
1

 Table of Contents

JavaBeans Tutorial

JavaBeans brings component technology to Java. JavaBeans lets your write Java
classes, called Beans, that you can visually manipulate within application builder
tools. The place to start learning about JavaBeans is the JavaBeans API Specification.

The software you’ll need to understand and explore Beans is available free on the web.
In addition to the Beans Development Kit (BDK) version 1.0, you will need the Java
Development Kit (JDK) version 1.1.

This document describes what makes a Bean, and shows you how to use the BDK to
write Beans.

 Introducing JavaBeans defines a Bean and Bean concepts, describes the BDK
contents and the demonstration Beans, and discusses future Bean directions.

 BeanBox Basics describes the BeanBox: The BDK Bean reference container.
You’ll learn how to start the BeanBox, view events, generate property reports,
serialize components, create a minimal Bean, save a Bean, and add a Bean to the
ToolBox.

 Writing a Simple Bean describes how to incorporate properties, events, and
persistence within your Bean, and how to generate an applet from the BeanBox.

 Writing Advanced Beans describes how to incorporate bound, constrained, and
indexed properties into your Beans, how to use BeanInfo to advertise your Beans’
capabilities to application builder tools, how to use your own Bean customizers, and
how to convert your Beans into Active−X components.

2

Additional Documentation

The BDK’s beans/docs directory contains documentation for
The Beans API
The BeanBox API
The demo Beans
The java.util API
Java Archive (JAR) files and manifests
Makefiles for gnumake (Unix) and nmake (Windows)

A good starting point is the file beans/README.html .

The JavaBeans Documentation page contains current JavaBeans API definitions,
upcoming JavaBeans feature descriptions, and related Java documentation such as
the Java Core Reflection API, Object Serialization, Remote Method Invocation (RMI),
and Third−party JavaBeans books.

 Table of Contents

3

 Table of Contents

JavaBeans Overview
JavaBeans Concepts briefly explains Bean fundamentals.

BDK Contents is a roadmap to the BDK contents.

BDK Demonstration Bean Descriptions describes the demo Beans shipped with the
BDK.

Future JavaBeans Features lets you know what is coming down the road for
JavaBeans.

 Table of Contents

4

 JavaBeans Overview

JavaBeans Concepts
The JavaBeans API makes it possible to write component software in Java.
Components are self−contained, reusable software units that can be visually composed
into applets or applications using visual application builder tools.

JavaBeans is a core JDK1.1 capability: Any JDK1.1−compliant browser or tool
implicitly supports JavaBeans.

JavaBean components are called Beans. A "Beans aware" builder tool maintains
Beans in a palette or toolbox. You can select a particular Bean from the toolbox, drop
it into a form, modify it’s appearance and behavior, define its interaction with other
Beans, and compose it and other Beans into an applet, application, or new Bean. All
this can be done without writing a line of code.

The following list briefly describes key Bean concepts:
Builder tools discover a Bean’s properties, methods, and events by introspection.
Beans support introspection in two ways:

By adhering to specific naming conventions, known as design patterns, when
naming Bean features. Bean introspection relies on the core reflection API to
discover Bean features via design patterns.
By explicity providing property, method, and event information with a related
Bean Information class. A Bean information class implements the BeanInfo
interface.

See Chapter 8 of the JavaBeans API Specification for an introspection, design pattern,
and BeanInfo discussion.
Properties are a Bean’s appearance and behavior attributes that can be changed at
design time. Properties are exposed to builder tools by design patterns or a BeanInfo
class. See Chapter 7 of the JavaBeans API Specification for a complete property
discussion.
Beans expose properties so that they can be customized at design time. Customization
is supported in two ways: By using property editors, or by using more sophisticated
Bean customizers. See Chapter 9 of the JavaBeans API Specification for a
customization discussion.
Beans use events to communicate with other Beans. A Bean that wants to receive
events (a listener Bean) registers its interest with the Bean that fires the event (a
source Bean). Builder tools can examine a Bean and determine which events that
Bean can fire (send) and which it can handle (receive). See Chapter 6 of the
JavaBeans API Specification for a complete event discussion.
Persistence enables Beans to save their state, and restore that state later. JavaBeans
uses Java Object Serialization to support persistence. See Chapter 5 of the JavaBeans
API Specification for a complete persistence discussion.

5

A Bean’s methods are no different than Java methods, and can be called from other
Beans or a scripting environment. By default a all public methods are exported.

Beans can be used with both builder tools, or manually manipulated by text tools
through programmatic interfaces. All key APIs, including support for events,
properties, and persistence, have been designed to be easily read and understood by
human programmers as well as by builder tools.

 JavaBeans Overview

6

 JavaBeans Overview

BDK Contents Described
THIS SECTION IS UNDER CONSTRUCTION

Here is a general description of the BDK files and directories:
README.html contains an entry point to the BDK documentation
LICENSE.html contains the BDK license agreement
GNUmakefile and Makefile are Unix and Windows makefiles (.gmk and .mk suffixes)
for building the demos and the BeanBox, and for running the BeanBox
beans/apis contains

a java directory containing JavaBeans source files
a sun directory property editor source files

beans/beanbox contains
makefiles for building the BeanBox
scripts for running the BeanBox
a classes directory containing the BeanBox class files
a lib directory containing a BeanBox support jar file used by MakeApplet’s
produced code
sun and sunw directories containing BeanBox source (.java) files
a tmp directory containing automatically generated event adapter source and
class files, .ser files, and applet files automatically generated by MakeApplet

beans/demos contains
makefiles for building the demo Beans
an html directory containing an applet wrapper demonstration that must be run
in appletviewer, HotJava, or JDK1.1−compliant browsers
a sunw directory containing

a wrapper directory containing a bean applet wrapper
a demos directory containing demo source file

beans/doc contains
demos documentation
a javadoc directory containing JavaBeans and JavaBeans−related class and
interface documentation
miscellaneous documentation

beans/jars contains jar files for demo Beans

 JavaBeans Overview

7

 JavaBeans Overview

The BDK Demonstration Beans
Description of the BDK demo Beans. UNDER CONSTRUCTION.

 JavaBeans Overview

8

 JavaBeans Overview

Future BDK Features
This file will contain info on future features. UNDER CONSTRUCTION

 JavaBeans Overview

9

 Table of Contents

BeanBox Basics
The BeanBox is an application for testing Beans, and serves as a simple
demonstration for how more sophisticated Beans−aware builder tools should behave.
The BeanBox is also a nice tool for learning about Beans. You will use the BeanBox to
help you understand Bean characteristics.

Starting and Using the BeanBox explains how to start the BeanBox, and describes the
ToolBox and Properties sheet.

Creating a Minimal Bean walks you through creating a rudimentary Bean, saving the
Bean, adding the Bean to the ToolBox, placing the Bean in the BeanBox, inspecting
the Bean’s properties and events, and generating a Bean introspection report.

The BeanBox Menus explains each item in the BeanBox File, Edit, and View menus.

 Table of Contents

10

 BeanBox Basics

Starting and Using the BeanBox
The beans/beanbox . directory contains Windows (run.bat) and Unix (run.sh) scripts
that start the BeanBox. You can use these commands to start the BeanBox, or use
make:

gnumake run

Or:

nmake run

The BDK files beans/doc/makefiles.html and beans/doc/gnu.txt for
information about getting copies of these make tools.

When started, the BeanBox displays three windows: The BeanBox, ToolBox, and the
Properties sheet. Here’s how they look running under CDE (Common Desktop
Environment):

This illustration shows the BeanBox with the Juggler demo Bean placed within it. The
hatching around the Juggler is how the BeanBox indicates the selected Bean. Clicking
on a Bean selects it. On Windows, it’s a little tricky; you must click in the area where
the hatched border would appear to select the Bean. On other systems clicking

11

anywhere on the Bean will select it.

Adding a Bean to the ToolBox

The ToolBox contains the Beans available for use by the BeanBox. When the BeanBox
is started, it automatically loads all the Beans it finds within the JAR files contained
in the beans/jars directory. Move your JAR files into that directory to have them
automatically loaded at BeanBox startup. After the BeanBox is running you can load
Beans Using the File|LoadJar... BeanBox menu item. Only Beans in the beans/jars
directory will be loaded between startups though. Clicking on a Bean name within the
ToolBox chooses that Bean for placement within the BeanBox. You will see the cursor
change to a crosshair.

Dropping a Bean on the BeanBox

To add a JellyBean to the BeanBox
1. Click on the word JellyBean in the ToolBox. The cursor will change to a crosshair.
2. Click within the BeanBox. The JellyBean will appear and will be selected.

Note the change in the Properties sheet when you put the JellyBean in the BeanBox.
Before you placed the JellyBean in the BeanBox, the BeanBox’s properties were
displayed; after placing the JellyBean in the BeanBox, the JellyBean’s properties are
displayed. If you missed the change, click within the BeanBox, away from the
JellyBean. This will select the BeanBox rather than the JellyBean. The Properties
sheet will then display the BeanBox’s properties.

The Properties sheet displays the selected Bean’s properties. After dropping a
JellyBean instance on the BeanBox, the Properties sheet displays the JellyBean
properties: color, foreground, priceInCents, background, and font.

Editing Bean Properties

The Properties sheet displays each property’s name and its current value. Values are
displayed in an editable text field (strings and numbers), a choice menu (booleans), or
as painted values (colors and fonts). You can edit the property value by clicking on a
property within the Properties sheet. Properties displayed in text fields or choice
menus are edited within the Properties sheet. When you click on a color or font
property a separate panel will pop up to do the editing. These property types use a
custom property editor. Try clicking on each of the JellyBean properties.

Saving and Restoring Beans

The BeanBox uses Java Object Serialization to save and restore Beans and their state.
The following steps demonstrate how to save and restore a Bean:

1. Drop a JellyBean on the BeanBox.
2. Change the color property to anything you want.

12

3. Select the File|Save BeanBox menu item. A file browser will pop up; use it to save the
Bean to a file.

4. Select the File|Clear BeanBox menu item.
5. Select the File|Load BeanBox menu item. The file browser will again pop up; use it to

retrieve the serialized Bean.

In the next lesson you learn more BeanBox capabilities by creating a simple Bean.

 BeanBox Basics

13

 BeanBox Basics

The BeanBox Menus
THIS SECTION IS UNDER CONSTRUCTION

This section explains each item in the BeanBox File, Edit, and View menus.
File Menu
Save
Saves the Beans in the BeanBox, including each Bean’s size, position, and internal
state. The saved file can be loaded via File|Load.
SerializeComponent...
Saves the Beans in the BeanBox to a serialized (.ser) file. This file must be put in a
.jar file to be useable.
MakeApplet...
Generates an applet from the BeanBox contents.
Load...
Loads Saved files into the BeanBox. Will not load .ser files.
LoadJar...
Loads a Jar file’s contents into the ToolBox.
Print
Prints the BeanBox contents.
Clear
Removes the BeanBox contents.
Exit
Quits the BeanBox without offering to save.
Edit Menu
Cut
Removes the Bean selected in the BeanBox. The cut Bean is serialized, and can then
be pasted.
Copy
Copies the Bean selected in the BeanBox. The copied Bean is serialized, and can then
be pasted.
Paste
Drops the last cut or copied Bean into the BeanBox.
Report...
Generates an introspection report on the selected Bean.
Events
Lists the event−firing methods, grouped by interface.
Bind property...
Lists all the bound property methods of the selected Bean.
View Menu
Disable Design Mode
Removes the ToolBox and the Properties sheet from the screen. Eliminates all

14

beanBox design and test behavior (selected Bean, etc.), and makes the BeanBox
behave like an application.
Hide Invisible Beans
Hides invisible Beans.

 BeanBox Basics

15

 BeanBox Basics

Creating a Minimal Bean
In this section you will continue learning some BeanBox fundamentals by
Creating a minimal Bean
Compiling and saving the Bean into a Java Archive (JAR) file (by using a makefile)
Loading the Bean into the ToolBox
Dropping a Bean instance into the BeanBox
Inspecting the Bean’s properties, methods, and events
Generating an introspection report

Your example Bean will be named SimpleBean , and you will create it in the
beans/demo/sunw/demo/simple directory:

1. Create the directory beans/demo/sunw/demo/simple . This will put SimpleBean
in with the other BDK demo Beans.

2. Write the SimpleBean code. Since you’re new to Beans, we’ll give it to you:

package sunw.demo.simple;
import java.awt.*;
import java.io.Serializable;

public class SimpleBean extends Canvas
 implements Serializable{

 //Constructor sets inherited properties
 public SimpleBean(){
 setSize(60,40);
 setBackground(Color.red);
 }
}

SimpleBean extends the

java.awt.Canvas component. SimpleBean also
implements the java.io.Serializable interface, a requirement for all Beans. Setting the
background color and component size is all that SimpleBean does.

3. Write the makefile. Makefiles for Unix (gnumake) and Windows (nmake) are listed
at the end of this section. These makefiles compile SimpleBean , and generate a JAR
file in beans/jars (where the other demo jars reside). Save one of these makefiles as
simple.gmk (Unix) or simple.mk (Windows), and put it in beans/demo .

16

4. Run make from the beans/demos directory. For Unix, run

 gnumake simple.gmk

For Windows, run

 nmake −f simple.mk

This will compile SimpleBean, and create a JAR file in the beans/jars directory. The
BeanBox looks in that directory for JAR files.

5. Load the JAR file into the ToolBox. Pull down the File|LoadJar... menu item. This
will bring up a file browser. Navigate to beans/jars and select simple.jar.
SimpleBean will appear at the bottom of the ToolBox. Note that when the BeanBox is
started, all Beans in JAR files in the beans/jars directory are automatically loaded
into the ToolBox.

6. Drop an instance of SimpleBean into the BeanBox. Click on the word
SimpleBean in the ToolBox. The cursor will change to crosshairs. Move the cursor to a
spot within the BeanBox and click. SimpleBean will appear as a painted rectangle
with hatched border. This border means that SimpleBean is selected. The
SimpleBean properties will appear in the Properties sheet.

You can resize SimpleBean (because it inherits from Canvas) by dragging a corner.
You will see the cursor change to a right angle when over a corner. You can reposition
SimpleBean within the BeanBox by dragging on any non−corner portion of the
hatched border. You will see the cursor change to crossed arrows when in position to
move the Bean.

Inspecting SimpleBean Properties and Events

The Properties sheet displays the selected Bean’s properties. With SimpleBean
selected, the Properties sheet displays four propeties: foreground , background ,
font , and name. We declared no properties in SimpleBean (you will see how later), so
these are properties inherited from Canvas. Clicking on each property brings up a
property editor. The BeanBox provides default property editors for the primitive types,
plus font and color types. You can find the sources for these property editors in
beans/apis/sun/beans/editors .

Beans communicate with other Beans by sending and receiving event notifications. To
see which events SimpleBean can send, choose the Edit|Events BeanBox menu item.
A list of events, grouped by interface, will be displayed. Under each interface group is
a list of event methods. These are all inherited from Canvas.

17

You will learn more about properties and events in upcoming sections.

Generating Bean Introspection Reports

Introspection is the process of discovering a Bean’s design−time features by one of two
methods:
Low−level reflection, which uses design patterns to discover your Bean’s features
By examining an associated bean information class that explicitly describes your
Bean’s features.

You can generate a Bean introspection report by choosing the the Edit|Report menu
item. The report lists Bean events, properties, and methods, and their characteristics.

By default Bean reports are sent to the java interpreter’s standard output, which is
the window where you started the BeanBox. You can redirect the report to a file by
changing the java interpreter command in beanbox/run.sh or run.bat to:
java sun.beanbox.BeanBoxFrame > beanreport.txt

SimpleBean Makefiles

Here are two makefiles (Unix and Windows) set up to create SimpleBean. The
makefiles compile the .java files, and create a JAR with the resulting .class file
and a manifest.

gnumake file

CLASSFILES= \
 sunw/demo/simple/SimpleBean.class

JARFILE= ../jars/SimpleBean.jar

all: $(JARFILE)

Create a JAR file with a suitable manifest.
$(JARFILE): $(CLASSFILES) $(DATAFILES)
 echo "Name: sunw/demo/simple/SimpleBean.class" >> manifest.tmp
 echo "Java−Bean: True" >> manifest.tmp
 jar cfm $(JARFILE) manifest.tmp sunw/demo/simple/*.class
 @/bin/rm manifest.tmp

Compile the sources
%.class: %.java
 export CLASSPATH; CLASSPATH=. ; \
 javac $<

make clean
clean:
 /bin/rm −f sunw/demo/simple/*.class
 /bin/rm −f $(JARFILE)

18

Here is the Windows nmake version:

nmake file
CLASSFILES= \
 sunw\demo\simple\simplebean.class \

JARFILE= ..\jars\simplebean.jar

all: $(JARFILE)

Create a JAR file with a suitable manifest.

$(JARFILE): $(CLASSFILES) $(DATAFILES)
 jar cfm $(JARFILE) << manifest.tmp sunw\demo\simple*.class
Name: sunw/demo/simple/SimpleBean.class
Java−Bean: True
<<

.SUFFIXES: .java .class

{sunw\demo\simple}.java{sunw\demo\simple}.class :
 set CLASSPATH=.
 javac $<

clean:
 −del sunw\demo\simple*.class
 −del $(JARFILE)

You can use these makefiles as templates for creating your own Bean makefiles.

The JavaSoft website contains documentation on

JAR files.

 BeanBox Basics

19

 Table of Contents

Writing a Simple Bean
In the following sections you will learn how to implement and use the basic Bean
attributes: properties, events, and persistence. You will also learn how to use the
BeanBox’s applet generating capability.

Now is a good time to read or review the JavaBeans API Specification. Chapter 7
describes properties, Chapter 6 describes events, and Chapter 5 describes persistence.

Implementing Properties explains how to give your Beans properties: Bean
appearance and behavior characteristics customizable at design time.

Manipulating Events in the BeanBox describes the BeanBox’s event capabilities.
You’ll need a sound understanding of the JDK 1.1 event mechanism going in.

Implementing Persistence describes how to make your Beans, and their customized
state, saveable and restoreable.

Using the BeanBox to Generate Applets shows you how to easily generate applets
from the BeanBox contents.

 Table of Contents

20

 Writing a Simple Bean

Implementing Properties

To get the most out of this section, first read Chapters 7, Properties, and Chapter 8,
Introspection, of the JavaBeans API Specification.

If you create a Bean class, give it an instance variable named color , and access
color through a getter method named getColor and a setter method named
setColor , then you have created a property.

Properties are aspects of a Bean’s appearance and behavior that are changeable at
design time.

JavaBean properties follow specific rules, called design patterns, when naming getter
and setter method names. This lets Beans−aware builder tools (and the BeanBox)
discover, display (usually in a property sheet), and alter those properties at design
time.

For example, a builder tool, in introspecting your Bean, discovers two methods,
getColor() and setColor() , infers that a property named color exists, and displays
that property in a property sheet where it can be edited.

Adding a Color Property to SimpleBean

Make the following changes to SimpleBean.java to add a color property:
1. Create and initialize a private instance variable.

 private Color color = Color.green;

2. Write a getter method.
 public Color getColor(){
 return color;
 }

3. Write a setter method.
 public void setColor(Color newColor){
 color = newColor;

21

 repaint();
 }

4. Override the inherited paint() method. This is a requirement for all subclasses of
Canvas.
 public void paint(Graphics g) {
 g.setColor(color);
 g.fillRect(20, 5, 20, 30);
 }

5. Compile the Bean, load it in the ToolBox, and create an instance in the BeanBox.

The results are:

SimpleBean will be displayed with a green centered rectangle.
The Properties sheet will contain a new color property. The introspection mechanism
will also search for a color property editor. A Color property editor is one of the default
editors supplied with the BeanBox. This editor is assigned as SimpleBean’s color
property editor. Click on the color property in the Properties sheet to run this editor.
See section 9.2 of the JavaBeans API Specification for more information about
property editors, particulary how the BeanBox searches for a property editor.

Here is a BeanBox illustration showing the revised SimpleBean instance within the
BeanBox, SimpleBean’s new color property within the Properties sheet, and the Color
property editor shipped with the BeanBox. Remember, clicking on the color property
entry in the Properties sheet displays this editor.

22

You can change the color property by menu, or by RGB value. Try changing colors.

Here is the complete SimpleBean source code, revised to add a color property.

package sunw.demo.simple;

import java.awt.*;
import java.io.Serializable;

public class SimpleBean extends Canvas
 implements Serializable{

 private Color color = Color.green;

 //property getter method
 public Color getColor(){
 return color;
 }

 //property setter method. Sets new SimpleBean
 //color and repaints.
 public void setColor(Color newColor){
 color = newColor;
 repaint();
 }

 public void paint(Graphics g) {
 g.setColor(color);
 g.fillRect(20, 5, 20, 30);
 }

23

 //Constructor sets inherited properties
 public SimpleBean(){
 setSize(60,40);
 setBackground(Color.red);
 }
}

You can learn how to implement
bound, constrained, and indexed properties in the

advanced Beans section of this document.

In the next lesson, you’ll learn about events, and how to manipulate them in the
BeanBox.

 Writing a Simple Bean

24

 Writing a Simple Bean

Manipulating Events in the BeanBox

You’ll need a good understanding of the JDK 1.1 event mechanism before reading
this section. Here’s the list of recommended readings:
The Java AWT 1.1 event handling mechanism
Chapter 6 of the JavaBeans API Specification
Section 8.4, Design Patterns for Events of the JavaBeans API Specification.

Beans use the new event mechanism implemented in JDK 1.1, so implementing Bean
events is the same as implementing events in any JDK 1.1 component. This section
describes how this event mechanism is used by Beans and the BeanBox.

How the BeanBox Discovers a Beans Event Capabilities

The BeanBox uses either design pattern introspection or a BeanInfo class to discover
what events a Bean can fire.

Using Introspection to Discover the Events A Bean Fires

JavaBeans provides event−oriented design patterns to give introspecting tools the
ability to discover what events a Bean can fire. For a Bean to be the source of an
event, it must implement methods that add and remove listener objects for that type
of event. The design patterns for these methods are
public void add<EventListenerType>(<EventListenerType> a)
public void remove<EventListenerType>(<EventListenerType> a)

These methods let a source Bean know where to fire events. The source Bean then
fires events at those listener Beans using the methods for those particular interfaces.
For example, if a source Bean registers ActionListener objects, it will fire events at
those objects by calling the actionPerformed() method on those listeners.

To see events discovered using design patterns, drop an instance of OurButton into
the BeanBox and pull down the Edit|Events menu. This displays a list of event
interfaces to which OurButton can fire events. Note that OurButton itself only adds
and removes two of these interfaces; the rest are inherited from the base class.

25

Using BeanInfo to Define the Events a Bean Fires

You can explicitly "advertise" the events a Bean fires by using a class that implements
the BeanInfo interface. The ExplicitButton demo Bean subclasses OurButton ,
and provides an associated ExplicitButtonBeanInfo class.
ExplicitButtonBeanInfo implements the following method to explicitly define
interfaces to which ExplicitButton fires events.

public EventSetDescriptor[] getEventSetDescriptors() {
 try {
 EventSetDescriptor push = new EventSetDescriptor(beanClass,
 "actionPerformed",
 java.awt.event.ActionListener.class,
 "actionPerformed");

 EventSetDescriptor changed = new EventSetDescriptor(beanClass,
 "propertyChange",
 java.beans.PropertyChangeListener.class,
 "propertyChange");

 push.setDisplayName("button push");
 changed.setDisplayName("bound property change");

 EventSetDescriptor[] rv = { push, changed};
 return rv;
 } catch (IntrospectionException e) {
 throw new Error(e.toString());
 }
}

Drop an ExplicitButton instance in the BeanBox, and pull down the Edit|Events
menu. Notice that only those interfaces explicitly exposed in the
ExplicitButtonBeanInfo class are listed. No inherited capabilities are exposed.
See the

Using BeanInfo section for more information on the BeanInfo interface.

Viewing a Bean’s Events in the BeanBox

If you select an OurButton Bean in the BeanBox, then pull down the Edit|Events
menu, you will see a list of interfaces that OurButton can fire events at. Each
interface item will, when selected, display the methods that fire different events at
those interfaces. These correspond to all the events that OurButton can fire.

Hooking Up Events in the BeanBox

In this example you will use two OurButton bean instances to stop and start an
instance of the animated Juggler bean. You will label the buttons "start" and "stop";
make the start button, when pressed, invoke the Juggler bean’s start method; and
make the stop button, when pressed, invoke the Juggler bean’s stop method.

1. Start the BeanBox.
2. Drop a Juggler bean and two OurButton bean instances into the BeanBox.

26

3. Select an OurButton instance. In the Properties sheet, change the label property to
"start". Select the second OurButton instance and change its label to "stop".

4. Select the start button. Choose the Edit|Events|action|actionPerformed menu item.
This causes a rubber band line to track between the start button and the cursor. Click
on the Juggler instance. This brings up the EventTargetDialog:

This list contains Juggler methods that take no arguments, or arguments of type
actionPerformed.

5. Select the start method and press OK. You will see a message that the BeanBox is
generating adapter classes.

6. Do the above two steps on the stop button, except choose the stop method in the
EventTargetDialog.

Clicking on the start and stop buttons will now start and stop the Juggler. Here is a
general description of what happened:
The start and stop buttons, are event sources. Event sources fire events at event targets
. In this example the Juggler bean is the event target.
When you select the start button and choose an event method (via the Edit|Event
menu item), you are choosing the type of event the event source will fire.
When you connect the rubber band line to another bean, you are selecting the event
target Bean.
The EventTargetDialog lists methods that can accept that type of event or that
take no parameters. When you choose a method in the EventTargetDialog , you are
specifying the method that will receive the fired event, and act on it.

You will use this juggler example later when you learn how to generate applets, so use
the File|Save menu item to save this example to a file of your choice.

27

Event Adapter Classes

The BeanBox generates an adapter class the interposes between the source and the
target. The adapter class implements the appropriate event listener interface (and so
is the actual listener, not the target Juggler Bean), catches the event fired by the
button, and then calls the selected target method. Here is the BeanBox−generated
adapter class that interposes between the start button and the JugglerBean :

// Automatically generated event hookup file.
package tmp.sunw.beanbox;
import sunw.demo.juggler.Juggler;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
public class ___Hookup_1474c0159e implements
 java.awt.event.ActionListener, java.io.Serializable {
 public void setTarget(sunw.demo.juggler.Juggler t) {
 target = t;
 }
 public void actionPerformed(java.awt.event.ActionEvent arg0) {
 target.startJuggling(arg0);
 }
 private sunw.demo.juggler.Juggler target;
}

The adapter implements the ActionListener interface that you selected in the
BeanBox’s Edit|Events menu. ActionListener declares one method,
actionPerformed() , which is implemented by the adapter to call the target Bean
method that you selected. The setTarget() method is called by the BeanBox to set
the target Bean.

The EventMonitor Demo Bean

The EventMonitor Bean (beans/demo/sunw/demo/encapsulatedEvents) prints
out source Bean event reports, as they occur, in a scrolling listbox. To see how this
works, take the following steps:

1. Drop OurButton and EventMonitor instances in the BeanBox. You might want to
resize the EventMonitor (and the BeanBox) to accommodate viewing the event
reports.

2. Select the OurButton instance, and choose any event method in the Edit|Events
menu.

3. Connect the rubber band line to the EventMonitor , and choose its
initiateEventSourcMonitoring in the EventTargetDialog .

4. Select the OurButton Bean. You will begin seeing event reports in the
EventMonitor
When the first event is delivered, EventMonitor analyzes the source Bean to discover
all the events it fires, creates and registers an event listener for each event type, and
then reports whenever any event is fired. This is useful for debugging. Try connecting

28

other demo Beans to EventMonitor to observer their events.

Events for Bound and Constrained Properties

The bound and constrained properties sections describe two specific event listener
interfaces.

 Writing a Simple Bean

29

 Writing a Simple Bean

Implementing Persistence

For complete information on persistence and serialization, see the Object
Serialization web site.

A Bean persists by having its properties, fields, and state information saved and
restored to and from storage. The mechanism that makes persistence possible is called
serialization. When a Bean instance is serialized, it is converted into a data stream
and written to storage. Any applet, application, or tool that uses that Bean can then
"reconstitute" it by deserialization. JavaBeans uses the JDK’s Object Serialization API
for its serialization needs.

As long as one class in a class’s inheritance hierarchy implements Serializable or
Externalizable, that class is serializable.

All Beans must persist. To persist, your Beans must support serialization by
implementing either the java.io.Serializable interface, or the java.io.Externalizable
interface. These interfaces offer you the choice between automatic serialization, and
"roll your own".

Controlling Serialization

You can control the level of serialization that your Beans undergo:
Automatic: implement Serializable . Everything gets serialized.
Selectively exclude fields you do not want serialized by marking with the transient
(or static) modifier
Complete control: implement Externalizable , and its two methods.

Default Serialization: The Serializable Interface

The Serializable interface provides automatic serialization by using the Java
Object Serialization tools. Serializable declares no methods; it acts as a marker,
telling the Object Serialization tools that your Bean class is serializable. Marking your
class with Serializable means you are telling the JVM that you have made sure
your class will work with default serialization. Here are some important points about
working with the Serializable interface:
Classes that implement Serializable must have a no−argument constructor. This
constructor will be called when an object is "reconstituted" from a .ser file.

30

There is no need to implement Serializable in your class if if it is already
implemented in a superclass.
All fields but static and transient are serialized. Use the transient modifier to
specify fields you do not want serialized, and to specify classes that are not
serializable.

The BeanBox writes serialized Beans to a file with a .ser extension.

The OurButton demo Bean uses default serialization to make its properties persist.
OurButton only added Serializable to its class definition to make use of default
serialization:
 public class OurButton extends Component implements Serializable,...

If you drop an OurButton instance into the BeanBox, the properties sheet displays
OurButton’s properties. To ascertain that serialization is working

1. Change some OurButton properties. For example change the font size and colors.
2. Serialize the changed OurButton instance by selecting the File|SerializeComponent...

BeanBox menu item. A file browser will pop up.
3. Put the .ser file in a JAR file with a suitable manifest (need to explain how to do this).
4. Clear the BeanBox form by selecting the File|Clear menu item.
5. Reload the serialized instance by selecting the File|LoadJar menu item.

The OurButton instance will appear in the BeanBox with your property changes
intact. By implementing Serializable in your class, simple, primitive properties
and fields can be serialized. For more complex class members, different techniques
must be used.

Selective Serialization Using the transient Keyword

To exclude fields from serialization in a Serializable object from serialization,
mark the fields with the transient modifier.

 transient int Status;

Default serialization will not serialize transient and static fields.

Selective Serialization: writeObject and readObject()

If your serializable class contains either of the following two methods (the signatures
must be exact), then the default serialization will not take place.
private void writeObject(java.io.ObjectOutputStream out)
 throws IOException;
private void readObject(java.io.ObjectInputStream in)
 throws IOException, ClassNotFoundException;

You can control how more complex objects are serialized, by writing your own
implementations of the writeObject() and readObject() methods. Implement

31

writeObject when you need to exercise greater control over what gets serialized,
when you need to serialize objects that default serialization cannot handle, or when
you need to add data to the serialization stream that is not an object data member.
Implement readObject() to reconstruct the data stream you wrote with
writeObject() .

Example: The Molecule Demo Bean

The Molecule demo keeps a version number in a static field. Since static fields are
not serialized by default, writeObject() and readObject() are implemented to
serialize this field. Here is the writeObject() and readObject() implementations
in Molecule.java :

private void writeObject(java.io.ObjectOutputStream s)
 throws java.io.IOException {
 s.writeInt(ourVersion);
 s.writeObject(moleculeName);
 }
private void readObject(java.io.ObjectInputStream s)
 throws java.lang.ClassNotFoundException,
 java.io.IOException {
 // Compensate for missing constructor.
 reset();
 if (s.readInt() != ourVersion) {
 throw new IOException("Molecule.readObject: version mismatch");
 }
 moleculeName = (String) s.readObject();
 }

These implementations limit the fields serialized to ourVersion and moleculeName .
Any other data in the class will not be serialized.

It is best to use the ObjectInputStream ’s defaultWriteObject() and
defaultReadObject before doing your own specific stream writing. For example:

private void writeObject(java.io.ObjectOutputStream s)
 throws java.io.IOException {
 //First write out defaults
 s.defaultWriteObject();
 //...
 }
private void readObject(java.io.ObjectInputStream s)
 throws java.lang.ClassNotFoundException,
 java.io.IOException {
 //First read in defaults
 s.defaultReadObject();
 //...
 }

32

Roll Your Own Serialization: The Externalizable
Interface

Use the Externalizable interface to serialize (write) your Beans in a specific file
format. Externalizable gives you complete flexibility in specifying the serialized
format. You need to implement two methods: readExternal() and
writeExternal() . Externalizable classes must also have a no−argument
constructor.

Example: The BlueButton and OrangeButton Demo Beans

When you run the BeanBox, you will see two Beans named BlueButton and
OrangeButton in the ToolBox. These two Beans are actually serialized instances of
the ExternalizableButton class.

ExternalizableButton implements the Externalizable interface. This means it
does all its own serialization, by implementing Externalizable.readExternal()
and Externalizable.writeExternal() . The BlueButtonWriter program is used
by the buttons makefile to create an ExternalizableButton instance, change its
background property to blue, and write the Bean out to the file BlueButton.ser .
OrangeButton is created the same way, using OrangeButtonWriter . The button
makefile then puts these .ser files in buttons.jar , where the ToolBox can find and
reconstitute them.

Tips on what should not be serialized

Here is a short list of things you don’t want to serialize:
Event adaptors
References to other objects
Images
File handles

A good strategy is to mark fields or objects that cannot be made persistent using the
default offered by the Serialization interface. Then write your own
implementations of the writeObject() and readObject() methods to serialize and
deserialize those transient fields.

 Writing a Simple Bean

33

 Writing a Simple Bean

Using the BeanBox to Generate Applets
You can use the BeanBox’s File|MakeApplet... menu item to generate an applet from
the BeanBox contents. Making an applet from the BeanBox creates a JAR file
containing
Serialized data and class files
A test HTML file that uses the JAR file (and any other JAR file needed)
A subdirectory with Java sources and makefile
A readme file with complete information about the generated applet and all files
involved.

Take the following steps to generate an applet from the BeanBox:
1. Use the Juggler example that you made in the events section. If you saved that

example to a file, load it in the BeanBox using the File|Load menu item. If you didn’t
save it, follow the steps in the events section to build the example. The generated
applet will have the same size as the BeanBox frame, so you might want to adjust the
BeanBox size to the size of the applet you want.

2. Choose File|Make Applet to bring up the MakeApplet dialog:

Use the default JAR file and applet name for this example. Press the OK button.

That’s it. The generated files were placed in the beanbox/tmp/myApplet directory.
You can inspect your handiwork by bringing up appletviewer in the following way:
 appletviewer <BDKInstallation>/beanbox/tmp/myApplet.html.

Here is what you will see:

34

Don’t forget to look at the generated myApplet_readme file, and the other files
generated.

Generated applets can be used in any JDK 1.1−compliant browser. The appletviewer
is a good test platform. Another fully compliant browser is the HotJava browser The
preview2 Internet Explorer 4.0 release does not yet support JAR files, and you will
have to expand the JAR and HTML files that are generated. Also, a deserialization
bug causes components to not listen to mouse events. See the generated readme file
for more information. The generated applet will not work in Netscape Communicator
versions 4.0 and 4.01; versions with full JDK 1.1 support are expected later this year.

 Writing a Simple Bean

35

 Table of Contents

Writing Advanced Beans
This section contains lessons that illustrate more complex bean capabilities.
Implementing Bound Properties describes how to cause a property change in one Bean
to affect other Beans.

Implementing Constrained Properties tells you how to let other outside Beans exert
veto power on your Bean’s property changes.

Implementing Indexed Properties introduces properties that are best represented as
arrays.

Customizing Beans introduces you to property editors and the Customizer interface.

Using BeanInfo describes the details of Bean information classes: Separate classes
used to provide Bean information to builder tools.

Converting Beans into ActiveX Components

 Table of Contents

36

 Writing Advanced Beans

Implementing Bound Properties

Here is a list of background reading to prepare you for learning bound properties:
Chapter 7 of the JavaBeans API Specification
PropertyChangeListener interface
PropertyChangeSupport class
PropertyChangeEvent class

The Beans API provides an event mechanism for alerting listeners when Bean
properties change. Listeners can be other objects, Beans, components, applications,
applets or scripting environments.

There are three parts to a bound property implementation:
A source Bean that contains the bound properties.
Listener objects that register their interest in receiving property change events from a
source Bean.
Property change events that are fired from source Beans to interested listeners.
There is nothing new here; these are just specific interfaces and classes based on the
AWT1.1 event mechanism.

Listeners must implement the PropertyChangeListener interface. Implementing
this interface means that
The listener can be added to the list maintained by the property change event source,
and
That the listener implements the propertyChange() method.

Beans that are the source of property change events must maintain a
PropertyChangeListener list, and fire events at each object in that list when a
bound property changes. The utility class PropertyChangeSupport implements this
functionality. Your Bean can inherit from this class, or use it as an inner class, as you
will see.

The PropertyChangeEvent class encapsulates property change information, and is
sent from the property change event source to each object in the property change
listener list.

Implementing Bound Property Support Within a Source
Bean

37

A Bean containing bound properties must
Allow listeners to register and unregister their interest in receiving property change
events.
Fire property change events at interested listeners when a bound property changes.

The java.beans package provides a utility class, named PropertyChangeSupport ,
which implements two methods that add and remove PropertyChangeListener
objects to a listener list, and a method that fires property change events at each
listener in that list when a bound property changes. Your Bean can either inherit from
PropertyChangeSupport , or use it as an inner class.

To give your source Bean the ability to broadcast property changes events, take the
following steps:

1. Import the java.beans package. This gives you access to the
PropertyChangeSupport class.

2. Instantiate a PropertyChangeSupport object:

 private PropertyChangeSupport changes = new PropertyChangeSupport(this);

This object manages the registered listener list, and property change event
notification broadcast.

3. Implement methods to maintain the property change listener list. Since we
instantiated a PropertyChangeSupport object in this example (rather inheriting
from it), these methods merely wrap calls to the property−change support object’s
methods:
 public void addPropertyChangeListener(PropertyChangeListener l) {
 changes.addPropertyChangeListener(l);
 }
 public void removePropertyChangeListener(PropertyChangeListener l) {
 changes.removePropertyChangeListener(l);
 }

4. Modify a property’s setter method to fire a property change event when the
property is changed. OurButton ’s setLabel() method looks like this:

 public void setLabel(String newLabel) {
 String oldLabel = label;
 label = newLabel;
 sizeToFit();
 changes.firePropertyChange("label", oldLabel, newLabel);
 }

Note that setLabel() stores the old label value, because both the old and new
labels must be passed to firePropertyChange() .

38

 public void firePropertyChange(String propertyName,
 Object oldValue, Object newValue)

These values are then bundled into the PropertyChangeEvent object sent to each
registered listener. The old and new values are treated as Object values, so if they
are primitive types such as int , you must use the object version such as
java.lang.Integer . Also note that the property change events are fired after the
property has changed.

When the BeanBox recognizes the design patterns for bound properties within your
Bean, you will see a propertyChange interface item when you pull down the
Edit|Events menu.

Now that you have given your Bean the ability to broadcast events when a bound
property has changed, the next step is to create a listener.

Implementing Bound Property Listeners

To listen for property change events, your listener Bean must implement the
PropertyChangeListener interface. This interface contains one method:

 public abstract void propertyChange(PropertyChangeEvent evt)

Implementing the PropertyChangeListener interface in your class means
implementing propertyChange() .

So to make your class able to listen and respond to property change events, you must
1. Implement the PropertyChangeListener interface.

 public class MyClass implements java.beans.PropertyChangeListener,
 java.io.Serializable {

This interface contains one method, propertyChange() . This is the method that the
property change event source calls when one of its bound propertys changes.

2. Implement the propertyChange() method in the listener. This method needs to
contain the code that handles what you need to do when the listener receives property
change event. Very often this is a call to a setter method in the listener class: a
property change in the source bean propagates a change to a property in the listener.

To register interest in receiving notification about a Bean property change, call the
listener registration method on the source Bean. For example:

button.addPropertyChangeListener(aButtonListener);

39

Or, you can use an adapter class to catch the property change event, and subsequently
call the correct method within the listener object. Here is an example taken from
comments in the beans/demo/sunw/demo/misc/ChangeReporter.java file.

OurButton button = new OurButton();
...
PropertyChangeAdapter adapter = new PropertyChangeAdapter();
...
button.addPropertyChangeListener(adapter);
...
class PropertyChangeAdapter implements PropertyChangeListener
{
 public void propertyChange(PropertyChangeEvent e)
 {
 reporter.reportChange(e);
 }
}

Bound Properties in the BeanBox

The BeanBox handles bound properties by using an event hookup adapter class. The
OurButton and ChangeReporter Beans can be used to illustrate this technique. To
see how this works, take the following steps:

1. Drop OurButton and ChangeReporter instances on the BeanBox.
2. Select the OurButton instance and choose the

Edit|Events|propertyChange|propertyChange menu item.
3. Connect the rubber band line to the ChangeReporter instance. The EventTargetDialog

will be displayed.
4. Choose reportChange from the EventTargetDialog. The event hookup adapter source

will be generated and compiled
5. Select OurButton and change some of it’s properties. You will see change reports in

ChangeReporter.

Behind the scenes the BeanBox generated the event hookup adapter. This adapter
implements the PropertyChangeListener interface, and also generates a
propertyChange() method implementation that calls the
ChangeReporter.reportChange() method. Here’s the generated adapter source
code:
// Automatically generated event hookup file.
package tmp.sunw.beanbox;
import sunw.demo.misc.ChangeReporter;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeEvent;
public class ___Hookup_14636f1560 implements
 java.beans.PropertyChangeListener, java.io.Serializable {
 public void setTarget(sunw.demo.misc.ChangeReporter t) {
 target = t;
 }

40

 public void propertyChange(java.beans.PropertyChangeEvent arg0) {
 target.reportChange(arg0);
 }
 private sunw.demo.misc.ChangeReporter target;
}

The ChangeReporter Bean need not implement the PropertyChangeListener
interface; instead, the BeanBox generated adapter class implements
PropertyChangeListener , and the adapter’s propertyChange() method calls the
appropriate method in the target object (ChangeReporter).

The BeanBox puts the event adapter classes in the
beans/beanbox/tmp/sunw/beanbox directory. When an adapter class is generated,
you can view the adapter source in that directory.

 Writing Advanced Beans

41

 Writing Advanced Beans

Implementing Constrained Properties

To get the most out of this section, first read the following:
Chapter 7 of the JavaBeans API Specification
VetoableChangeListener interface
VetoableChangeSupport class
PropertyChangeEvent class
PropertyVetoException class

A Bean property is constrained when any change to that property can be vetoed.
Usually an outside object exercises the right to veto, but the Bean itself can also veto a
property change.

The Beans API provides an event mechanism, very similar to the bound property
mechanism, that allows objects to veto a Bean’s property changes.

There are three parts to constrained property implementations:
A source Bean containing one or more constrained properties.
Listener objects that implement the VetoableChangeListener interface. This object
accepts or rejects proposed changes to a constrained property in the source Bean.
A PropertyChangeEvent object containing the property name, and its old and new
values. This is the same class used for bound properties.

Implementing Constrained Property Support Within a
Source Bean

A Bean containing constrained properties must
Allow VetoableChangeListener objects to register and unregister their interest in
receiving notification that a property change is proposed.
Fire property change events at those interested listeners when a property change is
proposed. The event should be fired before the actual property change takes place.
This gives each listener a chance to veto the proposed change. The
PropertyChangeEvent is fired by a call to each listeners vetoableChange()
method.
If a listener vetoes, then make sure that any other listeners can revert to the old
value. This means reissuing the vetoableChange() call to all the listeners, with a
PropertyChangeEvent containing the old value.

The VetoableChangeSupport utility class is provided to implement these

42

capabilities. This class implements methods to add and remove
VetoableChangeListener objects to a listener list, and a method that fires property
change events at each listener in that list when a property change is proposed. This
method will also catch any vetoes, and resend the property change event with the
original property value. Your Bean can either inherit from VetoableChangeSupport
, or use an instance of it.

Note that, in general, constrained properties should also be bound properties. When a
constrained property change does occur, a PropertyChangeEvent can be sent via
PropertyChangeListener.propertyChange() to signal all
VetoableChangeListener Beans that the change has taken effect.

The JellyBean demo Bean has a constrained property. We will its code to illustrate
the steps in implementing constrained properties. Here’s the steps to implement
constrained properties in your Beans:

1. Import the java.beans package. This gives you access to the
VetoableChangeSupport class.

2. Instantiate a VetoableChangeSupport object within your Bean:

 private VetoableChangeSupport vetos =
 new VetoableChangeSupport(this);

VetoableChangeSupport manages a list of VetoableChangeListener objects, and
fires property change events at each object in the list when a change occurs to a
constrained property.

3. Implement methods to maintain the property−change listener list. These
merely wrap calls to the VetoableChangeSupport object’s methods:

 public void addVetoableChangeListener(VetoableChangeListener l) {
 vetos.addVetoableChangeListener(l);
 }
 public void removeVetoableChangeListener(VetoableChangeListener l) {
 vetos.removeVetoableChangeListener(l);
 }

4. Write a property’s setter method to fire a property change event when the
property is changed. This includes adding a throws clause to the setter
method’s signature. JellyBean’s setPriceInCents() method looks like this:

 public void setPriceInCents(int newPriceInCents)
 throws PropertyVetoException {
 int oldPriceInCents = ourPriceInCents;
 // First tell the vetoers about the change. If anyone objects, we
 // don’t catch the exception but just let if pass on to our caller.
 vetos.fireVetoableChange("priceInCents",
 new Integer(oldPriceInCents),
 new Integer(newPriceInCents));

43

 // No−one vetoed, so go ahead and make the change.
 ourPriceInCents = newPriceInCents;
 changes.firePropertyChange("priceInCents",
 new Integer(oldPriceInCents),
 new Integer(newPriceInCents));
 }

Note that setPriceInCents() stores the old price , because both the old and new
prices must be passed to fireVetoableChange() . Also note that the primitive int
prices are converted to Integer objects.

 public void fireVetoableChange(String propertyName,
 Object oldValue,
 Object newValue)
 throws PropertyVetoException

These values are then bundled into a PropertyChangeEvent object sent to each
listener. The old and new values are treated as Object values, so if they are primitive
types such as int , you must use the object version such as java.lang.Integer .

Now you need to implement a Bean that listens for constrained property changes.

Implementing Constrained Property Listeners

To listen for property change events, your listener Bean must implement the
VetoableChangeListener interface. This interface contains one method:

void vetoableChange(PropertyChangeEvent evt)
 throws PropertyVetoException;

So to make your class able to listen and respond to property change events, your
listener class must

1. Implement the VetoableChangeListener interface.

2. Implement the vetoableChange() method. This is the method that will be called
by the source Bean on each object in the listener list (maintained by the
VetoableChangeSupport object). This is also the method that exercises veto power.
A property change is vetoed by throwing the PropertyVetoException .

Note that the VetoableChangeListener object is often an adapter class. The
adapter class implements the VetoableChangeListener interface and the
vetoableChange() method. This adapter is added to the constrained Bean’s listener
list, intercepts the vetoableChange() call, and calls the target Bean method that
exercises veto power. You’ll see an example of this in the next section.

44

Constrained Properties in the BeanBox

When the BeanBox recognizes the design patterns for constrained properties within
your Bean, you will see a vetoableChange interface item when you pull down the
Edit|Events menu.

As with any event hookup, the BeanBox generates an adapter class when you hook up
a Bean with a constrained property to another Bean. To see how this works, take the
following steps:

1. Drop Voter and JellyBean instances into the BeanBox.
2. Select the JellyBean instance, and choose the

Edit|Events|vetoableChange|vetoableChange menu item.
3. Connect the rubber band line to the Voter Bean. This brings up the

EventTargetDialog panel.
4. Choose the Voter Bean’s vetoableChange method, and push the OK button. This

generates an event adapter. You can view this adapter in the
beans/beanbox/tmp/sunw/beanbox directory.

5. Test the constrained property. Select the JellyBean and edit its priceInCents
property in the Properties sheet. A PropertyVetoException is thrown, and an error
dialog pops up.

Behind the scenes the BeanBox generated the event hookup adapter. This adapter
implements the VetoableChangeListener interface, and also generates a
vetoableChange() method implementation that calls the
Voter.vetoableChange() method. Here’s the generated adapter source code:

// Automatically generated event hookup file.
package tmp.sunw.beanbox;
import sunw.demo.misc.Voter;
import java.beans.VetoableChangeListener;
import java.beans.PropertyChangeEvent;
public class ___Hookup_1475dd3cb5 implements
 java.beans.VetoableChangeListener, java.io.Serializable {
 public void setTarget(sunw.demo.misc.Voter t) {
 target = t;
 }
 public void vetoableChange(java.beans.PropertyChangeEvent arg0)
 throws java.beans.PropertyVeto Exception {
 target.vetoableChange(arg0);
 }
 private sunw.demo.misc.Voter target;
}

The Voter Bean need not implement the VetoableChangeListener interface;
instead, the generated adapter class implements VetoableChangeListener . The
adapter’s vetoableChange() method calls the appropriate method in the target

45

object (Voter).

Per Property Constraint

Like bound property support, there is design pattern support for adding and removing
VetoableChangeListener objects that are tied to a specific named property:

 void addVetoableChangeListener(String propertyName,
 VetoableChangeListener listener);
 void removeVetoableChangeListener(String propertyName,
 VetoableChangeListener listener);

As an alternative, for each constrained property a Bean can provide methods with the
following signature to register and unregister vetoable change listeners on a per
property basis:

 void add<PropertyName>Listener(VetoableChangeListener p);
 void remove<PropertyName>Listener(VetoableChangeListener p);

 Writing Advanced Beans

46

 Writing Advanced Beans

Implementing Indexed Properties

To get the most out of this section, read the following documentation:
Section 7.2 of the JavaBeans API Specification.
IndexedPropertyDescriptor class
PropertyEditor interface
PropertyEditorSupport class

Indexed properties represent collections of values accessed, like an array, by index.
The indexed property design patterns are

//Methods to access the entire indexed property array
public <PropertyType>[] get();
public void set<PropertyName>([] value);
//Methods to access individual values
public <PropertyType> get(int index);
public void set<PropertyName>(int index, value);

Conforming to these patterns lets builder tools know that your Bean contains an
indexed property.

The OurListBox demo Bean illustrates how to use an indexed property. OurListBox
extends the

List class to provide a Bean that presents the user a list of choices:
Choices that you can provide and change at design time. Here’s an illustration of an
OurListBox instance:

47

OurListBox exposes the item indexed property with the following accessor methods:

public void setItems(String[] indexprop) {
 String[] oldValue=fieldIndexprop;
 fieldIndexprop=indexprop;
 populateListBox();
 support.firePropertyChange("items",oldValue, indexprop);
}
public void setItems(int index, String indexprop) {
 String[] oldValue=fieldIndexprop;
 fieldIndexprop[index]=indexprop;
 populateListBox();
 support.firePropertyChange("Items",oldValue, fieldIndexprop);
}

public String[] getItems() {
 return fieldIndexprop;
}

public String getItems(int index) {
 return getItems()[index];
}

When an item is set by one of the setItems() methods, OurListBox is populated
with the contents of a String array.

Indexed properties are almost as easily exposed as simple properties. Writing an
indexed property editor, though, requires writing a custom property editor.

Indexed Property Editors

The OurListBox demo Bean provides an associated IndexPropertyEditor which is
a good example of how to implement an indexed property editor. The following
illustration shows an OurListBox instance in the BeanBox, the Properties sheet
which contains an entry for the indexed property items , and the
IndexPropertyEditor which pops up when the items property entry is clicked:

48

Implementing IndexPropertyEditor is the same as implementing any custom
property editor:

1. Implement the PropertyEditor interface:

 public class IndexPropertyEditor extends Panel
 implements PropertyEditor, Action Listener {

You can use the PropertyEditorSupport class, either by subclassing or as an inner
class.

2. Denote the custom editor in a related BeanInfo class. OurListBox has a related
OurListBoxBeanInfo class that contains the following code:

 itemsprop.setPropertyEditorClass(IndexPropertyEditor.class);

3. Make the property editor a source for bound property events. The property editor will
register property listeners, and fire property change events at those listeners. This is
how the property changes are propagated back to the Bean (via the property sheet). So
IndexPropertyEditor instantiates an inner PropertyChangeSupport class:

49

 private PropertyChangeSupport support =
 new PropertyChangeSupport(this);

Provides the ability for objects to register their interest in being notified when a
property is edited:
 public void addPropertyChangeListener(PropertyChangeListener l) {
 support.addPropertyChangeListener(l);
 }
 public void removePropertyChangeListener(PropertyChangeListener l) {
 support.removePropertyChangeListener(l);
 }

And fires property change events at those listeners:
 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource() == addButton) {
 listBox.addItem(textBox.getText());
 textBox.setText("");
 support.firePropertyChange("", null, null);
 }
 else if (evt.getSource()== textBox) {
 listBox.addItem(textBox.getText());
 textBox.setText("");
 support.firePropertyChange("",null,null);
 }
 ...
 }

IndexPropertyEditor maintains listbox as a proxy for OurListBox. When a
change is made to listbox , a property change event is fired to all listeners.

When the Properties sheet, which is registered as an IndexPropertyEditor
listener, receives a property change event from IndexPropertyEditor , the
Properties sheet calls IndexPropertyEditor.getValue() to retrieve the new or
changed items and update the Bean.

 Writing Advanced Beans

50

 Writing Advanced Beans

Customizing Beans

To prepare yourself for learing about property editors and customizers, read the
following documentation:

PropertyEditor interface

PropertyEditorSupport class

PropertyEditorManager class

Customizer interface

BeanInfo interface

A Bean’s appearance and behavior can be customized at design time within
Beans−compliant builder tools. Typically there are two ways to customize a Bean:
By using a property editor. Each Bean property has its own property editor. A builder
tool usually displays a Bean’s property editors in a property sheet. A property editor is
associated with, and edits a particular property type.
By using customizers. Customizers give you complete GUI control over Bean
customization. Customizers are used where property editors are not practical or
applicable. Unlike a property editor, which is associated with a property, a customizer
is associated with a Bean.

Property Editors

A property editor is a tool for customizing a particular property type. Property editors
are typically displayed in, or activated from property sheets. A property sheet will
determine a property’s type, look around for a relevant property editor, and display
the property’s current value in a relevant way.

Property editors must implement the PropertyEditor interface. PropertyEditor
provides methods that specify how a property should be displayed in a property sheet.

Here is the BeanBox’s Properties sheet containing OurButton properties:

51

You begin the process of editing these properties by clicking on the property entry in
the sheet.
The label and fontSize properties are displayed in an editable text box. Changes
can be made in place.
The largeFont and debug properties are selection boxes with discrete choices.
Clicking on the foreground , background , and font entries brings up separate
panels.
How each of these is displayed depends on which PropertyEditor methods you
implement to return non−null (or equivalent) values.

For example, the int property editor implements the setAsText() method. This
indicates to the property sheet that the property can be displayed as a String , hence
an editable text box will do.

The Color and Font property editors use a separate panel, and merely use the
property sheet to display the current property value. The editor is displayed by
clicking on that value. To display the current property value "sample" within the
property sheet you need to override isPaintable() to return true , and override
paintValue() to paint the current property value on a rectangle in the property
sheet. Here’s how ColorEditor implements paintValue() :

public void paintValue(java.awt.Graphics gfx, java.awt.Rectangle box) {
 Color oldColor = gfx.getColor();
 gfx.setColor(Color.black);
 gfx.drawRect(box.x, box.y, box.width−3, box.height−3);
 gfx.setColor(color);
 gfx.fillRect(box.x+1, box.y+1, box.width−4, box.height−4);
 gfx.setColor(oldColor);
}

52

To support the custom property editor, you need to override two more methods:
Override supportsCustomEditor() to return true, and override
getCustomEditor() to return a custom editor instance.
ColorEditor.getCustomEditor() returns this .

Additionally, the PropertyEditorSupport class maintains a
PropertyChangeListener list, and fires property change event notifications to
those listeners when a bound property is changed. For example

How Property Editors are Associated with Properties

Property editors are discovered and associated with a given property by
Explicit association via a BeanInfo object.

The Molecule demo Bean uses this technique. Within the MoleculeBeanInfo class,
the Molecule Bean’s property editor is set with the following line of code:

 pd.setPropertyEditorClass(MoleculeNameEditor.class);

Explicit registration via
java.Beans.PropertyEditorManager.registerEditor() . This method takes a
pair of arguments: The class type, and the editor to be associated with that.

Name search. If a class has no explicitly associated property editor, then the
PropertyEditorManager searchs for a that class’s property editor by:

Appending "Editor" to the fully qualified class name. For example, for the
java.beans.ComplexNumber class, the property editor manager would search
for the java.beans.ComplexNumberEditor class.
Appending "Editor" to the class name and searching a class search path. The
default class path for the BeanBox is sun.beans.editors .

The BDK Property Editors

The BDK provides property editors for the primitive data types like int bool , and
float , and Color and Font class types. The source code for these property editors is
in beans/apis/sun/beans/editors . These sources make a good starting point for
writing your own property editors. Some things to note about the BDK property
editors:
All the "number" properties are represented as String objects. The IntEditor
overrides PropertyEditorSupport.setAsText() .
The bool property editor is a menu of discrete choices. By overriding the
PropertyEditorSupport.getTags() method to return a String[] containing
"True" and "False":
 public String[] getTags() {
 String result[] = { "True", "False" };
 return result;

53

 }

The Color and Font property editors implement custom property editors. Because
these objects require a more sophisticated interface to be easily edited a separate
component pops up to do the property editing. Overriding supportsCustomEditor()
to return true signals the property sheet that this property’s editor is a custom
component. The isPaintable() and paintValue() methods are also overridden to
provide color and font painting in the editors property sheet sample areas.

The source code for these property editors is in beans/apis/sun/beans/editors .

Note that if no property editor is found for a property, the BeanBox will not display
that property in the Properties sheet.

Customizers

When you use a Bean Customizer, you get complete control over how to configure or
edit a Bean. A Customizer is like an application that specifically targets a Bean’s
customization. Sometimes properties are insufficient for representing a Bean’s
configurable attributes. Customizers are used where sophisticated instructions would
be needed to change a Bean, and where property editors are too primitive to achieve
Bean customization.

All customizers must:
Extend java.awt.Component or one of its subclasses.
Implement the java.beans.Customizer interface This means implementing
methods to register PropertyChangeListener objects, and firing property change
events at those listeners when a change to the target Bean has occurred.
Implement a default constructor.
Associate the customizer with its target class via BeanInfo.getBeanDescriptor() .

If a Bean that has an associated Customizer is dropped into the BeanBox, you will
notice a "Customize..." item on the Edit menu.

BDK Customizers

UNDER CONSTRUCTION

The OurButtonCustomizer serves as an example that demonstrates the mechanics
of building a customizer. OurButtonCustomizer :
Extends java.awt.Panel (a Component subclass).
Implements the Customizer interface, and uses a PropertyChangeSupport object
to manage PropertyChangeListener registration and notification. See the bound
property section for a PropertyChangeSupport description.
Implements a default constructor:

54

 public OurButtonCustomizer() {
 setLayout(null);
 }

Is associated with its target class, ExplicitButton , by ExplicitButtonBeanInfo .
Here’s the ExplicitButtonBeanInfo statements that do the association:

 public BeanDescriptor getBeanDescriptor() {
 return new BeanDescriptor(beanClass, customizerClass);
 }
 ...
 private final static Class customizerClass =
 OurButtonCustomizer.class;

The BridgeTester and JDBC Select demo Beans also have customizers.

 Writing Advanced Beans

55

 Writing Advanced Beans

Using BeanInfo

The following documentation will help you learn about the BeanInfo class:
BeanInfo interface
class
Introspector class
FeatureDescriptor class
BeanDescriptor class
EventSetDescriptor class
PropertyDescriptor class
IndexedPropertyDescriptor class
MethodDescriptor class
ParameterDescriptor class
Java Core Reflection API
JavaBeans API Specification section 8.6

A Bean can implicitly expose its properties, events, and methods by conforming to
design patterns which are recognized by low−level reflection. Alternatively, a Bean
can explicitly expose features in a separate, associated class that implements the
BeanInfo interface. You can use the BeanInfo interface (or its convenience class
SimpleBeanInfo) to explicitly expose design time information for Beans aware
builder tools.

By using an associated BeanInfo class you can
Expose only those features you want to expose.
Rely on BeanInfo to expose some Bean features while relying on low−level reflection
to expose others.
Associate an icon with the target Bean.
Specify a customizer class.
Segregate features into normal and expert categories.
Provide a more descriptive display name, or additional information about a Bean
feature.

BeanInfo defines methods that return descriptors for each property, method, or event
that is to be exposed in a builder tool. Here’s the prototypes for these methods:
PropertyDescriptor[] getPropertyDescriptors();
MethodDescriptor[] getMethodDescriptors();
EventSetDescriptor[] getEventSetDescriptors();

56

Each of these methods returns an array of descriptors for each item that is to be
exposed in a builder tool.

Creating a BeanInfo Class

We’ll use the ExplicitButtonBeanInfo to illustrate BeanInfo class creation. Here
are the general steps to make a BeanInfo class:

1. Name your BeanInfo class. You must append the string "BeanInfo" to the target class
name. If the target class name is ExplicitButton , then its associated Bean
information class must be named ExplicitButtonBeanInfo

2. Subclass the SimpleBeanInfo class. This is a convenience class the implements
BeanInfo methods to return null, or an equivalent noop value.

 public class ExplicitButtonBeanInfo extends SimpleBeanInfo {

Using this class saves you from implementing all the BeanInfo methods; you only
have to override those methods you need.

3.
4. Override the methods you need to specify and return the properties, methods, or

events that you want. ExplicitButtonBeanInfo overrides the
getPropertyDescriptors() method to return four properties:

 public PropertyDescriptor[] getPropertyDescriptors() {
 try {
 PropertyDescriptor background =
 new PropertyDescriptor("background", beanClass);
 PropertyDescriptor foreground =
 new PropertyDescriptor("foreground", beanClass);
 PropertyDescriptor font =
 new PropertyDescriptor("font", beanClass);
 PropertyDescriptor label =
 new PropertyDescriptor("label", beanClass);

 background.setBound(true);
 foreground.setBound(true);
 font.setBound(true);
 label.setBound(true);

 PropertyDescriptor rv[] =
 {background, foreground, font, label};
 return rv;
 } catch (IntrospectionException e) {
 throw new Error(e.toString());
 }
 }

There are two important things to note here:

If you leave a descriptor out, that property, event or method not described will
not be exposed. In other words, you can selectively expose properties, events, or
methods by leaving out those you don’t want exposed.
If a feature’s getter method returns null, low−level reflection is used for that

57

feature. So you can explicitly specify properties, for example, and let low−level
reflection discover the methods. If you don’t override the SimpleBeanInfo
default method, which returns null, low−level reflection will be used for that
feature.

Optionally associate an icon with the target Bean.
 public java.awt.Image getIcon(int iconKind) {
 if (iconKind == BeanInfo.ICON_MONO_16x16 ||
 iconKind == BeanInfo.ICON_COLOR_16x16) {
 java.awt.Image img = loadImage("ExplicitButtonIcon16.gif");
 return img;
 }
 if (iconKind == BeanInfo.ICON_MONO_32x32 ||
 iconKind == BeanInfo.ICON_COLOR_32x32) {
 java.awt.Image img = loadImage("ExplicitButtonIcon32.gif");
 return img;
 }
 return null;
 }

The BeanBox displays this icon next to the Bean name in the ToolBox. You can expect
builder tools to do similar.

Specify the target Bean class , and, if the Bean has a customizer, specify it:

 public BeanDescriptor getBeanDescriptor() {
 return new BeanDescriptor(beanClass, customizerClass);
 }
 ...
 private final static Class beanClass = ExplicitButton.class;
 private final static Class customizerClass = OurButtonCustomizer.class;

Keep the BeanInfo class in the same directory as it’s target class. The BeanBox first
looks for a Bean’s BeanInfo class in the target Bean’s package path. If no BeanInfo
is found, then the Bean information package search path (maintained by the
Introspector) is searched. The default Bean information search path is
sun.beans.infos . If no BeanInfo class is found, then low−level reflection is used to
discover a Bean’s features.

Using BeanInfo to Control What Features are Exposed

If you rely on low−level reflection to discover your Bean’s features, all those
properties, methods, and events that conform to the appropriate design patterns will
be exposed in a builder tool. This includes any features in all base classes. If the
BeanBox finds an associated BeanInformation class, then that information is used
instead, and no more base classes are examined using reflection. In other words,
BeanInfo information overrides low−level reflection information, and prevents base
class examination.

By using a BeanInfo class, you can expose subsets of a particular Bean feature. For
example, by not returning a method descriptor for a particular method, that method

58

will not be exposed in a builder tool.

When you use a BeanInfo class
Base class features will not be exposed. You can retrieve base class features by using
the BeanInfo.getAdditionalBeanInfo() method.
Properties, events, or methods that have no descriptor will not be exposed. (Omitting a
property, event, or method from the list returned by the equivalent BeanInfo getter
method eliminates it from exposure) For a particular feature, only those items
returned in the descriptor array will be exposed. For example, if you return
descriptors for all your Bean methods except foo() , then foo() will not be exposed.
Low−level reflection will be used for features with getter methods returning null.
(Omitting a particular feature, by returning null with its getter method, causes
low−level reflection to be used to discover elements of that feature in the current class
and all base classes.) If you return null for a particular feature’s getter method,
low−level reflection will be used to discover that particular feature of the target Bean.

Feature Descriptors

BeanInfo classes contain descriptors that precisely describe the target Bean’s
features. The BDK implements the following descriptor classes:
FeatureDescriptor is the base class for the other descriptor classes. It declares the
aspects common to all descriptor types.
BeanDescriptor describes the target Bean’s class type and name, and describes the
target Bean’s customizer class if it exists.
PropertyDescriptor describe the target Bean’s properties.
IndexedPropertyDescriptor is a subclass of PropertyDescriptor , and describes
the target Bean’s indexed properties.
EventSetDescriptor describes the events the target Bean fires.
MethodDescriptor describes the target Bean’s methods.
ParameterDescriptor describes method parameters.

The BeanInfo interface declares methods that return arrays of the above descriptors.

Using BeanInfo to Control What Features are Exposed

For base classes: low−level reflection will yield all features; BeanInfo will yield no
base class features unless explicitly told to do so.

For properties, events, and methods, any feature left out will not show up. For
example, if you have four methods in your Bean but only list three
MethodDescriptor objects in your BeanInfo , the fourth method will not be
accessible.

59

 Writing Advanced Beans

60

 Writing Advanced Beans

Converting Beans into ActiveX Components
ActiveX Bridge section UNDER CONSTRUCTION

 Writing Advanced Beans

