
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

....
A Heterogeneous CPU/GPU Implementation Of PageRank and Single Source

Shortest Path On An Embedded Device

By

JJ Bowen

August 2022

1

1 Introduction

The graph algorithms PageRank (PR) and Single Source Shortest Path (SSSP)

are widely used in the world of modern computing. Running them on a Graphics

Processing Unit (GPU) can increase their speed significantly, but certain segments

of the graph are often better suited to CPU calculations. By splitting the graph into

segments, one can run each segment on the processor and implementation that best

suits its structure. However, this creates significant overhead, as the memory must

be copied back and forth between the two processors, which slows the function

down significantly. By running the SSSP algorithm on an embedded device, or a

device where the CPU and GPU can access shared memory, one can increase the

speed by a factor of 1.13x, however, this approach comes with its own challenges.

The CPU and GPU can access the same memory, but not at the same time. This

means that quite a bit of parallelization is lost in the process, which is a significant

slowdown to the potential that could be achieved without this. This slowdown is

particularly apparent on PR, which sees a speed decrease of over 3x. If a device

existed where the CPU and GPU could both access the same memory at the same

time, then I believe there would be a much more significant speed increase.

2 Different Device Schedules

In the GitHub repository [1] I used, which was designed by Christopher Liu,

Sanya Srivastava, Professor Tyler Sorensen and myself, there is an existing frame-

work to get benchmarking results from running the two algorithms on differ-

ent processors and approaches and to use these results to create a heterogeneous

2

schedule. Depending on which device is used, however, these schedules can look

radically different. The first device I used had a much larger GPU in comparison

to the size of its CPU then the second one. The schedule of this device is shown

below for running PR with 24 segments on a Kronecker graph [3] of scale 20.

3

The schedule for the second device, also running PR with 24 segments on the

same graph is shown below.

4

Though these schedules are somewhat similar, they do differ a bit in certain

places. The first schedule ends up using the CPU for 3 out of 24 segments, which

5

are clustered together in one continuous block, while the second uses it for 5,

which are almost continuous, with one small break. This outcome is to be ex-

pected, because the second machine has a much stronger CPU compared to its

GPU, so it makes sense it would utilize that CPU for more segments.

3 Approaches

The different CPU and GPU approaches I used are outlined in a previous paper

[4], so I will only go over them briefly. There is one CPU approach, and three GPU

ones, one to one, warp reduce, and block reduce. These four implementations each

have strengths and weaknesses depending on the structure of the graph they are

operating upon. The scheduler, previously discussed in section 2, can split the

graph into segments, and find on which segments to use which approaches. With

this information, it then generates a new heterogeneous function that runs these

segments.

In this heterogeneous version, the segments using the GPU approaches are run

in sequence, each receiving the same input array, which they read from and write

to. The CPU segments operate the same way and are run in parallel with the

GPU ones. Once these are both complete, the function checks if any values were

updated in any of the segments. If any have changed, the values from the GPU

segments are copied into the CPU array and vice versa. This process is repeated

until there are no updates. A breakdown of how the function utilizes its time using

the command nvprof is shown below.

6

This approach is somewhat problematic, because copying the memory is a slow

process that can often take longer than the calculation phase. This is where one

can see the advantages of an embedded device. Embedded devices have shared

memory that can be accesses by the GPU and the CPU, which allows PR and

SSSP to be run without any memory copying. This is done by first running the

GPU segments, with the same input array as the previous approach, and then,

once these are complete, passing the input array into the CPU segments. The

nvprof results of this approach are shown below.

7

From the results above, it is clear that Device to Host (DtoH) memory copy-

ing, the type that is being done at the end of each iteration, has been drastically

reduced. The performance results of doing this vary between algorithms and are

shown below in giga edges traversed per second (GTEPS).

8

From the results, one can see that running SSSP without memory copying is

about 1.13x faster than with, while PR is only .33x the speed. This is unsurprising,

because the calculation phase in PR is much more complicated than that of SSSP.

Because of this, the time increase of removing memory copying is much less

significant than that lost by the removal of parallelization.

4 Device Limitations

Looking at the previously described approach, one might wonder why the CPU

and GPU segments are not run in parallel with one another. While this practice

would most likely be significantly faster, it is unfortunately made impossible by

the way the device defines a bus error. When the CPU and GPU are both given

the same array, in shared memory, to read from and write to at the same time this

triggers a bus error. Though unfortunate in this situation, it is understandable for

the device to behave in such a way. What is much more problematic, however,

9

is how the device handles the situation where the CPU and GPU are accessing

different shared memory at the same time. In this situation, the actions of one

processor should have no effect on the other, however, this is not the case. If

the GPU kernel is running, the CPU cannot write to any array in shared memory.

Worse still, it can read from an array in shared memory only if it is not writing

to any memory, even its own. This is true even if the GPU is given an empty

function, with no parameters and no code in the function body, which implies

that when the GPU kernel launches, it locks up all memory it has access to. This

is an incredibly suboptimal practice that, if removed, could lead to significant

performance improvements.

5 Conclusion and Future Work

The results show a small, but nonetheless significant, increase in the speed of

the SSSP algorithm when run using the shared memory method over one that

relies on memory copying. More importantly, they highlight a behavior in em-

bedded devices that could be improved upon, although this is up to the devices

designers to correct. If this flaw is eventually remedied, then future work on this

subject could include an approach to both of these algorithms that utilizes both

parallelization and shared memory, which could be significantly more effective

than the implementations that are used today.

10

Bibliography

[1] JJ Bowen, Chris Liu, Tyler Sorensen & Sanya Srivastava “Hetero-

Compute.” GitHub, https://github.com/chrisliu/hetero-compute.

[2] Brin, S. & Page, L. (1998). The Anatomy of a Large-scale Hypertextual

Web Search Engine. Comput. Netw. ISDN Syst., 30, 107–117. doi: 10.1016/S0169-

7552(98)00110-X

[3] Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C. & Ghahra-

mani, Z. (2010). Kronecker graphs: An approach to modeling networks. The

Journal of Machine Learning Research, 11, 985–1042.

[4] JJ Bowen ”A Heterogeneous CPU/GPU Implementation Of PageRank”

2022

11

