

Neogene shale gas in the central Song Hong basin, Vietnam

Vo Thi Hai Quan

December 1, 2023

OBJECTIVES

OBJECTIVES

- During last decades, sands, carbonates and fractured granites are considered the main conventional reservoirs in the petroleum systems in Vietnam;
- However, it needs to find solutions for increasing oil recovery because of the decrease of oil and gas reserves in the mature fields,
- It needs to look for new fields in deep-water areas (Phu Khanh, Tu Chinh-Vung May, Hoang Sa-Truong sa basins) because of having not many new fields in the early exploration stage or in shallow water areas;
- Therefore, unconventional reservoirs are new findings for more petroleum from mature fields and wildcat areas;
- The presence of shale gas in the central Song Hong basin is a new finding for unconventional petroleum system in the sedimentary basins in Vietnam

2. Geological settings

2. Geological settings

Ena	Period	Epoch	Sub-Ep.	Fm.	Lithology	h (m)	Lithology	Dep. Envi.				
	Quate -mary			Nong		3.100	Mainly shales	plain, marine	ence			
		Pliocene		Biển I		400 -	with thin sandstones	Coastal shallow	Subsid			
	Neogene	Miocene	Upper	Quang Ngài		500 - 1.800	Claystones, carbonaceous claystones, siltstones.	ı, inner shelf	Rift			
Cenozoic			Miocene	Miocene	Miocene	Middle	Tri Tôn		300 - 2.000	interbedded sandstones, occ. limstones	Coastal plair	Post-
			Lower	Séng Hurong		100 - 1.309	Sands, silts, cl, occ. limestones					
	Paleogene	Oligocene		Bach Tri		100 - 1.100	Upper part: sands, silts, cl. Lower part: sands, silts, cl., occ. coal	Deltaic, inner shelf	Svn-Rift			
	Pre-1	Fertia	ry	Móng			Granite, shales, carbonate?					

Stratigraphy column and geological cross-section of the central Song Hong basin

Samples and Data

36 shale samples:

TOC-Rock Eval pyrolysis, Vitrinite Reflectance

20 cutting samples:

X-ray Diffraction: whole rock fraction and clay minerals

Well logs, geothermal gradient, analysis results

Data

1. Rock-Eval pyrolysis

Quantity	тос	S1	S2	
Quantity	(wt. %)	(mg g)	(mg g)	
Poor	<0.5	<0.5	<2.5	
Fair	0.5-1.0	0.5-1	2.5-5	
Good	Good 1-2		5-10	
Very good	2-4	2-4	10-20	
Excellent	>4	>4 >4		
Quality	HI (mg,	Kerogen type		
Non HC	<50	IV		
Gas	50-2	III		
Gas and oil	200-3	11/111		
Oil	300-6	II		
Oil	>60	I		

2. Vitrinite Reflectance (% Ro)

Level of maturation	Ro (%)	Tmax (°C) PI	
Immature	0.2-0.55	<435	<0.10
Marginal mature	0.55-0.60	-	-
Mature			
Early mature	0.60-0.65	435-445	0.10-0.25
Peak mature	0.65-0.90	445-450	0.25-0.40
Late mature	0.90-1.35	450-470	>0.40
Post mature	>1.35	>470	-

3. X-Ray Diffraction

Brittle minerals: Quartz, Feldspar, Plagioclase, Carbonate (>40%)
Ductile minerals: Illite, Kaolinite, Chlorite, Smectite

4. Petroleum system modeling

Petroleum system modeling

Software

Petromod 1D from Schlumberger Co.

Data input

Well logs, sample analysis results, seismic, published data

Proprietary Notice: This application contains the confidential and proprietary trade secrets of Schlumberger and may not be copied or stored in an information retrieval system, transferred, used, distributed, translated, or retransmitted in any form or by any means, electronic or mechanical, in whole or in part, without the express written permission of the copyright owner.

*Mark of Schlumberger. Copyright © 2011 Schlumberger. All rights reserved.

1. Source rock properties

Kerogen type and HC generation potential

2. Mineral compositions

Brittle minerals:

Quartz + Feldspar + Plagioclase + Carbonate > 40 %

■ Quartz ■ K-Feldspar ■ Plagioclase ■ Clay minerals ■ Calcite ■ Dolomite ■ Siderite ■ Pyrite ■ Riebecite ■ Zeolite ■ Barite

2. Mineral compositions

Ductile minerals:

Illite + Kaolinite + Cholrite + Smectite < 30 %

3. Petroleum system modeling

3. Petroleum system modeling

Basic elements of PSM

Age assignent: olumnPaleo geometries: • Water depth • Erosions • Salt/shale diapirs • ThicknessPaleo geometries: • Water depth • Erosions • Thickness	Boundary conditions: - SWI-Temperature (SWIT) - Heat flow	Facies and parameters: - Facies definitions - TOC, HI - Rock composition
---	---	--

3. Petroleum system modeling

Formation	Pliocene	Upper Miocene
Age (Ma)	5.6-2.6	11.6-5.6
Depth (m)	50-2,651	2,651-3,603
Thickness of shale (m)	1,210	762
Thickness of erosion (m)	12	
Depth of erosion (m)	2,651	
Boundary conditions:		
PWD (m)	50	20
SWIT (°C)	20.2	20.9
HF (mW/m²)	67	75

Input parameters used for 1D Petroleum system modeling

HF= thermal conductivity of rock * geothermal gradient Parameters of McKenzie model: β mantle=3 and β crust=1.9; T_{swi} = 25.52 °C; T_b = 1333°C; hc=30 km; hm=95 km; t_s =23 Ma

Petroleum system event chart, A-1X

Burial history

Thermal history

Transformation ratio

TR_ALL, A-1X

Area-yield gas

Gas expulsion

Remaining gas

Calibration with temperature and Vitrinite Reflectivity

Temperature, A-1X

Vitrinite Reflectance, A-1X

Volumetric estimations

	Parameters	Calculations		Remarks
		Pliocene	Upper Miocene	
Free GIIP = $V_{\text{gross}} * \phi * S_w * B_a * 10^9$ (Tcf)	A, km ²	40	40	Area
groco i w g (,	$\mathbf{h}_{sand}, \mathbf{m}$	10	22	thickness of sand
$V_{ads} = V_{L} * P_{res} / (P_{res} + P_{L}) * 10^{6}$ (Tcf)	h _{shale} , m	480	590	thickness of shale
Total CUD - Free CUD + V (Tef)	V_{sand} , km^3	400	880	volume of sand
Iotal GIP – Free GIP + V _{ads} (ICI)	V_{shale} , km^3	19,200	23,600	volume of shale
	ф, %	0.05	0.05	porosity
	S _w , %	0.60	0.60	water saturation
	Bg	0.0283	0.0283	B factor of gas

Volumetric estimations

Parameters	Ca	alculations	Remarks	
	Pliocene	Upper Miocene		
Free GIIP, Tcf	0.58	0.71	free gas initial in place	
TOC, wt.%	0.17	0.54	Total organic carbon	
R _o , %	0.56	0.66	vitrinite reflectance	
T _{res} , oC	90	168.3	reservoir temperature	
P _{res} , psi	4,136	6,600	reservoir pressure	
V _L , km ³	2,511	3,732	Langmuir volume	
P _L , psi	734	771	Langmuir pressure	
V _{ads} , Tcf	0.08	0.12	volume of adsorbed gas	
Total GIIP, Tcf	0.66	0.83	total gas initial in place	

5. Shale gas properties

5. Shale gas properties

2. Shale gas evaluation

5. Shale gas properties

2. Shale gas properties

- ✓ Thickness = 345 m
- ✓ TOC = 0.56-0.76 %
- ✓ Type III/II kerogens
- ✓ Ro = 0.69-0.93 %
- ✓ Brittle minerals > 40 %
- ✓ Clay minerals: Illite-type

1. Source rock properties

- Pliocene and Upper Miocene shales are poor to fair organic richness;
- > mainly derived from type III kerogen;
- Poor to fair hydrocarbon generation potential;
- Pliocene and Upper Miocene shales are currently active and probably generating an amount of gas;
- Deeper shales would be more effective source rocks that can produce a significant amount of gas from sand and shale reservoirs

6. Conclusions

2. Petroleum system

- HC generation mainly related to basin burial history rather than basin evolution during the deposition from Upper Miocene to Pliocene;
- The burial history model shows the oil window starts at 2,700 m in Pliocene and spreading to a part of the Upper Miocene;
- The organic matters are mostly favorable for gas-prone that have reached gas generation onset in the interval 1,986-3,456 m of the Upper Miocene;
- Gases are probably originated from biogenic gas and thermogenic gas with high CO₂ contents. The mass is estimated about 17.88 Mtons;

2. Petroleum system

- HC expulsion starts at the Upper Miocene to Pliocene (~9-5.1 Ma) with approx. 4.3 Mtons/km²;
- The expulsion recently started in Pleistocene (~1.8 Ma) after both the generation of gas in the Upper Miocene and Pliocene;
- The remaining of kerogen is estimated approx. 62.81 Mtons and GIIP of about 1.49 (Tcf)

6. Conclusions

3. Shale gas properties

- Shale gas found in the interval 2700-3290 m and the main shale reservoir at 3000-3290 m;
- > The thickness of shale is about 345 m;
- Containing moderate quantity of Total Organic Carbon contents;
- Originated from type III kerogen with a little type II kerogen;
- Organic matters are in mature stage and possibly generating a significant amount of gas;
- Brittle minerals are dominant in the shales, indicating a favorable condition for the fracturing

GEOPET VIEW THANK YOU

