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Abstract

Graphs are a powerful and versatile data structures, with many uses in an av-

erage person’s everyday life. Because of this, the algorithms that run on them

must be fast, efficient, and able to scale with the rapidly growing datasets of the

modern world. This can be especially important for small, handheld devices, such

as smartphones and gaming consoles, that are forced, by the nature of their size,

to have light, compact CPUs. One option to increase the speed of a graph algo-

rithm is to adapt it to run on a Graphics Processing Unit (GPU), which can be

much faster than a CPU on certain calculations. This project explores that idea,

by making an implementation of a popular graph algorithm, PageRank, that runs

on a GPU. It also goes further than that by creating multiple GPU approaches,

and making a heterogeneous implementation that splits up an input graph into

segments and runs each segment on the approach that best exploits its structure.

1 Introduction

Though their uses are not always obvious, graph algorithms are very impor-

tant to modern computing. Many everyday applications rely on graphs in ways

most people don’t even realize. E-commerce giant such as Amazon and Walmart

build large graphs connecting different products bought by the same customer

and use these to recommend products to other users. Mapping applications, staple

products on almost every smart phone on the planet, represent the worlds road

networks as a graph, which allows them to find routes using the Single Source

Shortest Path algorithm. However, perhaps the most widely used graph of all is
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also one of the least obvious, the world wide web. The web is made up of web-

pages that are connected to each other by links which allow a user to move from

one page to another. If one views each of these pages as a node, and each of these

links as an edge, it is easy to see the resemblance.

This resemblance was not lost on Google co-founder Larry Page when he in-

vented his eponymous algorithm PageRank [3]. PageRank rates a webpage by the

number of links to it coming in from other pages, operating under the assump-

tion that a more important webpage will have more incoming links. The algo-

rithm was originally used to determine the order for websites to appear in Google

search and is still used by many other search applications to this day. Though it

was designed for a single purpose, at its core it is a highly effective information

propagation algorithm, with many proposed uses in many different fields. These

include facilitating information travel though social networks, estimating neuron

firing rates in neural nets, and even ranking academic papers by their citations

in other works. Though PageRank is a powerful and versatile algorithm, it does

have its drawbacks. It is excellent on current graph sizes, but modern datasets are

growing rapidly, and an algorithm that’s very efficient now could quicky become

slow and inefficient if it cannot scale with this increase in data. Its wide use and

slow nature mean that any improvement to the runtime of PageRank could be very

beneficial, especially a speedup that leverage the computational power of a GPU.

A heterogenous approach, or one that can adapt its implementation to fit the pa-

rameters of each segment, could cause significant time decreases, especially on

smaller devices such as smartphones or gaming consoles. This could allow cer-

tain computations to be done locally, and ultimately lead to an increase in speed,
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privacy, and efficiency. It is this idea that’s the motivation for my project.

My project focused on adapting PageRank to run with a heterogenous imple-

mentation, one that tailors the best GPU approach for each segment, to improve

the runtime and the results of this change showed a significant effect. Moving

a simple implementation over to the GPU relatively unchanged causes a notable

speedup, about 1.77x, over its CPU counterpart. This can be improved even fur-

ther by altering the GPU implementation to better exploit the processors strengths,

by giving each node their own warp, a collection of threads, or block, a collection

of warps. The best of these implementations produces as high as a 27x speedup.

Finally, splitting the computation between the different GPU implementations,

depending on which segments of the graph are more suited to which approach,

saw a speedup of over 42x.

Allowing some segments to be given to the CPU actually removed some of

this progress, with a speedup of only 32x. This underperformed expectations;

however, this is mostly likely because of the high overhead of transferring data

back and forth between the memory of the two units. Therefore, I believe that

devices exist where the CPU/GPU heterogeneous approach is the most effective

option, if one was used that could circumvent this issue. These result, and all

others in the paper were achieved on a Intel Core i7-9700K with 8 cores and

NVIDIA Quadro RTX 4000 with 32 cores.

3



2 Background

2.1 PageRank

As stated earlier, the PageRank algorithm relies on the simple intuition that a

more important node will have more connections coming in from other nodes. It

also utilizes another core assumption, that edges coming from a more important

nodes should be treated as more important, as they are more likely to be traversed.

With these two ideas, we see the algorithm begin to take shape. The first step is

to initializes the starting score of each node to be one divided by the number of

nodes in the graph. Once that is done, a loop begins that continues to run until it

completes a full iteration where no scores are updated. Inside this loop a function

is called to update the scores.

This inner function iterates through each nodes calculating its incoming total,

which is the sum of each of its neighbors outgoing contributions. The outgoing

contribution of a node is calculated by dividing it current score by its outgoing

degree, or the number of edges leaving that node. Once a node’s incoming total

has been found it is multiplied by a value know as the dampening factor and

added to the base score to get the nodes new score. The base score is one minus

the dampening factor, which is then divided by the total number of nodes in the

graph.

PR(n) = 1−damp
n

+ damp ∗
∑

Neighborsofn,i score[i]/degree(i)

The new score is then compared to the old score. If the difference between them
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is greater than some epsilon, the old score is updated to the new score and, if not,

the old score is kept. The value I chose for epsilon was 0.00000005, which leads

to around 20 iterations of the outer loop. However, this value is flexible, and can

be increased to prioritize speed, or decreased to get more precision. A common

value to use for this is 0, which means that the score is updated anytime it isn’t

equal to the new score. Unfortunately, my testing was done on a shared device, so

I raised to value slightly to reduce the workload. Pseudo-code for the algorithm is

provided below.

The damping factor is responsible for making sure the algorithm terminates.
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Though it can be any value between one and zero, various studies have been done

on the subject, and a value of 0.85 is generally accepted. Since it’s multiplied by

the incoming total to get each nodes new score, which is then used to calculate

other nodes incoming totals in the next iteration, it is like the algorithm is mul-

tiplying the scores by the dampening factor each time. This means that the first

score is dampened by just the value, damp, but the second score is dampened by

damp2, and so on, until the nth iteration is dampened by dampn. Since it is less

than one, the value of dampn will approach 0 as n approaches infinity. This makes

sure that each score will eventually converge to a certain value, and thus the dif-

ference between each iteration will eventually be less than epsilon, regardless of

its value. Once all nodes have converged, the algorithm will end.

2.2 Existing Framework

The framework I used is a GitHub repository [1] designed by Christopher Liu,

Sanya Srivastava, and Professor Tyler Sorensen. It contains code to generate Kro-

necker graphs with certain parameters and to run the algorithm Single Source

Shortest Path (SSSP) on theses graphs with CPU and GPU implementations. It

can then run benchmarking functions on these implementations, which returns

certain diagnostic data that can be used to identify which segments perform best

on which approaches. This data can be used to generate a heterogeneous imple-

mentation, which can then be run on the aforementioned benchmarking function.

The first important use of the repository is graph generation. This is contained

in a CUDA file that, when run, takes a takes a scale and a degree and uses this to

create a Kronecker graph with the corresponding attributes. The scale refers to the
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size of the graph and means that the number of nodes will be two to the power of

the chosen value. The degree, as mentioned in Section 2.1, is the number of edges

leaving a node. In this case, the degree parameter is referring to the average degree

of all nodes in the graph. The graphs are stored as two arrays and two integers,

named index, neighbors, num nodes and num edges respectively. Index has one

entry for each node and stores the starting point of that nodes outgoing edges,

which are kept in the neighbors array, and are made up of a struct that contains

both the edge weights and the nodes the edges connects to. It is important to

note that the nodes are stored in index in a decreasing order based on degree,

meaning the node with the most outgoing edges is stored in index[0], and the

lowest degree node is in index[num nodes-1]. A nodes placement in the index

array will sometimes be referred to as its node ID. The integers, as their names

implies, store the total number of nodes and the total number of edges. This graph

storage format is known as Compressed Sparse Row(CSR) or Yale format. Most

of the tests and results discusses in this paper were recorded on a graph of scale

20 and degree 16. This was chosen because it allowed for nontrivial calculation

that were still small enough to be completed in a reasonable amount of time.

The next part of the repository is the benchmarking function. This was origi-

nally implemented for SSSP, but I adapted a version to run with PageRank instead.

The function has two parts, the Epoch Kernel and the Full Kernel. The Epoch Ker-

nel splits the graph into segments, with the goal of each segment having a roughly

equal number of edges, rather than nodes. Since the graph is sorted by degree, the

earlier segments have much smaller node counts than later ones, but these nodes

have significantly more edges. The kernel then runs each segment on each im-
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plementation, excluding heterogeneous, and outputs .yaml files for each approach

containing the Giga Traversed Edges Per Second (GTEPS) of all segments. The

.yaml file also contains some identification data, such as the start and end nodes,

number of nodes and edges, and the minimum, maximum, and average degrees.

The Full Kernel runs each implementation on the whole graph multiple times and

returns the average GTEPS of these runs. This function is the source of the ma-

jority of the results presented in this paper.

The last function of the repository worth noting is the scheduler. Just like the

previous part, this was designed for SSSP, and I adapted it to work for PageR-

ank as part of my project. This python file reads the .yaml files written by the

benchmarking function’s Epoch Kernel and uses them to figure out which imple-

mentation performs best on each segment. This data is then passed to a function

that creates a CUDA file which calls each segment with its best performing imple-

mentation. This file is the source of the heterogeneous approach. The scheduler

can also be given arguments for how many GPUs and CPUs to run on. Since I

only had one of each on my testing device, this was exclusively used to decide

whether to run the heterogenous implementation on a CPU, a GPU or both, but

this is still an important option, that led to some interesting results. An example

schedule is shown below.
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2.3 Kronecker Graphs

Kronecker graphs, as presented in the paper Kronecker Graphs: An Approach

to Modeling Networks [2], are a type of synthetically generated graph that’s de-

signed to resemble those made by large social media networks. They do this by

using a power law distribution. A power law is a functional relationship between

two variables where one quantity varies proportional to the power of another one.
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An example of this is the edge length and area of a square, because when the

length is multiplied by three, the area is increased by a factor of nine. This dis-

tribution results in most nodes having very few links, while a select few nodes

have a very large number of links. This relationship is demonstrated by the below

image, which is shown in a logarithmic scale. This is similar to social networks,

because celebrities will often have millions of followers, while normal people are

more likely to be in the double digits.
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3 Implementing PageRank on a GPU

The bulk of my project was creating five different implementations of PageR-

ank. These implementations consist of one CPU approach, three GPU approaches,

and one approach that used the method previously mentioned in Section 2.2 to

generate a heterogeneous kernel that uses only the best parts of the other imple-

mentations. As stated earlier, PageRank consists of two functions, an outer one

and an inner one. The CPU approach has a unique version of both of these, while

all three of the GPU implementations use the same outer function. The heteroge-

nous approach consists only of the outer function and calls each segment on the

inner functions of the previous approaches. As mention in Section 1, all the re-

sults given in this section were done on an Intel Core i7-9700K with 8 cores, an

NVIDIA Quadro RTX 4000 with 32 cores, or, in one case, both.

3.1 The CPU Approach

The CPU approach is the most similar to the basic PageRank algorithm in Sec-

tion 2.1. Its outer function takes a graph in the format described in Section 2.2,

instantiates a score array filled with the initial score, and begins a loop that calls

the inner function until no nodes are updated, at which point it returns the score

array. The inner function still takes the graph as an input but varies more from

standard approach because of two major differences: parallelism and segmenta-

tion. Parallelism means that the inner function takes a thread ID, as well as the

total number of threads, which it then uses to split up the nodes, giving each one to

a single thread. Making the function parallel also requires it to take a pointer for
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updated instead of returning an integer. The updated pointer can be accessed by

each thread, so they can sum it with their number of local updates, to get the total

number of changed scores. The segmentation requires the inner function to take a

start and an end ID, and only calculates the score for nodes inside that range. This

is mostly useless for the CPU approach by itself but will become important when

called by the heterogeneous implementation.

3.2 The GPU Approaches

The outer function of the GPU approach is much more complex. In addition

to doing everything the CPU approach does, it also allocates the GPU memory

for the inner function’s arguments. Because the graph cannot be stored directly

in GPU memory, separate arrays must be made and copied onto the GPU for the

indexes, neighbors, and degrees of each node. The total number of nodes must

also be passed in, but since this is only an integer, it’s much simpler. The start ID,

end ID, and updated pointer are passed in the same way as Section 3.1.

The inner function of the first GPU implementation is very close to that of the

CPU approach. It iterates through all the nodes in parallel, giving each one to a

single thread to sum up all of its neighbor’s incoming totals, and sums up each

threads value of updated at the end. This approach is known as GPU One to

One, because it gives one node to one thread. It showed a significant speedup

over its direct CPU counterpart, about 1.77x, but the next implementation, GPU

Warp Sum, shows even more promise. It takes the same arguments as One to

One, but instead of giving each node to a single thread, it instead gives them to a

full warp, or a collection of 32 threads. These threads each sum up the incoming
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totals of a different subset of their node’s neighbors, and then execute a warp level

sum to get the sum of all these values. This allows for a speedup of 27x over

the CPU implementation, and significantly outperforms the next approach, GPU

Block Sum, which can only speedup the calculation by 1.84x.

Block Sum takes the idea behind Warp Sum to the extreme, by giving each

thread to a full block, which is 32 warps. Though this is helpful on nodes with

very large numbers of neighbors, the power law distribution of the node’s edges

means there are very few of these. This is a very similar problem to that faced

by GPU One to One, as it excels on nodes with very few edges, which, though

quite common in a Kronecker graph of degree 16, do not make up to much of

the total computation. Warp Sum falls in a good sweet-spot, where it allocates

enough threads to speed up the calculation significantly, but not enough that they

frequently have nothing to do. The next approach, however, gets the best of both

worlds, by calling segments with the implementation that best exploit their struc-

tures.

3.3 The Heterogeneous Approach

As stated previously, the heterogeneous approach is made up entirely of the

outer function. The process for generating this file is discussed in Section 2.2,

so this section will mostly discuss the contents of the file itself. To reduce the

overhead from copying memory, each segment is given only their corresponding

parts of index and neighbors, though they must get the full version of score and

degrees. They are all also given their own versions of updated, which are then

summed together at the end. With these parameters made, and saved into GPU

13



memory, the function calls each segment sequentially, with start and end IDs re-

ferring to the start and end points of the segment, meaning the scores will only be

calculated for nodes whose IDs are inside this range. If the sum of the updated

pointers is greater than 0 the functions are called sequentially again, and this pro-

cess continues until no node are updated in any of the segments. This approach

showed the best performance, with a speedup of over 42x.

An important part of the success of this function is that, as mentioned in Section

2.2, the nodes are split in a way where higher degree nodes are contained in earlier

segments, and nodes with less edges are in lower segments. This is extremely

important because, as discussed in Section 3.2, degree is a large determinant of

how a certain implementation performs on a particular node. Therefore, segments

that have more consistency among their degrees will perform better, because the

best approach to one node in the set is far more likely to get the best performance

from the others.

3.4 The Heterogeneous Approach with CPU

Adding the CPU makes the function slightly more complicated. First, it must

separate the segments that are calling the CPU implementation from those that

use the GPU one. These are all called at the end, after the GPU’s updated pointer

has been summed up, but before the value is checked. Each CPU segment is given

the full graph, and the updated pointer, just as they are in the CPU specific outer

function, with the only difference being that the start and end IDs refer to the start

and end points of the segment, just as they do in the GPU approach. This imple-

mentation is easily outperformed by the previous one, though it does still get a
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significant speedup of 32x. This is most likely because, since not all the calcula-

tions are done on the GPU, their must be two versions of the score array. Thus

forces the function to copy it back and forth from CPU to GPU memory every

time the calculation moves to a different processor, which can take a lot of time

and resources. The GTEPS of all these approaches, using 24 segments, are shown

below. These results were achieved using the same Intel Core i7-9700K with 8

cores and NVIDIA Quadro RTX 4000 with 32 cores mentioned in Section 3.
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3.5 Testing

The results of the GPU and heterogeneous approaches are tested by comparing

the returned array, score, of 32bit floats to that of the CPU. When all the tests

succeed, this mean that all implementations are returning the same values, within

some margin for error, which makes them very likely to be correct. As mentioned

in Section 2.1, the value of epsilon chosen for these tests is 0.00000005. Since

this is higher than 0, this means that some precision is sacrificed for speed, so the

values are not as exact as they could be. This causes some variation between each

run and therefore between each implementation. Because of this, I only test to

see whether the values are within .0005 of each other. Though this is a fairly high

error threshold, I think it its low enough to prove that the calculations are getting

the correct result, while also accounting for the uncertainty of a non-zero epsilon
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value.

4 Number of Segments

One value that is important to consider when making the heterogeneous imple-

mentation is the number of segments. Each segment that is made causes a certain

amount of overhead in splitting up the data and saving it into GPU memory, so

increasing the amount will quickly become more of a hinderance to performance

than a benefit. However, less segments means each will be larger, which is likely

to increase variation among the degrees of the nodes inside. Since, as mentioned

in Section 3.2, the degree of the nodes being operated on is an important factor

in determining how well each implementation performs, this variance leads to ev-

ery approach performing worse than it would on a segment with more consistent

degrees. To identify which number of segments performs the best I ran a graph

of scale 20 and degree 16 on increasing segment sizes until I reached a value that

required to much memory to run; 64 segments. The results of these experiments

are shown below. They turned out expected, with the GTEPS increasing until it

reached a point, in this case 24 segments, where the overhead became too much,

and the speed began to decrease. Using only 1 segment is an outlier to this trend,

but that’s unsurprising since it requires no splitting overhead to be done, which

makes it the same as running the program on its best implementation. In this sit-

uation that proved to be GPU Warp Sum, so the results came out very similar to

running that approach by itself.
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5 Related Work

GPUs are a powerful, and often underutilized tool in a developer’s arsenal. Be-

cause of this, there has been much previous work done on the subject of adapting

existing algorithms to run on GPUs. Graph algorithms present an interesting chal-

lenge for this, because of the irregularity of memory accesses caused by traversing

an edge. However, the rewards of this often outweigh the challenges, because, as

this paper shows, finding an efficient way to run a graph algorithm on a GPU

can lead to some significant performance improvement. Many papers have been

published on this subject [4] [5] [6] [7] [8] [9] in recent years, with varied and

interesting finding. One problem that many of these papers focus on is one that I

too quickly encountered when I started my project, that of workload imbalance.
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Workload imbalance is an idea that has been brought up many times in this paper,

through never by name. It is caused by the fact that nodes have an uneven distri-

bution if neighbors, which makes it hard to use any approach whose performance

relies on a node’s degree. The majority of these papers get around this by using

some sort of dynamic approach allocation, similar to what I do with assigning

segments to different implementations.

Though this is a common approach to adapting graph algorithms to run on

GPUs, it does not appear to be shared by other researchers working on the PageR-

ank algorithm [10] [11]. Most of the other work I have seen on the subject focuses

on different optimizations, such as using GPU clusters [11] or maximizing paral-

lelization [10]. This differs from my approach, which focuses mainly exploiting

the structure of different parts of the graph to allow the algorithm to run faster and

waste less resources.

6 Conclusion and Future Work

The results of this project show significant speed increases from using a het-

erogenous implementation of the PageRank algorithm, compared to the normal

CPU approach. PageRank is a widely used and very important program, and

therefore any potential speedup to it could be utilized to great effect by anyone

who uses graphs as a data structure. This could include Facebook, Google, Twit-

ter, Amazon, and many more of the largest companies in the world, as well as

much smaller users, such as researchers, startups, universities, and countless oth-

ers. This is particularly helpful to smaller devices, such as cellphones and gaming
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console, which much keep their processors small and light, at a tradeoff to power

and speed. Systems like this must be very careful with managing their resources,

making this heterogeneous implementation of PageRank perfect for such devices.

Though this project adds to the knowledge of heterogeneous CPU/GPU imple-

mentations of PageRank, there is still far more to learn on the subject, and research

is still ongoing. One of the most interesting areas of study that is hinted at by these

results is the difference between the heterogeneous implementation when it is uti-

lizing the CPU approach, and when it isn’t. As mentioned in Section 3.2, the

overhead of copying memory back and forth from the GPU to the CPU is a non-

trivial task in this algorithm, and therefore is most likely a significant cause for the

slowdown. Because of this, if one could run these PageRank implementations on

a device where the CPU and GPU could access the same memory, and therefore

did not have to copy data back and forth, they could remove this overhead entirely

and theoretically get an even better result than what was already observed. For-

tunately, devices like this do exist, and are known as embedded device. I believe

that if one were to adapt the PageRank implementations made in this project to

run on an embedded device, they would see an even more speedup than I was able

to produce, and it is on this subject that I hope to do more research in the future.
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