
Introduction to Python

Heavily based on presentations by
 Matt Huenerfauth (Penn State)
 Guido van Rossum (Google)
 Richard P. Muller (Caltech)
 ...

Monday, October 19, 2009

• Open source general-purpose language.
• Object Oriented, Procedural, Functional
• Easy to interface with C/ObjC/Java/Fortran
• Easy-ish to interface with C++ (via SWIG)
• Great interactive environment

• Downloads: http://www.python.org
• Documentation: http://www.python.org/doc/
• Free book: http://www.diveintopython.org

Python

Monday, October 19, 2009

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/

2.5.x / 2.6.x / 3.x ???
• “Current” version is 2.6.x
• “Mainstream” version is 2.5.x
• The new kid on the block is 3.x

You probably want 2.5.x unless you are starting from
scratch. Then maybe 3.x

Monday, October 19, 2009

Technical Issues

Installing & Running Python

Monday, October 19, 2009

Binaries
• Python comes pre-installed with Mac OS X and

Linux.
• Windows binaries from http://python.org/

• You might not have to do anything!

Monday, October 19, 2009

http://python.org
http://python.org

The Python Interpreter
• Interactive interface to Python
 % python

Python 2.5 (r25:51908, May 25 2007, 16:14:04)
[GCC 4.1.2 20061115 (prerelease) (SUSE Linux)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

• Python interpreter evaluates inputs:
 >>> 3*(7+2)
 27

• Python prompts with ‘>>>’.
• To exit Python:

• CTRL-D

Monday, October 19, 2009

Running Programs on UNIX
% python filename.py

 You could make the *.py file executable and add the
following #!/usr/bin/env python to the top to make it
runnable.

Monday, October 19, 2009

Batteries Included
• Large collection of proven modules included in the

standard distribution.

http://docs.python.org/modindex.html

Monday, October 19, 2009

http://docs.python.org/modindex.html
http://docs.python.org/modindex.html

numpy
• Offers Matlab-ish capabilities within Python
• Fast array operations
• 2D arrays, multi-D arrays, linear algebra etc.

• Downloads: http://numpy.scipy.org/
• Tutorial: http://www.scipy.org/

Tentative_NumPy_Tutorial

Monday, October 19, 2009

http://numpy.scipy.org
http://numpy.scipy.org
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/Tentative_NumPy_Tutorial

matplotlib
• High quality plotting library.

• Downloads: http://matplotlib.sourceforge.net/

#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma*np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green',
alpha=0.75)

add a 'best fit' line
y = mlab.normpdf(bins, mu, sigma)
l = plt.plot(bins, y, 'r--', linewidth=1)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)

plt.show()

Monday, October 19, 2009

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net

PyFITS
• FITS I/O made simple:

• Downloads: http://www.stsci.edu/resources/
software_hardware/pyfits

>>> import pyfits
>>> hdulist = pyfits.open(’input.fits’)
>>> hdulist.info()
Filename: test1.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 220 () Int16
1 SCI ImageHDU 61 (800, 800) Float32
2 SCI ImageHDU 61 (800, 800) Float32
3 SCI ImageHDU 61 (800, 800) Float32
4 SCI ImageHDU 61 (800, 800) Float32
>>> hdulist[0].header[’targname’]
’NGC121’
>>> scidata = hdulist[1].data
>>> scidata.shape
(800, 800)
>>> scidata.dtype.name ’float32’
>>> scidata[30:40,10:20] = scidata[1,4] = 999

Monday, October 19, 2009

http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits

pyds9 / python-sao
• Interaction with DS9
• Display Python 1-D and 2-D arrays in DS9
• Display FITS files in DS9

• Downloads: Ask Eric Mandel :-)
• Downloads: http://code.google.com/p/python-sao/

Monday, October 19, 2009

http://code.google.com/p/python-sao/
http://code.google.com/p/python-sao/

Wrappers for Astronomical Packages
• CasaPy (Casa)
• PYGILDAS (GILDAS)
• ParselTongue (AIPS)
• PyRAF (IRAF)
• PyMIDAS (MIDAS)
• PyIMSL (IMSL)

Monday, October 19, 2009

Custom Distributions
• Python(x,y): http://www.pythonxy.com/

• Python(x,y) is a free scientific and engineering development
software for numerical computations, data analysis and data
visualization

• Sage: http://www.sagemath.org/
• Sage is a free open-source mathematics software system

licensed under the GPL. It combines the power of many existing
open-source packages into a common Python-based interface.

Monday, October 19, 2009

http://www.pythonxy.com
http://www.pythonxy.com

Extra Astronomy Links
• iPython (better shell, distributed computing):

http://ipython.scipy.org/
• SciPy (collection of science tools): http://

www.scipy.org/
• Python Astronomy Modules: http://

astlib.sourceforge.net/
• Python Astronomer Wiki: http://macsingularity.org/

astrowiki/tiki-index.php?page=python
• AstroPy: http://www.astro.washington.edu/users/

rowen/AstroPy.html
• Python for Astronomers: http://www.iac.es/

sieinvens/siepedia/pmwiki.php?
n=HOWTOs.EmpezandoPython

Monday, October 19, 2009

http://ipython.scipy.org
http://ipython.scipy.org
http://www.scipy.org
http://www.scipy.org
http://www.scipy.org
http://www.scipy.org
http://astlib.sourceforge.net
http://astlib.sourceforge.net
http://astlib.sourceforge.net
http://astlib.sourceforge.net
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://www.astro.washington.edu/users/rowen/AstroPy.html
http://www.astro.washington.edu/users/rowen/AstroPy.html
http://www.astro.washington.edu/users/rowen/AstroPy.html
http://www.astro.washington.edu/users/rowen/AstroPy.html

The Basics

Monday, October 19, 2009

A Code Sample
 x = 34 - 23 # A comment.

 y = “Hello” # Another one.

 z = 3.45

 if z == 3.45 or y == “Hello”:

 x = x + 1

 y = y + “ World” # String concat.

 print x

 print y

Monday, October 19, 2009

Enough to Understand the Code
• Assignment uses = and comparison uses ==.
• For numbers + - * / % are as expected.

• Special use of + for string concatenation.
• Special use of % for string formatting (as with printf in C)

• Logical operators are words (and, or, not)
not symbols

• The basic printing command is print.
• The first assignment to a variable creates it.

• Variable types don’t need to be declared.
• Python figures out the variable types on its own.

Monday, October 19, 2009

Basic Datatypes
• Integers (default for numbers)

z = 5 / 2 # Answer is 2, integer division.
• Floats

x = 3.456
• Strings

• Can use “” or ‘’ to specify.
“abc” ‘abc’ (Same thing.)

• Unmatched can occur within the string.
“matt’s”

• Use triple double-quotes for multi-line strings or strings than contain both ‘
and “ inside of them:
“““a‘b“c”””

Monday, October 19, 2009

Whitespace
Whitespace is meaningful in Python: especially

indentation and placement of newlines.
• Use a newline to end a line of code.

• Use \ when must go to next line prematurely.
• No braces { } to mark blocks of code in Python…

Use consistent indentation instead.
• The first line with less indentation is outside of the block.
• The first line with more indentation starts a nested block

• Often a colon appears at the start of a new block.
(E.g. for function and class definitions.)

Monday, October 19, 2009

Comments
• Start comments with # – the rest of line is ignored.
• Can include a “documentation string” as the first line of any

new function or class that you define.
• The development environment, debugger, and other tools use

it: it’s good style to include one.
def my_function(x, y):
 “““This is the docstring. This

function does blah blah blah.”””
The code would go here...

Monday, October 19, 2009

Assignment
• Binding a variable in Python means setting a name to hold a

reference to some object.
• Assignment creates references, not copies

• Names in Python do not have an intrinsic type. Objects have
types.
• Python determines the type of the reference automatically based on the

data object assigned to it.

• You create a name the first time it appears on the left side of
an assignment expression:
! x = 3

• A reference is deleted via garbage collection after any names
bound to it have passed out of scope.

Monday, October 19, 2009

Accessing Non-Existent Names

• If you try to access a name before it’s been properly created
(by placing it on the left side of an assignment), you’ll get an
error.

>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

Monday, October 19, 2009

Multiple Assignment
• You can also assign to multiple names at the same time.

>>> x, y = 2, 3
>>> x
2
>>> y
3

Monday, October 19, 2009

Naming Rules
• Names are case sensitive and cannot start with a number.

They can contain letters, numbers, and underscores.
 bob Bob _bob _2_bob_ bob_2 BoB

• There are some reserved words:
 and, assert, break, class, continue, def, del, elif,

else, except, exec, finally, for, from, global, if,
import, in, is, lambda, not, or, pass, print, raise,
return, try, while

Monday, October 19, 2009

Understanding Reference Semantics in
Python

Monday, October 19, 2009

Understanding Reference Semantics
• Assignment manipulates references

—x = y does not make a copy of the object y references
—x = y makes x reference the object y references

• Very useful; but beware!
• Example:

>>> a = [1, 2, 3] # a now references the list [1, 2, 3]
>>> b = a # b now references what a references
>>> a.append(4) # this changes the list a references
>>> print b # if we print what b references,
[1, 2, 3, 4] # SURPRISE! It has changed…

 Why??

Monday, October 19, 2009

Understanding Reference Semantics II
• There is a lot going on when we type:
x = 3

• First, an integer 3 is created and stored in memory
• A name x is created
• An reference to the memory location storing the 3 is then

assigned to the name x
• So: When we say that the value of x is 3
• we mean that x now refers to the integer 3

Type: Integer
Data: 3

Name: x
Ref: <address1>

name list memory

Monday, October 19, 2009

Understanding Reference Semantics III
• The data 3 we created is of type integer. In Python, the

datatypes integer, float, and string (and tuple) are
“immutable.”

• This doesn’t mean we can’t change the value of x, i.e. change
what x refers to …

• For example, we could increment x:
>>> x = 3
>>> x = x + 1
>>> print x
4

Monday, October 19, 2009

Understanding Reference Semantics IV
• If we increment x, then what’s really happening is:

1. The reference of name x is looked up.
2. The value at that reference is retrieved.

Type: Integer
Data: 3Name: x

Ref: <address1>

>>> x = x + 1

Monday, October 19, 2009

Understanding Reference Semantics IV
• If we increment x, then what’s really happening is:

1. The reference of name x is looked up.
2. The value at that reference is retrieved.

3. The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

Type: Integer
Data: 3Name: x

Ref: <address1>
Type: Integer
Data: 4

>>> x = x + 1

Monday, October 19, 2009

Understanding Reference Semantics IV
• If we increment x, then what’s really happening is:

1. The reference of name x is looked up.
2. The value at that reference is retrieved.

3. The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

4. The name x is changed to point to this new reference.

Type: Integer
Data: 3Name: x

Ref: <address1>
Type: Integer
Data: 4

>>> x = x + 1

Monday, October 19, 2009

Understanding Reference Semantics IV
• If we increment x, then what’s really happening is:

1. The reference of name x is looked up.
2. The value at that reference is retrieved.

3. The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

4. The name x is changed to point to this new reference.

5. The old data 3 is garbage collected if no name still refers to it.

Name: x
Ref: <address1>

Type: Integer
Data: 4

>>> x = x + 1

Monday, October 19, 2009

Assignment 1

• So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Monday, October 19, 2009

Assignment 1

• So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Monday, October 19, 2009

Assignment 1

• So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>

Monday, October 19, 2009

Assignment 1

• So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address1>

Monday, October 19, 2009

Assignment 1

• So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

Monday, October 19, 2009

Assignment 1

• So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

Monday, October 19, 2009

Assignment 2

• For other data types (lists, dictionaries, user-defined types), assignment
works differently.
• These datatypes are “mutable.”
• When we change these data, we do it in place.
• We don’t copy them into a new memory address each time.
• If we type y=x and then modify y, both x and y are changed.

>>> x = 3 x = some mutable object
>>> y = x y = x
>>> y = 4 make a change to y
>>> print x look at x
3 x will be changed as well

immutable mutable

Monday, October 19, 2009

a
1 2 3

b

a
1 2 3

b
4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

Why? Changing a Shared List

Monday, October 19, 2009

Our surprising example surprising no more...

• So now, here’s our code:

>>> a = [1, 2, 3] # a now references the list [1, 2, 3]
>>> b = a # b now references what a references
>>> a.append(4) # this changes the list a references
>>> print b # if we print what b references,
[1, 2, 3, 4] # SURPRISE! It has changed…

Monday, October 19, 2009

Sequence types:
 Tuples, Lists, and Strings

Monday, October 19, 2009

Sequence Types
1. Tuple

• A simple immutable ordered sequence of items
• Items can be of mixed types, including collection types

2. Strings
• Immutable
• Conceptually very much like a tuple

3. List
• Mutable ordered sequence of items of mixed types

Monday, October 19, 2009

Similar Syntax
• All three sequence types (tuples, strings, and lists)

share much of the same syntax and functionality.

• Key difference:
• Tuples and strings are immutable
• Lists are mutable

• The operations shown in this section can be
applied to all sequence types
• most examples will just show the operation

performed on one

Monday, October 19, 2009

Sequence Types 1

• Tuples are defined using parentheses (and commas).
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

• Lists are defined using square brackets (and commas).
>>> li = [“abc”, 34, 4.34, 23]

• Strings are defined using quotes (“, ‘, or “““).
>>> st = “Hello World”

>>> st = ‘Hello World’

>>> st = “““This is a multi-line

string that uses triple quotes.”””

Monday, October 19, 2009

Sequence Types 2
• We can access individual members of a tuple, list, or string

using square bracket “array” notation.
• Note that all are 0 based…

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> tu[1] # Second item in the tuple.
 ‘abc’

>>> li = [“abc”, 34, 4.34, 23]
>>> li[1] # Second item in the list.
 34

>>> st = “Hello World”
>>> st[1] # Second character in string.
 ‘e’

Monday, October 19, 2009

Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0.
 >>> t[1]

 ‘abc’

Negative lookup: count from right, starting with –1.
 >>> t[-3]

 4.56

Monday, October 19, 2009

Slicing: Return Copy of a Subset 1

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Return a copy of the container with a subset of the original
members. Start copying at the first index, and stop copying
before the second index.
 >>> t[1:4]
 (‘abc’, 4.56, (2,3))

You can also use negative indices when slicing.
 >>> t[1:-1]
 (‘abc’, 4.56, (2,3))

Monday, October 19, 2009

Slicing: Return Copy of a Subset 2

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Omit the first index to make a copy starting from the beginning
of the container.
 >>> t[:2]
 (23, ‘abc’)

Omit the second index to make a copy starting at the first index
and going to the end of the container.
 >>> t[2:]
 (4.56, (2,3), ‘def’)

Monday, October 19, 2009

Copying the Whole Sequence

To make a copy of an entire sequence, you can use [:].
 >>> t[:]

 (23, ‘abc’, 4.56, (2,3), ‘def’)

Note the difference between these two lines for mutable
sequences:

>>> list2 = list1 # 2 names refer to 1 ref

 # Changing one affects both

>>> list2 = list1[:] # Two independent copies, two refs

Monday, October 19, 2009

The ‘in’ Operator
• Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

• For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

• Be careful: the in keyword is also used in the syntax of
for loops and list comprehensions.

Monday, October 19, 2009

The + Operator
• The + operator produces a new tuple, list, or string whose

value is the concatenation of its arguments.

>>> (1, 2, 3) + (4, 5, 6)
 (1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
 [1, 2, 3, 4, 5, 6]

>>> “Hello” + “ ” + “World”
 ‘Hello World’

Monday, October 19, 2009

The * Operator
• The * operator produces a new tuple, list, or string that

“repeats” the original content.

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3
‘HelloHelloHello’

Monday, October 19, 2009

Mutability:
Tuples vs. Lists

Monday, October 19, 2009

Tuples: Immutable

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
 File "<pyshell#75>", line 1, in -toplevel-
 tu[2] = 3.14
TypeError: object doesn't support item assignment

You can’t change a tuple.
You can make a fresh tuple and assign its reference to a previously used

name.
 >>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

Monday, October 19, 2009

Lists: Mutable

>>> li = [‘abc’, 23, 4.34, 23]
>>> li[1] = 45
>>> li

[‘abc’, 45, 4.34, 23]

• We can change lists in place.
• Name li still points to the same memory reference when we’re

done.
• The mutability of lists means that they aren’t as fast as tuples.

Monday, October 19, 2009

Operations on Lists Only 1

>>> li = [1, 11, 3, 4, 5]

>>> li.append(‘a’) # Our first exposure to method syntax

>>> li

[1, 11, 3, 4, 5, ‘a’]

>>> li.insert(2, ‘i’)

>>>li

[1, 11, ‘i’, 3, 4, 5, ‘a’]

Monday, October 19, 2009

The extend method vs the + operator.
• + creates a fresh list (with a new memory reference)
• extend operates on list li in place.

>>> li.extend([9, 8, 7])
>>>li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

Confusing:
• Extend takes a list as an argument.
• Append takes a singleton as an argument.
>>> li.append([10, 11, 12])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10, 11, 12]]

Monday, October 19, 2009

Operations on Lists Only 3
>>> li = [‘a’, ‘b’, ‘c’, ‘b’]

>>> li.index(‘b’) # index of first occurrence

1

>>> li.count(‘b’) # number of occurrences

2

>>> li.remove(‘b’) # remove first occurrence

>>> li

 [‘a’, ‘c’, ‘b’]

Monday, October 19, 2009

Operations on Lists Only 4
>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*
>>> li
 [8, 6, 2, 5]

>>> li.sort() # sort the list *in place*
>>> li
 [2, 5, 6, 8]

>>> li.sort(some_function)
 # sort in place using user-defined comparison

Monday, October 19, 2009

Tuples vs. Lists
• Lists slower but more powerful than tuples.

• Lists can be modified, and they have lots of handy operations we can
perform on them.

• Tuples are immutable and have fewer features.

• To convert between tuples and lists use the list() and tuple()
functions:
li = list(tu)
tu = tuple(li)

Monday, October 19, 2009

Dictionaries

63

Monday, October 19, 2009

Dictionaries: A Mapping type
• Dictionaries store a mapping between a set of keys

and a set of values.
• Keys can be any immutable type.
• Values can be any type
• A single dictionary can store values of different types

• You can define, modify, view, lookup, and delete
the key-value pairs in the dictionary.

Monday, October 19, 2009

Using dictionaries

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}
>>> d[‘user’]
‘bozo’
>>> d[‘pswd’]
1234
>>> d[‘bozo’]

Traceback (innermost last):
 File ‘<interactive input>’ line 1, in ?
KeyError: bozo

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}
>>> d[‘user’] = ‘clown’
>>> d
{‘user’:‘clown’, ‘pswd’:1234}

>>> d[‘id’] = 45
>>> d
{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}
>>> del d[‘user’] # Remove one.
>>> d
{‘p’:1234, ‘i’:34}
>>> d.clear() # Remove all.
>>> d
{}

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}
>>> d.keys() # List of keys.
[‘user’, ‘p’, ‘i’]
>>> d.values() # List of values.
[‘bozo’, 1234, 34]
>>> d.items() # List of item tuples.
[(‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

Monday, October 19, 2009

Functions

Monday, October 19, 2009

Functions
• def creates a function and assigns it a name
• return sends a result back to the caller
• Arguments are passed by assignment
• Arguments and return types are not declared

 def <name>(arg1, arg2, ..., argN):
! <statements>
! return <value>

def times(x,y):
! return x*y

Monday, October 19, 2009

Passing Arguments to Functions
• Arguments are passed by assignment
• Passed arguments are assigned to local names
• Assignment to argument names don't affect the

caller
• Changing a mutable argument may affect the caller

def changer (x,y):

! x = 2! ! ! # changes local value of x only
! y[0] = 'hi'!! # changes shared object

Monday, October 19, 2009

Optional Arguments
• Can define defaults for arguments that need not be

passed

 def func(a, b, c=10, d=100):
! print a, b, c, d

>>> func(1,2)
1 2 10 100

>>> func(1,2,3,4)
1,2,3,4

Monday, October 19, 2009

Gotchas
• All functions in Python have a return value

• even if no return line inside the code.
• Functions without a return return the special value

None.
• There is no function overloading in Python.

• Two different functions can’t have the same name, even if they
have different arguments.

• Functions can be used as any other data type.
They can be:
• Arguments to function
• Return values of functions
• Assigned to variables
• Parts of tuples, lists, etc

Monday, October 19, 2009

Control of Flow

71

Monday, October 19, 2009

Examples

if x == 3:
 print “X equals 3.”
elif x == 2:
 print “X equals 2.”
else:
 print “X equals something else.”
print “This is outside the ‘if’.”

x = 3
while x < 10:
 if x > 7:
 x += 2
 continue
 x = x + 1
 print “Still in the loop.”
 if x == 8:
 break
print “Outside of the loop.”

assert(number_of_players < 5)

for x in range(10):
 if x > 7:
 x += 2
 continue
 x = x + 1
 print “Still in the loop.”
 if x == 8:
 break
print “Outside of the loop.”

Monday, October 19, 2009

Modules

Monday, October 19, 2009

Why Use Modules?
• Code reuse

• Routines can be called multiple times within a program
• Routines can be used from multiple programs

• Namespace partitioning
• Group data together with functions used for that data

• Implementing shared services or data
• Can provide global data structure that is accessed by multiple

subprograms

Monday, October 19, 2009

Modules
• Modules are functions and variables defined in

separate files
• Items are imported using from or import

 from module import function
function()

import module
module.function()

• Modules are namespaces
• Can be used to organize variable names, i.e.

 atom.position = atom.position - molecule.position

Monday, October 19, 2009

Classes and Objects

Monday, October 19, 2009

What is an Object?
• A software item that contains variables and

methods
• Object Oriented Design focuses on

• Encapsulation:
—dividing the code into a public interface, and a private implementation

of that interface
• Polymorphism:

—the ability to overload standard operators so that they have appropriate
behavior based on their context

• Inheritance:
—the ability to create subclasses that contain specializations of their

parents

Monday, October 19, 2009

Example
class atom(object):
! def __init__(self,atno,x,y,z):
! ! self.atno = atno

! ! self.position = (x,y,z)
! def symbol(self): # a class method

! ! return Atno_to_Symbol[atno]
! def __repr__(self): # overloads printing
! ! return '%d %10.4f %10.4f %10.4f' %

! ! ! (self.atno, self.position[0],
! ! ! self.position[1],self.position[2])

>>> at = atom(6,0.0,1.0,2.0)
>>> print at

6 0.0000 1.0000 2.0000
>>> at.symbol()

'C'

Monday, October 19, 2009

Atom Class
• Overloaded the default constructor
• Defined class variables (atno,position) that are

persistent and local to the atom object
• Good way to manage shared memory:

• instead of passing long lists of arguments, encapsulate some of
this data into an object, and pass the object.

• much cleaner programs result
• Overloaded the print operator

• We now want to use the atom class to build
molecules...

Monday, October 19, 2009

Molecule Class
class molecule:
! def __init__(self,name='Generic'):
! ! self.name = name

! ! self.atomlist = []
! def addatom(self,atom):

! ! self.atomlist.append(atom)
! def __repr__(self):
! ! str = 'This is a molecule named %s\n' % self.name

! ! str = str+'It has %d atoms\n' % len(self.atomlist)
! ! for atom in self.atomlist:

! ! ! str = str + `atom` + '\n'
! ! return str

Monday, October 19, 2009

Using Molecule Class
 >>> mol = molecule('Water')

>>> at = atom(8,0.,0.,0.)
>>> mol.addatom(at)

>>> mol.addatom(atom(1,0.,0.,1.))
>>> mol.addatom(atom(1,0.,1.,0.))

>>> print mol
This is a molecule named Water
It has 3 atoms

8 0.000 0.000 0.000
1 0.000 0.000 1.000

1 0.000 1.000 0.000

• Note that the print function calls the atoms print
function
• Code reuse: only have to type the code that prints an atom

once; this means that if you change the atom specification, you
only have one place to update.

Monday, October 19, 2009

Inheritance
 class qm_molecule(molecule):

 def addbasis(self):
 self.basis = []

 for atom in self.atomlist:
 self.basis = add_bf(atom,self.basis)

• __init__, __repr__, and __addatom__ are taken
from the parent class (molecule)

• Added a new function addbasis() to add a basis set
• Another example of code reuse

• Basic functions don't have to be retyped, just inherited
• Less to rewrite when specifications change

Monday, October 19, 2009

Overloading
 class qm_molecule(molecule):

 def __repr__(self):
! ! str = 'QM Rules!\n'

! ! for atom in self.atomlist:
! ! ! str = str + `atom` + '\n'

! ! return str

• Now we only inherit __init__ and addatom from the
parent

• We define a new version of __repr__ specially for
QM

Monday, October 19, 2009

Adding to Parent Functions
• Sometimes you want to extend, rather than

replace, the parent functions.

 class qm_molecule(molecule):
! def __init__(self,name="Generic",basis="6-31G**"):
! ! self.basis = basis

! ! super(qm_molecule, self).__init__(name)

Monday, October 19, 2009

Public and Private Data
• In Python anything with two leading underscores

is private
 __a, __my_variable

• Anything with one leading underscore is semi-
private, and you should feel guilty accessing this
data directly.
 _b
• Sometimes useful as an intermediate step to making data

private

Monday, October 19, 2009

The Extra Stuff...

86

Monday, October 19, 2009

File I/O, Strings, Exceptions...

fileptr = open(‘filename’)
somestring = fileptr.read()
for line in fileptr:
 print line
fileptr.close()

>>> a = 1
>>> b = 2.4
>>> c = 'Tom'
>>> '%s has %d coins worth a total of $%.02f' % (c, a, b)
'Tom has 1 coins worth a total of $2.40'

>>> try:
... 1 / 0
... except:
... print('That was silly!')
... finally:
... print('This gets executed no matter what')
...
That was silly!
This gets executed no matter what

Monday, October 19, 2009

