Xenon with three has seven single- Broadway
cores threaded special
purpose processors
(SPEs)
Graphics Processor 500MHz ATI 550MHz NVIDIA 243MHz ATI
Maximum Resolution Up to 1080p HDTV Up to 1080p HDTV Up to 480p
Memory 512MB RAM 256MB RAM 60MB RAM
@ 22.4Gbps @ 25.6Gbps @ 1.9Gbps
HDMI Yes Yes No
Controller Ports 4 (wired and 7 (wired and 4
wireless) wireless)
Media 12x DVD-ROM Blu-ray Proprietary DVD
(3.2-6.4GB) (3.2-6.4GB) (1.5GB)
Digital Sound Dolby 5.1 DTS Dolby 5.1 DTS Dolby 5.1 for DVDs
Hardware Audio n/a 320 hardware, no 64
Channels limit with software
Hard Disk Yes—20-120GB Yes—20-120GB No
Internet 100Mbs Ethernet Gigabit Ethernet Built-in wireless
DVD Movies Yes Yes No
Blu-ray Movies No Yes No

Facebook and Google+. Those games begin as free to play, but very quickly they
begin to ask you to spend small amounts of money on more energy. Even more
insidious, these games ask you to use your social network to “help” you play, thus
using you as a way to spread the word about their game while they take your
money at the same time. Brilliant. A little disgusting maybe, but brilliant.

Still, the dizzying array of hardware and operating system combinations on desktops
makes compatibility a serious problem. You'll spend a serious amount of time

11

12

Chapter 1 B What Is Game Programming Really Like?

chasing down some crazy bug that only happens on some archaic version of Win-
dows or on some rare video card. What a hassle!

Take a look at Table 1.3 and compare it to Table 1.2. You'll see pretty quickly that
what was sitting under your TV will be in your pocket in just a few years. Not only
that, but the input/output of these devices has all kinds of fun things to play with—
GPS, front-and-back facing cameras, accelerometers, multi-touch screens, Bluetooth
local networking, and fast Internet connections. just to name a few. Some of the
best innovation in game design comes from having new ways to interact with the
virtual universe, simulated by the device and other humans playing the game. One
of the most innovative things I've seen recently is experiments in augmented reality,
where you can use a pad or a phone as virtual goggles into the real world, with game
characters seemingly moving about on your desktop, living room floor, or on top of
someone’s head in the subway. This kind of creativity and genuine fun in game
development is one of those things that makes me want to get up every day and go
to work. I never know how the day will turn out or what new things I'll see.

On desktops and even handhelds, like phones and pads, you might find it useful to
find ways to support older legacy hardware while you make your game look good on
the bleeding-edge gear. The CPU delta on PCs can be nearly 10:1, and the graphics
delta is worse. People who play casual games hold on to their computers a long time,

Table 1.3 Capabilities of Latest Handheld Devices

Platform iPad2 Droid Bionic Sony Vita
CPU 1GHz Apple A5 1GHz ARMS9 (dual 1GHz ARM9 (quad
core) core)
Graphics Processor 200MHz PowerVR GeForce Tregra 2 PowerVR SGX543
SGX535
Maximum Resolution 1024 x 768 HDTV 960 x 540 960 x 544
Memory 16-64GB RAM 16GB RAMSD adds 512MB RAM
32GB RAM 128MB VRAM
HDMI Yes No No
I/0 Touch screen, front Touch screen, front Touch screen,
and back cameras, and back cameras, playstation
GPS GPS controls, front and
back cameras
Internet 3.1Mbps 3G WiFi 3.1Mbps 3G WiFi WiFi 802.11 b/g/n

802.11 a/b/g/n 802.11 b/g/n

The Good

so you'll probably still find video cards out there that don’t support shaders for that
type of gamer. A good game will configure itself to create the best experience it can
on the hardware. If you have a hard-core audience, make sure that your options
screen lets them tweak every setting possible. Let the flamethrowers turn on multi-
channel MP3 decompression, full dynamic lighting and shadows, full-screen graphics
effects like motion blur and bloom, ultra-high texture and model density, stereo
1600 x 1200 x 32 displays, and quasi-telepathic Al. Each of these options deserves
separate testing paths on all the hardware configurations.

It makes you glad you can send patches over the Internet.

The Show

The game industry throws awesome tradeshows and parties. Find out for yourself
and register for the Electronic Entertainment Expo (E3), usually held in Los Angeles
in May. E3 requires you to be part of the industry to get registered, so if you don’t
have a game job, then launch a game review website and call yourself “press.” Every-
body else does. When you get there, play every game you can and dork around with
the latest console gear. The show floor is where the game companies pull out all the
stops to attract attention. You've got to go see for yourself. It’s unbelievable.

Sneaking Around Is Definitely a Best Practice

Throughout this book, I'll be including a number of “best practice” tips from
my years of experience as a developer. | couldn't resist including this one for
your first “best practice” dose. It can be a lot of fun to snag party invitations
from the in-crowd and talk your way into the “by invitation only” areas. A
friend of mine who worked for Dell was able to get into virtually every private
area of the show just by showing up, flashing his Dell credentials, and talking
like he was someone important. Almost everyone bought it. It's all good fun.

Practices

If you want to learn about game development, go to the Game Developer’s Confer-
ence in San Francisco, which is held in March. It’s brutally expensive, but you’ll find
the cream of the game development crop telling willing crowds some of their secrets.
Before you sign up for any of the workshops, roundtables, or sessions, it’s a good idea
to do a Google search on the speakers and get an idea of what they’ve worked on
recently. Choose the sessions that have speakers with the most game industry experi-
ence and subject matter you're ready to hear—some of them are fairly advanced. If
you find yourself short of the cash to register, sign up to volunteer. Sure you have to
work the show, but you will get some time for yourself, and even just an hour or two
will be worth it.

13

14

Chapter 1 B What Is Game Programming Really Like?

THE HARD WORK

Every job has its good parts and parts you just have to slog through. Game program-
ming is no different. First, game programming can be extremely frustrating at times.
Many before me have argued that programming games is the most challenging form
of programming there is. Bad things are a matter of perspective; some people find
these things challenging, while others find them burdensome. You'll have to judge for
yourself.

Game Programming Is Freaking Hard

It’s not uncommon for a game programmer to do something completely new and try
to hit a deadline at the same time. I'm not talking about a modification of a data
structure to fit a certain problem; I'm talking about applying experimental and theo-
retical designs to a production system that meets deadlines. On Ultima VII, one
programmer wrote a 32-bit memory management system that was based on a little-
known Intel 486 processor flag and hand-coded assembly, since there were no
32-bit compilers or operating systems we could use. On Ultima VIII, one of the
low-level engineers wrote a multithreaded real-time multitasker two years before
Win32 went beta. On Ultima IX, the graphics programmer figured out how to
make a software rasterizer appear to pump 32,000 textured polygons per second on
a first generation Pentium. Everyone knows what Ultima Online did—found a way to
get every Ultima fan playing in Britannia all at the same time. I can’t even begin to
talk about the innovation that had to happen there just to get this system to work.

It would be one thing if this stuff were all research, where results come when they
may and the pressure is bearable as long as the funding for your project is there. A
game project is different because the schedule is relentless. For all the media press
about how late games are, I'm surprised that you see some of them at all, given the
fact that so much technology has to be created and somehow the game has to be fun
all at the same time.

Richard Garriott Uses Jedi Mind Tricks

MIKE’S
. Talés

Technology isn't the only thing that makes game programming hard. Game F ;
roem the

designers will push you farther than you ever thought you could go. |
remember very well a conversation the senior staff at Origin had with Richard
Garriott about the world design for Ultima IX. The team was pushing for a
simple design that was reminiscent of the old Ultima games—the outdoor
map was separate from the city maps. This was a simple design because each .
map could be loaded at once, and no complicated map streaming would be S Cpf ~\x
required. Richard didn't go for it. He wanted a seamless map like Ultima VI, i rulnt

This was a much harder problem. We knew going into the meeting that if we Pixel Mines

The Hard Work

couldn’t convince Richard to use a simpler world design we'd have a hard time making our deadlines. We
steeled ourselves with resolve, and armed with our charts and graphs and grim schedule predictions, we
entered the conference room. Two hours later, we all walked out of the room completely convinced that
Richard was right, a seamless map was the way to go. | wish | knew how he does that!

Bits and Pieces

Games are built from more than code. Go find any PC game you bought recently and
take a look at the directory where you installed it. You'll find the expected EXE and
DLL files, with a few INIs or TXT files, too. You'll also find gigabytes of other stuff
with file extensions that don’t necessarily map to any program you've ever seen.
These other files hold art, models, levels, sounds, music, scripts, and game data.
This data didn’t just fall out of the ether. Every texture was once a PNG or TIF file.
Every sound was once a WAV, probably converted to MP3 or OGG. Each model and
game level had its own file, too, perhaps stored in a 3ds Max file. Even a small game
will collect hundreds, if not thousands, of these bits and pieces, all of which need to
be catalogued and organized into a manageable database of sorts.

Very few software projects share this problem. The only thing that comes close is a
website, and there just aren’t that many assets. After all, they have to get sent over
the Internet, so there can’t be that many—certainly not enough to fill up a Blu-ray
disc, and a compressed one at that.

Losing Files Is Easier Than You Think

Logistically, these things can be a nightmare to manage. | worked on a
project where an artist wiped every file he'd worked on without even
knowing it. Art files would get changed on the network, but wouldn’t
get copied into the build, or even worse, the artist would change the
name of a file, and it would get lost forever. When you have thousands
of files to look though, it's sometimes easier to just repaint it. Luckily,
there are tools like Perforce, Subversion, or Git to help manage this
problem. The situation is certainly better than when | started, where |
think our best file management scheme was a pad of paper.

That’s Not a Bug—That’s a Feature

Actual bug: I was walking along and the trees turned into shovels and my character
turned into a pair of boots and then the game crashed.

You certainly won’t see a bug report like that working on a database application.
Seriously, some of these reports convince you beyond any shadow of doubt that the

15

16

Chapter 1 B What Is Game Programming Really Like?

testers are certifiably crazy. Or your code could be crazy. My bet is on the code being
crazy.

You might wonder why I put something so amusing in the “hard” section of working
on games. There are plenty of funny bugs; stuff goes wrong in a game and has a
bizarre result. Luckily, Quality Assurance (QA) should find it because it will be fun-
nier for you as a developer than it will be for players whose crashed game destroyed
their save files and ruined all their progress, forcing them to start again from the
beginning. Trust me, most players will “rage quit” at that moment.

Beyond the funny bugs, there’s a dark side.

One bad thing is just the sheer volume of bugs. Games tend to be rushed into testing,
and the QA department does what they are paid to do and writes up every problem
they observe. I think they hope that eventually the producers will get the point and
stop sending proto-ware into the test department. They hope in vain because the
pressure to call the game “testable” is usually too much for the project management
to bear. It’s too bad that there tends to be no solid definition of “testable” unless you
work in QA. From their point of view, it’s pretty obvious.

The heavy bug volume weighs on everyone, developers and testers alike. They end up
creating a logistical nightmare. The graphical reports that get spit out by the bug
database are watched like the stock market; only this time, a steep upward curve
tends to have a negative effect on team morale. The worst part by far is what happens
when the team can’t quite keep the bug count under control, which typically happens
when they are still focused on finishing the game’s content and features. To stay
ahead, the project leadership gathers together and does “triage”—a process where
they kill off bugs without the team ever really seeing it. The bug simply becomes a
feature, maybe a weird screwed-up annoying feature, but a feature all the same.

You Won't Be Able to Fix Every Bug

There's nothing like having the rug pulled out from underneath you
because a bug that you intended to fix is marked “won't fix" by the
team leadership. You might even have the code fixed on your machine,
ready to check in for the next build. Instead, you get to undo the
change. The final straw is when some critic on the Internet bashes the
programmers for writing buggy code and even points out the very bug
that you intended to fix. Most programmers | know are perfectionists
and take a lot of pride in their work, and because of that they lose
sleep over bugs. As evil as this seems, making those decisions is as
tough as knowing your code has a bug that you aren't allowed to fix.
Believe me, I've done that a few thousand times.

The Dark Side

The Tools

Richard Garriott, aka Lord British and creator of the Ultima RPG series, once said
that the computer game industry is a lot like the movie industry. He also said that
at the beginning of every game project we start by inventing new cameras, film and
processing techniques, and projectors. He said that 10 years ago, and while there is
great middleware out there for sound and graphics and even complete turnkey game
engines like Unreal 3, many game projects end up writing their own development
tools from scratch.

Before We Made the Game, We Made the Tools

Most games have level or mission editors. When we developed the Ultima MIKE’S
games, we spent the first year or so of development writing the game Toles
editor—a tool that could import graphics, sounds, and models from all the decin Abe
art and modeling software like Photoshop, LightWave, 3ds Max, Maya, and
others. Ultima IX's level editor was fully networked and used TCP/IP to
communicate peer-to-peer to all the designers and programmers running it.
They could even edit the same map at the same time, since smaller portions
of the map could be locked out for changes. The editor could launch into
game mode at the press of a button, so the designers could test their work. o[e
Ultima Online’s editor was much more like the game than Ultima IX. UO Pixe| Mines
already had a client/server system up and running, and it used a special god

client to change the map levels and add new assets to the game.

- —

Other games use a simpler strategy, a wise choice if you don’t need 20 people build-
ing seamless maps and levels. The basic game level is assembled in a modeling tool
like 3ds Max. A special editing tool usually loads that level and drops in special
actions, dynamic object generators, and characters, almost as if you were playing
the game. If you are developing a smaller game with a small team, there’s no need
to have a complicated, multiperson-aware tool. In fact, with a little work you can
make 3ds Max act like your level editor—just don’t try this on an AAA title.

There are a number of game engines on the market from Unity, Epic, Crytek, Valve,
Trinigy, and others. The days of creating custom level and mission editors may be
over, but you'll still have to write quite a bit of custom tools and code to make your
game unique. So, worry not, the job of the game programmer is safe for a long time.

THE DARK SIDE

There are plenty of factors that make game coding a fluid and unpredictable task.
The design of the game can change drastically during development, motivated by
many factors inside and outside the development team. Mounting schedule slippage

17

18

Chapter 1 B What Is Game Programming Really Like?

and production pressure leads to the legendary “crunch mode” so prevalent on many
game projects. Dependant software tools like console SDKs and your licensed game
engine change constantly, challenging software teams to keep up. Unlike many soft-
ware projects, games frequently must support a wide variety of operating systems,
graphics APIs, and platforms.

Hitting a Moving Target

Most industry software projects are carefully designed and planned. Systems analysts
study customer requirements, case studies of previous versions of the software, and
prospective architectures for months before the first line of code is ever written.
Ultima VIII's architecture was planned by seven programmers in a single afternoon
on a whiteboard.

Architecture notwithstanding, you can’t design “fun.” Fun is a “tweakable” thing, not
something that exists in a design document. You hope like hell that the original
design will result in a fun game, but the first playable version frequently leaves you
with the distinct impression that the game needs some more chili powder and a little
more time on the stove.

Sometimes, the entire design is reworked. Ultima IX’s architecture and game design
changed no less than three times in development. I was there for two of them and
didn’t stick around for the third. When a game is in development for multiple
years, it’s easy for new hardware technology to blaze past you. In Ultima IXs case,
3D accelerated video cards were just coming into their own as we were putting the
finishing touches on what had to be the finest software rasterizer anyone ever wrote.
It never saw the light of day.

Sometimes Your Game lIs Just Plain Boring MIKE’S
Tales

from the

Ultima VIll's map design had a hub-and-spoke model. The hub was an
underground dungeon that connected every other map. We released the
game to QA, and word came back that it was completely boring. The
culprit was a sparse central map that wasn't much more than an
underground maze with a few bad guys hanging out here and there. It
wasn't good enough. Two designers worked day and night to rework
the central map. Puzzles, traps, monsters, and other trickery finally : >
added a little spice. The central map ended up being one of the best ‘Pixe Mies

parts of the whole game.

The Dark Side

Crunch Mode (and Crunch Meals)

Every now and then you end up at a technological dead-end and have to start
completely over. I was brought into the late stages of a Mattel project that was sup-
posed to be in the test phase in about two weeks. I took one look at the code and
realized, to my horror, that the entire graphics engine was using Windows GDI.
Unless someone out there knew something I didn’t, the GDI in 1999 couldn’t texture
map polygons. In less than five weeks, the entire project was rebuilt from scratch,
including a basic 2D vector animation tool.

Those five weeks were really more like fifteen weeks. The tiny development team
worked late into each night and dragged themselves back each morning. There were
no weekends. There were no days off. I'd estimate that we worked 90-hour work-
weeks on that project. You might think that unreasonable, and that nobody should
have to work like that. That project was only five weeks. It was nothing compared
to the pixel mines of Origin Systems circa 1992. Back then, Origin had something
called the “100 Club.” The price of entry was working 100 hours in a single work-
week. The last time I counted, there were only 168 hours in seven days, so the folks
in the 100 Club were either working or sleeping.

The Infamous Origin Hostel

MIKE’S
. Tales

from the

To facilitate a grueling schedule, the teams built bunk beds in the kitchen.
Company kitchens are no place for bedding. My office was unfortunately
located right across the hall, and | observed the kitchen/bedroom getting
higher occupancy than the homeless shelter in downtown Austin. After
about a week, | began to detect an odor emanating from across the hall. It
seemed that the brilliant organizers of Hotel Origin never hired a maid
service, and that an unplanned biology experiment was reporting its initial
results via colorless but odorous gasses. Origin management soon liquidated Ay)
the experiment. Pixel Mines

It’s not uncommon for companies insisting on long hours from salaried employees to
provide meals. These “crunch meals” are usually ordered out and delivered to the team.
Origin was able to get a local deli to bill them instead of requiring a credit card, so they
began to order from them almost every night. Months went by, and everyone on the
development team knew every item on the menu by heart and knew exactly which bits of
food were most likely to survive delivery intact. Fifteen years later, I can still tell you
what’s on the menu at Jason’s Deli, and even though the food is good, I rarely eat there.

At the ripe old age of 38, I signed on to full-fledged crunch mode at Ion Storm to
help finish Thief: Deadly Shadows. Let me tell you something—the older you get,

19

20

Chapter 1 B What Is Game Programming Really Like?

the harder it is to stay awake and code. I actually cheated a little and came in early,
but the long hours still were pretty tiring, especially after the fourth month.

At Red Fly, things were better, but crunch mode was still a reality. The simple fact
was that publishers’ budgets and deadlines never allowed a game to be developed in a
manner that allowed 40-hour workweeks. For those of you who have heard of EA
spouse, the scandal that supposedly changed the games industry, I'm here to tell
you that the long hours were simply outsourced to third-party developers. To stay

alive, Red Fly had to work harder and faster than everyone else—and even then we
still had layoffs.

Good grief—when will this industry ever learn?

The Centinal

Sometimes there's a badge of honor attached to working late hours. My old
boss at PlayFirst called it “The Centinal,” which was a special club reserved
for those who had worked over 100 hours in a single week. Basic math will
tell you that there are only 168 hours in an Earth week. Mike and | are both
long-standing members of this not-so-exclusive club. That having been said,
there's an interesting camaraderie that gets forged when you spend that
much time with a group of people. We all come together to make
something great because we believe in the project and refuse to ship
something that's not fun. When it gets to be 3 a.m. on a Tuesday night and
you know that tomorrow night is going to be even longer, the walls of social
etiquette come tumbling down.

Bah Humbug

Computer games are a seasonal business. They sell like crap in the summer, and
profits soar at Christmas time. Of course, they only soar for your project if you're
not still working on it. This puts a significant amount of pressure on development
teams. Sometimes, the pressure begins before the team starts working. If you work
on downloadable titles, you can’t earn money until you ship the game, so getting it
done before the holiday rush is important. If you are working on a retail title, things
are more difficult because of the time it takes to get your game on store shelves.

This lead time varies from publisher to publisher. A big company like Microsoft has
a huge manufacturing pipeline that includes everything from the latest version of
Halo to their latest version of Office. I once worked on a game that shipped the
same month as Windows XP. I'll bet that if you were standing on the assembly line,
you'd be hard pressed to notice the brief flash of dark green as 50,000 boxes of my
game whizzed by. You shouldn’t be surprised to see that a publisher like Microsoft

The Dark Side

requires you to finish your title by September or even August in order to make the
shelves by the holiday season.

Other publishers are more nimble, and they might be more accommodating if you’ve
got a AAA title coming in hot and steep as late as November. You won’t get the best
sales if you release after Thanksgiving, but even getting out the week before Christ-
mas is better than missing the season altogether. It’s always best to have everything in
the can before October if you want to see your game under Christmas trees.

Basically, Christmas is only merry if your game is done.

Operating System Hell

Microsoft Excel doesn’t need to support full-screen modes, and it certainly doesn’t
need to worry about whether the installed video card has the latest shaders. That’s
one of the reasons that games get some special dispensations from Microsoft to qual-
ify for logo compliance. Logo compliance means that your game exposes certain fea-
tures and passes quality assurance tests from Microsoft. When your game passes
muster, you are allowed to display the Windows logo on the box—something that is
good for any game but especially important for mass-market games.

One Microsoft game I worked on had to pass QA testing for Windows 98, Windows
ME, Windows 2000, and all versions of Windows XP. By 2002, Microsoft wasn’t sup-
porting Windows 95 anymore, which was a good thing. It was hard enough building
an old box for our Windows 98 test machine. The OS that required the most tweak-
ing was Windows XP, mostly because of the new requirement that the Program Files
directory was essentially read only for nonadministrator accounts. Most games store
their dynamic data files close to the executable, which will fail under Windows
XP Home. These drastic changes to Windows XP motivated many game companies
to drop support for all Windows 9x platforms by the end of 2004. For a big
company, Microsoft can move pretty fast, and as a game programmer, you have to
keep up.

The hell doesn’t even stop there—some games choose to write graphics engines that
work under DirectX and OpenGL. Some graphics middleware supports this natively,
so you don’t have to worry about it. Why would you bother? Performance.

Most video cards have DirectX and OpenGL drivers, but it’s not guaranteed that
you'll achieve equal performance or graphics quality under both. The performance
differences are directly proportional to the effort put into the drivers, and there are
cases where the OpenGL driver beats DirectX soundly. Of course, there are mirror
cases as well, where DirectX is the way to go. Even better, the quality of the drivers
changes from operating system to operating system. The result of all this is a huge

21

22

Chapter 1 B What Is Game Programming Really Like?

increase in effort on your side. Even if you choose one particular graphics API, you
still have to support a wide array of operating systems. This increase in effort simply
widens the market for your game. It doesn’t make your game fun or provide a deeper
experience. It just keeps it from misbehaving on someone’s computer.

I almost forgot—what about iOS and Android? If you are writing games for these
platforms, you still have to deal with the differences between OS releases: Android
2.0 is different than 2.1 or 2.2. iOS is the same way. If you decide to support a wide
variety of platforms and operating systems, I highly suggest you consider using a
game engine like Unity, which hides a lot of these problems and simply lets you
make your game. Doing it yourself is a big problem, and to be honest, not one that
makes any financial sense.

Moving games to very dissimilar platforms can be nigh impossible, such as a direct
port of a PC game to a handheld device. The lack of a keyboard or game controller,
different screen resolution, radically difference graphics performance, and smaller
secondary storage preclude some games from being directly portable even if the oper-
ating system is the same. That doesn’t even begin to address the inherent design con-
cerns that differ sharply from handhelds to desktops—the players on these devices
simply want different things out of gaming.

Fluid Nature of Employment

The game industry, for all its size and billions of dollars of annual revenue, is not the
most stable employment opportunity out there. You can almost guarantee that if you
get a job in the industry you’ll be working with a completely different set of people
every two years or so, and perhaps even more often than that.

Every year at the Origin Christmas party, employees were asked to stand up as a
group. Everyone who had worked there less than a year was asked to sit down, fol-
lowed by second and third year employees. This process was repeated until only a
handful of people were left. This was usually by the fourth or fifth year. In my sixth
year, I became the twelfth most senior person in the company by time of service, and
Origin had hundreds of employees. This can be fairly common throughout the indus-
try—but you can find some companies that are different by the nature of their prod-
uct or culture. They are just harder to find, unfortunately.

The stresses of incredibly short schedules and cancelled projects have chased many of
my friends out of the industry altogether. Whole studios, including two of my own,
take root for a while and then evaporate or get bought. Your boss today will not be
your boss tomorrow, especially if your boss attempts to do something crazy, like start

It's All Worth It, Right?

his own game studio! Weirder yet, the boss you have today might actually be work-
ing for you tomorrow, or vice versa. I've had that happen more than once!

| Remember You!

The longest job I've ever had in the video games industry was just over two /
years. If you look at all the companies I've worked for, only about half of them Fie the
still exist. It's very rare to find any kind of stability in this industry. One N
interesting side effect of this is how often you run into the same people.
There's a Ul designer at EA who I've worked with at three separate
companies. Mike and | live in different states, and we still find people we've
both worked with. For example, the lead gameplay programmer at Slipgate ~
was hired into the industry several years ago by Mike. This just goes to show & =\@ \'6}" %
you that if you're difficult to work with, you won't last long. We all know each Pixel Mines
other.

IT’s ALL WORTH IT, RIGHT?

There’s something odd about human psychology. After a particularly scary or painful
experience, some of us will say to ourselves, “Hey, that wasn’t so bad. Let’s do it
again!” People who make games do this all the time. The job is incredibly difficult
and can drive you completely mad. Your tools and supported operating systems
change more often than you’d like. Some days you delete more code than you write.

Taking three steps forward and five steps back is a good recipe for long hours, and
you'll get an “all you can eat” buffet of overtime. It will get so bad that you'll feel
guilty when you leave work before 7 p.m. on a Sunday night. When crunch mode is
over, and you get back to a normal 60-hour workweek, you’ll wonder what to do
with all the extra time on your hands.

Why bother? Is it possible that that boring job at American General Life Insurance
was a better option for me? Not a chance. There are plenty of good things, many of
which I mentioned at the beginning of this chapter, but there’s one I've held for last
that beats them all: After all the work, lost weekends, and screaming matches with
producers and testers, your game finally appears on the retail shelves somewhere. A
few weeks after it ships, you start looking. You make excuses to go to Wal-Mart,
GameStop, and Best Buy and wander the software section. Eventually, you see it.
Your game. In a box. On the shelf.

There’s nothing like it. As you hold it in your hands, someone walks up to you and
says, “Hey, I was thinking of buying that game. Is it any good?” You smile and hand
him the box saying, “Yeah, it’s damn good.”

23

This page intentionally left blank

CHAPTER 2

by Mike McShaffry

WHAT’S IN A GAME?

There are tons of reasons programmers get attracted to games: graphics, physics, Al,
networking, and more. Looking at all of the awesome games that have been released
over the past few years, such as Halo, Grand Theft Auto, Gears of War, and others,
you might first think that all of the major technology advances have been in the area
of graphics or physics programming. There is certainly more than meets the eye, and
after seeing for myself how some games are architected, I often wonder how they
even function.

When building a game, programmers will typically start with a DirectX sample,
import some of their own miserable programmer art, put an environment map or a
bump map on everything in sight, and shout “Eureka! The graphics system is fin-
ished! We'll be shipping our game by next weekend!”

By the time the next weekend rolls around, the same newbie game programmers will
have a long laundry list of things that need to be done, and there are a number of
subtle things that they will have completely missed—like how to manage memory
and game processes properly. These hidden systems are usually the heart of every
game, and you're never aware of them when you play games because you’re not sup-
posed to be aware of them.

This book is about more than just the visible parts. It is primarily about how to glue
all these parts together in a way that won’t drive you and your programming
colleagues insane. This chapter takes the first step, and it shows you a high-level
view of how commercial games are (or should be) architected.

25

26

Chapter 2 B What's in a Game?

After you finish this chapter, youll have a good understanding of the main compo-
nents of game code and how they fit together. The rest of this book digs into the
details of these systems and how they work.

The important lesson to learn here is that you'll be able to build much better games if
you really understand the architecture, the components, and how everything fits
together. In other words, think and plan before you start coding, because a great
foundation can hold a big game, where a crappy one simply can’t hold up to the
strain. We all hear this good advice over and over, but it’s easy to neglect because it
takes a lot longer to get something up and running. Think of this like you would
approach building a house. Don’t be like the guy down the street who just starts put-
ting up walls without really thinking through how big his house needs to be, whether
it needs a second floor, and how he wants to live in it.

GAME ARCHITECTURE

There are as many ways to assemble the subsystems of a game as there are game
programmers. Being a game programmer, I'll give you my opinion of what the sub-
systems are, what they do, and how they communicate. You may do things differ-
ently, and that’s perfectly fine by me, especially since what I'm going to present is
geared toward understandability, not necessarily efficiency. Once you understand
something, you can find your own path to making it run pegged at 60Hz or better,
but you sure can’t get something to run that fast if you have no idea what’s going on.

I can’t say this enough—you don’t have to do things my way—but since my way is
the easiest for me to describe, it makes some sense that I'll preach a little of my own
opinions. As you read this chapter, think first about what problems I'm solving with
this system and at least grab hold of the subsystems and what they do on their own.
If you come up with a better way to build this mousetrap, call me, and I'll hire you.

Let’s start at the top level and work our way down. You can take every subsystem in
a game and classify it as belonging to one of three primary categories: the application
layer, the game logic layer, and the game view layer (see Figure 2.1). The application
layer deals with the hardware and the operating system. The game logic layer man-
ages your game state and how it changes over time. The game view layer presents the
game state with graphics and sound.

If you think this architecture sounds familiar (and you’re familiar with MFC’s docu-
ment/view architecture), you're exactly right, but don’t burn this book in disgust just
yet. While I loathe programming in MFC as much as the next person, there is amaz-
ing flexibility in separating a game into these three independent systems. Another
popular design pattern, the Model-View-Controller, seeks to separate the logic of a

Game Architecture

s ™)

Fic '

Game Application Layer
\ v,
(3
Game Logic Game View
\ v,
\

" S
Figure 2.1

High-level game architecture.

system from the interface used to present or request changes to data. The architec-
ture I propose encapsulates that and adds a layer for hardware or operating system-
specific subsystems.

The application layer concerns itself with the machine your game runs on. If you
were going to port your game from Windows to iOS or Android, or from the
PlayStation 3 to Xbox 360, you would rewrite most of the code in the application
layer, but hopefully not much else. In this area, you'll find code that deals with hard-
ware devices like the mouse or a gamepad, operating system services such as network
communications or threading, and operations such as initialization and shutdown of
your game.

The game logic layer is your game, completely separated from the machine your
game runs on or how it is presented to the player. In a perfect world, you could sim-
ply recompile all the source code related to your game logic, and it would run on any
platform or operating system. In this area, you'll find subsystems for managing your
game’s world state, communicating state changes to other systems, and accepting
input commands from other systems. You'll also find systems that enforce rules of
your game system’s universe. A good example of this is a physics system, which is
the authority on how game objects move and interact.

The third and last system component is the game view. This system is responsible for
presenting the game state and translating input into game commands that are then
sent to the game logic. What’s interesting about the game view is that it can have
different implementations, and you can have as many views attached to your game
as your computer can handle. One type of game view is for your players; it draws
the game state on the screen, sends audio to the speakers, and accepts input through
the user interface. Another type is the view for the artificial intelligence (AI) agent,

27

28

Chapter 2 B What's in a Game?

and a third might be a view for a remote player over a network. They all get the same
state changes from the game logic—they just do different things.

APPLYING THE GAME ARCHITECTURE

It might seem weird to you at first that the code for the Al would communicate
through the same pathways and in exactly the same manner as a human being. Let
me give you a more concrete example. Let’s design a racing game using the game
logic and game view architecture, and we’ll also create two views: one for a human
player and one for an Al driver who will race with you on the track.

The game logic for a racing game will have the data that describes cars and tracks
and all the minute properties of each. For the car, you'll have data that describes
how weight is distributed, engine performance, tire performance, fuel efficiency, and
things like that. The track will have data that describes its shape and the properties of
the surface all along the route. You'll also have a physics system that can calculate
what happens to cars in various states of acceleration and steering, how they respond
to the track, change in input controls, or even collisions with each other.

For inputs, the game logic cares about only four things for each car: steering, acceler-
ation, braking, and perhaps the emergency brake. If your cars have guns on them, like
we all wish, you would also have an input for whether the fire trigger is down. That’s
it; the game logic needs nothing else as input to get the cars moving around the track.

Outputs from the game logic will be state changes and events. This includes each
car’s position and orientation and the position and orientation of the wheels in rela-
tion to the car’s body. If the game supports damage, you’ll also have damage statistics
as an output. If your cars have guns, a state change could also be whether the weapon
is firing and how much ammo is left. Another important game state, especially the
way I play racing games, is collision events. Every time a collision happens, the
game logic sends an event with all the collision data. Events and state changes are
sent to game views.

The game view for the human has a lot of work to do to present the view of the game
state. It has to draw the scene from the player’s selected point of view, send audio to
the speakers, spawn particle effects—especially when bad drivers like myself are
scraping down the guardrails—and rumble the force feedback controls. The view
also reads the state of the game controller and translates that into game logic com-
mands. A good example of this is to notice the right trigger pressed to full throttle,
and it sends the “Accelerator at 100%” command to the game view or changes in the
left thumbstick to “Steer left at 50%.” These commands are sent back to the game
logic. Take a look at Figure 2.2 to see what I mean:

Applying the Game Architecture

o

Game Application Layer

Devices Operating System Game Lifetime

(Input IFiIes IRAMITimeJ [Languagel DLLIThreadsINetwomJ [Ef:: I E::g Isr::":‘:'m

J

Figure 2.2
A closer look at the application layer.

Imagine what happens when a player mashes the A button on the controller—the
normal control for the emergency brake in my favorite Xbox 360 racing game. The
human view interprets this as a request to hit the emergency brake on my Ferrari and
sends a message to the game logic. The game logic evaluates the request, sets
m_bIsEmergencyBrakeOn to true, and sends a state update back to the human
view. The human view responds to this message by playing a sound effect or maybe
showing something on the screen. Another example is the throttle setting. The con-
troller sends a message to the game view that the right trigger is pressed 82%. The
view interprets this as a command to set the accelerator to 82% and sends a request
to the game logic. The game logic determines that the rear tires have broken loose by
looking at the car, its weight, the tires, the track condition, and other factors. It sends
a message back to the game view that the rear tires are spinning, and the game view
can then respond by playing a sound effect.

You can see that the game controller’s thumbstick or button state doesn’t affect the
game state directly. Instead, the controller’s state is interpreted by the game view and
converted into commands, which are sent to the game logic by an event. The game
logic receives events generated by the view and uses those commands, along with its
physics simulation, to figure out what is happening in the game universe. The state
changes in the game world get sent back to the view, so it can draw polygons, play
sound effects, and rumble the controller.

The game view for the Al is a little different. It will receive the same game state
events received by the human game view, such as which track the race is occurring
on, the weather conditions, and the constantly updated positions, orientations, and
velocity of cars on the track. It will take this information and recalculate what com-
mands to send into the game logic. For example, in response to the “Go” event from
the game logic, the AI might send an “Accelerator at 100%” command back to the
game logic. While negotiating a turn, it might send “Steer left at 50%” to the game
logic.

29

30

Chapter 2 B What's in a Game?

Did you notice that the commands sent from the human view and the Al view to the
game logic are exactly the same? While it might take a little more thinking to con-
vince yourself that the inputs to the game view, namely the game status and game
events, are exactly the same, I assure you it is true.

I mentioned before that this game architecture is flexible. You’ve probably already
surmised that a particular game logic can have any number of views, both human
and AL If the interfaces for the human and Al views are exactly the same, it is a
trivial matter to swap a human player, or even all human players, with Al players.
But wait, it gets better.

You could create a special DVR game view that does nothing but record game events
into a buffer and play them back. In a sense, the game logic is entirely short circuited,
but since the game state changes and events are exactly the same, they can be pre-
sented in the DVR view with very little recoding. Of course, if you want a “rewind”
feature, you've got some extra work to do because the game events don’t necessarily
go equally back in time as they go forward!

You could also create a special game view that forwards game status and events to a
remote player across the Internet. Think about that: The game logic doesn’t have to
care whether the players are local or separated by thousands of miles. The remote
view should be pretty smart about collecting game states and events, compressing
them into as few bytes as possible, and shipping them via TCP or UDP to the remote
player. The game commands received from the remote player should go through a
verification filter, of course. You can never be too sure about remote players, or
remote game logics, for that matter.

One thing to note—players with different views can be advantaged or disadvan-
taged. For example, those who play on 4:3 screens can’t see quite as much as
those playing on 16:9 screens. Taken a step further, you can easily see that any dif-
ferences in view definitions can give any consumer of that view a huge edge or take
it away. Be cautious with your view definitions, whether it has to do with some-
thing obvious like screen size or the types of events the view receives from the game
logic.

I hope I've convinced you that this architecture is a good way to go. I'll be quite hon-
est and tell you that it isn’t an easy architecture to code, especially at first. You'll go
through a phase where you are sure there is an easier way, and you’ll want to aban-
don this event-driven architecture where game logic is completely separate from the
view. Please be patient and resist the urge. Given some time, you’ll never go back to a
simpler, but less flexible design.

Application Layer

Make It So, Number 1! ~ REZ’S
One day, while working on a Sims project as an Al programmer, the lead 1;‘},,' E,,S,_,

engineer came up to me with some Al tasks related to a new object the
designers wanted to get into the game. They wanted special Sim behavior
for this object. After explaining the designs, he guessed that it would take
a couple of weeks to implement. | smiled and shook my head. “It'll take
two or three days, tops.” That's the difference between good architecture ~
and bad architecture. Good architecture is flexible and easy to change. A \-'6_____.- %

Pixel Mines

APPLICATION LAYER

The contents of the application layer are divided further into different areas that deal
with devices, the operating system, and your game’s lifetime (refer to Figure 2.2).

Reading Input

Games have an amazing variety of user input devices: keyboard, mouse, gamepad,
joystick, dance pad, steering wheel, cameras, accelerometers, GPS, and my personal
favorite, the guitar. Reading these devices is almost always completely dependent on
calls to the operating system and device drivers. The state of these devices should
always be translated into game commands. Some of these commands might be sent
back to the game logic, such as “fire missile,” while others might be handled by the
game view, such as “show me my inventory.” Either way, you’ll likely write an entire
subsystem to read these devices and interpret them as commands.

This same system should also be configurable. I play console shooters with an
inverted Y-axis, but many people like it the other way around, even though Il
never understand why. If you have a system that reads devices as input and sends
game commands as output, you can create the system to read a configuration file to
match controls with commands. Then all you have to do is modify this data file, and
you’ll have completely configurable controls.

One thing is critical: You can’t simply change the game state directly when you read
user input. Every bit of game sample code out there does this; you can see where
games make direct changes to data simply because the W key was pressed. This is a
vastly inflexible system and will haunt you later, I guarantee it.

File Systems and Resource Caching

File systems read from and write data to storage systems such as DVD-ROM, hard
disk, and SD cards. Code in this subsystem will generally be responsible for manag-
ing game resource files and loading and saving the game state. Managing resource

31

32

Chapter 2 B What's in a Game?

files can be pretty complicated—much more so than simply opening a JPG or an
MP3 file.

A resource cache is one of those hidden systems I told you about. An open world
game like Grand Theft Auto has gigabytes of art and sound, and the system only
has a fraction of the memory needed to load everything. Let me explain why a
resource cache is important with a little metaphor. Imagine the problem of getting a
crowd of people out of a burning building. Left to their own devices, the crowd will
panic, attempt to force themselves through every available exit, and only a small frac-
tion of the people will escape alive.

Now imagine another scenario, where the evacuation is completely organized. The
crowd would divide themselves into single file lines, each line going out the nearest
exit. If the lines don’t cross, people could almost run. It would be very likely that
even a large building could be completely evacuated.

This analogy also works well for game resources. The burning building is your slow
optical media, and the doors are the limited bandwidth you have for streaming this
media. The bits in your resource file represent the crowd. Your job is to figure out a
way to get as many of the bits from the optical media into memory in the shortest
possible time. That’s not the entire problem, though. A resource cache is exactly what
the name implies—commonly used assets like the graphics for the HUD are always
in memory, and rarely used assets like the cinematic endgame are only in memory
while it’s playing, and most likely only a piece of it at that.

The resource cache manages assets like these in a way that fools the game into think-
ing that they are always in memory. If everything works well, the game will never
have to wait for anything, since the resource cache should be smart enough to predict
which assets will be used and load them before they are needed.

Every now and then, the cache might miscalculate and suffer a cache miss. Depend-
ing on the resource, the game might be able to continue without it until it has been
loaded, such as the graphics for an object in the far distance. In that case, the
graphic can fade in once it is safely in memory. In other cases, the game isn’t so
lucky, such as a missing audio file for a character’s lines. Since they are synched to
the facial animations, the game has to wait until the audio is loaded before the char-
acter can begin speaking. If it does that, players will notice a slight pause or “hitch”
in the game.

So it’s not enough to write a little cache that knows whether resources exist in
memory at the moment they are needed. It has to be clever, predicting the future
to some extent and even providing the game with a backup in case the cache suffers
a miss.

Application Layer

Luckily, I've included an entire chapter on the subject of file systems and the resource
cache. This just might be one of the most under-discussed topics in game development.

Managing Memory

Managing memory is a critical system for games, but it is largely ignored by most
game developers until they run out of it. Simply put, the default memory manager
that comes with the default C-runtime libraries is completely unsuitable for most
game applications. Many game data structures are relatively tiny things, and they
belong in different areas of memory, such as RAM or video memory. A general
memory manager tries to be all things to all applications, where you will know
every detail about how your game needs and uses memory. Generally, you'll write
your own memory manager to handle allocations of various sizes and persistence
and more importantly to track budgets.

Virtual Memory—Can Be Good, Can Be Bad

Windows can use virtual memory, and when a game runs out of physical
memory, the OS will automatically begin to use virtual memory. Sometimes,
Windows games can get away with this, but it is a little like playing Russian
roulette—at some point, the game will slow to a crawl. A console game is
completely different. For example, if your game allocates a single byte larger
than the available memory, it will crash. Every game programmer should be as
careful about memory as console programmers. Your game will run faster and
will simply be more fun. Create some way to track every byte of memory, 2 "
which subsystem is using it, and when any one of these areas exceeds its pl’dC‘l"lces
memory budget. Your game will be better for it.

Initialization, the Main Loop, and Shutdown

Most software waits for the user to do something before any code is executed. If the
mouse isn’t moving and the keyboard isn’t being hammered, an application like
Microsoft Excel is completely idle. This is good because you can have a bunch of
applications up and running without a large CPU overhead. Games are completely
different. Games are simulations that have a life of their own. Without player input,
they’ll happily send some horrific creature over to start pounding on your character’s
skull. That will probably motivate a few button presses.

The system that controls this ongoing activity is the main loop, and it has three
major components: grabbing and queuing player input, ticking the game logic, and
presenting the game state to all the game views, which means rendering the screen,
playing sounds, or sending game state changes over the Internet.

33

34

Chapter 2 B What's in a Game?

At the highest level, your game application layer creates and loads your game logic,
creates and attaches game views to that logic, and then gives all these systems
some CPU time so they can do their jobs. You'll learn more about this in
Chapter 5, “Game Initialization and Shutdown,” and Chapter 7, “Controlling the
Main Loop.”

Other Application Layer Code

There are lots of other important subsystems in the application layer, including the
following:

B The system clock
String handling
Dynamically loaded libraries (DLLs)

Threads and thread synchronization

Initialization

[}
[}
[}
B Network communications
]
B Main loop

[}

Shutdown

The system clock is critical for games. Without it, you have no way to synchronize
game animations and audio, move objects at a known speed, or simply be able to
time your credits so that people have enough time to read them. Almost every
game subsystem will care about time: physics, animations, user interface, sound, and
so on. Some systems have multiple methods of getting access to the system clock,
each with different levels of resolution or precision. If you choose one that has poor
precision, such as the Windows WM_TIMER message, your game will suffer from jit-
tery animations, bad synchronization between animations and audio, and other
problems.

Game programming becomes more global year after year, and generally games that
sell well in one language will also sell well if they are translated or localized. If you
structure your game correctly and factor all language-specific files, such as strings
into separate files, you'll find it a lot easier to translate your game into a similar lan-
guage. Note that I said “similar language.” Although it is possible to structure a game
to be in completely different languages like English and Japanese, remember that you
don’t just have a technology barrier to multilingual gaming. You also have a cultural
barrier—not every game is one that can cross cultures easily.

Game Logic

Most operating systems have a way to dynamically swap code in and out of memory
at runtime. This is critical for conserving valuable memory space or replacing a sub-
system entirely. You might use a DLL to swap a DirectX for an OpenGL renderer, for
example.

Today’s multicore desktops and consoles make multithreaded and multicore pro-
gramming a must. I actually remember a time when games didn’t use threads—
instead everything ran in a single execution path. It was easier in some ways, but
harder in others. Threads are used for audio streaming data, Al, and if you are clever,
even physics. I've read in other places that shall remain nameless that suggest you
can use threads for everything. Don’t believe this for a minute; if every subsystem
used separate threads, it could be extremely difficult to manage thread synchroniza-
tion, and I guarantee the system would be challenging to debug.

Network communications is another service provided by the operating system. This
network code will generally provide your game with a way to make a network con-
nection with another computer and a way to read and write data from the network
stream. The definition of what actually gets sent and how received data is interpreted
is actually coded in the game view and game logic layer. I'll talk more about that
shortly.

The last group in the application layer is responsible for your game’s life cycle: ini-
tialization, the main loop, and shutdown. I've also included in this group your core
libraries that standardize basic data structures and templates, as well as your script
interpreter.

Initialization can be something of a nightmare. Many game subsystems have compli-
cated interrelations, and they tend to depend on one another. We'll discuss details of
the initialization sequence in Chapter 5.

Most games use scripting languages. Whether it is UnrealScript, Python, Lua, or
something a game team creates from scratch, these systems and the scripts they
run are critical components for today’s commercial game development. You'll learn
more about scripting languages, and Lua in particular, in Chapter 12, “Scripting
with Lua.”

GAME LoGic

The game logic (see Figure 2.3) is the heart and soul of your game. It defines the
game universe, what things are in the universe, and how they interact. It also defines
how the game state can be changed by external stimulus, such as a human player
pressing a gamepad key or an Al process taking action to kill you. Let’s take a closer
look at all of the components of the game logic system.

35

36

Chapter 2 B What's in a Game?

Game Logic Layer — Authoritative

Game State Process | Command
& Data Flyee gl sEvert Manager | Interpreter
Structures 9 P
o
Figure 2.3

Game logic and its subsystems.

Game State and Data Structures

Every game will have a container for game objects. Simple games can use a list
structure, but more complicated games will need something more flexible and opti-
mized for quick local searching or streaming. Your game engine must be able to
traverse the object data structures quickly to change an object’s state, and yet it
must be able to hold a flexible array of properties for each object. These two
requirements are frequently at odds with each other; one is quick to search, the
other is easy to extend.

Ultima used a simple two-dimensional array of object lists. It was easy to find objects
within a given range of a map location, and each grid square was small enough to
have a quickly traversable list of objects. Thief: Deadly Shadows, on the other hand,
used a simple list of objects, but it was heavily tangled by internal pointers. If two
objects needed to know about each other, such as an elevator button and the elevator
door, they were linked by the game editor. This solution actually worked quite well
and is commonly used.

Object properties, such as hit points, engine horsepower, and wacky things like that
tend to be stored in custom data structures whose efficiency can be anything from
fantastic to dismal. Ultima Online used text strings to define properties on objects,
which had the benefit of easy and flexible development at some cost in memory stor-
age. Thief: Deadly Shadows had an extremely complicated property system that was
actually object oriented; you could define object properties for an archetype, like a
barrel, but overload existing properties or even create totally new ones for a particu-
lar barrel that was placed only once in the game universe. The system was memory
efficient since it never copied property data, but it ran at some extra cost in CPU
time because the property system was essentially a tree structure. There are trade-
offs no matter how you do it.

Game Logic

It’s easy to confuse the game logic representation of an object with the visual repre-
sentation of an object. The game logic holds the object state, such as the amount of
damage an object has—probably stored in an integer. The visual representation, man-
aged by the game view, holds model data and textures that convey the state visually
to the player, such as a bloody arm stump. A bloody arm stump texture is completely
different from m_damage = 30.

You might feel that it would be better to store all of these things in a single C++
object—how much damage had been done and whether the arm texture is healthy
or bloody. In a way you are right—but maybe not in exactly the way you think.
Most modern games create special objects that contain all of the various definitions
that make that game object unique. Some of the classes in the collection belong to the
game view, such as the skeletal mesh object used by the renderer to display the actor.
Others might belong to the game logic, such as data that tells the physics system how
heavy the actor is and how it will collide with other physical objects in the game.
Other objects might describe game specific data, such as a character’s hit points;
this too would belong to the game logic. When any game logic data changes, the
game logic broadcasts an event. In the previous example, when damage is increased
on the actor, the game logic sends a special event informing all of the game subsys-
tems. The renderer reacts to this event by changing the texture. More on this later.

I wish I had more time in this book to go exhaustively over low-level game data
structures, but to be honest, they are extremely custom and are finely tuned to suit
the requirements of a particular game. My suggestion to you is to make sure that you
have an excellent knowledge of classic data structures such as linked lists, hash lists,
trees, B-trees, and all those other things you learn in classic data structures texts.
Games absolutely use these structures, or perhaps abuse them, to get the results
they need.

Physics and Collision

Physics falls under the general category of “rules of your game universe” and is sol-
idly a member of your game logic. It defines everything from how actors move when
they fall under gravity to what they do when they tumble around and come into con-
tact with other actors.

You certainly don’t need a complicated physics system to have a fun game, but you can
bet your bottom dollar that a bad physics system will completely remove the fun from
any game. There’s a great game concept that says that when something is completely
abstract, it’s easy to ignore unrealistic representations of things. When you inject reality
into a game, even small errors create complaints from your players. You can prove this

37

38

Chapter 2 B What's in a Game?

to yourself by looking at the movements of a stick figure on one of those old Flash
games on the Internet and comparing it to the best human animations in a game like
Battlefield 3. You'll forgive the stick figure for moving in weird ways because it is so
abstract, but you'll be upset with the Battlefield character for the smallest mistake in
facial animation—(one of the hardest things to animate, by the way)—because the char-
acter looks so realistic we find it difficult to accept when it does anything unrealistic.

This concept has to do with human psychology and how we observe things. It comes
into serious play when you create any game technology that approaches reality, as
physics systems do. You'll spend a staggering amount of time making the tiniest
tweaks to your system to remove the smallest movement problems, because that
tiny mistake in reality is glaring.

Events

When the game logic makes changes in the game state, such as creating or moving
an actor, a number of game systems will respond. Here’s an example. Imagine that
one actor in your game is a portable radio. The graphics system will need to create
polygons and textures so you can see the radio. The sound system will create a sound
effect so your radio will play some great music—perhaps a little Jimi Hendrix. AI
processes might respond to the presence of the actor. In this case, they might just
chill out and enjoy the sublime guitar from our boy Jimi. All three of these subsys-
tems—the graphics system, the audio system, and even the Al system—need to know
that this radio exists and what it is doing. These systems are notified through events.
Just like a Windows application hears about a WM_MOUSEMOVE event, your game sys-
tems can listen and react to a game event for practically any change in game state or
input from a player. There are also global game events, such as events to inform sub-
systems that a new level has been loaded or the game is being saved.

Many games create an event system that defines these events and the data that
accompanies them. Different subsystems register with the Event Manager to listen
for events that they’ll react to. A good example of this is the sound system; it might
register to listen for object collision events so that it can play the appropriate sound
effect when two objects are smashed together.

Event-based architectures tend to make your game system clean and efficient. Instead
of making API calls to four or five subsystems when an object collision is detected,
the code simply sends an event to the Event Manager, and all the subsystems that
registered to receive event notifications of this type will get notified in turn.

The event code is the glue that holds this entire game architecture together. The
application layer holds the event registry, subsystems register to listen to events they

Game Logic

care about, and other subsystems send events as needed. These events get sent to only
the subsystems that have subscribed to them.

Chapter 11, “Game Event Management,” will dig into this system and show you how
it works.

Process Manager

Any simulation of a game world is usually composed of discrete bits of very simple
code, such as a bit of code to move an actor along a linear path or parse a Lua script.
Acting on a single game object has the effect of combining these simple state changes
into something more complex. These bits of code are usually organized into classes,
and they can be instantiated for any game object. If you were to create a “move along
this path” class and a “run Lua script” class and instantiate them both on one object,
you'd create an interesting and complicated interaction from two simple pieces of code.

This is the heart of another important game subsystem: the Process Manager. It
keeps a list of processes and gives each one a little CPU time by calling it once
every game loop. A great example of this is a pathfind process. It acts to move an
actor from one place to another, and when the destination is reached, it simply ter-
minates and ceases acting on the actor.

Learning Our Lessons from Ultima VII

MIKE’S
» Tales

from the

After Ultima VI, all of the programmers met in the courtyard of Origin Systems
with a plan to redesign the Ultima technology for Ultima VIll. We had a nice
sunny day, a whiteboard, and real motivation to make a much better system.
We realized that any code that operated on an actor or group of actors for a
period of time could be encapsulated in a cooperative process, and it could
even be responsible for its own lifetime. When its job was done, it would kill
itself off. The best thing of all was that the entire thing could be managed
from a single class that contained a list of every running process. This N T
technology eventually evolved to become almost as useful and complex as a Pixel Mi&
simple operating system, managing both cooperative and real-time processes.

On Ultima, we found it very useful to allow processes to have dependencies on one
another, where one process would wait for another to complete before starting. A
good example of this is something you might use for a Molotov cocktail: One process
tracks the parabolic movement of any game object until it collides with something,
and another process manages a fireball explosion. Your game can string these pro-
cesses together to create some amazingly cool effects.

You'll learn more about this system in Chapter 7.

39

40

Chapter 2 B What's in a Game?

Command Interpreter

A game logic needs to respond to external commands. For a human playing a racing
game, these commands will send input to the game logic’s representation of the car:
acceleration, braking, and steering. An Al process will do exactly the same thing.
External entities, such as a human holding a gamepad or an Al process using a
command-based interface, can communicate to the game logic with exactly the same
commands.

You might ask why this is necessary. In any racing game, there should be someplace
in the code that says “If button A is down, set emergency brake” or something like
that. I know it seems like a lot of extra work, but that breaks the separation between
game logic and game views that I have found to be so important when creating
games.

What should happen is this: The game view presents an interface to the human
player that changes the “Button A is pressed” state into a game command, “Set
Emergency Brake.” That game command is then sent to the game logic, but here’s
the rub: The code that actually sets the emergency brake state on the data structure
representing the car is actually in the game logic. This code only sets the emergency
brake in response to a command—not through a direct tweak to the m_bIsEmer-
gencyBrakeOn member of a class somewhere.

I can hear you whining about this, and I'm not even sitting near you. Let me try to
show you how cool this is before you call me a complete freak.

If your game logic can accept commands through an event-based interface instead of
direct API calls to game logic classes, you can create a programming language for
your own game, just like you see in so many games that have heavy mod hooks like
Unreal. The command interpreter you use for your game will probably have an ultra-
efficient low level, but there’s nothing keeping you from coding a higher level inter-
face that accepts console input. Then you could actually type something that would
get sent right to the scripting interpreter, such as SetCarProperty(2, E_BRAKE_
PROPERTY, true), and guess what will happen? Car two will lock up the tires and
go spinning out of control, all at your command.

MIKE’S
Tales

from the

Unreal’s Command Console

lon Storm’s core code base was basically Unreal Warfare, a modified version
of Unreal 2, and thus had an amazing console command system that could
be used to control almost anything. You could add or remove properties,
move actors, make Als blind, deaf, dumb, or even all three. The console
system could even take input from a file, creating a weird meta-
programming language for the game. Believe me, it was nice to have—

Pixel Mines

Game View for the Human Player

because even if your game doesn’t have a rigorous separation between game logic and game view, you
can still create a command interpreter that provides a very low-level way to tweak your game while it is
running.

GAME VIEW FOR THE HUMAN PLAYER

A game view is a collection of systems that communicates with the game logic to
present the game to a particular kind of observer. This observer can be a human
being with a controller of some kind, like a keyboard or a plastic drum set, but it
can also be an AI agent, whose view of the game state will determine the AI process’s
next course of action.

The game view for a human being has a lot of work to do (see Figure 2.4). It must
respond to game events and figure out how to draw the scene, send output to the
speakers, translate controller input into game commands, and more. Let’s look at
the main areas.

Graphics Display

The display renders the objects that make up a game scene, the user interface layer
on top of the scene, and perhaps even streaming video. The renderer should draw the
screen as fast as it possibly can. The display can be one of the biggest suckers of CPU
budget in a game and should therefore scale well with the capabilities of a wide range
of CPUs and GPUs (graphic processing units). For PC or handheld games, it should
also perform well under different hardware configurations and operating system
releases. Generally, the game engine will disable expensive but nonessential features,
such as full screen effects, in order to run at the best frame rate they can.

Video cards will draw all the polygons you stuff into the GPU, even if it takes them
forever. Forever, by the way, is defined as anything more than 50ms, giving you a
frame rate of 20fps, even if that’s all your game does. The real problem a 3D engine
has is choosing which polygons to draw to make the most compelling scene.

g ™

Game View — Human

Dispiay Audio Input Process

3D User Interpreter Manager Options
{ Scenes I Interface I Video] [SFX I Music I Speech]
\,

Figure 2.4
Subsystems that create a game view for a human player.

41

42

Chapter 2 B What's in a Game?

Figure 2.5
Microsoft Flight Simulator X.

Consider the problem of a flight simulator like Microsoft Flight Simulator X. When the
plane is on the ground, the display looks a lot like every other 3D game out there. You see
a few buildings, a few other planes, and a runway. You might also see some scenery in the
distance, such as a mountain range or a city skyline (see Figure 2.5).

Once the plane is up in the air, you have a different story altogether. You've
increased the viewable surface by a few orders of magnitude, and therefore you've
increased the potential viewable set of polygons. Players who attempt a naive
approach of simply drawing all the polygons will learn quickly that they can’t get
their plane more than 150 feet off the ground. The frame rate will fall in inverse geo-
metric proportion to the altitude of the plane because that’s how many more poly-
gons you have to draw to achieve a realistic look.

The actual approach to this problem uses different levels of detail to draw areas of
terrain and objects, depending on their distance from the viewer. On some flight
simulators, you can catch this happening. Simply begin a slow descent and watch as
the terrain suddenly becomes better looking; the green patches will increase in detail
and eventually become individual trees until you crash into them. One of the trickier
parts of most 3D engines is getting the levels of detail to transition smoothly, avoid-
ing the “popping” effect.

Game View for the Human Player

Another problem is avoiding overdraw. If your game is in a complex interior envi-
ronment or deep in the concrete canyons of New York City, you'll achieve the fastest
frame rate if you only draw the polygons that you can see. Again the naive approach
is to simply draw all of the polygons in the view frustum, omitting any that are facing
away from the camera. This solution will most likely result in a disastrous frame rate
in certain areas but not others, even if the camera is pointed straight at an interior
wall. When the game is bogging down like this, it is drawing an enormous number of
polygons behind the wall, only to be covered up by the bigger polygons close to the
camera. What a waste!

You'll need some advanced tools to help you analyze your level and calculate what
areas can be seen given a particular viewing location. Umbra Software (www.umbra-
software.com) has developed sophisticated PVS (potentially visible set) and portal
technologies to do this either offline or on the fly, but many games can use a simple
portal or occlusion culling technique. Competitive games are all pushing the envelope
for the illusion of extremely complicated worlds. The trick is to create these worlds so
that your environments behave well with whatever culling technique is best for your
renderer. Add to that mix of technology some nice levels of detail, and you can get a
game that looks good when objects are close up or far away.

Since 3D engines are only capable of drawing so much scenery per frame, an amaz-
ing amount of effort must go into creating the right level of design. Any environment
that is too dense must be fixed, or the frame rate will suffer along with your reviews.

Your Artists Need to Know What Your Engine Can Do

The most common mistake made on 3D games is not communicating with
the artists about what the graphics engine can and can't do. Remember that
the world environment is just a backdrop, and you'll still need to add
interactive objects, characters, special effects, and a little bit of user
interface before you can call it a day. All these things, especially the
characters, will drag your performance into the ground if the background
art is too aggressive. Try to establish CPU budgets for drawing the
background, objects, characters, and special effects early on and hold your
environment artists and level designers to it like glue. Measure the CPU time
spent preparing and rendering these objects and display it for all to see.

Audio

Audio is one of my favorite areas of game development, and I've been lucky enough to
work with some of the best audio engineers and composers in the business. Game
audio can generally be split up into three major areas: sound effects, music, and speech.

43

www.umbra-software.com
www.umbra-software.com

44

Chapter 2 B What's in a Game?

Sound effects are pretty easy things to get running in a game. You simply load a
WAV file and send it into DirectX with volume and looping parameters. Almost
every sound system is capable of simulating the 3D position of the object relative to
the listener. You just provide the position of the object, and the 3D sound system will
do the rest.

Music can be really easy or really hard. Technically, it’s not really different from
sound effects unless you want to get into complicated mixing of different tunes to
reflect what’s going on in the game. Anyone who’s played Halo knows how effective
this can be; the distinctive combat music tells you you'd better reload your shotgun.

Speech is much trickier—not just technically, but keeping track of all the bits and pieces
recorded in the studio and matching them with a 3D lip-synched character. This usually
involves anything from a total hack to a carefully hand-tweaked database of mouth
positions for each speech file to a tool that can automatically generate this data.

You'll see a good introduction to game audio in Chapter 13, “Game Audio.”

User Interface Presentation

The user interface for a game doesn’t look like something drawn by the Windows
GDI. Game interfaces have a creative flair, and they should. This means that the
user interface needs to be baked fresh every time, especially since every health meter
and HUD are different for every game.

The irony of this is that games still need things like a button control, so players can
easily click OK for whatever thing the game is asking about. These controls aren’t
hard to write, but if you're like me, you hate rewriting something that already exists
and is well understood by both coders and players. You'll probably roll your own and
hopefully keep that code around from game to game so you won’t have to rewrite it
ever again. Another option is licensing Iggy from RAD Game Tools or Scale-
Form GFx, which lets your artists create your entire UI in Flash and import the
results directly into your game.

I'll cover these topics more in Chapter 10, “User Interface Programming.”

Process Manager

Having a little déja vu? You aren’t crazy, because you saw this same heading under
the game logic group just a few pages back. It turns out that game views can use their
own process manager to handle everything from button animations to streaming
audio and video. Keep this in the back of your mind as you read about the Process
Manager in Chapter 7. You'll use it all over your game.

Game Views for Al Agents

Options

Most games have some user-configurable options like sound effects volume, whether
your controls are Y-inverted or not, and whether you like to run your game in 4:3 or
in 16:9 widescreen. These options are useful to stick in something simple like an
XML file so that anyone can easily tweak them, especially during development.

Multiplayer Games

One thing you might not have considered—this event-based, logic/view architecture
makes it simple to have a multiplayer game. All you need to do is attach more
human views to the same game logic. Okay, I'll come clean. It’s a little more trouble
than that because each view needs to share what is likely a single display from the
application layer, figure out how to iterate the additional controls, and so on. That
stuff is fairly easy compared to getting the overall architecture built to support multi-
ple players, especially if it wasn’t designed to do so from the very beginning.

GAME VIEWS FOR Al AGENTS

A great argument for the harsh breakdown between game logic and game views is
that humans and Al processes can interact with the game logic through exactly the
same event-based interface. An Al agent’s view of a game generally has the compo-
nents shown in Figure 2.6.

The stimulus interpreter receives the same events that all other game views receive:
object movement, collisions, and so on. It’s up to the AI programmer to determine
how the AI will react to each event the Al agent receives. It would be easy enough for
an Al process to ignore certain events or react to events that are filtered by the
human view, and this would certainly affect what the AI process would do.

For example, Al agents might react to sound effects, which are the result of game
events such as objects colliding, footsteps, or noisy objects like radios being activated.
If an Al is supposed to be deaf, it merely filters the sound events. If an Al is

- ™)

Game View - Al Agent

Process

Stimulus Interpreter | Decision System Manager

Options

\ J

Figure 2.6
An Al agent's view of the game.

45

46

Chapter 2 B What's in a Game?

supposed to be blind, it filters any event about the visible state of an object. You can
set the nature of an Al agent’s behavior completely by controlling what stimuli the Al
agent receives.

The second part of an Al view is the decision system. This is a completely custom
written subsystem that translates stimuli into actions. Your AI agent might be able
to send commands into the game your human can’t, giving it extra abilities such as
opening locked doors. The reverse is also true, and the combination of Al stimulus
filters and command sets can have a great effect on how smart your AI agents are.

If your AI needs to solve difficult problems, such as how to navigate a complicated
environment or make the next move in a chess match, then you might need a process
manager just as in the game logic and game view. You might use this to have Al
spread its evaluation of stimuli and decisions over time, amortizing the cost of these
expensive calculations over many frames.

Finally, you'll certainly want a list of Al options that you can tweak through a simple
text file. The stimulus filter and decision set options are certainly enough to warrant
a large options file, but more importantly, your AI options can be extremely useful
for Al tuning during development. Even if you eventually hard code the AI para-
meters, you'll certainly want an instantly “tweakable” version while your game is in
development.

NETWORKED GAME ARCHITECTURE

If you implement the game architecture that I've been beating you with since the
beginning of this chapter, you can write two additional classes and transform your
single-player game into a networked, multiplayer game. That might seem like an
insane boast, but it is completely true. Well, nearly completely true. Look at
Figure 2.7 to get another look at how game views interact with the game logic.

Authoritative Server Remote Game Client

e

Human
—®| Game View

ame qun‘s
. \ J Remote
Game Human
==-is ®| Game |@-GameEvents-§
\TCPIUOF] Logic Same Ui
M€ Events__g | Remote | qtinte™

Game View

—

\ J

Figure 2.7
Client/server networked game architecture.

Networked Game Architecture

You'll see the same game logic/game view architecture, but there is a new implementa-
tion of the game logic and a new implementation of the game view. Both are needed to
create remote versions of their single-player brethren.

Remote Game View

On the server machine, the remote player should appear just like an AI agent. The
remote view receives game events from the game logic and responds with commands
back to the game logic. What happens inside the remote view is completely different
from the Al agent view or the human view.

Game events received from the game logic are packaged up and sent via TCP or
UDP to a client computer across the network. Since game events on a local machine
can be somewhat bloated, there should be some processing of the event data before it
is sent out. First, redundant messages should be removed from the message stream. It
makes no sense to send two “Object Move” events when the only one that matters is
the last one. Second, multiple events should be sent together as one packet. If the
packet is large enough, it should be compressed to save bandwidth.

The remote game view also receives IP traffic from the remote machine, namely the
game commands that result from the controller input. One difference in the remote
game view is that it should never trust this command data entirely. The game logic
should be smart enough to do some sanity checking on impossible commands, but
the remote view can take a front-line approach and attempt to short-circuit any
hacking attempts, such as detecting badly formed packets or packets that come in
with an unusual frequency. Once the game commands have gone through some
kind of anti-hacking filter, they are sent on to the game logic.

Remote Game Logic

In this model, the game logic is an authoritative server; its game state is the final
word on what is happening in the game. Of course, the client machines need a
copy of the game state and a way to manage delays in Internet traffic. This is the
job of the remote game logic.

The remote game logic is quite similar to the authoritative game logic. It contains
everything it needs to simulate the game, even code that can simulate decisions
when it must. It has two components that the authoritative game logic doesn’t have:
something to predict authoritative decisions, and something to handle corrections in
those decisions. This is easier to see with a concrete example.

47

48

Chapter 2 B What's in a Game?

Imagine playing Halo, and imagine you are about to shoot an RPG at your best
friend. If your friend is playing over the Internet and has a bad lag, your friend’s
machine might not get the message that you fired the RPG until a few hundred milli-
seconds after you fired it. If you could watch both screens at the same time, you'd see
your RPG rocketing over to blow up your friend, but your friend wouldn’t see any-
thing at all, for just a short time.

Some 500ms later, your friend’s machine gets the message that you fired an RPG.
Since there was no way to predict this message, it must show the fired RPG but
begin to move the rocket fast enough to “catch up” to the rocket on the authoritative
server, or host.

That’s why playing shooter games is impossible when you have bad lag and you’re
not running the host! That’s also why no one will play with you when you run the
host over a slow connection, because it gives you an unfair advantage. The remote
machines simply don’t get the messages fast enough.

What this means to the remote game logic is that it has to make corrections in its
game state, perhaps breaking the “rules” in order to get things back in sync. In the
previous example, the rule that had to be bent a bit was the acceleration and speed of
an RPG. If you've ever seen an RPG turn a corner and kill you dead, you've experi-
enced this firsthand.

Other than that, the remote game logic interacts with the game view in pretty much
exactly the same way as the authoritative view; it sends the game view events and
changes in game state and accepts game commands from the view. Those commands
are then packaged and forwarded on to the server machine, specifically the remote
game view mentioned in the previous section.

You Need Multiplayer? Give Me a Few Hours...

MIKE’S
Tales

from the

We designed our last card game for Microsoft using a rigorous
implementation of the game logic/game view system. When we started
working on the game, Microsoft wanted us to code it such that we could
create a multiplayer version of the game in as short a time as possible even
though we weren't shipping a multiplayer game. Believe me, it wasn't easy,
and all the programmers had to take some time to learn how to deal with this
very different architecture. After we shipped the project, | was curious how
well we'd done in creating something that was multiplayer-aware, even
though we'd never actually used the feature. One of our programmers spent
about two days and had our card game playing over the Internet. If that's not
proof, | don’t know what is.

- —

Pixel Mines

Do | Have to Use DirectX?

Do | HAvVE To Use DIRECTX?

If your platform of choice is the PC, you have to consider whether to use DirectX in
your game or try an alternative API for graphics, sound, and input.

Just to be perfectly clear, this section has nothing to do with how to draw a shaded
polygon under Direct3D. This section is going to enlighten you about why you would
choose something like OpenGL over Direct3D. Believe it or not, the choice isn’t clear
cut no matter what your religious beliefs.

All Roads Lead to Rome

It's not possible for me to be more tired of the religious nature of the OpenGL/
DirectX debate. Any good programmer should understand what's under the
hood of every API if you have to make a choice between them. Disregarding
DirectX simply because Microsoft made it is asinine.

Proctices

Design Philosophy of DirectX

DirectX was designed to sit between the application and the hardware. If the hard-
ware was capable of performing an action itself, DirectX would call the driver and be
done with it. If the hardware wasn’t there, DirectX would emulate the call in soft-
ware. Clearly, that would be much slower.

One thing that was gained by this design philosophy was a single API for every hard-
ware combination that supported DirectX. Back in the old days (that would be the
early 1990s), programmers weren’t so lucky. A great example was all the work that
needed to be done for sound systems. Origin supported Adlib, Roland, and Sound-
Blaster with separate bits of code. Graphics were similar; the old EGA graphics stan-
dard was completely different than Hercules. Yes, there was a graphics system called
Hercules. It was a pain to support all this stuff!

Of course, DirectX isn’t the simplest API to learn. COM is a weird thing to look at if
you aren’t used to it. It also seems weird to have 50 lines of code to initialize a 3D
rendering surface when OpenGL does it so much easier. Herein lies one basis for
religious argument: old-time C versus newfangled COM. Get over it long enough to
understand it and then make an informed choice.

DirectX exposes a lot more about what the hardware is capable of doing. Those
CAPS bits can tell you if your video card can support nothing, hardware transform
and lighting (T&L), or the latest shaders. Perhaps that means you’ll load up denser
geometry or simply bring up a dialog box telling some loser that he needs a better

49

50

Chapter 2 B What's in a Game?

video card. Your customer service people will thank you if you decide to leave the
word “loser” out of the error message.

Direct3D or OpenGL

I'm not going to preach to you about why DirectX is unusable and why OpenGL is
God’s gift. Instead, I hope to give you enough knowledge about how and why you
would judge one against the other with the goal of making the best choice for your
game, your team, and the good people who will throw money at you to play your
latest game. I'm sure to get lovely emails about this section. Bring it on. I'm going
to take a weirder tack on this argument anyway. Both APIs will get you a nice-
looking game. There are plenty of middleware rendering engines that support both.
What does that tell you? It tells me that while there may be interesting bits and
pieces here and there that are unique, the basic job of pushing triangles to the video
card is essentially equivalent.

There was a time when there were marked differences in quality between OpenGL
and DirectX drivers, but those days are thankfully gone. Given that, perhaps the
best choice you can make is to go with the API that you and your fellow coders are
most comfortable with. Learning a new graphics system can be a special kind of
“fun” for some, but it is probably best to spend the time making your game fun
rather than sweating over learning DirectX if you happen to be an OpenGL guru.

DirectSound or What?

For years, I never looked farther than RAD Game Tools, Inc., for sound and video
technology. The Miles Sound System includes full source code, has a flat license fee,
and works on every platform in existence today. The Bink Video tools are cross plat-
form and support all the latest consoles, Win32, and Macintosh. Check out the latest
at www.radgametools.com. It doesn’t hurt that RAD has been in business since 1988
and has licensed their technology for thousands of games. They are probably the
most used middleware company in the industry.

Miles can use DirectSound as a lower layer. This is quite convenient if you want to
do some odd thing that Miles can’t. One nail in the coffin for DirectSound is that it
doesn’t include the ability to decode MP3 files. Part of your license fee for Miles pays
for a license to decode MP3s, which are a fantastic alternative to storing bloated
WAV files or weird-sounding MIDIs. You could use OGG files, which are completely
open source and unencumbered by an expensive license—in fact, the audio chapter
shows you how to do this. There is one great thing Miles gets you—and that’s
streaming. You don’t have to load the entire sound file in memory at once if you

www.radgametools.com

Other Bits and Pieces

don’t want to, and believe me, Miles makes this easy. Bottom line, do yourself a favor
and get Miles for your game.

Other audio technologies, like FMod or WWise, take playing sound buffers to the
next step and allow tighter control over sound in your game: how sounds are
mixed, which sounds have higher priority, and what tunable parameters your game
can tweak to make different effects in real time. WWise is more expensive than
Miles, but it is more capable. The audio team used by Red Fly Studios, GL33k, swears
by WWise, and they make the best sounds in the game industry. FMod is a good
choice since it is free for noncommercial software development.

Directinput or Roll Your Own

DirectInput encapsulates the translation of hardware-generated messages to some-
thing your game can use directly. This mapping isn’t exactly rocket science, and
most programmers can code the most used portions of DirectInput with their eyes
closed. The weirder input devices, like the force feedback joysticks that look like an
implement of torture, plug right into Directlnput. DirectInput also abstracts the
device so that you can write one body of code for your game, whether or not your
players have the weirdest joystick on the block.

OTHER BIiTs AND PIECES

There are tons of other bits and pieces to coding games, many of which you'll dis-
cover throughout this book. These things defy classification, but they are every bit as
important to games as a good random number generator.

Beyond that, you'll find some things important to game coding such as how to con-
vince Microsoft Windows to become a good platform for your game—a more diffi-
cult task than you’d think. Microsoft makes almost all of its income from the sales of
business software like Microsoft Office, and the operating system reflects that. Sure,
DirectX is supposed to be the hard-core interface for game coders, but you’ll find
that it’s something of a black sheep even within Microsoft. Don’t get me wrong, it
works and works surprisingly well, but you can’t ever forget that you are forcing a
primarily business software platform to become a game platform, and sometimes
you'll run into dead-ends.

Debugging games is much more difficult than other software, mostly because there’s
a lot going on in real time, and there are gigabytes of data files that can harbor nasty
bugs. Combine that with the menagerie of game hardware like video cards, audio
cards, user input devices, and even operating systems, and it’s a wonder that games

51

52

Chapter 2 B What's in a Game?
work as well as they do. It’s no secret that games are considered to be the most
unstable software on the market, and it reflects the difficulty of the problem.

Now that you know what’s in a game, let’s discuss how game code needs a certain
style.

FURTHER READING

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma,
Richard Helm, and Ralph E. Johnson

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis, William H.
Brown, Raphael C. Malveau, and Hays W. “Skip” McCormick

Modern C++ Design: Applied Generic and Design Patterns, Andrei Alexandrescu

CHAPTER 3

by David “Rez” Graham Q*/ »

CobDING TIDBITS AND STYLE
THAT SAVED ME

On December 5, 2005, I walked onto the fifth floor of an old office building in down-
town San Francisco. There was a door near the elevator with a simple piece of paper
taped to it that said “Super-Ego Games.” The entire office held less than a dozen peo-
ple, almost all of them programmers. This was my first day as a professional video
game programmer. I had been making my own games for about nine years at that
point so I figured I had a major leg up. I was completely wrong. Being able to render
3D models on the screen, play sound effects, read input devices, and implement
gameplay features are all extremely important parts of making video games, but
there’s another more subtle beast lurking in the shadows that is just as important:
architecture.

Architecture refers to the structure of your game code and how all of the little pieces
fit together. An engine with good architecture can be reused over and over to make
games that are somewhat similar to the games that came before it. There are certain
problems that every game faces, such as loading assets from the hard drive and ren-
dering objects onto the screen efficiently. These problems are often tailored to the
specific type of game you're making. For example, culling out objects from render-
ing in a scene efficiently often requires different techniques, depending on how your
level geometry is laid out. Worlds that are mostly indoors tend to use different tech-
niques from worlds that are mostly outdoors. Most of the time, different engines
tailor their architecture toward a specific type of game. If you grew up in the 80s
and 90s, you might remember the old Sierra adventure games when they started
using the point-and-click interface. There have been dozens of games that have

53

54

Chapter 3 H Coding Tidbits and Style That Saved Me

used that same game engine. The engineers didn’t have to worry about how things
were rendered or how to display a text box, they just used the tools in the engine to
make it work.

I've been an engineer in the video games industry for nearly seven years as of the
writing of this book. I've worked on a number of different games, from tiny iPhone
apps with only a few people to huge triple-A games with nearly 200 people, each
using a number of different game engines. Some of those games used a commercially
available engine as the core, while others were developed from scratch. All of these
different game engines had their strengths and weaknesses. Over the years, I've
found a number of universal patterns, both good and bad, that have cropped up in
nearly every game I've worked on. Before we dig into the meat of rendering, sound
effects, Al, and other juicy game development topics, I'd like to provide a foundation
of core architectural principles. These are the things to keep in mind when you are
developing large systems. Trust me, they’ll save your butt in the end.

One thing worth noting is that are as many ways of doing things as there are pro-
grammers. The techniques and philosophies presented in this chapter are the
result of my own experiences. You will probably find things in this chapter (and
book, for that matter) that you disagree with. That’s great! It just means you're a
programmer. You and I can debate endlessly on the Internet about the best ways
of doing things. Just remember, neither of us is wrong—just different and
opinionated.

Let’s start by looking at design practices that you should consider when writing a
game, and then we’ll move on and look at specific programming techniques such as
working with pointers, memory management, how to avoid memory leaks, and other
goodies. In the last part of this chapter, I'll provide you with a few coding tools taken
from my own personal toolbox.

GENERAL CODING STYLES

If you walk into a room full of programmers and ask them about how they name
their variables or where to place braces, you'll find the conversation soon turning
into an all-out holy war. Programmers are very opinionated about coding style. It
makes sense—we spend the vast majority of our time staring at code. In the end,
there is little difference between all the various styles you see. I have a particular
style I use for my own projects that works very well for me. You might hate how I
name my variables or how I use camel-casing for function and class names, and
that’s just fine. You should do whatever works for you; however, there are a few pit-
falls I've come across that I'd like to share with you.

General Coding Styles 55

Bracing

Bracing is one of those things I do feel strongly about. I have fixed actual logic bugs
due to poor bracing on more than one occasion. There are three styles I've run into
in the past. The first is lining up all the braces:

void FindObject (unsigned int id, std::1ist& found)
{
for (int i =0; i <m_max; ++i)
{
if (m_map[i].id ==1id)
{
found.push_back(m_map[i]);
GCC_LOG("Objects", "Found");
}
else
{
GCC_LOG("Objects™", "Not Found");
}
}
GCC_LOG("Objects", "Next");
1

The second is called K&R bracing:

void FindObject (unsigned int id, std::1ist& found) {
for (int i =0; i <m_max; ++i) {
if (m_map[i].id ==1id) {
found.push_back(m_map[i]);
GCC_LOG("Objects", "Found");
}
else {
GCC_LOG("Objects", "Not Found");
}
}
GCC_LOG("Objects", "Next");
1

The third is just arbitrarily placing braces where they make sense at the time:

void FindObject (unsigned int id, std::1ist& found)
{
for (int i =0; i <m_max; ++i)
{
if (m_map[il].id ==1id)
{

56 Chapter 3 H Coding Tidbits and Style That Saved Me

found.push_back(m_map[il);
GCC_LOG("Objects", "Found");

1
else { GCC_LOG("Objects", "Not Found");
1
}
GCC_LOG("Objects", "Next");
}

Which one is the most readable? In my opinion, the first style is much more readable
than the other two. The second style is preferred by some programmers I know
because it saves space and creates more compact code, and they feel that K&R brac-
ing is just as readable. I strongly disagree with this and have fixed a couple of bugs
due to braces getting out of alignment in K&R bracing. By contrast, I have never
fixed a bug due to bad bracing using the first method. Still, it’s considered to be a
valid style at some companies. The most important thing here is that you never,
ever use the third method. Arbitrarily placing braces and tabs is a sure-fire ticket to
creating incredibly hard-to-read code.

5,000 Lines of Pure Horror

During development of Barbie Diaries, there were a number of complaints
about the architecture of the camera code. The original author had left the
company, so once the game shipped, | was tasked with refactoring that
whole system before we started production on the next game. When |
opened up SeCameraMgr.cpp, | was horrified to find that the entire camera
system was a series of nested switch/case statements with completely
arbitrary indentation and bracing. This complete lack of style and
organization made the code pretty much unusable. | spent about an hour
just lining up the braces and tabbing so | could even read the code, much
less refactor it. It took me two weeks to refactor the camera system into
something usable and extendable.

Consistency
Which of these function names is best?
Action* FindBestAction(void);

Action* findBestAction (void);
Action* find_best_action(void);

Honestly, it doesn’t really matter. I prefer the first one, but that’s just my opinion. It
makes very little difference how you handle capitalization, whether you put a space
between the identifiers and braces, whether you use underscores, and so on. The key

General Coding Styles

is that you're consistent. If you choose method #1, I should never see a function in
your code base that doesn’t conform to that style. You might think it’s a relatively
minor topic, but when you have a code base with millions of lines of code written
by dozens of different people, consistency becomes extremely important.

One important exception to this is when integrating code written by a third party.
You don’t want to change every single line to match your style because every
time you update that code, you'll have to make those changes all over again. Make
sure that all such code is isolated from your main code base. If you look at the source
code for this book, you can see a really good way of doing this. All third-party
code and libraries live in the Source/GCC4/3rdParty directory.

Another very important place to be consistent is in general API and function naming
conventions. For example, if you have a number of classes that require an update
every frame, the update function should be named the same thing across all of
these classes and probably have the same signature. For example, here’s the signature
for the update function in the Process class you'll see later:

virtual void VOnUpdate(const int deTtaMilliseconds);
Here’s the update for the HumanView class:
virtual void VOnUpdate(const int deTtaMilliseconds);

The function signatures are exactly the same even though the two classes are not
related in any way. This can be important when you’re in a large code base and look-
ing at a class you've never seen before. This kind of consistency lets you be reason-
ably sure of what a function does. At Super-Ego Games, all trivial getter functions
started with the word “Get,” while non-trivial getters started with the word “Find.”
It was a simple mechanism that alerted the programmer to a possible performance
hit on what might seem like a simple operation.

You can see a good example of this kind of consistency by looking at the interface for
the STL. Ordered containers use push_back() to append an object to the container.
You can be reasonably certain that any ordered container that supports appending
will use a function named push_back(). Notice how unordered containers like
std::map or std::set name their function insert(). Since these containers
make no guarantees as to which order the objects exist in the container, the behavior
is fundamentally different than it is for ordered containers. This is a good paradigm
to follow in your own code.

Consistency goes beyond naming conventions; it also applies to class layout and code
organization. For example, I prefer to put all of the member variables of a class at the
top, followed by initialization and destruction functions like the constructor and

57

58

Chapter 3 H Coding Tidbits and Style That Saved Me

destructor. After that, I have my public interface followed by protected and private
internal function definitions. You don’t have to follow my scheme, of course, but
you should come up with something that you like and stick with it.

SMART CobE DESIGN PRACTICES

One of the keys to writing good software is designing robust systems that can stand
the test of time. Game programming is extremely volatile. A designer can change the
whole game out from under you, requiring you to rewrite large chunks of your game.
There’s no way around this, because it’s simply the nature of the beast. You can mit-
igate the effect of these kinds of changes by having a strong, flexible architecture.

Isaac Asimov’s Foundation series invented an interesting discipline called psycho-
history, a social science that could predict societal trends and macro events with
great certainty. Each historian in the story was required to contribute new formulas
and extend the science. As a programmer, your job is similar. Every new module or
class that you create gives you the opportunity to extend the capabilities and useful-
ness of the code base. But to do this effectively, you must learn how to think ahead
and design code with the goal of keeping it in use for many projects and many years.

Designing good code in an object-oriented language can be more difficult than in a
procedural language such as C or PASCAL. The power and flexibility of an object-
oriented language like C++, for example, allows you to create extremely complicated
systems that look quite simple. This is both good and bad. Simplicity is good, but the
down side is that it’s easy to get yourself into trouble without realizing it. A great
example of this is the C++ constructor. Some programmers create code in a con-
structor that can fail—maybe they tried to read data from an initialization file, and
the file doesn’t exist. A failed constructor doesn’t return any kind of error code,
so the badly constructed object still exists and might get used. While you can use
structured exception handling to catch a failure in a constructor, it is a much better
practice to write constructors that can’t fail. Another example is the misuse of virtual
functions. For example, a naive programmer might make every method in the class
virtual, thinking that future expandability for everything was good. Well, he’d be
wrong. On some platforms, virtual functions can be very expensive. A well thought
through design is more important than blind application of object-oriented program-
ming constructs.

You can make your work much more efficient by improving how you design your
software. With a few keystrokes, you can create interesting adaptations of existing
systems. There’s nothing like having such command and control over a body of
code. It makes you more of an artist than a programmer.

Smart Code Design Practices

A different programmer might view your masterpiece entirely differently, however.
For example, intricate relationships inside a class hierarchy could be difficult or
impossible to understand without your personal guidance. Documentation, usually
written in haste, is almost always inadequate or even misleading.

To help you avoid some of the common design practice pitfalls, I'm going to spend
some time in this chapter up-front discussing how you can do the following:

B Avoid hidden code that performs nontrivial operations.
Keep your class hierarchies as flat as possible.

Be aware of the difference between inheritance and composition.

Use interface classes and factories.

|

|

B Avoid abusing virtual functions.

|

B Encapsulate the components of your system that are most likely to change.
|

Use streams in addition to constructors to initialize objects.

Avoiding Hidden Code and Nontrivial Operations

Copy constructors, operator overloads, and destructors are all party to the “nasty”
hidden code problems that plague game developers. This kind of code can cause
you a lot of problems when you least expect. The best example is a destructor
because you never actually call it explicitly. It is called when the memory for an
object is being deallocated or the object goes out of scope. If you do something really
crazy in a destructor, like attach it to a remote computer and download a few mega-
bytes of MP3 files, your teammates are going to have you drawn and quartered.

My advice is that you should try to avoid copy constructors and operator overloads
that perform nontrivial operations. If something looks simple, it should be simple
and not deceptive. For example, most programmers would assume that if they
encountered some code that contained a simple equals sign or multiplication symbol
that it would not invoke a complicated formula, like a Taylor series. They would
assume that the code under the hood would be as straightforward as it looked—a
basic assignment or calculation between similar data types like f1oats or doubles.

Game programmers love playing with neat technology, and sometimes their sense of
elegance drives them to push nontrivial algorithms and calculations into C++ con-
structs, such as copy constructors or overloaded operators. They like it because the
high-level code performs complicated actions in a few lines of code, and on the sur-
face, it seems like the right design choice. Don’t be fooled.

59

60

Chapter 3 H Coding Tidbits and Style That Saved Me

Any operation with some meat to it should be called explicitly. This might annoy your
sense of cleanliness if you are the kind of programmer who likes to use C++ con-
structs at each and every opportunity. Of course, there are exceptions. One is when
every operation on a particular class is comparatively expensive, such as a 4 x 4
matrix class. Overloaded operators are perfectly fine for classes like this because the
clarity of the resulting code is especially important and useful.

One thing to watch out for is that the C++ compiler will magically generate functions
in your class. It will silently generate a copy constructor, copy assignment operator,
and destructor for you if you don’t create them yourself. If you don’t create any con-
structors, it will also generate a default constructor. These will all be public functions.
This can cause unintended side effects if you're not aware of what’s happening under
the covers. To get around this, you can make copy constructors and assignment
operators private, which keeps programmers from assuming the object can be dupli-
cated in the system. A good example of this is an object in your resource cache, such
as an ambient sound track that could be tens of megabytes. You clearly want to dis-
able making blind copies of this thing, because an unwary programmer might believe
all he’s doing is copying a tiny sound bulffer.

A recurring theme throughout this book is that you should always try to avoid sur-
prises. Most programmers don’t like surprises because most surprises are bad ones.
Don’t add to the problem by tucking some crazy piece of code away in a destructor
or similar mechanism. It’s important to remember that you're not writing code for
the compiler, you're writing code for other programmers. The compiler will be just
as happy with clean code as it will with sloppy code. The same is not true for another
programmer.

Class Hierarchies: Keep Them Flat

One of the most common mistakes game programmers make is that they either over-
design or underdesign their classes and class hierarchies. Getting your class structure
well designed for your particular needs takes real practice.

A good rule of thumb is that each class should have a single responsibility in your
code base and should have inheritance trees that are no more than two or three levels
deep. As with anything, there are always exceptions to this rule, but you should strive
to flatten your hierarchy as much as possible.

On the opposite end of the spectrum, a common problem found in C++ programs is
the Blob class, as described in the excellent book Antipatterns by Brown et al. This is
a class that has a little bit of everything in it and comes from the reluctance on the
programmer’s part to make new, tightly focused classes. In the source code that

Smart Code Design Practices

accompanies this book, the GameCodeApp class is probably the one that comes clos-
est to this, but if you study it a bit you can find some easy ways to factor it.

When I was working on The Sims Medieval, there was a class that fell very neatly into
the Blob category. Our Sim class became a dumping ground for every little extra
timer, variable, and tracking bit that could be remotely tied to a Sim. Entire systems
would be written inside this one class. By the end of the project, the Sim.cs file was
11,491 lines of code, and it was nearly impossible to find anything.

I try always to use a flat class hierarchy. Whenever possible, it starts with an interface
class and has at most two or three levels of inheritance. This class design is usually
much easier to work with and understand. Any change in the base class propagates
to a smaller number of child classes, and the entire architecture is something normal
humans can follow.

Try to learn from my mistakes. Good class architecture is not like a Swiss Army
knife; it should be more like a well-balanced throwing knife.

Inheritance Versus Composition

Game programmers love to debate the topics of inheritance and composition. Inheritance
is used when an object has evolved from another object, or when a child object is a ver-
sion of the parent object. Composition is used when an object is composed of multiple
discrete components, or when an aggregate object has a version of the contained object.

A good example of this relationship is found in user interface code. You might have a
base control class to handle things like mouse and keyboard events, positioning, and
anything else that all controls need to know how to do. When you create a control
such as a button or check box, you will inherit from this control. A check box is a
control. Then you might create a window that can contain a bunch of these controls.
The window has a control or, in this case, many controls. You window is most likely
a valid UI control as well, so it might be fair to say that that your window is a con-
trol, too. When you make a choice about inheritance or composition, your goal is to
communicate the right message to other programmers. The resulting assembly code
is almost exactly the same, barring the oddities of virtual function tables. This means
that the CPU doesn’t give a damn if you inherit or compose. Your fellow program-
mers will care, so try to be careful and clear.

Virtual Functions Gone Bad

Virtual functions are powerful creatures that are often abused. Programmers often
create virtual functions when they don’t need them, or they create long chains of

61

62

Chapter 3 H Coding Tidbits and Style That Saved Me

overloaded virtual functions that make it difficult to maintain base classes. I did this
for a while when I first learned how to program with C++.

Take a look at MFC’s class hierarchy. Most of the classes in the hierarchy contain
virtual functions, which are overloaded by inherited classes or by new classes created
by application programmers. Imagine for a moment the massive effort involved if
some assumptions at the top of the hierarchy were changed. This isn’t a problem
for MFC because it’s a stable code base, but your game code isn’t a stable code
base. Not yet.

An insidious bug is often one that is created innocently by a programmer mucking
around in a base class. A seemingly benign change to a virtual function can have
unexpected results. Some programmers might count on the oddities of the behavior
of the base class that, if they were fixed, would actually break any child classes.
Maybe one of these days someone will write an IDE that graphically shows the code
that will be affected by any change to a virtual function. Without this aid, any pro-
grammer changing a base class must learn (the hard way) for himself what hell he is
about to unleash. One of the best examples of this is by changing the parameter list
of a virtual function. If you're unlucky enough to change only an inherited class and
not the base class, the compiler won’t bother to warn you at all; it will simply break
the virtual chain, and you’ll have a brand new virtual function. It won’t ever be called
by anything, of course.

If you're using Visual Studio 2010 or above, you can take advantage of the keywords
override and sealed. The override keyword tells the compiler that you are over-
riding a virtual function from the base class. It will generate an error if it can’t find
that function. The sealed keyword tells the compiler that subclasses aren’t allowed
to override the virtual function anymore. If you have a subclass that attempts to over-
ride it, it will generate an error. Here’s a quick example of their usage:

class Base
{
public:
virtual void Go(void);
s

class Subl : public Base

{

public:
// 1f Base didn't declare this function with this exact signature,
// the compiler would kick out an error.
virtual void Go(void) override;

b

Smart Code Design Practices 63

class Sub2 : public Subl

{

public:
// If you create a new subclass inheriting from Sub2 and attempt
// to override this method, the compiler will kick out an error.
virtual void Go(void) sealed;

}s

C# and other languages have been doing this for a long time now. I'm happy to see
C++ starting to do the same.

Let the Compiler Help You

If you ever change the nature of anything that is currently in wide use, virtual
functions included, | suggest you actually change its name. The compiler will
find each and every use of the code, and you'll be forced to look at how the
original was put to use. It's up to you if you want to keep the new name.
| suggest you do, even if it means changing every source file.

Proctices

When you decide to make a function virtual, what you are communicating to other
programmers is that you intend for your class to be inherited from by other classes.
The virtual functions serve as an interface for what other programmers can change.
By overriding your virtual functions and choosing whether or not to call your imple-
mentations, they are changing the behavior of your class. Sometimes this is exactly
what you intend. The Process class you'll see in Chapter 7, “Controlling the Main
Loop,” has a virtual VOnUpdate() method that is meant to be overridden to allow
you to define the behavior of your specific process.

Oftentimes, making an Update() function virtual is not the best way of doing
things. For example, say you have a class that processes a creature. You have an
update function that runs some AI, moves the creature, and then processes colli-
sions. Instead of making your update function virtual, you could make three sepa-
rate protected virtual functions: one for AI, one for movement, and one for
collision processing, each with a default implementation. The subclass can over-
ride one or more of these functions, but not the update function. So subclasses
can’t change the order of operations, they can only change what happens at each
step. This is called the template method design pattern and is very handy. In fact, I
used it recently at work to allow subclasses to redefine how interactions are cho-
sen and scored.

If you're on the other side and trying to extend a class by deriving a subclass from it
and overriding some virtual functions, you should make sure that you're doing it for
the right reasons. If you find yourself significantly altering its behavior, you should

64

Chapter 3 H Coding Tidbits and Style That Saved Me

step back and consider if inheritance is the right solution. One solution might be
composition, where you write a new class that has the other class as a member.

Try to look at classes and their relationships like appliances and electrical cords.
Always seek to minimize the length of the extension cords, minimize the appliances
that plug into one another, and don’t make a nasty tangle that you have to figure out
every time you want to turn something on. This metaphor is put into practice with a
flat class hierarchy—one where you don’t have to open 12 source files to see all the
code for a particular class.

Use Interface Classes

Interface classes are those that contain nothing but pure virtual functions. They form
the top level in any class hierarchy. Here’s an example:

class IAnimation

{

public:
virtual void VAdvance(const int deltaMilliseconds) =0;
virtual bool const VAtEnd() const =0;
virtual int const VGetPosition() const =0;

s

typedef std::Tist<IAnimation *> AnimationList;

This sample interface class defines simple behavior that is common for a timed ani-
mation. You could add other methods, such as one to tell how long the animation
will run or whether the animation loops; that’s purely up to you. The point is that
any system that contains a list of objects inheriting and implementing the IAnima-
tion interface can animate them with a few lines of code:

AnimationList::iterator end = animList.end();
for(AnimationList::iterator itr =animList.begin(); itr !=end; ++itr)
{

(*itr).VAdvance(delta);
}

Whenever possible, you should have systems depend on these interfaces instead of
the implementation classes. Two different systems should never know about each
other’s implementation classes. Interface classes act like a gate into a particular sys-
tem in the engine. Outsiders are only able to call the interface functions to interact
with the system; they don’t know or care how it gets done.

Smart Code Design Practices

Rewriting Your Graphics Engine Without Killing Your Game

When | was at Super-Ego Games, we landed a deal with Sony to make Rat
Race on the then-unreleased PlayStation 3. None of us had ever made a
console game, and the engine was very PC-centric. We devised a scheme
we called the Render Skin. This was a layer of abstraction where all
graphics and sound functionality would live. The entire thing was made up
of a series of interface classes that wrapped some piece of functionality.
The appropriate implementation classes were instantiated at runtime based
on compiler flags. Once we got this system working, we were able to
replace our old DirectX rendering system with a new rendering system that
worked on the PS3 without keeping the designers or gameplay programmers
blocked. None of the code that called into the Render Skin knew or cared
which engine it was using, so the graphics programmers could port
everything over without stepping on anyone's toes.

Another great benefit of using interface classes is they reduce compile time depen-
dencies. The interfaces can be defined in a single #include file, or a very small
number of them, and because they hide all the disgusting guts of implementation
classes, there’s very little for the compiler to do but register the class and move on.

Consider Using Factories

Games tend to build complex objects, such as controls or sprites, and store them in
lists or other collections. A common way to do this is to have the constructor of one
object, say a certain implementation of a screen class, “new up” all the sprites and
controls. In many cases, many types of screens are used in a game, all having differ-
ent objects inheriting from the same parents.

In the book Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma et al,, one of the object creation patterns is called a factory. An abstract fac-
tory can define the interface for creating objects. Different implementations of the
abstract factory carry out the concrete tasks of constructing objects with multiple
parts. Think of it this way—a constructor creates a single object. A factory creates
and assembles these objects into a working mechanism.

Imagine an abstract factory that builds screens. The fictional game engine in this
example could define screens as components that have screen elements, a back-
ground, and a logic class that accepts control messages. Here’s an example:

class SaveGameScreenFactory : public IScreenFactory
{
public:

SaveGameScreenFactory();

65

66

Chapter 3 H Coding Tidbits and Style That Saved Me

virtual IScreenElements * const BuildScreenElements() const;
virtual ScreenBackground * const BuildScreenBackground() const;
virtual IScreenlLogic * const BuildScreenLogic() const;

}s

The code that builds screens will call the methods of the IScreenFactory interface,
each one returning the different objects that make the screen, including screen ele-
ments like controls, a background, or the logic that runs the screen. As all interface
classes tend to enforce design standards, factories tend to enforce orderly construc-
tion of complicated objects. Factories are great for screens, animations, Al, or any
nontrivial game object.

What’s more, factories can help you construct these mechanisms at the right time.
One of the neatest things about the factory design pattern is a delayed instantiation
feature. You could create factory objects, push them into a queue, and delay calling
the BuildXYZ () methods until you were ready. In the screen example, you might
not have enough memory to instantiate a screen object until the active one was
destroyed. The factory object is tiny, perhaps a few tens of bytes, and can easily
exist in memory until you are ready to fire it.

Factories and interfaces work hand-in-hand. In the previous example, each of the
objects being returned by the factory is an interface, so the calling code is decoupled
from the implementation of these objects. In other words, the system that’s using the
IScreenETements object doesn’t need to know which specific screen element is
being instantiated. All it needs to know is what the interface is. You can freely swap
this with any other object that comforms to the same interface.

Encapsulate Components That Change

Whenever I'm designing a new system, I'm always looking for the parts that are the
most likely to change. I try to isolate those pieces as much as I can so that when they
change, it has little or no effect on the rest of the engine. Your goal is make it easy to
modify and extend functionality so that when a designer comes to you and says “let’s
change this feature so that it does something else instead,” you don’t go insane
rewriting huge chunks of your game.

For example, let’s say I want to build an Al system. I want to create a number of dif-
ferent creatures with different behaviors. I could simply write all of these bahaviors in
a big hard-coded function, or I could encapsulate these different behaviors into objects
that can be reused on different creatures. Each creature can have some set of behaviors
that defines its overall Al. Since you have your behaviors separate from each other,
you can modify each one without worrying about how it will affect the other ones.

Smart Code Design Practices

You can take this concept a step further and separate the code that chooses which
behavior to run next. Not only can you mix and match behaviors, but you can also
mix and match the transitions between those behaviors. Any of these components
can change without affecting any other component in your system. This is exactly
what I did on Drawn to Life for the enemy AL

Another thing that often changes is your rendering system. We've chosen to use
Direct3D in this book because of its accessibility, but that doesn’t mean you can’t
use OpenGL. In a real game engine, you typically have multiple build configurations
for different platforms, each with a different renderer. That’s exactly what we did for
The Sims Medieval. It used DirectX for the PC build and OpenGL for the Mac build.

Learning to spot the things that are likely to change is something that comes with
experience. In general, any major system you build should be as decoupled as possi-
ble from every other major system. Interfaces, factories, and other techniques are the
tools to enable you to do this.

There is an amazing book called Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma et al., which I mentioned previously in this chap-
ter. Many of these design patterns, such as the Observer pattern and the Strategy pat-
tern, are aimed at decoupling different components in software. I highly recommend
that you check this book out. It’'s one of those books that should be on every pro-
grammer’s bookshelf.

Use Streams to Initialize Objects

Any persistent object in your game should implement a method that takes a stream
as a parameter and reads the stream to initialize the object. If the game is loaded
from a file, objects can use the stream as a source of parameters. Here’s an example
to consider:

class AnimationPath
{
public:
AnimationPath();
Initialize (std::vector<AnimationPathPoint> const & srcPath);
Initialize (InputStream & stream);
//0f course, Tots more code follows.

s

This class has a default constructor and two ways to initialize it. The first is through a
classic parameter list, in this case, a list of AnimationPathPoints. The second
initializes the class through a stream object. This is cool because you can initialize

67

68

Chapter 3 H Coding Tidbits and Style That Saved Me

objects from a disk, a memory stream, or even the network. If you want to load game

objects from a disk, as you would in a save game, this is exactly how you do it.

Some programmers try to do stream initialization inside an object’s constructor:
AnimationPath (InputStream & stream);

Here’s why this is a bad idea—a bad stream will cause your constructor to fail, and
you'll end up with a bad object. You can never trust the content of a stream. It could
be coming from a bad disk file or hacked network packets. Ergo, construct objects
with a default constructor you can rely on and create initialization methods for
streams.

Exercise Your Load/Save System

Test your stream initializers by loading and saving your game automatically in
the DEBUG build at regular intervals. It will have the added side effect of
making sure that programmers keep the load/save code pretty fast.

SMART POINTERS AND NAKED POINTERS Practices

All smart pointers wear clothing.

If you declare a pointer to another object, you've just used a naked pointer. Pointers
are used to refer to another object, but they don’t convey enough information. Any-
thing declared on the heap must be referenced by at least one other object, or it can
never be freed, causing a memory leak. It is common for an object on the heap to be
referred to multiple times by other objects in the code. A good example of this is a
game object like a clock. A pointer to the clock will exist in the game object list, the
physics system, the graphics system, and even the sound system.

If you use naked pointers, you must remember which objects implicitly own other
objects. An object that owns other objects controls their existence. Imagine a ship
object that owns everything on the ship. When the ship sinks, everything else is
destroyed along with it. If you use naked pointers to create these relationships, you
have to remember who owns who. Depending on the system, this might be perfectly
reasonable or nearly impossible. If you choose to use a naked pointer, make sure that
you know exactly who can access it and when, or you’ll quickly find yourself going
down with the ship.

Smart pointers, on the other hand, hold extra information along with the address of
the distant object. This information can count references, record permanent or tem-
porary ownership, or perform other useful tasks. In a sense, an object controlled by a
smart pointer “knows” about every reference to itself.

Smart Pointers and Naked Pointers

Why not use smart pointers for everything? There are two major pitfalls to using
smart pointers. First, maintaining those internal reference counts adds a small mem-
ory and CPU overhead. This is rarely noticeable, but if you have thousands of objects
to manage and want to process them each frame, it can really start to add up. The
other problem is that smart pointers tend to take away some of your control over the
memory. For example, you may not have a clear understanding of which systems
could be holding a reference to any particular game object. When you “destroy”
that object by removing the reference, another reference may keep the object alive
longer than you intended. If I had a dollar for every smart pointer bug I fixed over
the years, I'd be a rich man.

So which one do you choose? It depends on the purpose. If you have a pointer to an
object that is not visible outside of the owner, a naked pointer is just fine. An exam-
ple of this is the m_pProcessManager member of BaseGamelLogic. This pointer is
never accessed outside of the class or its children so there’s no risk for another sys-
tem to hold onto it. It can safely be destroyed without affecting any other systems.
Notice that the only access to this pointer is through the BaseGamelogic::
AttachProcess() method. This is a great pattern to follow because it means that
no one outside of the BaseGamelLogic even has any idea that the ProcessManager
class exists. You could create multiple ProcessManager classes or remove it entirely
without having to touch any other code.

By contrast, if you look at the event system, all events are stored as smart pointers.
This is because it’s never clear who might be hanging on to a reference to these
objects. This is by design; the event receiver can hold on to the event without fear
of it being destroyed, or it cannot hold on to it and the event will be happily
destroyed after the event is handled.

Reference Counting

Reference counting stores an integer value that counts how many other objects are
currently referring to the object in question. Reference counting is a common mech-
anism in memory management. DirectX objects implement the COM-based IUn-
known interface, which uses reference counting. Two methods that are central to
this task are AddRef () and Release(). The following code shows how this works:

MySound *sound = new MySound;
sound->AddRef(); // reference count is now 1

After you construct a reference-counted object, you call the AddRef() method to
increase the integer reference counter by one. When the pointer variable goes out of
scope, by normal scoping rules or by the destruction of the container class, you must
call RelTease(). Release() will decrement the reference counter and destroy the

69

70

Chapter 3 H Coding Tidbits and Style That Saved Me

object if the counter drops to zero. A shared object can have multiple references safely
without fear of the object being destroyed, leaving bad pointers all over the place.

Use AddRef () and Release() with Caution

Good reference counting mechanisms automatically delete the object when the
reference count becomes zero. If the API leaves the explicit destruction of the
object to you, it's easy to create memory leaks—all you have to do is forget to
call Re1ease(). You can also cause problems if you forget to call AddRef ()
when you create the object. It's likely that the object will get destroyed
unexpectedly, not having enough reference counts.

Any time you assign a pointer variable to the address of the reference-counted object,
you’ll do the same thing. This includes any calls inside a local loop:

for (int i=0; i<m_howMany; ++i)

{
MySound *s = GoGrabASoundPointer(i);
s->AddRef();

DangerousFunction();

if (s->IsPlaying())
{

DoSomethingElse();
}

s->Release();
}

This kind of code exists all over the place in games. The call to DangerousFunc-
tion() goes deep and performs some game logic that might attempt to destroy the
instance of the MySound object. Don’t forget that in a release build the deallocated
memory retains the same values until it is reused. It’s quite possible that the loop will
work just fine even though the MySound pointer is pointing to unallocated memory.
What’s more likely to occur is a terrible corruption of memory, which can be
extremely difficult to track down.

Reference counting keeps the sound object around until ReTease() is called at the
bottom of the loop. If there was only one reference to the sound before the loop
started, the call to AddRef () will add one to the sound’s reference count, making
two references. DangerousFunction() does something that destroys the sound,
but through a call to Release(). As far as DangerousFunction() is concerned,
the sound is gone forever. It still exists because one more reference to it, through
MySound *s, kept the reference count from dropping to zero inside the loop. The
final call to ReTease() causes the destruction of the sound.

Smart Pointers and Naked Pointers

C++'s shared_ptr

If you think calling AddRef () and Release() all over the place might be a serious
pain in the rear, you're right. It’s really easy to forget an AddRef () or a Release()
call, and your memory leak will be almost impossible to find. It turns out that there
are plenty of C++ templates out there that implement reference counting in a way
that handles the counter manipulation automatically. One of the best examples is
the shared_ptr template class in the standard TR1 C++ library.

Here’s an example of how to use this template:

#Finclude <memory>
using std::trl::shared_ptr;

class IPrintable

{

public:

virtual void VPrint()=0;
s

class CPrintable : public IPrintable
{
char *m_Name;
public:
CPrintable(char *name) { m_Name =name; printf("create %s\n",m_Name); }
virtual ~CPrintable() { printf("delete %s\n",m_Name); }
void VPrint() { printf("print Zs\n",m_Name); }
b

shared_ptr<CPrintable> CreateAnObject(char *name)
{

return shared_ptr<CPrintable>(new CPrintable(name));
}

void ProcessObject(shared_ptr<CPrintable> o)
{
printf("(print froma function) ");
0->VPrint();
}

void TestSharedPointers(void)

{
shared_ptr<CPrintable> ptrl(new CPrintable("1")); // create objectl
shared_ptr<CPrintable> ptr2(new CPrintable("2")); // create object 2

71

72 Chapter 3 H Coding Tidbits and Style That Saved Me

ptrl =ptre; // destroy object 1
ptr2 = CreateAnObject("3"); // used as a return value
ProcessObject(ptrl); // call a function

// BAD USAGE EXAMPLES....

//

CPrintable o1("bad");

//ptrl =&o0l; // Syntax error! It's on the stack...

/1

CPrintable *02 = new CPrintable("bad2");

//ptrl =o02; // Syntax error! Use the next Tine to do this..

ptrl =shared_ptr<CPrintable>(02);
// You can even use shared_ptr on ints!

shared_ptr<int> a(new int);
shared_ptr<int> b(new int);

*a=05;
*h=6;

const int *q=a.get(); // use this for reading in multithreaded code

// this is especially cool - you can also use it in 1ists.

std::1ist< shared_ptr<int> > intlist;

std::1ist< shared_ptr<IPrintable> > printablelist;

for (int i=0; i<100; ++i)

{
intList.push_back(shared_ptr<int>(new int(rand())));
printablelist.push_back(shared_ptr<IPrintable>(new CPrintable("1ist")));

}

// No Teaks!!!! Isn't that cool...
}

The template classes use overloaded assignment operators and copy operators to keep
track of how many references point to the allocated data. As long as the
shared_ptr object is in scope and you behave yourself by avoiding the bad usage
cases, you won’t leak memory, and you won’t have to worry about objects getting
destroyed while you are still referencing them from somewhere else.

This smart pointer even works in multithreaded environments, as long as you follow
a few rules. First, don’t write directly to the data. You can access the data through
const operations such as the .get() method. As you can also see, the template
works fine even if it is inside an STL container such as std::1ist.

Smart Pointers and Naked Pointers

Be Careful Using Threads and Sharing Memory

Don't ignore multithreaded access to shared memory blocks. You might think
that the chances of two threads accessing the shared data are exceedingly low
and convince yourself that you don't need to go to the trouble of adding
multithreaded protection. You'd be wrong every time.

There are a couple of safety tips with smart pointers.

B You can’t have two different objects manage smart pointers for each other.

B When you create a smart pointer, you have to make sure it is created straight
from a raw pointer new operator.

I'll show you examples of each of these abuses. If two objects have smart pointers to
each other, neither one will ever be destroyed. It may take your brain a moment to
get this, since each one has a reference to the other.

class Jelly;
class PeanutButter
{
public:
shared_ptr<delly> m_pJdelly;
~PeanutButter(void) { cout << "PeanutButter destructor\n"; }
s

class Jelly
{
public:
shared_ptr<PeanutButter> m_pPeanutButter;
“Jelly(void) { cout << "Jelly destructor\n"; }
4

void PleaselLeakMyMemory(void)

{
shared_ptr<PeanutButter> pPeanutButter(new PeanutButter);
shared_ptr<delly> pJdelly(new Jelly);

pPeanutButter->m_pJdelly = pJdelly;
pdelly->m_pPeanutButter = pPeanutButter;

// Both objects are leaked here...
}

If you copied this code into the compiler, you would never see the messages printed
out in the destructors. Following the code, you'll find that Je11y has a reference to
PeanutButter and PeanutButter has a reference to Je11y. Since they both point

73

74

Chapter 3 H Coding Tidbits and Style That Saved Me

to each other, neither one can ever have its reference count decremented. Basically,
because they point to each other, it’s almost like two stubborn gentlemen saying,
“No, sir, after you” and “Please, I insist” when trying to go through a single door—
because they point to each other, they will never be destroyed.

The solution to this is usually some kind of “owned” pointer or “weak referenced”
pointer, where one object is deemed the de facto owner and therefore won’t use the
multiply referenced shared_ptr mechanism. The weak_ptr template is used
exactly for this purpose:

class Jdelly;
class PeanutButter
{
public:
shared_ptr<Jelly> m_pdJdelly;
~PeanutButter(void) { cout << "PeanutButter destructor\n"; }
1

class Jelly

{

public:
weak_ptr<PeanutButter> m_pPeanutButter; // this is a weak pointer now!
~Jelly(void) { cout << "Jelly destructor\n"; }

b

void PleaseDontLeakMyMemory(void)

{
shared_ptr<PeanutButter> pPeanutButter(new PeanutButter);
shared_ptr<delly> pdelly(new Jelly);

pPeanutButter->m_pJelly =pJdelly;
pdelly->m_pPeanutButter = pPeanutButter;

// No memory is Teaked!

}

In this version of the code, PeanutButter is the owner, and Je11y has a weak ref-
erence back to PeanutButter. If you execute this code, both objects will be
destroyed, and you will see the destructor messages printed in the console.

The other gotcha is constructing two smart pointers to manage a single object:

int *z =new int;
shared_ptr<int> badl(z);
shared_ptr<int> bad2(z);

Using Memory Correctly

Remember that smart pointers work with a reference count, and each of the smart
pointer objects only has one reference. If either of them goes out of scope, the mem-
ory for the object will be deallocated, and the other smart pointer will point to
garbage.

UsiING MEMORY CORRECTLY

Did you ever hear the joke about the programmer trying to beat the devil in a coding
contest? Part of his solution involved overcoming a memory limitation by storing a
few bytes in a chain of sound waves between the microphone and the speaker. That’s
an interesting idea, and I'll bet there’s someone out there who has already done it.

Memory comes in very different shapes, sizes, and speeds. If you know what you’re
doing, you can write programs that make efficient use of these different memory
blocks. If you believe that it doesn’t matter how you use memory, you're in for a real
shock. This includes assuming that the standard memory manager for your operating
system is efficient; it usually isn’t, and you’ll have to think about writing your own.

Understanding the Different Kinds of Memory

The system RAM is the main warehouse for storage, as long as the system has power.
Video RAM (or VRAM) is usually much smaller and is specifically used for storing
objects that will be used by the video card. Some platforms, such as Xbox and
Xbox360, have a unified memory architecture that makes no distinctions between
RAM and VRAM. Desktop PCs run operating systems like Windows 7 and have vir-
tual memory that mimics much larger memory space by swapping blocks of little-
used RAM to your hard disk. If you're not careful, a simple memcpy () could cause
the hard drive to seek, which to a computer is like waiting for the sun to cool off.

System RAM

Your system RAM is a series of memory sticks that are installed on the motherboard.
Memory is actually stored in nine bits per byte, with the extra bit used to catch mem-
ory parity errors. Depending on the OS, you get to play with a certain addressable
range of memory. The operating system keeps some to itself. Of the parts you get
to play with, it is divided into three parts when your application loads:

B Global memory: This memory never changes size. It is allocated when your
program loads and stores global variables, text strings, and virtual function
tables.

B Stack: This memory grows as your code calls deeper into core code, and it
shrinks as the code returns. The stack is used for parameters in function calls

75

76

Chapter 3 H Coding Tidbits and Style That Saved Me

and local variables. The stack has a fixed size that can be changed with compiler
settings.

B Heap: This memory grows and shrinks with dynamic memory allocation. It is
used for persistent objects and dynamic data structures.

Old-timers used to call global memory the DATA segment, harkening back to the
days when there used to be near memory and far memory. It was called that because
programmers used different pointers to get to it. What a disgusting practice! Every-
thing is much cleaner these days because each pointer is a full 32 or 64 bits. (Don’t
worry, I'm not going to bore you with the “When I went to school I only had 640k of
memory to play with” story.)

Your compiler and linker will attempt to optimize the location of anything you put
into the global memory space based on the type of variable. This includes constant
text strings. Many compilers, including Visual Studio, will attempt to store text
strings only once to save space:

const char *errorl ="Error";
const char *error2 ="Error";

int main()

{
printf ("%Zx\n", (int)errorl);
// How quaint. A printf.
printf ("%Zx\n", (int)error2);
return 0;

}

This code yields interesting results. You'll notice that under Visual C++, the two
pointers point to the same text string in the global address space. Even better, the
text string is one that was already global and stuck in the CRT libraries. It’s as if we
wasted our time typing “Error.” This trick only works for constant text strings, since
the compiler knows they can never change. Everything else gets its own space. If you
want the compiler to consolidate equivalent text strings, they must be constant text
strings.

Don’t make the mistake of counting on some kind of rational order to the global
addresses. You can’t count on anything the compiler or linker will do, especially if
you are considering crossing platforms.

On most operating systems, the stack starts at high addresses and grows toward lower
addresses. C and C++ parameters get pushed onto the stack from right to left—the

Using Memory Correctly 77

last parameter is the first to get pushed onto the stack in a function call. Local para-
meters get pushed onto the stack in their order of appearance:

void testStack(int x, int y)
{

inta=1;

intb=2;

printf("&x=%-10x &y=%-10x\n", &x, &y);
printf("&a=%-10x &b=%-10x\n", &a, &b);
}

This code produces the following output:

&x=12fdf0 &y=12fdf4
&a=12fde0 &b=12fdd4

Stack addresses grow downward to smaller memory addresses. Thus, it should be
clear that the order in which the parameters and local variables were pushed was: vy,
X, a, and b, which turns out to be exactly the order in which you read them—a good
mnemonic. The next time you're debugging some assembler code, you'll be glad to
understand this, especially if you are setting your instruction pointer by hand.

C++ allows a high degree of control over the local scope. Every time you enclose
code in a set of braces, you open a local scope with its own local variables:

int main()
{
inta=0;

{ // start a Tocal scope here..
inta=1;
printf("%d\n", a);

}

printf("%d\n", a);
}

This code compiles and runs just fine. The two integer variables are completely sepa-
rate entities. I've written this example to make a clear point, but I'd never actually
write code like this. Doing something like this is likely to get you shot. The real use-
fulness of this kind of code is for use with C++ objects that perform useful tasks
when they are destroyed—you can control the exact moment a destructor is called
by closing a local scope.

78

Chapter 3 H Coding Tidbits and Style That Saved Me

Video Memory (VRAM)

Video RAM is the memory installed on your video card, unless we’re talking about an
Xbox. Xbox hardware has unified memory architecture (or UMI), so there’s no differ-
ence between system RAM and VRAM. It would be nice if the rest of the world
worked that way. Other hardware, such as the Intel architecture, must send any data
between VRAM and system RAM over a bus. The PS3 has even more different kinds
of memory. There are quite a few bus architectures and speeds out there, and it is wise
to understand how reading and writing data across the bus affects your game’s speed.

As long as the CPU doesn’t have to read from VRAM, everything clicks along pretty
fast. If you need to grab a piece of VRAM for something, the bits have to be sent
across the bus to system RAM. Depending on your architecture, your CPU and
GPU must argue for a moment about timing, stream the bits, and go their separate
ways. While this painful process is occurring, your game has come to a complete halt.

This problem was pretty horrific back in the days of fixed function pipelines when
anything not supported by the video card had to be done with the CPU, such as
the first attempts at motion blur. With programmable pipelines, you can create shad-
ers that can run directly on the bits stored in VRAM, making this kind of graphical
effect extremely efficient.

The hard disk can’t write straight to VRAM, so every time a new texture is needed,
you'll need to stop the presses, so to speak. The smart approach is to limit any com-
munication needed between the CPU and the video card. If you are going to send
anything to it, it is best to send it in batches.

If you've been paying attention, you'll realize that the GPU in your video card is sim-
ply painting the screen using the components in VRAM. If it ever has to stop and ask
system RAM for something, your game won’t run as fast as it could.

Optimizing Memory Access

Every access to system RAM uses a CPU cache. If the desired memory location is
already in the cache, the contents of the memory location are presented to the CPU
extremely quickly. If, on the other hand, the memory is not in the cache, a new block

of system RAM must be fetched into the cache. This takes a lot longer than you'd
think.

A good test bed for this problem uses multidimensional arrays. C++ defines its arrays
in row major order. This ordering puts the members of the right-most index next to
each other in memory.

TestDatal[0J[0][0] and TestData[OJ[0I[1] are stored in adjacent memory
locations.

Using Memory Correctly

Row Order or Column Order?

Not every language defines arrays in row order. Some versions of PASCAL
define arrays in column order. Don't make assumptions unless you like
writing slow code.

If you access an array in the wrong order, it will create a worst-case CPU cache
scenario. Here’s an example of two functions that access the same array and do the
same task. One will run much faster than the other:

const int g_n=500;
float TestDatalg_nllg_nllg_nl;

inline void column_ordered()

{

for (int k=0; k<g_n; k++) /1K
for (int j=0; j<g_n; j++) /14d
for (int i=0; i<g_n; i++) /11

TestDatalil[jI[k]=0.0f;
}

inline void row_ordered()

{

for (int i=0; i<g_n; i++) /1
for (int j=0; j<g_n; j++) /14
for (int k=0; k<g_n; k++) /1K

TestDatalil[jI[k]=0.0f;
}

The timed output of running both functions on my test machine showed that acces-
sing the array in row order was over 10 times faster:

Column Ordered: 3531 ms
Row Ordered: 297 ms
Delta: 3234 ms

Any code that accesses any largish data structure can benefit from this technique. If
you have a multistep process that affects a large data set, try to arrange your code to
perform as much work as possible in smaller memory blocks. You'll optimize the use
of the L2 cache and make a much faster piece of code. While you surely won’t have
any piece of runtime game code do something this crazy, you might very well have a
game editor or production tool that does.

79

80

Chapter 3 H Coding Tidbits and Style That Saved Me

Memory Alignment

The CPU reads and writes memory-aligned data much faster than other data. Any
N-byte data type is memory aligned if the starting address is evenly divisible by N.
For example, a 32-bit integer is memory aligned on a 32-bit architecture if the start-
ing address is 0x04000000. The same 32-bit integer is unaligned if the starting
address is 0x04000002, since the memory address is not evenly divisible by 4 bytes.

You can perform a little experiment in memory alignment and how it affects access
time by using example code like this:

ffpragma pack(push, 1)
struct ReallySTowStruct
{
charc: 6;
__int64 d : 64;
intb: 32;
chara: 8;
s

struct STowStruct
{

char c;

__int64 d;

int b;

char a;
s

struct FastStruct
{

__int64 d;

int b;

char a;

char c;

char unused[2];

s
fipragma pack(pop)

I wrote a piece of code to perform some operations on the member variables in each
structure. The difference in times is as follows:

Really Slow: 609 ms

Slow: 422 ms
Fast: 406 ms

Using Memory Correctly

Your penalty for using the STowStruct over FastStruct is about 5 percent on my test
machine. The penalty for using Real1ySTowStruct is code that runs 1.5 times as slowly.

The first structure isn’t even aligned properly on bit boundaries, hence the name
ReallySlowStruct. The definition of the 6-bit char variable throws the entire
structure out of alignment. The second structure, STowStruct, is also out of align-
ment, but at least the byte boundaries are aligned. The last structure, FastStruct, is
completely aligned for each member. The last member, unused, ensures that the struc-
ture fills out to an 8-byte boundary in case someone declares an array of FastStruct.

Notice the #fpragma pack(push, 1) at the top of the source example? It’s accompa-
nied by a #fpragma pack(pop) at the bottom. Without them, the compiler, depend-
ing on your project settings, will choose to spread out the member variables and
place each one on an optimal byte boundary. When the member variables are spread
out like that, the CPU can access each member quickly, but all that unused space can
add up. If the compiler were left to optimize STowStruct by adding unused bytes,
each structure would be 24 bytes instead of just 14. Seven extra bytes are padded after
the first char variable, and the remaining bytes are added at the end. This ensures
that the entire structure always starts on an 8-byte boundary. That’s about 40 percent
of wasted space, all due to a careless ordering of member variables.

Don'’t let the compiler waste precious memory space. Put some of your brain cells to
work and align your own member variables. You don’t get many opportunities to
save memory and optimize CPU at the same time.

Virtual Memory

Virtual memory increases the addressable memory space by caching unused memory
blocks to the hard disk. The scheme depends on the fact that even though you might
have a 500MB data structure, you aren’t going to be playing with the whole thing at
the same time. The unused bits are saved off to your hard disk until you need them
again. You should be cheering and wincing at the same time. Cheering because every
programmer likes having a big memory playground, and wincing because anything
involving the hard disk wastes a lot of time.

Cache Misses Can Cost You Dearly

Any time a cache is used inefficiently, you can degrade the overall performance
of your game by many orders of magnitude. This is commonly called
“thrashing the cache,” and it is your worst nightmare. If your game is
thrashing cache, you might be able to solve the problem by reordering some
code, but most likely you will need to reduce the size of the data.

81

82

Chapter 3 H Coding Tidbits and Style That Saved Me

Try not to rely on virtual memory systems. Game consoles typically don’t have
any kind of virtual memory, so you're stuck with the amount of memory the sys-
tem gives you. If you allocate one byte more, the system crashes. This can be espe-
cially deadly if you're allocating and deallocating a lot during runtime because it
will be nearly impossible to determine your peak memory usage for any given
situation.

Memory Insurance

When | worked at Planet Moon, we made an educational game for the Gameboy DS called Brain Quest.
The DS only has 4MB of RAM, and toward the end of the project, we were running right up against that
limit. When the final assets came in and were added to the package, we were just over the 4MB limit.
One of the engineers grinned and walked over to his computer. He opened up main.cpp and commented
out the following line:

unsigned char insurance[10240];

Writing Your Own Memory Manager

Most games extend the provided memory management system. The biggest reasons to
do this are performance, efficiency, and improved debugging. Default memory man-
agers in the C runtime are designed to run fairly well in a wide range of memory allo-
cation scenarios. They tend to break down under the load of computer games, where
allocations and deallocations of relatively tiny memory blocks can be fast and furious.

A standard memory manager, like the one in the C runtime, must support multi-
threading. Each time the memory manager’s data structures are accessed or changed,
they must be protected with critical sections, allowing only one thread to allocate or
deallocate memory at a time. All this extra code is time consuming, especially if you
use malloc() and free() very frequently. Most games are multithreaded but
don’t necessarily need a multithreaded memory manager for every part of the
game. A single-threaded memory manager that you write yourself might be a good
solution.

Simple memory managers can use a doubly linked list as the basis for keeping track
of allocated and free memory blocks. The C runtime uses a more complicated system
to reduce the algorithmic complexity of searching through the allocated and free
blocks that could be as small as a single byte. Your memory blocks might be either
more regularly shaped, fewer in number, or both. This creates an opportunity to
design a simpler, more efficient system.

Default memory managers must assume that deallocations happen approximately
as often as allocations, and they might happen in any order and at any time.

Using Memory Correctly

Their data structures have to keep track of a large number of blocks of available
and used memory. Any time a piece of memory changes state from used to avail-
able, the data structures must be traversed quickly. When blocks become available
again, the memory manager must detect adjacent available blocks and merge them
to make a larger block. Finding free memory of an appropriate size to minimize
wasted space can be extremely tricky. Since default memory managers solve these
problems to a large extent, their performance isn’t as high as another memory
manager that can make more assumptions about how and when memory alloca-
tions occur.

If your game can allocate and deallocate most of its dynamic memory space at once,
you can write a memory manager based on a data structure no more complicated
than a singly linked list. You'd never use something this simple in a more general
case, of course, because a singly linked list has O(n) algorithmic complexity. That
would cripple any memory management system used in the general case.

A good reason to extend a memory manager is to add some debugging features. Two
features that are common include adding additional bytes before and after the alloca-
tion to track memory corruption or to track memory leaks. The C runtime adds only
one byte before and after an allocated block, which might be fine to catch those pesky
x+1 and x-1 errors but doesn’t help for much else. If the memory corruption seems
pretty random, and most of them sure seem that way, you can increase your odds of
catching the culprit by writing a custom manager that adds more bytes to the begin-
ning and ending of each block. In practice, the extra space is set to a small number,
even one byte, in the release build.

Different Build Options Will Change Runtime Behavior

Anything you do differently from the debug and release builds can change the
behavior of bugs from one build target to another. Murphy's Law dictates that
the bug will only appear in the build target that is hardest, or even impossible,
to debug.

Another common extension to memory managers is leak detection. It is a common
practice to redefine the new operator to add __FILE__ and __ LINE__ information
to each allocated memory block in debug mode. When the memory manager is shut
down, all the unfreed blocks are printed out in the output window in the debugger.

This should give you a good place to start when you need to track down a memory
leak.

83

84 Chapter 3 H Coding Tidbits and Style That Saved Me

If you decide to write your own memory manager, keep the following points in mind:

B Data structures: Choose the data structure that matches your memory alloca-
tion scenario. If you traverse a large number of free and available blocks very
frequently, choose a hash table or tree-based structure. If you hardly ever tra-
verse it to find free blocks, you could get away with a list. Store the data struc-
ture separately from the memory pool; any corruption will keep your memory
manager’s data structure intact.

B Single/multithreaded access: Don’t forget to add appropriate code to protect
your memory manager from multithreaded access if you need it. Eliminate the
protections if you are sure that access to the memory manager will only happen
from a single thread, and you’ll gain some performance.

B Debug and testing: Allocate a little additional memory before and after the
block to detect memory corruption. Add caller information to the debug mem-
ory blocks; at a minimum, you should use __FILE__ and _ LINE__ to track
where the allocation occurred.

One of the best reasons to extend the C runtime memory manager is to write a better
system to manage small memory blocks. The memory managers supplied in the C
runtime or MFC library are not meant for tiny allocations. You can prove it to your-
self by allocating two integers and subtracting their memory addresses as shown here:
int *a = new int;
int *b = new int;

int deltal = ((int)b - (int)a) - sizeof(int);

The wasted space for the C runtime library was 28 bytes for a release build and 60 bytes
for the debug build under Visual Studio. Even with the release build, an integer takes
eight times as much memory space as it would if it weren’t dynamically allocated.

Most games overload the new operator to allocate small blocks of memory from a
reserved pool set aside for smaller allocations. Memory allocations that are larger
than a set number of bytes can still use the C runtime. I recommend that you start
with 128 bytes as the largest block your small allocator will handle and tweak the size
until you are happy with the performance. I'll show you a simple memory pool class
later in this chapter in the “Memory Pools” section.

GRrRAB BAG oF USEFUL STUFF

Every programmer I know has a collection of gems that they use in nearly every
project. As you grow in your programming abilities, you'll find yourself doing the
same thing. I want to share a few of the ones I've found or developed over the

Grab Bag of Useful Stuff

years to hopefully give you a head start on making your own. First, I'll show you a
cool random number generator, and then I'll show you a neat algorithm to traverse
any set in random order without visiting the same member twice. Finally we’ll end
with a memory pool class I wrote a while back.

An Excellent Random Number Generator

There are as many good algorithms for generating random numbers as there are
pages in this book. Most programmers will soon discover that the ANSI rand()
function is completely inadequate because it can only generate a single stream of ran-
dom numbers. Most games need multiple discrete streams of random numbers.

Unless your game comes with a little piece of hardware that uses the radioactive
decay of cesium to generate random numbers, your random number generator is
only pseudo random. A pseudo-random number sequence can certainly appear ran-
dom, achieving a relatively flat distribution curve over the generation of billions of
numbers mapped to a small domain, like the set of numbers between 1 and 100.
Given the same starting assumption, commonly called a seed, the sequence will be
exactly the same. A truly random sequence could never repeat like that.

This might seem bad because you might feel that a hacker could manipulate the seed
to affect the outcome of the game. In practice, all you have to do is regenerate the seed
every now and then using some random element that would be difficult or impossible
to duplicate. In truth, a completely predictable random number generator is some-
thing you will give your left leg for when writing test tools or a game replay system.

MIKE’S
Tales

from the

Even Old Code Can Be Useful

Every Ultima from Ultima | to Ultima VIIl used the same random number
generator, originally written in 6502 assembler. In 1997, this generator was
the oldest piece of continuously used code at Origin Systems. Finally, this
RNG showed its age and had to be replaced. Kudos to Richard Garriott (aka
Lord British) for making the longest-lived piece of code Origin ever used.

Pixel Mines
Here’s a cool little class to keep track of your random numbers. You'll want to make
sure you save this code and stuff it into your own toolbox. The RNG core is called a

Mersenne Twister pseudorandom number generator, and it was originally developed
by Takuji Nishimura and Makoto Matsumoto:

class GCCRandom
{

85

86

Chapter 3 H Coding Tidbits and Style That Saved Me

private:
// DATA
unsigned int rseed;
unsigned int rseed_sp;

unsigned Tong mt[CMATH_N]; /* the array for the state vector */
int mti; /* mti==N+1 means mt[N] is not initialized */

// FUNCTIONS

public:
GCCRandom(void);
unsigned int Random(unsigned int n);
float Random();
void SetRandomSeed(unsigned int n);
unsigned int GetRandomSeed(void);
void Randomize(void);

}s

The original code has been modified to include a few useful bits, one of which was to
allow this class to save and reload its random number seed, which can be used to
replay random number sequences by simply storing the seed. Here’s an example of
how you can use the class:

GCCRandom r;
r.Randomize();
unsigned int num=r.Random(100); // returns a number from 0-99, inclusive

You should use a few instantiations of this class in your game, each one generating
random numbers for a different part of your game. Here’s why: Let’s say you want to
generate some random taunts from AI characters. If you use a different random
number sequence from the sequence that generates the contents of treasure chests,
you can be sure that if the player turns off character audio, the same RNG sequence
will result for the treasure chests, which nicely compartmentalizes your game. In
other words, your game becomes predictable and testable.

Your Random Number Generator Can Break Automation

| was working on an automation system for some Microsoft games, and the MIKE’S
thing would just not work right. The goal of the system was to be able to 2 L Tales
record game sessions and play them back. The system was great for testers from the
and programmers alike. It's hard, and boring, to play a few million hands of
blackjack. Our programming team realized that since the same RNG was
being called for every system of the game, small aberrations would occur
as calls to the RNG went out of sync. This was especially true for random
character audio, since the timing of character audio was completely & s

Pixel Mines

Grab Bag of Useful Stuff

dependent on another thread, which was impossible to synchronize. When we used one CRandom class
for each subsystem of the game, the problem disappeared.

Pseudo-Random Traversal of a Set

Have you ever wondered how the “random” button on your CD player works? It will
play every song on your CD randomly without playing the same song twice. That’s a
really useful solution for making sure players in your games see the widest variety of
features like objects, effects, or characters before they have the chance of seeing the
same ones over again.

The following code uses a mathematical feature of prime numbers and quadratic
equations. The algorithm requires a prime number larger than the ordinal value of
the set you want to traverse. If your set had 10 members, your prime number
would be 11. Of course, the algorithm doesn’t generate prime numbers; instead, it
just keeps a select set of prime numbers around in a lookup table. If you need bigger
primes, there’s a convenient website for you to check out.

Here’s how it works. A skip value is calculated by choosing three random values
greater than zero. These values become the coefficients of the quadratic, and the
domain value (x) is set to the ordinal value of the set:

Skip = RandomA * (members * members) + (RandomB * members) + RandomC

Armed with this skip value, you can use this piece of code to traverse the entire set
exactly once, in a pseudo-random order:

nextMember += skip;
nextMember %= prime;

The value of skip is so much larger than the number of members of your set that the
chosen value seems to skip around at random. Of course, this code is inside a while
loop to catch the case where the value chosen is larger than your set but still smaller
than the prime number. Here’s the class definition:

class PrimeSearch
{
static int prime_array[];

int skip;

int currentPosition;
int maxElements;

int *currentPrime;
int searches;

87

88

Chapter 3 H Coding Tidbits and Style That Saved Me

public:
PrimeSearch(int elements);
int GetNext(bool restart=false);
bool Done() { return (searches==*currentPrime); }
void Restart() { currentPosition=0; searches=0; }

s

I'll show you a trivial example to make a point.

void FadeToBlack(Screen *screen)

{
int w=screen.GetWidth();

int h = screen.GetHeight();
int pixels=w* h;
PrimeSearch search(pixels);
int p;
while((p=search.GetNext())!=-1)
{
intx=p%w;
inty=h/p;
screen.SetPixel(x, y, BLACK);

}
}

The example sets random pixels to black until the entire screen is erased. I should
warn you now that this code is completely stupid, for two reasons. First, you
wouldn’t set one pixel at a time. Second, you would likely use a pixel shader to do
this. I told you the example was trivial: use PrimeSearch for other cool things like
spawning creatures, weapons, and other random stuft.

Memory Pools

I mentioned memory pools earlier in this chapter when I covered different types of
memory management. They are incredibly useful for frequent, small allocations and
deallocations because they are lightning fast. The idea is that you allocate a large
block of memory up front, which is then divided into chunks of even sizes. Each
chunk has a small header that points to the next element. This creates a singly linked
list of memory chunks, as shown in Figure 3.1.

When an allocation request comes in, it simply removes the chunk at the front of the
list and returns it, making the next chunk the making the next chunk the new front
(see Figure 3.2).

Grab Bag of Useful Stuff

|
i
A 4

i
]
1
front ——3>

\iink \Iink—/ \Iink"/ \

hink

Figure 3.1
Memory pool block.

front
A
'
A
| .

\,mk_/ \Iink’/ \Iink

Memory pool chunk allocated.

When a chunk of memory is destroyed, it simply returns it to the list. It may seem
like an unnecessarily complex system to use this linked list, but it’s not. You can’t
guarantee the order in which things will be freed, so having this linked list structure
allows you to find the next free chunk in constant time. It also allows for dealloca-
tion in constant time since the chunks are returned to the front of the list. After a
while, your nice clean array will start to look a bit messy with chunks being
requested and freed all the time. Figure 3.3 shows what your block might end up
looking like.

front

|

link

Figure 3.3
Memory pool usage.

89

90

Chapter 3 H Coding Tidbits and Style That Saved Me

This is perfectly fine and has absolutely no effect on the performance of the system.
Now that you have an understanding of what a memory pool is, let’s take a look at
the implementation of the MemoryPoo1 class:

class MemoryPool

{
unsigned char** m_ppRawMemoryArray; // an array of memory blocks, each

// split up into chunks
unsigned char* m_pHead; // the front of the memory chunk Tinked 1ist
unsigned int m_chunkSize, m_numChunks; // the size of each chunk and
// number of chunks per array

unsigned int m_memArraySize; // the number elements in the memory array
bool m_toATlowResize; // true if we resize the memory pool when it fills

pubTic:
// construction
MemoryPool(void);
~MemoryPool(void);
bool Init(unsigned int chunkSize, unsigned int numChunks);
void Destroy(void);

// allocation functions

void* Alloc(void);

void Free(void* pMem);

unsigned int GetChunkSize(void) const { return m_chunkSize; }

// settings
void SetAllowResize(bool toAllowResize)
{
m_toAllowResize = toAllowResize;
}

private:
// resets internal vars
void Reset(void);

// internal memory allocation helpers
bool GrowMemoryArray(void);
unsigned char* AlTocateNewMemoryBlock(void);

// internal Tinked Tist management
unsigned char* GetNext(unsigned char* pBlock);
void SetNext(unsigned char* pBlockToChange, unsigned char* pNewNext);

// don't allow copy constructor
MemoryPool(const MemoryPool& memPool) {}

To use this class, instantiate it and call the Init() function. The chunkSize is the
size of each atomic memory chunk, and numChunks is the number of chunks that are
created for each set of chunks. Collectively, this set of chunks is called a block. If you
go over your limit of memory chunks, the memory pool will allocate another block for
you. This isn’t catastrophic, but you don’t want to make a habit of going over your
limit because it’s very time consuming to set up a new memory block. If Init()
returns true, your memory pool is ready to go! You can call ATToc() and Free()

to allocate and free a chunk, respectively.

The Init() function just sets some member variables and calls the GrowMemor -
yArray () function to allocate the new block of memory. Let’s take a look inside
GrowMemoryArray () to see how the magic happens:

bool MemoryPool::GrowMemoryArray(void)

{

// allocate a new array

size_t allocationSize = sizeof(unsigned char*) * (m_memArraySize +1);
unsigned char** ppNewMemArray = (unsigned char**)malloc(allocationSize);

// make sure the allocation succeeded
if (!ppNewMemArray)
return false;

// copy any existing memory pointers over
for (unsigned int i =0; i < m_memArraySize; ++i)
{
ppNewMemArray[i] = m_ppRawMemoryArray[i];
}

// AlTocate a new block of memory. Indexing m_memArraySize here is
// safe because we haven't incremented it yet to reflect the new size
ppNewMemArray[m_memArraySize] = AlTocateNewMemoryBlock();

// attach the block to the end of the current memory 1ist

if (m_pHead)
{
unsigned char* pCurr = m_pHead;
unsigned char* pNext = GetNext(m_pHead);
while (pNext)
{
pCurr = pNext;
pNext = GetNext (pNext);
1

SetNext(pCurr, ppNewMemArray[m_memArraySizel);

Grab Bag of Useful Stuff

91

92 Chapter 3 H Coding Tidbits and Style That Saved Me

else
{

m_pHead = ppNewMemArray[m_memArraySizel;
}

// destroy the o1d memory array
if (m_ppRawMemoryArray)
free(m_ppRawMemoryArray);

// assign the new memory array and increment the size count
m_ppRawMemoryArray = ppNewMemArray ;
++m_memArraySize;

return true;
}

unsigned char* MemoryPool::AllocateNewMemoryBlock(void)
{
// calculate the size of each block and the size of the
// actual memory allocation
size_t blockSize =m_chunkSize + CHUNK_HEADER_SIZE; // chunk + 1inked 1ist
// overhead
size_t trueSize = blockSize * m_numChunks;

// allocate the memory
unsigned char* pNewMem = (unsigned char*)malloc(trueSize);
if (!pNewMem)

return NULL;

// turn the memory into a 1inked Tist of chunks
unsigned char* pEnd = pNewMem + trueSize;
unsigned char* pCurr = pNewMem;
while (pCurr < pEnd)
{
// calculate the next pointer position
unsigned char* pNext = pCurr + blockSize;

// set the next pointer
unsigned char** ppChunkHeader = (unsigned char**)pCurr;
ppChunkHeader[0] = (pNext < pEnd ? pNext : NULL);

// move to the next block
pCurr +=blockSize;
}

return pNewMem;
}

Grab Bag of Useful Stuff

This function starts by allocating a new array of pointers. This array will hold all of
the blocks of memory chunks that are allocated. It starts with only one element and
adds more if the memory pool needs to grow. After that, it copies any existing blocks
to the new array. Now that the array is in order, a new block of memory is allocated
by calling A1TocateNewMemoryBlock() and assigned to the end of the array.
Inside A11ocateNewMemoryBlock(), a new block of memory is allocated. Notice
that the true size of each chunk is the size requested, plus the CHUNK_HEADER_SIZE,
which is defined as follows:

const static size_t CHUNK_HEADER_SIZE = (sizeof(unsigned char*));

This is the header data that will point to the next element. After the block has been
allocated, the function walks through each chunk in the block and points the header
to the next block. This sets up the singly linked list. After that, you're ready to go,
and the new block is returned to GrowMemoryArray ().

Now that the GrowMemoryArray () function has the newly constructed block, it
checks to see if m_pHead is valid. This is the pointer to the front of the list. If it’s
valid, it must walk through the list of chunks to find the end and append it there. If
not, the new block can be attached right there. Currently, GrowMemoryArray () is
only called when you’re initializing the memory pool or when you've run out of
chunks. In both of these cases, m_pHead will be NULL. The extra clause is there in
case you want the ability to grow the memory at any time.

That’s pretty much it. Once GrowMemoryArray () returns, you'll have a brand new
block of memory ready to be dished out. Now that all the heavy lifting is done, the
Alloc() and Free() functions become very simple:

void* MemoryPool::Alloc(void)
{
// If we're out of memory chunks, grow the pool. This is very expensive.
if (!m_pHead)
{
// if wedon't allow resizes, return NULL
if (!m_toAlTowResize)
return NULL;

// attempt to grow the pool
if (IGrowMemoryArray())
return NULL; // couldn't allocate anymore memory

}

// grab the first chunk from the Tist and move to the next chunks
unsigned char* pRet = m_pHead;

93

94

Chapter 3 H Coding Tidbits and Style That Saved Me

m_pHead = GetNext(m_pHead);
return (pRet + CHUNK_HEADER_SIZE); // make sure we return a pointer to
// the data section only

void MemoryPool::Free(void* pMem)
{
// Calling Free() on a NULL pointer is perfectly valid C++ so
// we have to check for it.
if (pMem !=NULL)
{
// The pointer we get back is just to the data section of
// the chunk. This gets us the full chunk.
unsigned char* pBlock =
((unsigned char*)pMem) - CHUNK_HEADER_SIZE;

// push the chunk to the front of the Tist
SetNext(pBlock, m_pHead);
m_pHead = pBlock;

}

The first thing the A11oc() function checks is whether or not the block has been
fully allocated. If it has, it has to allocate a new block. You can disallow this by set-
ting m_toAllowResize to false. This is handy for games that have a limited
memory budget, like console or mobile games. After that, it returns the front of the
list:

return (pRet + CHUNK_HEADER_SIZE);

Notice how it adds the CHUNK_HEADER_SIZE? This is necessary because you only
want to return the actual data section and not include the header section.

The Free() function is pretty much the reverse. If the chunk is valid, the function
subtracts CHUNK_HEADER_SIZE to get the full chunk, including the header. Then it
sets the header to point to the current front of the list and assigns the m_pHead
pointer to itself. This pushes the freed chunk to the front of the list.

In practice, the best way to use this memory pool is to figure out which objects you’ll
be constructing and destroying extremely often and make them use a memory pool.
The best way to do this is to override the new and delete operators for that class so
that they call into the memory pool for allocation and deallocation. This keeps it nice
and contained within the class so that the calling code doesn’t have to know anything
about whether the class is pooled or not—it just calls new and delete as normal.

Further Reading

There are a number of ways you can add to this memory system. For example, you
might want to create a simple distributor that creates a number of memory pools of
different sizes and routes memory allocation requests through it. It can return mem-
ory chunks for anything smaller than the size of the largest pool and default to the
global new operator for everything larger. This is exactly what we did on BrainQuest.

Another improvement would be to create a series of macros that would generate the
necessary code required to have a class use a memory pool. That way, you could have
a class use a memory pool with only a couple of lines of code. This is exactly what I
did for the sample code. If you look in MemoryMacros.h, you'll see the macro defi-
nitions. An example of their use is in Pathing.h where I pool all of the pathing
nodes. I'll talk more about this in Chapter 18, “An Introduction to Game Al”

DEVELOPING THE STYLE THAT'S RIGHT FOR YOU

Throughout this chapter, I've tried to point out a number of coding techniques and
pitfalls that I've learned over the years. I've tried to focus on the ones that seem to
cause the most problems and offer the best results. Of course, keep in mind that
there is no single best approach or one magic solution for writing a game.

I wish I had more pages because there are tons of gems out there. Most of them
you'll beg or borrow from your colleagues. Some of them you’ll create for yourself
after you solve a challenging problem.

However you find them, don’t forget to share.

FURTHER READING
C++ Templates: The Complete Guide, Nicolai M. Josuttis and David Vandevoorde

Effective C++, Scott Meyers

More Effective C++, Scott Meyers

Effective STL, Scott Meyers

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma et al.

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, William
Brown et al.

Game Programming Gems series, various authors
Thinking in C++ Vol. 1, Bruce Eckel
Thinking in C++ Vol. 2, Bruce Eckel and Chuck Allison

95

This page intentionally left blank

CHAPTER 4

by Mike McShaffry

BuiLDING YOUR GAME

Do you ever freeze up just before starting a new project? I do, and I'm not afraid to
admit it. I get hung up thinking about the perfect directory structure, where the art
and sound data should be stored, how the build process should work, and mostly
how I will keep my new game from becoming a horrible mess. By the end of a proj-
ect, it usually turns out to be a mess anyway! So I'm always thankful I plan out a
directory structure, employ good version control tools, and incorporate automation
scripts that all keep entropy just low enough for a human like me to be able to
keep track of what I'm doing.

In this chapter, 'm going to tell you everything you need to know to get your game
projects organized from the start and how to configure project files and use version
control tools effectively. This is an area where many game developers try to cut cor-
ners, so my advice is to invest a little time and ensure that your projects go together
smoothly and stay that way. Hopefully, they’ll stay organized right to the day you
ship.

As you read through this chapter, you might feel that you are getting an education in
software engineering. Try not to feel overwhelmed. These techniques are very critical
to the process of successfully developing games, and they are used by real game
developers on teams that are big, small, and even single developers.

97

98

Chapter 4 M Building Your Game

A LITTLE MOTIVATION

Games are much more than source code. A typical game includes raw and optimized
art and sound data, map levels, event scripts, test tools, and more. Don’t forget the
project documentation—both the docs that ship with your project, such as the user
guide, and the internal documents, such as the technical design document (TDD),
general design document (GDD), and test plans.

There are two essential problems that all these files create. First, the sheer number
of game files for art, sound, music, and other assets need to have some rational
organization—there can be hundreds of thousands of these files. Games like Age of
Empires Online and Battlefield 3 easily have many hundreds of thousands of asset
files in production. Some online games like Star Wars: The Old Republic may have
breached one million asset files. With this many files, it can be really easy to lose
track of one, or a few hundred. The second problem is the difficulty of ensuring
that sensitive debug builds and other internal files are kept separate from the stuff
that will be shipped to consumers. The last thing you need is to release your debug
build, with all its symbols, to the public at large. The best setup lets you segregate
your release files from everything else so you can burn a single directory tree to a
DVD without worrying about culling a weird list of files. Over the last few years,
I've settled on a project organization that solves these two problems.

The process of building a project should be as automatic as possible. You should be
able to automatically build your game every night so that you can check your latest
work. A game that can’t build every day is in big trouble. If you want an easy way to
get a project cancelled, just make it impossible to fulfill a build request at a moment’s
notice.

The directory structure, project settings, and development scripts you use should
make building, publishing, and rebuilding any previously published build a snap. If
your source code repository supports branching, like SVN or Perforce do, you'll be
ahead of the game because you can support multiple lines of development simulta-
neously. For those of you who haven’t used source code repositories, they are
server-based archives files that can be checked out to developers like a person might
check out a book from a library. When the developer is finished with that file, he
checks the file back into the server, and it makes the most recent version available
to everyone. Unlike a library, source code repositories are good at allowing the same
file to be modified by multiple developers and allowing all their changes to merge
together when they are done. Branches are “copies” of groups of these files, typically
meant for developers to sequester them as a group for a specific purpose, such as
walling them off from rapid changes or doing research without affecting other

Creating a Project

programmers. Branches can even be merged together, such as when mass changes in
one branch need to be brought to another—this might be done after installing a new
physics system or renderer. There’s a whole section about this later in this chapter
called “Source Code Repositories and Version Control.”

Everyone does things differently, but the project organization, build scripts, and build
process you'll learn in this chapter are hard to beat. I figure that if theyre good
enough for Microsoft, and they got our projects out the door on time, I'll keep
them.

CREATING A PROJECT

This might sound a little hokey, but every project I work on has its own code word. I
picked this up from Microsoft, and I love it. You should let your project team choose
the code word, but try to make sure that the name chosen is somewhat cryptic. It’s
actually really convenient if you end up at the bar with a bunch of software develo-
pers from other companies. You can talk all day about finishing a build for “Slick-
rock” or that “Rainman” needs another programmer. Cloak and dagger aside,
there’s a real utilitarian reason to use short code words for projects.

You can use this code word for your top-level project directory and the Visual Studio
solution file (SLN file) that builds your game and tools. It is an easy step from there
to create a standard build script that can find your key project files, build the game,
and even test it. If you work in a studio with multiple projects, a master build server
can easily build every project in development every night and take very little mainte-
nance to add or remove projects.

Beyond that, a code word for a project has one other use. If you end up making mul-
tiple versions of the same product, you can use different code words to refer to them
instead of version numbers. You are ready to start your project, so choose a code
word and create your top-level directory. May whatever gods you believe in have
mercy on your soul:

mkdir <codeword>

Build Configurations

Every project should have two build targets at a minimum: debug and release. The
release build will enable optimizations critical for a product the customer will actually
use. Many projects also have a profile build, which usually disables enough optimiza-
tions to allow for debugging but disables code inside #1ifdef DEBUG constructs to
allow it to actually run in real time. It’s a good idea to have all three targets because

99

100

Chapter 4 M Building Your Game

they serve different purposes. Mostly, programmers will run and develop with a pro-
file build target, and they will use the debug target only when something really nasty
is in their bug list.

Don’t Go Too Long Between Builds

Try to keep all your build targets alive and working every day. If you ignore any
build configuration, especially the release build, it could take a very long time
to figure out why it's not working properly. Build it nightly, if you can, and
make sure any problems get handled the very next day.

Practices
Create a Bullet-Proof Directory Structure

Over the years of developing complex projects, I've experimented with different direc-
tory structures trying to find the ideal structure. I've learned that it is important to have
a good working directory structure from the start. It will help you work your way
through all the stages of developing a project—from writing your first lines of source
code to testing and debugging your project. You also need to keep in mind that you’ll
likely need to share aspects of your project with others during the development pro-
cess, even if you are the only one writing all the source code. For example, you might
need to hire an independent testing team to work over your game. If you organize your
project well, you'll be able to share files when necessary with a minimum of hassle.

Keeping all of this in mind, here is my recommended directory structure where you
should store each project you develop, including your game engine:

B Docs
Assets

Source

|

|

B Temp
m Lib

B Game

The Docs directory is a reference for the development team. It should have an orga-
nized hierarchy to store both design documents and technical specifications. I always
put a copy of the contract exhibits and milestone acceptance criteria in it for my
team, since these documents specify our obligations to the publisher or investor.
(You don’t want to ever forget who is paying the bills!) While I'm developing a proj-
ect, it’s not unusual to find detailed character scripts, initial user interface designs,
and other works in progress in the Docs directory.

Creating a Project

The Assets directory is going to store all your art, animation, and sound assets in
their raw, naked form. This directory is likely going to get huge, so make sure the
source control system is configured to filter it out for people who don’t care about
it. I say “raw” and “naked” not just because I enjoy putting it in print—these assets
are those not used by the game directly, but those that are used by artists, designers,
or sound engineers while they are working on them. Think of it as the same kind of
directory that programmers use for their code. When the assets get imported or
packed into game files that are used by the game directly, they’ll be inside the Game
directory where all the distributable stuff lives. One more thing—the Assets directory
will be a huge, complicated hierarchy that will most likely be created to appease the
whims of artists or sound engineers, so don’t expect to have much control over it.

The source code lives in the Source directory. It should be organized by the program-
mers in whatever manner they see fit. The project’s solution file or makefile should also
reside in the Source directory and be named according to the code word for the project.
The rest of the source code should be organized into other directories below Source.

When a project is being built, each build target will place temporary files into the
Temp directory.

Each build project, building configuration, and platform can be segregated into their
own directories underneath Temp. For example, the OBJ and other temporary files
for the Debug configuration of the GameCode4 project compiled with Visual Studio
2010 for Win32 can be stored in Temp\GameCode4_2010Win32Debug. Doing it this
way makes it very easy to create a directory structure that supports multiple compiled
targets, multiple compilers, multiple platforms, and multiple build configurations. If
you think you might not need this, think about building a project for both Android
and iOS—because being able to store the results of a build on a server might be very
convenient, and if you don’t give each build flavor a safe place to live, they might
overwrite each other.

Visual Studio Defaults Aren’t Always So Great

Visual Studio does a really bad thing by assuming that software engineers want
their build targets to clutter up the Source directory. | find this annoying, since |
don't want a single byte of the Source directory to change when | build my
project. Why, you ask? First, | like to be able to copy the entire Source
directory for publishing or backup without worrying about large temporary
files. Second, | can compare two different Source directories from version to
version to see only the deltas in the source code, instead of wading through
hundreds of useless .0BJ, .SBR, and other files. Third, | know | can always
delete files in the Temp directory to force a new build of the entire project, a i .
particular platform, or a particular build configuration of all platforms. | also PI‘O\CHCES
know that | never have to back up or publish the Temp directory.

101

102

Chapter 4 M Building Your Game

The Game directory should hold the release build and every game data file your game
needs to run and anything that will get distributed to your players. You should be
able to send the contents of the Game directory to a separate testing group or to
someone in the press, and they’d have everything they would need to run and test
the game. You also want to ensure that they don’t get anything you want to keep to
yourself, such as confidential project documentation or your crown jewels—the
source code. Generally, you'll place release executables and DLLs in Game and store
all your game data and config files in Game/Data. If you take the time to set up a
directory that stores the files that you may be providing to others from time to
time, you’ll likely avoid sending out your source code or internal project design docu-
ments. Documentation that will get sent to your players on disc or downloaded, like
help files, also should be stored here. Printed documentation should be stored sepa-
rately; I'd suggest in its own hierarchy inside the Assets directory.

The Test directory should hold special files only for the test team. It usually contains
test scripts, files that unlock cheats, and test utilities. Some games have a logging feature
that writes diagnostic, warning, and error messages to a text file—the Test directory is a
great place for them. Most importantly, it should contain the release notes for the latest
build. The release notes are a list of features that work, or don’t work, in the latest build.
They also contain quick instructions about anything the test team needs to know, such
as how to expose a certain feature or a part of your game that needs special attention.
As you are developing your project, I strongly encourage you to keep the release notes
up-to-date. If you hand your game over to a testing team, they won’t have to pull out
their hair trying to figure out how to get your project to work. You'll discover that
Visual Studio has to be convinced to use this directory structure, and it takes a little
work to create projects under this standard. Visual Studio assumes that everything in
the project lives underneath the directory that stores the solution file. It may be a pain
to get Visual Studio to conform to this structure, but trust me, it is worth it.

Ci# Projects Are Tougher to Reorganize

While you can tweak the directory structure of C++ projects under Visual Studio,
C# projects are tougher. There is a way to reconfigure the solution files to make
my recommended directory structure work, but it isn't exactly supported by
Microsoft. Perhaps Microsoft will in their great wisdom figure this out
someday, but don't hold your breath. For more on this topic, visit the
companion website for this book.

The directory structure I propose is useful because it caters to all the different people
and groups that need access to your game development files. The development team
gets access to the whole thing. Executives and press looking for the odd demo can

Creating a Project

copy the Game directory whenever they want. The test group grabs Game and Test,
and they have everything they need.

If you store the build targets in the Source directory, like Visual Studio wants you to,
you’ll have to write complicated batch files to extract the build target, clean tempo-
rary files, and match game data with executables. Those batch files are a pain to
maintain and are a frequent source of bad builds. If you pound Visual Studio for a
little while to get a better directory structure started, you won’t have to worry about a
nasty batch file during the life of your product.

Where to Put Your Game Engine and Tools

In case it wasn’t clear, your game engine should get its own directory, with the same
directory structure in parallel with your game. On one project I worked on, our game
engine had a pretty uncreative code name: Engine. It was stored in an Engine direc-
tory with Source, Docs, Temp, and Lib instead of Game, since the output of the build
was a library. There was some debate about separating the #include files into an
Inc directory at the top level. That’s a winner of an idea because it allows the game
engine to be published with only the #incTude files and the library. The source code
would remain safely in our hands. The source code that is a companion to this book
is divided into GameCode4, which can be considered the engine, and Teapot Wars,
the game that uses this engine. GameCode4 compiles into a library, which is linked to
game-specific files to create the final executable, so the final result of a complete
rebuild is stored in Game. You could have the engine compile itself into a DLL, in
which case a post-build step would copy the DLL into the Game directory. To play
the game, you should be able to copy only the contents of the Game directory to a
player’s computer, and the game should run as expected.

Tools can be a little fuzzier and depend somewhat on whether the tool in question is
one that is a custom tool for the project or something that everyone on every project
uses. As you might expect, a tool for one project would go into the source tree for the
project, and one that everyone uses would go into the same directory hierarchy as
your shared game engine. If neither seems to fit, such as a one-off tool to convert
some wacky file format to another, and it would never need to change or undergo
any further development, perhaps you should install it into a special directory tree
for those oddballs. Basically, the rule of thumb is that any directory tree should be
under the same kind of development: rapid, slow, or completely static.

If your game needs any open source or third-party libraries to build, I suggest putting
them in a 3rdParty directory inside your Source directory. This makes it easy to keep
all the right versions of each library with your code base, and it is convenient for

103

104

Chapter 4 M Building Your Game

other programmers who need to grab your code and work with it. After all, it might
be tough to find an old version of something if your source code requires it.

One thing I'd suggest is to massage the output targets of third-party libraries and
SDKs, especially the PDB files that are used for debugging. Most third-party libraries
are pretty good at having directory structures that support a vast array of compiler
versions, operating systems, and platforms. They typically do this by naming their
LIB files using the library name, platform, and configuration. Some libraries, how-
ever, do not do that and keep exactly the same name no matter what platform or
build target is being used. This can cause all manner of confusion and make it diffi-
cult to debug a project where important PDB files from different libraries all have the
same name, causing one or more of them to be overwritten. In reorganizing the
source code for the fourth edition of this book, I had to wrestle with this very prob-
lem, and I wanted a solution that minimized any changes to the build scripts of the
third-party libraries.

Here’s the solution I settled on to clean up this mess. First, I made sure that I only
changed the third-party builds to create PDB files that were named exactly the same
as the LIB file in question. BulletCollision.LIB would have a companion
BulletCollision.PDB. The default PDB filename in most Visual Studio build targets is
vc100.PDB, which can’t be used if another library is doing that too! Next, I created a
small batch file inside the 3rdParty directory to run through all the build targets and
platform-specific versions to copy them into a special Lib directory. Inside the Lib
directory, I created platform and configuration specific spots where all the 3rdParty
targets could live in harmony, without stepping on one another (see Figure 4.1).

One important suggestion I can give you: Don’t bother putting all the different LIB
files into the solution settings; instead, use #fpragma comment (1ib, "foo.1ib")
in the source files that will be needing them and surround the #pragmas with #if
defined blocks that can include the right LIB file for your target and platform. This
is a Microsoftian thing, I know, but it is convenient because you don’t have to sweat
over setting each build target and platform’s library dependencies. Keeping the proj-
ect build settings from diverging drastically can save you a ton of headaches down
the road.

Setting Visual Studio Build Options

I mentioned that you have to coax Visual Studio to move its intermediate and output
files outside the directory that stores the solution file. To do this, open your solution,
right-click the solution in your solution explorer, and select Properties. Click the

#d libvorbisfile_static.lib

#4 LinearMath.lib

%3 LinearMath_64_debug.lib
& linearmath_x64_debug.pdb

9/26/2011 1:29 PM
9/26/2011 1:29 PM
9/25/2011 11:50 AM
9/25/2011 11:50 AM

Name : Date modified Type
svn 10/2/2011 5:38 PM File Folder

% Win32Debug 9/27/201111:09 PM File Folder

% Win32Profile 9/26/2011 10:11 PM File Folder

! Win32Release 9/27/201110:29 PM File Folder

% w64 Debug 9/26/2011 7:48 PM File Folder

. x64Profile 9/26/2011 7:48 PM File Folder

% xG4Release 9/26/2011 T:48 PM File Folder
Name - Date modified Type

Svn 10/2/2011 5:38 PM File Folder

ﬁBulletCDllisiDrl.lib 9/26/2011 1:29 PM Object File Library
af;aBuIIetCDIIision_)cﬁ4_debug.|ib 9/25/2011 11:50 AM Object File Library
& bulletcollision_x64_debug.pdb 9/25/2011 11:50 AM Program Debug Database
#d BulletDynamics.lib 9/26/20111:29 PM Object File Library
%3 BulletDynamics_x64_debug.lib 9/25/2011 11:50 AM Object File Library
& bulletdynamics_x64_debug.pdb 9/25/2011 11:50 AM Program Debug Database
#3 dxut.lib 9/26/20111:29 PM Object File Library
& dxut.pdb 9/26/2011 7:50 AM Program Debug Database
#3 dxutopt.lib 9/26/20111:20 PM Object File Library
&] dxutopt.pdb 9/26/2011 8:00 AM Program Debug Database
#d libvorhis_static.lib 9/26/2011 1:29 PM Object File Library
& libvorbis_static.pdb 9/26/2011 8:16 AM Program Debug Database
& libvorbisfile.pdb 9/26/2011 8:16 AM Program Debug Database

Object File Library
Object File Library
Object File Library
Program Debug Database

Figure 4.1

How to manage third-party build targets.

Creating a Project

General group under Configuration Properties (see Figure 4.2), and you’ll be able to
select the Output and Intermediate directories.

The Intermediate directory is set to where you want all of your OBJ and other inter-
mediate build files to be saved. Visual Studio has defined the macro $(Configuration-
Name) to separate intermediate files in directories with the configuration name, such
as Debug or Release, but there’s an important improvement. I also like to add the
macro $(ProjectName)$(PlatformName)$(Configuration) to separate the compile
results of each project, platform, and configuration.

Include The Compiler Version In Your Project File Names

Since this book has been in constant publication since 2003, | also like to name the Visual Studio
projects to include the compiler version, such as GameCode4 2008 for Visual Studio 2008 or
GameCode4_2010 for Visual Studio 2010. That enables me to use the same directory structure to hold
simultaneous builds from multiple compilers, which can be extremely convenient if you are making

engine code.

105

106

Chapter 4 H Building Your Game

TeapotWars_2010 Property Pages M1
Configuration: | Active(Debug) v] Platform: [Acti\.re(Wi n32) '] ’ Configuration Manager...]
> Common Properties 4 Gene
4 Configuration Properties $(SolutionDir)..\-\Lib\$(PlatformName)$(Configuration)\ (=]
General Intermediate Directory $(SolutionDir).\.\Temp\${ProjectName)$({PlatformMName)$(Config
Debuggin Target Name $(ProjectName)$(PlatformName)}$(Configuration)
VC++ Directolgs Target Extension exe
b C/Cr Extensions to Delete on Clean *.cdf:*.cache ™ obj;*.ilk;* resources; ™t " tli;* tih;* tmp;".rsp;*. pgc*.pg
b Linker Build Log File $(IntDin\$(MSBuildProjectName).log
f- Manitest Toal Platform Toolset v100
I Resources
:i ;?:;E:;i;::ﬁ;ﬂemtw Configuration Type Application Le)fe} o
b Build Events Use of MFC Use Standard Windows Libraries
> Custom Build Step hatlsing AT)
Use Unicode Character Set
Support Mo Common Language Runtime Support
| o Mo Whole Program Optimization m

Output Directory

Specifies a relative path to the output file directory; can include environment variables.

[Ok] ’ Cancel Apply

L =

Figure 4.2
Visual Studio 2010 configuration properties.

In these property settings, you can use the $(IntDir) macro to identify the entire path
defined in the Intermediate directory setting, which makes it useful for placing other
build-specific files, such as your build log.

The Output directory is where the linked result, such as your EXE file will go. You
should set that to your Game directory for the release configuration and the Test
directory for other configurations. There is one alternative suggestion I like as well,
which stores the final build result in a directory named for the build configuration
and platform. You do have to set the working directory for debugging, and you
might want to create a post-build step for your release build so that your Game direc-
tory always has what it needs to be instantly published, but that’s a minor inconve-
nience. The $(OutDir) macro can then be used to store any build output file you
want to live in your Output directories.

Creating a Project

Since you store the final build result in separate directories for each platform and
build configuration, you can set the output filename in the linker settings to
$(OutDir)/$(TargetName)$(TargetExt) for all build configurations and all platforms.

Rename Your Build Targets So They Exist in the Same Directory

You can distinguish the debug, profile, and release files by adding a “d" or a “p" to the end of any final
build target. You could also use the $(ConfigurationName) macro if you wanted absolute clarity. If for
any reason the files need to coexist in the same directory, you don’t have to worry about copying them
or creating temporary names.

With the target directories set right, Visual Studio has some macros you can use in
your project settings.

B $(IntDir): The path to intermediate files
B $(OutDir): The path to the output directory
B $(TargetDir): The path to the primary output file

B $(TargetName): The name of the primary output file of the build without the
extension

B $(TargetPath): The fully qualified path and filename for the output file
B $(Configuration): Set to the name of your current configuration, such as Debug

or Release

Use these macros for the following settings for all build configurations:

B Debugging/Debugging Command: $(TargetPath) will call the right executable
for each build target

B Debugging/Working Directory: Should be set to your Game directory

B C/C++/Precompiled Headers/Precompiled Header File:
$(IntDir)$(TargetName).pch

B C/C++/Output Files: $(IntDir) for the ASM list location, object filename, and
program database filename

B Linker/Debug Settings/Generate Program Database File:
$(TargetDir)$(TargetName).pdb

B Linker/Debug Settings/Map File: $(TargetDir)$(TargetName).map

107

108

Chapter 4 H Building Your Game

Some Notes About Changing Default Directories in Visual Studio

There are plenty of third-party tools that work with Visual Studio. Most of them
make the same assumptions about project default directories that Visual Studio
does. They'll still work with my suggested directory structure, but you'll have to
tweak the search directories for source code and symbol files.

The macros also help to keep the differences between the build targets to a
minimum. For example, $(IntDir) can stand for ..\Templ\x64Debug or ..\Temp
IWin32Release because they are the same in all build targets, and they don't
disappear when you choose All Configurations in the project settings dialog.

Multiplatform Projects

If you happen to be lucky enough, or unlucky enough, to work on a multiplatform
project, you'll see that the previous strategy works great for multiplatform projects.
Multiplatform projects usually have files that are common to all platforms and
platform-specific files, too. The general idea is to keep all the common files together
and create parallel directories for the platform-dependent stuff.

You'll need to install the platform-specific SDK before Visual Studio will recognize
the new project platform. Your platform SDK will usually have instructions for this
if it is compatible with Visual Studio, but most of the console manufacturers have
SDKs that are compatible, so even if you are working on the Nintendo Wii you can
still use Visual Studio to do your work.

Once the platform SDK is installed, you can add the platform to your solution by
opening the Configuration Manager from the Build menu. Then for each project,
drop down the platform choice and choose New. You should be able to select the
new platform (see Figure 4.3).

New Project Platform m-‘
New platform:
=)

Copy settings from:
win3z ~|

Create new solution platforms

[ok][conce |

Figure 4.3
Adding a new platform configuration to your project.

Creating a Project

F=E)
/) | « GameCode4d » Dev » Game » H Search Game p
Organize ~ Include in library ~ Share with ~ Burn New folder = - j 'ﬁ
- ~ ~
4 & Computer ‘ ‘ ‘
4 & 0S(C)
4 | Projects
N 3 o
4 | GameCode4 .
4) Dev Wii Win64 Xbox360
> J. Assets
L. Wii
| Win64
k. Xbox360 GameCoded zip Wiizip Win64.zip
> 3B GameCoded.zip
- M Wiizip
1> R Winb4.zip E
> R Xbox360.zip
> . Source
Xbox360.zip
l 7 items
4
Figure 4.4

Platform Directory V2.

You can use the $(PlatftormName) macro in your properties settings to keep platform-
specific intermediate and output files nice and neat.

As far as how you should change your directory structure, Figure 4.4 shows how to
set up a Win32/Xbox360/Wii multiplatform structure.

Take a look at Figure 4.4. The project root is C:\Projects\GameCode4\Dev. That
directory stores the familiar Game, Assets, Source, and Test directories I mentioned
earlier. There are two accommodations for platform-dependent files and directories.
First, there is a special platform-dependent directory for each platform. These
directories will hold executables and DLLs. The Game directory holds both the com-
mon files and platform-dependent files, named for what they contain.
GameCode4.zip stores cooked game assets common to all platforms, and there are
platform-specific files as well. Basically, you follow the same rules as before—make
it easy to find and filter your files based on what you want—in this case, by
platform.

109

110

Chapter 4 M Building Your Game

During development you'll want the convenience of having all the platforms side-
by-side, which keeps you from making tons of copies of the common files for every
platform. You'll need to make a small change to your deployment script, in order to
strip unwanted platform files from platform-specific builds, such as those that would
get burned to an installation disk. After all, there’s no reason to have a Win32 ver-
sion of your game on the Wii, is there?

SourRcE CobeE REPOSITORIES AND VERSION CONTROL

In comparing game development with other kinds of software development projects,
what really stands out is the sheer number of parts required. Even for a small game,
you may have many tens of thousands of source files for code, sound, art, world lay-
out, scripts, and more. You may also have to cook files for your game engine or plat-
form. Most sound effects come from a source WAV and are usually converted to
OGG or MP3. Textures may have a source PSD if they were created in Photoshop
and have a companion JPG or PNG after it’s been flattened and compressed. Models
have a MAX file (if you use 3ds Max) and have multiple source textures. You might
also have HTML files for online help or strategy guides. The list goes on and on.
Even small games have hundreds, if not thousands, of individual files that all have
to be created, checked, fixed, rechecked, tracked, and installed into the game. Big
games will frequently have hundreds of thousands of files, or even millions

Back in the old days, the source files for a big project were typically spread all over
the place. Some files were stored on a network (if you knew where to look), but most
were scattered in various places on desktop computers, never to be seen again after
the project finished. Unfortunately, these files were frequently lost or destroyed while
the project was in production. The artist or programmer would have to grudgingly
re-create his work, a hateful task at best.

The Flame

MIKE’S
Tales

from the

When | first arrived at Origin Systems, | noticed some odd labels taped to
people’s monitors. One said, “The Flame of the Map” and another “The
Flame of Conversation.” | thought these phrases were Origin's version of
Employee of the Month, but | was wrong. This was source control in the
days of “sneaker net,” when Origin didn’t even have a local area network.
If someone wanted to work on something, he physically walked to the
machine that was the “Flame of Such and Such” and copied the relevant
files onto a floppy disk, stole the flame label, and went back to his
machine. Then he became the “Flame.” When a build was assembled for e
QA, everyone carried his floppy disks to the build computer and copied all Pixel Mines
the flames to one place. Believe it or not, this system worked fairly well.

-

Source Code Repositories and Version Control

Many years later, | was working on a small project, and one afternoon a panicked teammate informed
me that our development server went down and no one could work. We were only two days away from
a milestone, and the team thought we were doomed. “Nonsense!” | said, as | created a full list of our
development files and posted them outside my office. | reintroduced our team to SneakerNet—and they
used a pencil to “check out” a file from the list and a diskette to move the latest copy of the file from
my desktop to theirs where they could work on it.

We made our milestone, and no files were lost or destroyed. Sometimes an old way of doing something
isn't so bad after all.

Source control management is a common process used by game development teams
everywhere. Game development is simply too hard and too risky to manage without
it. Nonprogrammers find source control systems unwieldy and will complain for a
while, but they will get used to it pretty quickly. Even 3ds Max has plug-ins for
source control systems so everyone on the team can use it.

Outside of source control, many companies choose to track these bits and pieces with
the help of a database, showing what state the asset is in and whether it is ready to be
installed in the game. Source control repositories can help you manage who is work-
ing on something, but they aren’t that good at tracking whether something is “good
enough” to be in the game. For that, you don’t need anything more than an Excel
spreadsheet to keep a list of each file, who touched it last, what’s in the file, and
why it is important to your game. You could also write a little PHP/MySQL portal
site and put a complete content management intranet up on your local network to
track files.

To help you put your own version control process in place, I'll introduce you to some
of the more popular version control tools that professional game developers use in
their practices, I'll also tell you which ones to avoid. Of course, keep in mind that
there is no perfect, one-size-fits-all tool or solution. The important thing is that you
put some type of process together and that you do it at the beginning of any project.

A Little History—Visual SourceSafe from Microsoft

Visual SourceSafe is the source repository that was distributed with Microsoft’s
Visual Studio until the 2010 release, and it is an excellent example of “You get what
you pay for.” What attracted most people to this product was an easy-to-use GUI
interface and an extremely simple setup. You can be up and running on SourceSafe
in 10 minutes if you don’t type slowly.

The biggest problem with SourceSafe is how it stores the source repository. If you
dig a bit into the shared files where the repository is stored, you'll find a data
directory with a huge tree of files with odd names like AAAAAAAB.AAA and

111

112

Chapter 4 M Building Your Game

AAACCCAA.AAB. The contents of these files are clear text, or nearly, so this wacky
naming scheme couldn’t have been for security reasons. If anyone out there knows
why they did it this way, drop me an email I'm completely stumped.

Each file stores information of how the file changed from revision to revision. Specif-
ically, the information was in “reverse delta” form, so that if you had the most recent
file, you could apply the next most recent reverse delta to re-create the previous revi-
sion. Every revision of a file will create a new SourceSafe file with one of those wacky
names. For those of you paying attention, you'll remember that many of these files
will be pretty small, given that some source changes could be as simple as a single
character change. The amount of network drive space taken up by SourceSafe is
pretty unacceptable in my humble opinion.

There’s also a serious problem with speed. Even small projects get to be a few hundred
files in size, and large projects can be tens or even hundreds of thousands of files.
Because SourceSafe stores its data files in the repository directory structure, access
time for opening and closing all these files is quite long, and programmers can wait
forever while simply checking to see if they have the most recent files. Source-Safe
doesn’t support branching (see my discussion on branching a little later) unless you
make a complete copy of the entire tree you are branching. Ludicrous!

Forget attempting to access SourceSafe remotely. Searching thousands of files over a
pokey Internet connection is murder. Don’t even try it over a high-bandwidth line.
Finally, SourceSafe’s file index database can break down, and even the little analyzer
utility will throw up its hands and tell you to start over. I've finished projects under a
corrupted database before, but it just happened that the corruption was affecting a
previous version of a file that I didn’t need. I was lucky.

SourceSafe also has a habit of corrupting itself, making your entire repository a use-
less pile of unfathomable files. This is especially true when you store large binary
assets like sounds, textures, and video.

If I haven’t convinced you to try something other than SourceSafe, let me just say it:
Don’t use it. I've heard rumors that Microsoft doesn’t use it, so why should you?

Subversion and TortoiseSVN

Subversion is a free source repository available at http://subversion.tigris.org. It uses a
command-line interface, which can give some nonprogrammers heartburn when
using it. Luckily, you can also download TortoiseSVN, a GUI that integrates with
Windows Explorer. It is available at http://tortoisesvn.tigris.org. Both are free, easy
to set up and administer, and a great choice for a development team on a budget.

http://subversion.tigris.org
http://tortoisesvn.tigris.org

Source Code Repositories and Version Control

The system stores the file state on the local machine, which makes it trivial to work
on files even if you have no network access. You just work on them and tell the Sub-
version server when you are ready to commit them to the server. If anyone else made
modifications with you in parallel, the system will let you merge the changes so that
everyone’s changes will be present in the file, preserving everyone’s work. This is typ-
ically done automatically when the changes are far apart in the file, but a special edi-
tor can be used to see all the changes in parallel so that conflicting changes can be
integrated by hand.

Complaints about the system generally fall into the speed and scalability category. If
you are working on a large game with a huge directory structure and tens of thou-
sands of assets, you would be wise to consider something else, such as Perforce.

I developed this edition of the book, and all the source code in it, under Subversion.
So if you are reading this now and can play with the source code, I guess Subversion
worked just fine. Google Code also uses Subversion—and they store plenty.

Perforce by Perforce Software

My favorite commercial product in this category is Perforce. I've used this product
for years, and it’s never let me down. For any of you lucky enough to move from
SourceSafe to Perforce, the first thing you’ll notice is its speed. It's damn fast.

Perforce uses a client/server architecture and a Btrieve-based database for storing the
repository. Btrieve is an extremely efficient data storage and retrieval engine that
powers Pervasive’s SQL software. That architecture simply blows the pants off any-
thing that uses the network directory hierarchy. More than storing the current status
of each version of each file, it even stores the status of each file for everyone who has
a client connection. That’s why most SourceSafe slaves freak out when they use Per-
force the first time; it’s so fast they don’t believe it’s actually doing anything. Of
course, this makes remote access as fast as it can possibly be.

Don't Forget to Ask Perforce’s Permission

Since Perforce “knows" the status of any file on your system, you have to be
careful if you change a file while you are away from your network connection
and you can't connect to the Perforce server to "check out” a file. Since
Perforce knows nothing of the change, it will simply complain later that a
local file is marked read/write, so while it won't blow away your changes, it
also doesn't go out of its way to remind you that you've done anything.
SourceSafe actually does local data/time comparisons, so it will tell you that
the local file is different than the network copy. Subversion stores your local
file status locally, so it is much faster than SourceSafe.

113

114

Chapter 4 M Building Your Game

Perforce has a nice GUI for anyone who doesn’t want to use the command line. The
GUI will perform about 99 percent of the tasks you ever need to perform, so you can
leave the command line to someone who knows what they’re doing. Even better, Per-
force integrates with Windows Explorer, and you can edit and submit files just by
right-clicking them. Artists love that kind of thing.

The branching mechanisms are extremely efficient. When you create a branch from
your main line of development to a test line, Perforce only keeps the deltas from the
original branch to the new branch. Network space is saved, and merging branches is
also very fast. Subversion and others make a completely new copy of the branch, tak-
ing up enormous network storage space.

You'll find almost as many third-party tools that work with Perforce as with some of
the free repositories. Free downloads are available, including tools that perform
graphical merges, C++ APIs, conversion tools from other products like SourceSafe,
Subversion, and tons of others.

Perforce + Visual SourceSafe = Chaos

MIKE’S
. Tales

from the

When | worked for lon Storm, the programmers used Perforce, but everyone
else used Visual SourceSafe. What a fiasco! The content tree that stored art,
game levels, and sounds would always be a little “off” from the source code
in Perforce. If you even had to check in a change that required a parallel
change to content, you had to practically halt the entire team and tell
everyone to do this massive refresh from the network. This was simply
horrible and wasted an amazing amount of time. Don't screw around—make
sure that you get source code control licenses for everyone on your =
development team: Programmers, artists, and everyone else who touches Pixel Mies
your game should all use the same source control software

AlienBrain from Avid

For those of you with really serious asset tracking problems and equally serious bud-
gets, there’s a pretty good solution out there that will track your source code and
other assets: AlienBrain from Avid. They have a huge client list that looks like a
who’s who of the computer game industry. Their software integrates with nearly
every tool out there: CodeWarrior, Visual Studio, 3ds Max, Maya, Photoshop, and
many others.

AlienBrain is somewhat more expensive than Perforce, but it has some features Per-
force doesn’t have. AlienBrain is used by game developers, filmmakers, and big iron
simulation developers who have to track much more than source code. They've also
made some serious strides in the last few versions to improve performance and bring

Source Code Repositories and Version Control

better branching to their software that better matches other software. They also have
some excellent production pipeline helpers in their software, so files can be reviewed
and approved after they are checked in.

Programmers and “build gurus” will like the fact that AlienBrain has sophisticated
branching and pinning mechanisms just like the more advanced source code reposi-
tories on the market. (I'll discuss the importance of branching in the next section.)
Artists and other contributors will actually use this product, unlike others that are
mainly designed to integrate well with Visual Studio and not creative applications
such as Photoshop and 3D Studio Max. One of the big drawbacks of other products
is their rather naive treatment of nontext files. AlienBrain was written with these files
in mind. They have some great features to track peer review in art files, for example.

Using Source Control Branches

I freely admit that up until 2001 I didn’t use branching. I also admit that I didn’t
really know what it was for, but it also wasn’t my fault. I blame Microsoft. Their
Visual SourceSafe tool is distributed with Visual Studio, and some engineers use it
without question, as I did for many years. Microsoft software, like Office, has hun-
dreds of thousands of source files and many hundreds of engineers. It turns out that
SourceSafe was never designed to handle repositories of that size and certainly wasn’t
designed to account for the tricky problem of trying to get each one of those engi-
neers and the files they changed every day to be ready at a moment’s notice to build
the entire, massive project without any errors caused by incompatibilities. Those
readers who have worked on even a modest-size project will know that, on any
given morning, when you grab the latest code from everyone’s work the previous
day, more often than not it doesn’t even compile, much less link and run. This prob-
lem is compounded when the test department needs a build to test and needs it right
away. Luckily, there’s a solution.

Branching is a process where an entire source code repository is copied so that paral-
lel development can proceed unhindered on both copies simultaneously. Sometimes
the copies are merged back into one tree. It is equally possible that after being
branched, the branched versions diverge entirely and are never merged. Why is
branching so important? Branches of any code imply a fundamental change in the
development of that code. You might branch source code to create a new game.
You might also branch source code to perform some heavy research where your
changes won'’t affect anyone else’s. Sometimes a fundamental change, such as swap-
ping out one rendering engine for another or coding a new object culling mechanism,
is too dangerous to attempt where everyone else is working. If you make a new
branch, you’ll wall off your precious main code line, usually called the “trunk.”

115

116

Chapter 4 M Building Your Game

You'll have a nice sandbox to play in and get the benefits of source control for every
source file.

SourceSafe’s branching mechanism, and I use that term loosely, makes a complete
copy of the entire source tree. That’s slow and fat. Most decent repositories keep
track of only the deltas from branch to branch. This approach is much faster, and it
doesn’t penalize you for branching the code.

Here are the branches I use and why:

B Trunk: Normal development branch

B Sandbox: A “playground” branch where anything goes, including trashing it
entirely—the branch typically includes the name of the person or team that
owns it—so you might see Sandbox-MrMike or Sandbox-NewPhysicsEngine

B Gold: The branch submitted for milestone approvals or release

The Sandbox and Gold branches originate from the Trunk branch. Changes in these
branches may or may not be merged with the Trunk branch, depending on what
happens to the code. The Trunk branch supports the main development effort;
almost all of your development effort will happen in the Trunk branch.

The Sandbox branch supports experimental efforts. It’s a great place to make some
core API changes, swap in new middleware, or make any other crazy change without
damaging the Trunk or slowing development there. The Gold branch is the stable
branch that has your last, or next, milestone submission. Programmers can code
fast and furious in the Trunk, while minor tweaks and bug fixes needed for milestone
approval are tucked into the Gold branch.

Perhaps the best evidence for branching code can be found in how a team works
under research and release scenarios. Consider a programming team about to reach
a major milestone. The milestone is attached to a big chunk of cash, which is only
paid out if the milestone is approved. Say this team is old-fashioned and doesn’t
know anything about branching.

Just before the build, the lead programmer runs around and makes everyone on the
team promise not to check on any code while the build is compiling. Everyone pro-
mises to keep their work to themselves, and everyone continues to work on their own
machines.

Most likely the build doesn’t even compile the first time. One of the programmers
might have forgotten to check in some new files or simply gotten sloppy and checked
in work that didn’t compile. By the time the lead programmer figures out who can fix
the build, the programmer at fault may have already started work on other things,

Source Code Repositories and Version Control

which now may have to be reverted to get the build working again. This is a big
waste of time. While all of this is going on, another programmer is frustrated because
he can’t begin making major changes to the Al code since it might need a tweak to
make the build work, too. Getting the build to become stable with everyone working
in one branch basically shuts everyone down until the build is complete, which can
take more than a day in some cases.

But the problems don’t stop there. Let’s assume the completed build is going to be
tested by a remote test team, and the build takes hours to upload to their FTP site.
By the time the build is uploaded and then grabbed by the test team, it could be two
days. If the test team finds a problem that halts testing, the whole process starts
again, with the whole development team hobbled until testing gives the green light.
This whole process could take two to three days or more.

If you don’t think this is that bad, you are probably working without branches and
have trained yourself to enjoy this little hellish scenario. You've probably developed
coping mechanisms that you call “process” instead of what they are, which is crazy. I
used to do the same thing because I thought branches were too much trouble and too
confusing. Until I tried them myself.

Let’s look at the same scenario from the perspective of a team that uses branches.

The lead programmer walks around and makes sure the team has all the milestone
changes checked in. She goes to the build machine and launches a milestone build.
The first thing that happens is the Gold branch gets refreshed with the very latest of
everything in the Trunk branch. The build finishes with the same failure as before—
compile errors due to missing files. The programmer responsible simply checks the
missing files into both the Trunk branch and the Gold branch, and everything con-
tinues without delay. The AI programmer mentioned previously continues working
without worry, since all of his changes will happen in the Trunk branch, safely
away from the Gold branch.

The finished build is checked and sent to the testing group via the same FTP site, and
it still takes almost eight hours. When the build gets just as hosed as before, the lead
programmer makes a small tweak directly in the Gold branch to get it working, and
she uploads a small patch. The test team gets to work and reports a few issues, which
are then fixed directly in the Gold branch and merged back into the Trunk branch.
When the milestone is approved, the Gold branch has the latest and greatest version
of the game, and the development team never lost a second during the entire process.
They even have the bug fixes that were made in the Gold branch.

Every minute of lost development time means your game is a little less fun or a little
less polished than it could be. Given the above—which team do you think is going to

117

118

Chapter 4 M Building Your Game

make the best game? My money and Metacritic are going with the team that used
branches.

Silver, Gold, and Live

A friend of mine who worked at Microsoft was in the build lab for Microsoft
Office. At the time, they used three branches: a Trunk, a Silver, and a Gold.
The teams would publish from Trunk to Silver when a milestone was about to
be delivered, but because of the vast number and speed of changes that
happened even in the Silver branch, they also published Silver to Gold when
a real “version” was ready to go into final testing.

MIKE’S
. Tales

from the

This same strategy is also used by my friends working on online games—they
usually have three branches, too: Trunk, Gold, and Live. Sometimes you have e
to make a change directly in the Live branch to fix a critical issue right on the , g
live servers and then propagate that change back to the Gold and Trunk Pixel Mines
branches.

Sandbox Development

In the Sims division at EA, we all work out of sandboxes. This means that all engineers have their own
branches that they do major development in. When you complete a feature, you begin the process of
integrating up to the main development line. First, you publish a code review - REZ’S
that shows the diff of every file you modified and allows other engineers on Tales
the team to comment on your work and identify potential issues. Once §ecin the
you've been approved to check in, you grab “the lychee,” which is
essentially a mutex that keeps anyone else from being able to check in. You
can only have one person checking in at a time. Then you run the various
unit tests followed by a smoke test, which is a series of in-game tests to
ensure that you didn't break some core functionality inadvertently. (I'd be a
rich man if | had a dollar for every time someone accidentally broke Sim & =\@)<9)
autonomy.) Finally, you can actually submit your changes into the Pixel ineés
development line and release the lychee. This might seem like an overly

complex system, but breaking the build on a Sims game means you've just

stopped the productivity of 180+ people. Working sandboxes also allow multiple programmers to
collaborate in their own little world and have QA run vigorous testing without worrying about affecting
the rest of the team.

BuiLbING THE GAME: A BLACK ART?

You can’t build a testable version of your game by simply grabbing the latest source
code and launching the compiler. Most games have multiple gigabytes of data, install
programs, multiple languages, game editors, special tools, and all manner of compo-
nents that have nothing at all to do with the executable. All of these components
come together in one way or another during the build. Every shred of code and

Building the Game: A Black Art?

data must make it onto the install image on one or more discs or on the network for
the test team. Frequently, these components don’t come together without a fight. On
some teams, building the game is something of a black art, assigned to the most
senior code shamans. There is a much better and safer way, which you’ll learn
shortly.

Ultima VIII had a build process that was truly insane. It went something like this:

1. Grab the latest source code: editor, game, and game scripts.
2. Build the game editor.

3. Run the game editor and execute a special command that nukes the local game
data files and grab the latest ones from the shared network drive.

4. Build the game.

5. Run the UNK compiler (Ultima’s game scripting language) to compile and link
the game scripts for English. Don’t ask me what UNK stands for, I really can’t
remember....

6. Run the UNK compiler twice more and compile the French and German game
scripts.

7. Run the game and test it. Watch it break and loop back to Step 1 until the game
finally works.

8. Copy the game and all the game data into a Temp directory.
9. Compress the game data files.
10. Build the install program.
11. Copy the English, French, and German install images to 24 floppy disks.

12. Copy the CD-ROM image to the network. (The only CD burner was on the first
floor, and I worked on the third floor.)

13. Go to the first floor media lab and make three copies of each install: 72 floppy
disks and three CDs. And hope like hell there are enough floppy disks.

Before you ask, I'll just tell you that the fact that the build process for Ultima VIII
had 13 steps never sat very well with me. Each step generally failed at least twice
for some dumb reason, which made building Ultima VIII no less than a four-hour
process—on a good day.

The build was actually fairly automated with batch files. The game editor even
accepted command-line parameters to perform the task of grabbing the latest map
and other game data. Even so, building Ultima VIII was so difficult and fraught

119

120

Chapter 4 M Building Your Game

with error that I was the only person who ever successfully built a testable version of
the game. That wasn’t an accomplishment, it was a failure.

On one of my trips to Microsoft, I learned something about how they build Office.
The build process is completely automatic. The build lab for Office has a fleet of ser-
vers that build every version of Office in every language, and they never stop. The
moment a build is complete, they start again, constantly looking for compile errors
introduced by someone in the last few minutes. If they find an error, the programmer
is contacted via email by the build machine. Once the build is complete, automated
testing begins, and if any of the automated tests fail, the build system emails the pro-
grammer responsible for the errant check-in. Office is a huge piece of software. If
Microsoft can automate a build as big and complex as this, surely you can automate
yours.

Automate Your Builds

My experience has taught me that every project can and should have an automatic
build. No exceptions. It’s far easier (and safer) to maintain build scripts that auto-
mate the process instead of relying on a build master, whose knowledge is so arcane
he might better be called a witch doctor. My suggestion is that you should try to cre-
ate Microsoft’s build lab in miniature on your own project. Here is what’s needed:

B A build machine, or even multiple machines, if your project is big enough

B Good tools for automatic building, both from third-party sources or made on
your own

B Time invested creating and maintaining automation scripts

The Build Machine

Don’t try to save a buck and use a programmer’s development box as your build
machine. Programmers are always downloading funky software, making operating
system patches, and installing third-party development tools that suit their needs
and style. A build machine should be a pristine environment that has known versions
and updates for each piece of software: the operating system, compiler, internal tools,
SDKs, install program, and anything else used to build the game.

After You Go Gold, Back Up Your Build Machine

A complete backup of the build machine is good insurance. The physical machine itself, preserved for
eternity, is even better. If you need to build an old project, the backup of the build machine will have
the right versions of the compiler, operating system, and other tools. New versions and patches come
out often, and even a project just 12 months old can be impossible to build, even if the source code is

Building the Game: A Black Art?

readily available in the source code repository. Just try to build something 10 or 12 years old, and you'll
see what | mean. If anyone out there has a good copy of Turbo Pascal and IBM DOS 3.3, let me know!

The build machine should be extremely fast, have loads of RAM, and have a high
performance hard disk, preferably multiple hard disks with high RPM and configured
with at least RAID 0 for ultimate speed. Compiling is RAM- and hard-disk-intensive,
so try to get the penny-pinchers to buy a nice system. If you ever used the argument
about how much money your company could save by buying fast computers for the
programmers, imagine how easy it would be to buy a nice build machine. The entire
test team might have to wait on a build. How much is that worth?

Automated Build Scripts

Automated builds have been around as long as there have been makefiles and
command-line compilers. I admit that I've never been good at the cryptic syntax of
makefiles, which is one reason I put off automating builds. If you use Visual Studio,
you might consider using the prebuild or postbuild settings to run some custom
batch files or makefiles. I wouldn’t, and here’s why: You'll force your programmers
to run the build scripts every time they build. That’s probably wasteful at best,
completely incorrect at worst.

Prebuild and postbuild steps should run batch files, makefiles, or other utilities that
are required every time the project is built. Build scripts tend to be a little different
and skew toward getting the build ready for the test department or burning to disc.
As an example, the build script will always grab the latest code from the source
repository and rebuild the entire project from scratch. If you forced your program-
mers to do that for every compile, they’d lynch you.

Batch files and makefiles are perfectly fine solutions for any build script you need.
You can also write great batch files or shell scripts, since Visual Studio builds can
be run from the command line. There are some better tools for those who like
GUIs, such as Visual Build Pro from Kinook Software (see Figure 4.5).

This tool is better than batch files or makefiles. The clean GUI helps you understand
and maintain a complicated build process with multiple tools and failure steps. The
build script is hierarchical, each group possibly taking different steps if a component
of the build fails. Visual Build also integrates cleanly with a wide variety of develop-
ment tools and source code repositories.

Every internal tool you create should have a command-line interface. Whether the
tool creates radiosity maps for your levels, calculates visibility sets, analyzes map

121

122

Chapter 4 H Building Your Game

27, VStudio.bld - Visual Build Professional =
File Edit ¥ew Step Build Tools Help
DeHSd & 2B Qb s =%oEEHESal e sBAN HFL
Actions 5
Filter: Build Build Status | Action Defaulk Property
IJ (Built-In} aks Skipped WisBuildPro Project %:PROJDIR%:)SourceSale. bld
© Gowp test Fi Completed SourceSafe Gek
5] Log Message 3 2D Aborted Group
2 Run Program [Check Out Source Files SourceSafe Checkout
2] Run Script @ Check Qut Executables SourceSafe Checkout
@&, Set Macro =) Register Group
55;5 Subroutine Call =] j} Process Executables Process Files FWORK_ROOT%\Executables
4 Barland = #2] Register It COM Register PROCFILES_FULLPATH .
5 Make Delphi =) Build Projects Group
) Make JBuider £ Build VB Projects Make YES SLAMORK_ROOTS%\Source\MyProjects.vbg
Z_'II_FHES & Build VC Projects Make YC6 SAMORK_ROOT%\Source\MyProjects.dsw
'\;’3 Burn CD/DVD 2] Create Virtual Dirs Run Script ' create a virtual directory bo the web a...
.‘) Copy Fies % Build ¥3.MET Projects [~ Make ¥3.MET FWSMET SLM:[YerSinExt].sin W
D Process Fies 7 Build ¥1 Prajects (] Run Pragram %LDEVENY % [make "5 WORK_ROOTH. .
Rename Fies 457 Generate Build Marifest Run Program %GEN_MANIFEST(" % MORK_ROOTIAE. .
;:iﬂacn;: e ={5) CheckIn Files Group
ﬁ)ﬂj Transform XML Log E Check In All Files SourceSafe Checkin
ﬁ: UNZIP Files J_] Increment Build Mumber Run Script “increment the build number in the glob...
} Virite File E Label The Build SourceSafe Label v
[£] wirite TN < >
@ ZIP Files v @ Project ﬂjeps__ Subroutine Steps __‘Guhdsmmutine Steps ;;‘_,Failureﬂnps __\.99 Macros
Output n *
———————————————————— Starting Buwild: '¥Studio.bld'-----——---------—--—- S|
Building project step 'Create Database'... =
Step 'Create Database' build rule evaluates false: [Not vbld F350.FolderExists("%3AMPLEDBEZ™)] is true
Step skipped
Building project step 'Get Latest Files'...
§/:
§ /BranchTest:
§ /BranchTest/Source:
MyNETProjects.7l.3ln
MyNETProjects.sln b
For help, press F1 Step 3 of 28]

Figure 4.5
Visual Build from Kinook software.

data, or runs a proprietary compression technology, it must be able to take input
from the command line, or you won’t be able to automate your build process.

Another clever piece of software I've used at multiple companies is called Incredi-
build by Xoreax Software. It takes the long process of a build and distributes it to
idle machines across your network. It can take some time to set up, but you can
often get up to a 20-fold decrease in your build times!

CREATING BuILD ScRIPTS

You’'ll want to create a few build scripts for your project. Most builds will simply grab
the latest code, build it, and copy the results somewhere on the network. The mile-
stone build is a little more complicated and involves branching and merging the
source code repository.

Creating Build Scripts

Normal Build

The normal build script builds a clean version of the game and copies the results
somewhere useful. It is run as a part of the milestone build process, but it can also
run automatically at regular intervals. I suggest you run a normal build at least once
per day, preferably in the wee hours of the morning, to check the code on the net-
work for any errors. The normal build script is also useful for building ad-hoc ver-
sions of the game for the test team.

The normal build script performs the following steps:

B Clean the build machine. If you use the directory structure I suggested at the
beginning of this chapter, you can just delete the Temp directory.

B Get the latest source code and game media. I used to recommend cleaning
everything and starting from nothing, but on most games this simply takes too
long. Just grab the recent files.

B Grab the latest version number and label the build. You can decide when to
change the version number—each build or even each night. You can use the
version number to specify the ultimate destination on your build server, so every
build you've ever made can be available. Visual Build Pro has a utility to grab or
even change the version number of Visual Studio resource files, but it’s pretty
easy to write one yourself. At Red Fly, the build number was increased every day
and even included the changelist number of the last check-in. Bugs that are
found in a particular build can be entered into the bug database, and even if a
programmer sees it days later, he can know fairly reliably if the bug is a new one
or the fix just didn’t make it into the latest build.

B Compile and link every build target: debug, profile, and release. The project
settings will make sure that everything goes into the right place.

B Run automatic test scripts. If you have automated testing, have the build
machine run the test scripts to see if the build is a good one. This is more reli-
able than a bleary-eyed programmer attempting to test the game at 4 a.m.

B Process and copy the build results. The destination directory should use the
code name of the project and the version number to distinguish it from other
projects or other versions of the same project. For example, version 2.0.8.25 of
the Rainman project might go into E:\Builds\Rainman\2.0.8.25. The nightly
build of the same project might go into E:\Builds\Rainman\Nightly. If you have
multiple platforms to worry about, stick them in directories that are easy to find
—\E:\Builds\Rainman\Nightly\3DS.

123

124

Chapter 4 M Building Your Game

Scripts Can't Update Themselves While They Are Running

If you're paying attention, you'll realize that the build scripts themselves should
be checked to make sure they haven't changed. If the build script is running,
how can it clean itself off the build machine and get itself from the source code
repository? It can't, at least not easily. If you standardize your projects with a
single directory structure, it's better to create a master build script that works
for any project. Project-specific build commands are put into a special build
script that lives in the same directory as the project files. The master build
script should only change when the build process for every project is changed
—something that should be extremely rare.

A nightly build process is actually trivial to set up if you have your automated build
working—just set up a scheduled task on the build machine. For Windows, you can
create a scheduled task by going into the Control Panel, run Administrative Tools,
and run the Task Scheduler. The wizard will take you through the steps of defining
when and how often to run it. If you happen to be a Linux person, look up the cron
command. Usually, it’s a good idea to copy the results of the build to your network
where everyone can grab it.

Milestone Build

Milestone builds add more steps to the beginning and end of the build since they
involve branching the code. They also involve an approval process that takes days
or weeks instead of minutes, so the build process has an “open,” a “create,” and a
“close” script to manage the branches and make sure that any changes that happen
during approval get back into the Trunk branch.

No Build Automation = Madness

At Origin Systems, we didn't do anything special for milestone builds on the MIKE’S
Ultima projects. Some unlucky programmer, usually me, launched the build on . Tales
his desktop machine, and after plenty of cursing and a few hours, the new from the
version was ready to test. The other programmers kept adding features and
bugs as fast as the test team could sign off old features. New code and
features would break existing code—stuff the test team approved. The bugs
would pile up, and it was difficult to figure out if the project was making any
progress. To minimize the pain of this process, it was usually done in the A
middle of the night when most of the developers had gone home. P
Pixel Mines

The projects I've been on since then were entirely different, mostly due to

ditching SourceSafe and using branches. Our source code repository, Perforce, had excellent branching
and merging capabilities. The programming team resisted at first, but they quickly saw that milestone
builds were linked directly to their paychecks. A few milestones later, everyone wondered how we ever
developed projects without branching.

Creating Build Scripts

Every project should have a Trunk branch and a Gold branch. Every source code
repository does this a little differently. When a milestone build is launched, the first
thing that happens is the Gold branch gets a fresh copy of the Main branch. The
branches are synchronized without merging, which means that the entire Main
branch is simply copied to the Gold branch, making them identical. Make sure that
the Gold branch doesn’t have any unintegrated changes you want to keep! That usu-
ally requires a little human supervision—that is one bit that you probably shouldn’t
automate. The build machine runs the build scripts from the Gold branch to make
the milestone build. This implies that the Trunk and Gold branches can exist on the
same machine at the same time. This is true.

Most source code repositories allow a greater degree of freedom for each client to
configure how it views the contents of the repository. It’s pretty easy to configure
the client to put all the Trunk branches of the Rainman project into a D:\Projects\
Rainman\Trunk directory and all the Gold branches into D:\Projects\Rainman
\Gold. The build scripts can even use a branch macro to figure out which branch
needs building.

After the milestone build is assembled, it should be packaged and sent to testing. In
our case, this meant ZIPing up the entire build and putting it on our FTP site so
Microsoft’s test department could grab it.

Old Advice Turned Out to Be Dumb Advice

In the first and second editions of this book, | advised readers to use
monolithic ZIP or RAR files to package their entire build and FTP that one
file. This turns out to be a horrible idea. | was working on a project that
had to upload a multigigabyte file, and when the FTP failed seven hours
into the upload, we had to start all over. Contrary to intelligence, some top
20 publishers use old-fashioned FTP systems with no ability to restart bad
transfers. Instead of monolithic files, use volumed RAR/PAR files. Most RAR
tools can split a monolithic RAR file into smaller volumes, each of which may
only be a few hundred megabytes. The PAR files can be used to actually ’ .
rebuild a corrupted file on the receiving end, saving both parties a ton of 'Prac-hc&s
time.

Teams almost never submit milestone builds that are approved with no changes.
Most of the time, testing will require some changes, both major and minor. Any of
these changes should happen in your Gold branch. You can then rebuild the Gold
branch and resubmit it to your testing group. This process continues until the test
team is satisfied. The Gold branch is then merged to the Trunk branch. This is usu-
ally an automatic process, but sometimes merge conflicts force a human to stare at
the changes and merge them.

125

126

Chapter 4 M Building Your Game

The two additional scripts you'll need to build and manage your changes in a multi-
branch environment are Open and Close. Here’s an outline of what youll want in the
Open script:

B Get the latest files in the Trunk branch.

B Unlock the Gold branch and revert any modified files.

B Force-integrate from Trunk to Gold.

B Submit the Gold branch.
You may notice a command to unlock the Gold branch. More on that in a moment.
Take a look at the Close script:

B Get the latest files in the Gold branch.

Integrate from Gold to Trunk.

Submit the Trunk branch and the Gold branch.

|

B Resolve all changes.

|

B Lock the Gold branch from all changes.

The integration commands are expected, but if you look at the last two lines of the Close
phase, you'll see that the Gold branch is locked so that no one can change it. The Open
phase unlocks the files and reverts any changes. Why bother? This makes absolutely
sure that the Gold branch is only open for changes during milestone approval. If no
milestone build is in test, there should be no reason to change the Gold branch.

This has an added side effect: Anyone who wants the latest approved milestone build
can simply grab the code in the Gold branch and build the game. This is especially
useful if the odd executive or representative of the press wants to see a demo. Even if
the last build is missing from the network, you can always re-create it by building the
Gold branch.

Builds Were Tough on Thief: Deadly Shadows

On Thief: Deadly Shadows, there was an unfortunate problem in the build
process that no automation could possibly fix. Since the project was really
large, and there was no automated testing, the test team would only get
new builds every couple of days. It would take them that long just to be
sure they could send the latest version to the entire test team. The problem
was that the new build was launched at fairly random times, and the
development team was never given much if any notice.

MIKE’S
Tales

from the

Now, | know what you're thinking. If every submission to the source repository L e
were individually checked, then a new build should be able to launch at any Pixel Mi&

Multiple Projects and Shared Code

time without error. Wrong! The builds took days to perform because there was little, if any, integration
testing on the part of programmers—mostly because doing so really took a very long time, and not every
programmer had an Xbox development kit to test with. They simply tested their own stuff in quick,
isolated tests on whichever platform they had handy. This rarely caught the odd problems due to
integration flaws, and these problems accumulated between builds. The solution? Give the developers a
little notice—at least a few hours—and get them to run some more serious integration tests of their own
before the build. That, and for goodness sake, create some automated testing and run it nightly.

MuLTIPLE PROJECTS AND SHARED CODE

It’s difficult to share code between multiple projects if the shared code is still under
rapid development. Two different teams will eventually be in different stages of
development because it is unlikely they both will have the same project schedule.
Eventually, one team will need to make a change to the shared code that no one else
wants.

There are a couple of different cases you should consider:

B One team needs to put a “hack” in the shared code to make a milestone quickly,
and the other team wants to code the “real” solution.

B One team is close to shipping and has started a total code lockdown. No one can
change anything. The other team needs to make modifications to the shared
code to continue development.

How do you deal with this sticky problem? Branching, of course.

In the case of the scenario where two project teams need to share a common game
engine, the game engine has three branches:

B Trunk: The normal development branch
B Gold_Project_A: The Gold branch for the first project
B Gold_Project_B: The Gold branch for the second project

While both projects are in normal development, they both make changes to the
shared engine code in the Trunk branch. If either project goes into a milestone
approval phase, they fix milestone blockers in the Gold branch for their project.
Since they each get their own Gold branch, both projects can be in approval simulta-
neously without worrying about each other. If they happen to be broken in exactly
the same way, you can always make the change in the Trunk branch and integrate
that single change forward to both Gold branches—it’s totally up to you. After their
milestone has been approved, the changes get merged back into the Trunk. When

127

128

Chapter 4 M Building Your Game

either project hits code lockdown, meaning that only a few high-priority changes are
being made to the code, the project stays in the Gold branch until it ships.

All this work assumes the two teams are motivated to share the game engine and
continually contribute to its improvement. There might be a case for one project per-
manently branching the shared code, in which case it should get its own code line
apart from the Trunk branch of the original shared code. If the changes are minor,
and they should be, it’s trivial to merge any two arbitrary code lines, as long as they
originated from an original source. Even if you got unlucky and the changes were
overhauls, the difficulty of the merge is preferable to making huge changes in your
Trunk while trying to satisfy a milestone. Best to leave this activity in its own
branch.

SoME PARTING ADVICE

This chapter has likely shown you that there is a lot of drudgery on any software
project, and games are no exception. Back in the dark ages, I built game projects by
typing in commands at the command prompt and checking boxes on a sheet of
paper. Since most of this work happened way after midnight, I made tons of mis-
takes. Some of these mistakes wasted time in heroic amounts—mostly because the
test team had a broken build on their hands, courtesy of a decaffeinated or just
exhausted Mike McShaffry.

Without using branching techniques, the whole development team had to tiptoe
around their changes during a build. Moving targets are much harder to hit. Every
game developer takes a long time to get in a good zone. If you break anyone’s con-
centration by halting progress to do a build, you lose valuable time.

My parting advice: Always automate the monkey work, give the test team a good
build every time, and never ever get in the way of a developer in the zone.

CHAPTER 5

by Mike McShaffry

GAME INITIALIZATION AND
SHUTDOWN

There are a million little details about writing games that no one talks about. Lots of
books and websites can teach you how to draw textured polygons in Direct3D. But
when it comes to figuring out your initialization sequence, you'll find little discussion.
Most programmers hack something together over time that eventually turns into a
horrible mess.

I've written this chapter to show you the ins and outs of the entire initialization and
shutdown sequence. As you check out the code in this chapter, keep in mind that
every game is different and may require a different initialization sequence. Hopefully,
you'll gain an understanding of the approach presented here and be able to adapt it
to your particular situation. Truly elegant solutions and algorithms rarely just fall out
of the sky. They usually come to you after seeing some code that is close to what you
need, and you push it the rest of the way yourself.

Every piece of software, including games, has initialization, the core or main loop,
and shutdown. Initialization prepares your canvas for painting pixels. The main
loop accepts and translates user input, changes the game state, and renders the
game state until the loop is broken. This loop is broken by a user quitting the game
or some other kind of failure. The cleanup code releases key system resources, closes
files, and exits back to the operating system.

This chapter deals with initialization and shutdown. Chapter 7, “Controlling the
Main Loop,” will dig a little deeper and show you how to control the main loop of
your game.

129

130

Chapter 5 B Game Initialization and Shutdown

INITIALIZATION 101

Initializing games involves performing setup tasks in a particular order, especially on
Windows platforms. Initialization tasks for Windows games are a superset of console
games due to more unpredictable hardware and OS configuration. Of course, every
platform will be different, and to cover even a few of them is beyond the scope of
this book. If you see how this is done in a more complicated system such as Win-
dows, you'll have a jump start on doing this for other platforms.

There are some tasks you must perform before creating your window, and others that
must have a valid window handle (or HWND) and therefore happen after you create
your window. Initialization tasks for a Windows game should happen in this order:

B Check system resources: hard drive space, memory, input and output devices.
Check the CPU speed.

Initialize your main random number generator (this was covered in Chapter 3).
Load programmer’s options for debugging purposes.

Initialize your memory cache.

Create your window.

Initialize the audio system.

Load the player’s game options and saved game files.

Create your drawing surface.

Perform initialization for game systems: physics, Al, and so on.

SoME C++ INITIALIZATION PITFALLS

Before we work through our initialization checklist, let’s get some critical initializa-
tion pitfalls out of the way, starting with the misuse of C++ constructors. I've heard
that power corrupts, and absolute power corrupts absolutely. You might get some
disagreement from Activision’s executives on this point. I'll prove it to you by show-
ing you some problems with going too far using C++ constructors to perform initiali-
zation. It turns out that C++ constructors are horrible at initializing game objects,
especially if you declare your C++ objects globally.

Programming in C++ gives you plenty of options for initializing objects and subsys-
tems. Since the constructor runs when an object comes into scope, you might believe
that you can write your initialization code like this:

// Main.cpp - initialization using globals
//

Some C++ Initialization Pitfalls

DataFiles g_DataFiles;
AudioSystem g_AudioSystem;
VideoSystem g_VideoSystem;

int main(void)
{
bool done = false;
while (! done)
{
// imagine a cool main loop here
}

return 0;

}

The global objects in this source code example are all complicated objects that could
encapsulate some game subsystems. The fledgling game programmer might briefly
enjoy the elegant look of this code, but that love affair will be quite short lived. When
any of these initialization tasks fail, and they will, there’s no easy way to recover.

I'm not talking about using exception handling as a recovery mechanism. Rather, I'm
suggesting that any problem with initialization should give the player a chance to do
something about it, such as wiping the peanut butter off the DVD. To do this, you
need a user interface of some kind, and depending on where the failure happens,
your user interface might not be initialized yet.

Global objects under C++ are initialized before the entry point, in this case main(void).
One problem with this is ordering; you can’t control the order in which global
objects are instantiated. Sometimes the objects are instantiated in the order of the
link, but you can’t count on that being the case with all compilers, and even if it
were predictable, you shouldn’t count on it. What makes this problem worse is that
since C++ constructors have no return value, you are forced to do something ugly to
find out if anything went wrong. The wise programmer will inform his game players
about what has gone wrong so they can have some possibility of fixing the problem.
The simpler alternative of failing and dropping back to the operating system with
some lame error message is sure to provoke a strong reaction.

If you want to inform the player, you might want to do it with a simple dialog box.
This assumes that you've already initialized the systems that make the dialog box
function: video, user interface, data files that contain the button art, font system,
and so on. This is certainly not always possible. What if your nosey game player
hacked into the art data files and screwed them up? You won’t have any button art
to display your nice dialog box telling hackers they’ve screwed themselves. You have

131

132

Chapter 5 B Game Initialization and Shutdown

no choice but to use the system UI, such as the standard message box under Win-
dows. It’s better than nothing.

Initialize Your String Subsystem Early

Initialize your text cache, or whatever you use to store text strings, very early.
You can present any errors about initialization failures in the right language. If
the initialization of the text cache fails, present an error with a number. It's
easier for foreign language speakers almost anywhere in the world to use the
number to find a solution from a customer service person or a website.

Proctices

Global object pointers are much better than global objects. Singleton objects, such as
the instantiation of the class that handles the audio system or perhaps your applica-
tion object, are naturally global, and if you're like me, you hate passing pointers or
references to these objects in every single method call from your entry point to the
lowest-level code. Declare global pointers to these objects, initialize them when you’re
good and ready, and free them under your complete control. Here’s an example of a
more secure way to initialize:

// Main.cpp - initialization using pointers to global objects
/!

// A useful macro

fidefine SAFE_DELETE(p) { if (p) { delete (p); (p)=NULL; }}

DataFiles *gp_DataFiles = NULL;
AudioSystem *gp_AudioSystem = NULL;
VideoSystem *gp_VideoSystem = NULL;

int main(void)
{
gp_DataFiles = new DataFiles();
if ((NULL==gp_DataFiTles) || (!gp_DataFiles->Initialized()))
{
printf("The data files are somehow screwed.");
return 1;
}
gp_AudioSystem = new AudioSystem();
if ((NULL==gp_AudioSystem) || (!gp_AudioSystem ->Initialized()))
{
printf("The audio system is somehow screwed.")
return 1;
1
gp_VideoSystem = new VideoSystem();
if ((NULL==gp_VideoSystem) || (!gp_VideoSystem ->Initialized()))
{

The Game's Application Layer

printf("The video system is screwed.");
return 1;

}

bool done = false;

while (! done)

{

// imagine a cool main Toop here

}

SAFE_DELETE(gp_VideoSystem); // AVOID DEADLOCK!!!
SAFE_DELETE(gp_AudioSystem);
SAFE_DELETE(gp_DataFiles);

return 0;

}

Note that the objects are released in the reverse order in which they were instanti-
ated. This is no mistake, and it is a great practice whenever you need to grab a
bunch of resources of different kinds in order to do something. In multithreaded oper-
ating systems with limited resources, deadlock occurs when two threads can’t do their
work because each has a resource the other needs. You can avoid deadlock by allocating
and deallocating your resources in this way. You'll learn more about deadlock in Chap-
ter 20, “Introduction to Multiprogramming.” Computers are very patient and will hap-
pily wait until the sun explodes. Get in the habit of programming with that problem in
mind, even if your code will never run on an operating system where that will be a
problem. It’s a great habit, and you’ll avoid some nasty bugs.

THE GAME’S APPLICATION LAYER

We’re now ready to work our way through the initialization checklist. We’ll create
the class for your application layer, a very Windows-specific thing. The application
layer would be completely rewritten for different operating systems, such as Linux,
or consoles like the Wii. The application layer class is instantiated as a global single-
ton object and is referred to throughout your code through a pointer. It is con-
structed globally, too, since it has to be there from the entry point to the program
termination.

WinMain: The Windows Entry Point

The GameCode4 framework sets its Windows entry point to the function below; this is
the code that will begin executing after any global constructor code is finishing running.
It sets up calls for DirectX to work properly, runs the initialization sequence, enters the
main loop, and runs any shutdown code after the main loop exits.

133

134

Chapter 5 B Game Initialization and Shutdown

I've decided to use the DirectX Framework for rendering, mostly because it handles
all of the pain and suffering of dealing with running a DirectX-based application
under Windows, especially drawing fonts and dialog boxes. Take a quick look at the
code in one of the source files in the DirectX Framework, DXUT.cpp, sometime, and
youll see exactly what I mean! The following code can be found in Source\
GameCode.cpp:

INT WINAPI GameCode4 (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPWSTR TpCmdLine,
int nCmdShow)

// Set up checks for memory Teaks.

int tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
// always perform a Teak check just before app exits.
tmpDbgFlag |= _CRTDBG_LEAK_CHECK_DF;
CrtSetDbgFlag(tmpDbgFlag);

Logger::Init("Togging.xm1");
g_pApp->m_Options.Init("PlayerOptions.xml", TpCmdLine);

DXUTSetCalTbackD3D11DeviceAcceptable(GameCodeApp::IsD3D11DeviceAcceptable);
DXUTSetCallbackD3D11DeviceCreated(GameCodeApp::0nD3D11CreateDevice);
DXUTSetCallbackD3D11SwapChainResized(GameCodeApp::0nD3D11ResizedSwapChain);
DXUTSetCallbackD3D11SwapChainReleasing(

GameCodeApp: :0nD3D11ReleasingSwapChain);
DXUTSetCallbackD3D11DeviceDestroyed(GameCodeApp::0nD3D11DestroyDevice);
DXUTSetCallbackD3D11FrameRender(GameCodeApp::0nD3D11FrameRender);

// Show the cursor and clip it when in full screen
DXUTSetCursorSettings(true, true);

// Perform application initialization

if (1g_pApp->InitInstance (hInstance, 1pCmdLine, 0,
g_pApp->m_Options.m_ScreenSize.x,
g_pApp->m_Options.m_ScreenSize.y))

{
return FALSE;

}

DXUTMainLoop();
DXUTShutdown();

//_CRTDBG_LEAK_CHECK_DF is used at program initialization
// to force a Teak check just before programexit. This

The Game's Application Layer

// is important because some classes may dynamically

// allocate memory in globally constructed objects.

//

//_CrtDumpMemorylLeaks(); // Reports leaks to stderr

// Destroy the Togging system at the Tast possible moment
Logger::Destroy();

return g_pApp->GetExitCode();
1

These calls to the DXUTSetCal1backEtc functions allow the DirectX Framework to
notify the application about device changes, user input, and Windows messages. You
should always handle the callbacks for device reset/lost, or your game won’t be able
to withstand things like fast user task switching under Windows.

The calls to the CrtDumpMemory functions set up your game to detect memory
leaks, something discussed at length in Chapter 23, “Debugging Your Game.”

Player options are stored in an XML file and are loaded into the GameOptions class.
This class can store whatever you like, but in this example it simply stores the desired
screen width and height of the game window. Extensions of this class could store
sound volume settings, how many players the game supports, and other important
data.

g_pApp points to a global object that stores the game’s application layer. Let’s take a
look at the base class, GameCodeApp.

The Application Layer: GameCodeApp

The game’s application layer handles operating system-specific tasks, including inter-
facing with the hardware and operating system, handling the application life cycle
including initialization, managing access to localized strings, and initializing the game
logic. This class is meant to be inherited by a game-specific application class that will
extend it and define some game-specific things, such as title, but also implementations
for creating the game logic and game views and loading the initial state of the game.

The class acts as a container for other important members that manage the applica-
tion layer:

B A handle to the text resource, which is initialized with an XML file. It contains
all of the user-presented strings, such as “Do you want to quit?,” so the game
can easily be localized into other languages.

B The game logic implementation.

B A data structure that holds game options, usually read from an XML file.

135

136 Chapter 5 B Game Initialization and Shutdown

B The resource cache, which is responsible for loading textures, meshes, and
sounds from a resource file.

B The main Event Manager, which allows all the different game subsystems to
communicate with each other.

B The network communications manager.

All of these members are initialized in GameCodeApp::InitInstance().

InitInstance(): Checking System Resources

Checking system resources is especially important for Windows games, but console
developers don’t get off scot-free. Permanent storage, whether it is a hard disk or a
memory card, should be checked for enough space to store game data before the
player begins. Windows and console games that support special hardware, like steer-
ing wheels or other input devices, must check for their existence and fall back to
another option, like the gamepad, if nothing is found. Checking system RAM and
calculating the CPU speed can be important, too, even if the platform isn’t Windows.

The code inside InitInstance() is particularly sensitive to order, so be careful if
you decide to change this method. You should also keep your shutdown code in sync,
or rather reverse sync, with the order of initialization. Always release systems and
resources in the reverse order in which you requested or created them.

Here’s what this method does:

Detects multiple instances of the application.

Checks secondary storage space and memory.

Calculates the CPU speed.

Loads the game’s resource cache.

Loads strings that will be presented to the player.

Creates the LUA script manager.

Creates the game’s Event Manager.

Uses the script manager to load initial game options.

Initializes DirectX, the application’s window, and the D3D device.
Creates the game logic and game views.

Sets the directory for save games and other temporary files.

Preloads selected resources from the resource cache.

The Game's Application Layer

m_screenSize = CPoint(screenWidth, screenHeight);

DXUTCreateDevice(D3D_FEATURE_LEVEL_10_1, true, screenWidth, screenHeight);
m_Renderer = shared_ptr<IRenderer>(GCC_NEW D3DRendererll());
m_Renderer->VSetBackgroundColor(255, 20, 20, 200);
m_Renderer->V0nRestore();

m_pGame = VCreateGameAndView();
if (!m_pGame)
return false;
// now that all the major systems are initialized, preload resources
m_ResCache->Preload("*.0gg", NULL);
m_ResCache->Preload("*.dds", NULL);
m_ResCache->Preload("*.jpg", NULL);
m_ResCache->Preload("*.sdkmesh", NULL);

You have to make sure that everything is initialized before some other subsystem
needs it to exist. Inevitably, you’ll find yourself in a catch-22 situation, and you’ll
see that two subsystems depend on each other’s existence. The way out is to create
one in a hobbled state, initialize the other, and then notify the first that the other
exists. It may seem a little weird, but you’ll probably run into this more than once.

The next sections tell you more about how to do these tasks and why each is
important.

Checking for Multiple Instances of Your Game

If your game takes a moment to get around to creating a window, a player might get
a little impatient and double-click the game’s icon a few times. If you don’t take the
precaution of handling this problem, you’ll find that users can quickly create a few
dozen instances of your game, none of which will properly initialize. You should cre-
ate a splash screen to help minimize this problem, but it’s still a good idea to detect
an existing instance of your game.

bool IsOnlyInstance(LPCTSTR gameTitle)
{
// Find the window. If active, set and return false
// Only one game instance may have this mutex at a time...

HANDLE handle = CreateMutex(NULL, TRUE, gameTitle);

// Does anyone else think "ERROR_SUCCESS' is a bit of an oxymoron?
if (GetLastError() != ERROR_SUCCESS)
{

HWND hWnd = FindWindow(gameTitle, NULL);

if (hWnd)

{

137

138 Chapter 5 B Game Initialization and Shutdown

// An instance of your game is already running.
ShowWindow(hWnd, SW_SHOWNORMAL) ;
SetFocus (hWnd);
SetForegroundWindow(hWnd);
SetActiveWindow(hWnd);
return false;
1
}
return true;

}

The Windows CreateMutex() API is used to gate only one instance of your game
to the window detection code, the FindWindow() APL You call it with your game’s
title, which uniquely identifies your game. A mutex is a process synchronization
mechanism and is common to any multitasking operating system. It is guaranteed
to create one mutex with the identifier gameTit1e for all processes running on the
system. If it can’t be created, then another process has already created it. You’'ll learn
more about these in Chapter 20.

Checking Hard Drive Space

Most games need a bit of free secondary storage space for saving games, caching data
from the DVD-ROM drive, and other temporary needs. Here’s a bit of code you can
use to find out if your player has enough storage space for those tasks:

bool CheckStorage(const DWORDLONG diskSpaceNeeded)

{
// Check for enough free disk space on the current disk.
int const drive = _getdrive();
struct _diskfree_t diskfree;

_getdiskfree(drive, &diskfree);

unsigned __int64 const neededClusters =
diskSpaceNeeded /
(diskfree.sectors_per_cluster * diskfree.bytes_per_sector);

if (diskfree.avail_clusters < neededClusters)

{
// if you get here you don't have enough disk space!
GCC_ERROR("CheckStorage Failure: Not enough physical storage.");
return false;

}

return true;

The Game's Application Layer

If you want to check free disk space, youll use the _getdrive() and
_getdiskfree() utility functions, which work on any ANSI-compatible system.
The return value from the _getdiskfree() function is in clusters, not in bytes,
so you have to do a little math on the results.

Checking Memory

Checking for system RAM under Windows is a little trickier; sadly, you need to leave
ANSI compeatibility behind. You should check the total physical memory installed, as
well as the available virtual memory, using Windows calls. Virtual memory is a great
thing to have on your side as long as you use it wisely. You'll learn more about caching
in Chapter 8, “Loading and Caching Game Data,” but until then you can think of it as
having a near infinite bank account with a very slow bank. If your game uses virtual
memory in the wrong way, it will slow to a crawl. You might as well grab a pencil
and sketch a storyboard of the next few minutes of your game; you'll see it faster.

bool CheckMemory (
const DWORDLONG physicalRAMNeeded, const DWORDLONG virtualRAMNeeded)
{

MEMORYSTATUSEX status;

GlobalMemoryStatusEx(&status);

if (status.ul1TotalPhys < physicalRAMNeeded)

{
// you don't have enough physical memory. Tell the player to go get a
// real computer and give this one to his mother.
GCC_ERROR("CheckMemory Failure: Not enough physical memory.");
return false;

}

// Check for enough free memory.

if (status.ulTAvailVirtual < virtualRAMNeeded)

{
// you don't have enough virtual memory available.
// Tell the player to shut down the copy of Visual Studio running in the
// background, or whatever seems to be sucking the memory dry.
GCC_ERROR("CheckMemory Failure: Not enough virtual memory.");
return false;

}

char *buff = GCC_NEW char[virtualRAMNeeded];
if (buff)
deletel] buff;
else
{

139

140

Chapter 5 B Game Initialization and Shutdown

// even though there is enough memory, it isn't available in one
// block, which can be critical for games that manage their own memory
GCC_ERROR("CheckMemory Failure: Not enough contiguous memory.");
return false;
}
1

This function relies on the GlobalMemoryStatusEx() function, which returns the
current state of the physical and virtual memory system. In addition, this function
allocates and immediately releases a huge block of memory. This has the effect of
making Windows clean up any garbage that has accumulated in the memory man-
ager and double-checks that you can allocate a contiguous block as large as you
need. If the call succeeds, you've essentially run the equivalent of a Zamboni machine
through your system’s memory, getting it ready for your game to hit the ice. Console
programmers should nuke that bit of code—it simply isn’t needed in a system that
only runs one application at a time.

Calculating CPU Speed

Since Windows XP, the CPU speed can be read from the system registry with this
code:

DWORD ReadCPUSpeed()
{
DWORD BufSize = sizeof (DWORD);
DWORD dwMHz = 0;
DWORD type = REG_DWORD;
HKEY hKey;

// open the key where the proc speed is hidden:

lTong 1Error = RegOpenKeyEx (HKEY_LOCAL_MACHINE,
L"HARDWAREN\DESCRIPTION\\System\\CentralProcessor\\0",
0, KEY_READ, &hKey);

if(TError == ERROR_SUCCESS)
{
// query the key:
RegQueryValueEx(hKey, L"~MHz", NULL, &type, (LPBYTE) &dwMHz, &BufSize);
}
return dwMHz;
}

If you want to calculate the CPU speed, there’s a great bit of code written by Michael
Lyons at Microsoft that does the job nicely. You can find it in the companion source
code to this book in Dev\Source\GCC4\Mainloop\CPUSpeed.cpp.

The Game's Application Layer

Do You Have a Dirtbag on Your Hands?

If you are lucky (or probably unlucky) enough to be working on a mass-market title,
or even a title that will be distributed worldwide, you should support computers and
devices that have a wide range of capabilities. Everyone wants a game to look really
good, but when you have to support devices that don’t support the right graphics
system, something has to give. Choose a benchmark for your game that makes
sense to determine what makes a computer a dirtbag and what doesn’t. Whatever
you use, it is important to set your standards and determine if the computer the
player is using is at the shallow end of the hardware pool.

What to Do with Your Dirtbag

Once you figure out that the computer is at the bottom end, you should set your
game defaults for new players accordingly. A good start would be to turn off
any CPU-intensive activities like decompressing MP3 streams, scaling back
skeletal detail, animations, and physics, or reducing the cycles you spend on
Al. If the player decides to bring up the options screen and turn some of these
features back on, my suggestion is to let him do it if it's possible. Maybe he'll
be inclined to retire his old machine.

Practices

Initialize Your Resource Cache

You read about general memory management in Chapter 3 and resource caching is
covered in Chapter 8. Initializing the resource cache will be a gateway to getting your
game data from the media into memory. The size of your resource cache is totally up
to your game design and the bottom-end hardware you intend to support. It’s a good
idea to figure out if your player’s computer is a dirtbag or flamethrower and set your
resource cache memory accordingly.

No Room Even for the Basics?

You can't impress a player with fantastic graphics until you reserve a nice spot
in system and video memory for your textures, models, and animations. If your
resource cache allocation fails, you can’t even bring up a nice dialog box telling
a loser player he is low on memory. The game should fail as elegantly as
possible and maybe print out a coupon for some memory sticks.

In this book, we’ll use Zip files to store game resources. It’s reasonably speedy, especially if
no decompression is necessary. Here’s the code to initialize the resource cache:

new ResCache(50, new ResourceZipFile(_T("Assets.zip")));
if (Im_ResCache->Init())
{

141

142

Chapter 5 B Game Initialization and Shutdown

GCC_ERROR("Failed to initialize resource cache! Are your paths set up
correctly?");
return false;
}

m_ResCache->RegisterLoader(CreateWAVResourceloader());
m_ResCache->RegisterLoader(Create0GGResourceloader());
m_ResCache->RegisterLoader(CreateDDSResourceloader());
// Note a few more Toaders continue past here...

This code creates the ResCache object and initializes the resource cache to 50 mega-
bytes. It also creates an object that implements the IResource interface.

Choosing the size of your resource cache has everything to do with what kind of
computer you expect your players to have. Players of the latest game from Crytek
are going to have way more memory than my mother-in-law’s computer—an old
laptop I gave her about four years ago. After you choose the size of your cache, you
should be cautious about how that memory is being used as you stuff in more tex-
tures, sounds, animations, and everything else. Once you run out, your game will
stop performing like it should as it suffers cache misses. Console programmers have
a harsher climate—if they run one byte over, their game will simply crash.

You'll notice the calls to RegisterLoader(). A resource cache can contain many
different types of resources, such as sounds, music, textures, and more. The resource
cache needs to know how each one of these files types is read and converted into
something the game engine can use directly. The process of registering a loader
associates a specific loader class with a file type. You'll learn more about how that
works in the Chapter 8 and see how each of these loaders is coded throughout the
book.

- REZ’S

T Tales

from the

How Much Longer?!?

It seems like every game | work on has the same cycle when it comes to load
optimization. At first, things are just fine because we're loading small sets of
artwork and parsing small XML files. As artists and designers add content to
the game, the load times start to grind to a halt, and before too long, our
game is taking 5-10 minutes just to load the test level! Some programmers
usually spend a few days optimizing the data loading to get it to a decent
time again, but it will inevitably creep back up. It's an interesting dance. @

Loading Text Strings

Text strings that are presented to the player should never be hardcoded. Whatever
language you speak, there are more people out there who speak other languages!
This is handled easily by putting all your text strings into a data file that is easy to

The Game's Application Layer

edit and load. In this case, the data format is XML, read easily by the TinyXML SDK,
available freely under the zlib license. Here’s an example of what this might look like:

<?xml version="1.0" encoding="UTF-8"?>
<strings>
<string value="Alert" id="IDS_ALERT"/>
<string value="Question" id="IDS_QUESTION"/>
<string value="Initializing" id="IDS_INITIALIZING"/>
<string value="0k" id="IDS_OK"/>
<string value="Yes" id="IDS_YES" hotkey="Y"/>
</strings>

One note: the identifier should be representative of what the string stands for and
named to group strings together into categories. For example, if you had a string
“You are out of hard drive space,” you could define that as IDS_INITCHECK_
LOW_DISK_SPACE.

Reading this file is a piece of cake. First, an STL map is declared that will map a
string key to the actual string resource:

std::map<std::wstring,std::wstring> m_textResource;

Then two methods are defined—the first to load the strings from the XML file from
the resource cache and the next to access the string given the key value:

bool GameCodeApp::LoadStrings(std::string Tanguage)
{
std::string languageFile = "Strings\\";
languageFile += language;
languageFile +=".xml";

TiXml1ETement* pRoot =
XmTResourcelLoader::LoadAndReturnRootXmlElement(TanguageFile.c_str());
if (!pRoot)
{
GCC_ERROR("Strings are missing.");
return false;
}
// Loop through each child element and Toad the component
for (TiXm1ETement* pElem = pRoot->FirstChildETement(); pElem; pElem =
pETem->NextSiblingETement())
{
const char *pKey=pElem->Attribute("id");
const char *pText=pElem->Attribute("value");
if (pKey && pText)
{

143

144 Chapter 5 B Game Initialization and Shutdown

wchar_t wideKey[64];
wchar_t wideText[10241];
AnsiToWideCch(wideKey, pKey, 64);
AnsiToWideCch(wideText, pText, 1024);
m_textResource[std::wstring(wideKey)] = std::wstring(wideText);
}
}

return true;

}
std::wstring GameCodeApp::GetString(std::wstring sID)

{
auto TocalizedString = m_textResource.find(sID);
if(TocalizedString ==m_textResource.end())
{
GCC_ASSERT(0 && "String not found!");
return L"";

1
return TocalizedString->second;

Your Script Manager and the Events System

The next section of the initialization sequence creates the script parser and event sys-
tem. The GameCode4 code base uses Lua, which is fairly easy to learn and popular.

if (!LuaStateManager::Create())

{
GCC_ERROR("Failed to initialize Lua");
return false;

}

// Register functions exported from C++
ScriptExports::Register();
ScriptProcess::RegisterScriptClass();

Once it is created, you could actually use a Lua initialization script to control the rest
of the initialization sequence. This can be a fantastic idea, as the script doesn’t add
very much additional time to the initialization sequence. What the programmer gets
in return is the capability to change the initialization sequence without recompiling
the game. The only other way to do this would be to throw some crazy options on
the command line, which can be unwieldy, even in a trivial case. A Lua script has
control mechanisms for evaluating expressions and looping—something you’ll come
to enjoy very quickly.

The Game's Application Layer

The Event Manager is initialized next with these few lines of code:

m_pEventManager = GCC_NEW EventManager("GameCodeApp Event Mgr", true);
if (!m_pEventManager)
return false;

Initialize DirectX and Create Your Window

Windows programmers can’t put off the task of creating their window any longer.
Creating a game window is easy enough, especially since the DirectX Framework
does the whole thing for you. Here’s the code that does this job inside
InitInstance():

DXUTInit(true, true, 1pCmdLine, true);
DXUTCreateWindow(VGetGameTitle(), hInstance, VGetIcon());
if (1GetHwnd())
return FALSE;
SetWindowText (GetHwnd(), VGetGameTitle());

Notice the calls to the virtual methods VGetGameTitle() and VGetIcon(). They
are overloaded to provide this game-specific information to the GameCodeApp base
class. You'll see exactly how to do this in Chapter 21, “A Game of Teapot Wars,”
when we create a game of Teapot Wars with this code.

Since this code is using the DirectX Framework, the next line of code creates the
Direct3D device:

DXUTCreateDevice(D3D_FEATURE_LEVEL_10_1, true, screenWidth, screenHeight);

The constant, D3D_FEATURE_LEVEL_10_1, will be discussed more in the 3D chap-
ters, but basically it sets the minimum 3D feature level required by your game.

Create Your Game Logic and Game View

After the game window is ready, you can create the game logic and all the views that
attach to the game logic. This is done by calling VCreateGameAndView(), which is
a pure virtual function in the GameCodeApp class. Here’s an example of what it
might look like in the inherited class:

BaseGamelogic *TeapotWarsApp::VCreateGameAndView()

{
BaseGamelogic *game = GCC_NEW TeapotWarslLogic();
shared_ptr<IGameView> gameView(GCC_NEW TeapotWarsHumanView());
game->VAddView(gameView);
return game;

145

146

Chapter 5 B Game Initialization and Shutdown

Set Your Save Game Directory

Finding the right directory for user-settable game options used to be easy. A program-
mer would simply store user data files close to the EXE and use the GetModuleFile-
Name() APIL Starting with Windows XP Home, the Program Files directory is off
limits by default, and applications are nevermore allowed to write directly to this direc-
tory tree. Instead, applications must write user data to the C:\Documents and Settings
\{User name}\Application Data directory for XP, C:\Users\{User Name}\Application
Data directory for Vista, and C:\Users\{User Name}\AppData for Windows 7. Not only
can this directory be completely different from one version of Windows to another, but
some users also store these on a drive other than the C: drive. You can use a special API
to deal with this problem: SHGetSpecialFolderPath().

If you open Windows Explorer to your application data directory, you'll see plenty of
companies who play by the rules, writing application data in the spot that will keep
Windows XP from freaking out. Usually, a software developer will create a hierarchy,
starting with his company name, maybe adding his division, then the product, and
finally the version. A Microsoft product I worked on used this path:

GAME_APP_DIRECTORY = "Microsoft\\Microsoft Games\\Bicycle Casino\\2.0";

GAME_APP_DIRECTORY = Your Registry Key

The value for your GAME_APP_DIRECTORY is also a great value for a registry key. Don't forget to add
the version number at the end. You might as well hope for a gravy train: 2.0, 3.0, 4.0, and so on.

It’s up to you to make sure you create the directory if it doesn’t exist. This is made
easier with a call to SHCreateDirectoryEx(), which will create the entire direc-
tory hierarchy if it doesn’t already exist:

const TCHAR *GetSaveGameDirectory(HWND hWWnd, const TCHAR *gameAppDirectory)
{

HRESULT hr;

static TCHAR m_SaveGameDirectory[MAX_PATHI;

TCHAR userDataPath[MAX_PATHI;

hr = SHGetSpecialFolderPath(hWnd, userDataPath, CSIDL_APPDATA, true);

_tescpy_s(m_SaveGameDirectory, userDataPath);
_tcscat_s(m_SaveGameDirectory, _T("\\"));
_tcscat_s(m_SaveGameDirectory, gameAppDirectory);

// Does our directory exist?
if (Oxffffffff == GetFileAttributes(m_SaveGameDirectory))
{

Stick the Landing: A Nice Clean Exit

if (SHCreateDirectoryEx(hWnd, m_SaveGameDirectory, NULL)
I=ERROR_SUCCESS)
return false;

_tcscat_s(m_SaveGameDirectory, _T("\\"));
return m_SaveGameDirectory;

}

Developers Have Different Needs Than Your Players

Make sure that you have two different game option files—one for users and
one for developers. For example, it can be very convenient to have some way
to override the full-screen option in the user settings to open in window mode
for a debug session. Debugging a full-screen application with a single monitor
is sure to send you on a killing spree. While you are at it, make sure that you
allow gamers to set which monitor your game will be displayed on in a
multimonitor configuration, which is becoming much more common.

Practices

Preload Selected Resources from the Cache

Most games preload much, if not all, of the resources they’ll need during the game, or
at the very least the level that is currently loaded. Even open world games will typi-
cally preload as much of the game as makes sense, given the player’s current location
in the game world. The resource cache has methods that you can call to preload
resources, based on file type:

m_ResCache->Preload("*.0gg", NULL);
m_ResCache->Preload("*.dds", NULL);
m_ResCache->Preload("*.jpg", NULL);
m_ResCache->Preload("*.sdkmesh", NULL);

Preloading these resources will take some time, but players expect a pause during
game initialization. What they don’t expect is a big hitch right after they fire a
weapon, which might happen if the sound effect for the weapon isn’t loaded yet.

STiIck THE LANDING: A NiIce CLEAN EXIT

Your game won’t run forever. Even the best games will take a back seat to food and
water. There may be a temptation to simply call exit(0) and be done with it. This
isn’t a wise choice because your DirectX drivers might be left in a bad state, and it
could be difficult to tell if your game is leaking resources.

If you don’t have a decent exit mechanism, you’ll also find it impossible to determine
where your game is leaking memory or other resources. After all, a hard exit is

147

148

Chapter 5 B Game Initialization and Shutdown

basically a huge memory leak, even though the operating system cleans it up. A tight
exit mechanism will show you a single byte of leaked memory before returning con-
trol to the operating system. This is important for all games, Windows or console.

Always Fix Leaks, Fast

Games should never leak memory. Period. The reality of it is that some
Windows API calls leak resources, and you just have to live with it. That's
no reason your game code should be sloppy; hold yourself to a higher
standard, and you won't get a reputation for crappy software.

How Do | Get Out of Here? Practices

There are two ways to stop a game from executing without yanking the power cord:

B The player quits the game on purpose.

B The operating system shuts the application down.

If the player chooses to stop playing, the first thing you should do is ask the player if he
wants to save his game. The last thing someone needs is to lose six hours of progress only
to hit the wrong button by accident. One standard detects if the current state of the game
has changed since the last time the user saved, and only if the state is different does the
system ask if the player wants to save his game. It is equally annoying to save your game,
select quit, and have the idiot application ask if the game needs saving all over again.

Console programmers can stop here and simply run their exit code, destroying all the
game systems generally in the reverse order in which they were created. Windows
programmers, as usual, don’t get off nearly that easy.

When Windows decides your game has to shut down, it sends a different message.
Windows apps should intercept the WM_SYSCOMMAND message and look for
SC_CLOSE in the wParam. This is what Windows sends to applications that are
being closed, perhaps against their will. This can happen if the machine is shut
down, runs low on battery power, or if the player hits Alt-F4.

The problem with this message is that Alt-F4 should act just like your normal exit,
asking you if you want to quit. If you can save to a temporary location and load that
state the next time the player starts, your players will thank you. Most likely, they
were just getting to the boss encounter, and the batteries on their laptop finally ran
out of motivated electrons.

You have to double-check for multiple entries into this code with a Boolean variable.
If your players hit Alt-F4 and bring up a dialog box in your game asking if they want

Stick the Landing: A Nice Clean Exit

to quit, nothing is keeping them from hitting Alt-F4 again. If your players are like the
folks at Microsoft’s test labs, they’ll hit it about 50 times. Your game is still pumping
messages, so the WM_SYSCOMMAND will get through every time a player presses Alt-
F4. Make sure you handle that by filtering it out.

If your game is minimized, you have to do something to catch the player’s attention.
If your game runs in full-screen mode and you've tabbed away to another app, your
game will act just as if it is minimized. If your player uses the system menu by right-
clicking on the game in the Start bar, your game should exhibit standard Windows
behavior and flash. This is what well-behaved Windows applications do when they
are minimized but require some attention from a human being.

void GameCodeApp::FlashWhileMinimized()
{
// Flash the application on the taskbar
//until it's restored.
if (! GetHwnd())
return;

// Blink the application if we are minimized,

// waiting until we are no Tonger minimized

if (IsIconic(GetHwnd()))

{
// Make sure the app is up when creating a new screen
// this should be the case most of the time, but when
// we close the app down, minimized, and a confirmation
// dialog appears, we need to restore
DWORD now = timeGetTime();
DWORD then = now;
MSG msg;

FlashWindow(GetHwnd(), true);

while (true)
{ if (PeekMessage(&msg, NULL, 0, 0, 0))
{ if (msg.message !=WM_SYSCOMMAND || msg.wParam !=SC_CLOSE)
{ TranslateMessage(&msg);
DispatchMessage(&msg);
}

// Are we done?
if (1 IsIconic(GetHwnd()))

149

150

Chapter 5 B Game Initialization and Shutdown

{
FlashWindow(GetHwnd(), false);
break;
}
}
else
{
now = timeGetTime();
DWORD timeSpan = now > then ? (now - then) : (then - now);
if (timeSpan > 1000)
{

then = now;
FlashWindow(GetHwnd(), true);

Doing this is a little tricky. You basically have to run your own message pump in a
tight loop and swallow the WM_SYSCOMMAND and SC_CLOSE messages until your
game isn’t minimized anymore, all the while calling F1ashWindow() at regular time
intervals.

Forcing Modal Dialog Boxes to Close

When your game is closed by something external, such as a power down due to a low
battery condition, you might have some tricky cleanup to do if you are inside one of
your modal dialogs we’ll be discussing in Chapter 9, “Programming Input Devices.”
Since you are running a special version of the message pump, the “real” message
pump won’t get the message.

The solution lies in forcing the modal dialog to close with its default answer and then
resending the WM_SYSCOMMAND with the SC_CLOSE parameter back into the message
pump. If you happen to have nested dialogs up, this will still work because each dia-
log will get a forced close until the normal message pump can process the close
message.

Here’s the pseudo-code for the code inside the SC_CLOSE message handler:

If (you want to prompt the user)
{
If (m_bQuitRequested)
Return early - user is spamming Alt-F4

Stick the Landing: A Nice Clean Exit

Set your m_bQuitRequested = true
Call the model dialog box: "Are you sure you want to quit?"
If (user said no)
{
Abort the quit request - return here.
}
1

// By here we are quitting the game, by request or by force.
Set you m_bQutting = true
If (amodal dialog box is up)
{
Force the dialog to close with a default answer
Repost the WM_SYSCOMMAND message again to close the game
Set m_bQuitRequested = false
}

You'll want to take a closer look at the source code to see more, but this code will
allow the game to bring up a quit dialog even if the player presses Alt-F4 or another
app, like an install program, and attempts to shut down your game by force.

Shutting Down the Game

With some exceptions, you should shut down or deallocate game systems in the
reverse order of which they were created. This is a good rule of thumb to use when-
ever you are grabbing and releasing multiple resources that depend on each other.
Each data structure should be traversed and freed. Take care that any code that is
run inside destructors has the resources it needs to execute properly. It’s pretty easy
to imagine a situation where the careless programmer has uninitialized something in
the wrong order and a destructor somewhere fails catastrophically. Be extremely
aware of your dependencies, and where multiple dependencies exist, lean on a refer-
ence counting mechanism, such as smart pointers, to hold on to resources until they
really aren’t needed anymore.

The message pump, GameCodeApp: :MsgProc, will receive a WM_CLOSE message
when it is time for you to shut down your game, and you’ll handle it by calling the
nonstatic GameCodeApp: :0nClose method:

case WM_CLOSE:

{
result = g_pApp->0OnClose();
break;

}

151

152

Chapter 5 B Game Initialization and Shutdown

The application layer will delete things in the reverse order in which they were cre-
ated. The creation order was resource cache first, the game window second, and the
game logic object third. We'll release them in the reverse order.

LRESULT GameCodeApp::0nClose()

{
// release all the game systems in reverse order from which they

// were created

SAFE_DELETE(m_pGame) ;
DestroyWindow(GetHwnd());
VDestroyNetworkEventForwarder();
SAFE_DELETE(m_pBaseSocketManager);
SAFE_DELETE(m_pEventManager);
ScriptExports::Unregister();
LuaStateManager::Destroy();
SAFE_DELETE(m_ResCache);
return 0;

}

If you extended the GameCodeApp application layer into your own class, you’ll want
to do exactly the same thing with the custom objects there and release them in the
reverse order. When the game logic is deleted, it will run a destructor that releases its
objects, including its process manager and all the views attached to it.

After the WM_CLOSE message is processed, the main message pump exits, and control
will eventually return to the WinMain function, which calls DXUTShutdown() to
release the DirectX Framework.

What About Consoles?

This book has a decidedly Windows bend, mostly because Windows is a very acces-
sible programming platform. But that doesn’t mean you can’t be exposed to some
discussion about how to perform certain tasks with the constraints imposed by con-
sole and mobile platforms—and shutdown is no exception.

Consoles run one program at a time and essentially don’t have to worry about being
left in a weird state. The shutdown solution used on Thief: Deadly Shadows could
have been documented in a single page—we simply rebooted the machine. Is this a
good idea or not?

From the player’s point of view, it’s a great idea. Shutdown doesn’t have to take any
time whatsoever, simply unrolling the data structures and cleaning up allocated
memory. It just exits—and BAM!—you are back to the launch window.

Getting In and Getting Out

From a programmer’s point of view, it is easier, but you don’t have to clean up your
mess, so to speak. A lazy programmer can create systems that are so entangled they
can’t be torn down in an orderly manner, and that can be a bad thing. If something
can’t be torn down during runtime, you have no choice but to allow it to exist
whether it is being actively used or not, and console resources are so tight you still
want every byte. Also, if you ever want to be able to load a new level into memory,
something has to exist in your codebase to remove all the resources in that level and
return the system to a pristine state.

I propose a dual solution—the release build should reboot, exit the game all at once,
and take as little time as possible. This is for the player’s convenience. The debug
build should attempt a clean exit, and any problems with a clean exit should be
addressed before they become a cancer in the rest of your system—especially memory
leaks.

GETTING IN AND GETTING OUuT

Games have a lot of moving parts and use every bit of hardware in the system. Get-
ting all the green lights turned on in the right order can be a real pain, as you saw in
initialization. It’s really easy to have dependent systems, so much so that you have
“chicken and egg” problems—where more than one system has to be first in the ini-
tialization chain. I don’t think I've ever worked on a game where we didn’t have to
hack something horribly to make initialization work correctly. Start with a good
organization, and hopefully your problems in this area will be minimal at best.

Shutting down cleanly is critical under any multitasking operating system like Win-
dows, not only to make sure system resources like video memory are released, but it
also helps the engineering team to know that the underlying technologies can be torn
down in an orderly manner. It doesn’t guarantee good technology, but it is a good
sign of clean code.

153

This page intentionally left blank

CHAPTER 6

by David “Rez” Graham Q*/ »

GAME AcToRsS AND COMPONENT
ARCHITECTURE

Games are full of objects that bring your world to life. A World War II game might
be full of tanks and planes, while a futuristic science fiction game might have robots
and starships. Like actors on a stage, these objects are at the heart of the gameplay. It
seems fitting that we call them “game actors” because that’s exactly what they are.

A game actor is an object that represents a single entity in your game world. It could
be an ammo pickup, a tank, a couch, an NPC, or anything you can think of. In some
cases, the world itself might even be an actor. It’s important to define the parameters
of game actors and to ensure that they are as flexible and reusable as possible.

There are as many ways for defining a game actor as there are games. Like everything
else in computer programming, there is rarely a perfect solution.

A FIRST ATTEMPT AT BUILDING GAME ACTORS

A common approach to building game actors is to start with an Actor base class
that defines things that every actor needs to know, which could just be an ID and a
position.

class Actor
{
ActorId m_id;

protected:
Vec3 m_position;

155

156

Chapter 6 H Game Actors and Component Architecture

public:
const Vec3& GetPosition(void) const { return m_position; }
const Actorld Getld(void) const { return m_id; }

}s

Then you define subclasses for specific actor types. Each subclass adds some new
piece of functionality that builds on the last. For example, you might have a subclass
for actors that could be rendered:

class RenderableActor : public Actor
{
Model* m_pModel;
Texture* m_pTexture;
public:
virtual bool VDraw(void);
b

Underneath that, you could have a subclass for actors that requires physics, pickups,
characters, and so on. Eventually, you’d probably end up with a big inheritance tree
like the one in Figure 6.1.

RenderableActor SpawnPoint
T
PhysicsActor
t1
AnimatingActor Pickup
T
Character Ammo Health
Figure 6.1

A possible actor inheritance tree.

A First Attempt at Building Game Actors

The arrows show inheritance, so RenderableActor inherits from Actor. On the
surface, this looks okay. You can instantiate an object from anywhere in this tree to
provide the functionality you want. If you just need a boulder to fall on the player, it
can be a PhysicsActor object. If you want a new type of pickup, you just write a
new subclass and instantiate that. It’s perfect, right?

Nope, it’s not perfect by any stretch of the imagination. If you recall my advice from
Chapter 3, “Coding Tidbits and Style That Saved Me,” looking at this diagram should
raise a red flag. I spoke about keeping class hierarchies nice and flat, which this fails
at completely. Why does it matter?

Let’s say you build the previous system for your first-person shooter game. It would
probably work just fine for a while. Now let’s say the designer comes up to you and
asks you to make a new kind of pickup, a mana pickup that has an animation. You
can’t derive from Pickup since it doesn’t include any of the animation code, and you
can’t derive from AnimatingActor since that doesn’t include any of the functional-
ity needed for pickups.

One option would be to derive from both classes via multiple inheritance, but that
would be disastrous. You would have to use a virtual base class to avoid the dreaded
diamond of death, as shown in Figure 6.2.

BaseClass

SubClassA SubClassB

t_ 1
| |

SubClassC

Figure 6.2
The diamond of death.

The problem with the diamond of death is that it’s not clear what happens when
members are inherited from the base class. Let’s say you have the following declara-
tion for the previous diagram:

class BaseClass

{
protected:

157

158

Chapter 6 H Game Actors and Component Architecture

int m_num;
explicit BaseClass(int num)
{
m_num = num;
}
b

class SubClassA : public BaseClass

{

public:

explicit SubClassA(void) : BaseClass(1) { }
b

class SubClassB : public BaseClass

{

public:

explicit SubClassB(void) : BaseClass(2) { }
b

class SubClassC : public SubClassA, public SubClassB
{
public:

void Print(void)

{

cout <<m_num << endT;

}

b

In this example, the Print () function can’t even be called because the code won’t
get past the compiler. Visual Studio 2010 generates the following error:

error C2385: ambiguous access of "'m_num'

The problem is that both SubClassA and SubClassB inherit the m_num member,
so SubClassC has two copies of m_num, and the compiler doesn’t know which one
you're referring to. You could solve the issue by explicitly choosing one like this:

cout << SubCTassA::m_num << end1;

Of course you still have the problem of an unused SubClassB::m_num variable
floating around just asking for trouble. Someone is bound to accidentally access that
particular m_num. This duplication is made even worse when you realize that in our
use case for the actor tree, you'd be doubling up on the PhysicsActor class. That
means potentially duplicating large objects.

Component Architecture

Multiple Inheritance Is Evil

If at all possible, try to never use multiple inheritance unless every base class
you're deriving from has nothing but pure virtual functions. You can have
one exception to this and inherit from a single base class with data
members, but every other base class should only contain pure virtual
functions. This is so important that some languages, like Java, actually
enforce it.

Practices

Clearly, this is not an option. Another possibility is to shuffle around the hierarchy
and make Pickup inherit from AnimatingActor. This would solve the problem,
but it means that all pickups have to carry around the weight of the animation sys-
tem, which is most likely nontrivial. What about if you want to have a ghost charac-
ter that ignores physics? They still need to animate and render, but you don’t want
the physics system to even have to know about them.

These kinds of problems give rise to the dreaded blob class. You keep shuffling
around functionality until it all ends up living in one or two gigantic classes. Each
change you make is like trying to untangle a web. You'll be lucky if you can make
any of these changes without breaking half of the actors in the game. Obviously,
this kind of architecture is fundamentally flawed.

COMPONENT ARCHITECTURE

Go back and take a look at Figure 6.1 again and notice how all of those subclasses
are really just trying to add a new feature to the actor. If you can encapsulate each of
those features into a component and compose a final object made up of those com-
ponents, you can get the same functionality as the old class hierarchy but still have
the flexibility to make changes. The Actor class becomes nothing more than a place
to store components. What’s even better is that these components are built up at
runtime, so you can add and remove them during the course of the game. You
can’t do that with the old inheritance model!

The components have a base class that the actor maintains a reference to as well as a
subclass interface that represents the responsibility of that component. Each subclass
of that interface is an implementation of that responsibility. For example, you might
have one interface class called AiComponent, which has several different implemen-
tations for different kinds of AI. The important thing to note is that each component
interface has a unique identifier, and each actor is only allowed to have one class of a
particular responsibility. That means you could have two AiComponent subclasses,
but you could replace an existing one with a new one, allowing you to change the
actor’s behavior at runtime.

159

160

Chapter 6 H Game Actors and Component Architecture

Actor} owns ActorComponent

PhysicsComponentinterface PickupComponentinterface
BoxComponent SphereComponent Ammo Health
Figure 6.3

The actor component system.
Figure 6.3 highlights the new class diagram, showing how these components interact.

In this model, the actor owns a bunch of components (as represented by the dia-
mond), which in turn serves as the base class for the component interfaces. When-
ever a system needs access to a component, it asks the actor for that interface and
gets a pointer to the appropriate interface object. The lowest level of the tree defines
the behavior for that component. It’s important to note that no outside system ever
gets a pointer directly to the concrete class. You would never have a system know
about Ammo or Health directly. You'll learn more about this in Chapter 11, “Game
Event Management,” when you see the event system.

Blobs Can Exist Anywhere

| mentioned earlier how having a deep class hierarchy for game objects can
create blob classes and how components can help mitigate that. Components
are the answer to all of your problems, and it's really easy to create blob
components. At SuperEgo Games, we had a component called SeC1ump,
which was a class that contained all the rendering info, geometry, textures,
shaders, effects, and positioning for an actor. This really should have been
split into several different components that had the ability to work together.
Not all things with position need to be rendered, and not everything that
needs to be rendered needs a shader. Try to have each component handle
exactly one thing.

CREATING ACTORS AND COMPONENTS

All actors are created using a factory. The factory’s job is to take an XML resource,
parse it, and return a fully initialized actor complete with all the appropriate compo-
nents. It’s important to understand how actors are built, so let’s take a look at this
process before diving into the Actor and ActorComponent classes.

Creating Actors and Components 161

All actors are defined with an XML data file. This data file allows you to define a
component configuration and any default values for that component. Here’s some
sample XML for an actor:

<Actor>
<CubePhysicsComponent>
<InitialTransform>
<{Position x="0" y="5" z="0"/>
<Orientation degrees="-90"/>
</InitialTransform>
{Shape>
<Dimensions x="1" y="1" z="1"/>
</Shape>
<Density>castiron</Density>
{PhysicsMaterial>Normal</PhysicsMaterial>
</CubePhysicsComponent>
<TeapotRenderComponent>
<Color r="0" g="0" b="1.0" a="1.0"/>
</TeapotRenderComponent>
</Actor>

This XML file defines an actor with two components, a CubePhysicsComponent
and a TeapotRenderComponent. If you decide later on that the density of the
physics material needs to change, you can do that right here. If you decide that this
actor needs to have a brain, you can easily add an AI component without changing a
single line of code. That’s the power of data-driven development.

Keep in mind that these actor XML files define the template for a type of actor, not a
specific actor instance. There can be many instances of this actor running around, each
with completely different sets of data within their components. The XML file only
defines the definition. You can think of it as defining a class for this type of actor.

Now that you’ve seen how to define types of actors, let’s take a look at the factory
class that’s responsible for parsing this data and creating the actor instance.

typedef ActorComponent *(*ActorComponentCreator)(void);
typedef std::map<std::string, ActorComponentCreator> ActorComponentCreatorMap;

// some actor typedefs to make our 1ife easier

typdef unsigned lTong Actorld;

typedef shared_ptr<Actor> StrongActorPtr;

typedef shared_ptr<ActorComponent> StrongActorComponentPtr;

class ActorFactory
{
ActorId m_TastActorlId;

162

Chapter 6 H Game Actors and Component Architecture

protected:
ActorComponentCreatorMap m_actorComponentCreators;

public:
ActorFactory(void);
StrongActorPtr CreateActor(const char* actorResource);

protected:
virtual StrongActorComponentPtr CreateComponent(TiXmlETement* pData);

private:
Actorld GetNextActorId(void) { ++m_TastActorlId; return m_lastActorId; }
s

The typedef at the very top defines the function pointer signature for instantiating
component objects. These functions are stored in the m_actorComponentCrea-
tors map, which is keyed by the string name of the component. This string comes
from the XML.

Everything starts with the CreateActor() function, which is the only public
method.

StrongActorPtr ActorFactory::CreateActor(const char* actorResource)
{
// Grab the root XML node
TiXmlETement* pRoot =
Xm1ResourcelLoader::LoadAndReturnRootXmlElement (actorResource);
if (!pRoot)
{
GCC_ERROR("Failed to create actor from resource: " +
std::string(actorResource));
return StrongActorPtr();
}

// create the actor instance

StrongActorPtr pActor(GCC_NEW Actor(GetNextActorId()));

if (!pActor->Init(pRoot))

{
GCC_ERROR("Failed to initialize actor: " +std::string(actorResource));
return StrongActorPtr();

}

// Loop through each child element and Toad the component
for (TiXm1Element* pNode = pRoot->FirstChildETement(); pNode;
pNode = pNode->NextSiblingElement())

Creating Actors and Components

StrongActorComponentPtr pComponent (CreateComponent(pNode));
if (pComponent)
{
pActor->AddComponent (pComponent);
pComponent->SetOwner(pActor);
}
else

{
return StrongActorPtr();

}
}

// Now that the actor has been fully created, run the post init phase
pActor->PostInit();

return pActor;
}

First, this function loads the resource, gets the root XML node, and does a little error
checking. Then it instantiates the actor object, generating and passing in the next
actor ID. The actor ID is important because it allows you to represent the actor
uniquely as a single primitive value (in this case, an unsigned long). It’s generally fas-
ter and easier to pass this value around, especially when you start dealing with other
systems and languages. You’'ll see this ID used quite a bit in Chapter 12, “Scripting
with Lua.” Lua doesn’t have to know anything about the internals of the actor sys-
tem; it just knows that it has a value it can use to tell the actor system to do some-
thing with a specific actor.

The actor’s Init () function is called to do any base-level initialization before adding
components. If this succeeds, the next step is to loop through all the components
defined in the XML file and load each one. This is done by calling the CreateCom-
ponent () function, passing in the XML node for that component. The component
returned is then added to the actor’s component map, and the component is told of
its new owner. If this process fails, the function aborts. Having no actor is better than
having a partially constructed one. Once the components have all been added, the
actor’s PostInit() function is run. The PostInit() function takes care of any
initialization that needs to occur after the actor and all components have been fully
created. That’s it, the newly composed actor is returned to the caller.

The CreateComponent () function is relatively simple.

StrongActorComponentPtr ActorFactory::CreateComponent(TiXmlETement* pData)
{

163

164 Chapter 6 B Game Actors and Component Architecture

std::string name(pData->Value());
StrongActorComponentPtr pComponent;

auto findIt =m_actorComponentCreators.find(name);

if (findIt !=m_actorComponentCreators.end())

{
ActorComponentCreator creator = findIt->second;
pComponent.reset(creator());

}

else

{
GCC_ERROR("CouTdn't find ActorComponent named " + name);
return StrongActorComponentPtr(); // fail

}

// initialize the component if we found one
if (pComponent)
{
if (!pComponent->Init(pData))
{
GCC_ERROR("Component failed to initialize: " + name);
return StrongActorComponentPtr();
}
}

// pComponent will be NULL if the component wasn't found. This isn't
// necessarily an error since you might have a custom CreateComponent()
// function in a subclass.
return pComponent;
}

C++0x/C++ 11 Redefines the auto Keyword

What is the auto keyword doing in that function? There’s a new standard
being published called C++0x, or C++ 11. This new standard adds a huge
amount of really cool features to the C++ language, some of which were
covered in Chapter 3. If you have Visual Studio 2010, you can take
advantage of a few of them.

One of these features is the newly overloaded auto keyword. The original
usage of this keyword was to declare the variable in the automatic storage
class. In other words, make the variable behave normally. This made it the :
single most useless (and redundant) keyword in the C++ language. In C++0x, ’

the auto keyword now defines a variable whose type can be deduced at prdCflCES
compile time. In the above code, | use it to declare an iterator so that if the

Defining Actors and Components

data structure changes in the future, | don't have to update this code. It also makes the code a bit easier
to read. Since the variable type is deduced statically (at compile time), there’s no runtime cost at all.
In fact, if you hover over the variable itself in Visual Studio 2010, a tooltip will even tell you what the

type is.

First, this function grabs the name of the component from the XML node passed in.
Then it searches the component creator map to find the specific creator function and
calls it to instantiate the component. If it can’t find the creator, it tosses up an error
message and returns in disgrace. The creator functions are trivially simple. They just
return the appropriate instantiated object.

ActorComponent* CreateCubePhysicsComponent()

{
return GCC_NEW BoxPhysicsComponent;

}

Back to the CreateComponent() function, the newly created component is then
initialized by calling its Init () function. Assuming this succeeds, the newly initial-
ized component is returned back to the CreateActor () function.

And there you have it! That’s the process for creating and initializing an actor from a
data file.

DEFINING ACTORS AND COMPONENTS

Now that you have an understanding of how actors get into the game, it’s time to
show you what an actor really looks like. Here’s the Actor class:

class Actor

{
friend class ActorFactory;

typedef std::map<ComponentId, StrongActorComponentPtr> ActorComponents;

ActorId m_id; // unique id for the actor
ActorComponents m_components; // all components this actor has

public:
explicit Actor(Actorld id);
~Actor(void);

bool Init(TiXmlETement* pData);
void PostInit(void);
void Destroy(void);

165

166 Chapter 6 B Game Actors and Component Architecture

void Update(int deltaMs);

// accessors
Actorld GetId(void) const { return m_id; }

// template function for retrieving components
template <class ComponentType>
weak_ptr<ComponentType> GetComponent(Componentld id)
{
ActorComponents::iterator findIt =m_components.find(id);
if (findIt !=m_components.end())
{
StrongActorComponentPtr pBase(findIt->second);
// cast to subclass version of the pointer
shared_ptr<ComponentType> pSub(
std::trl::static_pointer_cast<ComponentType>(pBase));
weak_ptr<ComponentType> pWeakSub(pSub); // convert strong pointer
// to weak pointer
return pWeakSub; // return the weak pointer

}
else

{
return weak_ptr<ComponentType>();
}
}

private:

// This is called by the ActorFactory; no one else should be
// adding components.

void AddComponent (StrongActorComponentPtr pComponent);

s

The m_components member is the map of all components that this actor has.
Notice that they're keyed off the component ID. This ID is unique for each compo-
nent interface.

The Init() and PostInit() functions are called by the factory as the actor is
being created and were covered in the CreateActor() function previously.

The Destroy() function is called when you want to destroy the actor. The actor
holds onto strong references to each of its components, but the components also
need to hold onto strong references to the actor. If you recall from my peanut butter
and jelly example in Chapter 3, having a circular reference can potentially cause
memory leaks. It’s not easily avoided since some components may still need to access
the actor during destruction time. If weak pointers were used instead, it would cause

Defining Actors and Components

a crash whenever the component destructor tried to access the actor. The actor gets
destroyed when all strong references are released, which means all weak references
are immediately made invalid. The result is that the component’s weak reference to
the actor is no longer valid and can’t be used. Since both references need to be strong
references, the circular reference chain has to be explicitly broken. The Destroy ()
function takes care of this by explicitly clearing out the component map.

The Update() function is called every time the game updates. You'll see how this
works in Chapter 7, “Controlling the Main Loop,” when you learn about the main
game loop.

GetComponent () is a template function that enables you to get any component by
passing in the component ID. It takes care of the smart pointer casting and returns a
weak reference to the component, which allows the caller to safely store this pointer
while still allowing the component to be destroyed. Just be sure to check the validity
of the pointer before using it.

Looking back at the class declaration, you might notice something a bit odd. There
are no virtual functions whatsoever, because this class is not meant to be subclassed.
All the variation comes from the components you attach to this actor. That’s called
composition, which is in action here (see Chapter 3).

Another key thing to notice is that the Actor class does absolutely nothing by itself.
Its entire purpose in life is to manage and maintain components. An actor without
components is just an empty box.

Simple Functions Can Be More Expensive Than You Think

The GetComponent () function is extremely simple—it just searches a map that's
typically very small and returns a value. By itself, this is certainly fast enough, but
this function has the possibility of being called hundreds or even thousands of times
each frame. It's important to make sure that functions like this are lightning fast. The
previous implementation is the simplest way but not the fastest.

On The Sims Medieval, our component maps for actors are laid out in a
contiguous block of memory and are accessed by offset. When a system asks
for a component, it's a simple pointer add to find the correct component.
Another solution could be to cache certain components. One project | worked
on had a transform component that was so commonly accessed, we just had a
pointer to it directly on the Actor class.

Here’s a look at the ActorComponent base class:

class ActorComponent
{
friend class ActorFactory;

167

168 Chapter 6 B Game Actors and Component Architecture

protected:
StrongActorPtr m_pOwner;

public:
virtual “ActorComponent(void) { }

// These functions are meant to be overridden by the impTementation
// classes of the components.

virtual bool VInit(TiXmlElement* pData) =0;

virtual void VPostInit(void) { }

virtual void VUpdate(int deltaMs) { }

// This function should be overridden by the interface class.
virtual ComponentId VGetComponentId(void) const =0;

private:
void SetOwner(StrongActorPtr pOwner) { m_pOwner = pOwner; }
b

This is the interface for all components. The m_pOwner member is the link back to
the actor, which is necessary to allow components to communicate with each other.
Other than that, there are no member variables. The rest of the class serves as an
interface for individual components to override and implement.

You already saw the VInit() and VPostInit() functions in the factory’s Create-
Component () method. The VUpdate() function is called by the actor’s Update()
function. The VGetComponentId() function is overridden by the component inter-
face classes that derive from this class. Every component interface has a unique ID,
and this accessor is used to retrieve it. A component must have an ID, which is why
this is a pure virtual function.

STORING AND ACCESSING ACTORS

There are a number of ways to store actors and even components. The method used
in this book is an STL map where the key is the actor ID.

typedef std::map<ActorId, StrongActorPtr> ActorMap;
ActorMap m_actors;

Maps allow for relatively fast lookups, insertions, and removals (which, for the mathemat-
ically inclined, are all 0(Tog n)). All actors live in this map on the BaseGamelLogic
class, which has a public API for retrieving actors.

virtual weak_ptr<Actor> VGetActor(const Actorld id);

Storing and Accessing Actors

Note that VGetActor () returns a weak pointer to the actor so that systems can hold
on to this pointer for as long as they want without keeping the actor from being
destroyed. In fact, the only thing that should maintain a strong pointer to the actor
is the m_actors map and the m_pOwner pointer on components owned by the
actor. Having only two strong pointers to the actor ensures that an actor is truly
destroyed when you call its Destroy () method.

Having this direct control over the lifetime of actors (or really any object) is very
important. Actors are used to represent complex objects like characters. A character
has geometry information, textures, shaders, scripts, maybe an inventory that links to
even more actors, and so on. All of these things together amount to a ton of
data, which means a ton of memory. You need to have the ability to destroy these
actor objects at any time to free up memory. If you allowed other systems to
hold onto strong pointers to actors, you'd have a tough time ensuring that the actor
was destroyed at all. Even worse, since actors are composites of multiple objects,
you could get actors that lie around in completely broken states. Fixing these types
of issues was my fulltime job for about a month toward the end of The Sims
Medieval.

There are many other ways of storing actors. You could put them all in a single STL
vector and have the index be the ID. This could be very wasteful if you're often delet-
ing actors, unless you account for the reuse of actor IDs. The advantage here is in the
ultra-fast lookups, which are 0(1), or constant time. It’s lightning fast because you
can just index into an array. This type of data structure would work well on a game
where your actors tend to stick around, like an adventure game. It wouldn’t work as
well in an FPS due to the constant deletions.

Another possible solution is to break up your game world into chunks where each
chunk represents some part of the world. If your whole world is a grid of chunks, it
becomes trivial to find out which actors belong to what chunks by taking their posi-
tion and dividing it by the width and height of the grid cells. This kind of spatial
partitioning is crucial in FPS or RTS games. Let’s say I throw a grenade that explodes
in a 15-foot radius. Which actors are affected? With the implementation above, you'd
have to loop through the entire map to find your actor. If you had a cell-based par-
titioning system, you could figure out which cells were affected by the grenade and
just loop through the actors in those cells.

Looping through the entire map isn’t a big deal when you have a couple dozen
actors. When you have hundreds or even thousands of actors, it becomes way too
costly. Spatial partitioning gives you a way to cut down the number of actors you
have to consider.

169

170

Chapter 6 H Game Actors and Component Architecture

This is just the tip of the iceberg in how to store actors. I could probably write an
entire book on the subject! The simple STL map solution we use here makes for a
good starting point, but just keep in mind that you'll have some work to do when
you start thinking about taking this engine to the next level and making a real game.

PuTtTING IT ALL TOGETHER

Now that you’ve seen how actors are built up with components and you understand
the definitions for the Actor and ActorComponent classes, it’s time to see how it
all works together with a simple example showing you how to implement a simple
component for different kinds of pickups in the game. First, we need to define the
pickup interface that all pickups will derive from.

class PickupInterface : public ActorComponent
{
public:
const static ComponentId COMPONENT_ID; // unique ID for this component type
virtual ComponentId VGetComponentId(void) const
{
return COMPONENT_ID;
}

// Pickup interface
virtual void VApply(WeakActorPtr pActor) =0;
b

At the top is the ID that must be unique for all component interfaces, as well as the
override for the VGetComponentId() function. This is the bare-minimum require-
ment for all components. Then the pickup interface itself is defined with declaring
the VApply () pure virtual function. All pickup implementations must override and
define this function.

Now let’s write the actual implementation classes. This example will use an ammo
pickup and a health pickup.

class AmmoPickup : public PickupInterface

{

public:

virtual bool VInit(TiXmlElement* pData);
virtual void VApply(WeakActorPtr pActor);
}s

class HealthPickup : public PickupInterface
{

Data Sharing

public:

virtual bool VInit(TiXmlElement* pData);
virtual void VApply(WeakActorPtr pActor);
b

The next thing to do is to define new creator factory methods:

ActorComponent* CreateAmmoPickup()

{
return GCC_NEW AmmoPickup;

}

ActorComponent* CreateHealthPickup()

{
return GCC_NEW HealthPickup;

}

These methods need to be added to the creator map, so the following lines need to be
added to the ActorFactory constructor:

m_actorComponentCreators["AmmoPickup"] = CreateAmmoPickup;
m_actorComponentCreators["HealthPickup"] = CreateHealthPickup;

That’s it! Now you can create ammo and health pickup definitions in the XML and
create them by calling the actor factory CreateActor () method.

DATA SHARING

Inevitably, components are going to need to talk to each other. You may have a com-
ponent that stores and manipulates the position of an actor. Your Al component will
need to know this position in order to determine where it is, and your render com-
ponent will need to know where to draw the actor. There are two main ways to do
this, and many games use a combination of both.

Who Owns the Transform?

The component system at Planet Moon tried to minimize communication
between components by having each component cache important
information about other components. One such piece of information was the
transform, which described the position, orientation, and scaling of the actor.
There were no less than three transforms for any given actor: one for the
render component, one for the game logic component, and the other for the
physics component. These three transforms all had to be kept in sync with
each other. If something got out of sync, you'd see very strange behavior,
where the actor might get rendered in a different position from its physical
transform.

171

172

Chapter 6 H Game Actors and Component Architecture

One common debugging practice was to set a breakpoint on the actor’s update function and examine all
three transforms to see if they were all correct. Another common practice was to force a call to the sync
function to ensure that everything was in sync during a given code path. These were all terrible practices
and didn’t really work in the long run. One engineer was fed up with it; by the end of the project, he
refactored the whole system to use only a single transform for each actor, which had the interesting
side effect of providing a decent performance boost since we didn't have all those sync calls
everywhere.

Direct Access

The first way to share data is by directly accessing the component interface. Each
component stores a pointer back to the owning actor, so it’s a simple matter of ask-
ing the actor for the component.

weak_ptr<Pickup> pWeakPickup =
pActor->GetComponent<Pickup>(Pickup::COMPONENT_ID);
shared_ptr<Pickup> pPickup = MakeStrongPtr(pWeakPickup);

pPickup will now either contain a strong reference to the Pickup component for
pActor or it will be empty. If it’s empty, it means pActor doesn’t have a Pickup
component. It’s important to always run this check and never make assumptions.

Notice the extra step in there to convert the weak_ptr returned by GetComponent ()
into a shared_ptr by calling MakeStrongPtr(). The reason for this is that a
weak_ptr cannot be dereferenced directly; it must always be converted to a
shared_ptr before being used. MakeStrongPtr() is a helper function I wrote to
handle dead weak_ptrs.

template <class Type>
shared_ptr<Type> MakeStrongPtr(weak_ptr<Type> pWeakPtr)
{
if (IpWeakPtr.expired())
return shared_ptr<Type>(pWeakPtr);
else
return shared_ptr<Type>();
}

It’s important to note that systems should never hold onto this shared_ptr longer
than they have to because it keeps that component from getting destroyed when the
actor is destroyed. You can hold onto weak_ptr as long as you want, however. A
common strategy is to get a weak_ptr to the component you need and hold onto
it so that you don’t have to look it up every frame. Just make sure you test and that
the component is still valid. If it becomes invalid, it means the actor was destroyed,
and you need to handle that.

Data Sharing

The advantage of this method is that it’s very easy to access the component you want:
You just grab the pointer, test it, and go. The disadvantage is that you can begin to
couple multiple components tightly together. After a while, you'll realize that every
actor needs to have a position somewhere because every other component asks for
it. As long as you make sure to always gracefully handle the case where no compo-
nent exists, this scenario shouldn’t be too bad.

Events

If you really want to decouple your components, another method is to use an event
system. The actor acts as a messaging service that its components (and other sys-
tems) can use to post messages about important events. Each component registers
which events it cares about, and when the actor receives a message, it distributes it
to the appropriate components.

For example, let’s say the Al component wants to move the actor. It just posts a mes-
sage requesting the move to a new position, and the actor tells the appropriate com-
ponents. The AI component doesn’t have to know, nor does it care, which
components receive the message.

This situation certainly keeps components from being decoupled from one another,
but it also raises a few concerns. Sometimes it’s important to know which component
is answering the message and in which order. Say you post a move message, and the
renderable component receives it first. It updates its internal positions, and everything
is fine. Then the physics component receives the new position and detects it as being
invalid. Now what? The physics system could send an event to disregard the old posi-
tion and give the new position, but this could cause an oscillation where the AI com-
ponent and physics component are battling each other trying to move the actor. The
actor will mostly appear to vibrate, jumping back and forth between two positions.

There are certainly ways around this issue. You could (and probably should) have all
message registration defined in data, which allows a great deal of control on a per-
actor basis.

Game events are covered in detail in Chapter 11.

The Best of Both Worlds

The best solution to these problems is to use a mixture of the two communication
methods. Events are great for broadcasting things that other components may or
may not care about, and direct access is great when you need to directly tell some-
thing to a specific component. Why not use both? Many games do.

173

174

Chapter 6 H Game Actors and Component Architecture

In the sample game of Teapot Wars, I've chosen to use the first method of directly
accessing components because it’s a lot more readable and easier to understand
exactly what’s happening. If you were take this actor system to the next level so it
could be used in a professional game, you would want to apply the concepts from
Chapter 11 and add a simple messaging system as I described in the previous section.
Other than that, this component system is very similar to the one we used on Rat
Race at Super-Ego Games.

CHAPTER 7

by David “Rez” Graham Q*/ »

CONTROLLING THE MAIN LooP

Every game has a series of operations that run over and over to present and update
the game to the player. This is the heartbeat that lets you know the game is alive.
Games are unlike many forms of software in that even if the player does absolutely
nothing, the game still needs to be constantly thinking and processing. A typical
main loop may receive and process player input, run creature Al, update animations,
update the physics system, run any world simulation that needs to happen, render
the scene, and play music and sound effects. Every main loop is different and tailored
for each individual game. All of these operations occur in one giant loop that can’t
take longer than 33ms per iteration (or 30 iterations per second) at a minimum.
When you exit the main loop, your game shuts down

This is very different than your typical Windows program. Most Windows programs
run a message pump designed to sit there doing nothing until the application receives
an event. It does absolutely no processing until the user triggers something. This
won’t work for a game, which will happily go about processing and rendering regard-
less of player input. Even a chess game needs to be allowed to run its Al while the
player is considering his move.

ORGANIZING THE MAIN LooP

There are many ways to organize the main loop, and each game has its own tech-
nique. In this chapter, we’ll look at a number of different possibilities.

175

176

Chapter 7 H Controlling the Main Loop

Initialization I

Y

[Process Player lnputH

|: Perform Game Logic J
)

(Al, Physics, World Simulation, etc.

|

[Render Scene, Play SFX, etn:.jJ

exit

Figure 7.1

A simple main loop.

Hard-Coded Updates

The easiest way to create a main loop is to simply update every system once each
frame, as shown in Figure 7.1.

This is the easiest method to actually write since all you need to do is directly call a
bunch of update functions, but it tends to be very inflexible. What happens if you
want the Al to update at a different frequency? On Rat Race, we used a complex
heuristic utility function to determine what action an NPC wanted to do next. We
had code in there to ensure that it only ran once every second. At EA, we have
even more complex timing functions to determine which Sim gets to run Al, for
how long, and at what level of detail. Conversely, youll want to render as quickly
as humanly possible to avoid hitches in the visual presentation of the game.

As inflexible as this method is, it’s still certainly valid. Early games from the Stone
Age (for example, the late 80s and early 90s) all used this method. Some games still
do. I worked at a game company called PlayFirst on casual iPhone and iPad games
for a time. They all used this hard-coded method.

Multithreaded Main Loops

Another method of building the main loop is to divide your update into major sec-
tions that can run concurrently. The classic split is between game logic and

Organizing the Main Loop

I Initialization I

[Process Player InputH l
l [Render Scene, Play SFX, etc,]e

Perform Game Logic
(Al Physics, World Simulation, etc.)

Figure 7.2

A multithreaded main loop.

rendering. One problem with rendering is that on modern hardware, your CPU
spends most of its time waiting for the video card to process what it just sent. By
putting the rendering system on another thread, you free up the CPU while the
GPU is working its magic (see Figure 7.2).

This is a great technique for squeezing more out of your processor, especially consid-
ering that modern processors aren’t really getting faster clock cycles, they’re getting
more cores.

Why not put everything on its own thread? You could have an architecture like the
one in Figure 7.3, where every system gets its own separate thread of execution.

One problem with using a multithreaded architecture is communication between
threads. When you have multiple threads all running at the same time and trying to
communicate with each other, you have to take steps to ensure thread safety. Fur-
thermore, threads tend to be pretty heavyweight objects, so it’s inefficient to use
threads for everything.

I'm not going to get too deep into the details here, since multithreaded architecture is
beyond the scope of this chapter. You'll learn more about these exact issues and how
you can work around them in Chapter 19, “An Introduction to Game AlL”

177

178 Chapter 7 B Controlling the Main Loop

| Initialization |
v

Process Player Input Al Physics

[Render Scene}@| [Play SFXk_l

Figure 7.3

A cooperative multithreaded main loop.

A Hybrid Technique

What if we take the idea of putting multiple systems in their own discrete execution
modules but throw away all the problems with true concurrent execution? This gives
us the best of both worlds, keeping all of our different systems nice and decoupled
from each other and allowing them the illusion of being run simultaneously while
avoiding race conditions and other nasty threading issues. This technique is called
cooperative multitasking.

Cooperative multitasking is a mechanism where each process gets a little CPU time
in a round-robin fashion. It’s called cooperative because each process is responsible
for releasing control back to the calling entity. If a process goes into an infinite
loop, the entire system will hang. The trade-off for that weakness is that the system
is simple to design and extremely efficient.

Imagine a simple base class called Process with a single virtual method, VOnUpdate():

class Process
{
public:
virtual void VOnUpdate(unsigned Tong deltaMs) =0;
s

You could create objects inheriting from this class and stick them in a master process list.
Every game loop, your code could traverse this list and call VOnUpdate () for each object:

typedef std::Tist<Process*> ProcessList;
ProcessList g_processlList;

Organizing the Main Loop

void UpdateProcesses(unsigned Tong deltaMs)
{

ProcessList::iterator i =m_processList.begin();
ProcessList::iterator end =m_processList.end();

while (i I=end)
{
Process* pProcess = *1;
pProcess->V0OnUpdate(deltaMs);
++i;
}
}

The contents of the VOnUpdate() overload could be anything. It could move the
object on a spline, it could monitor the contents of a buffer stream and update it
accordingly, and it could run some Al code. It could monitor user interface objects
like screens and buttons. If everything in your game were run by a process, you could
actually get away with a main function that looked like this:

void main()

{
if (CreateProcesses())

{
RunProcesses();

}
ShutdownProcesses();

}
It may sound crazy, but Ultima VIIT's main loop looked almost exactly like that, give
or take a few lines.

Think Like a Sim REZ’S
T Tales

from the

On The Sims Medieval, every Sim had two processes that were constantly
running. One process handled the Al and ran any interactions on the Sim
(like eating, sword fighting, and so on). The other thread was the
SimUpdate, which mostly dealt with the simulation of the Sim itself. This
process took care of things like decaying commodities, moods, and any
other noninteraction updates the Sim needed to make. This system worked
remarkably well. You could actually Ctrl-Alt-Shift-click on a Sim and break @®
the execution of its specific interaction process! This made debugging the
internals of a particular Sim a /ot easier.

There are a few wrinkles to this wonderful design that you should know. If creating a
system to handle your main loop were as easy as all that, I wouldn’t bother devoting
so much time to it. The first big problem comes when one process’s VOnUpdate()

179

180

Chapter 7 H Controlling the Main Loop

can destroy other processes, or even worse cause a recursive call to indirectly cause
itself to be destroyed. Think of the likely code for a hand grenade exploding. The
VOnUpdate () would likely query the game object lists for every object in a certain
range, and then cause all those objects to be destroyed in a nice fireball. The grenade
object would be included in the list of objects in range, wouldn’t it?

The solution to this problem involves some kind of reference counting system or
maybe a smart pointer. The shared_ptr template class in Chapter 3, “Coding Tid-
bits and Style That Saved Me,” solves this problem well, and it will be used in the
next section.

A Simple Cooperative Multitasker

A good process class should contain some additional data members and methods to
make it interesting and flexible. There are as many ways to create this class as there
are programmers, but this should give you a good start. There are two classes in this
nugget of code:

B class Process: A base class for processes. You'll inherit from this class and
redefine the VOnUpdate () method.

B class ProcessManager: This is a container and manager for running all
your cooperative processes.

Here’s the definition for Process:

// some smart pointer typedef's

class Process;

typedef shared_ptr<Process> StrongProcessPtr;
typedef weak_ptr<Process> WeakProcessPtr;

class Process

{
friend class ProcessManager;

public:
enum State
{
// Processes that are neither dead nor alive
UNINITIALIZED =0, // created but not running
REMOVED, // removed from the process Tist but not destroyed; this can
// happen when a process that is already running is parented
// to another process.
// Living processes
RUNNING, // initialized and running

Organizing the Main Loop 181

PAUSED, // initialized but paused
// Dead processes
SUCCEEDED, // completed successfully
FAILED, // failed to complete
ABORTED, // aborted; may not have started
}s
private:
State m_state; // the current state of the process
StrongProcessPtr m_pChild; // the child process, if any
public:
// construction
Process(void);
virtual “Process(void);

protected:

// interface; these functions should be overridden by the subclass as needed
virtual void VOnInit(void) { m_state = RUNNING; }

virtual void VOnUpdate(unsigned long deltaMs) = 0;

virtual void VOnSuccess(void) { }

virtual void VOnFail(void) { }

virtual void VOnAbort(void) { }

public:
// Functions for ending the process.
inTline void Succeed(void);
inline void Fail(void);

// pause
inline void Pause(void);
inline void UnPause(void);

// accessors
State GetState(void) const { return m_state; }
bool IsATive(void) const {return (m_state == RUNNING || m_state == PAUSED);}
bool IsDead(void) const
{
return (m_state == SUCCEEDED || m_state == FAILED || m_state == ABORTED);
}
bool IsRemoved(void) const { return (m_state == REMOVED); }
bool IsPaused(void) const { return m_state == PAUSED; }

// child functions

inline void AttachChild(StrongProcessPtr pChild);

StrongProcessPtr RemoveChild(void); // releases ownership of the child

StrongProcessPtr PeekChild(void) { return m_pChild; } // doesn't release
// ownership of child

182

Chapter 7 H Controlling the Main Loop

private:
void SetState(State newState) { m_state = newState; }
}s

At the very top of this class is the State enum. There are a number of different
states a process could potentially be in. Its current state determines how the
ProcessManager handles it during the update loop. Processes start in the
UNINITIALIZED state.

Along with its state, every process can have a child process (the m_pChi1d member).
The child is a suspended process that’s attached to this process. If this process com-
pletes successfully, the ProcessManager will attach the child and process it in the
next frame. This is a very simple yet powerful technique, allowing you to create
chains of processes. For example, if you wanted an NPC to walk to the water cooler
and take a drink, you could create one process for path finding and another for run-
ning an animation. You would then instantiate the path-finding process and attach
the animation process as a child. When you ran it, the character would path up to
the water cooler and run the animation. This was exactly how Rat Race worked.
Actions were built up by the AI and then pushed as a single-chained process.

There are five virtual functions that subclasses are allowed to override. The only
function you have to override is VOnUpdate () since that’s where the magic happens.
This function defines what your process does and gets run once every loop. The only
parameter is the delta time between this frame and the last.

VOnInit() is called once during the very first update. All of your process initializa-
tion should go here. It’s important to remember to call the base class version of this
function at the top of your override to ensure that the process state correctly gets set
to RUNNING.

VOnSuccess (), VOnFail(), and VOnAbort() are exit functions. One of them is
called when your process ends, depending on how it ended. The Succeed() and
Fail() public member functions are used to end a process and tell it if it succeeded
or failed. A process is typically only aborted due to an internal issue. It is perfectly
valid to call Succeed() or Fail() from inside VOnInit(). This is a fairly com-
mon case since initialization can fail. If this happens, the process will never have its
VOnUpdate() function called.

If a process is successful and it has a child process attached, that child will be pro-
moted into the ProcessManager’s list. It will get initialized and run the next frame.
If a process fails or is aborted, the child will not get promoted.

Note the use of the StrongProcessPtr typedef throughout. This is an excellent
example of using smart pointers in a class that uses an STL list. Any reference to a

Organizing the Main Loop

StrongProcessPtr is managed by the smart pointer class, ensuring that the pro-
cess object will remain in memory as long as there is a valid reference to it. The
moment the last reference is cleared or reassigned, the process memory is finally
freed. That’s why the ProcessManager has a list of StrongProcessPtr’s instead
of a list of Process pointers.

A Seriously Nasty Bug on Ultima Vil

One of the trickiest bugs | ever had to find had to do with a special kind of
process in Ultima VIII. Ultima VIIl processes could attach their OnUpdate ()
calls to a real-time interrupt, which was pretty cool. Animations and other
events could happen smoothly without worrying about the exact CPU speed
of the machine. The process table was getting corrupted somehow, and no
one was sure how to find it as the bug occurred completely randomly—or so
we thought. After tons of QA time and late nights, we eventually found that
jumping from map to map made the problem happen relatively frequently. We
were able to track the bug down to the code that removed processes from the
main process list. It turned out that the real-time processes were accessing the
process list at the same moment that the list was being changed. Thank
goodness, we weren't on multiple processors; we never would have found it.

MIKE’S
Tales

from the

- —

Pixel Mines

Here is the definition of the ProcessManager class:

class ProcessManager

{
typedef std::1ist<StrongProcessPtr> ProcesslList;
ProcessList m_processList;

public:
// construction
~ProcessManager(void);

// interface

unsigned int UpdateProcesses(unsigned Tong deltaMs);
WeakProcessPtr AttachProcess(StrongProcessPtr pProcess);
void AbortA11Processes(bool immediate);

// accessors
unsigned int GetProcessCount(void) const { return m_processList.size(); }

private:
void ClearAl1Processes(void); // should only be called by the destructor
s

183

184

Chapter 7 H Controlling the Main Loop

The ProcessManager class is pretty small. At the very top is a typedef for a list of
pointers to Process objects. Note how they are all StrongProcessPtr types, which
in turn are of type shared_ptr<Process>. This allows you to create a process and
safely hold on to your own reference without worrying about when the object is actually
destroyed. It will be destroyed when the final strong reference is removed.

When you want to run a new process, you instantiate the specific Process subclass
you want and then call AttachProcess() to attach it to the Process Manager.
This queues it up to be initialized and run the next time the Process Manager
updates.

To update the Process Manager, you call UpdateProcesses(). Let’s take a look at
that function:

unsigned int ProcessManager::UpdateProcesses(unsigned long deltaMs)
{

unsigned short int successCount =0;

unsigned short int failCount =0;

ProcesslList::iterator it =m_processList.begin();
while (it !=m_processList.end())
{

// grab the next process

StrongProcessPtr pCurrProcess = (*it);

// save the iterator and increment the o1d one in case we need to remove
// this process from the 1ist

ProcessList::iterator thisIt=it;

++it;

// process is uninitialized, so initialize it
if (pCurrProcess->GetState() ==Process::UNINITIALIZED)
pCurrProcess->V0OnInit();

// give the process an update tick if it's running
if (pCurrProcess->GetState() == Process::RUNNING)
pCurrProcess->VOnUpdate(deltaMs);

// check to see if the process is dead
if (pCurrProcess->IsDead())
{
// run the appropriate exit function
switch (pCurrProcess->GetState())
{
case Process: :SUCCEEDED :

Organizing the Main Loop

pCurrProcess->V0OnSuccess();
StrongProcessPtr pChild = pCurrProcess->RemoveChild();
if (pChild)
AttachProcess(pChild);
else
+t+successCount; // only counts if the whole chain completed

break;

}
case Process::FAILED :

{
pCurrProcess->V0nFail();
++failCount;
break;

}

case Process: :ABORTED :

{
pCurrProcess->V0nAbort();
++failCount;
break;

}

1
// remove the process and destroy it

m_processList.erase(thisIt);
}

}
return ((successCount <<'16) | failCount);

}

This function loops through every process in the list. If the process is in the
UNINITIALIZED state, it calls VOnInit () on the process. Then, if the process is in
the RUNNING state, it calls VOnUpdate(). Note that VOnInit() typically sets the
state to RUNNING, so the process will get initialized and run its first update in the
same frame, assuming VOnInit () succeeded.

The next block checks to see if the process has died. If so, it checks the exact state and
calls the appropriate exit function, allowing the process to perform any exit logic. A
successful process will have its child attached to the process list before being removed.
Failed processes will simply be removed, causing their children to be destroyed.

Recall that nearly 100 percent of the game code could be inside various overloads of
Process::VOnUpdate(). This game code can, and will, cause game processes and
objects to be deleted, all the more reason that this system uses smart pointers.

185

186 Chapter 7 B Controlling the Main Loop

Round Robin Scheduling Gone Bad

MIKE’S
£ » Tales

from the

This system was used extensively to control the login servers of Ultima Online.
When it was initially deployed, customer service began to receive complaints
that some users were waiting more than five minutes for the login process to
finish, and that didn't agree with the login server metrics, which measured
over 2,000 logins per minute and an average login time of 15 seconds or so.
The problem was identified after a little digging. | had bailed early from serving
all the processes in the list in an attempt to poll network sockets and database
activity, and in so doing, | left a few processes at the end of the list completely

out in the cold. Pixel Mines

Very Simple Process Example: DelayProcess

A very simple example of a useful process using this cooperative design is a delay
process. This process is useful for inserting timed delays, such as the fuse on an
explosive. Here’s how it works:

class DelayProcess : public Process
{
unsigned Tong m_timeToDelay;
unsigned Tong m_timeDelayedSoFar;

public:
explicit DelayProcess(unsigned Tong timeToDelay);

protected:
virtual void OnUpdate(unsigned long deltaMs);
1

DelayProcess::DelayProcess(unsigned Tong timeToDelay)
{

m_timeToDelay = timeToDelay;

m_timeDelayedSoFar =0;
}
void DelayProcess::0nUpdate(unsigned long deltaMs)
{

m_timeDelayedSoFar += deltaMs;

if (m_timeDelayedSoFar >=m_timeToDelay)

Succeed();

}

Here’s how you create an instance of DeTlayProcess:

StrongProcessPtr pDelay(new DelayProcess(3000)); // delay for 3 seconds
processManager.AttachProcess(pDelay);

Organizing the Main Loop

Take note of two things. First, you don’t just “new up” a DelayProcess and attach
it to the ProcessManager. You have to use the StrongProcessPtr typedef (or
the shared_ptr template directly) to manage Process objects. This fixes problems
when processes get deleted, but other objects may still point to them. Second, you
must call the Attach() method of ProcessManager to attach the new process to
the Process Manager.

As the main loop is processed and ProcessManager::UpdateProcesses() is
called, the DelayProcess counts the elapsed time, and once it has passed the wait
period, it calls Succeed(). By itself, it’s a little underwhelming—it just uses up a
little CPU time and goes away. But if you define another process, such as Kaboom-
Process, things get a little more interesting. You can then create a nuclear explosion
with a three-second fuse without a physics degree:

// The deTay process will stay alive for three seconds
StrongProcessPtr pDelay(new DelayProcess(3000));
processManager.AttachProcess(pDelay);

// The KaboomProcess will wait for the DelayProcess
// Note - kaboomwill be attached automatically
StrongProcessPtr pKaboom(new KaboomProcess());
pDelay->AttachChild(pKaboom);

The Process::AttachChi1d() method sets up a simple dependency between the
DelayProcess and the KaboomProcess. KaboomProcess will remain inactive
until the DelayProcess succeeds. If the DelayProcess fails or is aborted for
some reason (maybe the level ended before it finished), then the KaboomProcess
is simply removed and never actually updates.

Data-Driven Processes

If you plan on using processes as the core of your game, you should have a
data format that lets you define chains of processes and dependencies. At
Super-Ego Games, we used XML to define our process chains and how they
all fit together. It allowed us to set up complex game logic without having to
touch a single line of code. An even better way would be to use a visual editor
so designers would be able to move around nodes and create complex game
logic without involving engineers at all. This is basically what the quest system
did in The Sims Medieval.

Practices

More Uses of Process Derivatives

Every updatable game object can inherit from Process. User interface objects such
as buttons, edit boxes, or menus can inherit from Process. Audio objects such as

187

188

Chapter 7 H Controlling the Main Loop

sound effects, speech, or music make great use of this design because of the depen-
dency and timing features.

PLAYING NICELY WITH THE OS

Now that we've seen what goes on inside the main loop and some techniques for
managing your various processes, let’s take a step out of that and look at how the
game loop fits into the operating system. This is especially important if you're mak-
ing a game for a multitasking platform like Windows. You need to learn how to play
nicely with the operating system and the other applications running on it. For exam-
ple, this code would cause Windows to think your program has stalled:

while (true)
{
RunlLogic();
RenderScene();
1

The problem here is that the code is completely ignoring all messages being sent to it.
You can’t click the X button at the top right, because none of the mouse messages get
through, and Windows considers the program to be unresponsive. It will eventually
say “not responding” next to your app in the Task Manager. It’s important to
respond to messages being sent from the operating system, even if you just pass
them through to the default handler:

return DefWindowProc(hwnd, msg, wparam, Iparam);

Another problem with working on a multitasking platform like Windows is that you
sometimes have to yield resources to those applications. For example, games typically
acquire exclusive access to system resources like the video card, which allows them to
render in full screen at custom resolutions. If the user Alt-tabs, you will lose that
exclusive control and need to be able to handle that situation. Youll learn more
about this later in this chapter when we talk about the DirectX 11 Framework.

On Windows, you typically have a message pump like this:

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR 1pCmdLine, int nCmdShow)
{
MSG msg;
while(GetMessage(&msg, NULL, 0, 0) > 0)
{
TranslateMessage(&msg);
DispatchMessage(&msg);

Using the DirectX 11 Framework

}
return msg.wParam;

}

The GetMessage() function will block execution until the application has at least
one message pending, and then it will run the inner block of the while loop. This
in turn calls the Windows procedure callback function you registered when creating
the window. If that function blocks the execution of GetMessage() by locking the
application in a loop, it won’t receive any messages. Have you ever clicked on a Win-
dows program and had it gray itself out, followed by a message saying something like
“this program is not responding”? What’s happening is that the program is never
getting back to the GetMessage() call.

The problem here is that we can’t stop execution if there are no messages pending,
nor can we ignore messages that come in. The solution here is the PeekMessage()
function, which is just like GetMessage() except that it doesn’t block execution.
That leaves us with the following loop:

while (msg.message !=WM_QUIT)

{
if (PeekMessage(&msg, NULL, OU, OU, PM_REMOVE))

{
TranslateMessage(&msg);
DispatchMessage(&msg);

}
else

{
MainGameLoop();

}
}

This is much better! First, if the application receives a quit message, it breaks out of
the loop. Then it checks to see if there’s a Windows message. If there is, it handles it
in the usual way. If not, it allows the game loop to process one iteration.

UsING THE DIRECTX 11 FRAMEWORK

The code in this chapter is written to integrate with the DirectX Framework, which
handles many nasty problems, such as detecting when a player switches screen reso-
lutions or Alt-tabs to another full-screen application. If you code on other platforms,
you'll likely be spared these issues. Windows can run multiple applications simulta-
neously, and the user can change hardware configurations, like screen size, while
your game is running. On consoles you can’t do that, and you avoid all of those hell-
ish little problems.

189

190

Chapter 7 H Controlling the Main Loop

Rendering and Presenting the Display

The DirectX 11 Framework provides a pretty good routine to render and present the
display. It is called from the DXUTMainLoop() function when the game is not pro-
cessing messages, in exactly the way the MainGameLoop() function was mentioned
earlier. The function is DXUTRender3DEnvironmentl1() inside Source\GCC4
\3rdParty\DX11\Core\DXUT.cpp around line 3816. Let’s pick it apart so you can
understand what’s going on. Since I don’t have permission to reprint this method,
you should launch Visual Studio and load either a DirectX sample or the Game Cod-
ing Complete 4 source code and follow along.

The first thing you should notice about this function is how much can go wrong, and
that it can pretty much go wrong after nearly every single line of code. The reason for
this is a quirk of Windows games—players have an annoying tendency to actually
have other applications up, like Firefox or something, while playing your game! Any
kind of task switching, or user switching under XP or later, can cause DirectX to lose
its devices.

After getting a bunch of a DirectX objects and making sure they still exist, the func-
tion checks to see if rendering is paused, if the window is occluded, or if it’s inactive.
If any of these conditions is true, it calls STeep() to relinquish time back to other
applications. This is just part of being a nice Windows application, and even silly
Windows tools that have similar message pumps should do this. You might decide
to tweak the amount of time you sleep. Your mileage with the sleep values in the
framework could vary from game to game.

After all that, the code handles issues related to timers and timing. This is the section
of code that starts with DXUTGetGlobalTimer()->GetTimeValues(). Almost
every game needs to track how many milliseconds have elapsed since the last frame
so that animations and object movement can be kept in sync with reality. The alter-
native is to ignore time altogether and just render things based on each frame that
renders, but that would mean that faster computers would literally play the game
faster—not in the “gamer” sense but in an actual sense. If you keep track of time,
then objects on faster computers will still fall to the ground at the same rate as slower
computers, but the faster computers will look smooth as silk.

The next section of code retrieves and calls the application’s frame move callback func-
tion. This callback is set to GameCodeApp: :0nUpdateGame(), which controls the
game logic and how the game state changes over each pass of the main loop. Control
passes to the game logic’s VOnUpdate() method, which will update all the running
game processes and send updates to all the game views attached to the game logic.

Using the DirectX 11 Framework

The next bit of code retrieves and calls the application’s frame render callback, which
will call VOnRender () methods of views attached to the game. After the rendering is
complete, the screen must be presented, which is when things can go awry. Back in
the good old days, this was called “slamming” because the back buffer was copied
byte-by-byte to the front buffer in one memory copy. Now this is handled by a sim-
ple pointer change in the video hardware and is generally called “flipping” because
nothing is really copied at all.

The call to Present () will cause the scene to actually be presented onto the moni-
tor. The next step is to check the return code from this function because there may
be more work to do. The user might have to change video modes, requiring that the
device be reset, or perhaps it was removed or the window became fully occluded.
These edge cases must all be handled gracefully.

After all that, the frame counter is updated, and a little status bit is checked to see if
the game should exit after one frame. This is actually a quite handy thing to have,
whether you write your own frame counter or use the one in the framework, because
you can use it to smoke test your game. An amazing amount of code runs when you
initialize, update, and render your game, and any problems during this process could
be written out to a log file for later analysis. This is a great thing to do, and it can be
an important part of a simple smoke test where you can be somewhat sure that the
game can at least get to the first frame.

Your Callback Functions for Updating and Rendering

Luckily, the DirectX Framework has done most of the major work for you, even to
the point of splitting updates in your game logic from the rendering of the game.
This matches well with the architecture I'm pushing in this book. If you recall the
_tWinMain() implementation from the previous chapter, among the code were
these two calls:

DXUTSetCallbackD3D11FrameMove(GameCodeApp::0nUpdateGame);
DXUTSetCallbackD3D11FrameRender(GameCodeApp::0OnRender);

The first is a callback where you can update your game, and the second is a callback where
your game can render. Let’s take a look at the implementation of those two methods:

void CALLBACK GameCodeApp::0nUpdateGame(double fTime, float fElapsedTime,
void* pUserContext)

{
if (g_pApp->HasModalDialog())

{
// don't update the game if a modal dialog is up.

191

192

Chapter 7 H Controlling the Main Loop

return;
}
if (g_pApp->m_bQuitting)
{
PostMessage(g_pApp->GetHwnd(), WM_CLOSE, 0, 0);
}
if (g_pApp->m_pGame)
{
// allow event queue to process for up to 20 ms

IEventManager::Get()->VTick(20);

if (g_pApp->m_pBaseSocketManager)
g_pApp->m_pBaseSocketManager->DoSelect(0); // pause 0 microseconds

g_pApp->m_pGame->V0OnUpdate(float(fTime), fElapsedTime);
}
}

This method updates your game logic, but only if there isn’t a modal dialog box up
and if the application isn’t quitting.

This code implies that you shouldn’t perform any quit mechanism while you are
pumping messages. Quitting takes a good amount of time, and a player worried
about getting caught playing your game while he is supposed to be doing something
else can press Alt-F4 to close your game about 20 times in a single second. If you
send all those quit messages into the message pump, you've got to filter them out,
which is why you check to see if you're actually quitting so you can post a WM_CLOSE
message. The user interface control that receives the quit button click event or the
hot key event should simply set a Boolean variable to true, which will be checked
after the last message in the queue has been handled.

This function is a member of GameCodeApp, but since this method is a callback, it
must be declared static, which means that you have to use the global g_pApp
pointer to get to the instance of the GameCodeApp class. The same is true for the
GameCodeApp: :OnRender call:

void CALLBACK GameCodeApp::0nD3D11FrameRender(ID3D11Device* pd3dDevice,
ID3D11DeviceContext* pd3dImmediateContext, double fTime,
float fETapsedTime, void* pUserContext)
{
BaseGamelogic *pGame = g_pApp->m_pGame;
for(GameViewlList::iterator i=pGame->m_gameViews.begin(),
end=pGame->m_gameViews.end(); i!=end; ++i)
{
(*1)->VOnRender(fTime, fElapsedTime);

Can | Make a Game Yet?

}
g_pApp->m_pGame->VRenderDiagnostics();
}

This method simply iterates through all the views attached to the game logic, g_pApp-
>m_pGame, and calls VOnRender () for each one. After that, the game logic calls a
special method for rendering debug information, VRenderDiagnostics(). This is a
convenience for programmers who would rather not adhere to the separation between
logic and view just to draw some debug lines on the screen.

A good example of how I use VRenderDiagnostics() is drawing physics informa-
tion, such as mesh wireframe of any objects moving on the screen. The physics sys-
tem is purely a game logic object, and the renderer really belongs to the game view. If
you wanted to religiously follow the separation of game logic and game view, you'd
have to do something like have the game logic create special “line” objects and send
messages to the game view that it needs to draw these lines.

That’s just dumb, in my opinion. A game logic should be able to use the application
layer—in this case, DirectX’s renderer—to draw debug data onto the screen. Yes, it
breaks the rules, but yes, you should do it.

CAN | MAKE A GAME YET?

By now you’ve learned a lot about some of the hidden superstructure of game code,
most notably about GameCodeApp, BaseGamelogic, Process, and Process
Manager. You've probably figured out that most of the subsystems discussed so far
can benefit from cooperative multitasking: animated objects, user interface code, and
more. If you're like me, you've already played with writing your own games, and
you're itching to put everything together in a tight little game engine. At this point,
you know just enough to be dangerous and could probably strike out on your own to
write a few very simple games. However, there are still quite a few important bits and
pieces you should know if you want to take it to the next level.

For example, you probably never thought about how game engines stuff a few giga-
bytes of game art and sounds through a much smaller memory space. Read the next
chapter and find out.

193

This page intentionally left blank

CHAPTER 8

by Mike McShaffry

LoADING AND CAcCcHING GAME
DATA

Once you get a nice 3D model or sound, how do you actually get it into your game?
Most game books present code examples where the game loads X, WAV, or MP3
files directly. This doesn’t work in real games. Real games have tens of thousands of
these files and other bits of data. They might not fit into memory at the same time,
either. When you see a detailed environment in Gears of War, you can bet that it fills
memory nearly to the last bit, and the act of walking into another room or building
needs some way of kicking out unused assets and bringing in the new, and doing it in
a way that seems completely transparent to the player. So how does this really work?
Take a look at Figure 8.1.

Games usually pack selected bits of game data into a small number of files, often
called a resource file. By the way, just in case I haven’t mentioned it, I tend to use
the terms game assets and game resources to mean the same thing—they are all
game data. Art, animations, sounds, 3D meshes, and map levels are all game assets.
These files usually map one-to-one with an entire game level. When you see a load-
ing screen, you are likely witnessing the game reading just enough of the resource
files to begin playing the game.

Each game resource you use must be converted to the smallest possible format that is
supported by the hardware, taking care to keep the quality at the right level. This is
pretty easy for sounds, since you can easily predict the quality and size delta of a
44KHz stereo WAV versus an 11KHz mono WAV stream. Textures are trickier to

195

196

Chapter 8 B Loading and Caching Game Data

Source Files

e Game Resource Files
Sound: WAV, 0OGG, MP3 Pack and Compress
Meshes: X, others
; W
Video: AVI, BIK, others s e

Game Application Layer

Game Subsystems
Get Cached Resource Resource Cache
Renderer, Sound System, Game Logic, etc.

Qead from Disk

Figure 8.1
This is how data flows from game resource files to your game subsystems.

work with, on the other hand, because the best storage format is completely depen-
dent on its use in the game and what it looks like.

These conversions are also dependent on the hardware platform. You can count on
the fact that the Sony PS3 and the Microsoft Xbox360 will want sounds and textures
presented in two completely different formats. This process will result in different
resource files for each platform you support.

Most everyone is familiar with the Zip file, originally created back in 1989 by Phil
Katz, first implemented in PKWARE'’s PKZIP utility. There might be better compres-
sion and storage formats for storing particular bits of game data, but for our pur-
poses it will do nicely as a general-purpose resource file. Later in this chapter, I'll
show you how this is implemented in code, packing all your game assets into one
neat file format.

If your game is more of an open world design, your technology has to be more com-
plicated and manage resources streaming from disc into memory and being released
as the player moves through the game world.

More likely than not, you'll be streaming resources not from disc, but from the Web.
The concepts are exactly the same, but the bandwidth can be extremely variable and

Game Resources: Formats and Storage Requirements

certainly less than grabbing resources from the local hardware. Predicting what the
player needs, and finding ways to stream those bits, is a key part of any nontrivial
game that runs over the Web.

Both of those subjects are beyond the scope of this book to present detailed solutions,
but you will be introduced to basic ideas behind resource caching so you can become
familiar with the basic concepts.

GAME RESOURCES: FORMATS AND STORAGE
REQUIREMENTS

Modern games have gigabytes of data. A single-layer DVD can hold 4.7GB, and a
single layer of a Blu-ray disc can hold up to 25GB. For PC games, you can browse
the install directories and get an idea of what they store and how much storage they
need. I'll go over the big stuff and give you an idea of how the data is stored, what
formats you can use, how you can compress it, and what that does to the final prod-
uct. I'll cover the following game data file types:

B 3D Object Meshes and Environments: This usually requires a few tens of
megabytes and stores all the geometry for your game.

B 3D Mesh/Object Animation Data: This is much smaller than you’d think, but
lots of in-game cinematics can blow this up to many tens of megabytes.

B Map/Level Data: This is a catchall for components like trigger events, object
types, scripts, and others. Together, they take up very little space and are usually
easy to compress.

B Sprite and Texture Data: These get pretty big very fast and can take many
hundreds of megabytes, even on a Wii game.

B Sound, Music, and Recorded Dialogue: Recorded dialogue usually takes more
space on games than any other data category, especially when the games have a
strong story component.

B Video and Prerendered Cinematics: Minute-per-minute, these components

take up the most space, so they are used sparingly in most games. They are
essentially the combination of sprite animation and stereo sound.

3D Object Meshes and Environments

3D object and environment geometry takes up a lot less space than you’d think. A
3D mesh, whether it is for an object, a character, or an environment, is a collection

197

198

Chapter 8 B Loading and Caching Game Data

of points in 3D space with accompanying data that describes how these points are
organized into polygons and how the polygons should be rendered.

The points in 3D space are called vertices. They are stored as three floating-point
numbers that represent the location of the point (X,Y,Z) from the origin. Individual
triangles in this mesh are defined by three or more indices into the point list. Here’s
an example of the mesh for a cube that has been pushed around so that it isn’t sym-
metrical in any axis (a useful object you'll use later in the 3D graphics chapter):

Vec3 TestObject::g_SquashedCubeVerts[] =
{

.5,-0.25), // Vertex 0.
.5,-0.25), // Vertex 1.
.5,0.5), // And so on.
.5,0.5)

5
.5
Vec3(0.75,
Vec3(0.75
.5,

5

s

Feel free to plot it out on graph paper if you want, or you can take my word for it.
The eight vertices are stored in an array, and the triangles are defined by groups of
three indices into that array. A cube has eight points in space and six faces, but those
faces are each comprised of two triangles. Twelve groups of three indices each are
needed to define twelve triangles that make a cube.

If you have some experience with 3D programming, you might know that there are
ways to save some space here. Instead of storing each triangle as a group of three
points, you can store a list of connected triangles with fewer indices. These data
structures are called triangle lists or triangle fans. Either of these stores the first trian-
gle with three indices and each following triangle with only one additional index.
This technique is a little like drawing a shape without picking up your pencil, since
each extra triangle requires only one additional vertex rather than an entire set of

Game Resources: Formats and Storage Requirements

Table 8.1 Raw Geometry Sizes
Object Members Size

Vertices 2,000 points @ (3 floating-point 24,000 bytes
numbers x 4 bytes each).

Each triangle group 300 triangles @ (302 indices x 604 bytes
2 bytes each).

All triangle groups 100 groups @ 604 bytes = 60,400 84,400 bytes
bytes. Vertices @ 24,000 bytes +
Triangles @ 60,400 bytes.

three vertices. This way you can store » triangles with only n + 2 indices instead of
n*3 vertices—quite a savings.

Let’s assume you have an object with 2,000 vertices: 300 triangles stored in 100 trian-
gle groups. Take a look at Table 8.1 to see how much space this data takes.

It looks like you can store the raw geometry in about 82KB. But wait, there’s a little
more data to consider. The data doesn’t tell you anything about how to texture the
object. Renderers will assume that each triangle group has the same material and tex-
tures. For each group, youll need to store some additional data.

A material describing the diffuse map is going to define the color of an object and
how it reflects light. The size of the material can vary, depending on what the gra-
phics chip and renderer can handle. The renderer can also apply one or more tex-
tures to the object. This data can vary in size. If the object is unaffected by lighting
and has a solid color, it will require only a few bytes. If the object is affected by light-
ing and has a base texture, a decal texture, a normal map, a specular map, an envi-
ronment map, and stores color information for ambient, diffuse, and specular
lighting, then it could require almost 100 bytes per vertex. This information is stored
for each index in each triangle group.

Let’s look at two cases, shown in Table 8.2. The first has a simple textured, colored
object, and the second has an additional 64 bytes per index in each triangle group to
store material and lighting data.

Notice the staggering difference. The more complicated object is quite a bit larger,
but it also looks amazing. So what have you learned? The complexity of the geometry
can be made much smaller if your 3D models make good use of triangle strips and
fans, but most of the savings comes from being frugal with complicated material

199

200 Chapter 8 H Loading and Caching Game Data

Table 8.2 Storing Simple versus Complicated Objects

Object Members Size

Simple textured and lit object 302 indices per group x 100 906,000 bytes
(30 bytes per vertex): groups @ 30 bytes

Complicated material info 302 indices per group x 100 2,416,000 bytes
(80 bytes per vertex): groups @ 80 bytes

models. This savings comes at a cost to the visual fidelity of the object, which affects
the player’s gameplay experience.

One thing you should note: The actual textures are stored separately from the mesh
data, and we haven’t even talked about those yet. They are orders of magnitude
larger, too.

Animation Data

Animations are stored as changes in position and orientation over time. You already
know that a position in 3D space takes 12 bytes—4 bytes each for X, Y, and Z coor-
dinates. Orientation is usually stored as a 12-byte or 16-byte data structure, depend-
ing on the rendering engine. This is the difference between storing the orientation as
angles of yaw, pitch, and roll (Euler angles) or a mathematical entity known as a qua-
ternion, which is a 4-vector (X, Y, Z, W). (You'll learn all about the quaternion in
Chapter 14, “3D Graphics Basics.”) For now, well assume the orientation takes
12 bytes.

One way to store animations is by recording a stream of position and orientation
data at fast intervals, say 30 times per second. For each second and each object, you
have the following:

12 bytes for position + 12 bytes for orientation = 24 bytes per sample

30 samples per second X 24 bytes per sample = 720 bytes/second

An object like a character is represented by a lot of discrete objects. Assuming you
have a very simple character with only 30 separate movable parts (called bones),
this gets pretty big very fast:

720 bytes/second x 30 bones = 21,600 bytes per second

Of course, there are ways to cheat. Games never store this much data for animations—it
is like storing an uncompressed TGA file for every frame of an entire movie. First, most

Game Resources: Formats and Storage Requirements

motions don’t need 30 samples per second to look good. Actually, even complicated
motions can usually get by with 15 samples per second or less, and not every bone is
typically in motion at the same time, at maximum speed. Your mileage may vary with
different motions, so your code might need to store different motions sampled at differ-
ent rates. One thing you can be sure of, not every animation can look good with the
same sampling rate, so your engine should be sophisticated enough to use animation
data at different sampling rates.

Sometimes objects don’t need to change position and orientation every frame. This
implies you could store a stream of changes in position or orientation when they
happen and store nothing at all but a time delay when the object or bone is still.
Starting in the middle of or reversing an animation can be a little tricky, since you
have to start at a known position and reapply the position and orientation deltas
until you get to the position you want—something like finding the right spot in a
track on a DJ’s turntable. Every second or so, you should store the full position and
orientation information. These snapshots are usually called keyframes. They can be
very useful for jumping quickly to somewhere in the middle of an animation, and
they can also reduce small errors that can accumulate.

Finally, since the position and orientation changes are small, you can usually get
away with storing them in something other than floating-point numbers. You can
convert them to 2-byte integers, for example. The Unreal Engine does exactly this—
storing Euler angles as mapped values from 0 to 65536. You might wonder if this is a
good idea, but think about how humans perceive angles. I'd defy most people to dis-
cern the difference between a 127-degree angle and a 128-degree one—and that’s just
1/360™ of a circle. Take those deltas down to 1/65536'™ of a circle, and you'll see the
Unreal engineers were pretty clever indeed. These compression techniques can dra-
matically reduce the size of animation data down to a few tens of kilobytes per sec-
ond for an animated character. For example, the animation data for a main character
like Garrett in Thief: Deadly Shadows, who can use different weapons, climb on walls,
crouch, crawl, and perform other activities, should be in the 5MB to 7MB range. The
size of these animations increases linearly with the number of bones and the nature
of their movement, so as characters get more complicated and active, the size of the
animations increases, too.

Assuming that your game has a big storyline and you want to store lots of in-game cine-
matics, you can estimate the size of your in-game movies, minus the audio, like this:

B Assume the average of two characters moving simultaneously per cinematic
B Each cinematic averages 30 seconds

B 50KB per second (25KB per character per second) x 30 seconds = 1.53MB

201

202

Chapter 8 B Loading and Caching Game Data

Don’t get too excited yet; the animation data is the least of your problems. Just wait
until you see how much storage your digital audio is going to take.

Map/Level Data

Most game object data is stored in a proprietary format, which is often determined
by the type of data and the whim of the programmer. There is no standard format
for storing game object data, Al scripts, dialogue, and other components. This data is
usually packed in a binary format for the game, but during development it is usually
stored in a format that is easy to work with, such as XML. There’s a good public
domain XML parser called TinyXML, and it is included as a part of the third-party
SDKs with the companion source code.

Either way, this data is usually the least of your problems as far as storage is concerned.
Your textures, audio, and animation data will overshadow this stuff by a long, long way.

Texture Data

Left to their own devices, artists would hand you every texture they create in a TIF or
TGA file. The uncompressed 32-bit art would look exactly like the artist envisioned.
When you consider that a raw 32-bit 1024 x 768 bitmap tips the scales at just over
3MB, youll quickly decide to use a more efficient format when your artists are
demanding a few thousand of these.

As always, you'll generally need to trade quality for size. Load time will also need to
be considered. The best games choose the right format and size for each asset. You'll
be better at doing this if you understand how bitmaps, textures, and audio files are
stored and processed and what happens to them under different compression
scenarios.

Bitmap Color Depth

Different bitmap formats allocate a certain number of bits for red, green, blue, and
alpha channels. Some formats are indexed, meaning that the pixel data is actually
an index into a color table that stores the actual RGBA values. Here’s a list of the
most common formats:

B 32-bit (8888 RGBA): The least compact way to store bitmaps, but retains the
most information.

B 24-bit (888 RGB): This format is common for storing backgrounds that have
too much color data to be represented in either 8-bit indexed or 16-bit formats
and have no need for an alpha channel.

Game Resources: Formats and Storage Requirements

B 24-bit (565 RGB, 8 A): This format is great for making nice-looking bitmaps
with a good alpha channel. Green gets an extra bit because the human eye is
more sensitive to changes in green than red or blue.

B 16-bit (565 RGB): This compact format is used for storing bitmaps with more
varieties of color and no alpha channel.

B 16-bit (555 RGB, 1 A): This compact format leaves one bit for translucency,
which is essentially a chroma key.

B 8-bit indexed: A compact way to store bitmaps that have large areas of subtly
shaded colors; some of the indexes can be reserved for different levels of
translucency.

Many renderers, including DirectX, support a wide variety of pixel depth in each red,
blue, green, and alpha channel.

Support Tools Your Content Creators Will Actually Use

Avoid writing oddball tools to try to save a few bits here and there. Try to
write your game so that your content creators, such as artists, can use the
same art formats used by popular art tools like Photoshop. They will be able
to easily manipulate their work in a common and well-known tool, and your
game will look exactly the way the artists intended it to look. You'll also be
able to find artists who can work on your game if you stick to the standard
formats and tools. If you must, you can write some great compression
methods to process the results into something really small.

Practices

Which Is Better: 24-, 16-, or 8-Bit Art?

It’s virtually impossible to choose a single format to store every bitmap in your game
and have all your bitmaps come through looking great. In fact, I can assure you that
some of your bitmaps will end up looking like they should be in your laundry pile.

Figure 8.2 shows three different bitmaps that were created by drawing a grayscale
image in Photoshop. The bitmap on the far left uses 8 bits per channel, the center
bitmap is stored using 5 bits per channel, while the one on the right is stored using
4 bits. If you attempt to store a subtly shaded image using too few colors, you'll see
results closer to the right bitmap, which looks crummy.

If you can use 8 bits for each channel, you'll see the best result, but you'll trade this
quality for a much larger size. Needless to say, if your artist storms into your office
and wonders why her beautiful bitmaps are banded all to hell, you've likely forced
them into a bad color space. If your artists can choose the format that reproduces
the image reliably in the best possible compression, great! But youlll tend to find

203

204

Chapter 8 B Loading and Caching Game Data

Figure 8.2
Grayscale banding patterns for 24-bit, 16-bit, and 8-bit depths.

that artists will choose the biggest format every time, so some gentle incentives might
be needed to get them to optimize their art along the way. Just like programmers,
artists tend to be perfectionists in their craft.

Using Lossy Compression

A discussion of art storage wouldn’t be complete without taking a look at the effects
of using a lossy compression scheme such as JPG. The compression algorithm tweaks
some values in the original art to achieve a higher compression ratio, hence the term
“lossy.” It’s not a mistake that if you spell-check the word lossy you get “lousy” as
one of your choices. Beyond a certain threshold, the art degrades too much to get
past your QA department, and it certainly won’t get past the artist who spent so
much time creating it.

Perhaps the best approach is to get artists to decide how they’ll save their own bit-
maps using the highest lossiness they can stand. It still won’t be enough, I guarantee
you, because they are much more sensitive to subtle differences than a consumer, but
it’s a start.

Data Sizes for Textures

Texture storage is one of the big budget areas for games. They take up the most space
second only to audio and streaming video. Character textures for high-definition
console games like Gears of War can be as large as 2048 x 2048. They also have mul-
tiple layered maps for specular and emissive effects that weigh in at 512 x 512 or
1024 x 1024. This starts to add up extremely quickly.

An uncompressed 1024 x 1024 texture is going to take 2MB to 4MB in memory,
depending on whether it is a 16-bit or 32-bit texture. Most of your level geometry

Game Resources: Formats and Storage Requirements

and game objects won’t need that kind of density; they’ll usually use different textures
in layers to create interesting effects.

A single object, such as a wall, might have a 16-bit 512 x 512 texture on it taking
IMB of memory, but add to that a couple of 128 x 128 decals and a 128 x 128
normal map and you start eating up some memory. This one object with these
three textures will take almost 2MB of texture memory. Your game might have a
few hundred objects of various detail, eating your memory faster than you expect.
The Nintendo Wii only has 64MB in the first place, which means you have to budget
your textures more than almost any other game asset.

Even the best video cards don’t perform well when you have to swap textures in and
out of video memory. If your game is expected to run well on a 512MB video card,
you'd better be careful and take that into account when building levels. A few hun-
dred objects and 10 unique characters will chew up that 512MB in a real hurry, and
you’ll have to scramble to fix the problem. Believe me, you won’t be able to ask your
customers to simply buy new video cards, unless of course you are Valve and are
publishing the latest Half-Life.

Finally, most textures need some additional storage for their mip-maps. A textured
object with a mip-map will look good no matter how far away the viewer is from
the textured object. If you've ever seen a really cheap 3D game where the object tex-
tures flashed or scintillated all the time, it’s because the game didn’t use mip-mapped
textures. A mip-map precalculates the image of a texture at different distances. For
example, a 128 x 128 texture that is fully mip-mapped has a 64 x 64, 32 x 32, 16 x
16, 8 x 8,4 x 4,2 x 2,and 1 x 1 version of itself. The renderer will choose one or
even blend more than one of these mip-maps to render the final pixels on the poly-
gon. This creates a smooth textured effect, no matter how the viewpoint is moving.

A full mip-map for a texture takes 33 percent more space than the texture does by
itself. So don’t forget to save that texture space for your mip-maps. One interesting
bit—games almost always pregenerate their mip-maps and store them in the resource
file rather than generating them on the fly. There are two reasons for this. First, a
good mip-map takes a long time to generate, and the second reason is that even a
crappy mip-map takes longer to generate on the fly than it takes to load from disc.
Improving loading speed can be a much bigger problem than media storage.

Sound and Music Data

Sound formats in digital audio are commonly stored in either mono or stereo, sam-
pled at different frequencies, and accurate to either 8 or 16 bits per sample. The effect
of mono or stereo on the resulting playback and storage size is obvious. Stereo sound

205

206

Chapter 8 B Loading and Caching Game Data

takes twice as much space to store but provides left and right channel waveforms.
The different frequencies and bit depths have an interesting and quite drastic effect
on the sound.

Digital audio is created by sampling a waveform and converting it into discrete 8- or
16-bit values that approximate the original waveform. This works because the human
ear has a relatively narrow range of sensitivity: 20Hz to 20,000Hz. It’s no surprise
that the common frequencies for storing WAV files are 44KHz, 22KHz, and
11KHz.

It turns out that telephone conversations are 8-bit values sampled at 8KHz, after the
original waveform has been filtered to remove frequencies higher than 3.4MHz.
Music on CDs is first filtered to remove sounds higher than 22KHz and then sam-
pled at 16-bit 44KHz. Just to summarize, Table 8.3 shows how you would use the
different frequencies in digital audio.

Use lower sampling rates for digital audio in your game to simulate telephone con-
versations or talking over shortwave radio.

Video and Prerendered Cinematics

Animated sequences in games go as far back as Pac Man, where after every few levels
you'd see a little cartoon featuring the little yellow guy and his friends. The cartoons
had little or nothing to do with the game mechanics, but they were fun to watch and
gave players a reward and a short break. One of the first companies to use large
amounts of video footage in games was Origin Systems in the Wing Commander
series. More than giving players a reward, they actually told a story. Epic cinematics
are not only common in today’s big-budget games, but they are also expected.

There are two techniques worth considering for incorporating cinematic sequences.
Some games like Wing Commander III will shoot live video segments and simply

Table 8.3 Using Different Audio Frequencies with Digital Formats

Format Quality Size per Second Size per Minute
44.1KHz 16-bit stereo WAV CD quality 172KB/second 10MB/minute
128Kbps stereo MP3 Near CD quality 17KB/second 1MB/minute
22.05KHz 16-bit stereo WAV FM Radio 86KB/second 5MB/minute
64Kbps stereo MP3 FM Radio 9KB/second 540KB/minute
11.025KHz 16-bit mono WAV AM Radio 43KB/second 2.5MB/minute

11.025KHz 8-bit mono WAV Telephone 21KB/second 1.25MB/minute

Game Resources: Formats and Storage Requirements

play them back. The file is usually an enormous AVI file that would fill up a good
portion of your optical media. That file is usually compressed into something more
usable by the game.

The second approach uses the game engine itself. Most games create their animated
sequences in 3ds Max or Maya and export the animations and camera motion. The
animations can be played back by loading a relatively tiny animation file and pump-
ing the animations through the rendering engine. The only media you have to store
beyond that is the sound and 3D models for the characters and environment. If you
have tons of cinematic sequences, doing them in-game like this is the way to go. Lots
of story-heavy games are going this direction because it is more efficient than storing
that much prerendered video.

The biggest difference your players will notice is in the look of the cinematic. If an
animation uses the engine, your players won’t be mentally pulled out of the game
world. The in-game cut-scenes will also flow perfectly between the action and the
narrative, as compared to the prerendered cut-scenes, which usually force some sort
of slight delay and interruption as the game engine switches back and forth between
in-game action and retrieving the cut-scene from the disc or hard drive. If the player
has customized the look of his character, that customization is still visible in the cin-
ematic because it is being rendered on the fly. As a technologist, the biggest differ-
ence you'll notice is the smaller resulting cinematic data files. The animation data is
tiny compared to digital video. One bit of advice: You should make sure the AI char-
acters hold for the cinematic moment and attack you only after it is over!

Motion Comics in Thor: The God of Thunder Were a Good Idea, but... MIKE’S
' Tales

from the

Everyone knows that licensed movie tie-in titles tend to get the short shrift from
a budget and schedule perspective—and the games tend to suffer in the
40 Metacritic zone as a result. On Thor, we had hoped to save some money
and increase quality at the same time by doing all of the cinematic sequences
as motion comics. After all, wouldn't it be cheaper to draw some 3D graphic
panels, slide them around, and add a few particle effects? It turned out that
they cost about the same per minute as typical in-game cinematics. Ah well— L e
they didn't save us any money or time, but they looked super cool. Pixel Mines

- —

Sometimes you’ll want to show a cinematic that simply can’t be rendered in real time
by your graphics engine—perhaps something you need Maya to chew on for a few
hours in a huge render farm. In that case, you'll need to understand a little about
streaming video and compression.

207

208

Chapter 8 B Loading and Caching Game Data

Streaming Video and Compression

Each video frame in your cinematic should pass through compression only once. Every
compression pass will degrade the art quality. Prove this to yourself by compressing a
piece of video two or three times, and you'll see how bad it gets even with the second pass.

USB Hard Drives and FedEx

If you need to move a large data set like uncompressed video from one
network to another, use a stand-alone Ethernet or high-speed USB-capable
hard drive. It might make security-conscious IT guys freak out, but it's a
useful alternative to burning a stack of DVDs or worse, trying to send a few
hundred gigabytes over the Internet. This is modern day “Sneakernet.”

Don't waste your time backing up uncompressed video files. Instead, make
sure that you have everything you need to re-create them, such as a 3ds
Max scene file or even raw videotape. Make sure the source is backed up :
and the final compressed files are backed up. If you need to regenerate ’

them, just press the “animate” button and wait a few hours. prdC‘hCES

Compression settings for streaming video can get complicated. Predicting how a set-
ting will change the output is also tricky. Getting a grasp of how it works will help
you understand which settings will work best for your footage. Video compression
uses two main strategies to take a 5GB two-minute uncompressed movie and boil it
down into a 10MB or so file. Just because the resolution drops doesn’t mean you
have to watch a postage stamp-sized piece of video. Most playback APIs will allow
a stretching parameter for the height, width, or both.

The first strategy for compressing video is to simply remove unneeded information by
reducing the resolution or interlacing the video. Reducing resolution from 800 x 600
to 400 x 300 would shave 3GB from a 4GB movie, a savings of 75 percent. An inter-
laced video alternates drawing the even and odd scanlines every other frame. This is
exactly how television works; the electron gun completes a round trip from the top of
the screen to the bottom and back at 60Hz, but it only draws every other scanline.
The activated phosphors on the inside of a CRT persist longer than 1/30th of a second
after they’ve been hit with the electron gun and can therefore be refreshed or changed
at that rate without noticeable degradation in the picture. Modern displays aren’t so
forgiving, but remember that the human eye generally perceives continuous move-
ment between 30 and 60fps, but since human vision is not frame based, this is highly
dependent on the content being reproduced. As always, removing data will result in a
degradation of perceived quality. Interlacing the video will drop the data set down to
one-half of its original size. Using interlacing and resolution reduction can make a
huge difference in your video size, even before the compression system kicks in.

Resource Files

Table 8.4 Matching Bit Rates with CD-ROM/DVD Speeds

Technology Bit Rate

1x CD 150 Kbps
1x DVD 1,385 Kbps
32x CD 4,800 Kbps
16x DVD 2.21 Mbps
1x Blu-ray 36 Mbps
8x Blu-ray 288 Mbps

Video compression can be lossless, but in practice you should always take advantage
of the compression ratios even a small amount of lossiness can give you. If you're
planning on streaming the video from optical media, you'll probably be forced to
accept some lossiness simply to get your peak and average data rates down low
enough for your needs, whether that be streaming from the Web or disc. In any
case, you'll want to check the maximum bit rate you can live with. Most compression
utilities give you the option of entering your maximum bit rate. The resulting com-
pression will attempt to satisfy your bit-rate limitations while keeping the resulting
video as accurate to the original as possible. Table 8.4 shows the ideal bit rate that
should be used for different CD-ROM, DVD, and Blu-ray speeds. Web streaming
speeds are too unpredictable to list, but from the table you can get a general idea.
At least on the Web, you can vary the content; it’s hard to get the player to install a
new Blu-ray player for a specific cinematic.

Save Video Compression Settings—They’re Hard to Remember!

Getting the video compression settings just right can be a black art and very
time consuming to reproduce later. Make sure that you record these settings in
a convenient place so you can get to them again. When the writers change the
dialogue, or the Hollywood actor featured in your game decides his cheekbones
aren’t prominent enough, you'll be happy these settings are at your fingertips.

Practices

REsSOURCE FILES

When I wrote the first edition of this book in 2003, many hard disks rotated as fast
as 7,200rpm. By the second edition, the fast drives were already up to 15,000rpm. At
the writing of the third edition, there was talk of a 20,000rpm hard disk. By the

209

210

Chapter 8 B Loading and Caching Game Data

fourth edition, storing games in memory rather than hard disk was becoming more
popular. That’s fine with me because I don’t want anything sitting in my lap spinning
at 20,000rpm. For a 15,000rpm device, the CPU must wait an average of 2ms for a
desired piece of data to be located in the right position to be read, assuming the read/
write head doesn’t have to seek to a new track. For a modern day processor operating
at 3GHz or more, this time is interminable. It’s a good thing processors aren’t con-
scious because they’d go mad waiting for hard disks all the time. Seeking time is
much slower. The read/write head must accelerate, move, stop, and become stable
enough to accurately read the magnetic media. For a CPU, that wait is an eternity.

Optical media is even worse. Their physical organization is a continuous spiral from
the inside of the disc to the outside, and the read laser must traverse this spiral at a
constant linear velocity. This means that not only does the laser read head have to
seek an approximate location instead of an exact location, but also the rotational
velocity of the disc must change to the right speed before reading can begin. If the
approximate location was wrong, the head will re-seek. All this mechanical move-
ment makes optical media much slower that their magnetic brethren.

The only thing slower than reading data from a hard drive or optical media is to have
an intern actually type the data in manually from the keyboard.

Needless to say, you want to treat data in your files like I treat baubles in stores like
Pier One. I do everything in my power to stay away from these establishments (my
wife loves them) until I have a big list of things to buy. When I can’t put it off any
longer, I make my shopping trip a surgical strike. I go in, get my stuff, and get out as
fast as I can, avoiding as many candles as possible. When your game needs to grab
data from the hard drive or optical media, it should follow the same philosophy.

The best solution would completely compartmentalize game assets into a single block
of data that could be read in one operation with a minimum of movement of the
read/write head. Everything needed for a screen or a level would be completely cov-
ered by this single read. This is usually impractical because some common data
would have to be duplicated in each block. A fine compromise factors the common
data in one block and the data specific to each level or screen in their own blocks.
When the game loads, it is likely you’ll notice two seeks—one for the common data
block and one for the level-specific block. Once the common data is in memory, you
leave it there and only load data for new levels or streamed areas as needed.

Know Your Hardware

Knowing how hardware works is critical to writing any kind of software. You don't have to be a guru
writing device drivers to crack the books and learn exactly how everything works and how you can take
advantage of it. This same lesson applies to the operating system and how the hardware APIs work

Resource Files

under the hood. Learn about the memory and how it is organized. See how the secondary storage works.
Get a basic clue about the graphics chipset. Most importantly, learn how data flows to and from all
these systems, and how it can be stalled. This knowledge can turn a hobbyist into a professional.

Packaging Resources into a Single File

It’s a serious mistake to store every game asset, such as a texture or sound effect, in
its own file. Separating thousands of assets in their own files wastes valuable storage
space and makes it impossible to get your load times faster.

Hard drives are logically organized into blocks or clusters that have surprisingly large
sizes. Most hard drives in the gigabit range have cluster sizes of 16KB-32KB. File
systems like FAT32 and NTES were written to store a maximum of one file per clus-
ter to enable optimal storage of the directory structure. This means that if you have
500 sound effect files, each ¥2-second long and recorded at 44KHz mono, you'll have
5.13MB of wasted space on the hard disk:

0.5 seconds * 44KHz mono = 22,000 bytes
32,768 bytes minimum cluster size -22,000 bytes in each file = 10,768 bytes wasted per file
10,768 bytes wasted in each file * 500 files = 5.13MB wasted space

You can easily get around this problem by packing your game assets into a single file.
If you've ever played with DOOM level editors, you're familiar with WAD files; they
are a perfect example of this technique. These packed file formats are file systems in
miniature, although most are read only. Ultima VIII and Ultima IX had a read/write
version (FLX files) that had multiuser locking capabilities for development. Almost
every game on the market uses some custom packing scheme for more reasons than
saving hard drive space.

Other Benefits of Packaging Resources

The biggest advantage of combining your resources by far is load time optimization.
Opening files is an extremely slow operation on most operating systems. The full file-
name must be parsed, the directory structure traversed, the hardware must locate and
read a number of blocks into the operating system read cache, and more. This can
cause multiple seeks, depending on the organization of the media. Another advantage
is security. You can use a proprietary logical organization of the file that will hamper
armchair hackers from getting to your art and sounds. While this security is quite
light, and serious hackers will usually break it before the sun sets the first day your
game is on the shelves, it’s better than nothing. Of course, you can always publish the
format of your files and get the mod community going. Either way, it is your choice.

211

212

Chapter 8 B Loading and Caching Game Data

Hard Drive Ticking? Maybe You Should Listen

During development on any platform with a hard drive or optical disc, keep your ear tuned to the sounds
your drive makes while you play your game. At worst, you should hear it seek or "tick” every few
seconds or so as new data is cached in. This would be common in an open world game, where the
player could walk anywhere on an enormous outdoor map. At best, your game will have a level design
that grabs all the data in one read, and you'll play an entire level without going back to the disc.

A great trick is to keep indexes or file headers in memory while the resource file is open. These are
usually placed at the beginning or end of a file, and on large files the index might be a considerable
physical distance away from your data. Read the index once and keep it around to save yourself that
extra, and very time consuming, media seek.

Data Compression and Performance

Compression is a double-edged sword. Every game scrambles to store as much con-
tent on the distribution media and secondary storage as possible. Compression can
achieve some impressive space ratios for storing text, graphics, and sound at the
cost of increasing the load on the CPU and your RAM budget to decompress every-
thing. The actual compression ratios youll get from using different utilities are
completely dependent on the algorithm and the data to be compressed. Use algo-
rithms like Zlib or LZH for general compression that can’t afford lossiness. Use
JPG, OGG, or MPEG compression for anything that can stand lossiness, such as gra-
phics and sound.

Consider the cost of decompressing MP3 files for music, speech, or sound effects. On
the upper end, each stream of 128KB stereo MP3 can suck about 25MHz from your
CPU budget, depending on your processor. If you design your audio system to han-
dle 16 simultaneous streams, a 2GHz desktop will only have 1.6GHz left, losing
400MHz to decompressing audio. Of course, you can be clever about decompressing
them only when needed and trade some memory for CPU time.

Keep an Eye on Your Message Queue During Callbacks

If you are working on a Windows game and your decompressor APl uses a
callback, it is quite likely that the decompression will forward Windows system
messages into your message pump. This can create a real nightmare since
mouse clicks or hot keys can cause new art and sounds to be recursively sent
into the decompression system. Callbacks are necessary for providing user
feedback like a progress bar, but they can also wreak havoc with your
message pump. If this is happening to your application, trap the offending
messages and hold them in a temporary queue until the primary
decompression is finished.

Resource Files

Zlib: Open Source Compression

If you need a lossless compression/decompression system for your game, a good
choice that has stood the test of time is Zlib, which can be found at www.zlib.net.
It’s free, open source, legally unencumbered, and simple to integrate into almost
any platform or compiler. Typical compression ratios with Zlib are 2:1 to 5:1,
depending on the data stream.

Zlib was written by Jean-Loup Gailly and Mark Adler and is an abstraction of the
DEFLATE compression algorithm. A Zip file uses Zlib to compress many files into
a single file. An overview of the basic structure of a Zip file is shown in Figure 8.3.
I'll show you the basic structure first, and then we’ll look at the code that can read it.

Zip files store their table of contents, or file directory, at the end of the file. If you
read the file, the TZipDirHeader at the very end of the file contains data members
such as a special signature and the number of files stored in the Zip file. Just before
the TZipDirHeader, there is an array of structures, one for each file, which stores
data members such as the name of the file, the type of compression, and the size of

Zip File Internal Structure
File 0

TZipLocalHeader

File Data

I File 1 | |
| File 2 | |
~

TZipDirFileHeader[0]
TZipDirFileHeader[1]
TZipDirFileHeader[2]

TZipDirFileHeader[n]

TZipDirHeader

G I —

Figure 8.3
The internal structure of a Zip file.

213

www.zlib.net

214

Chapter 8 B Loading and Caching Game Data

the file before and after compression. Each file in the Zip file has a local header
stored just before the compressed file data. It stores much of the same data as the
TZipDirFileHeader structure.

One fine example of reading a Zip file comes from Javier Arevalo. I've modified it
only slightly to work well with the rest of the source code in this book. The basic
premise of the solution is to open a Zip file, read the directory into memory, and
use it to index the rest of the file. Here is the definition for the ZipFile class:

// This maps a path to a zip content id
typedef std::map<std::string, int> ZipContentsMap;

class ZipFile

{

public:
ZipFile() { m_nEntries=0; m_pFile=NULL; m_pDirData=NULL; }
Virtual ~ZipFile() { End(); fclose(m_pFile); }

bool Init(const std::wstring &resFileName);
void End();

int GetNumFiles()const { return m_nkntries; }
std::string GetFilename(int i) const;

int GetFilelen(int i) const;

bool ReadFile(int i, void *pBuf);

// Added to show multi-threaded decompression
bool ReadLargeFile(int i, void *pBuf, void (*progressCallback)(int, bool &));
optional<int> Find(const std::string &path) const;

ZipContentsMap m_ZipContentsMap;

private:
struct TZipDirHeader;
struct TZipDirFileHeader;
struct TZiplLocalHeader;

FILE *m_pFile; // Zip file
char *m_pDirData; // Raw data buffer.
int m_nEntries; // Number of entries.

// Pointers to the dir entries in pDirData.
const TZipDirFileHeader **m_papDir;

/!

Resource Files

// Basic types.

/1l

typedef unsigned long dword;
typedef unsigned short word;
typedef unsigned char byte;

/1l

// Z1P file structures. Note these have to be packed.

/!

fipragma pack(1)

/1l

struct ZipFile::TZipLocalHeader

{

enum

{

SIGNATURE = 0x04034b50

s

dword
word
word
word
word
word

s

dword

dword
dword

word
word

sig;

version;

flag;

compression; /] COMP_xxxx
modTime;

modDate;

cre3z;

cSize;

ucSize;

fnamelen; // Filename string follows header.

xtralen; // Extra field follows filename.

struct ZipFile::TZipDirHeader

{

enum { SIGNATURE = 0x06054b50 };

dword
word
word
word
word
dword
dword
word

sig;

nDisk;
nStartDisk;
nDirEntries;
totalDirEntries;
dirSize;
dirOffset;
cmntlen;

215

216

Chapter 8 B Loading and Caching Game Data

/-
struct ZipFile::TZipDirFileHeader
{
enum { SIGNATURE = 0x02014b50 };
dword sig;
word verMade;
word verNeeded;
word flag;
word compression; /] COMP_xxxx
word modTime;
word modDate;
dword crc32;

dword cSize; // Compressed size

dword ucSize; // Uncompressed size

word fnamelen; // Filename string follows header.
word xtralen; // Extra field follows filename.

word cmntlen; // Comment field follows extra field.

word diskStart;
word intAttr;
dword extAttr;
dword hdrOffset;

char *GetName () const { return (char *)(this+1); }

char *GetExtra () const { return GetName() + fnamelen; }

char *GetComment() const { return GetExtra() + xtralLen; }
s
/-
fipragma pack()

You should notice a couple of interesting things about the definition of these struc-
tures. First, there is a #fpragma pack around the code. This disables anything the C++
compiler might do to optimize the memory speed of these structures, usually by
spreading them out so that each member variable starts on a 4-byte boundary. Any-
time you define a structure that will be stored onto a disk or in a stream, you should
pack them. Another thing is the definition of a special signature for each structure.
The sig member of each structure is set to a known, constant value, and it is written
out to disk. When it is read back in, if the signatures don’t match the known con-
stant value, you can be sure that you have a corrupted file. It won’t catch everything,
but it is a good defense.

When a Zip file is opened, the class reads the TZipDirHeader structure at the end
of the file. If the signatures match, the file position is set to the beginning of the array

Resource Files

of TZipDirFileHeader structures. Note that there is a length of this array already
stored in the TZipDirHeader. This is important because there’s actually a little
extra data stored in between each TZipDirFileHeader. It is variable length data
and contains the filename, comments, and other extras.

Enough memory is allocated to store the directory, and it is read in one chunk. The
data is then processed a bit. All the signatures are checked, the UNIX slashes are
converted to backslashes, and the pointers to each entry in the directory are set for
quick access. The filenames are also stored in an STL map for quick lookup. The
ReadFile method takes the index number of the file you want to read and a pointer
to the memory you've preallocated. Prior to calling this method, you’'ll call GetFilelLen
to find the size of the buffer and allocate enough memory to hold the file. It reads and
decompresses the entire file at once in a blocking call, which could be bad if you have a
large compressed file inside the Zip file. If you want to decompress something larger,
use the ReadlLargeFile method. It has the same parameters as ReadFile has, and
it adds a function pointer to a callback method. This lets you show a progress bar as
the file is loaded, and it also allows a cancel button to stop the decompression
midstream.

One thing is a matter of taste for Windows programmers: Under UNIX operating
systems, filenames are case sensitive, which means that you could have two filenames
in the same directory that differ only in case. The same thing is true of Zip files, and
while it is not exactly perfect form to convert all filenames to lowercase before you
compare names, it sure makes it easier on you and the development team. An artist
might name a file Allbricks.bmp, and a programmer might expect it to be named
Allbricks.bmp. If you don’t force the names to lowercase, the class will think the file
doesn’t exist.

With this class, you can iterate through all of the files packed in the Zip, find their
names, read and decompress the file data, and use the data in your game. Here’s an
example:

char *buffer = NULL;
ZipFile zipFile;
if (zipFile.Init(resFileName))
{
optional<int> index = zipFile.Find(path);
if (index.valid())
{
int size=zipFile->GetFilelen(*index);
buffer =new char[sizel;

217

218

Chapter 8 B Loading and Caching Game Data

if (buffer)
{
zipFile.ReadFile(*index, buffer);
}
}
}

return buffer;

This is about as easy as it gets. After the Zip file is initialized, you find the index to
the name of the file inside the Zip, grab the size, allocate the memory buffer, and
read the bits.

Zip files are a good choice for the base file type of a general purpose resource file—
something you can open once and read sounds, textures, meshes, and pretty much
everything else. It's a common practice to load all of the resources youll use for a
given level in a single Zip file. Even doing this, you might soon discover that the
Zip file for any one level is much bigger than your available memory. Some
resources, like the sounds for your character’s footsteps, will need to be in memory
all the time. Others are used more rarely, like a special sound effect for a machine
that is only activated once.

This problem calls for a cache, and luckily you’re about to find out how one works.

THE REsourRcE CACHE

If your game has a modest set of graphics and sounds small enough to exist
completely in memory for the life of your game, you don’t need a cache. It’s still a
good idea to use resource files to pack everything into one file; you'll save disk space
and speed up your game’s load time.

Most games are bigger. If your game is going to ship on optical media, you'll have
almost five gigabytes on a DVD and over 25GB on Blu-ray. Optical media will be
larger than the RAM you have. You almost certainly won’t have enough memory to
load this all at once, but even if you do, you don’t want players to wait while the
entire thing is streamed in. What you need is a resource cache—a piece of technology
that will sit on top of your resource files and manage the memory and the process of
loading resources when you need them. Even better, a resource cache should be able
to predict resource requirements before you need them.

Resource caches work on similar principles as any other memory cache. Most of the
bits you'll need to display the next frame or play the next set of sounds are probably
ones you've used recently. As the game progresses from one state to the next, new
resources are cached in. They might be needed, for example, to play sound effects

The Resource Cache

for the first time. Since memory isn’t available in infinite quantities, eventually your
game will run out of memory, and you'll have to throw something out of the cache.

A cache miss occurs when a game asks for the data associated with a resource and it
isn’t there. The game has to wait while the hard drive or the optical media wakes up
and reads the data. Cache misses can come in three types, as categorized by Mark
Hill, professor of Computer Sciences at the University of Wisconsin. The first is a
compulsory miss, one that happens when the desired data is first requested and
now has its first opportunity to load. The second is a capacity miss, which happens
when the cache is out of space and must throw something out to load in the desired
data. A conflict miss is the third type, which is a miss that could have been avoided,
but the system was given hints that the data was no longer needed, and it was pre-
emptively thrown out. Thrashing is a worst-case condition when the data required
from the cache in a single game loop is larger than the cache can store and the
resource cache gets into a state where it is constantly trying to make room for more
data. Thrashing, as you might expect, is fatal for your frame rate, and you must either
make your cache bigger or you must optimize or reduce your data.

Cache thrashing occurs when your game consistently needs more resource data than
can fit in the available memory space. The cache is forced to throw out resources that
are still frequently referenced by the game. The disk drives spin up and run con-
stantly, and your game goes into semi-permanent hibernation.

The only way to avoid thrashing is to decrease the memory needed or increase the
memory requirements. On console platforms, you don’t get to ask for more RAM—it
is what it is. On PC projects, it’s rare that you'll get the go-ahead to increase the
memory requirements, so you're left with slimming down the game data. You’ll prob-
ably have to use smaller textures, fewer sounds, or break up your levels into smaller
sections to get things to fit.

Most of the interesting work in resource cache systems involves predictive analysis of
your game data in an attempt to avoid cache misses. There are some tricks to reduce
this problem, some of which reach into your level design by adding pinch points
such as doors, elevators, or elbow hallways. Some games with open maps, like flight
simulators, can’t do this and have to work a lot harder. I'll show you a very simple
resource cache so you can get your bearings. Then I'll discuss why this problem gen-
erally gets its own programmer—and a good one.

For the sake of simplicity, I'm going to assume that the cache only handles one
resource file. It’s easy enough to make the modifications to track resources across
multiple files. You'll need to attach a file identifier of some sort to each resource to
track which resources came from which file. There’s no need to create a monolithic

219

220

Chapter 8 B Loading and Caching Game Data

file that holds all the game assets. You should just break them up into manageable
chunks. Perhaps you’ll put assets for a given level into one resource file and assets
common to all levels in another. It’s totally up to you.

Resources might not exist in memory if they've never been loaded or if they've been
thrown out to make room for other resources. You need a way to reference them
whether they are loaded or not, and these references need to uniquely identify each
resource. This resource reference enables the cache to match a particular resource
identifier with its data. For our simple resource system, an easy assumption is to sim-
ply use the filename of the original resource—it is easy to read in code and guaranteed
to be unique. Some games might use something that doesn’t require parsing a file path
—a typical scheme uses unique identifiers like const char *ART_TEXTURE_
GRID_DDS = "art\\grid.dds" in a header file. This can work, but it is something
of a hassle because you'll need a place to define the constants or GUIDs, and this file
will probably change constantly and be referenced throughout your game code. The
recompiles this solution causes on even modest sized teams can bring programmers
to a crawl. The trade-off is a little processor time during resource loads as opposed to
a ton of convenience during development, which ultimately makes for a better game.

You Might Have Multiple Resource Caches in Your Game

Different assets in your game require different resource caching. Level data, such
as object geometry and textures, should be loaded in one chunk when the level
is loaded. Audio and cinematics can be streamed in as needed. Most user
interface screens should be loaded before they are needed, since you don't
want players to wait while you cache something in. If you are going to load
something, make sure that you load it when the player isn't going to notice.
Some games just load everything they need when you begin playing and never
hit the disk for anything else at all, so a resource cache isn't something every

game uses. prdC"'iCES

The resource cache needs a way to define the identifier of each resource in a unique
way. As discussed previously, a good solution is to just use the name of the file that
points to the resource in the Zip file:

class Resource

{

public:
std::string m_name;
Resource(const std::string &name)
{

The Resource Cache

m_name=name;
std::transform(m_name.begin(), m_name.end(),
m_name.begin(), (int(*)(int)) std::tolower);

You might wonder why a string-based identifier is used here rather than some kind of
defined ID. The reason is that game assets tend to change incredibly fast during devel-
opment, and you don’t want to have a huge list of IDs that will be changing constantly,
perhaps forcing a recompile of your game every time an artist adds a new texture.
Speed is typically not a big problem here, since string lookups will likely not happen
that often after a resource is loaded, which you can control. In short, this is one of
those cases where a little CPU time is traded for a huge development convenience.

Another quick nod to development convenience is to convert the resource name to
lowercase. Doing so keeps you from having to set up rules for artists and other con-
tent providers that they probably won’t remember to follow anyway!

Two phases are involved in using a resource cache: creating the resource and using it.
When you create a resource, you are simply creating an identifier for the resource. It
doesn’t really do much of anything. The heavy lifting happens when you send the
resource into the resource cache to gain access to the bits or a resource handle. Han-
dles should always be managed by a shared_ptr so the bits are guaranteed to be
good as long as you need them. Here’s an example of how to use the Resource
class to grab a handle and get to the bits:

Resource resource("Brick.bmp");

shared_ptr<ResHandle> texture = g_pApp->m_ResCache->GetHandle(&resource);
int size = texture->GetSize();

char *brickBitmap = (char *) texture->Buffer();

If the resource is already loaded in the cache, these lines of code execute extremely
quickly. If the resource is not loaded, you have a cache miss on your hands, and the
resource cache will make room if necessary, allocate memory for the resource, and
finally load the resource from the resource file. The bits are available as long as the
ResHandle remains in scope, since it is managed by a shared_ptr. Once the
ResHandle structure goes out of scope, the resource cache may retain the bits if
there’s room to keep them.

Now you're ready to see how the resource cache is coded. You've already seen how a
resource is defined through the Resource structure. There are a few other parts of a
resource cache, and I'll go over each one in detail:

B [ResourceFile interface and ResourceZipFile, the resource file

221

222

Chapter 8 B Loading and Caching Game Data

B ResHandle, a handle to track loaded resources

B ResCache, a simple resource cache

IResourceFile Interface

A resource file should be able to be opened and closed and provide the application
programmer access to resources. Here’s a simple interface that defines just that:

class IResourceFile

{

public:
virtual bool VOpen()=0;
virtual int VGetRawResourceSize(const Resource &r)=0;
virtual int VGetRawResource(const Resource &r, char *buffer)=0;
virtual int VGetNumResources() const =0;
virtual std::string VGetResourceName(int num) const =0;
virtual ~IResourceFile() { }

s

There are only five pure virtual functions to implement. I told you it was simple. The
implementation of VOpen () should open the file and return success or failure based
on the file’s existence and integrity. VGetRawResourceSize() should return the
size of the resource based on the name of the resource, and VGetRawResource()
should read the resource from the file. The VGetNumResources () method should
tell you how many resources are in the file, and the VGetResourceName () method
should tell you the name of the nth resource. The last two methods enable you to
iterate through every resource by number or by name.

The accompanying source code implements the IResourceFile interface with a
ZipFile implementation. This is a convenient file format since it is supported by
so many off-the-shelf and open source tools on many platforms. This is a great
example of using interfaces to hide the technical implementation of something
while maintaining a consistent API. If you wanted to, you could implement this
interface using a completely different file structure, like CAB or WAD.

ResHandle: Tracking Loaded Resources

For the cache to do its work, it must keep track of all the loaded resources. A useful
class, ResHand1e, encapsulates the resource identifier with the loaded resource data:

class ResHandle
{

The Resource Cache

friend class ResCache;

protected:
Resource m_resource;
char *m_buffer;
unsigned int m_size;
shared_ptr<IResourceExtraData> m_extra;
ResCache *m_pResCache;

public:
ResHandle (Resource & resource,
char *buffer,
unsigned int size,
ResCache *pResCache);
virtual ~ResHandle();

unsigned int Size() const { return m_size; }

char *Buffer() const { return m_buffer; }

char *WritableBuffer() { return m_buffer; }
shared_ptr<IResourceExtraData> GetExtra() { return m_extra; }

void SetExtra(shared_ptr<IResourceExtraData> extra) { m_extra =extra; }

s

ResHandle: :ResHandle(
Resource & resource, char *buffer, unsigned int size, ResCache *pResCache)
: m_resource(resource)
{
m_buffer = buffer;
m_size =size;
m_extra = NULL;
m_pResCache = pResCache;

}

ResHandle::~ResHandle()

{
SAFE_DELETE_ARRAY(m_buffer);
m_pResCache->MemoryHasBeenFreed(m_size);

}

When the cache loads a resource, it dynamically creates a ResHand1e, allocates a
buffer of the right size, and reads the resource from the resource file. The ResHandle
class exists in memory as long as the resource caches it in, or as long as any
consumer of the bits keeps a shared_ptr to a ResHand1e object. The ResHandle

223

224

Chapter 8 B Loading and Caching Game Data

also tracks the size of the memory block. If the resource cache gets full, the resource
handle is discarded and removed from the resource cache.

The destructor of ResHand1le makes a call to a ResCache member, MemoryHas -
BeenFreed(). ResHandle objects are always managed through a shared_ptr
and can therefore be actively in use at the moment the cache tries to free them.
This is fine, but when the ResHandle object goes out of scope, it needs to inform
the resource cache that it is time to adjust the amount of memory actually in use.

There’s a useful side effect of holding a pointer to the resource cache in the ResHan-
d1e: it is possible to have multiple resource caches in your game. One may control a
specific type of resource, such as sound effects, whereas another may control level
geometry and textures.

Most resources can be used exactly as they exist in the Zip file; they can be loaded
into memory and sent to whatever game subsystem needs them. Other resources
need to be processed when they are loaded. A resource might need a special decom-
pression method or processing to extract some important data from it. A good exam-
ple of this might be to store the length and format of a sound file. This is the reason
that the resource file defines loaders—classes that implement the IResourcelLoader
interface.

IResourcelLoader Interface and the DefaultResourceLoader
Here’s the definition of the IResourceloader interface:

class IResourcelLoader
{
public:
virtual std::string VGetPattern()=0;
virtual bool VUseRawFile()=0;
virtual unsigned int VGetLoadedResourceSize(
char *rawBuffer, unsigned int rawSize)=0;
virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize,
shared_ptr<ResHandle> handle)=0;
s

The first method returns a wildcard pattern that the resource cache uses to distin-
guish which loaders are used with which files. You might define a loader for all
OGG files, if you wanted to decompress the music file, or all XML files, to parse
the XML data as the resource was loaded. The next method, VUseRawFile()
returns true if the resource loader can use the bits stored in the raw file, no extra
processing needed. The next two methods define the size of the loaded resource if it

The Resource Cache

is different from the size stored in the file, and then how the resource is actually
loaded from the file.

Many resources in the Zip file require no processing at all, so it is convenient to load
them exactly as-is. This requires the definition of a DefaultResourcelLoader.

class DefaultResourceloader : public IResourceloader
{
public:

virtual bool VUseRawFile() { return true; }

virtual unsigned int VGetLoadedResourceSize(char *rawBuffer, unsigned int rawSize) {
return rawSize; }

virtual bool VLoadResource(char *rawBuffer, unsigned int rawSize, shared_ptr<Re-
sHandle> handle) { return true; }

virtual std::string VGetPattern() { return "*"; }
s

There’s not much to this class. Since the resource is loaded exactly as it exists in the
file, there’s not really anything to do. The IResourceFile interface has already
loaded the bits into memory, and the ResHandle already stores those bits. You'll
see a more interesting implementation of the IResourceloader interface in Chap-
ter 13, “Game Audio,” which loads WAV and OGG files.

ResCache: A Simple Resource Cache

Since most of the players are already on the stage, it’s time to bring out the
ResCache class, an ultra-simple resource cache.

First, a few type definitions. While the resource is in memory, a pointer to the
ResHandle exists in two data structures. The first, a linked list, is managed such
that the nodes appear in the order in which the resource was last used. Every time
a resource is used, it is moved to the front of the list, so you can find the most and
least recently used resources.

The second data structure, an STL map, provides a way to quickly find resource data
with the unique resource identifier. The third defines a map to store the resource
loaders.

typedef std::Tist< shared_ptr <ResHandle > > ResHandlelist;
typedef std::map<std::string, shared_ptr < ResHandle > > ResHandleMap;
typedef std::1ist< shared_ptr < IResourcelLoader > > Resourceloaders;

class ResCache
{

225

226 Chapter 8 H Loading and Caching Game Data

protected:
ResHandlelList m_1ru; // LRU (Teast recently used) Tist
ResHand1leMap m_resources; // STL map for fast resource Tookup

Resourceloaders m_resourcelLoaders;
IResourceFile *m_file; // Object that implements IResourceFile

unsigned int m_cacheSize; // total memory size
unsigned int m_allocated; // total memory allocated

shared_ptr<ResHandle> Find(Resource * r);
const void *Update(shared_ptr<ResHandle> handle);
shared_ptr<ResHandle> Load(Resource * r);
void Free(shared_ptr<ResHandle> gonner);

bool MakeRoom(unsigned int size);

char *Allocate(unsigned int size);

void FreeOneResource();

void MemoryHasBeenFreed(unsigned int size);

public:
ResCache(const unsigned int sizeInMb, IResourceFile *resFile);
~ResCache();

bool Init();
void RegisterlLoader(shared_ptr<IResourcelLoader> Toader);

shared_ptr<ResHandle> GetHandle(Resource * r);
int Preload(const std::string pattern, void (*progressCallback)(int, bool &));
void Flush(void);

}s

The first three members of the class have already been introduced. They are the least
recently used (LRU) list to track which resources are less frequently used than others,
the STL map, which is used to quickly find resources by name, and another STL list
of the resource loaders that match resource types with the loader that can process
them. There is a pointer to the resource file and two unsigned integers that track
the maximum size of the cache and the current size of the cache.

The m_file member points to an object that implements the IResourceFile
interface.

The two unsigned integers, m_cacheSize and m_allocated, keep track of the
cache size and how much of it is currently being used.

The Resource Cache

The constructor is pretty basic. It simply sets a few member variables. The destructor
frees every resource in the cache by making repeated calls to FreeOneResource
until there’s nothing left in the cache.

ResCache: :ResCache(const unsigned int sizeInMb, IResourceFile *resFile)

{
m_cacheSize =sizelnMb * 1024 * 1024; // total memory size
m_allocated =0; // total memory allocated
m_file=resFile;

}

ResCache::"ResCache()

{ while (!Im_lru.empty())
{ FreeOneResource();
éAFE_DELETE(m_fT le);

}

To initialize the resource cache, call the Init () method:

bool ResCache::Init()

{
bool retValue = false;
if (m_file->VOpen())
{
RegisterLoader(shared_ptr<IResourcelLoader>(GCC_NEW DefaultResourcelLoader()));
retValue = true;
}

return retValue;

}

Besides opening the resource file, a default resource loader is created and registered.
The RegisterlLoader method simply pushes the loader onto the front of the loader
list. The idea is that the most generic loaders come last in the list and the most spe-
cific loaders come first. This scheme allows you to define a specific loader for a given
file but still use another loader of other files with the same extension.

To get the bits for a resource, you call GetHandle():

shared_ptr<ResHandle> ResCache::GetHandle(Resource * r)
{
shared_ptr<ResHandle> handle(Find(r));
if (handle==NULL)
handle = Load(r);

227

228

Chapter 8 B Loading and Caching Game Data

else
Update(handle);
return handle;
}

ResCache: :GetHandle() is brain-dead simple. If the resource is already loaded in
the cache, update it. If it’s not there, you have to take a cache miss and load the
resource from the file.

The process of finding, updating, and loading resources is easy.

B ResCache::Find() uses an STL map, m_resources, to locate the right
ResHandle given a Resource.

B ResCache::Update() removes a ResHandle from the LRU list and promotes
it to the front, making sure that the LRU is always sorted properly.

B ResCache::Free() finds a resource by its handle and removes it from the
cache.

The other members, Load(), AlTocate(), MakeRoom(), and FreeOneResource(),
are the core of how the cache works:

shared_ptr<ResHandle> ResCache::Load(Resource *r)
{
shared_ptr<IResourcelLoader> loader;
shared_ptr<ResHandle> handle;

for (Resourceloaders::iterator it =m_resourcelLoaders.begin();
it !=m_resourceloaders.end(); ++it)
{
shared_ptr<IResourceloader> testlLoader = *it;
if (WildcardMatch(testLoader->VGetPattern().c_str(), r->m_name.c_str()))
{
loader = testlLoader;
break;
}
}

if (!1oader)

{
assert(loader && _T("Default resource loader not found!"));
return handle; // Resource not Toaded!

}

unsigned int rawSize =m_file->VGetRawResourceSize(*r);

The Resource Cache

char *rawBuffer = Toader->VUseRawFile() ?
Allocate(rawSize) : GCC_NEW char[rawSizel;

if (rawBuffer==NULL)
{
// resource cache out of memory
return shared_ptr<ResHandle>();
}
m_file->VGetRawResource(*r, rawBuffer);
char *buffer = NULL;
unsigned int size =0;

if (loader->VUseRawFile())
{
buffer = rawBuffer;
handle = shared_ptr<ResHandle>(
GCC_NEW ResHandle(*r, buffer, rawSize, this));
}
else
{
size = loader->VGetLoadedResourceSize(rawBuffer, rawSize);
buffer = Allocate(size);
if (rawBuffer==NULL || buffer==NULL)
{
// resource cache out of memory
return shared_ptr<ResHandle>();
}
handTe = shared_ptr<ResHandle>(
GCC_NEW ResHandle(*r, buffer, size, this));
bool success = loader->VLoadResource(rawBuffer, rawSize, handle);
SAFE_DELETE_ARRAY (rawBuffer);

if (Isuccess)
{
// resource cache out of memory
return shared_ptr<ResHandle>();
}
}

if (handle)

{
m_lru.push_front(handle);
m_resources[r->m_name] = handle;

229

230

Chapter 8 B Loading and Caching Game Data
}

assert(loader && _T("Default resource loader not found!"));
return handle; // ResCache is out of memory!
}

The first thing that happens in Load() is the right resource loader is located in the
STL list. The utility function WildcardMatch() returns true if the loader’s pattern
matches the resource name. WildcardMatch() uses the same matching rules as the
CMD window in Microsoft Windows, so * matches everything, *.JPG matches all
JPG files, and so on. If a loader isn’t found, an empty ResHandle is returned.
Then the method grabs the size of the raw resource from the resource file and allo-
cates memory for the raw resource. If the resource doesn’t need any processing, the
memory is allocated from the cache through the A1Tocate() method; otherwise, a
temporary buffer is created. If the memory allocation is successful, the raw resource
bits are loaded with the call to VGetRawResource(). If no further processing of the
resource is needed, a ResHand1e object is created using the pointers to the raw bits
and the raw resource size.

Other resources need processing and might even be a different size after they are
loaded. This is the job of a specially defined resource loader, which loads the raw
bits from the resource file, calculates the final size of the processed resource, allocates
the right amount of memory in the cache, and finally copies the processed resource
into the new buffer. You'll learn more about this in Chapter 13, which discusses
using the resource system to create sound resources.

After the resource is loaded, the newly created ResHand1e is pushed onto the LRU
list, and the resource name is entered into the resource name map.

Next up is the A11ocate() method, which makes more room in the cache when it
is needed.

char *ResCache::Allocate(unsigned int size)
{
if (!MakeRoom(size))
return NULL;

char *mem = GCC_NEW char[size];
if (mem)

m_allocated += size;

return mem;

The Resource Cache

Allocate() is called from the Load() method when a resource is loaded. It calls
MakeRoom() if there isn’t enough room in the cache and updates the member vari-
able to keep track of all the allocated resources.

bool ResCache: :MakeRoom(unsigned int size)
{

if (size > m_cacheSize)
{
return false;

}
// return null if there's no possible way to allocate the memory

while (size > (m_cacheSize - m_allocated))

{
// The cache is empty, and there's still not enough room.

if (m_Tru.empty())
return false;

FreeOneResource();
}

return true;
}

After the initial sanity check, the while loop in MakeRoom() performs the work of
removing enough resources from the cache to load the new resource by calling
FreeOneResource(). If there’s already enough room, the loop is skipped.

void ResCache: :FreeOneResource()

{
ResHandlelist::iterator gonner =m_Tru.end();
gonner--;

shared_ptr<ResHandle> handle = *gonner;

m_Tru.pop_back();
m_resources.erase(handle->m_resource.m_name);
}

ResCache: :FreeOneResource() removes the oldest resource and updates the
cache data members. Note that the memory used by the cache isn’t actually modified
here—that’s because any active shared_ptr<ResHandle> in use will need the bits
until it actually goes out of scope.

231

232

Chapter 8 B Loading and Caching Game Data

Here’s an example of how this class is used. You construct the cache with a size in
mind, in our case 50MB, and an object that implements the IResourceFile inter-
face. You then call Init() to allocate the cache and open the file.

ResourceZipFile zipFile("Assets.zip");
ResCache resCache (50, zipFile);
if (m_ResCache.Init())
{
Resource resource("art\\brick.bmp");
shared_ptr<ResHandle> texture = g_pApp->m_ResCache->GetHandle(&resource);
int size = texture->GetSize();
char *brickBitmap = (char *) texture->Buffer();
// do something cool with brickBitmap !
}

If you want to use this in a real game, you've got more work to do. First, there’s
hardly a line of defensive or debugging code in ResCache. Resource caches are a
significant source of bugs and other mayhem. Data corruption from buggy cache
code or something else trashing the cache internals will cause your game to simply
freak out.

A functional cache will need to be aware of more than one resource file. It’s not rea-
sonable to assume that a game can stuff every resource into a single file, especially
since it makes it inconvenient for teams. If every resource were stuffed into a single
file, then even the change of a minor texture in the options screen would cause every
person on the team to grab a new copy of the entire resource file for the game, which
could be multiple gigabytes. Break your game up into some reasonable number of
resource files, and you’ll be happier for it.

Write a Custom Memory Manager

Consider implementing your own memory allocator. Many resource caches
allocate one contiguous block of memory when they initialize and manage
the block internally. Some even have garbage collection, where the
resources are moved around as the internal block becomes fragmented. A
garbage collection scheme is an interesting problem, but it is extremely
difficult to implement a good one that doesn't make the game stutter.

Ultima VIl used a scheme like this. l‘o\CHCES

That brings us to the idea of making the cache multithreading compliant. Why not
have the cache defrag itself if there’s some extra time in the main loop, or perhaps
allow a reader in a different thread to fill the cache with resources that might be used
in the near future? With high-definition consoles like the PS3 and Xbox360, this area
of game programming is getting a lot of attention. The new multiprocessor systems

The Resource Cache

have tons of CPU horsepower, and resource management can certainly get its own
thread. The problem is going to be synchronization and keeping all the CPUs from
stalling.

Caching Resources into DirectX et al.

Luckily for you, DirectX objects such as sound effects, textures, and even meshes can
all load from a memory stream. For example, you can load a DirectX texture using
the D3DXCreateTextureFromFileInMemory () API, which means loading a tex-
ture from your resource cache is pretty easy:

Resource resource(m_params.m_Texture);
shared_ptr<ResHandle> texture = g_p