Tech Sheet #CVR 403

Laminar Flow Valve Sizing Made Easy

To view the current list of FCI members, visit the FCI website: fluidcontrolsinstitute.org.

NOMENCLATURE

- C_v Flow coefficient, gpm/(PSI)^{.5}
- C_{VL} Flow coefficient calculated assuming laminar flow, gpm/(PSI)^{.5}
- C_{VT} Valve flow coefficient measured under fully turbulent conditions, (rated C_{ν} in valve manufacturer's catalog), gpm/(PSI)⁻⁵
- D Valve Diameter, in.

- -

- *D*_o Equivalent Orifice diameter, in.
- F_d Valve style modifier, D_H/D_o , dimensionless
- F_L Liquid Pressure Recovery Factor, dimensionless
- F_R Valve Reynolds number factor, dimensionless
- *K* Velocity head loss coefficient of valve, dimensionless
- *L* Length of valve flow path, in
- P Pressure, psi
- q Gas flow rate, ACFH (SCFH * SG)
- Q Liquid flow rate, gal/min
- Reo Orifice Reynolds number, dimensionless
- Rev Valve Reynolds number, dimensionless
- β D_o/D , dimensionless
- ρ Density, lb/ft³
- v Kinematic viscosity, centistokes, 10⁻⁶ m²/s

Subscripts:

- F Full Trim, 10<C_{vT}/D_o²<30
- H Hydraulic
- *L* Laminar flow regime
- P Pipe
- R Reduced Trim, $C_{\rm vT}/D_{\rm o}^2 < 10$
- T Turbulent flow regime

Equations to calculate control valve C_{ν} values in the laminar and transitional flow regimes have been derived from fundamental principles. These equations are simpler and more accurate to use than the ISA standard 75.01.

Most valve sizing is done using Cv equations which are only good for turbulent flow when the Reynolds Number is greater than 10,000. The Reynolds number for liquids in the turbulent regime is¹:

(1)
$$\operatorname{Re}_{P} = \frac{3160 * Q}{D_{P} * \nu}$$

This equation shows that a low Re_P is generally found with high viscosities or low flow rates. To understand why viscosity would effect a valve's flow capacity, assume a $\frac{1}{2}$ " valve has a C_v of 5, which means it can flow 5 gpm of water with a 1 PSI pressure drop (Re = 31600). To flow 5 gpm of syrup (v=1000) with the same 1 PSI pressure drop (Re=31.6) would require a valve with a capacity larger than 5. The ratio of these two factors is defined:

$$F_R = \frac{C_V}{C_{VT}}$$

Fluid Controls

(2)

The laminar Cv is therefore defined as the Valve Reynolds Number Factor multiplied by the turbulent Cv.:

$$C_V = F_R * C_V$$

An equation for F_R can be derived if you first model a control valve in the transitional regime as two valves in series as shown in Figure #1. In this case the flow moves slowly through the test piping and body piping and very quickly through the throttling orifice. Therefore in this model the first valve is the body Cv with a laminar $Re_V(C_{VL})$ and the second valve is the Cv from the orifice with a turbulent $Re_o(C_{VT})$ as shown in Figure #1.

Figure # 1 – Flow Modeled as Two Valves in Series

The combined liquid C_v for two C_V values in series can be calculated by substituting $C_{VL}=A/(P_1-P_2)^{-5}$ and $C_{VT} = A/(P_2-P_3)^{-5}$ into the equation $C_V = A/(P_1-P_3)^{-5}$ where $A=Q(G)^{-5}$ for subcritical flow or $Q(G)^{-5}/F_L$ for critical flow. The combined liquid C_V is:

(4)
$$C_V = \sqrt{\frac{C_{VL}^2 * C_{VT}^2}{C_{VL}^2 + C_{VT}^2}}$$

For a valve under turbulent flow C_{VT}, the rated maximum Cv of the valve, is¹:

(5)

$$C_{VT} := \frac{29.9 \cdot D_o^2}{\sqrt{K_T}}$$

Before continuing with the derivation of F_R , an explanation of D_o and D must be made. D_o is generally thought to be the orifice which is typically equal to the pipe size. For a pipe $D_o = D_P$, and $C_{VT}/D_o^2 = 29.9$ since $K_T = 1$. In a valve D_o is an equivalent diameter which gives the same circular area as the actual valve opening. For instance when a control valve is throttling, the plug is moved partially into the seat which creates an annular orifice as shown in Figure #2.

Figure # 2 – Determination of D_O

If the seat diameter is D_1 and the plug diameter is D_2 then the area of this orifice would be $Pi^*(D_1^2-D_2^2)/4$. The orifice diameter for this application would therefore be:

$$D_{O} = \sqrt{D_{1}^{2} - D_{2}^{2}}$$

Tech Sheet #CVR 403

The equation for C_{VL} is similar to equation #5 for the laminar flow regime. However in the laminar regime the hydraulic diameter must be substituted for the diameter. The hydraulic diameter is defined as D_0 *Fd. In this case since we are talking about a circular pipe as being the flow path, the Fd = 1 and $D_H = D_P$. Therefore :

(6)
$$C_{VL} = \frac{29.9 * D_P^2}{\sqrt{K_L}}$$

Substituting equations 4, 5, and 6 into 2 and simplifying yields:

(7)
$$F_R = \frac{1}{\sqrt{1 + \frac{K_L}{K_T}}}$$

The Crane Handbook¹ defines *K* as fL/D, and for laminar flow when Re <2100 Poiseuille's law is applicable so f = 64/Re and:

(8)
$$K_L = \frac{64^*L}{\operatorname{Re}_P * D_P}$$

Substituting Equations 8 and 1 into Equation 7 yields an equation for F_R which is valid for the laminar, transitional and turbulent flow regimes:

(9)
$$F_{R} = \frac{1}{\sqrt{1 + \frac{v^{*L^{*}C_{VT}^{2}}}{44142^{*}Q^{*}D_{O}^{4}}}}}$$

This equation indicates that the F_R factor is a function of the viscosity, the flow rate Q, the orifice diameter D_0 and the length of the flow path L, and is independent of D_P , F_L and Fd. The length of the flow path L is the distance between the pressure taps used to calculate the Cv. This is shown in Figure 1 to be approximately equal to eight times the valve size added to the face-to-face dimension of the valve.

Tech Sheet #CVR 403

Derived Equation #9 is remarkably close to the current ISA Equation if $D_o=1$. Test data proves this method to be extremely accurate. Figure #3 shows data for a Spence ½" J control valve. The Spence valve has a face-to-face dimension of 7.625" and a standard tapered plug in a .125 orifice. This valve has a C_{VT} of .051 and a D_o of .057. Test data was taken by leaving the valve wide open and reducing the flow rate and Reynolds number by gradually reducing the pressure drop.

Fluid Controls Institute

Figure #4 shows test data for a 1" Fisher Globe valve and Figure #5 shows test data for a V-Port Globe valve for a variety of fluids.

Fluid Controls Institute

501

Figure #6 shows data for a Neles Controls 2" Finetrol valve flowing a fluid with a viscosity of 31729 cs. In this case the data shows F_R values as the valve is gradually closed to about 10% of its wide open C_{VT} . The orifice diameter values (Do) are calculated assuming C_{VT}/D_0 remains constant as the valve is closed (constant $K_T = 4.91$). Again the derived equations give a remarkably good fit considering the difficulty in getting reliable test data in the Re_V range of only 1. An L of 22" was used for this data.

Travel	Do	Cvt	GPM	CvL	Calc F _R	Cv_L	Calc/Test
				Test		Calc	
10%	0.68	6.27	0.172	0.05	0.0077	0.05	1.00
30%	1.10	16.45	1.327	0.43	0.0215	0.35	0.82
50%	1.41	26.82	2.382	0.88	0.0288	0.77	0.87
75%	1.76	41.80	3.046	1.23	0.0325	1.36	1.11
100%	2.00	53.95	3.717	1.46	0.0359	1.94	1.32

Figure #6 – Neles Controls 2" Finetrol, $C_{VT} = 53.95$

The *FR* value for a gas can be calculated starting with the gas Reynolds Number:

(12)
$$\operatorname{Re}_{P} = \frac{.482 * q}{D_{P} * v}$$

Fluid Controls Institute

By substituting Equation # 8 and #12 into Equation #7, an FR value is obtained which is valid for the laminar, transitional and turbulent flow regimes:

(13)
$$F_{R} = \frac{1}{\sqrt{1 + \frac{\nu * L * C_{VT}^{2}}{6.7 * q * D_{O}^{4}}}}$$

Figure #7 shows liquid and air data³ for a ¹/4" Baumann small flow trim valve with a C_{VT} of 0.00175, and D₀ of .011. a show Equations #9 and #13 are amazingly accurate.

This Tech Sheet was developed by the members of the Fluid Controls Institute (FCI) Gauge Section. FCI is a trade association comprising the leading manufacturers of fluid control and conditioning equipment. FCI Tech Sheets are information tools and should not be used as substitutes for instructions from individual manufacturers. Always consult with individual manufacturers for specific instructions regarding their equipment.

2/8/06 Page 7 of 8 This sheet is reviewed periodically and may be updated. Visit <u>www.fluidcontrolsinstitute.org</u> for the latest version.

Tech Sheet #CVR 403

Acknowledgement

I would like to express my thanks to Mr. Marc Riveland of Fisher Controls International and to Mr. Sam Lalos of Neles Controls for providing test data.

References

- 1. Crane Co., "Flow of Fluids Through Valves, Fittings, and Pipe", Technical Paper No. 410.
- 2. Page, George, "Simplified Valve Sizing for Laminar Flows", Chemical Engineering, October 1998.