Introduction to Python

Heavily based on presentations by
Matt Huenerfauth (Penn State)
Guido van Rossum (Google)
Richard P. Muller (Caltech)

Monday, October 19, 2009

Python

°* Open source general-purpose language.

* Object Oriented, Procedural, Functional

°* Easy to interface with C/ObjC/Java/Fortran
* Easy-ish to interface with C++ (via SWIG)

* Great interactive environment

°* Downloads: http://www.python.org
°* Documentation: http://www.python.org/doc/
° Free book: http://www.diveintopython.org

Monday, October 19, 2009

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/

2.5.x12.6.x/]3.xX??7?

* “Current” versionis 2.6.x
* “Mainstream’” version is 2.5.x
°* The new kid on the block is 3.x

You probably want 2.5.x unless you are starting from
scratch. Then maybe 3.x

Monday, October 19, 2009

Technical Issues

Installing & Running Python

Monday, October 19, 2009

Binaries

°* Python comes pre-installed with Mac OS X and
LinuX.

* Windows binaries from http://python.org/

* You might not have to do anything!

Monday, October 19, 2009

http://python.org
http://python.org

The Python Interpreter

* Interactive interface to Python

% python
Python 2.5 (r25:51908, May 25 2007, 16:14:04)

[GCC 4.1.2 20061115 (prerelease) (SUSE Linux)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

* Python interpreter evaluates inputs:
>>> 3*%(7+2)
27

* Python prompts with >>>’.
* To exit Python:
« CTRL-D

Monday, October 19, 2009

Running Programs on UNIX

% python filename.py

You could make the *.py file executable and add the
following #!/usr/bin/env python to the top to make it
runnable.

Monday, October 19, 2009

Batteries Included

* Large collection of proven modules included in the
standard distribution.

http://docs.python.org/modindex.html

Monday, October 19, 2009

http://docs.python.org/modindex.html
http://docs.python.org/modindex.html

numpy

* Offers Matlab-ish capabilities within Python

* Fast array operations
* 2D arrays, multi-D arrays, linear algebra etc.

°* Downloads: http://numpy.scipy.org/

* Tutorial: http://www.scipy.org/
Tentative_ NumPy Tutorial

Monday, October 19, 2009

http://numpy.scipy.org
http://numpy.scipy.org
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/Tentative_NumPy_Tutorial

matplotlib

* High quality plotting library.

#!/usr/bin/env python

import numpy as np

import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

mu, sigma = 100, 15
X = mu + sigma*np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green',
alpha=0.75)

add a 'best fit' line
y mlab.normpdf(bins, mu, sigma)

1 plt.plot(bins, y, 'r--', linewidth=1)

plt.xlabel('Smarts')

plt.ylabel('Probability"')

plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$")
plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

0.030

0.025 -

00200

Firvwuwinwy

0.010

0.005f

0.00040

0.015p

1

Histogram of IQ: =100, =15

i 1

60 80 100 120 140 160

Smarts

°* Downloads: http://matplotlib.sourceforge.net/

Monday, October 19, 2009

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net

PyFITS

°* FITS I/O made simple:

>>> import pyfits

>>> hdulist = pyfits.open(’input.fits’)
>>> hdulist.info()

Filename: testl.fits

No. Name Type Cards Dimensions Format
PRIMARY PrimaryHDU 220 () Intlé

SCI ImageHDU 61 (800, 800) Float32
SCI ImageHDU 61 (800, 800) Float32
SCI ImageHDU 61 (800, 800) Float32
SCI ImageHDU 61 (800, 800) Float32
>>> hdulist[0].header[’'targname’]
'NGC121’

>>> scidata = hdulist[l].data

>>> scidata.shape

= W NP O

(800, 800)
>>> scidata.dtype.name ’'float32’
>>> scidata[30:40,10:20] = scidata[l,4] = 999

°* Downloads: http://www.stsci.edu/resources/
software hardware/pyfits

Monday, October 19, 2009

http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits

pyds9 / python-sao

* Interaction with DS9
* Display Python 1-D and 2-D arrays in DS9

* Display FITS files in DS9

* Downloads: Ask Eric Mandel :-)

°* Downloads: http://code.google.com/p/python-sao/

Monday, October 19, 2009

http://code.google.com/p/python-sao/
http://code.google.com/p/python-sao/

Wrappers for Astronomical Packages

* CasaPy (Casa)

°* PYGILDAS (GILDAS)
* ParselTongue (AIPS)
°* PyRAF (IRAF)

°* PyMIDAS (MIDAS)

°* PyIMSL (IMSL)

Monday, October 19, 2009

Custom Distributions

°* Python(x,y): http://www.pythonxy.com/

* Python(x,y) is a free scientific and engineering development
software for numerical computations, data analysis and data
visualization

* Sage: http:/lwww.sagemath.org/

« Sage is a free open-source mathematics software system
licensed under the GPL. It combines the power of many existing
open-source packages into a common Python-based interface.

Monday, October 19, 2009

http://www.pythonxy.com
http://www.pythonxy.com

Extra Astronomy Links

* iPython (better shell, distributed computing):

http://ipython.scipy.orqg/
* SciPy (collection of science tools): http://

WWW.Scipy.org/
°* Python Astronomy Modules: http://

astlib.sourceforge.net/
°* Python Astronomer Wiki: http://macsinqularity.org/

astrowiki/tiki-index.php?page=python

* AstroPy: http://www.astro.washington.edu/users/
rowen/AstroPy.html

* Python for Astronomers: http://www.iac.es/
sieinvens/siepedia/pmwiki.php?
Nn=HOWTOs.EmpezandoPython

Monday, October 19, 2009

http://ipython.scipy.org
http://ipython.scipy.org
http://www.scipy.org
http://www.scipy.org
http://www.scipy.org
http://www.scipy.org
http://astlib.sourceforge.net
http://astlib.sourceforge.net
http://astlib.sourceforge.net
http://astlib.sourceforge.net
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://macsingularity.org/astrowiki/tiki-index.php?page=python
http://www.astro.washington.edu/users/rowen/AstroPy.html
http://www.astro.washington.edu/users/rowen/AstroPy.html
http://www.astro.washington.edu/users/rowen/AstroPy.html
http://www.astro.washington.edu/users/rowen/AstroPy.html

The Basics

Monday, October 19, 2009

A Code Sample

x = 34 - 23 # A comment.
y = “Hello” # Another one.
z = 3.45
1f z == 3.45 or y == “Hello”:
X =x + 1
y =y + “ World” # String concat.
print x

print

y

Monday, October 19, 2009

Enough to Understand the Code

°* Assignment uses = and comparison uses ==,
°* For numbers + - */ % are as expected.
* Special use of + for string concatenation.
* Special use of % for string formatting (as with printf in C)

* Logical operators are words (and, or, not)
not symbols

* The basic printing command is print.

* The first assignment to a variable creates it.

 Variable types don’t need to be declared.
« Python figures out the variable types on its own.

Monday, October 19, 2009

Basic Datatypes

* Integers (default for numbers)

z =5/ 2 # Answer is 2, integer division.
° Floats
X = 3.456
* Strings
« Can use ™ or " to specify.

“abc” ‘abc’ (Same thing.)

* Unmatched can occur within the string.
llmatt 4 S"

» Use triple double-quotes for multi-line strings or strings than contain both
and “ inside of them:
llllllalbllcllllll

Monday, October 19, 2009

Whitespace

Whitespace is meaningful in Python: especially
indentation and placement of newlines.

* Use a newline to end a line of code.
« Use \ when must go to next line prematurely.

°* No braces { ; to mark blocks of code in Python...
Use consistent indentation instead.
* The first line with /ess indentation is outside of the block.
* The first line with more indentation starts a nested block

* Often a colon appears at the start of a new block.
(E.g. for function and class definitions.)

Monday, October 19, 2009

Comments

* Start comments with # — the rest of line is ignored.

°* Can include a “documentation string” as the first line of any
new function or class that you define.

°* The development environment, debugger, and other tools use
it: it’s good style to include one.
(x, y):
“WYThis is the docstring. This

function does blah blah blah.”””
The code would go here...

Monday, October 19, 2009

Assignment

* Binding a variable in Python means setting a name to hold a
reference to some object.

« Assignment creates references, not copies

°* Names in Python do not have an intrinsic type. Objects have
types.

» Python determines the type of the reference automatically based on the
data object assigned to it.

°* You create a name the first time it appears on the left side of

an assignment expression:
X = 3

°* Areference is deleted via garbage collection after any names
bound to it have passed out of scope.

Monday, October 19, 2009

Accessing Non-Existent Names

° If you try to access a name before it’s been properly created

(by placing it on the left side of an assignment), you’ll get an
error.

>>> vy

Traceback (most recent call last) :
File "<pyshell#l6>", line 1, in -toplevel-
Y
NameError: name ‘y' 1s not defined
>>> y = 3
>>> vy
3

Monday, October 19, 2009

Multiple Assignment

°* You can also assign to multiple names at the same time.

>>> x, y =2, 3
>>> X

2

>>> v

3

Monday, October 19, 2009

Naming Rules

* Names are case sensitive and cannot start with a number.
They can contain letters, numbers, and underscores.
bob Bob bob _2_bob_ bob_2 BoB

* There are some reserved words:

Monday, October 19, 2009

Understanding Reference Semantics in
Python

Monday, October 19, 2009

Understanding Reference Semantics

* Assignment manipulates references

—X =y does not make a copy of the object y references
—X =y makes x reference the object y references

* Very useful; but beware!

* Example:
>>>a=[1,2,3] #anow references the list[1, 2, 3]

>>>p=a # b now references what a references
>>> a.append(4) # this changes the list a references
>>>print b # if we print what b references,

[1, 2, 3, 4] # SURPRISE! It has changed...

Why??

Monday, October 19, 2009

Understanding Reference Semantics li

* There is a lot going on when we type:

X = 3
* First, an integer 3 is created and stored in memory
°* A name x is created

* An reference to the memory location storing the 3 is then
assigned to the name x

°* So: When we say that the value of x is 3
°* we mean that x now refers to the integer 3

Name: x // Type: Integer
Ret: <address1> Data: 3

name list ~memory

Monday, October 19, 2009

Understanding Reference Semantics Il

°* The data 3 we created is of type integer. In Python, the

datatypes integer, float, and string (and tuple) are
“immutable.”

°* This doesn’t mean we can’t change the value of x, i.e. change
what x refers to ...

°* For example, we could increment x:
>>> x = 3
>>> x =x + 1
>>> X
4

Monday, October 19, 2009

Understanding Reference Semantics IV

°* If we increment x, then what’s really happening is:

1. The reference of name X is looked up. SSS x¢

x + 1
2. The value at that reference is retrieved.

Type: Integer

Name: x / Data: 3
Ref: <address1>

Monday, October 19, 2009

Understanding Reference Semantics IV

°* If we increment x, then what’s really happening is:

1. The reference of name X is looked up.

2. The value at that reference is retrieved.

3. The 3+1 calculation occurs, producing a new data element 4 which is

>>> X

assigned to a fresh memory location with a new reference.

Name: x
Ref: <address1>

/

Type: Integer
Data: 3

Type: Integer
Data: 4

X

+

1

Monday, October 19, 2009

Understanding Reference Semantics IV

°* If we increment x, then what’s really happening is:

1.
2.

3.

The reference of name X is looked up.

The value at that reference is retrieved.

The 3+1 calculation occurs, producing a new data element 4 which is

>>> X

assigned to a fresh memory location with a new reference.

The name X is changed to point to this new reference.

Name: x

Type: Integer
Data: 3

Ref: <address1>

Type: Integer
Data: 4

X

+

1

Monday, October 19, 2009

Understanding Reference Semantics IV

°* If we increment x, then what’s really happening is:

1. The reference of name X is looked up. >>> x = x + 1
2. The value at that reference is retrieved.

3. The 3+1 calculation occurs, producing a new data element 4 which is
assigned to a fresh memory location with a new reference.

4. The name X is changed to point to this new reference.

5. The old data 3 is garbage collected if no name still refers fo it.

Name: x
Ref: <address1>

\ Type: Integer

Data: 4

Monday, October 19, 2009

Assignment 1

* So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

x = 3 # Creates 3, name x refers to 3
y = X # Creates name vy, refers to 3.
vy = 4 # Creates ref for 4. Changes vy.
print x # No effect on x, still ref 3.

Monday, October 19, 2009

Assignment 1

* So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

—> x = 3 # Creates 3, name x refers to 3
y = X # Creates name vy, refers to 3.
vy = 4 # Creates ref for 4. Changes vy.
print x # No effect on x, still ref 3.

3
Name: x
Ref: <address1> , | lype: Integer

Data: 3

Monday, October 19, 2009

Assignment 1

* So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

x = 3 # Creates 3, name x refers to 3
—> y = X # Creates name vy, refers to 3.
vy = 4 # Creates ref for 4. Changes vy.
print x # No effect on x, still ref 3.
3
Name: x
Ref: <address1> , | lype: Integer
Data: 3
Name: y

Ref: <address1>

Monday, October 19, 2009

Assignment 1

* So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

x = 3 # Creates 3, name x refers to 3
—> y = X # Creates name vy, refers to 3.
vy = 4 # Creates ref for 4. Changes vy.
print x # No effect on x, still ref 3.
3
Name: x
Ref: <address1> , | lype: Integer
Data: 3
Name: y
Ref: <address1> Type: Integer

Data: 4

Monday, October 19, 2009

Assignment 1

* So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

x = 3 # Creates 3, name x refers to 3
y = X # Creates name vy, refers to 3.
—> y = 4 # Creates ref for 4. Changes vy.
print x # No effect on x, still ref 3.
3
Name: x
Ref: <address1>| ——— o | Type: Integer
Data: 3
Name: y

Ref: <address2>| —— . Eleeiinteger
ata:

Monday, October 19, 2009

Assignment 1

* So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

x = 3 # Creates 3, name x refers to 3
y = X # Creates name vy, refers to 3.
vy = 4 # Creates ref for 4. Changes vy.
—> print x # No effect on x, still ref 3.
3
Name: x
Ref: <address1>| ——— o | Type: Integer
Data: 3
Name: y

Ref: <address2>| —— . Eleeiinteger
ata:

Monday, October 19, 2009

Assignment 2

* For other data types (lists, dictionaries, user-defined types), assignment
works differently.

* These datatypes are “mutable.”

 When we change these data, we do it in place.

« We don’t copy them into a new memory address each time.
 If we type y=x and then modify y, both x and y are changed.

immutable mutable

>>> x = 3 X = some mutable object
>>> vy = X Yy = X

>>> y = 4 make a change to y

>>> print x look at x

3 x will be changed as well

Monday, October 19, 2009

Why? Changing a Shared List

a=1[1, 2, 3] a | 1
b = a T 1
p—
a
\
a.append(4) 1
/

Monday, October 19, 2009

Our surprising example surprising no more...

* So now, here’s our code:

>>>a=[1,2,3] #anow references the list[1, 2, 3]

>>>p=a # b now references what a references
>>> g.append(4) # this changes the list a references
>>> print b # if we print what b references,

[1, 2, 3, 4] # SURPRISE! It has changed...

Monday, October 19, 2009

Sequence types:
Tuples, Lists, and Strings

Monday, October 19, 2009

Sequence Types

1. Tuple

* Asimple iImmutable ordered sequence of items
* ltems can be of mixed types, including collection types

2. Strings
 Immutable

* Conceptually very much like a tuple

3. List
* Mutable ordered sequence of items of mixed types

Monday, October 19, 2009

Similar Syntax

* All three sequence types (tuples, strings, and lists)
share much of the same syntax and functionality.

* Key difference:
* Tuples and strings are immutable

 Lists are mutable
* The operations shown in this section can be
applied to all sequence types

* most examples will just show the operation
performed on one

Monday, October 19, 2009

Sequence Types 1

* Tuples are defined using parentheses (and commas).
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

* Lists are defined using square brackets (and commas).
>>> 11 = [“abc”, 34, 4.34, 23]

* Strings are defined using quotes (“, ¢, or “*““).
>>> st = “Hello World”

>>> st = ‘Hello World’

>>> st = ““W"This 1s a multi-line

string that uses triple quotes.”””

Monday, October 19, 2009

Sequence Types 2

°* We can access individual members of a tuple, list, or string
using square bracket “array” notation.

°* Note that all are 0 based...

>>> tu = (23, ‘abce’, 4.506, (2,3), ‘def’)

>>> tul[l] # Second item in the tuple.
‘abc’

>>> 11 = [“abc”, 34, 4.34, 23]

>>> 11 [1] # Second item in the list.
34

>>> st = “Hello World”
>>> st [1] # Second character in string.
\el

Monday, October 19, 2009

Positive and negative indices

>>> t = (23, ‘abc’, 4.506, (2,3), ‘def’)

Positive index: count from the left, starting with 0.
>>> t[1]

‘abc!

Negative lookup: count from right, starting with —1.
>>> t[-3]
4.56

Monday, October 19, 2009

Slicing: Return Copy of a Subset 1

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Return a copy of the container with a subset of the original
members. Start copying at the first index, and stop copying
before the second index.

>>> t[l:4]

(‘abc’, 4.56, (2,3))

You can also use negative indices when slicing.
>>> t[1l:-1]
(‘abc’, 4.56, (2,3))

Monday, October 19, 2009

Slicing: Return Copy of a Subset 2

>>> t = (23, ‘abc’, 4.506, (2,3), ‘def’)

Omit the first index to make a copy starting from the beginning
of the container.

>>> t[:2]
(23, ‘abc’)

Omit the second index to make a copy starting at the first index
and going to the end of the container.

>>> t[2:]
(4.56, (2,3), ‘def’)

Monday, October 19, 2009

Copying the Whole Sequence

To make a copy of an entire sequence, you can use [:].
>>> T[]
(23, ‘abc’, 4.56, (2,3), ‘def’)

Note the difference between these two lines for mutable
sequences:

>>> list?2 = listl # 2 names refer to 1 ref

Changing one affects both

>>> list2 = listl[:] # Two independent copies, two refs

Monday, October 19, 2009

The ‘in’ Operator

* Boolean test whether a value is inside a container:
>>> t = [1, 2, 4, 5]
>>> 3 T
FFalse
>>> 4 T
True
>>> 4 T
FFalse

* For strings, tests for substrings
>>> a = 'abcde'
>>> ! a
True
>>> 'cd'! a
True
>>> 'ac! a
False

°* Be careful: the in keyword is also used in the syntax of
for loops and list comprehensions.

Monday, October 19, 2009

The + Operator

°* The + operator produces a new tuple, list, or string whose
value is the concatenation of its arguments.

>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
[1/ 2/ 3/ 4/ 5/ 6]

>>> \\Helloll _I_ \\ 144 _I_ \\Worldll
‘Hello World’

Monday, October 19, 2009

The * Operator

°* The * operator produces a new tuple, list, or string that
“repeats” the original content.

>>> (1, 2, 3) * 3
(ll 2/ 3/ ll 2/ 3/ :I-I 2/ 3)

>>> [1, 2, 3] * 3
[11 2/ 3/ 1/ 2/ 3/ 1/ 2/ 3]

>>> “Hello” * 3
‘HelloHelloHello!

Monday, October 19, 2009

Mutability:
Tuples vs. Lists

Monday, October 19, 2009

Tuples: Immutable

>>> t = (23, ‘abce’, 4.506, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last) :
File "<pyshell#75>", line 1, in -toplevel-
tul[2] = 3.14

TypeError: object doesn't support i1tem assignment

You can’t change a tuple.

You can make a fresh tuple and assign its reference to a previously used
name.

>>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

Monday, October 19, 2009

Lists: Mutable

>>> 11 = [‘abce’, 23, 4.34, 23]
>>> 11[1] = 45
>>> 113

[Y‘abc’, 45, 4.34, 23]

* We can change lists in place.

°* Name /i still points to the same memory reference when we’re
done.

°* The mutability of lists means that they aren’t as fast as tuples.

Monday, October 19, 2009

Operations on Lists Only 1

>>> 11 = [1, 11, 3, 4, 5]

>>> 11.append(‘a’) # Our first exposure to method syntax
>>> 11
(1, 11, 3, 4, 5, ‘a’]

>>> 1li.insert (2, ‘i'’)
>>>]11
(1, 11, ‘', 3, 4, 5, ‘a’']

Monday, October 19, 2009

The extend method vs the + operator.

* +creates a fresh list (with a new memory reference)
* extend operates on list 11 in place.

>>> 1i.extend([9, 8, 7])
>>>11
[11 2/ ‘j—’I 3/ 4/ 5/ ‘a,I 9/ 8/ 7]

Confusing:
°* Extend takes a list as an argument.

* Append takes a singleton as an argument.
>>> li.append([10, 11, 12])
>>> 117

(., 2, ‘', 3, 4, 5, ‘a', 9, 8, 7, [10, 11, 12]]

Monday, October 19, 2009

Operations on Lists Only 3

>>> 11 = [Ya', ‘b’, ‘c¢’', ‘b’]

>>> 1i.index(‘b’) # index of first occurrence
1

>>> 1i.count (‘b’) # number of occurrences

2

>>> 11.remove (‘b’) # remove first occurrence
>>> 117

Monday, October 19, 2009

Operations on Lists Only 4

>>> 11 = [5, 2, 6, 8]
>>> 1i.reverse () # reverse the list *in place*
>>> 11

(8, 6, 2, 5]
>>> 1li.sort () # sort the list *in place*
>>> 117

[2/ 5/ 6/ 8]

>>> li.sort (some function)

sort in place using user-defined comparison

Monday, October 19, 2009

Tuples vs. Lists

* Lists slower but more powerful than tuples.

 Lists can be modified, and they have lots of handy operations we can
perform on them.

* Tuples are immutable and have fewer features.

°* To convert between tuples and lists use the list() and tuple()
functions:
li = list(tu)
tu = tuple(1li)

Monday, October 19, 2009

Dictionaries

63

Monday, October 19, 2009

Dictionaries: A Mapping type

° Dictionaries store a mapping between a set of keys
and a set of values.
» Keys can be any immutable type.
* Values can be any type
» A single dictionary can store values of different types

°* You can define, modify, view, lookup, and delete
the key-value pairs in the dictionary.

Monday, October 19, 2009

Using dictionaries

>>> d = {‘user’:'‘bozo’, ‘pswd’ :1234}
>>> d[‘user’]

‘bozo’

>>> d[‘pswd’]

1234

>>> d[‘bozo’]

Traceback (innermost last):
File ‘<interactive input>’ line 1, in ?
KeyError: bozo

>>> d = {‘user’:'‘bozo’, ‘pswd’:1234}
>>> d[‘user’] = ‘clown’

>>> d

{ ‘user’ : ‘clown’, ‘pswd’ :1234}

>>> d['id’] = 45
>>> d
{ ‘user’ : ‘clown’, ‘id’ :45, ‘pswd’ :1234}

>>> d = {‘user’:'‘bozo’, ‘p’:1234, ‘i’ :34}
>>> del d[‘user’]
>>> d

{‘p’:1234, ‘i’ :34}
>>> d.clear ()

>>> d

{}

Remove one.

Remove all.

>>> d = {‘user’:‘bozo’, '‘p’:1234, ‘i’ :34}
>>> d.keys () # List of keys.

[‘user’, ‘p’, ‘i’]
>>> d.values|()

[‘bozo’, 1234, 34]
>>> d.items () # List of item tuples.
[(‘user’, ‘bozo’), (‘p’,1234), (‘'i’ , 34)]

List of wvalues.

Monday, October 19, 2009

Functions

Monday, October 19, 2009

Functions

* def creates a function and assigns it a name
* return sends a result back to the caller

* Arguments are passed by assignment

* Arguments and return types are not declared

def <name>(argl, arg2, ..., argN):

<statements>

return <value>

def times(x,y):

return x*y

Monday, October 19, 2009

Passing Arguments to Functions

* Arguments are passed by assignment
* Passed arguments are assigned to local names
* Assignment to argument names don't affect the

caller
* Changing a mutable argument may affect the caller

def changer (x,vy):
X = 2 # changes local value of x only

y[0] = 'hi’ # changes shared object

Monday, October 19, 2009

Optional Arguments

* Can define defaults for arguments that need not be
passed

def func(a, b, c¢c=10, d=100):

print a, b, ¢, d

>>> func(1,2)
1 2 10 100

>>> func(1,2,3,4)
1,2,3,4

Monday, October 19, 2009

Gotchas

* All functions in Python have a return value
 even if no return line inside the code.

* Functions without a return return the special value
None.

°* There is no function overloading in Python.
« Two different functions can’t have the same name, even if they
have different arguments.
* Functions can be used as any other data type.
They can be:
* Arguments to function
« Return values of functions
* Assigned to variables
« Parts of tuples, lists, etc

Monday, October 19, 2009

Control of Flow

71

Monday, October 19, 2009

Examples

X ==
“X equals 3.”
x == 2: (number of players < 5)
“X equals 2.”
"X equals something else.”
“"This 1is outside the ‘if’.”
x =3 x in range(10):
x < 10: x > 7:
x > 7: X 4= 2
X += 2
x=x+1
x=x+1 “Still in the loop.”
“Still in the loop.” X ==
X ==

“Outside of the loop.”
“Outside of the loop.”

Monday, October 19, 2009

Modules

Monday, October 19, 2009

Why Use Modules?

°* Code reuse
* Routines can be called multiple times within a program
* Routines can be used from multiple programs

* Namespace partitioning
« Group data together with functions used for that data

* Implementing shared services or data

« Can provide global data structure that is accessed by multiple
subprograms

Monday, October 19, 2009

Modules

* Modules are functions and variables defined in
separate files

* Items are imported using from or import

from module import function

function()

import module
module. function()

* Modules are namespaces
« Can be used to organize variable names, i.e.

atom.position = atom.position - molecule.position

Monday, October 19, 2009

Classes and Objects

Monday, October 19, 2009

What is an Object?

* A software item that contains variables and
methods

* Object Oriented Design focuses on

* Encapsulation:

—dividing the code into a public interface, and a private implementation
of that interface

* Polymorphism:

—the ability to overload standard operators so that they have appropriate
behavior based on their context

* Inheritance:

—the ability to create subclasses that contain specializations of their
parents

Monday, October 19, 2009

Example

class atom(object):
def init (self,atno,x,y,z):
self.atno = atno
self.position = (xX,y,2)
def symbol(self): # a class method
return Atno to Symbol[atno]
def repr (self): # overloads printing
return '%d %$10.4f %10.4f %10.4f' %
(self.atno, self.position[0],
self.position[l],self.position[2])

>>> at = atom(6,0.0,1.0,2.0)
>>> print at

6 0.0000 1.0000 2.0000
>>> at.symbol ()

lcl

Monday, October 19, 2009

Atom Class

* Overloaded the default constructor

* Defined class variables (atno,position) that are
persistent and local to the atom object

* Good way to manage shared memory:

* instead of passing long lists of arguments, encapsulate some of
this data into an object, and pass the object.

* much cleaner programs result
* Overloaded the print operator

* We now want to use the atom class to build
molecules...

Monday, October 19, 2009

Molecule Class

class molecule:

def init (self,name='Generic'):
self.name = name
self.atomlist = []

def addatom(self,atom):
self.atomlist.append(atom)

def repr (self):
str = 'This is a molecule named %s\n' % self.name
str = str+'It has %d atoms\n' % len(self.atomlist)
for atom in self.atomlist:

str = str + “atom™ + '\n'

return str

Monday, October 19, 2009

Using Molecule Class

>>> mol = molecule('Water')

>>> at = atom(8,0.,0.,0.)

>>> mol.addatom(at)

>>> mol.addatom(atom(1l,0.,0.,1.))
>>> mol.addatom(atom(1l,0.,1.,0.))
>>> print mol

This is a molecule named Water

It has 3 atoms

8 0.000 0.000 0.000

1 0.000 0.000 1.000

1 0.000 1.000 0.000

°* Note that the print function calls the atoms print
function
* Code reuse: only have to type the code that prints an atom

once; this means that if you change the atom specification, you
only have one place to update.

Monday, October 19, 2009

Inheritance

class gm molecule(molecule):
def addbasis(self):
self.basis = []
for atom in self.atomlist:
self.basis = add bf(atom,self.basis)

* _init_, repr_,and _addatom__ are taken
from the parent class (molecule)

°* Added a new function addbasis() to add a basis set

* Another example of code reuse

 Basic functions don't have to be retyped, just inherited
* Less to rewrite when specifications change

Monday, October 19, 2009

Overloading

class gm molecule(molecule):
def repr (self):
str = 'OM Rules!\n'
for atom in self.atomlist:
str = str + “atom™ + '\n'

return str

°* Now we only inherit __Init __ and addatom from the
parent

* We define a new version of __repr__ specially for
QM

Monday, October 19, 2009

Adding to Parent Functions

* Sometimes you want to extend, rather than
replace, the parent functions.

class gm molecule(molecule):
def init (self,name="Generic",basis="6-31G**"):
self.basis = basis

super (gm molecule, self). 1init (name)

Monday, October 19, 2009

Public and Private Data

* In Python anything with two leading underscores
Is private
__a,___my variable

* Anything with one leading underscore is semi-
private, and you should feel guilty accessing this
data directly.

b

« Sometimes useful as an intermediate step to making data
private

Monday, October 19, 2009

The Extra Stuff...

86

Monday, October 19, 2009

File 1/0, Strings, Exceptions...

>>> try:
1/ 0
except:
print ('That was silly!')
finally:
print ('This gets executed no matter what')

That was silly!
This gets executed no matter what

fileptr = open(‘'filename’)
somestring = fileptr.read()

for line in fileptr:
print line

fileptr.close()

>>> a =1
>>> b = 2.4
>>> ¢ = '"Tom'

>>> '%$s has %d coins worth a total of $%.02f' % (c, a, b)
'"Tom has 1 coins worth a total of $2.40'

Monday, October 19, 2009

