
1

Machine Learning: Using Python to Predict Credit Card Fraud

Amanda Margaret Rice

American University – Department of Computer Science

CSC-148: Introduction to Computer Science

Professor Ahmed

June 15th, 2022

2

Credit Card Fraud: The Increase of Contactless Payments and Identify Theft

The covid-19 pandemic has altered consumer behavior through a shift from contact payments to
contactless payments. In other words, most payments occur through a technological operating
system. This raises the concern of credit card fraud for people all over the world. Credit card
fraud is a form of identity theft as it occurs when someone accesses another person's identity to
complete a purchase. Credit card fraud seems to be an ubiquitous problem as recent data
highlights that nearly 50% of identity theft is fraudulent credit card charges (Boitnott). In the year
of 2014, the Federal Bureau of Investigation noted that there were over 20,000 victims affected
by fraudulent credit card charges. It is estimated that by 2030, credit card companies will lose
nearly $500 billion dollars to credit card fraud (Mullen). Moreover, despite the United States
making up less of the global card volume, it is responsible for 36% of fraudulent transactions
(Mullen).

The Threat of Becoming a Victim to Identity Theft

The combination of the increased use of technology to make purchases and technological
advancements increase the likelihood of fraudulent credit card transactions; therefore, it is
important to develop machine learning algorithms that can detect fraudulent transactions to
protect credit card holders from identity theft. In short, Machine learning can preclude the rise of
fraudulent credit card transactions.

Why Machine Learning is Important to Protecting the Identity of Credit Card Holders

Machine learning builds algorithms that have the ability to “learn and improve from data”
(Sridhar) Machine learning is the process of using a foundational dataset to determine which
algorithm has the highest accuracy score. In the context of credit card fraud, machine learning is
important because it can detect fraudulent transactions.

Data: European Credit Cardholders

The dataset in this study was derived from transactions made by European cardholders in
September of 2013. The data used in this study was PCA transformed to ensure the privacy of the
credit card holders as it incorporated sensitive information. (ULB). The data can be found here.

Importing the Packages

Shown below are the packages necessary for analyzing the data.

Data Processing import pandas as pd

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

3

Working with arrays import numpy as np

Visualization import matplotlib.pyplot as plt

Text customization from termcolor import colored as cl

Advanced tools import itertools

Data normalization from sklearn.preprocessing import StandardScaler

Data split from sklearn.model_selection import train_test_split

Decision tree algorithm from sklearn.tree import DecisionTreeClassifier

KNN algorithm from sklearn.neighbors import KNeighborsClassifier

Logistic regression from sklearn.linear_model import LogisticRegression

SVM algorithm from sklearn.svm import SVC

Random forest tree from sklearn.ensemble import RandomForestClassifier

XGBoost algorithm from xgboost import XGBClassifier

Evaluation metric:
Confusion Matrix

from sklearn.metrics import confusion_matrix

Evaluation metric:
Accuracy Score

from sklearn.metrics import accuracy_score

Evaluation metric:
F1-Score

from sklearn.metrics import f1_score

Importing the Data

The data used in this project can be found here.

How to import
‘creditcard.csv’
data

df = pd.read_csv('creditcard.csv')

df.drop('Time', axis = 1, inplace = True)

print(df.head())

After entering the above code for importing the data, it will produce something that looks like
this:

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

4

The columns labeled ‘V1’ through ‘V8’ contain values that were transformed by Principal
Component Analysis (PCA). PCA lessens feature redundancy yet strives to preserve the original
data through orthogonal transformation (Savasta). Orthogonal transformation is a linear
transformation that preserves the meaning of the original data (Savasta). Without PCA
transformation, the available data would include information private to the credit card holder. The
values under the columns ‘V1’ through ‘V8’ include numerical values of the credit card
transactions.

The column labeled ‘Amount’ is the total purchase price of each transaction.

The column labeled ‘Class’ is a binary representation of fraudulent and non-fraudulent cases. The
numerical value of ‘0’ in the ‘Class’ column is a representation of non-fraudulent cases whereas
the numerical value of ‘1’ in the ‘Class’ column is a representation of the fraudulent transactions.

Histogram df.Class.value_counts()

sns.countplot("Class",data=df)

A histogram was computed to illustrate the ‘Class’ column as an effort to better visualize the
frequency of the binary representation of fraudulent and non-fraudulent cases in the dataset. As
shown in the histogram below using the above code, it is evident that there are lesser fraudulent
transactions than non-fraudulent transactions – the great disparity of fraudulent and
non-fraudulent cases is because the data used in this machine learning study is from 2013,
meaning that the cyber security mechanisms are satisfactory and effective to date.

5

Exploratory Data Analysis

Exploratory data analysis (EDA) must occur prior to machine learning. Exploratory data analysis
is a necessary procedure as it analyzes and interprets a given data set as an effort to check the
particular bounds of the data. In other words, it allows the researcher to investigate the data and
explore its strengths and weaknesses.

Shape df.shape

(284807, 31)

Exploratory
data analysis

cases = len(df)

nonfraud_count = len(df[df.Class == 0])

fraud_count = len(df[df.Class == 1])

fraud_percentage = round(fraud_count/nonfraud_count*100, 2)

Print the
EDA code

print(cl('CASE COUNT', attrs = ['bold']))

print(cl('--',

attrs = ['bold']))

print(cl('Total number of cases are {}'.format(cases), attrs

6

= ['bold']))

print(cl('Number of Non-fraud cases are

{}'.format(nonfraud_count), attrs = ['bold']))

print(cl('Number of Fraud cases are {}'.format(fraud_count),

attrs = ['bold']))

print(cl('Percentage of fraud cases is

{}'.format(fraud_percentage), attrs = ['bold']))

print(cl('--',

attrs = ['bold']))

As noted before, there is a great disparity between fraudulent and non-fraudulent charges. Out of
284,807 cases, only 492 cases are fraudulent credit card transactions. In other words, the data is
not entirely balanced as there is a disparity between fraudulent and non-fraudulent cases.
Moreover, the percentage of fraudulent cases is 17%.

Exploratory
Data Analysis:
Describing the
data

nonfraud_cases = df[df.Class == 0]

fraud_cases = df[df.Class == 1]

Print the code print(cl('CASE AMOUNT STATISTICS', attrs = ['bold']))

print(cl('--',

attrs = ['bold']))

print(cl('NON-FRAUD CASE AMOUNT STATS', attrs = ['bold']))

print(nonfraud_cases.Amount.describe())

print(cl('--',

attrs = ['bold']))

print(cl('FRAUD CASE AMOUNT STATS', attrs = ['bold']))

print(fraud_cases.Amount.describe())

print(cl('--',

attrs = ['bold']))

7

Machine Learning: Train and Test Data Split

After computing an exploratory data analysis to familiarize ourselves with the data and
understand its strengths and weaknesses, machine learning can occur. The code printed below is the train
and test data split. The train and test data split will use a 80% to 20% ratio of the data that is randomly
selected. It is important to randomly select the data to reduce bias and error. The training data set allows
for the model to learn - and later teach itself - how to predict and interpret the data. Under these
circumstances, it allows the system to interpret this data set to predict and prevent future fraudulent cases.
The testing data set is the other portion of the data that is used to test the performance of a system. The
training data set is primarily used after the testing data set to diminish the chance of error.

Data Split X = df.drop('Class', axis = 1).values

y = df['Class'].values

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.2, random_state = 0)

Print the print(cl('X_train samples : ', attrs = ['bold']), X_train[:1])

8

Data Split print(cl('X_test samples : ', attrs = ['bold']), X_test[0:1])

print(cl('y_train samples : ', attrs = ['bold']),

y_train[0:10])

print(cl('y_test samples : ', attrs = ['bold']), y_test[0:10])

Machine Learning: Modeling the Data Split

Decision Tree tree_model = DecisionTreeClassifier(max_depth = 4,

criterion = 'entropy')

tree_model.fit(X_train, y_train)

tree_yhat = tree_model.predict(X_test)

The Decision Tree algorithm helps sort examples through breaking down more
specific individual data within the context of a broader more general sample size. In
particular, the Decision Tree model incorporates the use of other algorithms that
later decides whether or not to further split the data. The entirety of the data fed to
the algorithm (also referred to as the root of the tree) will follow a chain system that
answers yes or no questions (called a node) until it reaches the final point (the leaf
of the tree) (Andrade). The Decision Tree model uses the training data to make
predictions of future data. (Andrade).

K-Nearest
Neighbors
(KNN)

n = 5

knn = KNeighborsClassifier(n_neighbors = n)

knn.fit(X_train, y_train)

knn_yhat = knn.predict(X_test)

9

K-Nearest Neighbors is an algorithm that clusters data with known categories. Next,
a new and unknown data point is entered. To calculate the category of this new data
point, K-Nearest Neighbors searches for its nearest neighbor to categorize the new
data point. In the context of credit card fraud, it will insert new data and categorize
it as being fraudulent or non-fraudulent by its nearest neighbor (Joshstarmer).

Logistic
Regression

lr = LogisticRegression()

lr.fit(X_train, y_train)

lr_yhat = lr.predict(X_test)

Most common to binary datasets is the Logistic Regression algorithm. A Logistic
Regression algorithm uses labeled input and output training data to predict the
outcomes of future binary data. In the context of detecting fraudulent credit card
charges, a Logistic Regression algorithm uses the sigmoid function – a logistic
function – to find the probability of a fraudulent or non-fraudulent credit card
(Andrade).

Support Vector
Machine (SVM)

svm = SVC()

svm.fit(X_train, y_train)

svm_yhat = svm.predict(X_test)

A Support Vector Machine (SVM) uses labeled input and output training data and
creates a sensitive threshold midpoint between the range of data points. In doing so,
when future data is imported into the support vector machine, it more precisely
directs the system to calculate an accurate response (Andrade). Therefore, Support
Vector Machines have low bias because they use the training data to calculate a
sensitive threshold with a maximum margin (Joshstarmer).

Random Forest
Tree

rf = RandomForestClassifier(max_depth = 4)

rf.fit(X_train, y_train)

rf_yhat = rf.predict(X_test)

A Random Forest Tree is similar to a Decision Tree algorithm in that it follows a
similar logic but produces multiple Decision Trees using randomly selected data,
thereby, a Random Forest Tree is a more advanced Decision Tree algorithm
(Andrade). Random Forest Tree algorithm selects data randomly through a system
called bootstrap. After the data is inserted into the Random Forest Tree, it uses a
method called bagging to generate multiple Decision Trees.

XGBoost xgb = XGBClassifier(max_depth = 4)

xgb.fit(X_train, y_train)

xgb_yhat = xgb.predict(X_test)

XGBoost uses a gradient boosting framework that uses open-ended, and
unstructured data. XGBoost avoids bias through parallel processes and tree-pruning.
Parallelization in XGBoost uses an initialization that changes the order of loops that
the data is sequenced through. Tree-pruning in XGBoost is done through
‘max_depth’ which starts the data sequencing backwards (Morde). In comparison to

10

the other algorithms mentioned previously, XGBoost is one of the best because of
its shorter training time and prediction power.

Evaluation: Accuracy Score

An accuracy score of the algorithms (Decision Tree, K-Nearest Neighbors, Logistic Regression,
Support Vector Machine, Random Forest Tree, XGBoost) is a straightforward method to test how
accurate the selected algorithm is at classifying the samples correctly (Mohajon).

Accuracy is calculated using the formula:

Accuracy Score print(cl('ACCURACY SCORE', attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('Accuracy score of the Decision Tree model is

{}'.format(accuracy_score(y_test, tree_yhat)), attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('Accuracy score of the KNN model is {}'.format(accuracy_score(y_test,

knn_yhat)), attrs = ['bold'], color = 'green'))

print(cl('--

', attrs = ['bold']))

print(cl('Accuracy score of the Logistic Regression model is

{}'.format(accuracy_score(y_test, lr_yhat)), attrs = ['bold'], color = 'red'))

print(cl('--

', attrs = ['bold']))

print(cl('Accuracy score of the SVM model is {}'.format(accuracy_score(y_test,

svm_yhat)), attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('Accuracy score of the Random Forest Tree model is

{}'.format(accuracy_score(y_test, rf_yhat)), attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('Accuracy score of the XGBoost model is {}'.format(accuracy_score(y_test,

xgb_yhat)), attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

11

Based on the results pictured above, it is evident that all algorithms used on this dataset are
accurate. In other words, each algorithm classifies the samples correctly as it has a high accuracy
score.

Evaluation: F1 Score

An F1-Score is described as a “harmonic mean of precision and recall” (Sharma). Precision
focuses on the prediction of positive cases that were predicted correctly by dividing the true
positive cases by the actual results (Sharma). Recall, also referred to as sensitivity, focuses on
how many positive cases were predicted correctly by dividing the true positive cases by the
predictive results (Sharma).

The F1-Score is calculated using the formula:

F1 Score print(cl('F1 SCORE', attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('F1 score of the Decision Tree model is {}'.format(f1_score(y_test,

tree_yhat)), attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('F1 score of the KNN model is {}'.format(f1_score(y_test, knn_yhat)),

attrs = ['bold'], color = 'green'))

print(cl('--

', attrs = ['bold']))

print(cl('F1 score of the Logistic Regression model is {}'.format(f1_score(y_test,

12

lr_yhat)), attrs = ['bold'], color = 'red'))

print(cl('--

', attrs = ['bold']))

print(cl('F1 score of the SVM model is {}'.format(f1_score(y_test, svm_yhat)),

attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('F1 score of the Random Forest Tree model is {}'.format(f1_score(y_test,

rf_yhat)), attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

print(cl('F1 score of the XGBoost model is {}'.format(f1_score(y_test, xgb_yhat)),

attrs = ['bold']))

print(cl('--

', attrs = ['bold']))

Confusion Matrix:

For the next part, a confusion matrix will be computed using different algorithms of the train and
test data split. The purpose of computing a confusion matrix for each of the algorithms is to illustrate
which algorithm has the best performance. Under these circumstances, the product of this system will be
to find the most accurate and efficient algorithm to detect future credit card fraud based on the train and
test data split (Mohajon). Illustrated below is the general explanation of a confusion matrix model.

13

.

Confusion matrix uses the terms ‘positive/negative’ and ‘true/false’ to describe predicted values and
actual values. Therefore, predicted values are described by using positive and negative whereas actual
values are described by using true and false (Sharma).

‘TP,’ or True Positive would mean that it was predicted that non-fraudulent cases occurred when
non-fraudulent cases did occur. Author Joydwip Mohajon describes ‘TP’ cases as “the number of
predictions where the classifier correctly predicts the positive class as positive.” In short, it was predicted
to be positive and it was true.

‘TN,’ or True Negatives would mean that it was predicted that non-fraudulent cases did not occur and
non-fraudulent cases did not occur. Author Joydwip Mohajon describes ‘TP’ cases as “the number of
predictions where the classifier correctly predicts the negative class as negative.” In short, it was predicted
to be negative and it was true.

‘FP,’ or False Positive would mean that it was predicted that non-fraudulent cases did occur but
non-fraudulent cases did not occur. In other words, a False Positive is a Type 1 Error. Author Joydwip
Mohajon describes ‘TP’ cases as “the number of predictions where the classifier incorrectly predicts the
negative class as positive.” In short, it was predicted to be positive and it was false

‘FN,’ or False Negatives would mean that it was predicted that non-fraudulent cases did not occur but
non-fraudulent cases did not actually occur. In other words, a False Negative is a Type II Error. Author
Joydwip Mohajon describes ‘TP’ cases as “the number of predictions where the classifier incorrectly
predicts the positive class as negative.” In short, it was predicted to be negative and it was false.

Defining the Plot Function def plot_confusion_matrix(cm, classes, title, normalize = False, cmap =

plt.cm.Blues):

title = 'Confusion Matrix of {}'.format(title)

if normalize:

cm = cm.astype(float) / cm.sum(axis=1)[:, np.newaxis]

plt.imshow(cm, interpolation = 'nearest', cmap = cmap)

plt.title(title)

14

plt.colorbar()

tick_marks = np.arange(len(classes))

plt.xticks(tick_marks, classes, rotation = 45)

plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'

thresh = cm.max() / 2.

for i, j in itertools.product(range(cm.shape[0]),

range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),

horizontalalignment = 'center',

color = 'white' if cm[i, j] > thresh else 'black')

plt.tight_layout()

plt.ylabel('True label')

plt.xlabel('Predicted label')

Compute Confusion Matrix for the Models:

Next, we have to compute the confusion matrix for the models to visualize the performance of the
given algorithms.

Decision Tree tree_matrix = confusion_matrix(y_test, tree_yhat, labels = [0, 1])

K-Nearest
Neighbors

knn_matrix = confusion_matrix(y_test, knn_yhat, labels = [0, 1])

Logistic
Regression

lr_matrix = confusion_matrix(y_test, lr_yhat, labels = [0, 1])

Support Vector
Machine (SVM)

svm_matrix = confusion_matrix(y_test, svm_yhat, labels = [0, 1])

Random Forest
Tree

rf_matrix = confusion_matrix(y_test, rf_yhat, labels = [0, 1])

XGBoost xgb_matrix = confusion_matrix(y_test, xgb_yhat, labels = [0, 1])

Plot the Confusion Matrix

Plot the Confusion Matrix plt.rcParams['figure.figsize'] = (6, 6)

15

How to Interpret the Confusion Matrix Graph for Each Algorithm

Decision
Tree

tree_cm_plot =

plot_confusion_matrix(tree_matrix,

classes =

['Non-Default(0)','Default(1)'],

normalize = False, title =

'Decision Tree')

plt.savefig('tree_cm_plot.png')

plt.show()

The confusion matrix of the Decision Tree
algorithm illustrates that 56,849 predicted
values were positive and true. In other
words, the predicted values were positive
and the actual values were true. The
Decision Tree algorithm classified 77 cases
as fraudulent. Although, this algorithm
incorrectly identified 24 cases as fraudulent
when the credit card transactions were not.
Moreover, it incorrectly identified a credit
card transaction that was fraudulent as a
non-fraudulent charge 12 times.

16

K-Nearest
Neighbors

knn_cm_plot =

plot_confusion_matrix(knn_matrix,

classes =

['Non-Default(0)','Default(1)'],

normalize = False, title = 'KNN')

plt.savefig('knn_cm_plot.png')

plt.show()

The confusion matrix of the K-Nearest
Neighbors algorithm illustrates that 56,854
predicted values were positive and true. In
other words, the predicted values were
positive and the actual values were true. The
K-Nearest Neighbors algorithm classified 70
cases as fraudulent. Although, this algorithm
incorrectly identified 31 cases as fraudulent
when the credit card transactions were not.
Moreover, it incorrectly identified a credit
card transaction that was fraudulent as a
non-fraudulent charge 7 times.

Logistic
Regression

lr_cm_plot =

plot_confusion_matrix(lr_matrix,

classes =

['Non-Default(0)','Default(1)'],

normalize = False, title =

'Logistic Regression')

plt.savefig('lr_cm_plot.png')

plt.show()

The confusion matrix of the Logistic
Regression algorithm illustrates that 56,853

17

predicted values were positive and true. In
other words, the predicted values were
positive and the actual values were true. The
Logistic Regression algorithm classified 61
cases as fraudulent. Although, this algorithm
incorrectly identified 40 cases as fraudulent
when the credit card transactions were not.
Moreover, it incorrectly identified a credit
card transaction that was fraudulent as a
non-fraudulent charge 8 times.

Support
Vector
Machine
(SVM)

svm_cm_plot =

plot_confusion_matrix(svm_matrix,

classes =

['Non-Default(0)','Default(1)'],

normalize = False, title = 'SVM')

plt.savefig('svm_cm_plot.png')

plt.show()

The confusion matrix of the Support Vector
Machine (SVM) algorithm illustrates that
56,854 predicted values were positive and
true. In other words, the predicted values
were positive and the actual values were
true. The Support Vector Machine algorithm
classified 36 cases as fraudulent. Although,
this algorithm incorrectly identified 65 cases
as fraudulent when the credit card
transactions were not. Moreover, it
incorrectly identified a credit card
transaction that was fraudulent as a
non-fraudulent charge 7 times.

18

Random
Forest Tree

rf_cm_plot =

plot_confusion_matrix(rf_matrix,

classes =

['Non-Default(0)','Default(1)'],

normalize = False, title = 'Random

Forest Tree')

plt.savefig('rf_cm_plot.png')

plt.show()

The confusion matrix of the Random Forest
Tree algorithm illustrates that 56,854
predicted values were positive and true. In
other words, the predicted values were
positive and the actual values were true. The
Random Forest Tree algorithm classified 68
cases as fraudulent. Although, this algorithm
incorrectly identified 33 cases as fraudulent
when the credit card transactions were not.
Moreover, it incorrectly identified a credit
card transaction that was fraudulent as a
non-fraudulent charge 7 times.

XGBoost xgb_cm_plot =

plot_confusion_matrix(xgb_matrix,

classes =

['Non-Default(0)','Default(1)'],

normalize = False, title =

'XGBoost')

plt.savefig('xgb_cm_plot.png')

plt.show()

The confusion matrix of the XGBoost
algorithm illustrates that 56,852 predicted
values were positive and true. In other

19

words, the predicted values were positive
and the actual values were true. The
XGBoost algorithm classified 80 cases as
fraudulent. Although, this algorithm
incorrectly identified 21 cases as fraudulent
when the credit card transactions were not.
Moreover, it incorrectly identified a credit
card transaction that was fraudulent as a
non-fraudulent charge 9 times.

Conclusion

As mentioned previously, the XGBoost algorithm in machine learning is one of the better
algorithms for predicting suspicious activity and fraudulent credit card transactions because it uses
tree-pruning and parallelization. The confusion matrix of the XGBoost found that 80 cases were
fraudulent and only incorrectly identified a credit card transaction that was fraudulent as a non-fraudulent
charge 9 times. It is clear that the XGBoost algorithm is the better algorithm to use to detect fraud.

Works Cited

20

Andrade, Frank. “6 Machine Learning Algorithms Anyone Learning Data Science Should Know.”
Medium, Towards Data Science, 15 June 2022,
https://towardsdatascience.com/6-machine-learning-algorithms-anyone-learning-data-scie
nce-should-know-cb6c388a6fb3.

“Assistance for Victims of Compromised Credit Card Information.” FBI, FBI, 19 Dec. 2014,
https://www.fbi.gov/resources/victim-services/seeking-victim-information/assistance-for-
victims-of-compromised-credit-card-information.

Boitnott, John. “Credit Card Fraud Statistics.” Self Financial, Self Financial, 11 Nov. 2020,
https://www.self.inc/info/credit-card-fraud-statistics/.

“Decision Tree Algorithm, Explained.” KDnuggets,
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html.

joshstarmer. “StatQuest: K-Nearest Neighbors, Clearly Explained.” YouTube, YouTube, 26 June 2017,
https://www.youtube.com/watch?v=HVXime0nQeI.

joshstarmer. “Support Vector Machines Part 1 (of 3): Main Ideas!!!” YouTube, YouTube, 30 Sept. 2019,
https://www.youtube.com/watch?v=efR1C6CvhmE.

Mullen, Caitlin. “Card Industry Faces $400B in Fraud Losses over next Decade, Nilson
Says.” Payments Dive, 14 Dec. 2021,
www.paymentsdive.com/news/card-industry-faces-400b-in-fraud-losses-over-next
-decade-nilson-says/611521.

Mohajon, Joydwip. “Confusion Matrix for Your Multi-Class Machine Learning Model.” Medium,
Towards Data Science, 24 July 2021,
https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-
model-ff9aa3bf7826.

Morde, Vishal. “XGBoost Algorithm: Long May She Reign!” Medium, Towards Data Science, 8 Apr.
2019,
https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-
she-may-rein-edd9f99be63d.

Savasta, Mirko. “PCA: A Linear Transformation.” Medium, Analytics Vidhya, 26 Oct. 2021,
https://medium.com/analytics-vidhya/pca-a-linear-transformation-f8aacd4eb007.

Savasta, Mirko. “PCA: A Linear Transformation.” Medium, Analytics Vidhya, 26 Oct. 2021,
https://medium.com/analytics-vidhya/pca-a-linear-transformation-f8aacd4eb007.

Sharma, Prateek. “Decoding the Confusion Matrix.” Medium, Towards Data Science, 9 Mar. 2022,
https://towardsdatascience.com/decoding-the-confusion-matrix-bb4801decbb.

21

Sridhar, Aditya. “A Beginner's Guide to Credit Card Fraud Detection Using Machine Learning.”
Medium, Medium, 11 Jan. 2022,
https://medium.com/@adityas03/a-beginners-guide-to-credit-card-fraud-detection-using-
machine-learning-bee556426951.

ULB, Machine Learning Group -. “Credit Card Fraud Detection.” Kaggle, 23 Mar. 2018,
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud.

