Basin classification
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plate, or
according to
their structural/

Oceanic basin

Foreland basin

r— Backarc basin

Forearc basin

tectonic origin.




Basins on

an active margin

Volcanic arc
prism

Backarc
(extensional)

IA
I‘

XX X X X X X X X X X X XX K XXX XN

N Forearc
" D —

Accretionary

Abyssal
plain

( Trench

POX X XX XX X X X X X X X X XXX XXX

XXX X XXX XXX XXX XXX XXX XX XXX X
XX X XXX XXXXXXXXXXXXXXXX X X
XX X X XXX XXX XXXXXXXXXXXXXXXXX

XXX X XXX XXX XXX XXXXXXXX)XX XXX XX X

NONN -
NN NN NNNNG
NN N NN NN
ARV

VA AN ANANNG
NN NN N NN NN N NN NN NNNNN

RERNANRNKRNNARANNANANNANNNS

RN NNNNN NN

100 o

X X X X
X X X X
K X X X x

NONNON
s 7.
NONNN
RN

Sediment accumulations
Continental crust
Oceanic crust

Volcanic arc




Andean-type active margin

Retroarc foreland basin —

Andean mountain belt

Subduction of
Pacific Plate at
Peru-Chile Trench
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Alpine foredeep basin, Austria (Molasse
basin)
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Fig. 14. N-S seismic line through the Upper Austrian Molasse Basin.




Wilson (orogenic) cycle

As a region evolves tectonically many
areas of sedimentation occur under
different tectonic settings. Hence
many basins have a polyphase
history.
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Evolution from continental rift to passive
margin

Pre-Rift
Pre-Rift Sediments
Oceanic crust Post-rift sediments
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Thermal sag basin over rift basin
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Passive margin geometry

Upper Plate Margin Oceanic Crust Lower Plate Margin

Lower Plate Margin Upper Plate Margin




Stretching geometries of N Atlantic
margin
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Passive margin evolution

Early continental rifting
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Lambert conical conformal projection :
standard parallels 10;N & 40;N

500 km

Major faults
Average slip and convergence rates,
when given, are in mm/fyr

Ganga : Sedimentary basin. When not all Cenozoic
thickness is known a letter indicates age of strata.

T =Tertiary , N = Neogene, Q = Quatenary

A column or section

7\ Major rivers

s0  Cenozoic sediment
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Eocene

Orogenic belt Sherening
between Red Original width
River Fault zone Sl
and Myanmar

Predominantly
continental rifts

Mae Ping and
Three Pagodas
Fault zones
active (not main
Tibetan collision)

(

Modified from Lee and Lawver, 1995, Hall, 1995 and Morley 2002)



Thermal
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Extensive marine
conditions

Uplift in west
Thailand
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Early Miocene
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Middle Miocene

Thermal
subsidence
everywhere

except onshore
Thailand

Extensive marine
conditions

Uplift west of
Chiang Mai

Widespread
inversion



Late Miocene

Thermal
subsidence
everywhere

except onshore
Thailand

Extensive marine
conditions

Start of Mekong
and Salween
rivers having
headwaters in
the Tibetan
Plateau?



Regional setting: DEM

N

13

Wk ._}v K.
sa| yfengarra s
o S

Halmahera

& 6 Ba(:an'l \

ftyop,

o~ N
o 5
4 ks

N L

B

Ly

¢ Lo’
o
= L A

-~

A
L
(%

.“

(o)
Q0

\h

Arafura
Sea







Tertiary stratigraphy of Brunei and Sarawak

Pliocene Liang Formation

Late Miocenew
_ Setap Belait Formation

Shale
Middle Miocene | Fmn.
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TR

Early Miocene ) )
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West Crocker, Mulu

and Kelalan Formations
Eocene

NE Simplified from Sandal (1996)

Uplift of
accretionary
prism, massive
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Jamming of
Subduction zone
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Accretionary
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Models for local iIsostasy

Pratt isostacy Loads affecting Airy model
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The mass of each column
above the compensation
depth is the same



Basic principals of local isotasy

The sum of masses of different rock units in the columns must be equal:
1

Loy + 1P +T.p +1,0,, = constant
t is thickness and p is density of w water, ps sediment ¢ crust m mantle.

[f deposition adds material to the column the mass of a compensated column before
sediments (p,) are deposited is:

2a
twpw +tpspps +tcpc o |_Dc - (tc +tps +tw )J)m

Where D, = compensation depth, and p, is the density of sediments deposited prior to the
episode of sedimentation that caused the loading.

After sediment deposition it becomes:

2b
(tw + W_ts ))w +tsps +tpspps +tcpc + I_Dc _(tc +tps + W+tw)_|)m



Key assumption in Airy isostasy - no
change in crust thickness

for Airy 1sostacy the deflection (w) caused by a sediment load is

W = Ps = Pw ts

Pm~ Puw



Basic modes of load support

Perfectly rigid Flexural isostacy Local isostacy
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Sediment loading

Basin before sedimentation
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The basics of thermal subsidence

Thermal subsidence is the isostatic result of heating the crust
during extension, and the subsequent cooling of the thermal
anomaly post-rifting

The models for the continental crust were based on cooling of the
oceanic crust as it moved away from mid oceanic ridges



Cooling of oceanic crust is exponential

Cooling half space
(square root) model

Cooling plate
(exponential) model

North Pacific (after
Parsons and
Sclater (1977)

Subsidence (km)
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Rifting causes change in thermal
structure of lithosphere

The change in temperature of extending lithosphere is commonly calculated using the

one-dimensional heat transport equation (Jarvis and McKenzie 1980):

ST 8°T 8 'T + H
. -y —
St Sz Sz

where T is temperature, t is time, v is vertical velocity (1.e. strain rate where the
stretching factor = exp (v At), H is the radiogenic heat production, divided by density
and specific heat and x is the thermal diffusivity. It is assumed that in pure shear rifting
lateral conduction is unimportant at the centre of a rift, except for very slow rates of
extension or very narrow rifts.




McKenzie model for passive extension

Lithospheric thinning by extension
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Temperature dependence of lithosphere
density on temperature

T'o examine the effects of temperature changes on isostatic subsidence or uplift, it is
necessary to describe the temperature dependence of crust and lithospheric mantle

density:

pC (X’Zat) = p'C I 1_ o T(X’Z’t)]
P (X,2,t) = P'y 11- a T(x,z,1)]
where a is the volumetric coefficient of thermal expansion and T(x,z,t) is the average

temperature of the crust or lithosphere at time t. P'. and P',, are the respective densities of
the crust and mantle at 0 C.



Thermal consequences of passive rifting

Lithospheric thinning - Temperature perturbation
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McKenzie model extension followed by

thermal subsidence
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Relationship between syn-rift extension ()
and post-rift subsidence (passive rifting)
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The contribution by sediment loading cannot be fully predicted by
the model



Basic flexural isostasy equation

Equations for flexural isostacy also contain the simplifying assumption that crustal mass
remains constant (e.g. Turcotte and Schubert, 1982); the vertical flexural isostatic
displacement w is related to the imposed vertical load q(x) in the general term for flexural

rigidity (D) and local curvature (R):

DR + (pn - ps)gw = q(x)
g = gravitational constant,.



The importance of elastic thickness to
flexural behaviour

T corresponds with the thickness of the plate, specifically when dealing with flexing of
the lithosphere it corresponds with the effective elastic thickness (Te)
- ETe ’

D = 2
12 (1 — v )

The mechanical thickness of the lithosphere, commonly termed the elastic thickness, is
usually envisioned to be equivalent to the seismogenic layer. That is the layer which
responds to deformation by combined brittle and elastic processes. This layer is normally
the upper 10-20km of the continental crust and its thickness is largely temperature
controlled



Bending of a beam
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Elevation (m)

Effects of varying Te and load mass on

basin geometry
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Wavelength of crustal deflection In
response to a load

The width of the crust that is deflected in response to a load is the flexural parameter (a),
it is controlled by the flexural rigidity (D), and the mass of the replacement material:

[(p, -p,) T
NI
The wavelength will increase as the density of the replacing mass increases. For a
fixed load a basin filled by sediment will create a broader, deeper basin than a water

filled basin. Under the same load but with increased flexural rigidity the basin will
become wider.




Flexural response to faulting
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Detachment model
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Crustal Structure Syn-rift stratigraphy
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Initial model configuration (v = h)

a

Creation of sedimentary basin and footwall uplift
b 4xV
C

4xVv

d 4xV

Thermal subsidence
e 4xVv

Final configuration (v = h)




Airy and flexural models of rifts

Kinematic model Isostatic response
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Unbroken beam and broken beam
(flexural cantilever) flexural models

Listric fault model Flexural cantilever model
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Stretch forward model




Stretch: Triassic syn-rift basin at 250Ma
Dominantly fluvial with emergent footwalls
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Stretch: Triassic rift and beta profile
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Stretch: Erode syn-rift topography
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Stretch: 100Myr thermal subsidence
Jurassic delta plain at 150Ma
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Stretch: Re-rift in the late Jurassic
Marine basin with island archipelago
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Stretch: 2nd-rift & composite beta profiles
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Stretch: Late Jurassic heat-flow anomaly
Composite anomaly from both rifts
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Stretch: Jurassic syn-rift gravity anomaly
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Stretch: 10Myr post-rift and erosion
Base Cretaceous seismic marker at 140Ma
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Stretch: Base Cret erosion at sea-level
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Stretch: 50Myr post-rift subsidence
Marine basin at end Early Cretaceous, 100Ma
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Stretch: 150Myr post-rift subsidence

The “present-day” multiple rift model
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Stretch: Present-day heat-flow anomaly
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Stretch: Gravity anomaly for present-day model
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Flexural Decompaction backstripped model




Flex Decomp: Present-day cross-section
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Flex: Present section and beta profiles
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Flex Decomp: Layers 1 and 2 removed
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Flex Decomp: Layers 3 and 4 removed
460m Iceland Plume support applied at 55Ma
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Flex Decomp: Layers 5 and 6 removed
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Flex Decomp: Layer 7 removed
Base Cretaceous at 140Ma close to syn-rift
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Flexural backstripping in 3D:Base
Tertiary sequence, N Sea
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Variations in timing and subsidence
amount of post-rift basins

How does the syn-rift to post-rift transition occur?

How much variation in subsidence is there between rifts of similar
upper crustal extension amount

Evolution of post-rift basins- single rifting events, combination
events

Lateral variations in onset of post-rift subsidence



How to explain the discrepancy between back-
stripped subsidence and observed upper crustal
extension?

* Non-uniform stretching - extension increases
downwards in the lithosphere

* Numerous seismically invisible faults contributing to
upper crustal extension

« Active mantle processes (e.g. plume)

« Errors in calculation (e.g. water loads)

« Important heat source within sedimentary basin



Onset of thermal subsidence In marine
vs continental depositional settings

Typically the syn-rift post-rift unconformity in continental filled rifts is planar, and
the syn-rift topography largely infilled and eroded flat

: . T )




Thermal subsidence in the Anza graben
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Marine rifts

In deep marine rifts such as
the North Sea substantial
submarine syn-rift topography
IS preserved into the post-rift
phase.

*Infill of the marine topography
by post-rift sediments is
effectively infilling of
accommodation space created
by syn-rift not post-rift
processes. Hence inclusion of
the section that onlaps
topography will create an over-
estimate of the thermal
anomaly and hence
overestimate the beta factor.
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Subsidence rates for the North Sea and
SE Asian basins

Time (Ma)
225 200 150 100 50 0

There is almost an order of

maghnitude difference in subsidence ; North Ses
rates between post-rift subsidence 2
In the North Sea and that of the )

Malay and Pattani basins, yet the 4
three rifts all display upper crustal s
extension of B <1.5 ¢

7 Pattani basin

Malay basin

Depth (km)

Central basin
(Salin sub-basin)




Thermal subsidence in the Anza graben

Miocene-Recent
thermal
subsidence in the
southern Anza
Graben is only
about 700 m
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Thermal subsidence in the Pattani basin

W 10 km (approx) E

Pre-Tertiary basement
4 Approximate depth at 4 seconds is 6 km
5
Miocene-
Recent post-
rift fill in the
Pattani basin
IS 5-6 km

thick




Relationship between syn-rift extension ()
and post-rift subsidence (passive rifting)
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The backstripped extension for the Pattani and Malay basins is
considerably greater (f 2-3) than the upper crustal extension
estimated from seismic lines (B < 1.5)



Timing of onset of post-rift: Gulf of Suez

Just when did post-rift
subsidence begin?

\ -
Euphrates River

N
e (e b

Middle Miocene mid Rudeis BT 5 - S

event - Wescott et al. ) & ¢ Deidsea

(1998), - onset Agqaba-Dead 3\ S

Sea shear zone

3 Ma later - Top Kareem -
marked unconformity,
slowing of subsidence,
onset evaporites - Patton et
al. (1994)

Period of tectonic quiescence
for ~7 ma, but Late Miocene-
Present extension has
occurred. McClay et al. (1998)
Oligocene-Recent is syn-rift




Gulf of Thailand Tertiary basins
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An older stratigraphic scheme for the

GOT (c.1997)
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Thermal subsidence in the Pattani basin

W 10 km (approx)

Pre-Tertiary basement
Approximate depth at 4 seconds is 6 km

Miocene-
Recent post- &
rift fill in the
Pattani basin Smoat
is 5-6 km 25 = S
thick



Lateral variations in timing of post-rift

subsidence, W. Natuna basin to N. Thailand

Topographic variations
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Gulf of Thailand Tertiary basins

Oligocene -Middle

Miocene extension
Middle-Late Miocene thermal
subsidence

Eocene-Oligocene major
extension,

Mixed Oligocene-Early
Miocene thermal subsidence
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Modelling of heat flow In the Pattani
basin

Basin centre heat flow model Basin Flank heat flow model
Basin fill density 2.45 g/cm Basin fill density 2.3 g/cm

Basin fill conductivity 1.5mW m 3 Basin fill conductivity 25 mWm*

Basin fill heat production 1.3mWm ? Basin fill heat production 1.3mW m~?

Upper crust heat preduction 35 mWm Upper crust heat production 35 mWm
Mantle heat production 40 mW m > Mantle heat production 40 mW m

150 C (measured from
wells)

300 C (measured from
wells)

-10

Depth (km)

-30

-40
0 200 400 600 800 1000 0 200 400 600 800 1000

Temperature C Temperature C

Region of crust with potential to flow 4 km = basin sedimentary rock thickness



Inhibition of cooling in the Pattani and
Malay basins

Possible causes:

Insulation by shale sequences within the thick basinal
sequences

Erosion of radiogenic sediment source areas (granites)

Fluids appear to have redistributed some of the radiogenic
material - high gamma ray readings are sometimes associated
with calcite cemented layers

Diagenetic history of high temperature dickite formation prior to
hydrocarbon generation indicates temperatures have been high
for a long period, not just a short, late episode



N-S variations in timing of thermal
subsidence W Natuna basin-North Thailand

Topographic variations
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Summary

Commonly in rifts the observed upper crustal extension amount does not

match the amount of lithospheric thinning predicted by backstripping of
the post-rift basin

The onset of post-rift subsidence is commonly regarded as a simple event

to define

Consequently confusion in basin terminology can arise as there are

attempts to force a simple model on areas where the simple model is
inappropriate

There are a number of factors that can make the onset of subsidence

1)
2)
)
4)

difficult to define, and post rift subsidence difficult to model, these
factors include:

Continental vs marine depositional setting

Tectonic setting (e.g. propagating tip of spreading centre, GOS)
Duration of extension

Radiogenic sediment source



BSE2 23-Jan-02 WD15.0mm 20.0kV x450  100um  42%

S S

BSE2 23-Jan-02



V.

4

BSE2 21-Jan"02 . 21-Jan-02 < WD15.0mm 20.0kV x350 < 100um

<

"
BSE2 21-Jan-02 WD15.0mm 20.0kV x500 100um BSE2 '23-Jan-02 WD15.1lmm 20.0kV x450 100um




Post-rift subsidence can be split into
different components
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