Financial Literacy with Mr. 401(k)
['FinLit with Mr. 401 (k)']
Winter Term 2023-2024
January 31, 2024

Time Value of Money Class 21: Compound Interest \& Lump Sum Formulas

Practical Application

Jane lends $\$ 100$ to John for exactly one month. At the end of one month, John repays Jane exactly $\$ 100$.

Who benefited most from this trade? Why?

Money today is always worth more than the same amount of money in the future.*

Time Value of Money

Class Discussion

Why do you think money today is worth more than the same amount of ${ }^{p}$ money in the future?

The Time Value of Money is based on the effects of...

Inflation

Causes the prices of goods and services to increase, which reduces the value of money by reducing its purchasing power.

Interest Rates

Causes the value of money in investments or interest-bearing accounts to increase.

Warren Buffett at Berkshire Hathaway Annual General Meeting 1994

I994 Annual Meeting

Watch Video Clip on YouTube

"The value of every business, the value of a farm, the value of an apartment house, the value of any economic asset, is 100\% sensitive to interest rates because all you are doing in investing is transferring some money to somebody now in exchange for what you expect the stream of money to be, to come in over a period of time, and the higher interest rates are the less that present value is going to be." - Warren Buffett

Recap: Simple Interest Formula

Simple Interest Amount

Principal Amount

Interest Rate

Time in Years

Class Discussion

What might be some of the limitations of simple interest calculations?

Simple Interest Limitations

Calculation Basis

Calculated only on the original principal of a loan or deposit

Prior Time Periods

Does not consider the interest on an asset or liability in previous time periods

Compounding is a method of calculating the total interest on the principal, where the interest is reinvested. Think of this as "interest on interest."

Compound Interest

Simple Interest vs. Compound Interest calculation on a \$1,000 investment earning 10\% annual interest for $\mathbf{7}$ years.

Annual Simple Interest

End of Year...	Interest Income	Balance
1	$\$ 100$	$\$ 1,100$
2	$\$ 100$	$\$ 1,200$
3	$\$ 100$	$\$ 1,300$
4	$\$ 100$	$\$ 1,400$
5	$\$ 100$	$\$ 1,500$
6	$\$ 100$	$\$ 1,600$
7	$\$ 100$	$\$ 1,700$

Annual Compound Interest

End of Year...	Interest Income	Balance
1	$\$ 100$	$\$ 1,100$
2	$\$ 110$	$\$ 1,210$
3	$\$ 121$	$\$ 1,331$
4	$\$ 133$	$\$ 1,464$
5	$\$ 146$	$\$ 1,611$
6	$\$ 161$	$\$ 1,772$
7	$\$ 177$	$\$ 1,949$

\$1,000 invested at a 10\% annual interest rate for $\mathbf{7}$ years under simple interest and select compound interest frequencies

The frequency of compounding

 affects investment returnsInterest accumulates faster when interest is compounded more frequently. An investment that compounds every quarter accumulates more interest than the same investment compounded annually. Continuous compound interest has the highest returns of all.

Time Value of Money Lump Sum Formulas Can Calculate the...

Future Value

Helps you to know how much the money you have today can grow to, if you save or invest it

Present Value

Helps you to know how much money you need now, to reach a certain amount of money in the future

Interest Rate

Helps you to know
how fast your money
will grow, or the
interest rate you earn

Time
Helps you to know how long it will take to reach a specific savings goal or investment outcome

Time Value of Money: Future Value of a Lump Sum Formula

The value of n depends on the number of times the interest compounds or is reinvested.

- $\mathrm{n}=1$, compounds annually
- $\mathrm{n}=2$, compounds semiannually.
- $\mathrm{n}=4$, compounds quarterly.
- $n=12$, compounds monthly.
- $\mathrm{n}=52$, compounds weekly.
- $n=365$, compounds daily.

$F V=P V \times(1+r / n)^{n t}$

Where:

- FV = Future Value
- PV = Present Value
- \quad = Interest rate or growth rate as a percentage
- $\mathrm{n}=$ Number of times the interest compounds annually
- $\mathrm{t}=$ Time in years

Practical Application

John saved \$1,000 from summer yard care work. John deposits the $\$ 1,000$ into a high yield savings account. The high yield savings account pays 4.5\% annual interest, compounded monthly. Let's calculate what the value of this would be after 3 years.

Practical Application

John saved \$1,000 from summer yard care work. John deposits the $\$ 1,000$ into a high yield savings account. The high yield savings account pays 4.5\% annual interest, compounded monthly. Let's calculate what the value of this would be after 3 years.
$F V=P V \times(1+r / n)^{n t}$

Practical Application

John saved \$1,000 from summer yard care work. John deposits the $\$ 1,000$ into a high yield savings account. The high yield savings account pays 4.5\% annual interest, compounded monthly. Let's calculate what the value of this would be after 3 years.

$$
\begin{aligned}
& F V=P V \times(1+r / n)^{n t} \\
& F V=1,000 \times(1+4.5 \% / 12)^{12 * 3}
\end{aligned}
$$

Practical Application

John saved \$1,000 from summer yard care work. John deposits the $\$ 1,000$ into a high yield savings account. The high yield savings account pays 4.5\% annual interest, compounded monthly. Let's calculate what the value of this would be after 3 years.
$F V=P V \times(1+r / n)^{n t}$
$F V=1,000 \times(1+4.5 \% / 12)^{12 * 3}$
$F V=\$ 1,144.25$

Time Value of Money: Lump Sum Formulas

Where:

- FV = Future Value
- PV = Present Value
- $r=$ Interest rate or growth rate as a percentage
- $\mathrm{n}=$ Number of times the interest compounds annually
- $\mathrm{t}=$ Time in years
$F V=P V \times(1+r / n)^{n t}$ FV
$P V=\frac{r}{(1+r / n)^{n t}}$
$r=n\left[(F V / P V)^{(1 / n t)-1}\right]$
$t=\frac{\ln (F V / P V)}{n[\ln (1+r / n)]}$

Practical Application

Jane wants to purchase a new bicycle in 4 years. Jane expects the bicycle will cost about $\$ 800$. Jane wants to invest money today toward the purchase. If Jane expects to earn 10\% compounded annually on a stock portfolio, how much does Jane need to invest today?

Practical Application

Jane wants to purchase a new bicycle in 4 years. Jane expects the bicycle will cost about $\$ 800$. Jane wants to invest money today toward the purchase. If Jane expects to earn 10\% compounded annually on a stock portfolio, how much does Jane need to invest today?

$$
P V=\frac{F V}{(1+r / n)^{n t}}=\frac{800}{(1+10 \% / 1)^{1 * 4}}
$$

Practical Application

Jane wants to purchase a new bicycle in 4 years. Jane expects the bicycle will cost about $\$ 800$. Jane wants to invest money today toward the purchase. If Jane expects to earn 10\% compounded annually on a stock portfolio, how much does Jane need to invest today?

$$
P V=\frac{F V}{(1+r / n)^{n t}}=\frac{800}{(1+10 \% / 1)^{1 * 4}}=\$ 546.41
$$

Practical Application

Parents make a deal with their child who is student starting high school as a freshman. If the student earns an \mathbf{A}, \mathbf{A}-, or $\mathbf{B}+$ in every class, then the parents will give the student \$2,000 at graduation. The student wants to calculate the present value of that money, assuming a 4\% annual discount rate.

Practical Application

Parents make a deal with their child who is student starting high school as a freshman. If the student earns an $\mathbf{A}, \mathbf{A}-$, or $\mathbf{B}+$ in every class, then the parents will give the student \$2,000 at graduation. The student wants to calculate the present value of that money, assuming a 4\% annual discount rate.

$$
P V=\frac{F V}{(1+r / n)^{n t}}=\frac{2,000}{(1+4 \% / 1)^{1 * 4}}
$$

Practical Application

Parents make a deal with their child who is student starting high school as a freshman. If the student earns an $\mathbf{A}, \mathbf{A}-$, or $\mathbf{B}+$ in every class, then the parents will give the student $\$ 2,000$ at graduation. The student wants to calculate the present value of that money, assuming a 4\% annual discount rate.

$$
P V=\frac{F V}{(1+r / n)^{n t}}=\frac{2,000}{(1+4 \% / 1)^{1 * 4}}=\$ 1,709.61
$$

Money Mavericks

Objective: Work within your Money Mavericks Workgroups to solve each problem on the following Practical Applications Slide.

Practical Application

1. Jane invested $\$ 1,000$ for 1 year at a 10% annual interest rate compounded annually. How much did Jane have after 1 year?
2. John invested $\$ 1,000$ for 1 year at a 10% interest rate compounded monthly. How much did John have after 1 year?
3. Jane invested $\$ 1,000$ for 10 years at a 10% interest rate compounded monthly. How much did Jane have after 10 years?
4. John invested $\$ 1,000$ for 10 years at a 10% interest rate compounded daily. How much did John have after 10 years?
5. Jane invested $\$ 5,000$ for $\mathbf{2 5}$ years at a 10% interest rate compounded monthly. How much did Jane have after 25 years?
6. John invested $\$ 100,000$ for 30 years at a 10% interest rate compounded monthly. How much did John have after 30 years?

$$
F V=P V \times(1+r / n)^{n t}
$$

Three Key Takeaways

1. Money today is worth more than the same amount of money in the future because of inflation and interest rates.
2. Simple interest considers only interest on the principal amount whereas compound interest calculates the interest on interest.
3. One of the most important formulas in finance is $F V=P V \times(1+r / n)^{n t}$

Where to Learn More

- Time Value of Money Explained with Formula and Examples by Jason Fernado via Investopedia
- Understanding the Time Value of Money by Shauna Carther Heyford via Investopedia
- Video: Time Value of Money, by Khan Academy

Money Mavericks Workgroups Answer Key Replicate in Microsoft Excel =FV(rate,nper,pmt,[pv],[type])

1. Jane invested $\$ 1,000$ for 1 year at a 10% annual interest rate compounded annually. How much did Jane have after 1 year? $=\mathrm{FV}(10 \% / 1,1 * 1,0,-1000,0)=\$ 1,100$
2. John invested $\$ 1,000$ for 1 year at a 10% interest rate compounded monthly. How much did John have after 1 year? $=\mathrm{FV}(10 \% / 12,1 * 12,0,-1000,0)=\$ 1,105$
3. Jane invested $\$ 1,000$ for $\mathbf{1 0}$ years at a 10% interest rate compounded monthly. How much did Jane have after 10 years? $=\mathrm{FV}(10 \% / 12,10 * 12,0,-1000,0)=\$ 2,707$
4. John invested $\$ 1,000$ for 10 years at a 10% interest rate compounded daily. How much did John have after 10 years? $=F V(10 \% / 365,10 * 365,0,-1000,0)=\$ 2,718$
5. Jane invested $\$ \mathbf{5 , 0 0 0}$ for $\mathbf{2 5}$ years at a $\mathbf{1 0 \%}$ interest rate compounded monthly. How much did Jane have after 25 years? $=F V(10 \% / 12,25 * 12,0,-5000,0)=\$ 60,285$
6. John invested $\mathbf{\$ 1 0 0 , 0 0 0}$ for $\mathbf{3 0}$ years at a $\mathbf{1 0 \%}$ interest rate compounded monthly. How much did John have after 30 years? $=F V(10 \% / 12,30 * 12,0,-100000,0)=\$ 1,983,740$
