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Defining Enhanced Oil 
Recovery 
 
 
 
 
 
 
 
 
 
 
Enhanced oil recovery (EOR) is oil recovery by the injection of materials not 
normally present in the reservoir. This definition covers all modes of oil recovery 
processes (drive, push-pull, and well treatments) and most oil recovery agents. 
Enhanced oil recovery technologies are also being used for in-situ extraction of 
organic pollutants from permeable media.   In these applications, the extraction is 
referred to as cleanup or remediation, and the hydrocarbon as product.  Various 
sections of this text will discuss remediation technologies specifically, although we 
will mainly discuss petroleum reservoirs.  The text will also describe the application 
of EOR technology to carbon dioxide storage where appropriate. 
 The definition does not restrict EOR to a particular phase (primary, 
secondary, or tertiary) in the producing life of a reservoir. Primary recovery is oil 
recovery by natural drive mechanisms: solution gas, water influx, and gas cap drives, 
or gravity drainage. Figure 1-1 illustrates.  Secondary recovery refers to techniques, 
such as gas or water injection, whose purpose is mainly to raise or maintain reservoir 
pressure. Tertiary recovery is any technique applied after secondary recovery. Nearly 
all EOR processes have been at least field tested as secondary displacements. Many 
thermal methods are commercial in both primary and secondary modes. Much 
interest has been focused on tertiary EOR, but the definition given here is not so 
restricted. The definition does exclude waterflooding but is intended to exclude 
all pressure maintenance processes. The distinction between pressure maintenance 
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and displacement is not clear, since some displacement occurs in all pressure 
maintenance processes. Moreover, agents such as methane in a high-pressure gas 
drive, or carbon dioxide in a reservoir with substantial native CO2, do not satisfy the 
definition, yet both are clearly EOR processes.  The same can be said of CO2 storage.   
Usually the EOR cases that fall outside the definition are clearly classified by the 
intent of the process.  
 In the last decade, improved oil recovery (IOR) has been used 
interchangeably with EOR or even in place of it.  Although there is no formal 
definition, IOR typically refers to any process or practice that improves oil recovery 
(Stosur et al., 2003).   IOR therefore includes EOR processes but can also include 
other practices such as waterflooding, pressure maintenance, infill drilling, and 
horizontal wells. 
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Figure 1-1.  Oil recovery classifications (adapted from the Oil and Gas Journal 
biennial surveys). 
 

1-1 EOR INTRODUCTION 
 
The EOR Target 
 
We are interested in EOR because of the amount of oil to which it is potentially 
applicable.  This EOR target oil is the amount unrecoverable by conventional means 
(Fig. 1-1).  A large body of statistics shows that conventional ultimate oil recovery 
(the percentage of the original oil in place at the time for which further conventional 
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recovery becomes uneconomic) is about 35%.   This means for example that a field 
that originally contained 1 billion barrels will leave behind 650,000 barrels at the end 
of its conventional life.  Considering all of the reservoirs in the U.S., this value is 
much larger than targets from exploration or increased drilling.  
 The ultimate recovery is shown in Fig. 1-2.   This figure also shows that there 
is enormous variability in ultimate recovery within a geographic region, which is why 
we cannot target reservoirs with EOR by region.  Reservoirs that have an 
exceptionally large conventional recovery are not good tertiary EOR candidates.  
Figure 1-2 shows also that the median ultimate recovery is the same for most regions, 
a fact no doubt bolstered by the large variability within each region. 
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Figure 1-2.  Box plots of ultimate oil recovery efficiency.  75% of the ultimate 
recoveries in a region fall within the vertical boxes; the median recovery is the 
horizontal line in the box; the vertical lines give the range.   Ultimate recovery is 
highly variable, but the median is about the same everywhere (from Laherre, 2001). 
  
  
 
 

1-2 THE NEED FOR EOR 
 
Enhanced oil recovery is one of the technologies needed to maintain reserves.    
 
Reserves 
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Reserves are petroleum (crude and condensate) recoverable from known reservoirs 
under prevailing economics and technology. They are given by the following 
material balance equation: 
 

Production
Present Past Additions

from
reserves reserves to reserves

reserves

⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟

⎝ ⎠

 

 
There are actually several categories of reservoirs (proven, etc.) which distinctions 
are very important to economic evaluation (Rose, 2001; Cronquist, 2001).  Clearly, 
reserves can change with time because the last two terms on the right do change with 
time.  It is in the best interests of producers to maintain reserves constant with time, 
or even to have them increase. 
 
Adding to Reserves 
 
The four categories of adding to reserves are 
 

1. Discovering new fields 
2. Discovering new reservoirs 
3. Extending reservoirs in known fields 
4. Redefining reserves because of changes in economics of extraction 

technology 
 
We discuss category 4 in the remainder of this text. Here we substantiate its 
importance by briefly discussing categories 1 to 3. 
 Reserves in categories 1 to 3 are added through drilling, historically the most 
important way to add reserves.  Given the 2% annual increase in world-wide 
consumption and the already large consumption rate, it has become evident that 
reserves can be maintained constant only by discovering large reservoirs. 
 But the discovery rate of large fields is declining.  More importantly, the 
discovery rate no longer depends strongly on the drilling rate.  Equally important, 
drilling requires a substantial capital investment even after a field is discovered.   By 
contrast, the majority of the capital investment for EOR has already been made (if 
previous wells can be used).  The location of the target field is known (no need to 
explore), and targets tend to be close to existing markets.     

  
Enhanced oil recovery is actually a competitor with conventional oil 

recovery because most producers have assets or access to assets in all of the Fig. 1-1 
categories.  The competition then is joined largely on the basis of economics in 
addition to reserve replacement.  At the present, many EOR technologies are 
competitive with drilling-based reserve additions.  The key to economic 
competitiveness  is how much oil can be recovered with EOR, a topic to which we 
next turn. 
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1-3 INCREMENTAL OIL 
 
Defintion 
 
A universal technical measure of the success of an EOR project is the amount of 
incremental oil recovered. Figure 1-3 defines incremental oil. Imagine a field, 
reservoir, or well whose oil rate is declining as from A to B. At B, an EOR project is 
initiated and, if successful, the rate should show a deviation from the projected 
decline at some time after B. Incremental oil is the difference between what was 
actually recovered, B to D, and what would have been recovered had the process not 
been initiated, B to C. Since areas under rate-time curves are amounts, this is the 
shaded region in Fig. 1-3. 
 

 
 

 
 
Figure 1-3.  Incremental oil recovery from typical 
EOR response (from Prats, 1982)



 6 
  

As simple as the concept in Fig. 1-3 is, EOR is difficult to determine in 
practice. There are several reasons for this. 
 

1. Combined (comingled) production from EOR and nonEOR wells. Such 
production makes it difficult to allocate the EOR-produced oil to the EOR 
project. Comingling occurs when, as is usually the case, the EOR project is 
phased into a field undergoing other types of recovery. 

2. Oil from other sources. Usually the EOR project has experienced substantial 
well cleanup or other improvements before startup. The oil produced as a 
result of such treatment is not easily differentiated from the EOR oil. 

3. Inaccurate estimate of hypothetical decline. The curve from B to C in Fig. 1-
3 must be accurately estimated. But since it did not occur, there is no way of 
assessing this accuracy.  

Ways to infer incremental oil recovery from production data range from highly 
sophisticated numerical models to graphical procedures.  One of the latter, based on 
decine curve analysis, is covered in the next section. 
 
Estimating Incremental Oil Recovery Through Decline Curves 
 
Decline curve analysis can be applied to virtually any hydrocarbon production 
operation.  The following is an abstraction of the practice as it applies to EOR.  See 
Walsh and Lake (2003) for more discussion.  The objective is to derive relations 
between oil rate and time, and then between cumulative production and rate. 
 
 The oil rate q changes with time t in a manner that defines a decline rate D 
according to 

 
1 dq D
q dt

= −  1.3-1 

 
 
The rate has units of (or [=]) amount or volume per time and D [=]1/time.  Time is in 
units of days, months, or even years consistent with the units of q.   D itself can be a 
function of rate, but we take it to be constant.   Integrating Eq. 1.3-1 gives 
 
 Dt

iq q e−=  1.3-2 
 
where qi is the initial rate or q evaluated at t = 0.  Equation 1.3-2 suggests a 
semilogarithmic relationship between rate and time as illustrated in Fig. 1-3.   
Exponential decline is the most common type of analysis employed. 
 



 7 
log (q)

qi

qEL

Decline
period
begins

Life

Slope = -D
2.303

0 t

log (q)

qi

qEL

Decline
period
begins

Life

Slope = -D
2.303

0 t

log (q)

qi

qEL

Decline
period
begins

Life

Slope = -D
2.303Slope = -D
2.303

-D
2.303

0 t
 

Figure 1-3.  Schematic of exponential decline on a rate-time plot. 
 
 Figure 1-3 schematically illustrates a set of data (points) which begin an 
exponential decline at the ninth point where, by definition t = 0.  The solid line 
represents the fit of the decline curve model to the data points.  qi is the rate given by 
the model at t=0, not necessarily the measured rate at this point.  The slope of the 
model is the negative of the decline rate divided by 2.303, since standard semilog 
graphs are plots of base 10 rather than natural logarithms.  
 
 Because the model is a straight line, it can be extrapolated  to some future 
rate.  If we let qEL designate the economically limiting rate (simply the economic 
limit) of the project under consideration, then where the model extrapolation attains 
qEL is an estimate of the project’s (of well’s, etc.) economic life.  The economic limit 
is a nominal measure of the rate at which the revenues become equal to operating 
expenses plus overhead.  qEL can vary from a fraction to a few hundred barrels per 
day depending on the operating conditions.  It is also a function of the prevailing 
economics:  as oil price increases, qEL decreases, an important factor in reserve 
considerations. 
 
 The rate-time analysis is useful, but the rate-cumulative curve is more 
helpful.  The cumulative oil produced is given by 
 

 p
0

t

N qd
ξ

ξ

ξ
=

=

= ∫  .  
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The definition in this equation is general and will be employed throughout the text, 
but especially in Chap. 2.  To derive a rate -cumulative expression, insert Eq. 1.3-1, 
integrate, and identify the resulting terms with (again) Eq. 1.3-1.  This gives 
 
 i pq q DN= −  1.3-3 
 
Equation 1.3-3 says that a plot of oil rate versus cumulative production should be a 
straight line on linear coordinates.  Figure 1-4 illustrates. 
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Figure 1-4.  Schematic of exponential decline on a rate-cumulative plot. 
 
You should note that the cumulative oil points being plotted on the horizontal axis of 
this figure are from the oil rate data, not the decline curve.  It this were not so, there 
would be no additional information in the rate-cumulative plot.  Calculating Np 
normally requires a numerical integration with something like the trapezoid rule.    
 
 Using model Eqs 1.3-2 and 1.3-3 to interpret a set of data as illustrated in 
Figs. 1-3 and 1-4 is the essence of reservoir engineering practice, namely 
 
1.  Develop a model as we have done to arrive at Eqs. 1.3-2 and 1.3-3.  Often the 
model equations are far more complicated than these, but the method is the same 
regardless of the model. 
2.  Fit the model to the data.  Remember that the points in Figs. 1-3 and 1-4 are data.  
The lines are the model. 
3.  With the model fit to the data (the model is now calibrated), extrapolate the model 
to make predictions. 
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 At the onset of the decline period, the data again start to follow a straight line 
through which can be fit a linear model.  In effect, what has occurred with this plot is 
that we have replaced time on Fig. 1-3 with cumulative oil produced on Fig. 1-4, but 
there is one very important distinction:  both axes in Fig. 1-4 are now linear.  This has 
three important consequences.  
 
1. The slope of the model is now –D since no correction for log scales is 

required. 
2. The origin of the model can be shifted in either direction by simple additions.  
3. The rate can now be extrapolated to zero. 
 
 Point 2 simply means that we can plot the cumulative oil produced for all 
periods prior to the decline curve period (or for previous decline curve periods) on 
the same rate-cumulative plot.  Point 3 means that we can extrapolate the model to 
find the total mobile oil (when the rate is zero) rather than just the recoverable oil 
(when the rate is at the economic limit). 
 
 Rate-cumulative plots are simple yet informative tools for interpreting EOR 
processes because they allow estimates of incremental oil recovery (IOR) by 
distinguishing between recoverable and mobile oil.  We illustrate how this comes 
about through some idealized cases.  

 
 Figure 1-5 shows a rate-cumulative plot for a project having an exponential 
decline just prior to and immediately after the initiation of an EOR process.  
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Figure 1-5.  Schematic of exponential decline curve behavior on a rate-cumulative 
plot.  The EOR project produces both incremental oil (IOR), and increases the mobile 
oil.  The pre- and post-EOR decline rates are the same. 
 
 We have replaced the data points with the models only for ease of 
presentation.  Placing both periods on the same horizontal axis is permissible because 
of the scaling arguments mentioned above.  In this case, the EOR process did not 
accelerate the production because the decline rates in both periods are the same; 
however, the process did increase the amount of mobile oil, which in turn caused 
some incremental oil production.  In this case, the incremental recovery and mobile 
oil are the same.  Such idealized behavior would be characteristic of thermal, 
micellar-polymer, and solvent processes.  
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Figure 1-6.  Schematic of exponential decline curve behavior on a rate-cumulative 
plot.  The EOR project produces incremental oil at the indicated economic limit but 
does not increase the mobile oil.   
 
 Figure 1-6 shows another extreme where production is only accelerated, the 
pre- and post-EOR decline rates being different.  Now the curves extrapolate to a 
common mobile oil but with still a nonzero IOR.  We expect correctly that processes 
that behave as this will produce less oil than ones that increase mobile oil, but they 
can still be profitable, particularly,  if the agent used to bring about this result is 
inexpensive.  Processes that ideally behave in this manner are polymer floods and 
polymer gel processes, which do not affect residual oil saturation.   Acceleration 
processes are especially sensitive to the economic limit; large economic limits imply 
large IOR.  
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Example 1-1.  Estimating incremental oil recovery. 
 
Sometimes estimating IOR can be fairly subtle as this example illustrates.  Figure 1-7 
shows a portion of rate-cumulative data from a field that started EOR about half-way 
through the total production shown. 
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Figure 1-7.  Rate (vertical axis) - cumulative (horizontal axis) plot for a field 
undergoing and EOR process. 
 
a.  Identify the pre- and post-EOR decline periods.   
The pre-EOR decline ends at about 2.5 M std. m3 of oil produced, at which time the 
post-EOR period begins.  This point does not necessarily coincide with the start of 
the EOR process.  The start cannot be inferred from the rate-cumulative plot. 
 
b.  Calculate the decline rates ([=] mo-1) for both periods. 
Both decline periods are fitted by the straight lines indicated.  The fitting is done 
through standard means; the difficulty is always identifying when the periods start 
and end.  For the pre-EOR decline,  
 

( )
( )

3

1
3

Mstd.m0.11 0.18
month 0.027 month

2.55 0 Mstd.m
−

⎛ ⎞
−⎜ ⎟

= − =⎜ ⎟
−⎜ ⎟⎜ ⎟

⎝ ⎠

D  

and for the post-EOR decline,  
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( )
( )

3

1
3

M std.m0.09 0.11
month 0.0137 month

4 2.55 M std.m
−

⎛ ⎞
−⎜ ⎟

= − =⎜ ⎟
−⎜ ⎟⎜ ⎟

⎝ ⎠

D  

The EOR project has about halved the decline rate even though there is no increase in 
rate. 
 
c.  Estimate the IOR ([=] M std. m3) for this project at the indicated economic limit. 
 
The oil to be recovered by continued operations is 4.7 M std. m3.  That from EOR is 
(by extrapolation) 7 M std. m3 for an incremental oil recovery of 2.3 M std. m3. 
 

 
 

1-4 CATEGORY COMPARISONS 
 
Comparative Performances 
 
Most of this text covers the details of EOR processes. At this point, we compare 
performances of the three basic EOR processes and introduce some issues to be 
discussed later in the form of screening guides. The performance is represented as 
typical oil recoveries (incremental oil expressed as a percent of original oil in place) 
and by various utilization factors. Both are based on actual experience.  Utilization 
factors express the amount of an EOR agent required to produce a barrel of 
incremental oil.  They are a rough measure of process profitability. 
 Table 1-1 shows sensitivity to high salinities is common to all chemical 
flooding EOR. Total dissolved solids should be less than 100,000 g/m3, and hardness 
should be less than 2,000 g/m3. Chemical agents are also susceptible to loss through 
rock–fluid interactions. Maintaining adequate injectivity is a persistent issue with 
chemical methods. Historical oil recoveries have ranged from small to moderately 
large. Chemical utilization factors have meaning only when compared to the costs of 
the individual agents; polymer, for example, is usually three to four times as 
expensive (per unit mass) as surfactants. 
 
TABLE 1-1  CHEMICAL EOR PROCESSES  

 
Process 

Recovery 
mechanism 

 
Issues 

Typical 
recovery (%) 

Typical agent 
utilization* 

Polymer 
 
 

Improves volumetric 
sweep by mobility 
reduction 

Injectivity 
Stability 
High salinity 

5 
 
 

0.3–0.5 lb polymer 
per bbl oil produced 

 
Micellar 

polymer 
Same as polymer plus 

reduces capillary 
forces 

Same as polymer 
plus chemical 
availability, 
retention, and 
high salinity 

15 15–25 lb surfactant 
per bbl oil produced 
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Alkaline 

polymer 
Same as micellar 
polymer plus oil 
solubilization 

 and wettability 
alteration 

Same as micellar 
polymer plus oil 
composition 

5 35–45 lb chemical 
per bbl oil produced 

*1 lb/bbl ≅ 2.86 kg/m3 
 

Table 1-2 shows a similar comparison for thermal processes. Recoveries are 
generally higher for these processes than for the chemical methods. Again, the issues 
are similar within a given category, centering on heat losses, override, and air 
pollution. Air pollution occurs because steam is usually generated by burning a 
 
 
 
TABLE 1-2  THERMAL EOR PROCESSES 

 
Process 

Recovery 
mechanism 

 
Issues 

Typical 
recovery (%) 

Typical agent 
utilization* 

Steam 
(drive and 
stimulation) 

 

Reduces oil 
viscosity 

Vaporization 
of light ends 

Depth 
Heat losses 
Override 
Pollution 

50–65 
 
 
 

0.5 bbl oil consumed 
per bbl oil 
produced 

 
In situ 

combustion 
Same as steam 

plus cracking 
Same as steam plus 

control of 
combustion 

10–15 10 Mscf air per bbl oil 
produced* 

*1 Mscf/stb ≅ 178std. m3 gas/std. m3 oil 
 
 
portion of the resident oil. If this burning occurs on the surface, the emission products 
contribute to air pollution; if the burning is in situ, production wells can be a source 
of pollutants. 

Table 1-3 compares solvent flooding processes. Only two groups are in this 
category, corresponding to whether or not the solvent develops miscibility with the 
oil. Oil recoveries are generally lower than for micellar-polymer recoveries. The 
solvent utilization factors as well as the relatively low cost of the solvents have 
brought these processes, particularly carbon dioxide flooding, to commercial 
application. The distinction between a miscible and an immiscible process is slight. 
 
TABLE 1-3  SOLVENT EOR METHODS  

 
Process 

Recovery 
mechanism 

 
Issues 

Typical 
recovery (%) 

Typical agent 
utilization* 

Immiscible 
 
 
 

Reduces oil 
viscosity 

Oil swelling 
Solution gas 

Stability 
Override 
Supply 
 

5–15 
 
 
 

10 Mscf solvent per 
bbl oil produced 

 
 

Miscible Same as immiscible 
plus development 
of miscible 

Same as immiscible 5–10 10 Mscf solvent per 
bbl oil produced 
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displacement 

*1 Mscf/stb ≅ 178 std. m3 solvent/ std. m3 oil 
 
Screening Guides 
 
Many of the issues in Tables 1-1 through 1-3 can be better illustrated by giving 
quantitative limits.  These screening guides can also serve as a first approximate for 
when a process would apply to a given reservoir. Table 1-4 gives screening guides of 
EOR processes in terms of oil and reservoir properties. 
 
TABLE 1-4.  SUMMARY OF SCREENING CRITERIA FOR EOR METHODS 
(adapted from Taber et al., 1997). 

 
These should be regarded as rough guidelines, not as hard limits because special 
circumstances (economics, gas supply for example) can extend the applications.   
 The limits have a physical base as we will see.  For example, the restriction 
of thermal processes to relatively shallow reservoirs is because of potential heat 
losses through lengthy wellbores.  The restriction on many of the processes to light 
crudes comes about because of sweep efficiency considerations; displacing viscous 

TABLE 3:  SUMMARY OF SCREENING CRITERIA FOR EOR METHODS
Oil Properties Reservoir Characteristics

EOR Method
Gravity 
(ºAPI)

Reservoir 
Viscosity 
mPa-s Compostion

Initial Oil 
Saturation 

(%PV)
Formation  

Type

Net 
Thickness 

(m)

Average 
Permeability 

(md) Depth (m)
Solvent Methods 

Nitrogen and 
flue gas >35 <0.4

Large % of   
C1 to C7 >40 NC NC NC >1800

Hydrocarbon >23 <3
Large %  of 

C2 to C7 >30 NC NC NC >1250

C02 >22 <10
Large %  of 

C5 to C12 >20 NC NC NC >750
Immiscible 

gases >12 <600 NC >35 NC NC NC >640
Chemical Methods

Miscellar/ 
polymer, 
ASP, and 
alkaline 
flooding >20 <35

Light, 
intermediate, 
some organic 

acids for 
alkaline 
floods >35

Sandstone 
preferred NC >10 <2700

Polymer  
Flooding >15 10-150 NC >50

Sandstone 
preferred NC >10 <2700

Thermal Methods

Combustion >10 <5,000   

Some 
asphaltic 

components >50    >3 >50 <3450

Steam
>8 to 
13.5 <200,000  NC >40    >6 >200 <1350

NC=not critical                                           
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oil is difficult because of the propensity for a displacing agent to channel through the 
fluid being recovered.  Finally, you should realize that some of categorizations in 
Table 1-7 are fairly coarse.  Steam methods, in particular, have additional divisions 
into steam soak, steam drive, and gravity drainage methods.  There are likewise 
several variations of combustion and chemical methods.  
 
 

1-5 UNITS AND NOTATION 
 
SI Units 
 
The basic set of units in the text is the System International (SI) system. We cannot 
be entirely rigorous about SI units because many figures and tables has been 
developed in more traditional units. It is impractical to convert these; therefore, we 
give a list of the more important conversions in Table 1-7 and some helpful pointers 
in this section. 
TABLE 1-5  AN ABRIDGED SI UNITS GUIDE (adapted from Campbell et al.., 1977) 

SI base quantities and units 

 
Base quantity or 

dimension 

 
 

SI unit 

 
SI unit symbol 

 

SPE dimensions 
symbol 

 

Length Meter m L 
Mass Kilogram kg m 
Time Second S t 
Thermodynamic temperature Kelvin K T 
Amount of substance Mole* mol  

*When the mole is used, the elementary entities must be specified; they may be atoms, molecules, ions, 
electrons, other particles, or specified groups of such particles in petroleum work. The terms kilogram 
mole, pound mole, and so on are often erroneously shortened to mole. 
 

Some common SI derived units 

 
Quantity 

 
Unit 

SI unit symbol 
 

Formula 
 

Acceleration Meter per second squared –– m/s2 
Area Square meter –– m2 
Density Kilogram per cubic meter –– kg/m3 
Energy, work Joule J N · m 
Force Newton N kg · m/s2 
Pressure Pascal Pa N/m2 
Velocity Meter per second –– m/s 
Viscosity, dynamic Pascal-second –– Pa · s 
Viscosity, kinematic Square meter per second –– m2/s 
Volume Cubic meter –– m3 

 
Selected conversion factors 



 16
To convert from To Multiply by 

Acre (U.S. survey) Meter2 (m2) 4.046 872 E+03 
Acres Feet2 (ft2) 4.356 000 E+04 
Atmosphere (standard) Pascal (Pa) 1.013 250 E+05 
Bar Pascal (Pa) 1.000 000 E+05 
Barrel (for petroleum 42 gal) Meter3 (m3) 1.589 873 E–01 
Barrel Feet3 (ft3) 5.615        E+00 
British thermal unit (International Table) Joule (J) 1.055 056 E+03 
Darcy Meter2 (m2) 9.869 232 E–13 
Day (mean solar) Second (s) 8.640 000 E+04 
Dyne Newton (N) 1.000 000 E–05 
Gallon (U.S. liquid) Meter3 (m3) 3.785 412 E–03 
Gram Kilogram (kg) 1.000 000 E–03 
Hectare Meter2 (m2) 1.000 000 E+04 
Mile (U.S. survey) Meter (m) 1.609 347 E+03 
Pound (lbm avoirdupois) Kilogram (kg) 4.535 924 E–01 
Ton (short, 2000 lbm) Kilogram (kg) 9.071 847 E+02 

 
TABLE 1-5  CONTINUED 

Selected SI unit prefixes 

 
 
Factor 

 
SI 

prefix 

SI prefix 
symbol 

(use roman type) 

 
 

Meaning (U.S.) 

Meaning outside 
US 

1012 tera T One trillion times Billion 
109 giga G One billion times Milliard 
106 mega M One million times  
103 kilo k One thousand times  
102 hecto H One hundred times  
10 deka Da Ten times  
10–1 deci D One tenth of  
10–2 centi c One hundredth of  
10–3 milli m One thousandth of  
10–6 micro μ One millionth of  
10–9 nano N One billionth of Milliardth 

 
 

1. There are several cognates, quantities having the exact or approximate 
numerical value, between SI and practical units. The most useful for EOR are 

 
1 cp = 1 mPa-s 
1 dyne/cm = 1 mN/m 
1 Btu ≅ 1 kJ 
1 Darcy ≅ 1 μm2 
1 ppm ≅ 1 g/m3 
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2. Use of the unit prefixes (lower part of Table 1-5) requires care. When a 

prefixed unit is exponentiated, the exponent applies to the prefix as well as 
the unit. Thus 1 km2 = 1(km)2 = 1(103 m)2 = 1 × 106m2. We have already 
used this convention where 1 μm2 = 10–12 m2 ≅ 1 Darcy. 

3. Two troublesome conversions are between pressure (147 psia ≅ 1 MPa) and 
temperature (1 K = 1.8 oR). Since neither the Fahrenheit nor the Celsius scale 
is absolute, an additional translation is required. 

 
  °C = K – 273 
 
 and 
 
  °F = °R – 460 
 
 The superscript ° is not used on the Kelvin scale. 
 
 

4. The volume conversions are complicated by the interchangeable use of mass 
and standard volumes. Thus we have 

 
0.159 m3 = 1 reservoir barrel, or bbl 

and 
 
         0.159 std. m3 = 1 standard barrel, or stb 
 
The standard cubic meter, std. m3, is not standard SI; it represents the amount 
of mass contained in one cubic meter evaluated at standard temperature and 
pressure. 

 
Consistency 
 
Maintaining unit consistency is important in all exercises, and for this reason both 
units and numerical values should be carried in all calculations. This ensures that the 
unit conversions are done correctly and indicates if the calculation procedure itself is 
appropriate. In maintaining consistency, three steps are required. 
 

1. Clear all unit prefixes. 
2. Reduce all units to the most primitive level necessary. For many cases, this 

will mean reverting to the fundamental units given in Table 1-7. 
3. After calculations are complete, reincorporate the unit prefixes so that the 

numerical value of the result is as close to 1 as possible. Many adopt the 
convention that only the prefixes representing multiples of 1,000 are used. 

 
Example 1-2.  Converting from Darcy units. 
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Maintaining unit consistency in an equation is easy. For example, suppose we want to 
use the typical oilfield units in Darcy’s law: q in units of ([=]) bbl/day; k [=] md; A 
[=] ft2; p [=] psia; μ [=] cp; and x [=] ft.  First we write Darcy’s law: 
 

kA dpq
dxμ

=  

 
This is elementary form of Darcy's law is valid for 1-D horizontal flow Darcy's law is 
self-consistent in so-called Darcy’s units; hence, a "units" balance for this equation is 

  

 
( )( )

( )

23 k D A cmq cm dp atm
s cp dx cmμ

− −⎛ ⎞− −⎛ ⎞=⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
  

where k-D means that the permeability k is in D or Darcys.  The other units given in 
the equation are Darcy units.  Note that the minus sign is unnecessary since we are 
dealing only with units.   Next, we write this same equation into the units that we 
want , maintaining the unit consistency.  That is, 

 

q bbl−
day

1 day⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦ 24 hrs

1 hr⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

1
3600

hr
s

⎧ ⎫
⎨ ⎬
⎩ ⎭

( )3 3

3

30.48
3600

cm
s ft

⎧ ⎫
⎨ ⎬
⎩ ⎭

          

k md

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭

−
1

1000
D
md

⎡ ⎤⎣ ⎦
2A ft

⎧ ⎫
−⎨ ⎬

⎩ ⎭

( )2 2

2

30.48 cm

ft
⎡ ⎤
⎣ ⎦

[ ]

                                  

cp

dp psia

μ

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭ ×

−

−

dx ft−
1

14.70
atm

psia

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

1 ft⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭ 30.48 cm

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

 
 
Although each term is written in the units we wish, each term reduces to the units of 
the original equation.  This is illustrated in the above equation by canceling all 
similar units.  By writing the above equation and checking the unit consistency, you 
are assured of making no errors.   The equation also introduces the practice of putting 
ratios that are conversion factors in {}. 
 The last step is to rewrite the equation by grouping all numerical constants 
and calculating the appropriate constant that must appear before the right side of the 
equation.  Darcy’s law becomes  
 

( )( )( )
( )( )( )( )( )

( )( )
( )

2 2

3

24 3600 30.48

5.615 30.48 1000 14.70 30.48

k md A ftq bbl dp psia
day cp dx ftμ

⎧ ⎫ − −⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
 

or 
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( )( )
( )

2
31.127 10

k md A ftq bbl dp psia
day cp dx ftμ

−
⎧ ⎫− −⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ×⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

. 

The constant, which is accurate to four digits, is the well-known constant for Darcy’s 
law written in oil field units.   The above equation also illustrates a common practice 
in petroleum engineering--in our opinion bad and used sparingly in this text--of 
including a conversion factor directly in an equation. 

The important point the above procedure is that there is no guessing 
involved.  Any equation can be converted to the desired units as long as the 
procedure is followed exactly.  
 
Naming Conventions 
 
The diversity of EOR makes it possible to assign symbols to components without 
some duplication or undue complication. In the hope of minimizing the latter by 
adding a little of the former, Table 1-8 gives the naming conventions of phases and 
components used throughout this text. The nomenclature section defines other 
symbols. 
 Phase always carry the subscript j, which occupies the second position in a 
doubly subscripted quantity. j = 1 is always a water-rich, or the aqueous phase, thus 
freeing up the symbol w for wetting (and nw for nonwetting). The subscript s 
designates the solid, nonflowing phase. 
 A subscript i, occurring in the first position, indicates the component. Singly 
subscripted quantities indicate components. In general, i = 1 is always water; i = 2 is 
oil or hydrocarbon; and i = 3 refers to a displacing component, whether surfactant or 
light hydrocarbon. Component indices greater than 3 are used exclusively in Chaps. 
8–10, the chemical flooding part of the text. 
 
 

1-6  SUMMARY 
 No summary can do justice to what is a large, diverse, continuously changing, and 
complicated technology.  The Oil and Gas Journal has provided an excellent service 
in documenting the progress of EOR, and you should consult those surveys for up to 
date information.  The fundamentals of the processes change more slowly than the 
applications, and it is to these fundamentals that the remainder of the text is devoted.   



 20
TABLE 1-4  NAMING CONVENTIONS FOR PHASES AND COMPONENTS 

Phases 

j  Identity Text 
locations 

1 Water-rich or aqueous Throughout 
2 Oil-rich or oleic Throughout 
3 Gas-rich, gaseous or light hydrocarbon Secs. 5-6 and 7-7 
 Microemulsion Chap. 9 
s Solid Chaps 2, 3, and 8 to10 
w Wetting Throughout 
nw Nonwetting Throughout 

 
Components 

i  Identity Text 
locations 

1 Water Throughout 
2 Oil or intermediate 

hydrocarbon 
 
Throughout 

3 Gas 
Light hydrocarbon 
Surfactant 

Sec. 5-6 
Sec. 7-6 
Chap. 9 

4 Polymer Chaps. 8 and 9 
5 Anions Secs. 3-4 and 9-5 
6 Divalents Secs. 3-4 and 9-5 
7 Divalent-surfactant 

component 
 
Sec. 9-6 

8 Monovalents Secs. 3-4 and 9-5 

 
 
EXERCISES 
 
1A. Determining Incremental Oil Production. The easiest way to estimate incremental oil 
recovery IOR is through decline curve analysis, which is the subject of this exercise.   The oil rate and 
cumulative oil produced versus time data for the Sage Spring Creek Unit A field is shown below (Mack 
and Warren, 1984)  

 Date     Oil Rate std. m3/day   
 1/76  274.0 
 7/76  258.1 
 1/77  231.0 
 7/77  213.5 
 1/78  191.2 
 7/78  175.2 (Start Polymer) 
 1/79  159.3 
 7/79  175.2 
 1/80  167.3 
 7/80  159.3 
 1/81  159.3  
 7/81  157.7 
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 1/82  151.3 
 7/82  148.2 
 1/83  141.8 
 7/83  132.2 
 1/84  111.5 
 7/84  106.7 
 1/85      95.6  
 7/85  87.6 
 1/86  81.2 
 7/86  74.9 
 1/87  70.1 
 7/87  65.3 
 
In 7/78 the ongoing waterflood was replaced with a polymer flood.  (Actually, there was a polymer gel 
treatment conducted in 1984, but we neglect it here.)  The economic limit is 50 std. m3/D in this field.  

 
(a)   Plot the oil rate versus cumulative oil produced on linear axes.   The oil rate axis should extend to q 

= 0.  
 
(b)  Extrapolate the straight line portion of the data to determine the ultimate economic oil to be 

recovered from the field and the total mobile oil, both in Mstd. m3, for both the water and the 
polymer flood.  Determine the incremental economic oil (IOR) and the incremental mobile oil 
caused by the polymer flood.  

 
(c) Determine the decline rates appropriate for the waterflood and polymer flood declines. 

(d) Use the decline rates in step c  to determine the economic life of the polymer flood.  Also determine 
what the economic life would have been if there were no polymer flood.  

 
1B. Maintaining Unit Conversions (Darcy’s Law).  There are several unit systems used 
throughout the world and you should be able to convert equations easily between systems.  Convert 
Darcy’s Law for 1-D horizontal flow, 
 

 kA dpq
dxμ

=  

from Darcy units to the unit system where q [=] m3/day, k [=] md, A[=] m2, μ [=] cp, p [=] kgf/cm2, and 
x [=] meters.   This is the reverse of that in Example 1-2.  
   

1C. Maintaining Unit Conversions (Dimensionless Time).  A dimensionless time often appears 
in petroleum engineering.  One definition for dimensionless time used in radial flow is 

 2D
t w

ktt
c rφμ

=  

where the equation is written in Darcy units ( wr [=] cm, φ  is dimensionless, tc  [=] of atm-1).   Convert 
the equation for dimensionless time from Darcy units to 
 

(a) oil-field units. 
 

(b) SI units. 
 
This means write the equation with a conversion factor in it so that quantities with the indicated units 
may be substituted directly.   
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1D. Maintaining Unit Conversions (Dimensionless Pressure).  A dimensionless pressure often 
appears in petroleum engineering.  One definition for dimensionless pressure is 

 
2

D
kh pp
q

π
μ

Δ
=  

where the equation is written in Darcy units (h in cm, pΔ  in atm).  Convert the equation for 
dimensionless pressure from Darcy units to 
 

(a) oil-field units. 
 

(b) SI units. 
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2  
 
 
 
 

Basic Equations 
for Fluid Flow 
in Permeable Media 
 
 
Successful enhanced oil recovery requires knowledge of equal parts chemistry, 
physics, geology and engineering.  Each of these enters our understanding through 
elements of the equations that describe flow through permeable media. Each EOR 
process involves at least one flowing phase that may contain several components. 
Moreover, because of varying temperature, pressure, and composition, these 
components may mix completely in some regions of the flow domain, causing the 
disappearance of a phase in those regions. Atmospheric pollution and chemical and 
nuclear waste storage lead to similar problems.  

This chapter gives the equations that describe multiphase, multicomponent 
fluid flow through permeable media based on conservation laws and linear 
constitutive theory.  Initially, we strive for the most generality possible by 
considering the transport of each component in each phase.  Then, special cases are 
obtained from the general equations by making additional assumptions. The approach 
in arriving at the special equations is as important as the equations themselves, since 
it will help to understand the specific assumptions--and the limitations--that are being 
made for a particular application.  

The formulation initially contains two fundamentally different forms for the 
general equations: overall compositional balances, and the phase conservation 
equations.  The overall compositional balances are useful for modeling how 
components are transported through permeable media in local thermodynamic 
equilibrium.  The phase conservation equations are useful for modeling finite mass 
transfer among phases.  Figure 2-1 illustrates the relationships among several 
equations developed as special cases in this chapter.   

From the overall compositional balances, the list of special cases includes the 
multicomponent, single-phase flow equations (Bear, 1972) and the three-phase, 
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multicomponent equations (Crichlow, 1977; Peaceman, 1977; Coats, 1980). In 
addition, others (Todd and Chase, 1979; Fleming et al., 1981; Larson, 1979) have 
presented multicomponent, multiphase formulations for flow in permeable media but 
with assumptions such as ideal mixing or incompressible fluids. Many of these 
assumptions must be made before the equations are solved, but we try to keep the 
formulation as general as possible as long as possible. 
 
 

 
 
Figure 2-1 Flow diagram showing the relationships among the fundamental equations 
and selected special cases.  There are NC components and NP phases.   
 
 

2-1 MASS CONSERVATION 
 
This section describes the conceptual nature of multiphase, multicomponent flows 
through permeable media and the mathematical formulation of the conservation 
equations. 
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The four most important mechanisms causing transport of chemical 

components in naturally occurring permeable media are viscous forces, gravity 
forces, dispersion (diffusion), and capillary forces. The driving forces for the first 
three are pressure, density, and concentration gradients, respectively. Capillary or 
surface forces are caused by high-curvature boundaries between the various 
homogeneous phases. This curvature is the result of such phases being constrained by 
the pore walls of the permeable medium. Capillary forces imply differing pressures in 
each homogeneous fluid phase so that the driving force for capillary pressure is, like 
viscous forces, pressure differences. 

The ratios of these forces are often given as dimensionless groups and given 
particular names.  For example, the ratio of gravity to capillary forces is the Bond 
number.  When capillary forces are small compared to gravity forces, the Bond 
number is large and the process (or displacement) is said to be gravity dominated.  
The ratio of viscous to capillary forces is the capillary number, a quantity that will 
figure prominently through this text.  The ratio of gravity to viscous forces is the 
gravity or buoyancy number.  The magnitude of these and other dimensionless 
groups help in comparing or scaling one process to another; they will appear at 
various points throughout this text. 
 
The Continuum Assumption 
 
Transport of chemical components in multiple homogeneous phases occurs because 
of the above forces, the flow being restricted to the highly irregular flow channels 
within the permeable medium. The conservation equations for each component apply 
at each point in the medium, including the solid phase. In principle, given 
constitutive relations, reaction rates, and boundary conditions, it is possible to 
formulate a mathematical system for all flow channels in the medium. But the phase 
boundaries in such are extremely tortuous and their locations are unknown; hence, we 
cannot solve component conservation equations in individual channels except for 
only the simplest microscopic permeable media geometry. 
 The practical way of avoiding this difficulty is to apply a continuum 
definition to the flow so that a point within a permeable medium is associated with a 
representative elementary volume (REV), a volume that is large with respect to the 
pore dimensions of the solid phase but small compared to the dimensions of the 
permeable medium. The REV is defined as a volume below which local fluctuations 
in some primary property of the permeable medium, usually the porosity, become 
large (Bear, 1972). A volume-averaged form of the component conservation 
equations applies for each REV within the now-continuous domain of the 
macroscopic permeable medium. (Volume averaging is actually a formal process; see 
Bear, 1972; Gray, 1975; and Quintard and Whitaker, 1988.) The volume-averaged 
component conservation equations are identical to the conservation equations outside 
a permeable medium except for altered definitions for the accumulation, flux, and 
source terms. These definitions now include permeable media porosity, permeability, 
tortuosity, and dispersivity, all made locally smooth because of the definition of the 
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REV.  Approximating the locally discontinuous permeable medium with a locally 
smooth one is called the continuum assumption. 
 A good way to understand the REV scale is to consider a microscopic view 
of pores and grains within a medium.  Figure 2-2 illustrates a cube of small volume 
placed within a permeable medium.  The porosity in the cube is defined as the pore 
volume within the cube divided by the bulk volume of the cube.  If the cube volume 
is infinitesimally small, the porosity will be either 1.0 or 0.0 depending on whether it 
is initially located inside a grain or a pore. We now let the cube increase from its 
original size. As the cube volume increases, the porosity changes in an erratic fashion 
as more and more grains and pores pass inside the cube (see Figure 2-3).  
 
 
 

 
 
Figure 2-2 Illustration of microscopic cube placed within a permeable medium.  The 
cube is initially within a pore so that its porosity is 1.0.  As the cube volume 
increases, it takes in more grains so that its porosity decreases.   
 
 As the cube volume increases sufficiently, the porosity approaches a constant 
value representative of the porous medium.  This is the porosity at the REV scale, 
which defines the onset of the permeable medium domain.  Above the REV size, the 
cube porosity remains constant within the domain of the permeable medium.  As the 
cube volume increases further, however, the cube porosity is affected by layering and 
other heterogeneities.  The formation is homogeneous if the porosity remains fixed as 
the REV-sized cube is moved to any location within the permeable medium.  A 
heterogeneous formation is one in which the porosity (or any other petrophysical 
property) varies from one spatial location to another when measured at the REV 
scale. 
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Figure 2-3 Idealization of the microscopic and permeable medium domains.  The 
REV size separates these two domains.  
 
 Rather than beginning with the nonpermeable media flow equations, and then 
volume-averaging over the REV, we invoke the continuum assumption at the outset 
and derive the mass conservation on this basis. This approach skips over many of the 
physical insights obtained from volume averaging, but it is far more direct. 
 
Mass Balance for a Component in a Phase 
 
Consider an arbitrary, fixed volume V embedded within a permeable medium through 
which is flowing an arbitrary number of chemical components and phases. You must 
constantly be aware of the distinction between components and phases in this 
discussion.  (This can be a source of confusion because under some circumstances 
phases and components are the same.) A component is any identifiable chemical 
entity. Components can be pure substances such as methane, a cation, or even 
combinations of elements.  See Lake et al., 2002 for more discussion.  A phase is a 
physically distinct part of a region in space that is bound by interfaces with 
macroscopic physical properties, such as density and viscosity. A phase can consist 
of many components.  There are up to  i = 1, . . . , NC  components, and up to j = 1, . . 
. , NP phases.   The "up to" is because both components and phases can vanish in 
regions of the flow domain.  
 The conservation laws are written over a control volume V that is greater 
than or equal to the REV but smaller than or equal to the permeable medium 
dimensions.  Except for some restrictions on the connectivity of the surface, V can be 
quite general.  As Fig. 2-4 (a) shows, the surface area A 
 



 6 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4  Geometries for conservation 
law derivations.
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of V is made up of elemental surface areas ΔA from the center of which is pointing a 
unit outward normal vector .n  The sum of all the surface elements ΔA is the total 
surface area A of V.  This sum of all the ΔA becomes the total surface area A as the 
largest ΔA approaches zero. 
 The conservation equation for each component in each phase in volume V is 
 

Rate of Net rate of   Net rate of
accumulation of   in phase  generation of  

in phase  in transported into in phase  inside 

i
i j i

j V V j V

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 1,  . . . ,  Ci N=     1,  . . . ,  Pj N=  . (2.1-1) 
 

There are a total of C PN N  equations represented by Eq. (2.1-1).  This 
equation is the rate form of the conservation equation; an equivalent form based on 
cumulative flow follows from integrating Eq. (2.1-1) with respect to time (see Sec. 
2-5).  From left to right in Eq. (2.1-1) are the accumulation, flux, and source terms, 
respectively. A component can be transported within a phase by convection or 
hydrodynamic dispersion. The generation of a component in a given phase can be the 
result of chemical or biological reactions, injection or production of a component into 
or from wells, or mass transfer from one phase to the next owing to phase changes.  
These physical processes are discussed in more detail in Sec. 2.2.   
 The first term on the right side of Eq. (2.1-1) can be written as 
 

 
Net rate of   Rate of  Rate of  
in phase   in phase in phase      

transported into transported into transported from 

i i i
j j j

V V V

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

  
                                                   1,  . . . ,       1,  . . . ,  C Pi N j N= =  . (2.1-2) 
 

We give mathematical form to each term in the following paragraphs.   
The accumulation term for component i in phase j is 

 

 { }
Rate of Total mass of

accumulation of     in phase 
in phase   in in 

ijV

d di i j W dV
dt dt

j V V

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

∫  (2.1-3) 

 
where Wij is the component concentration in units of mass of i in phase j per unit bulk 
volume. The units of Eq. (2.1-3) are mass per time.  The volume integral represents 
the sum of infinitesimal volume elements in V weighted by the concentration.  
 Since V is stationary,  

 { } ij
ijV V

dWd W dV dV
dt dt

=∫ ∫  . (2.1-4) 
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This entire development may be repeated with a time-varying V with the same result 
(Slattery, 1972). 

The net flux term follows from considering the rate of transport across a 
single surface element into V as shown in Fig. 2-4(b). Let ijN  be the flux vector of 
component i in phase j evaluated at the center of ΔA in units of mass of i in phase j 
per surface area-time. ijN  consists of components normal and tangential to .n  
However, only the normal component ijn Ni  is crossing ΔA, and the rate of transport 
across ΔA is 

 

 
Rate of transport
of   in phase  

across  into 
iji j n N A

A V

⎧ ⎫
⎪ ⎪ = − Δ⎨ ⎬
⎪ ⎪Δ⎩ ⎭

i  (2.1-5) 

 
The minus sign arises because n  and ijN  are in opposing directions for transport 
across ΔA into V ( 0ijn N <i ), and this term must be positive from Eq. (2.1-1). An 
inherent assumption in Eq. (2.1-5) is that the flux across ΔA is uniform, an 
assumption that is valid as ΔA approaches zero. (Always remember that the 
continuum assumption assures continuity in taking limits.)  The summation of 
infinitesimal surface elements yields 
 

 
Net rate of   

in phase  
transported into 

ijA

i
j n N dA

V

⎧ ⎫
⎪ ⎪ = −⎨ ⎬
⎪ ⎪
⎩ ⎭

∫ i  . (2.1-6) 

 
Since the surface integral is over the entire surface of V, both flow into and from V 
are included in Eq. (2.1-6). 

The net rate of generation of i in phase j inside V is 
 

 
Net rate of

generation of   
in phase  inside 

ij mijV V
i R dV r dV

j V

⎧ ⎫
⎪ ⎪ = +⎨ ⎬
⎪ ⎪
⎩ ⎭

∫ ∫  , (2.1-7) 

 
where Rij is the rate of mass generation in units of mass of i in phase j per bulk 
volume-time. This term can account for both generation (Rij >0) and destruction (Rij 
<0) of i, either through one or more chemical or biological reactions or through 
physical sources (wells) in V.   

The term rmij in Eq. (2.1-7) expresses the rate of mass transfer of component i 
from or into phase j owing to vaporization, condensation, or sorption. We must have 

1 0PN
j mijr= =∑ , a relation following from the inability to accumulate mass at a 

volumeless phase interface.   You can show that this is true by letting V be the 
interface itself.  With no volume the fluxes must be continuous across an interface.  

Substitution of Eqs. (2.1-3), (2.1-4), (2.1-6), and (2.1-7) into Eq. (2.1-1) 
gives the following scalar equation for the conservation of i in each phase: 
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 ,    ij
ij ij mijV A V V

dW
dV n N dA R dV r dV

dt
+ = +∫ ∫ ∫ ∫i   

                                                    1,  . . . ,       j 1,  . . . ,  C Pi N N= = , (2.1-8) 
 
Equation (2.1-8) is an overall balance, or “weak” form of the conservation equation 
in each phase.  Versions of this equation will be used in solving for solutions that 
have discontinuities, such as those that involve shocks or fronts.  The weak form, 
which is called an overall balance in the last section of this chapter, is also useful in 
numerical simulation primarily because it is not tied to a particular coordinate 
system. 

The surface integral in Eq. (2.1-8) converts to a volume integral through the 
divergence theorem 
 

V A
BdV n BdA∇ =∫ ∫i i , (2.1-9) 

 
where B can be any scalar, vector, or tensor function of position in V (with 
appropriate changes in the operator definitions). The symbol ∇  is the divergence 
operator, a kind of generalized derivative, whose specific form depends on the 
coordinate system. Table 2-1 gives forms of ∇  in rectangular, cylindrical, and 
spherical coordinates. The function B must be single-valued in V, a requirement met 
by most physical solutions. Finally, implicit in the representation of the surface 
integral of Eqs. (2.1-8) and (2.1-9) is the requirement that the integrand be evaluated 
on the surface A of V.  
 Application of the divergence theorem to Eq. (2.1-8) gives 
 

 0 ij
ij ij mijV

W
N R r dV

t
∂⎛ ⎞

+ ∇ − − =⎜ ⎟∂⎝ ⎠
∫ i . (2.1-10) 

 
Using Eq. (2.1-10) restricts the formulation somewhat.  V must now be simply 
connected (a point on the exterior surface of V is always exterior) and the spatial 
derivatives implied by the divergence exist because of the continuum assumption 
discussed above.  But since V is arbitrary in location and size, the integrand must be 
zero: 
 

                    0ij
ij ij mij

W
N R r

t
∂

+ ∇ − − =
∂

i      1,  . . . ,       j 1,  . . . ,  C Pi N N= = . (2.1-11) 

 
The time derivative in Eq. (2.1-11) is now a partial derivative, the introduction of 
other independent variables--the spatial coordinates--making this necessary.  
Equation (2.1-11) is the differential or “strong” form for the component conservation 
equation in each phase. It applies to any point (actually an REV) within the 
macroscopic dimensions of the permeable medium independent of the boundary 
conditions.  From left to right in Eq. (2.1-11), the terms are now the accumulation, 
transport, and source terms, the last consisting of two types. 
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 The strong form, Eq. (2.1-11), is useful in developing analytic 

solutions, a mainstay of this text.  Equation (2.1-11) and its analogous conservation 
equations are called the strong form because they express conservation at a point (a 
REV) within a medium.  The word "strong" means that if Eq. (2.1-11) is satisfied at 
all points within V, Eq.  (2.1-8), the weak form, is also satisfied.  The converse is not 
true.  The exact form of the equations depends on the coordinate systems being used.  
The next section gives specific definitions to the component concentration Wij, 
flux ijN , and source terms Rij and mijr . 
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TABLE 2-1  SUMMARY OF DIFFERENTIAL OPERATORS IN RECTANGULAR, CYLINDRICAL, 
AND SPHERICAL COORDINATES 

Rectangular coordinates 
(x, y, z) 

Cylindrical coordinates 
(r, θ, z) 

Spherical coordinates 
(r, θ, φ) 

yx z
BB B

B
x y z

∂∂ ∂
∇ = + +

∂ ∂ ∂
i  

 
 

( )1 1r zBrB B
B

r r r z
θ

θ
∂∂ ∂

∇ = + +
∂ ∂ ∂

i  

 
 

2

2

( )1 1 ( sin )
sin

rr B
B B

r rr θ θ
θ θ

∂ ∂
∇ = +

∂ ∂
i  

           
1

sin
B

r
φ

θ φ
∂

+
∂

 

[ ]x
SS
x

∂
∇ =

∂
 [ ]r

SS
r

∂
∇ =

∂
 [ ]r

SS
r

∂
∇ =

∂
 

[ ]y
SS
y

∂
∇ =

∂
 

1[ ] SS
rθ θ

∂
∇ =

∂
 

1[ ] SS
rθ θ

∂
∇ =

∂
 

[ ]z
SS
z

∂
∇ =

∂
 [ ]z

SS
z

∂
∇ =

∂
 

1[ ]
sin

SS
rφ θ φ

∂
∇ =

∂
 

2 2 2
2

2 2 2

S S SS
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

2 2
2

2 2 2

1 1S S SS r
r r r r zθ

∂ ∂ ∂ ∂⎛ ⎞∇ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 2 2

2

1 SS r
r rr

∂ ∂⎛ ⎞∇ = ⎜ ⎟∂ ∂⎝ ⎠
 

        
2

2 2 2 2

1 1sin
sin sin

S S
r r

θ
θ θθ θ φ
∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

 

 
Note: B = vector function 
          S = scalar function 
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2-2 DEFINITIONS AND CONSTITUTIVE EQUATIONS 
      FOR ISOTHERMAL FLOW 

 
Each term in Eq. (2.1-11) represents an important physical process or mechanism.  
This section examines each of these processes in further detail and defines some key 
formation and fluid parameters.  The units on Eq. (2.1-11) are amount per unit time.  
Amount means either mass or moles; we will continue to use mass generically to 
mean either mass or moles.  When a distinction between the two is important, we will 
be explicit.   
 Consider first a bulk volume V at the REV scale where NP phases exist.  
Figure 2.5 illustrates such a volume that contains three phases: a solid phase 
consisting of rock grains or soil, an aqueous phase, and an oleic phase.  The porosity 
φ  is defined as the fraction of the bulk permeable medium that is pore space, that is, 
the pore volume divided by the bulk volume V.  The phase saturation Sj is defined as 
the fraction of the pore volume occupied by phase j.   
 
 
 

 
 
Figure 2-5 Representative bulk volume occupied by fluid and solid phases.  The 
volume of the fluid phases are equal to jS Vφ . 
 

The volume fraction of phase j, jε , is the volume of phase j divided by the 
bulk volume V.   For fluid phases such as liquids and vapors, j jSε φ=  where jSφ  is 
also called the fluid content.  For the solid phase, 1sε φ= − , which is the grain 
volume divided by the bulk volume V.  By definition 1 1PN

j jε= =∑ .  The parameter jε  
is useful in writing general equations for any phase including the solid phase, as is 
done next.  In summary, the fraction of the bulk volume that is occupied by phase j is  
 

 
    for fluid phases

1   for the solid phase 
j

j

Sφ
ε

φ
=

−
⎧
⎨
⎩

 (2.2-1) 
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Accumulation Term 
 
The accumulation term in Eq. (2.1-11) contains the component concentration for a 
given phase (Wij), which we write now in terms of the volume fraction jε .  For solid 
or fluid phases the mass of phase j in any bulk volume V is given by j jVε ρ .  As 
before, the inherit assumption here is that the density of each phase is uniform in V, 
which is strictly valid only as V approaches the REV scale. 

We now define the mass fraction of component i in V to be ω i j .  The 
parameter ω i j  is the mass of component i in phase j divided by the total mass of all 
components in that same phase.  Hence, 1 1CN

i ijω= =∑ . With that definition the total 
mass of component i in phase j in V is ijW V  where ij j j ijW ε ρ ω= .   
 
Flux Terms 
 
For advective transport of component i we assume that phase j moves with its 
volume-averaged velocity ju .  The component of the volumetric flow rate of 
component i that enters the elemental surface ΔA is jn u A− ⋅ Δ .  The mass flow rate of 
component i in phase j that enters V thru the elemental surface ΔA is therefore 

j ij jn u Aρ ω− ⋅ Δ .  Again, phase j properties are assumed uniform across ΔA, which is 
valid as the elemental surface area becomes small.  The component flux in phase j 
owing to advective transport alone is therefore equal to Cij j ij jj uρ ω= .  Note that the 
pore velocity for phase j is given by j j jv u ε= . 

Hydrodynamic dispersion includes both molecular diffusion and mechanical 
dispersion. Molecular diffusion is independent of the direction or magnitude of flow, 
whereas mechanical dispersion in permeable media flows is anisotropic and depends 
on the magnitude of flow.  Dispersion has the same form as does diffusion in 
nonpermeable media flows and, in fact, collapses to molecular diffusion in the limit 
of small ju  (see Chap. 5). At larger ,ju  the components of ijK , a second-order 
tensor, can be many times larger than molecular diffusion since they now contain 
contributions from fluctuations of the velocity ju  and mass fraction ω i j  about their 
average values in the REV (Gray, 1975). Two components of ijK  for a homogeneous, 
isotropic permeable medium (Bear, 1972) are 
 

 
2 2 2( )

( ) ij lj xj tj yj zj
xx ij

j j

D u u u
K

S u

α α
τ φ

+ +
= +  (2.2-2) 

 
( )

( ) lj tj xj yj
xy ij

j j

u u
K

S u
α α

φ
−

= , (2.2-3) 

 
where the subscript l refers to the spatial coordinate in the direction parallel, or 
longitudinal, to bulk flow, and t is any direction perpendicular, or transverse, to l. Di j  
is the effective binary diffusion coefficient of component i in phase j (Bird et al., 
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2002), α l j  and α t j  are the longitudinal and transverse dispersivities, and τ is the 
permeable medium tortuosity. (Kt)ij is positive since (α l j  – α t j) is always positive. 

As is customary, hydrodynamic dispersion is assumed to have a Fickian form 
that is empirically modified for the volume fraction jε  of each phase.  The flux of 
component i in phase j with respect to volume-averaged velocity owing to 
hydrodynamic dispersion alone is taken to be ( )j ij j ijDijj Kε ρ ω= − ∇  where the product 

j ijρ ω  is the mass concentration of component i in phase j.  Alternatively, the flux 

with respect to mass-averaged velocity is j j ij ijDijj Kε ρ ω= − ∇ .  The negative sign 
indicates that positive flux occurs in the direction of decreasing mass fraction.  Note 
that ijω∇  has units of inverse length whereas ijK  has units of squared length per time.  

The total mass flux owing to both advective and dispersive transport is the 
sum of the two.  Thus, the component flux for phase j owing to both advective and 
hydrodynamic dispersive transport is ( )ij j ij ij Cij Dij j ij j j ij j ijN u j j u Kρ ω ρ ω ε ρ ω= = + = − ∇ , 
where iju  is the statistical average apparent velocity of a component in phase j owing 
to both convection and dispersion.  The velocity iju  therefore is the sum of the 
molecular velocities divided by the total number of molecules (Bird et al. 1960).  The 
convective and dispersive flux for a component in the solid phase is negligible for 
most permeable media.  The total mass flux of a component is just the sum of 

ijN over all phases. 
Volume or mass-averaged velocities are sometimes used interchangeably in 

the literature even though the form of the dispersion term depends on the choice of 
velocity.  The volume-averaged velocity ju  for a multicomponent system is 

1
ˆCN

j j ij ij iji
u u Vρ ω

=
= ∑  where îjV  is the partial mass volume of a component in phase j, 

where from thermodynamics 
1

ˆ 1CN
j ij iji

Vρ ω
=

=∑ .  The partial mass volume depends on 
the mass fractions ijω , pressure, and temperature.  The mass-averaged velocity is 

1 1 1
/C C CN N N

j j ij ij j ij ij iji i i
u u uρ ω ρ ω ω

= = =
= =∑ ∑ ∑ .   Because the difference in the two velocities 

can be shown to be j ij ln jKε ρ∇i , the volume-averaged velocity is equal to the mass-
averaged velocity for the case of an incompressible fluid.  Experiments typically 
measure volume-averaged velocities since volumetric rates are directly measured at 
the inlet and outlet ends.  Phase velocities, however, are never directly measured in 
situ and are approximated from empirical flux laws such as Darcy’s law.  Thus, the 
choice of volume or mass-averaged velocities likely does not result in significant 
errors for real mixtures owing to uncertainties in other formation parameters. 
 
Source Terms 
 
The source term ijR  in Eq. (2.1-11) accounts for the rate of appearance or generation 
of component i in phase j because of homogeneous chemical or biological reactions 
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within phase j (Levenspiel, 1999).  Frequently, Rij is used to represent reactions 
occurring at phase boundaries even though, strictly speaking, such reactions are the 
consequence of flux terms evaluated at phase boundaries in the volume-averaging 
procedures (Gray, 1975).  In weak forms of the conservation laws it is also 
convenient to use Ri j  to represent physical sources (wells) that are either specified or 
related to the phase pressures and saturations.   

There is no general function for ijR , although the volume fractions of each 
phase are handled through ij j ijR rε=  where rij is the reaction rate of component i in 
phase j.   Both ijR  and rij have units of mass per volume per time, but rij is in terms of 
the phase volume not the bulk volume.  Each r i j  could represent the sum of several 
reactions within phase j if component i participates in simultaneous reactions.  In a 
given phase, mass is conserved so that 

1
0CN

iji
r

=
=∑ if the rij  is in mass units.   This is 

not correct if mole units are used to express the reaction rates because moles are not 
conserved in a chemical reaction.  An example of a first-order reaction rate for 
radioactive decay or biodegradation is ij i j ijr k ρ ω= −  where ik  is the decay constant or 
reaction rate coefficient in units of inverse time.  

The second source term mijr  in Eq. (2.1-11) allows for the appearance or 
disappearance of component i by mass transfer from phase j to another phase.  This 
term is difficult to calculate without detailed analysis of the transport occurring 
within the phases. Thus, when mass transfer occurs, one typically simplifies the 
equations by using overall compositional balances as described later. 

The total mass generation rate of component i in phase j per bulk volume of 
permeable medium is ij mijR r+ .   Injection and production of component i by wells is 
not explicitly included in this term and are better treated as boundary conditions or 
point sources. 
 
Fundamental Conservation Equations for a Component in a Phase 
 
A general set of partial differential equations for the conservation of component i in 
phase j is obtained upon substitution of the definitions for concentration Wij, flux ijN , 
and source terms into Eq. (2.1-11):   
  

 ( ) ( )( )j j ij j ij j j ij j ij j ij miju K r r
t

ε ρ ω ρ ω ε ρ ω ε∂
+ ∇ − ∇ = +

∂
i   

                                           1,  . . . ,       j 1,  . . . ,  C Pi N N= =   . (2.2-4) 
 
The fundamental equations in Eq. (2.2-4) are the starting point for developing all 
equations for permeable media flows.  The method used in this text is to simplify Eq. 
(2.2-4) by making the appropriate assumptions for the problem of interest.  Several 
special cases or "working equations" are given in Sec. 2-4.  There are a total of C PN N  
equations represented by Eq. (2.2-4). 
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Example 2-1.  Writing the conservation equations for each component and phase.  
Consider two-component, three-phase flow in a permeable medium, where the 
components are component 1 and 2, and the phases are aqueous (w), oleic (o), and 
the solid phase (s).  Write the specific conservation equations for each component 
and each phase assuming the solid phase is stationary (no deformation) and 
dispersive transport of each component in the solid phase is negligible.  

Under these assumptions, Eq. (2.2-4) consists of the following set of six 
equations:  
 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

1 1 11 1 11 1 1 11 1 11 1 11 11

1 1 21 1 21 1 1 21 1 21 1 21 21

2 2 12 2 12 2 2 12 2 12 2 12 12

2 2 22 2 22 2

 
aqueous phase

m

m

m

S u S K S r r
t

S u S K S r r
t

S u S K S r r
t

S u
t

φ ρ ω ρ ω φ ρ ω φ

φ ρ ω ρ ω φ ρ ω φ

φ ρ ω ρ ω φ ρ ω φ

φ ρ ω ρ ω φ

∂ ⎫+ ∇ − ∇ = + ⎪⎪∂
⎬∂ ⎪+ ∇ − ∇ = +
⎪∂ ⎭

∂
+ ∇ − ∇ = +

∂
∂

+ ∇ −
∂

i

i

i

i ( )( )

( )( ) ( )

( )( ) ( )

2 22 2 22 2 22 22

1 1 1

2 2 2

oleic phase

1 1
 solid phase

1 1

m

s s s m s

s s s m s

S K S r r

r r
t

r r
t

ρ ω φ

φ ρ ω φ

φ ρ ω φ

⎫
⎪⎪
⎬
⎪∇ = +
⎪⎭

∂ ⎫− = − + ⎪⎪∂
⎬∂ ⎪− = − +
⎪∂ ⎭

 

 
The terms that remain in the solid phase equations allow for chemical reactions and 
mass transfer by adsorption.  The above equations were arbitrarily grouped by the 
type of phase; they could have been grouped by the type of component.   
 
Overall Compositional Balances 
 
Important subsets of the fundamental equations are the overall compositional balance 
equations (see Fig. 2-1).  Overall balances are written over all phases for each 
component.  These set of NC equations result from grouping Eqs. (2.1-11) or (2.2-4) 
by component type and then summing those grouped equations over all phases.   The 
result of the summation of the component equations from Eq. (2.1-11) yields 
 

                     i
i i

W
N R

t
∂

+ ∇ =
∂

i       1,  . . . ,  Ci N= , (2.2-5) 

 
where 1 0PN

j mijr= =∑ and the equation has units of mass/bulk volume..  If we insert Eqs. 
(2.2-7) through (2.2-9) from Table 2-2 into Eq. (2.2-5), we arrive at a general form of 
the overall conservation equations 
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( )( )
1 1

(1 )
P PN N

j j ij s is j ij j j ij j ij
j j

S u S K
t

φ ρ ω φ ρ ω ρ ω φ ρ ω
= =

⎛ ⎞ ⎛ ⎞∂
+ − + ∇ − ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

∑ ∑i i  

 
1

(1 ) ,      1,  . . . , 
PN

j ij is C
j

S r r i Nφ φ
=

= + − =∑ . (2.2-6) 

 
The compositional equations are useful for modeling the overall flow of 

component concentrations and are often used when mass transfer between fluid 
phases occurs.   Of course, some detail is lost because of the disappearance of the 
interphase transport terms.  The detail is partially restored by invoking the local 
equilibrium assumption (Lake et al., 2002) that provides algebraic relations between 
concentrations in the phases.  This assumption forms the justification for the 
discussion in Chap. 4.  The local equilibrium assumption, used in the majority of the 
cases dealt with in this text and in the remainder of this chapter, is discussed more 
below. 

Table 2-2 summarizes the overall balance equations needed for a complete 
description of isothermal, multicomponent, multiphase flow in permeable media. 
Column 1 in Table 2-2 gives the differential form of the equation named in column 2. 
Column 3 gives the number of scalar equations represented by the equation in 
column 1. Columns 4 and 5 give the identity and number of independent variables 
added to the formulation by the equation in column 1. ND is the number of spatial 
dimensions ( 3).DN ≤  The solid phase is a single homogeneous phase though more 
than one solid can exist. 
 
 
Example 2-2.  Writing the overall compositional equations for each component.  
Combine the fundamental equations given in Example 2-1 to form the overall 
compositional balances.  Use the same assumptions as in Example 2-1. 

We first sort the equations listed in Example 2-1 by components 1 and 2.  We 
then sum them over the phases to obtain the overall compositional balances in the 
form of Eq. (2.2-5).  The resulting summation consists of the following set of two 
equations:  

 

 

( )( )

( )( ) ( )( )
( )

( )( )

( )( )

1 1 11 2 2 12 1

1 11 1 1 11 2 12 2 2 12

1 11 2 12 1

1 1 21 2 2 22 2

1 11 1 1 21 2 12 2 2

1 11 2 12

1 21

1

component 1

1

1

s s

s

s s

S S
t

u S K u S K

S r S r r

S S
t

u S K u S

φ ρ ω φ ρ ω φ ρ ω

ρ ω φ ρ ω φ

φ φ φ

φ ρ ω φ ρ ω φ ρ ω

ρ ω φ ρ ω φ

ρ ω ρ ω

ρ ω

∂
+ + − +

∂

∇ − ∇ + − ∇

= + + −

∂
+ + − +

∂

∇ − ∇ + −

⎫
⎪
⎪⎪⎡ ⎤⎬⎣ ⎦⎪
⎪
⎪⎭

i

i ( )( )
( )

12

1 21 2 22 2

2 12 component 2

1 s

K

S r S r rφ φ φ

ρ ω∇

= + + −

⎫
⎪
⎪⎪⎡ ⎤⎬⎣ ⎦⎪
⎪
⎪⎭
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where we have used 1 0PN

j mijr= =∑ .  The equations above can be rewritten as 
 

( ) ( )( )
( )

( ) ( )( )
( )

2 2

1 1 1 1 1
1 1

2

1 11 1
1

2 2

2 2 1 2 2
1 1

2

2 2
1

1
 component 1

1

1

1

j j j s s j j j j j j j
j j

s
j

j j j s s j j j j j j j
j j

j j s
j

S u S K
t

S r r

S u S K
t

S r r

φ ρ ω φ ρ ω ρ ω φ ρ ω

φ φ

φ ρ ω φ ρ ω ρ ω φ ρ ω

φ φ

= =

=

= =

=

⎫⎛ ⎞ ⎡ ⎤∂
+ − + ∇ − ∇ ⎪⎜ ⎟ ⎢ ⎥∂ ⎪⎝ ⎠ ⎣ ⎦

⎬
⎪= + − ⎪⎭
⎫⎛ ⎞ ⎡ ⎤∂

+ − + ∇ − ∇ ⎪⎜ ⎟ ⎢ ⎥∂ ⎝ ⎠ ⎣ ⎦
⎬

= + −

∑ ∑

∑

∑ ∑

∑

i

i
 component 2⎪

⎪
⎪⎭
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TABLE 2-2  SUMMARY OF OVERALL CONSERVATION STRONG FORM EQUATIONS FOR ISOTHERMAL FLUID FLOW IN 
PERMEABLE MEDIA 

Dependent variables† 

Equation 
(1) 

Name 
(2) 

Number of 
independent 

scalar 
equations* 

(3) 
Identity 

(4) 
Number 

(5) 

(2.2-5) i
i i

W
N R

t
∂

+ ∇ =
∂

i  Component  i 
conservation NC ,  ,  i i iW R N  2NC + NCND 

(2.2-7)
1

(1 )
PN

i j j ij s is
j

W Sφ ρ ω φ ρ ω
=

= + −∑  Overall concentration NC – 1 ρ j ,  S j ,  ω i j ,  ω i s  2NP + NPNC + NC 

(2.2-8)

( )( )
1

PN

i j ij j j ij j ij
j

N u S Kρ ω φ ρ ω
=

= − • ∇∑  
Component  i total 
flux NCND ju  NPND 

(2.2-9)
1

(1 )
PN

i j ij is
j

R S r rφ φ
=

= + −∑  Component  i total 
source NC – 1 r i j ,  r i s  NPNC + NC 

(2.2-10)
1

0
CN

i
i

R
=

=∑  Total reaction 
definition 

1 
 

  

(2.2-11) ( )j rj j ju k P gλ ρ= − • ∇ −  Darcy’s law N P N D  λ r j ,  P j  2NP 

(2.2-12) ( , , , )rj rj jS u xλ λ ω=  Relative mobility NP   

(2.2-13) ( , , )j n cjnP P P S xω− =  Capillary pressure 
definition 

NP – 1   

 
* Total independent equations = ND(NP + NC) + 2NPNC + 4NP + 4NC 
† Total dependent variables = ND(NP + NC) + 2NPNC + 4NP + 4NC 
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TABLE 2-2  CONTINUED 

Dependent variables† 

Equation 
(1) 

Name 
(2) 

Number of 
independent 

scalar 
equations* 

(3) 
Identity 

(4) 
Number 

(5) 

(2.2-14)
1

1
CN

ij
i

ω
=

=∑  Mass fraction 
definition 

NP 
   

(2.2-15)
1

1
CN

is
i

ω
=

=∑  Solid phase mass 
fraction definition 

1 
 

  

(2.2-16)
1

1
PN

j
j

S
=

=∑  Saturation definition 1 
  

(2.2-17) ,( )
jij j ij Pr r ω=  Homogeneous kinetic 

reaction rates 
(NC – 1)NP 
 

  

(2.2-18) ( )is is isr r ω=  Solid phase reaction 
rates 

NC – 1 
 

  

(2.2-19)
1

0
CN

ij
i

r
=

=∑  Total phase reaction 
definition 

NP 
 

  

(2.2-20)
1

0
CN

is
i

r
=

=∑  Solid phase total 
reaction rates 

1 
 

  

(2.2-21) ( )ij ij ik k jω ω ω ≠=  Equilibrium relations 
(or phase balances) 

NC(NP – 1)   

(2.2-22) ( )is is ijω ω ω=  Solid phase 
equilibrium relations 
(or phase balances) 

NC   

(2.2-23) ( , )j j jT Pρ ρ=  Equations of state NP   

 
* Total independent equations = ND(NP + NC) + 2NPNC + 4NP + 4NC 
† Total dependent variables = ND(NP + NC) + 2NPNC + 4NP + 4NC 
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 A normally subscripted quantity (for example ω i j) appearing without 
subscripts in Table 2-2 indicates a relationship involving, at most, all members of the 
subscripted set. In the listing of dependent variables, the primary media properties, 
such as porosity φ, and the permeability tensor k , are given functions of position x  
within the permeable medium. These quantities are, strictly speaking, functions of the 
fluid pressure within the medium (Dake, 1978), but for pressures nondestructive to 
the permeable medium, this effect is generally weak. We also assume the solid-phase 
density ρs is given, as is the dispersion tensor ijK , even though the latter is a function 
of the phase velocities and molecular diffusivities. The remaining terms in Table 2-2 
are defined in the Nomenclature and below. 
 The first four equations in Table 2-2 are the component conservation 
Eq. (2.2-5) and definitions for the accumulation, flux, and source terms in this 
equation. We take the NC conservation equations to be the independent set of 
equations; the conservation of overall mass or continuity equation, which follows 
from summing Eq. (2.2-5) from 1 to NC, is not listed as an independent equation (see 
Sec. 2-4). In solving specific problems, it may be more convenient to take the 
problem statement as the continuity equation and NC – 1 mass conservation equations 
with the major component (for example, water in flow of dissolved salts in an 
aqueous solution) being the one omitted. 
 
Definition of Terms in the Overall Compositional Equations 
 
The accumulation term Wi, the overall concentration of component i, represents the 
sum of the component i in the NP flowing phases plus the solid phase as shown in Eq. 
(2.2-7).  There are only NC – 1 independent Wi, since summing on i with the mass 
fraction definitions of Eqs. (2.2-14) and (2.2-15) gives 
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= =

= + − ≡∑ ∑  (2.2-24) 

 
where ρ is the overall density of the permeable medium (total mass flowing plus 
solid phase divided by the bulk volume).  We can regard the overall density as a 
complicated function of some local pressure P and the set of overall mass fractions 
defined as 
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Here ω i  is the mass of component i in all phases divided by the total mass of the 
permeable medium.  The combination of Eqs. (2.2-24) and (2.2-25) yields a 
constraint on the Wi 
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which means there are NC – 1 independent Wi, not NC. The notation on the left side of 
Eq. (2.2-26) indicates that ρ is a function of two variables, the set of overall 
concentrations and pressure. Equations (2.2-24) through (2.2-26) can be construed as 
a constraint on the mass fraction ω i j , phase pressures Pj, and saturations Sj. 
  
  
Auxiliary Relations 
 
Equation (2.2-11) is a multiphase version of Darcy’s law for flow in permeable 
media (Collins, 1976). The single-phase version of Darcy’s law is actually a volume-
averaged form of the momentum equation (Slattery, 1972; Hubbert, 1956).  The form 
given in Eq. (2.2-11) assumes creeping flow in the permeable medium with no fluid 
slip at the solid phase boundaries. Corrections to account for non-Darcy effects 
appear in standard references (Collins, 1976; Bear, 1972). The potential function for 
the phase superficial velocity ju  is the vectorial sum ,j jP gρ∇ +  where Pj is the 
pressure within the continuous phase j. g  is the gravitational vector, which is 
assumed constant and directed toward the Earth’s center. Hereafter in this text, we 
assume the coordinate direction parallel to g  is positive upward, away from the 
Earth's center. The gravitational vector can be written as 
 
 zg g D= − ∇ , (2.2-27) 
 
where g is the magnitude of the gravitational vector and Dz is a positive distance 
above some horizontal reference plane, typically depth. For Cartesian coordinate 
systems with a constant inclination with the reference plane, zD∇ becomes a vector 
consisting of cosines of the inclination angles between the respective axis and the 
vertical. 
 The tensorial form of the permeability k  implies an anisotropic permeable 
medium having coordinate axes unaligned with the principal axis of .k  With the 
inclusion of ,k  we have now included all the primary permeable media properties, φ, 
k , αlj, αtj, and τ, into the formulation.  These properties, and their spatial 
distribution, are geologic in nature, being characterized by the details of the 
individual flow paths. 

The other quantity in Eq. (2.2-11) is the relative mobility λrj of phase j, 
defined as the quotient of the relative permeability krj and viscosity μj. 
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= . (2.2-28) 

 
Equation (2.2-28) decomposes λrj into a rock–fluid property krj and a fluid property 
μ j . krj is a function of the tendency of phase j to wet the permeable medium, of pore 
size distribution, and of the entire set of phase saturations (see Chap. 3). μj is a 
function of the phase composition and, if phase j is non-Newtonian, the magnitude of 
the superficial velocity ju  (see Chap. 8). The relative permeabilities and viscosities 
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krj and μ j  are usually determined experimentally to give λrj. It is slightly more general 
to write the rj kλ  product in Eq. (2.2-11) as 
 

 j
rj

j

k
kλ

μ
=  (2.2-29) 

  
where jk  is the phase permeability tensor. This form allows for anisotropic relative 
permeabilities, but little is known about the anisotropic nature of the relative 
permeabilities, so it remains a scalar function here, that is, j rjk k k= .  Relative 
permeabilities and viscosities are chemical properties. 
 The difference between the phase pressures of any two phases flowing in the 
REV is the capillary pressure, defined as in Eq. (2.2-13). The capillary pressure 
between the phases j and n is a function of most of the same variables as the relative 
permeability (Fatt and Dykstra, 1951). That there are NP – 1 independent relations 
follows from considering the set of all capillary pressures with j fixed, Pc1j, Pc2j, . . . , 

.
PjcNP  Ignoring the trivial case of Pcjj (=0), there are clearly NP – 1 capillary pressures. 

The capillary pressure Pckn between any two other phases k and n may be expressed 
as a linear combination of members from the original set. 
 
 ( ) ( )ckn k n k j j n ckj cjnP P P P P P P P P= − = − + − = + . (2.2-30) 
 
Hence there are only NP – 1 independent capillary pressure relations, usually 
determined experimentally under static conditions. We discuss capillary pressure in 
more detail in Chap. 3. 
 The pressures Pj are the continuous phase pressures, not the pressures that 
would exist in disconnected “globules” of phase j. In the latter case, the phase 
pressure differences still exist but, being a reflection of the local permeable medium 
pore configuration, are not uniquely determined by the functions given in Eq.  
(2.2-13). 
 Equations (2.2-14), (2.2-15), and (2.2-16) follow from the definitions of mass 
fraction and phase saturation, respectively. 
 Equations (2.2-17) through (2.2-20) are definitions of the reaction rate of 
component i in phase j or in the solid phase. As was true for Ri, there can be no net 
accumulation of mass in a phase owing to chemical reaction. Then the reaction rate 
terms rij and ris sum to zero as indicated by Eqs. (2.2-18) and (2.2-19) if the equation 
is written in mass units. 
 
Local Equilibrium 
 
Equations (2.2-21) and (2.2-22) are relations among the mass fractions of the NP 
flowing phases and the solid phase present in the REV. These relations arise from 
solving the conservation equation for each component in each phase 
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i . (2.1-11) 

 
Since the sum of the conservation equations over all flowing phases for component i 
is Eq. (2.2-5), there are NC(NP – 1) such independent phase balances.  Since there are 
also NC phase balances for the solid phase, the total number of independent relations 
is NCNP. There are a similar number of additional unknowns, the rmij, which must be 
independently specified. 
 The phase balance is formally correct, but requires considerable additional 
work to be useful.   A much more practical approach is to assume local 
thermodynamic equilibrium; that is, the mass fractions of component i are related 
through thermodynamic equilibrium relations (Pope and Nelson, 1978). For flow 
through naturally occurring permeable media, the assumption of local equilibria 
among phases is usually adequate (Raimondi and Torcaso, 1965). Exceptions are 
flows at very high rates or leachant flows such as might occur in alkaline floods.  The 
local equilibrium approximation, or LEA, is discussed further in Lake et al., 2002. 
 If local equilibrium applies, the number NCNP of independent scalar 
equations may be derived from the phase rule (see Chap. 4). The equilibrium 
relations themselves are very strong functions of the particular EOR process, and 
much of the behavior and many of the important features of a given process can be 
understood from these considerations. Chapter 4 discusses phase behavior generally; 
we reserve more specifics for the relevant sections on solvent, chemical, and thermal 
flooding. 

The final set of equations in Table 2-2 are the equations of state,  
Eq. (2.2-23), which relate each phase density to its composition, temperature, and 
pressure. For LEA flows, the equilibrium relations for the flowing phases, Eqs. 
(2.2-21) and (2.2-22), can be derived from the equation of state as discussed in Chap.  
4. This practice enforces internal consistency between the equilibrium relations and 
the equations of state.  In the text, however, we will often invoke simpler equilibrium 
relations for pedagogical purposes. 
 
Phase Conservation Equations 
 
Another important set of equations are the phase conservation equations, which are 
derived from the fundamental Eqs. (2.1-11) or (2.2-4) (see Fig. 2-1).  This set of NP 
equations result from grouping the equations by each phase and then summing those 
grouped equations over each component.  The result of the summations on Eq. 
(2.2-4) gives 
 

                     ( ) ( )
1
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j j j j mij
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u r
t

ε ρ ρ
=

∂
+ ∇ =

∂ ∑i           1,  . . . ,  Pj N= , (2.2-31) 

 
where we used Eqs. (2.2-19) and (2.2-20) and 
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=

∇ ⋅ =∑  (net dispersive flux in a 
phase is zero).  The dispersive flux term vanishes strictly only for the case when the 
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flux is written with respect to mass-averaged velocity (see exercise 2D).  
Nevertheless, we assume this is also approximately correct when the dispersive flux 
is written with respect to volume-averaged velocity.  The phase conservation 
equations are useful for modeling fluid flow of several phases.  In general, this is the 
case when fluids are immiscible so that the phase compositions are fixed. 

Under the assumption of no mass transfer and sorption, 0mijr = , Eq. (2.2-31) 
reduces to the immiscible phase conservation equations, 
 

                     ( ) ( ) 0j j j ju
t

ε ρ ρ∂
+ ∇ =

∂
i           1,  . . . ,  Pj N= , (2.2-32) 

 
where j jSε φ=  from Eq. (2.2-1) and NP represents only flowing phases.  The solid 
phase equation is omitted because its solution is trivial when it is non-deformable, 
that is, ( )1 sφ ρ− is constant temporally. 
 
Example 2-3.  Writing the phase conservation equations for each phase.  
Combine the fundamental equations given in Example 2-1 to form the phase 
conservation equations for the aqueous, oleic, and solid phases.  Use the same 
assumptions as in Example 2-1. 

The equations in Example 2-1 are already sorted by phase.  Thus, we simply 
sum each set of grouped equations over the components to obtain the form of Eq. 
(2.2-31).  The resulting summation consists of the following three equations:  
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where we have used 
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∇ ⋅ =∑ .  These equations can be further simplified by 
combining terms and using Eqs. (2.2-14), (2.2-15), (2.2-19), and (2.2-20).   The final 
result is 
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 ( )( ) 1 21  solid phases m s m sr r
t

φ ρ∂ ⎫− = + ⎬∂ ⎭
. 

 
When flow is fully immiscible and there is no adsorption, the mass transfer terms in 
the above equations are zero.  When there is no adsorption, the solid phase equation 
can be dropped, that is, its solution is again trivial.  Eqs. (2.2-32) result under these 
additional assumptions. 
 
Continuity Equation 
 
 
We sum Eq. (2.2-6) over the NC components to obtain the equation of continuity, or 
conservation of total mass.  We could have also obtained the equation of continuity 
by summing the phase conservation equations, Eq. (2.2-31), over the NP phases 
including the solid phase.  The equation of continuity is 
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∑ ∑i  . (2.2-33) 

 
Equation (2.2-33) can be written totally in terms of pressure and saturation 
derivatives using Eqs. (2.2-11) and (2.2-24); this equation is a form of the “pressure” 
equation.  Equation (2.2-33) is strictly correct only when the velocity is the mass-
averaged velocity, not volume-averaged.  
 
 

2-3 ENERGY BALANCE EQUATIONS 
 
For steam, hot water injection, and in situ combustion—some of the most important 
EOR and remediation processes—the temperature changes with both space and time.  
The equations of Table 2-2 apply equally well to nonisothermal flow but with an 
additional dependent variable, temperature, added to the formulation. The additional 
equation required to make the problem statement determinant is the conservation of 
energy, or the first law of thermodynamics.  The first law is based on our every day 
observation that for any change of thermodynamic properties, total energy, which 
includes internal, potential, kinetic, heat, and work, is conserved. 
 A statement of the energy balance or first law of thermodynamics suitable for 
our purposes is 
 

 
Rate of Net rate Net rate of

accumulation of energy generation of energy
of energy in transported into inside V V V

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (2.3-1) 

 
where V is an arbitrary volume as in Fig. 2-4.  From left to right in Eq. (2.3-1) are the 
accumulation, flux, and source terms, respectively.  We use the parallel between the 
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component conservation Eq. (2.1-1) and Eq. (2.3-1) to shorten the following 
development.  By analogy to the procedure in Sec. 2-2, the accumulation term in Eq. 
(2.3-1) for a stationary V can be written as 
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Total energy
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Vdt
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where the total energy includes internal, kinetic, and potential energy.  Equation 
(2.3-2) can also be written as 
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1accumulation
2

of energy in 
zV

U v gD
V

d dV
dt

ρ ρ ρ
⎧ ⎫
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⎩ ⎭

∫  (2.3-3) 

 
where U is an overall internal energy (total energy/total mass), and ρ is the overall 
density given by Eq. (2.2-24).  In Eq. (2.3-3) the term ( )21/ 2 vρ  represents total 

kinetic energy per unit bulk volume and zgDρ−  total potential energy per unit bulk 
volume with reference to the depth below some horizontal plane.  

The remaining terms in Eq. (2.3-1) are represented by  
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2 zV V

U v gDd dV EdV W
dt

ρ ρ ρ⎛ ⎞+ − +⎜ ⎟
⎝ ⎠

= − ∇∫ ∫ i  (2.3-4) 

 
where the terms E  and W  represent energy flux, and source, respectively, to which 
we give specific form below.  The negative sign in front of the first term on the right 
is required to make energy flux positive when it flows into volume V.  See Chap. 4 
for more treatment of the first law of thermodynamics with application to phase 
behavior.   
 The source term requires more elaboration than do the other terms in Eq. 
(2.3-4). The form of the first law of thermodynamics for open systems expressed by 
Eq. (2.3-4) requires the W  term to be composed of work components only, in the 
absence of external heating sources.  External heating sources can often be handled 
through boundary conditions.  Heats of reaction, vaporization, and solution are, of 
course, important in several processes, but these are implicitly present in the equation 
in the concentration and flux terms.  Here we consider only the rate of work done 
against a pressure field PVW , although other types of work could be included (see 
exercise 2P).  In this derivation, there is no compression or expansion work done on 
volume V since it is assumed to be fixed.   
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 Returning to Fig. 2-4(b), consider an element in the multiphase, 
multicomponent flow field crossing ΔA.  Since work is the product of force times a 
distance, the rate of work is force times a velocity. The element crossing ΔA is, 
therefore, doing work PVWΔ , where 
 

 
1

PN

PV j j
j

W P An u
=

Δ = − Δ∑ i  . (2.3-5) 

 
The term jP AnΔ  is the force exerted on ΔA by the pressure in phase j. The scalar 
product in Eq. (2.3-5) expresses a general definition of work rate when using vector 
forces and velocities. The negative sign in Eq. (2.3-5) is to satisfy the usual 
thermodynamic sign convention for work, since PVWΔ  must be positive for work 
done on a fluid element flowing into ( 0).jV n u <i  The total pressure-volume work is 
the sum of Eq. (2.3-5) over all surface elements, which, in the limit of the largest ΔA 
approaching zero, becomes a surface integral. Using the divergence theorem, Eq. 
(2.1-9), on this integral gives the final form for .PVW  
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 The expression for work fits well into Eq. (2.3-4).  After collecting all terms 
under the same volume integral and making the integrand zero because V is again 
arbitrary, we have 
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The energy flux term is made up of convective contributions from the 

flowing phases (internal, kinetic, and potential energy), conduction, and radiation, all 
other forms being neglected. 
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For brevity, we neglect radiation in the following discussion, though this transport 
mechanism can be important in estimating heat losses from wells and in certain forms 
of EOR and remediation that involve electromagnetic sources.  For multiphase flow, 
the conductive heat flux is from Fourier’s law, 
 
 c Ttq k T= − ∇ , (2.3-9) 
 
where kTt is the scalar total thermal conductivity. kTt is a complex function of the 
phase saturations and phase kTj and solid kTs thermal conductivities, which we take to 
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be known (see Chap. 11). The parallel between Eq. (2.3-8) and the dispersive flux 
term in Eq. (2.2-8) is obvious. We have also invoked the requirement of local thermal 
equilibrium in this definition by taking the temperature T to be the same in all phases 
within the REV. 
 Inserting definitions (2.3-8) and (2.3-9) into Eq.  (2.3-7) yields 
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The first sum in the energy flux and that in the pressure-volume work expression may 
be combined to give 
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                                                                                 ( ) 0Ttk T− ∇ ∇ =i  (2.3-11) 
 
where Hj = Uj + Pj/ρj is defined as the enthalpy of phase j per unit mass of j.    
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TABLE 2-3  SUMMARY OF ADDITIONAL  STRONG FORM  EQUATIONS FOR NONISOTHERMAL FLUID FLOW 
IN PERMEABLE MEDIA 

Dependent variables† 

Equation 
(1) 

Name 
(2) 

Number 
independent 

scalar* 
equations 

(3) 
Identity 

(4) 
Number 

(5) 
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(2.3-17) ( , , )ij ij jH H T P ω=  Partial mass enthalpy NPNC   

*Total independent equations = 2(NPNC) + 2NP + NC + 3 
† Total dependent variables = 2(NPNC) + 2NP + NC + 3 
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 The conservation equation discussed in this section and in Table 2-3 are 
"overall" in the sense that the balances are written over a REV that contains all the 
phases.  We could have written balances on each phase or each component just as 
was done in the previous section for mass conservation.  These balances would have 
in them terms describing the rate of energy transport between phases and would not 
necessarily assume equality of temperature in all phases within a REV.   

Equation (2.3-11) can also be obtained if the volume V is no longer 
stationary and both pressure-volume and compression-expansion work are present 
(see exercise 2Q).  For example, consider a closed system where volume V expands 
or contracts at the same rate as the fluid flow velocity.  In that case, compress-
expansion work is done on the boundary of V as it deforms and pressure-volume 
work is zero.  This type of work is given by CE extW F uΔ = ⋅ , where extF  is the 
component of external force acting along the velocity vector u .   Work is always 
related to the external pressure or force.  If the external pressure were zero, there 
would be no work done by the system because the surroundings offer no resistance.   
The rate of work done on a surface element of V is therefore, 
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Δ = − Δ∑ i , (2.3-18) 

 
which is identical to Eq. (2.3-5) when the volume V deforms with the phase 
velocities.  The development then proceeds as before, but with the accumulation term 
for a time-varying V deforming at a Darcy rate ju  written as (Slattery, 1972) 
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Equation (2.3-18) can be rewritten in a more familiar form by combining the 
surface element areas with the component of the velocity vector perpendicular to that 
surface element ( j j jq n Au n q⊥Δ = Δ = Δi i ), summing over all surface elements, and 
taking the limit as the largest jq ⊥Δ approaches zero.  The result is, 
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Further, when the phase pressures are uniform along the boundary of V, the phase 
pressures can pass through the integral so that 
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jV  in Eq. (2.3-20) is now the total volume of phase j within V.  Eq. (2.3-20) is valid 

no matter the shape or size of volume V.   
 
Auxiliary Relations 
 
Table 2-3 summarizes the equations that, together with those of Table 2-2, 
completely specify non-isothermal fluid flow problems. The first three equations we 
have already discussed. 
 The energy concentration per unit bulk volume must include internal energy 
contributions from all flowing phases and the solid phase, 
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where Uj is the internal energy per unit mass of phase j.  The total kinetic energy term 
includes kinetic energy contributions from all flowing phases, 
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where the solid phase velocity is negligible.   
 The phase internal energies Uj and Us and the enthalpies Hj are functions of 
temperature T, phase pressure Pj, and composition ω i j .  One form this dependency 
can take is Eq. (2.3-14), where the doubly subscripted internal energies (and 
enthalpies) are partial mass quantities. Partial mass quantities, Eq. (2.3-16), are 
analogous to partial molar quantities in solution thermodynamics (Denbigh, 1968). 
For example, the partial mass internal energy of component i in phase j is the change 
in Uj as ω i j  is changed, all other variables being held constant, 

 
,, ,j kj k i

j
ij

ij P T

U
U

ω
ω

≠

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

 (2.3-22)  

and similarly for Uis and Hij. The partial mass properties themselves may be 
calculated from equations of state, Eq. (2.2-23), or empirical correlations as functions 
of temperature, pressure, and composition. 

Equations (2.3-14) and (2.3-15) readily revert to simple forms. For example, 
if phase j is an ideal solution, the partial mass quantities become pure component 
quantities, functions of temperature and pressure only. Further, if j is an ideal gas, the 
partial mass quantities are functions only of temperature. 

The equations presented in Tables 2-2 and 2-3 are complete, but they can 
only be solved with the specification of a similarly complete set of initial and 
boundary conditions. 
 
 

2-4 ENTROPY BALANCE EQUATIONS 
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The equations for conservation of total mass and energy are insufficient to solve 
many thermodynamic problems. For example, experience has shown that a pond on a 
hot summer day will not freeze, but instead will equilibrate to the temperature of its 
surroundings.  The first law of thermodynamics, however, is satisfied whether the 
pond freezes (loses energy to surroundings) or heats up (gains energy from 
surroundings).  That is, the direction of energy transfer is irrelevant to the first law of 
thermodynamics and  there must be another equation that describes the approach to 
equilibrium.       

More generally we observe that as long as there are no outside influences, 
gradients in concentration, temperature, and pressure eventually vanish reaching a  
time-invariant equilibrium state with its surroundings.  The second law of 
thermodynamics provides a mathematical statement that describes this unidirectional 
nature of spontaneous processes.  A new thermodynamic property, called entropy, is 
introduced to describe the tendency towards equilibrium.  Although we are not as 
familiar with entropy, it is a property just like temperature and pressure.  The main 
difference, however, is that we must infer its value from other measurable 
thermodynamic properties such as temperature and pressure.   
 Entropy increases in spontaneous processes until equilibrium is reached.  For 
example, Figure 2-6 shows an initial state of a hypothetical closed volume that 
contains four molecules. The molecules are numbered 1 to 4 to aid in the accounting; 
in reality the molecules are indistinguishable from each other.   The system is initially 
partitioned into two halves or subsystems, such that the molecules from one half 
cannot move into the other half.  Thus, each subsystem has only one possible 
configuration at zero time, the initial state.  The small number of possible 
configurations at the initial state corresponds to a well-ordered or small-entropy state.    
 When the partition is removed, the molecules from each subsystem are free 
to move into the other half of the system, say by random Brownian motion. When the 
elapsed time is short, the initial state is the most likely configuration.  Over time, 
however, a total of 16 different equally-probable configurations are possible relative 
to the original partition location (see Figure 2-6). The increase in possible 
configurations of the system is related to an increase in entropy or disorder.  A 
careful examination of the possible configurations shows further that a state with one 
or two molecules on each side is more likely to exist than the initial state, which has a 
probability of only 2-4 or 1/16, the initial state being just one of 16 possible states.  A 
true equilibrium state with two molecules on either side of the original partition (no 
gradients) is also more likely to exist (probability of 6/16 or 3/8) than the initial state.   
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Figure 2-6: Illustration of configurations for four molecules in a closed composite system 
(after Smith et al. 2001). The molecules on each side of the partition are initially constrained 
by a partition. 
 
 The illustration of Figure 2-6 demonstrates in a simple way why equilibrium 
occurs in natural processes; equilibrium is the most likely state.  A more realistic 
example, with many more molecules is even more convincing.  For example, if one 
mole of a gas (6x1023 molecules) were present in the same partitioned volume, the 
probability for reaching equilibrium is astronomically close to 1.0.  The apparent 
equilibrium state includes many unequal configurations where the number of 
molecules is not exactly the same on each side, but is sufficiently close in relative 
numbers that we cannot differentiate between those configurations.  They all appear 
to be in equilibrium.   
 Let’s consider an even simpler case to understand entropy and its relation to 
equilibrium.  Entropy was defined by Boltzmann (1872) at the microscopic level by 
the mathematical function lni ii

S k p p= − ∑  where ip  is the state probability of a 
given configuration and k is an arbitrary constant.   The negative sign is introduced so 
that entropy by this function is always positive, recognizing that probabilities must be 
between 0.0 and 1.0.  There is nothing magical about this function, but it has the 
properties we desire in that entropy is always positive and increases uni-directionally 
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as equilibrium is approached.  For example, applying this function to the simplest 
case of one molecule on the right hand side of the partition in Fig. 2-6, the probability 
initially is 1.0 that the molecule will be at the right-hand side of the partition just after 
it is removed and 0.0 that it will be at the left-hand side.  Thus, entropy given by this 
function is initially ( )0.0 ln 0.0 1.0 ln1.0S k= − +  or zero.  As time advances, the 
probability that the molecule will be found at the right-hand side will decrease, 
whereas it will increase at the left-hand side.  At some later time for example, the 
probabilities will be 0.9 and 0.1 giving ( )0.1ln 0.1 0.9 ln 0.9S k= − +  or 0.33k.  
Eventually at equilibrium, the molecule is equally-likely to exist on either side of the 
partition and entropy will achieve its maximum value of   

( )0.5ln 0.5 0.5ln 0.5 ln iS k k p= − + = −  or 0.69k.   
Once equilibrium has been reached, entropy remains fixed (because the 

probabilities are constant) as long as there are no other outside influences, such as the 
expansion of volume or addition of more molecules to the box in Fig. 2-6.   For 
example, if a third equal volume is added to the other two, the probability that the 
molecule is contained in either is 0.33.  The entropy at equilibrium is then 

( )0.33ln 0.33 0.33ln 0.33 0.33ln 0.33 ln iS k k p= − + + = −  or 1.11k, which is greater than 
the previous value of 0.69k.  Thus, an increase in volume increases the entropy at 
equilibrium since the equilibrium probabilities are decreased.     
 The microscopic entropy function defined by Boltzmann must be related to 
macroscopic thermodynamic properties for it to be practically useful.  Fortunately, it 
is possible to relate entropy to changes in internal energy and volume (see for 
example, Schmidt et al. 2006).   The easiest way to understand this is to think of the 
labeled molecules in Fig. 2-6 as representing different energy quanta.  We can then 
assign probabilities for states based on the energy levels found on the left and right 
hand side of the box.  For example, if the molecules are initially very near absolute 
zero, each molecule would have similar individual energies equal to the group 
average energy.  The internal energy in the closed volume is then the sum of the 
individual molecule energies.   The probability of finding a molecule at that energy 
state on the right-hand side of the box is 1.0 and will not change with time unless 
heat is added.    

When heat is added to the box, the statistical distribution of individual 
molecule energies around a group average energy will spread out according to the 
Maxwell-Boltzmann distribution.  That energy distribution shows that there will be a 
wider range of possible individual particle energies for a group of molecules that 
have a greater internal energy (or larger temperature).  Hence, more possible energy 
levels or configurations results in lower probabilities, thereby increasing entropy in a 
similar fashion as in the molecule example of Fig. 2-6.  This relationship between 
increasing entropy with increasing internal energy can be expressed by the partial 
derivative at constant volume ( ) 1

V
S U T∂ ∂ = .   That is, the entropy change with 

internal energy is inversely proportional to temperature when the volume is fixed and 
will be greatest at temperatures near absolute zero.  Similar logic leads to the 
relationship that for constant internal energy ( )U

S V P T∂ ∂ = .  Because all properties 
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in these relationships are state functions (independent of the path), they can be 
combined to give the macroscopic definition of entropy as 

( ) ( ) ( ) ( )1 /
V U

dS S U dU S V dV T dU P T dV= ∂ ∂ + ∂ ∂ = + .  Again, there is nothing 
magical about this definition except that like Boltzmann’s microscopic definition it 
gives a value for entropy that is always positive and increasing monotonically 
towards equilibrium. 
 In summary, we have shown that the equilibrium state is the state of 
maximum entropy for an isolated system and statistically the most probable state.  
For example, it is possible, although highly improbable, that a lake of water will 
freeze on a hot summer day. The second law does not rule out this possibility, but 
instead gives us the most likely direction that nature will take.  A good definition of 
the second law therefore is that the entropy of an isolated system will always increase 
from a state of high probability (well-ordered) to a state of lower probability (more 
disordered) until it reaches a state of minimum probability at equilibrium.  This 
increase (or creation) of entropy is always related to initial gradients in the system, 
and overtime the rate of increase of entropy decreases as the fluids mix or heat is 
exchanged.       
 An entropy balance is used to mathematically represent the tendency of 
processes to approach equilibrium.  The steps to write the entropy balance are similar 
to those for the first law of thermodynamics, except that entropy is created as fluids 
mix or heat is exchanged as illustrated in Figure 2-6.  Entropy for a system that is not 
isolated can increase or decrease depending on the direction and magnitude of mass 
flow and heat exchange with its surroundings.  A statement of the entropy balance is 
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 (2.4-1) 

 
where V is an arbitrary volume as in Fig. 2-4.  By analogy to the procedure for the 
first law of thermodynamics in Section 2-3, the accumulation term in Eq. (2.4-1) for a 
stationary V can be written as 
 

 ( )
1

Rate of
Total entropy

accumulation
in 

of entropy in 

P

j

N

j jV j

d S
Vdt

V
dV

t
ε ρ

=

⎧ ⎫
⎧ ⎫⎪ ⎪ = =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪

⎩ ⎭

∂
∂ ∑∫  (2.4-2) 

 
where the total entropy includes contributions from all phases and jS  is the specific 
entropy of phase j.   Equation (2.4-1) can now be expressed as 
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The first term on the right hand side is the entropy flux term.  The second term is the 
rate of entropy generation per unit bulk volume.   

The net rate of entropy transport into volume V is the result of heat and mass 
transfer into V from its surroundings.  Entropy transport owing to convection of mass 
is handled similarly to energy.  Further, from the definition of entropy, the entropy 
transport owing to heat exchange at fixed volume is proportional to the conductive 
heat flux divided by the temperature at which that transfer occurs, that is, /dS dq T=  
since dU dq=  from the conservation of energy (see also Section 2.6).   Thus, the total 
entropy transport owing to mass convection and heat exchange is 
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Similar to the energy balance, we have invoked the requirement of local thermal 
equilibrium in Eq. (2.4-4) by taking the temperature T to be the same in all phases 
within the REV.  Substitution of Eq. (2.4-4) into Eq. (2.4-3) gives, 
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The desired result is obtained after collecting all terms under the same volume 
integral and making the integrand zero because V is again arbitrary,  
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Analogous to the procedure in Sec. 2-4, Eq. (2.4-6) could also be obtained for a time-
varying V. 
 
Second Law of Thermodynamics 
 
The inequality 0Gσ ≥  is the second law of thermodynamics, the equality holding at 
equilibrium.  This simple condition provides the restriction on bi-directional transport 
of energy.  The creation of entropy is related to the gradients within the system. 

The relationship between entropy generation and gradients within the system 
is most easily seen by assuming pure single-phase flow and neglecting changes in 
kinetic or potential energies.  The mass, energy, and entropy balances become 
respectively, 
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( ) ( ) ( ) cU uU Pu q
t

φρ ρ∂
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i i i  

and, 
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where the conduction term in the entropy equation has been expanded and we used 

/H U P ρ= + .  These equations can be combined and rearranged using the total 
derivative ( / /D Dt t v= ∂ ∂ + ∇i ) to give, 
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where 1/V ρ=  and under the assumption of constant porosity /u DV Dtφρ∇ =i .  
 The left-hand side of Eq. (2.4-7) gives temporal changes in thermodynamic 
properties and is zero from the definition of entropy.  The right-hand side of Eq. 
(2.4-7) involves terms that depend on the gradient of pressure and temperature.   
Thus, since entropy creation is the result of gradients, we must have 
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Substitution of Darcy’s law for horizontal single-phase flow, ( )/u k Pμ= − ∇i ,  and 

Fourier’s law of heat conduction, cq h T= − ∇ , into Eq. (2.4-8)gives our desired result, 

 2G
k hP P T T

T T
σ

μ
= ∇ ∇ + ∇ ∇i i  (2.4-9) 

 
Equation (2.4-9) shows that entropy creation is proportional to the square of the 
pressure and temperature gradients.   Thus, entropy creation is minimized when 
gradients are small, as they are when equilibrium is approached.  Last, Eq. (2.4-9) 
shows that 0Gσ ≥  since the properties in Eq. (2.4-9) and the square of the gradients 
are always positive.  The expression for entropy creation can be extended to account 
for multiple components, diffusive flux, and other processes.  
 
 

2-5 SPECIAL CASES OF THE STRONG FORM 
 
We now turn to several important special cases of the phase conservation equations, 
Eqs. (2.2-31), and the overall compositional equations, Eqs. (2.2-4) and Tables 2-2 
and 2-3 (see Fig. 2-1). Each special case is applied in practice to describe various 
EOR processes occurring in permeable media fluid flow. These special cases can be 
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accurately approximated by much simpler forms of the above general equations with 
fewer and simpler associated auxiliary equations and boundary conditions. All flows 
discussed here are in local thermodynamic equilibrium. 
 
Fractional Flow Equations 
 
Consider isothermal flow (T constant) with no interphase mass transfer so that 

0mijr =  (including sorption). Because flow is immiscible, only the fluid saturations 
change because phase compositions are fixed.  Thus, we apply the above assumptions 
to the phase conservation equations, Eq. (2.2-31), which were derived from Eq. 
(2.2-4) (see Fig. 2-4).  For this case, the energy conservation equation and the solid 
phase equation are trivial, and Eq. (2.2-31) reduces to Eq. (2.2-32). 
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 We specialize the equation next for one-dimensional linear flow in a medium 
dipping at a constant angle α and constant rock and fluid properties (φ  constant 
temporally and jρ  constant temporally and spatially).   Because porosity and phase 
densities are constant, these properties can be removed from the respective 
derivatives and the phase densities cancelled.  Equation (2.2-32) is then further 
simplified to 
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To eliminate the need to solve for pressure, Eq. (2.5-1) is usually written in 

terms of a fractional flow function, which can be defined for the case of equal phase 
pressures (Pcjn = 0) as  
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where 1
PN

j ju u== ∑  and α is the dip angle tanα = dDz/dx.  The right side of Eq. (2.5-2) 
results by substitution of Darcy’s law into the fractional flow definition.  This 
equation will be derived and developed further in Chap. 5. 

It is easily shown (Chap. 5) by summing the phase equations given in Eq.  
(2.5-1) that u is a function of time only and fj is a function of saturation only.  The 
sum being a form of the pressure equation, we can write Eq. (2.5-1) in a final form. 
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To solve Eq. (2.5-3) for the phase saturations Sj(x, t), the total volumetric fluid flux u 
injected at the inflow boundary and the experimentally measured fractional flow 
dependences of NP – 1 phases (note 1 1PN

j jf= =∑ ) are needed. Buckley and Leverett 
(1942) first solved this equation for two-phase flow, and the resulting estimation of 
waterflood oil recovery is called the Buckley-Leverett theory (see Chap. 5). Other 
similar cases, including three-phase flow and compositional effects such as 
interphase mass transfer and adsorption, have been solved in closed form (e.g. Pope, 
1980). We discuss these solutions in detail in Chaps. 7 to 9. 
 
Miscible Flow 
 
The above fractional flow case applies to the simultaneous flow of immiscible fluids. 
We now treat the analogous but opposite case of many components flowing 
simultaneously in a single fluid phase in isothermal flow. Thus only one phase flows 
regardless of composition, but both convection and dispersion of these components 
must be included. Miscible processes of interest include (1) true (first-contact)  
miscible displacement of oil by a solvent from a reservoir; (2) chromatographic 
processes of various sorts such as analytical chromatography, separation 
chromatography, ion exchange processes, and adsorption of chemicals as they 
percolate through soils and other naturally occurring permeable media; (3) leaching 
processes such as the in situ mining of uranium; and (4) chemical reaction processes 
of many types in fixed-bed reactors. 

Equation (2.2-6) for single-phase flow is 
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This equation arises because the saturations for all phases but one are zero and the 
saturation of the remaining phase is one.  The second subscript j is now superfluous 
and has been dropped.  The auxiliary Eqs. (2.2-11), (2.2-12), (2.2-14), (2.2-15),and 
(2.2-17) through (2.2-23) are still needed, but the others are no longer pertinent. The 
principal one of these, Eq. (2.2-11) or Darcy’s law, has a considerably simpler form 
as well, namely, 
 

 ( )ku P gρ
μ

= − ∇ +i   . (2.5-5) 

 
Because the relative permeability is now constant (typically unity), it is lumped with 
k . 

For miscible solvents (see Chap. 7), the sorption term, the second term in Eq. 
(2.5-4), is negligible.  That assumption coupled with no chemical reactions (Ri = 0), 
gives 
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i i i Cu K i N

t
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i i  . (2.5-6) 

 
A special one-dimensional linear case of Eq. (2.5-6) is obtained when the 

porosity is constant, and iK  is a constant.  Letting Ci = ρωi  be the mass concentration 
of component i, it follows that 

 

 
2

2 ,      1,  . . . , i i i
li C

C C C
u K i N

t x x
φ φ

∂ ∂ ∂
+ = =

∂ ∂ ∂
, (2.5-7) 

 
where Kli, the longitudinal dispersion coefficient, is now a scalar, 
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as a special case of the more general definition given by Eq. (2.2-2).  Moreover, u is 
at most a function of time, depending on the boundary conditions specified. Di is 
usually taken as a constant, yielding the linear convection–diffusion (CD) equation,   
which is alternatively termed the advection-dispersion equation.  Several closed-form 
solutions for simple initial and boundary conditions are available for the CD equation 
(see Chaps. 5 and 7). 
 
Chromatographic Equations 
 
Several chromatographic processes are special cases of Eq. (2.5-7). We must restore 
the Cis term ( is isC ρω= ) that describes the accumulation of component i owing to 
sorption reactions, for this is the essence of a chromatographic process. These 
sorption reactions may be adsorption, the exchange of one ion by another on the solid 
substrate, or precipitation–dissolution reactions (see Chaps. 8 to 10 and Lake et al., 
2002). All these processes lead to selective separation of the components as they 
percolate through the permeable medium. Dispersion does not alter the separation in 
chromatographic columns, so we neglect the second-order term, a step that results in 
a set of strongly coupled (via the sorption term) first-order partial differential 
equations 
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 For linear sorption Eq. (2.5-9) can be rewritten in terms of a retardation 
factor by first collecting like terms: 
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The retardation factor for each component is defined as 
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where is
di

i

K
C
ω

= is the partition coefficient for component i that relates the mass 

fraction of the component adsorbed onto the solid divided by the concentration of the 
component in the single-phase mixture.  Substitution of the definition for the 
retardation coefficient into Eq. (2.5-10) gives 
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When the retardation factor and porosity are temporally constant, 
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This equation and Eq. (2.4-7) with dispersion neglected are nearly identical.  The 
only difference is that the flow rate is divided by 1 iD+ ,  resulting in an effective flow 
rate of ( )1ei iu u D= +  for each component.  The retardation factor is aptly named 
because it causes an apparent reduction in the velocity at which the component 
moves through the chromatographic column.   With no sorption, the retardation 
factor is zero and the component moves at the average flow rate of the fluid.  Because 
of the slowing of the velocity, the retardation factor is sometimes called a delay 
factor (Lake et al., 2002). 
 
 
Semimiscible Systems 
 
In several EOR applications, a description of flow in permeable media based on 
strictly miscible or immiscible flow is insufficient. For these situations, the equations 
in Table 2-2 reduce to a simpler form consistent with the known complexities of the 
flow behavior. As an example of this, consider the isothermal flow of NC components 
in up to NP phases in the absence of chemical reaction. Such flows are characteristic 
of solvent (see Chap. 7) and micellar-polymer flooding (see Chap. 9) EOR 
applications. 

We first assume that the change in pressure over the displacement length has 
negligible effect on phase behavior.  Equation (2.2-6) may then be divided by the 
respective pure component density o

iρ  to give 
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where, under the additional assumption of ideal mixing, / o

ij j ij iC ρ ω ρ=  is the volume 
fraction of component i in phase j.  Ideal mixing states that the volume of a mixture is 
equal to the sum of the pure component volumes weighted by the component mass 
fractions (Chap. 4).   

We can sum Eq. (2.5-14) over the NC components as for the development of 
Eq. (2.2-33), that is,   

 

1 1 1 1 1
(1 ) 0,

C C CP PN N NN N

ij j is ij j
i j i i j

C S C C u
t

φ φ
= = = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂
+ − + ∇ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑i  

   1,  . . . , Ci N= , (2.5-15) 
 
where the dispersive flux term vanishes.  The additional assumption of constant 
porosity in time leads to the result that 
 

 
1

0
PN

j
j

u u
=

⎛ ⎞
∇ = ∇ =⎜ ⎟

⎝ ⎠
∑i i , (2.5-16) 

 
where we have used Eq. (2.2-16), 1 1CN

i ijC= =∑ , and 1
CN

i isC=∑ is constant.  For one-
dimensional flow, Eq. (2.5-16) implies that the total flow rate is only a function of 
time.  Thus, Eq. (2.5-16) can be used along with the definition of fractional flow 
(2.5-2) to write Eq. (2.5-14) in one-dimensional form. 
 

1 1 1

(1 ) 0,
P P PN N N

ij
ij j is ij j j lij

j j j

C
C S C u C f S K

t x x x
φ φ φ

= = =

∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

 1,  . . . , Ci N=  . (2.5-17) 
 
 Even with the above assumptions, Eq. (2.5-17) is still fairly general and must 
be solved simultaneously with Darcy’s law and with the definitions for relative 
mobility, capillary pressure, mass fractions, saturations, equations of state, and 
equilibria relations, [Eqs. (2.2-11), (2.2-16), (2.2-21), (2.2-22), and (2.2-23)]. This 
form is particularly convenient because many cases of binary and ternary phase 
equilibria are more conventionally represented as volume fractions rather than mass 
fractions (see Chap. 4). 
 We often define the overall component volume fraction to be  1

PN
ji ij jC C S== ∑  

and the overall component fractional flow 1
PN

ji ij jF C f== ∑ .  With those definitions, 
constant porosity, and the assumption of dispersion-free flow with no sorption, Eq. 
(2.5-17) becomes 
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0,i iC F
u

t x
φ

∂ ∂
+ =

∂ ∂
 1,  . . . , Ci N=  .   (2.5-18) 

 
This equation is used in Chap. 7 to develop analytical solutions and basic insights for 
miscible flooding theory. 
 
Richards Equation for Unsaturated Flow in Aquifers 
 
The general equations developed here also apply to groundwater flow.  As an 
example, consider the flow of water in the unsaturated (i.e. where both water and air 
exist) zone of aquifers.  Aquifers are divided into two regions, an unsaturated region 
near the Earth’s surface where both water and air are present and a saturated region 
near and below this where only the aqueous phase is present.   The surface separating 
the two zones is near the water table.  The water table is also known as the phreatic 
surface because water freely flows to this level in wells drilled through the aquifer. 

We begin the development of the unsaturated flow equation by assuming no 
mass transfer 0mijr =  in the phase conservation equations, Eqs. (2.2-31): 
 

                     ( ) ( ) 0j j j jS u
t

φ ρ ρ∂
+ ∇ =

∂
i           1,  . . . ,  Pj N= , (2.2-32) 

 
where there are only two phases, an aqueous phase and an air phase.  The two phases 
are immiscible; hence, phases and components are synonymous in this example.   
Because air near the Earth’s surface is at low pressure, its density and viscosity are 
near zero and it provides little resistance to water flow (except through a physical 
restriction in the pore volume available for water flow).  This is equivalent to 
assuming that the air phase is at atmospheric pressure everywhere in the aquifer. 
Thus, since only the aqueous phase flows, the solution to the air phase equation is 
trivial and can be dropped along with the subscripts for the aqueous phase. 

 

 ( ) ( ) 0S u
t

φ ρ ρ∂
+ ∇ =

∂
i  . (2.5-19) 

 
The aqueous phase density is also assumed constant, a good assumption since the 
water pressure remains near atmospheric even under flowing conditions.  Equation 
(2.5-19) becomes 

 

 ( ) 0S u
t

φ∂
+ ∇ =

∂
i  . (2.5-20) 

 
Richards equation is often formally written in terms of the moisture content 

( Sθ φ= ), hydraulic head, and the hydraulic conductivity.  The hydraulic head, which 
is often defined with reference to atmospheric pressure and surface elevation, is  
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 atm
gs

P P
h z z

gρ
−

= + −  . (2.5-21) 

 
The hydraulic conductivity tensor is defined as /K k gρ μ= .  With those definitions 
and the use of Eq. (2.2-11) , Eq. (2.5-20) gives Richards equation, 

 

 ( ) 0rk K h
t
θ∂

− ∇ ∇ =
∂

i i  , (2.5-22) 

 
where h P gρ∇ = ∇  and rk  is the relative permeability of the aqueous phase, which is 
a function of the water saturation (moisture content).  Note that although we dropped 
the air phase equation, the air phase does impact the flow of the aqueous phase 
through relative permeability.  
 Philips (1957) wrote Richards equation in a form commonly used by soil 
scientists. He split the hydraulic head into two parts: the suction head and elevation 
head where h zψ∇ = −∇ + ∇  and CP g P gψ ρ ρ= = − .   The capillary pressure is equal 
to the negative of the water pressure because the air pressure is assumed constant at 
atmospheric (taken as zero).  The suction head is always positive because water is in 
tension above the phreatic surface, e.g. the aqueous phase pressure is less than 
atmospheric above the water table.  The unsaturated flow equation used by Phillips as 
derived from Eq. (2.5-22) is then 

 

 ( ) ( )r rk K k K z
t
θ ψ∂

+ ∇ ∇ = ∇ ∇
∂

i i i i  . (2.5-23) 

 
For Cartesian coordinates aligned in the principal flow directions, the term on the 
right side of Eq. (2.5-23) can be simplified to give 

 

 ( ) ( )r r zzk K k K
t z
θ ψ∂ ∂

+ ∇ ∇ =
∂ ∂

i i , (2.5-24) 

 
where zzK  is the component of the hydraulic conductivity in the z-direction. Finally, 

we can rewrite Eq. (2.5-24) in terms of the capillary diffusivity D K ′= − Ψ ,  where ψ ′  
is the derivative of the suction head with respect to the moisture content.  

 

 ( ) ( )r r zzk D k K
t z
θ θ∂ ∂

= ∇ ∇ +
∂ ∂

i i  . (2.5-25) 

 
The capillary diffusivity is positive and has units of length squared per time (hence 
its name).  Phillips used Eq. (2.5-25) to develop semi-analytical solutions for rainfall 
infiltration. 
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Standard Black-Oil Equations 
 
A common representation (Peaceman, 1977) of the flow of fluids in oil and gas 
reservoirs is the “black oil” equations wherein up to three phases, aqueous (j = 1), 
oleic (j = 2), and gaseous (j = 3), flow simultaneously. The aqueous and gaseous 
phases each consist of a single pseudocomponent, water (i = 1) and gas (i = 3), 
respectively. The oleic phase consists of two pseudocomponents, oil (i = 2) and a 
dissolved gas component.  The components are pseudocomponents because each is 
really a group of true components whose composition remains constant. 

The use of pseudocomponents is quite common in EOR descriptions, since 
this simplification often results in greater understanding of the processes and can 
significantly reduce the computational effort involved in numerical simulation with 
little loss of accuracy.  Because of these advantages, the black-oil equations are used 
often to model many EOR processes, including those where the black-oil 
assumptions may not strictly apply.  Black-oil equations, for example, may not 
accurately model miscible EOR processes or other processes that significantly 
deviate from the black-oil assumption of pseudocomponents having constant 
composition.  In those cases, more rigorous fully compositional simulators are used, 
although they require significant computation time. 

Figure 2-6 illustrates the black-oil assumptions. The model relates downhole 
reservoir volumes to standard temperature and pressure (STP) conditions.  
Definitions for STP vary slightly, but typical values are 14.7 psia and 60oF. 
Formation volume factors are defined that express the ratio between volumes at STP 
conditions and reservoir conditions as indicated by the dashed lines in Fig. 2-6.  The 
solution gas-oil ratio is the volume of gas that evolves from a known volume of oil at 
STP conditions.   
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Figure 2-7: Illustration of standard black-oil assumptions.  STP is standard 
temperature and pressure. 
 
 

The black-oil equations are compositional equations in that they are 
developed from the overall compositional equations, Eq. (2.2-6).  We invoke the 
following additional assumptions: no reaction ( 0iR = ), no dispersion ( 0ijK = ), and 
no adsorption ( 0isω = ).  The black oil assumption itself becomes the following:   the 
aqueous phases contains only water ( 11 1ω = , 21 0ω = , 31 0ω = ), the oleic phase 
contains only oil and gas ( 12 0ω = , 22 0ω > , 32 0ω > ), and the gas phase contains only 
the gas component ( 13 0ω = , 23 0ω = , 33 1ω = ).   For component 1 (the water 
component), Eq. (2.2-6) becomes 
 

 ( ) ( )1 1 1 1 0S u
t

φρ ρ∂
+ ∇ =

∂
i  . (2.5-26) 

 
For component 2 (the oil component), Eq. (2.2-6) gives 
 

 ( ) ( )2 2 22 2 22 2 0S u
t

φρ ω ρ ω∂
+ ∇ =

∂
i . (2.5-27) 

 
For component 3 (the gas component), Eq. (2.2-6) gives 
 

 [ ]( ) ( )2 2 32 3 3 2 32 2 3 3 0S S u u
t

φ ρ ω ρ ρ ω ρ∂
+ + ∇ + =

∂
i  . (2.5-28) 
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We now want to eliminate the mass fractions and rewrite Eqs. (2.5-26) to 
(2.5-28) in favor of formation volume factors and the solution gas-oil ratio.  B1 is the 
water formation volume factor (volume of a given mass of water at the prevailing 
temperature and pressure divided by the volume of the same mass of water at 
standard temperature and pressure). 
 

 1
1

1

s

B
ρ
ρ

=  .  

 
B2 is the oil formation volume factor (volume of a given mass of oil at prevailing 
temperature and pressure divided by the volume of the same mass of oil at standard 
conditions). 
 

 2
2

22 2

s

B
ρ

ω ρ
=  .  

 
B3 is the gas formation volume factor (volume of a given mass of gas at prevailing 
temperature and pressure divided by the volume of the same mass at standard 
temperature and pressure). 
 

 3
3

3

s

B
ρ
ρ

=  .  

 
Rs is the solution gas–oil ratio (volume of dissolved gas divided by volume of oil 
phase, with both volumes evaluated at standard temperature and pressure). 
 

 32 2

22 3

s

s sR
ω ρ
ω ρ

=  .  

 
The above definitions may be introduced into the mass balances of Table 2-2 

by dividing each by their respective standard densities s
jρ  and recognizing that each 

s
jρ  is time and space independent.  Equations (2.5-26) to (2.5-28) become 
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j j
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j

t B B
φ⎛ ⎞ ⎛ ⎞∂
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and, for gas, 
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i  . 
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Modified black-oil models, where CO2 is added as a fourth component, are 

sometimes used to account for oil displacement by carbon dioxide or other miscible 
gases (Todd and Longstaff, 1972).   
 
Steam Flooding Equations 
 
As a special case of nonisothermal flow, we derive the “steam” equations given by 
Stegemeier et al. (1977).  We assume at most NP = 3 phases–an aqueous phase j = 1, 
a hydrocarbon phase j = 2, and a gas phase j = 3–are present.  Further, at most two 
unreactive, nonsorbing pseudocomponents–water and oil–are present.  We restrict 
the hydrocarbon phase to contain only oil, and the aqueous and gaseous phases to 
contain only water, assumptions that eliminate volatile hydrocarbons from the 
equations. With these assumptions, the mass conservation equations, Eqs. (2.2-6), 
become, for water, 

 [ ]1 1 3 3 1 1 3 3( ) ( ) 0S S u u
t

φ ρ ρ ρ ρ∂
+ + ∇ + =

∂
i  (2.5-29) 

and, for oil, 

 2 2 2 2( ) ( ) 0S u
t

φρ ρ∂
+ ∇ =

∂
i  . (2.5-30) 

 
The dispersion terms are absent from these equations since the phase compositions 
are constant. The conservation of energy Eq. (2.3-11) becomes 
 

[ ]1 1 1 2 2 2 3 3 3( ) (1 ) s sS U S U S U U
t

φ ρ ρ ρ φ ρ∂
+ + + −

∂
 

 1 1 1 2 2 2 3 3 3( ) ( ) 0TtH u H u H u k Tρ ρ ρ+∇ + + − ∇ ∇ =i i , (2.5-31) 
 
where kinetic and potential energy terms have been neglected.  We further neglect 
pressure-volume work by letting the enthalpies equal internal energies and by taking 
porosity to be constant.  The derivatives in Eq. (2.5-31) may then be expanded to 
give 
 

 3 3 31 2
1 1 2 2 3 3 3 1

( ) ( )
(1 ) ( )s sH H SH H

S S S H H
t t t t t

ρ ρ
φ φρ φρ φρ φ
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− + + + + −

∂ ∂ ∂ ∂ ∂
                        

1 1 1 2 2 2 3 1 3 3 3 3 3( ) ( ) ( ) 0Ttu H u H H H u u H k Tρ ρ ρ ρ+ ∇ + ∇ + − ∇ + ∇ − ∇ ∇ =i i i i i  , (2.5-32) 
 
where Eqs. (2.5-29) and (2.5-30) have been used to eliminate several terms.  The 
term (H3 – H1) equals LV, the latent heat of vaporization of water, and we assume 
enthalpies are independent of pressure dHj = CpjdT, where Cpj is the specific heat of 
phase j.   If the Cpj are constant, Eq. (2.5-32) becomes 
 

1 1 1 2 2 2( ) ( )Tt p p Tt
TM C u C u T k T
t

ρ ρ∂
+ + ∇ − ∇ ∇

∂
i i  
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( )
( )V

S
L S u

t
ρ

φ ρ
∂⎧ ⎫= − + ∇⎨ ⎬

∂⎩ ⎭
i , (2.5-33) 

 
where MTt is the overall volumetric heat capacity 
 
 1 1 1 2 2 2( ) (1 )Tt p p s psM C S S C Cφ ρ ρ φ ρ= + + −  . (2.5-34) 
 
In this definition and in Eq. (2.5-33), the terms involving the gaseous phase density 
ρ3 have been neglected since gas densities are usually much smaller than liquid 
densities. The term on the right side of Eq. (2.5-33) represents the production or 
destruction of the steam phase times the latent heat;  it serves as a source term for the 
energy equation. If steam disappears (condenses), the source term is positive, which 
causes the temperature to rise. This results in a decrease in oil viscosity, the primary 
recovery mechanism in thermal flooding (see Chap. 11). The latent heat, phase 
pressures, and temperature are related through the vapor pressure curve for water and 
capillary pressure relations. 
 
 

2-6 OVERALL BALANCES 
 
A common and useful way to apply the equations in the previous sections is in the 
form of macroscopic or overall balances (Bird et al., 1960). Rather than balances 
written for each point within the permeable medium, overall balances are spatially 
integrated forms of the differential balances that thereby apply to finite volumes 
within a reservoir, such as a cell in numerical simulation, or even, as is the case here, 
the entire reservoir.  Since the spatial component is absent from the equations, overall 
balances are much simpler and far easier to integrate than differential balances. This 
simplification is achieved at the expense of losing spatial detail of the concentration 
variables; therefore, to be useful, overall balances must be supplemented with 
independently derived or analytical correlations. 
 
Material Balance 
 
To derive the overall mass balance for component i, begin with the weak form 
written on volume V in the compositional form of Eq.(2.2-4).  The result is 

 

 ,      1,  . . . ,  i
i i CV A V

W
dV n N dA R dV i N

t
∂

+ = =
∂∫ ∫ ∫i  . (2.6-1) 

 
We then identify V with the total bulk volume Vb exclusive of the small 

volumes associated with a finite number of sources and sinks embedded within. The 
boundary of Vb may also be a fluid source or sink term, as would be the case of an oil 
column abutting an aquifer or a free gas cap. If we assume the fluxes across the 
boundaries of V are normal to the cross-sectional area, Eq. (2.6-1) becomes 
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 ,      1,  . . . , i
b Pi Ji b i C

dW
V N N V R i N

dt
+ − = = , (2.6-2) 

 
where the superscript bar denotes volume-averaged quantities. The terms PiN  and 

JiN  are the mass production and injection rates of component i for all the source and 
sink terms in Vb. These are functions of time, since they are evaluated at fixed 
positions on Vb. iR  is the volume-averaged reaction rate term of component i and is 
also a function of time. We integrate Eq. (2.6-2) with respect to time to arrive at a 
cumulative form of material balance 
 
 

0
( ) ,      1,  . . . , 

t

b i iI Ji Pi b i CV W W N N V R dt i N− = − + =∫  . (2.6-3) 

 
In writing Eq. (2.6-3), we have assumed the cumulative injection and production of 
component i at t = 0 is zero. In what follows, we ignore the cumulative reaction rate 
term. 

The most common application of Eq. (2.6-3) is to calculate Npi with Wi, ,iIW  
and NJi specified. In particular, ( )iW t  is difficult to evaluate without actually 
integrating the differential balances. This difficulty is circumvented by defining ERi, 
the recovery efficiency of component i, as 

 

 Pi Ji
Ri

b iI

N N
E

V W
−

≡  . (2.6-4) 

 
ERi is the net amount of component i produced expressed as a fraction of the amount 
of component initially present. For a component injected into the reservoir, ERi is 
negative, but for a component to be recovered, oil or gas (to which it is almost 
exclusively applied), ERi is positive and lies between 0 and 1.  From Eq. (2.6-3), iW  is 
 
 (1 )i iI RiW W E= −  . (2.6-5) 
 
 For either Eqs. (2.6-4) or (2.6-5) to be useful, ERi must be expressed 
independently as a function of time. This is commonly done by decomposing ERi into 
the displacement efficiency EDi and volumetric sweep efficiency EVi of component i 
 
 Ri Di ViE E E=  (2.6-6) 
where 

 Amount of  displaced
Amount of  contactedDi

iE
i

=  (2.6-7) 

 Amount of  displaced
Amount of  in placeVi

iE
i

=  (2.6-8) 
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These quantities in turn must be specified independently: EDi as a function of time 
and fluid viscosities, relative permeabilities, and capillary pressures (see Chap. 5) and 
EVi as a function of time, viscosities, well arrangements, heterogeneity, gravity, and 
capillary forces (see Chap. 6). 
 
Energy Balance 
 
A similar procedure applied to the energy conservation Eq. (2.3-11) yields 

 

 ( )b P J cA

dV U H H q ndA Q
dt

ρ + − = − = −∫ i  (2.6-9) 

 
where kinetic and potential energy terms have been neglected and PH  and JH  
represent the rates of enthalpy production and injection into and from V.  Q  is 
positive when heat is lost from the reservoir.  This equation, of course, is a version of 
the first law of thermodynamics that, depending on the selection of V, will be useful 
in calculating heat losses to wellbores (with the potential energy term restored) and 
the overburden and underburden of a reservoir (see Chap. 11). 

The time integrated or cumulative form of Eq. (2.6-9) is 
 

 (( ) ( ) )b I J PV U U H H Qρ ρ− = − −  (2.6-10) 
 
from which we may define a thermal efficiency hsE as the ratio of thermal energy 
remaining in the volume Vb to the net thermal energy injected. 
 

 (( ) ( ) )
1b I

hs
J P J P

V U U QE
H H H H
ρ ρ−

= = −
− −

 (2.6-11) 

 
Equation (2.6-11) is used to independently calculate .Q  

Another more familiar form of the overall energy balance pertains to phase 
equilibrium thermodynamics (see Chap. 4).  For brevity, we again neglect potential 
and kinetic energies, but allow for both pressure-volume and compression-expansion 
work (see exercise 2Q).  The mass that enters volume V flows at a relative flow rate 
of fju , which is the difference between the actual flow rate and the rate of 
deformation of V .  Further, we rewrite the accumulation term to account for a 
deforming V using the weak form.  The result is 
  

 ( )
1 1

P PN N
j

j fj j c jA A
j jV

dVd U n u H dA n q dA P
dt dt

dVρ ρ
= =

= − − −∑ ∑∫ ∫∫ i i  (2.6-12) 

 
From left to right, the terms are the accumulation, energy flux owing to mass inflow, 
energy flux owing to conduction, and compression-expansion work.  The first three 
terms in Eq. (2.6-12) must now be evaluated.  The accumulation term is 
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 ( )
V

d UU
dt t

dVρ ∂
=

∂∫  , 

 
where U is the total energy within volume V,.  The energy flux term is evaluated with 
the assumption that the enthalpy of the flowing mass for any phase is constant over 
the entrance or exit for mass flow.  The result is   
 

 ( )
1 1 1

P P PN N N

j fj j j j fj j jA A
j j j

n u H dA H n u dA H mρ ρ
= = =

− = − =∑ ∑ ∑∫ ∫i i  

 
where jm  is the total net mass inflow of phase j into the system.  The sign is positive 
to allow for the convention that mass flow rate is positive into the system.  Finally, 
the conduction term is, 
 
 cA

n q dA Q− =∫ i . 

 
With these additional assumptions, Eq. (2.6-12) reduces to 

 

 
1 1

P PN N
j

j j j
j j

dVdU H m Q P
dt dt= =

= + −∑ ∑  . (2.6-13) 

 
When only one phase exists, Eq. (2.6-13) reduces to a more familiar form of the first 
law of thermodynamics,   
 

 dU dVHm Q P
dt dt

= + −  . (2.6-14) 

 
The pressure at the boundary of the system in Eq. (2.6-14) is equal to the pressure in 
the system when pressure gradients are negligible within the system.  Along with the 
entropy balance discussed next, this equation will be used in Chap. 4 to determine the 
equilibrium conditions for phase behavior calculations. 
 
 
Entropy Balance 
 
To derive the overall entropy balance, we start by rewriting Eq. (2.4-5) as 
 

 ( )
11

PP N
c

j j j j GA A V
j

N

j jV j

qd S n u S dA n dA dV
dt T

dV ρ σε ρ
==

= − − +∑∫ ∫ ∫∑∫ i i  .  (2.6-15) 

 
Following the same procedure as for the overall energy balance,   
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1

PN

j j G
j

dS QS m S
dt T=

= + +∑  , (2.6-16) 

 
where we have assumed that both temperature and phase entropies along the system 
boundary are independent of position.  The term GS  is now the total entropy 
generated within the system, that is,  G GV

S dVσ= ∫ . 

When only one phase exists, Eq. (2.6-16) reduces to,   
 

 G
dS QSm S
dt T

= + +  . (2.6-17) 

 
This equation will be used in Chap. 4 to determine the equilibrium conditions for 
phase behavior calculations.  As before, the Second Law of thermodynamics is 

0GS ≥ , the equality applying at equilibrium. 
 

2-7 SUMMARY 
 
We will use the equations introduced and developed in this chapter in the remainder 
of the text. Introducing all of the equations here eliminates repetitive derivation in 
later chapters. The compilation also emphasizes one of the main points of this text: 
the behaviors of all EOR and remediation processes are described by specializations 
of the same underlying conservation laws. Solving these specializations and deducing 
physical observations from the solutions will occupy much of the remainder of this 
text.  You should keep in mind that all of the relationships discussed above and hence 
forth are ways of quantifying the chemical, physical and geologic bases of EOR. 
 
EXERCISES 
 
2A. Overall Compositional Equations.  A simplified form of the conservation 

equation can be obtained by summing Eq. (2.1-1) over all phases.  The result 
is the mass conservation equation for component i in volume V: 

 
Rate of Net rate of Rate of

accumulation transported production ,      1,  . . . ,  
of  in into of  in 

C

i
i N

i V V i V

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

  . 

 
Show starting with the above expression that the differential form for the 
component conservation equation is  

 

0,      1, . . . ,  i
i i C

W
N R i N

t
∂

+ ∇ − = =
∂

i  
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where Wi is the overall concentration of each component, iN  is the overall 
flux of each component, and Ri is the overall production of each component.  
Indicate all units in the derivation.  
 

2B.  Volatile Oil Equations. The text derived the "black oil" equations wherein 
the oleic and gaseous phases are immiscible and constant composition except 
for the solubility of a hydrocarbon gas in the oleic phase. The next step up in 
complexity is the "volatile oil" equations that allow for the vaporization of 
the oil into the gaseous phase (Walsh and Lake, 2003). 

 
Derive the volatile oil equations in terms of the oil vaporization ratio Rv 
where 
 

  tan
tanv

S dard volumes of oil in gaseous phaseR
S dard volumes of gas

=  

 
State all assumptions and show all work. 
 

 
2C. Hydrostatics. Show that for static ( 0)ju =  conditions, Eq. (2.2-11) reduces to 
 

1 2( )c

z

dP
g

dD
ρ ρ= −  

 
 for two-phase flow where Pc is the oil–water capillary pressure curve. 
 
2D. Net Dispersion in a Phase. Show that in a given phase 

1
0CN

Diji
j

=
∇ ⋅ =∑ when 

dispersive flux is defined with respect to mass-averaged velocity.  Use the 
relations given for the average-component velocity owing to convective and 
dispersive transport. 

 
2E. Single-Phase Flow. Show that for the flow of a single phase ( j = 2) in the 

presence of an immiscible, immobile phase ( j = 1) the isothermal mass 
balance equations in one-dimensional radial coordinates reduce to 

2
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The above equation, the “diffusivity” equation, has been derived assuming 
that terms of the form c2(∂P/∂r)2 are negligible and the reservoir is 
homogeneous with constant thickness.  The diffusivity equation forms the 
basis for a large variety of well test techniques (Earlougher, 1977). 

 
2F. Confined Flow of Water in an Aquifer. Show that the final result for 

problem 2E  can be rewritten for fully saturated soil as   
 

1 1h hr
r r r tη

∂ ∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂ ∂⎝ ⎠
, 

 
where 

1t fc c c= +  

s

K T
S S

η = =  

k gK ρ
μ

=  

s tS c gφ ρ=  
 

The parameter sS is the specific storage coefficient for the aquifer in units of 
inverse length.  The dimensionless storage coefficient of the aquifer is equal 
to , sS S b=  where b  is the thickness of the confined aquifer.  A confined 
aquifer is an aquifer fully saturated with water that cannot escape at the top 
and bottom.  The storage coefficient is defined as the volume of water stored 
(or released) per unit area of aquifer per unit increase (or decrease) in the 
hydraulic head h.  The aquifer transmissivity is T Kb= .  Finally, the 
parameter η  is known as the diffusivity constant.  

 
2G. Unconfined Flow in an Aquifer. An unconfined aquifer is an unsaturated 

aquifer that contains both air and water.  The water table (phreatic surface 
where capillary pressure is zero) can rise and fall as water is pumped from 
the aquifer.  A common assumption to model the rising or falling water table 
is to assume that the hydraulic head is constant vertically and is y a function 
only of the horizontal coordinates (this is a vertical equilibrium assumption 
as is discussed in Chap. 6).  Show that under this assumption, the equation 
for flow in a 2-D unconfined homogeneous aquifer is    

 
ySh hh

x x K t
∂ ∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂ ∂⎝ ⎠

, 
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where 

k gK ρ
μ

=  

( )11y rS Sφ= −  
 

The parameter yS is the specific yield of the aquifer, defined as the volume of 
water added (or lost) due to a unit increase (or decrease) in the water table 
height per unit horizontal area of aquifer.   It is dimensionless.  The residual 
water 1rS  is assumed constant whether the water table is rising or falling.  
The water saturation above the water table is assumed constant at 1rS .   
 
To derive the unconfined flow equation start with the equation for a confined 
aquifer given in 2F but expressed in x - and z -coordinates and integrate it 
vertically from the base of the aquifer to the water table.  Use the Liebnitz's 
rule to evaluate integral expressions that result.  Last, let the water table 
surface be given by ( , , ) ( , ) 0F x z t z a x t= − = , where ( , )a x t is the elevation of 
the water table as measured from the assumed horizontal base of the aquifer.  
The unit total derivative of ( , , )F x z t  must be zero, which allows one to relate 
the movement of the water table in the horizontal and vertical directions to 
the time rate of change of the water table.  State all assumptions clearly. 

 
2H. Convection-Dispersion Equation with Retardation.  Show that when 

dispersion is constant, the one dimensional convection-dispersion equation 
with adsorption becomes 

 
2

2 0,      1, . . . , 
1 1

i i l i
C

i i

C C K Cu i N
t D x D x

φφ ∂ ∂ ∂
+ − = =

∂ + ∂ + ∂
 , 

 
where the delay factor (1 ) /i is iD C Cφ φ= −  is constant temporally and lK  is the 
longitudinal dispersion coefficient.  State all assumptions required to obtain 
this equation.  How does adsorption affect the transport of a component? 

 
2I. Simplified Combustion Model. Based on two-phase (j = 2 = liquid, j = 3 = 

gas), four-component (i = 1 = water, i = 2 = oil [CnH2m], i = 3 = CO2, i = 4 = 
O2), one-dimensional flow show that the energy conservation equations in 
Table 2-3 reduce to 

 

 2 2 2 3 3 3 3( )Tt p p Tt RXN
T T T TM C u C u k S H
t x x x

ρ ρ φ∂ ∂ ∂ ∂⎛ ⎞+ + − = Δ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
  

 
where ∆HRXN  is the heat of reaction for the gaseous phase reaction 

 
 2 2 2 2(2 )O 2C H 2 CO 2 H On mn m n m+ + → +   
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Further assumptions for the above equation are there is only oil present in 
liquid phase, no sorption or dispersion, ideal solution behavior (specific heat 
of gaseous phase is the mass fraction – weighted sum of the component 
specific heats), no heat of vaporization of oil (H22 = H23), enthalpies and 
internal energies are equal, kinetic and potential energies are negligible, and 
solid phase density and porosity are constant. 

 
2J. Total Velocity. Show that for immiscible flow, constant porosity, and 

incompressible flow 
 
 0u∇ =i  
 

and that for one-dimensional flow the total velocity is a function only of 
time. 

 
2K. Continuity Equation. Derive Eq. (2.2-33) from the phase conservation 

equations, Eq. (2.2-31). 
 
2L. Volume Change on Mixing.   The development of the semimiscible 

equations assumed no volume change on mixing to obtain volume fractions.  
When volume changes upon mixing, the total velocity can change spatially 
and temporally and the use of volume fractions is not needed.  Relax the no-
volume-change assumption and rederive the equations in a form similar to 
Eq. (2.5-18).  You may neglect dispersion.   

 
2M. Formation Volume Factor.  Show that in a black oil model equation that the 

oil formation volume factor can also be written as 
 

 
2

2 3
2

2

s
SR

B
ρ ρ

ρ
+

=  

2N.   Oil Recovery by NH3 Injection. An inventor believes that he has discovered 
a new enhanced oil recovery technique that you are to simulate. The process 
involves the injection of anhydrous (water-free) ammonia (NH3), which is to 
dissolve in and vaporize some of the connate water. This mass transfer is 
highly non-ideal in that there is a substantial heat of mixing. The heat 
released by this mixing will raise the temperature of the crude and cause it to 
flow more readily, just as in a thermal process. 

 
 There might also be some benefit from a pH increase, but the main objective 

is to increase temperature. To this end, the inventor has commissioned a 
commercial laboratory to do some displacements in a laboratory core. The 
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initial condition of the core is uniform temperature To and 100% water 
saturation. The injected ammonia is pure and at the same temperature To.  

 
 Beginning with the general equations, develop a set of working equations 

that will describe the experiment. There will several equations but these 
should be as simple as possible without omitting the important features 
discussed above. You should state all assumptions you made and ensure that 
the number of equations and unknowns are equal. 

 
2O.   Work Done by Gravity. The derivation of Eq. (2.3-11) included potential 

energy directly.  This need not be the case if gravity work on a fluid element 
in V is included in the source term by the work sum PV GW W W= + .  To 
account for the gravity work, take a scalar product of a velocity and the 
gravity vector g , 
 

 
1

PN

G j j
j

W u g Vρ
=

Δ = Δ∑ i  .  

 
The positive sign arises in this equation since a fluid phase flowing against 
gravity ( 0)ju g <i  is having work done on it.  Note the distinction between 
the elemental forms in Eqs. (2.3-5) and the equation above.  Equation (2.3-5) 
is appropriate for work done against forces on the surface of V, whereas the 
above equation is appropriate for work done against body forces.   
 
Show that the potential energy terms in Eq. (2.3-11) can be derived by 
inclusion as a work term, where the total work done by gravity in the volume 
V is  
 

1

PN

G j jV
j

W u gdVρ
=

= ∑∫ i . 

 
Hint: You must use Eq. (2.2-33) and the identity 

1 1 1
( ) ( )

P P PN N N

j j j j z z j j
j j j

u g g u D g D uρ ρ ρ
= = =

= − ∇ + ∇∑ ∑ ∑i i i . 

 
2P.   First Law of Thermodynamics.  Derive Eq. (2.6-12) for the first law of 

thermodynamics that includes both compression-expansion and pressure-
volume work.  Show that the equation reduces to Eq. (2.3-11) when the 
system is stationary.  Also, derive the energy equation when the system 
deforms at the same rate as the phase velocities.  Neglect kinetic and 
potential energies in your derivations. 
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2Q.   Thermal Diffusivity Equation. From Eq. (2.5-33), state the necessary 

assumptions required to obtain the thermal diffusivity equation,  
 

2 Tt
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M TT
k t

∂
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∂
 , 

 where 
 

1 1 1 (1 )Tt p s psM C S Cφρ φ ρ= + −  . 
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4  
 
 
 
 

Phase Behavior 
and Fluid Properties 
 
 
 
 
 
 
 
 
The phase behavior of crude oil, water, and enhanced oil recovery fluids is a common 
basis of understanding the displacement mechanisms of EOR processes. Such 
behavior includes the two- and three-phase behavior of surfactant–brine–oil systems, 
the two or more phases formed in crude-oil–miscible-solvent systems, and the steam–
oil–brine phases of thermal flooding. This chapter is not an exhaustive exposition of 
phase behavior. We concentrate on the aspects of phase behavior most pertinent to 
EOR. (For more complete treatments of phase behavior, see Francis, 1963; Sage and 
Lacey, 1939; and Standing, 1977.) 
 
 

4-1 PHASE BEHAVIOR OF PURE COMPONENTS 
 
In this section, we discuss the phase behavior of pure components in terms of 
pressure–temperature (P-T) and pressure–molar-volume diagrams. 
 
Definitions 
 
A system is a specified amount of material to be studied. In other chapters, the word 
system refers to the permeable medium, including the fluid with the pore space. In 
this chapter, the word refers only to the fluids. With this definition, a system can be 
described by one or more properties, any of several attributes of the system that can 
be measured. This definition implies a quantitative nature to physical properties––
that is, they can be assigned a numerical value. 
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 Properties are of two types: extensive properties, those dependent on the 
amount of mass in the system (the mass itself, volume, enthalpy, internal energy, and 
so on) and intensive properties, those independent of the amount of mass 
(temperature, pressure, density, specific volume, specific enthalpy, phase 
composition, and so on). Many times we designate intensive quantity by the modifier 
specific (quality per unit mass) or by molar (quantity per unit mole). Thermodynamic 
laws and physical properties are usually expressed in terms of intensive properties. 
The most important intensive properties in this chapter are 
 
 ρ = the density, mass per volume (or g/cm3 in practical SI) 
 V  = the specific volume, volume per mass (or the reciprocal of ρ) 
 MV  = the specific molar volume, volume per amount (or m3/kg-mole in SI) 
 ρM = the molar density, moles per volume (or the reciprocal of MV ) 
 

Often the standard density of a fluid is given as the specific gravity, where 
 

 
for liquids

for gases

water

air

ρ
ρ

γ
ρ
ρ

⎧
⎪⎪= ⎨
⎪
⎪⎩

 (4.1-1) 

 
All densities in Eq. (4.1-1) are evaluated at standard conditions of 273 K and 
approximately 0.1 MPa. The petroleum literature uses other standards (60°F and 14.7 
psia). 

In all discussions of phase behavior, it is important to understand the 
difference between a component and a phase. A phase is a homogeneous region of 
matter. Homogeneous means it is possible to move from any point in the region to 
any other without detecting a discontinuous change in a property. Such a change 
occurs when the point crosses an interface, and thereby the system consists of more 
than one phase. The three basic types of phases are gas, liquid, and solid, but of the 
last two, there can be more than one type. 
 A component is any identifiable chemical entity. This definition is broad 
enough to distinguish among all types of chemical isomers or even among chemical 
species that are different only by the substitution of a radioactively tagged element. 
Examples are H2O, CH4, C4H10, Na+, Ca2+, and 2-

3CO . Natural systems contain many 
components, and we are commonly forced to combine several components into 
pseudocomponents to facilitate phase behavior representation and subsequent 
calculations. 
 The relationship among the number of components NC, number of phases NP, 
number of chemical reactions NR, and “degrees of freedom” NF of the system is given 
by the Gibbs phase rule: 
 
 2F C P RN N N N= − + −  (4.1-2) 
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In many textbooks, the number of components is defined to be NC – NR, the total 
number of chemical species minus the chemical reactions involving them, or the 
number of independent species. The resulting NF is the same. The +2 in Eq. (4.1-2)
accounts for the intensive properties temperature and pressure. If one or both of these 
properties is specified, the equation must be reduced accordingly. 

The meaning of NC and NP in Eq. (4.1-2) is clear enough, but NF invariably 
requires some amplification. The degrees of freedom in the phase rule is the number 
of independent intensive thermodynamic variables that must he fixed to specify the 
thermodynamic state of all properties of the system. Intensive thermodynamic 
variables include phase compositions (ωij in Chap. 2) as opposed to overall 
compositions or volume fractions (Wi and Sj in Chap. 2), which are not 
thermodynamic properties. The phase rule does not itself specify the values of the NF 
variables, nor does it identify the variables; it merely gives the number required. 

Intuitively, we expect a relationship among the three intensive properties, 
temperature, pressure, and molar volume, for a pure component. Using density, molar 
density, or specific volume in place of the molar volume would mean no loss of 
generality. However, in two dimensions it is difficult to completely represent this 
relationship, but we can easily plot any two of these variables. 
 
Pressure–Temperature Diagrams 
 
Figure 4-1 shows a schematic P-T plot for a pure component. The lines on the 
diagram represent temperatures and pressures where phase transitions occur. These 
lines or phase boundaries separate the diagram into regions in which the system is 
 

 
 

 
 
 
Figure 4-1  Pure component PT diagram 
(constant composition)
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single phase. Specifically, the phase boundary separating the solid and liquid phases 
is the fusion, or melting, curve, that between the solid and gas phases is the 
sublimation curve, and that between the liquid and vapor phases is the vapor pressure 
curve. Based on our definition of a phase, a discontinuous change in system 
properties will occur when any phase boundary is crossed. 

The phase transitions we refer to in this chapter are those of fluids in 
thermodynamic equilibrium. Thus it is possible for a fluid in a particular phase to 
momentarily exist at a P-T coordinate corresponding to another phase. But this 
condition is not permanent since the material would eventually convert to the 
appropriate stable equilibrium state. 

From the phase rule we know that when two phases coexist, NF equals 1. 
This can happen for a pure component only on the phase boundaries since a curve has 
one degree of freedom. By the same argument, three phases can coexist at only a 
single point in P-T space since NF = 0 for this condition. This single point is a triple 
point, shown in Fig. 4-1 as the point where the three phase boundaries intersect. 
Other triple points such as three solids may also exist. For pure components, the 
phase rule says no more than three phases can form at any temperature and pressure. 

Each phase boundary terminates at a critical point. The most interesting of 
these is the critical point at the termination of the vapor pressure curve. The 
coordinates of the critical point on a P-T plot are the critical temperature Tc and 
critical pressure Pc, respectively. The formal definition of Pc is the pressure above 
which a liquid cannot be vaporized into a gas regardless of the temperature. The 
definition of Tc is the temperature above which a gas cannot be condensed into a 
liquid regardless of the pressure. At the critical point, gas and liquid properties are 
identical. Obviously, the region above the critical point represents a transition from a 
liquid to gas state without a discontinuous change in properties. Since this region is 
neither clearly a liquid nor a gas, it is sometimes called the supercritical fluid region. 
The exact definition of the fluid region is arbitrary: Most texts take it to be the region 
to the right of the critical temperature (T > Tc) though it would seem that defining it 
to be the region to the right and above the critical point (T > Tc and P > Pc) would be 
more consistent with the behavior of mixtures. 

The behavior shown in Fig. 4-1 for a pure component is qualitatively correct 
though less detailed than what can be observed. There can exist, in fact, more than 
one triple point where solid–solid–liquid equilibria are observed. Water is a familiar 
example of a pure component that has this behavior. Remarkably, observations of 
multiple gas phases for pure components have also been reported (Schneider, 1970). 
Such nuances are not the concern of this text, which emphasizes gas–liquid and 
liquid–liquid equilibria. In fact, in all further discussions of phase behavior, we 
ignore triple points and solid-phase equilibria. Even with these things omitted, the 
P-T diagrams in this chapter are only qualitatively correct since the critical point and 
the vapor pressure curve vary greatly among components. Figure 7-2 shows some 
quantitative comparisons. 

Critical phenomena do play an important role in the properties of EOR fluids. 
If a laboratory pressure cell contains a pure component on its vapor pressure curve
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(Fig. 4-1), the pure component exists in two phases (gas and liquid) at this point, and 
the cell pressure is Pv. Thus the cell will contain two regions of distinctly different 
properties. One of these properties being the density, one phase will segregate to the 
top of the cell, and the other to the bottom. The phases will most likely have different 
light transmittance properties so that one phase, usually the upper or light phase, will 
be clear, whereas the other phase, the lower or heavy phase, will be translucent or 
dark. 

We can simultaneously adjust the heat transferred to the cell so that the 
relative volumes of each phase remain constant, and both the temperature and 
pressure of the cell increase if the fluid remains on the vapor pressure curve. For 
most of the travel from the original point to the critical point, no change occurs in the 
condition of the material in the cell. But the properties of the individual phases are 
approaching each other. In some region near the critical point, the light phase would 
become darker, and the heavy phase lighter. Very near the critical point, the interface 
between the phases, which was sharp at the original temperature and pressure, will 
become blurred and may even appear to take on a finite thickness. At the critical 
point, these trends will continue until there is no longer a distinction between 
phases–that is, two phases have ceased to exist. If we continue on an extension of 
the vapor pressure curve, there would be a single-fluid phase and gradual changes in 
properties. 
 
Pressure–Molar-Volume Diagram 
 
A way of representing how the discontinuity in intensive properties between phases 
vanishes at the critical point is the pressure–molar-volume diagram. Figure 4-2 
compares such a diagram with the corresponding P-T diagram. Both schematic plots 
show isotherms, changes in pressure from a high pressure P1 to a lower pressure P2, 
at four constant temperatures, T1 through T4. 

At conditions (P, T)1, the pure component is a single-phase liquid. As 
pressure decreases at constant temperature, the molar volume increases but only 
slightly since liquids are relatively incompressible. At P = Pv(T1), the molar volume 
increases discontinuously from some small value to a much larger value as the 
material changes from a single-liquid to a single-gas phase. Since the change takes 
place at constant temperature and pressure, this vaporization appears as a horizontal 
line in Fig. 4-2(b). Subsequent pressure lowering again causes the molar volume to 
increase, now at a much faster rate since the compressibility of the gas phase is much 
greater than that of the liquid phase. The endpoints of the horizontal segment of the 
pressure–molar-volume plot represent two coexisting phases in equilibrium with each 
other at the same temperature and pressure. The liquid and vapor phases are said to 
be saturated at P = Pv(T1). 

At a higher temperature T2, the behavior is qualitatively the same. The 
isotherm starts at a slightly higher molar volume, the vaporization at P = Pv(T2) is at a 
higher pressure, and the discontinuous change from saturated liquid to saturated 
vapor MV  is not as large as at T1. Clearly, these trends continue as the isotherm 
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Figure 4-2  Schematic pressure–temperature and pressure–molar-volume diagrams 

 
temperature approaches T3 = Tc. All isotherms on the pressure–molar-volume plot are 
continuously nonincreasing functions with discontinuous first derivatives at the vapor 
pressure line. 

At the critical temperature, the two phases become identical, and the 
saturated liquid and gas molar volumes coincide. Since this temperature is only 
infinitesimally higher than one at which there would still be distinguishable liquid 
and gas phases, the isotherm at T = Tc, the critical isotherm, continuously decreases 
with continuous first derivatives. At the critical point P = Pc, the critical isotherm 
must have zero slope and zero curvature, or 
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 (4.1-3) 

 
These critical constraints follow from the physical argument given above and can 
also be derived by requiring a minimum in the Gibbs free energy at the critical point 
(Denbigh, 1968). 

At isotherm temperatures above the critical temperature, T = T4 in Fig. 4-2, 
the isotherm is monotonically decreasing with continuous first derivatives but 
without points of zero slope or curvature. 

The endpoints of all the horizontal line segments below the critical points in 
the pressure–molar-volume plot define a two-phase envelope as in Fig. 4-2(b). 
Though rarely done, it is also possible to show lines of constant relative amounts of 
liquid and gas within the two-phase envelope. These quality lines (dotted lines in Fig. 
4-2b) must converge to the critical point. The two-phase envelope on a pressure–
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molar-volume plot for a pure component, which projects onto a line in a P-T 
diagram, is not the same as the two-phase envelope on a P-T diagram for mixtures. 
Both Figs. 4-2(a) and 4-2(b) are merely individual planar representations of the 
three-dimensional relation among temperature, pressure, and molar volume. Figure 
4-3 illustrates the three-dimensional character of this relation for water. 

Finally, though we illustrate the phase envelope of a pure component on a 
pressure–molar-volume diagram, discontinuities in properties below the critical point 
are present in all other intensive properties except temperature and pressure (see Fig. 
11-3, the pressure–enthalpy diagram for water). 
 
 

4-2 PHASE BEHAVIOR OF MIXTURES 
 
Because the purpose of EOR is to recover crude oil, an unrefined product, we need 
not deal with the phase behavior of pure components except as an aid to 
understanding mixtures. Since the phase behavior of hydrocarbon mixtures is so 
complex, in this and the next section, we simply compare the phase behavior of 
mixtures to pure components and introduce pressure–composition (P-z) and ternary 
diagrams. 
 
Pressure–Temperature Diagrams 
 
For a multicomponent mixture, NF > 2 when two phases are present. Therefore, two 
(or more) phases can coexist in a planar region in P-T space, compared to the single 
component case, where two phases coexist only along a line in P-T space. Mixtures 
have two phases in a region, or envelope, in P-T space (Fig. 4-4). 

Consider, along with this figure, a change in pressure from P1 to P5 at 
constant temperature T2. The phase envelope is fixed for constant overall composition 
(ωi or zi). Since the indicated change is usually brought about by changing the 
volume of a pressure cell at constant composition and temperature, the process is 
frequently called a constant composition expansion. 

From P1 to P3, the material in the cell is a single-liquid phase. At P3, a small 
amount of vapor phase begins to form. The upper boundary of the phase envelope 
passing through this point is the bubble point curve, and the y coordinate at this point 
is the bubble point pressure at the fixed temperature. From P3 to P5, successively, 
more gas forms as the liquid phase vaporizes. This vaporization takes place over a 
finite pressure range in contrast to the behavior of a pure component. Continuing the 
constant composition expansion to pressures lower than P5 would result in eventually 
reaching a pressure where the liquid phase would disappear, appearing only as drops 
in the cell just before this point. The pressure the liquid vanishes at is the dew point 
pressure at the fixed temperature, and the lower boundary of the phase envelope is 
the dew point curve. 

For a pure component (Fig. 4-1), the dew and bubble point curves coincide. 
Within the two-phase envelope, there exist quality lines that as before, 

indicate constant relative amounts of liquid and vapor. The composition of the liquid 
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Figure 4-3  Schematic pressure-specific volume–temperature surface and projections 
(from Himmelblau, 1982)



 101

 

 
 
 
 
Figure 4-4  Schematic pressure–
temperature diagram for hydrocarbon 
mixtures (constant composition)

and gas phases is different at each point within the envelope, and both change 
continuously as the pressure decreases. 

Phase compositions are not shown on the P-T plot. But we do know that the 
liquid and gas phases are saturated with respect to each other in the two-phase 
envelope. Hence at any T and P within the envelope, the liquid phase is at its bubble 
point, and the gas phase at its dew point. The quality lines converge to a common 
point at the critical point of the mixture though this point does not, in general, occur 
at extreme values of the temperature and pressure on the phase envelope boundary. 
The maximum pressure on the phase envelope boundary is the cricondenbar, the 
pressure above which a liquid cannot be vaporized. The maximum temperature on the 
phase envelope is the cricondentherm, the temperature above which a gas cannot be 
condensed. These definitions are the same as for the critical point in pure component 
systems; hence the best definition of the critical point for mixtures is the temperature 
and pressure at which the two phases become identical. 

For mixtures, there exists, in general, a pressure range between the 
cricondenbar and Pc and between the cricondentherm and Tc where retrograde 
behavior can occur. A horizontal constant pressure line in Fig. 4-4 at P = P4 begins in 
the liquid region at T0 and ends in the fluid region at T4. As temperature is increased, 
gas begins to form at the bubble point temperature T1 and increases in amount from 
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then on. But at T2, the amount of gas begins to decrease, and the gas phase vanishes 
entirely at a second bubble point T3. From T2 to T3, the behavior is contrary to 
intuition––a gas phase disappearing as temperature increases––and the phenomenon 
is called retrograde vaporization. 

Retrograde behavior does not occur over the entire range between the two 
bubble point temperatures but only over the range from T2 to T3. By performing the 
above thought experiment at several pressures, one can show that retrograde behavior 
occurs only over a region bounded by the bubble point curve on the right and a curve 
connecting the points of zero slope on the quality lines on the left (McCain, 1973). 

Though not possible in the P-T diagram in Fig. 4-4, retrograde phenomena 
are also observed for changes in pressure at constant temperature. This case, which is 
of more interest to a reservoir engineer, happens when the cricondentherm is larger 
than Tc and the constant temperature is between these extremes. This type of 
retrograde behavior is a prominent feature of many hydrocarbon reservoirs, but it 
impacts little on EOR. 

We do not discuss the pressure–molar-volume behavior of hydrocarbon 
mixtures in detail. The main differences between the behavior of pure components 
and mixtures is that the discontinuous changes in MV  do not occur at constant P, and 
the critical point no longer occurs at the top of the two-phase region (see Exercise 
4B). These differences cause interesting variations in the shape of pressure–molar-
volume diagrams for mixtures but, again, are not directly relevant to EOR. 

Since EOR processes are highly composition dependent, the behavior of the 
P-T envelope as the overall composition of the mixture changes is highly important. 
Consider the dilution of a crude oil M4 with a more volatile pure component A as 
shown in Fig. 4-5. As the overall mole fraction of A increases, the phase envelope 
migrates toward the vertical axis, increasing the size of the gas region. 
Simultaneously, the phase envelope shrinks as it approaches the vapor pressure curve 
of the pure component A. There are, of course, an infinite number of mixtures (Fig. 
4-5 shows only three) of the crude oil with A. Each mixture has its respective critical 
point in P-T space, which also migrates to the critical point of the pure component on 
a critical locus. The overall composition of a mixture at a critical point is the critical 
mixture at that temperature and pressure. 
 
 
Pressure–Composition Diagrams 
 
 
The phase behavior of the dilution in Fig. 4-5 on a plot of mole fraction of 
component A versus pressure at fixed temperature shows composition information 
directly. Such a plot is a pressure composition, or P-z, plot. The P-z plot for the 
sequence of mixtures in Fig. 4-5 is shown in Fig. 4-6. Since the P-T diagram in Fig. 
4-5 shows only three mixtures and does not show quality lines, phase envelope 
boundaries are represented at relatively few points in Fig. 4-6 (see Exercise 4C). 

Starting at some high pressure in Fig. 4-5 and following a line of constant 
temperature as pressure is reduced produces a dew point curve for mixture M1 at
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Figure 4-5  Schematic dilution of a crude oil by a more volatile pure component 

 

 
 

 
 
 
Figure 4-6  The pressure–composition 
plot for the dilution in Fig. 4-5
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pressure P6. Since this mixture is rich in component A, this point plots nearest the 
right vertical axis in Fig. 4-6 at the pressure coordinate P6. Continuing down the 
constant temperature line, at P5 the critical point for mixture M2 is encountered 
(mixture M2 is the critical composition at this temperature and pressure). But this 
point is also a second dew point for mixture M1; hence P5 plots at the same vertical 
coordinate for both mixtures in Fig. 4-6 but with different horizontal coordinates. At 
P4 there is a bubble point for mixture M3 and a dew point for M2. These points again 
define the corresponding phase boundaries of the P-z plot in Fig. 4-6. The process 
continues to successively lower pressures in the same manner. Each pressure below 
the critical is simultaneously a bubble point and a dew point pressure for mixtures of 
different overall compositions. The pressures P2 and P1 are the bubble and dew point 
pressures of the undiluted crude oil. The two-phase envelope in Fig. 4-6 does not 
intersect the right vertical axis since the fixed temperature is above the critical 
temperature of the pure component A. The diagram shows the closure of the 
two-phase envelope as well as a few quality lines. 

Since the entire P-z diagram is at constant temperature, we cannot represent 
the phase behavior at another temperature without showing several diagrams. More 
important, the composition plotted on the horizontal axis of the P-z plot is the overall 
composition, not either of the phase compositions. Thus horizontal lines do not 
connect equilibrium mixtures. Such tie lines do exist but are, in general, oriented on a 
horizontal line in a hyperspace whose coordinates are the phase compositions. 
However, for binary mixtures, the tie lines are in the plane of the P-z plot, and the 
critical point is necessarily located at the top of the two-phase region. Finally, though 
Fig. 4-6 is schematic, it bears qualitative similarity to the actual P-z diagrams shown 
in Figs. 7-10 through 7-12. 
 
 

4-3 TERNARY DIAGRAMS 
 
On a P-z plot, we sacrifice a degree of freedom (temperature) to obtain compositional 
information. But the diagrams can show only the composition of one component, and 
this representation is often insufficient for the multitude of compositions that can 
form in an EOR displacement. A plot that represents more composition information 
is the ternary diagram. 
 
Definitions 
 
Imagine a mixture, at fixed temperature and pressure, consisting of three components 
1, 2, and 3. The components may be pure components. But more commonly in EOR, 
they are pseudocomponents, consisting of several pure components. The composition 
of the mixture will be a point on a plot of the mole fraction of component 3 versus 
that of component 2. In fact, this entire two-dimensional space is made up of points 
that represent the component concentrations of all possible mixtures. 

We need to plot the concentrations of only two of the components since the 
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concentration of the third may always be obtained by subtracting the sum of the mole 
fractions of components 2 and 3 from 1. This means all possible compositions will 
plot into a right triangle whose hypotenuse is a line from the 1.0 on the y axis to the 
1.0 on the x axis. Though ternary diagrams are on occasion shown this way (see Fig. 
7-15), they are most commonly plotted so that the right triangle is shifted to an 
equilateral triangle, as in Fig. 4-7. 
 

 
 

Figure 4-7  Ternary Diagram 
 

All possible ternary compositions fall on the interior of the equilateral 
triangle; the boundaries of the triangle represent binary mixtures (the component at 
the apex opposite to the particular side is absent), and the apexes represent pure 
components. Thus in Fig. 4-7, point M1 is a mixture having 20%, 50%, and 30% 
components 1, 2, and 3, respectively; point M2 is a binary mixture of 70% component 
1 and 30% component 3, and point M3 is 100% component 2. Representing the 
compositions in this manner is possible for any concentration variable (mole fraction, 
volume fraction, mass fraction) that sums to a constant. 

Ternary diagrams are extremely useful tools in EOR because they can 
simultaneously represent phase and overall compositions as well as relative amounts. 
The correspondence of the P-T diagram to the ternary diagram in Figs. 4-8 and 4-9 
compares to the P-z diagram in Figs. 4-5 and 4-6. Here we consider a ternary system 
consisting of components 1, 2, and 3, and consider the dilution of mixtures having 
constant ratios of components 2 and 3 by component 1. Each dilution represents a 
line corresponding to a fixed 2 : 3 ratio on the ternary in Fig. 4-9. 
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Figure 4-8  Schematic evolution of P-T diagram in three component systems 
 

We want to follow the formation and disappearance of phases on the ternary 
diagram at the fixed temperature and pressure indicated by the box in Fig. 4-8. For 
the dilution of component 3 by component 1, the reference temperature and pressure 
is above the critical locus in the upper left-hand panel (Fig. 4-8a). Thus the C1-C3 
axis of the ternary indicates no phase changes. The C1-C2 binary dilution in the upper 
right-hand panel (Fig. 4-8a) does encounter phase changes, and in fact, the reference 
temperature and pressure is a bubble point for a mixture of 25% C1 and a dew point 
for a mixture of 85% C1. These phase transitions are shown on the C1-C2 axis on the
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Figure 4-9  Schematic ternary diagram of dilutions in Fig. 4-8 
 
ternary. The dilution indicated in the middle left-hand panel (Fig. 4-8b) shows phase 
transitions at 82% and 21%, respectively, which are also plotted on the ternary. For 
the dilution of the 1 : 3 mixture, the critical locus passes through the fixed 
temperature and pressure, and this composition, 25% C1, is the critical composition 
of the ternary mixture. This composition is indicated on the ternary diagram in Fig. 
4-9 as a plait point after the more common designation of the critical mixture in 
liquid–liquid phase equilibria. At the fixed temperature and pressure, there can exist a 
second phase transition––a dew point at 67% C1––at the same temperature and 
pressure. After making several dilution passes through the ternary diagram, the points 
where there are phase transitions define a closed curve in Fig. 4-9. This curve, the 
binodal curve, separates regions of one- and two-phase behavior. Within the region 
enclosed by the binodal curve, two phases exist, and outside this region, all 
components are in a single phase. 
 
Phase Compositions 
 
One useful but potentially confusing feature of ternary diagrams is that it is possible 
to represent the composition of the phases as well as the overall composition on the 
same diagram. Consider an overall composition Ci on the inside of the binodal curve 
in Fig. 4-10 
 
 1 1 2 2 ,     1,  2, 3i i iC C S C S i= + =  (4.3-1) 
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Figure 4-10  Two-phase ternary equilibria 

 
where Cij is the concentration of component i in phase j, and Sj is the relative amount 
of phase j. By convention, we take phase 1 to be the C1-rich phase and phase 2 to be 
the C1-lean phase. Since S1 + S2 = 1, we can eliminate S1 from two of the equations in 
Eq. (4.3-1) to give 
 

 3 31 1 11
2

32 31 12 11

C C C CS
C C C C

− −
= =

− −
 (4.3-2) 

 
This equation says a line through the composition of phase 1 and the overall 
composition has the same slope as a line passing through the composition of phase 2 
and the overall composition. Both lines, therefore, are merely segments of the same 
straight line that passes through both phase compositions and the overall 
composition. The intersection of these tie lines with the binodal curve gives the phase 
compositions shown in Fig. 4-10. The entire region within the binodal curve can be 
filled with an infinite number of these tie lines, which must vanish as the plait point is 
approached since all phase compositions are equal at this point. Of course, there are 
no tie lines in the single-phase region. 

Further, Eq. (4.3-2) implies, by a similar triangle argument, that the length of 
the line segment between Ci and Ci1 divided by the length of the segment between Ci2 
and Ci1 is the relative amount S2. This, of course, is the well-known lever rule, which 
can also be derived for S1. By holding S2 constant and allowing Ci to vary, we can 
construct quality lines, as indicated in Fig. 4-10, which must also converge to the 
plait point as do the tie lines. 
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 Tie lines are graphical representations of the equilibrium relations (Eq. 2.2-
11). Assuming, for the moment, the apexes of the ternary diagram represent true 
components, the phase rule predicts there will be NF = 1 degrees of freedom for 
mixtures within the binodal curve since temperature and pressure are already 
specified. Thus it is sufficient to specify one concentration in either phase to 
completely specify the state of the mixture. A single coordinate of any point on the 
binodal curve gives both phase compositions if the tie lines are known. This exercise 
does not determine the relative amounts of the phases present since these are not state 
variables. Nor does specifying a single coordinate of the overall concentration suffice 
since these, in general, do not lie on the binodal curve. Of course, it is possible to 
calculate the phase compositions and the relative amounts from equilibrium relations, 
but these must be supplemented in “flash calculations” by additional mass balance 
relations to give the amounts of each phase. 
 
Three-Phase Behavior 
 
When three phases form, there are no degrees of freedom (NF = 0). The state of the 
system is entirely determined. It follows from this that three-phase regions are 
represented on ternary diagrams as smaller subtriangles embedded within the larger 
ternary triangle (Fig. 4-11). Since no tie lines are in three-phase regions, the apexes 
or invariant points of the subtriangle give the phase compositions of any overall 
composition within that subtriangle. The graphical construction indicated in Fig. 4-11 
gives the relative amounts of the three phases present (see Hougen et al., 1966, and 
Exercise 4D). 
 

 
 

Figure 4-11  Three-phase diagram example (from Lake, 1984) 
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A point on a nonapex side of the subtriangle may be regarded as being 

simultaneously in the three-phase region or in a two-phase region; thus the 
subtriangle must always be bounded on a nonapex side by a two-phase region for 
which the side of the subtriangle is a tie line of the adjoining two-phase region. By 
the same argument, the apexes of the subtriangle must adjoin, at least in some 
nonzero region, a single-phase region. To be sure, the adjoining two-phase regions 
can be quite small (see Fig. 9-6). 

Thus points A and C in Fig. 4-11 are two-phase mixtures, point B is three 
phase, and points D and E are single phase, though point D is saturated with respect 
to phase 1. (For more detail on the geometric and thermodynamic restrictions of 
ternary equilibria, see Francis, 1963.) 
 
 

4-4 QUANTITATIVE REPRESENTATION OF TWO-PHASE 
EQUILIBRIA 

 
Several mathematical relations describe the qualitative representations in the previous 
section. The most common are those based on (1) equilibrium flash vaporization 
ratios, (2) equations of state, and (3) a variety of empirical relations. In this section, 
we concentrate only on those two-phase equilibria aspects directly related to EOR. 
Three-phase equilibria calculations are discussed elsewhere in the literature (Mehra 
et al., 1980; Risnes and Dalen, 1982; Peng and Robinson, 1976) and in Chap. 9, 
which covers three-phase equilibria for micellar systems. 
 
Equilibrium Flash Vaporization Ratios 
 
If we let xi and yi be the mole fractions of component i in a liquid and in contact with 
a vapor phase, the equilibrium flash vaporization ratio for component i is defined by 
 

 ,      1, . . . , i
i C

i

yK i N
x

= =  (4.4-1) 

 
This quantity is universally known as the K-value for component i. 
 At low pressures, the K-values are readily related to the mixture temperature 
and pressure. The partial pressure of component i in a low-pressure gas phase is yiP 
from Dalton’s law of additive pressures. The partial pressure of component i in the 
vapor above an ideal liquid phase is xiPvi from Raoult’s law, where Pvi is the pure 
component vapor pressure of component i (see Figs. 4-1 and 7-2). At equilibrium for 
this special case, the partial pressures of component i calculated by either means must 
be equal; hence 

 ,      1, . . . , i vi
i C

i

y PK i N
x P

= = =  (4.4-2) 

Equation (4.4-2) says at low pressures, a plot of the equilibrium K-value for a 
particular component at a fixed temperature will be a straight line of slope –1 on a 
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log–log plot. Under these conditions, the K-value itself may be estimated from pure 
component vapor pressure data. 

At higher pressures, where the assumptions behind Dalton’s and Raoult’s 
laws are inaccurate, the K-values are functions of overall composition. The additional 
composition information, usually based on the liquid-phase composition, can be 
incorporated into a convergence pressure, which is then correlated to the K-values. 
Convergence pressure correlations are usually presented in graphical form (GPSA 
Data Book, 1983) or as equations. The introduction of a composition variable directly 
into the K-value functions adds considerable complexity to the flash procedure. 

The flash calculation proceeds as follows: Let zi be the overall mole fraction 
of component i in the mixture (analogous to ωi, the overall mass fraction in Chap. 2). 
Then 
 ,      1, . . . , i L i V i Cz n x n y i N= + =  (4.4-3) 
 
where nL and nV are the relative molar amounts of the liquid and gas phases, 
respectively. Since all quantities in Eq. (4.4-3) are relative, they are subject to the 
following constraints 

 
1 1 1

1
C C CN N N

i i i L V
i i i

x y z n n
= = =

= = = + =∑ ∑ ∑  (4.4-4) 

 
Eliminating nL from Eq. (4.4-3) with this equation, and substituting the definition 
(Eq. 4.4-1) for yi, yields the following for the liquid-phase composition: 

 
( )

,      1, . . . , 
1 1

i
i C

i V

zx i N
K n

= =
+ −

 (4.4-5) 

 
But these concentrations must also sum to 1. 
 

 
( )1

1
1 1

CN
i

i i V

z
K n=

=
+ −∑  (4.4-6a) 

 
Equation (4.4-6a) is a single polynomial expression for nV, with Ki and zi known, that 
must be solved by trial and error. The equation itself is not unique since we could 
have eliminated nV and xi from Eq. (4.4-3) to give the entirely equivalent result 
 

 
1
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CN
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i
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K

=

=
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∑  (4.4-6b) 

 
The usual flash procedure is to calculate nV or nL by trial and error, and then use Eqs. 
(4.4-1) and (4.4-5) to calculate the phase concentrations. 

Alternatively, Eqs. (4.4-6a) and (4.4-6b) can be used to calculate quality lines 
in a P-T diagram by specifying nV or nL and then performing trial-and-error solutions 
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for pressure at various fixed temperatures. Two special cases of the above procedure 
follow directly. The bubble point curve for a mixture (nL = 1) is given implicitly from 
Eq. (4.4-6b) as 

 
1

1
CN

i i
i

z K
=

=∑  (4.4-7a) 

and the dew point curve (nV = 1) from Eq. (4.4-6a) as 
 

 
1

1
CN

i

i i

z
K=

=∑   (4.4-7b) 

These equations suggest the necessity of doing a flash calculation. Because 
the K-values increase as temperature increases, a mixture of overall composition zi at 
fixed temperature and pressure will be two phase only if 

 
1 1

1   and   1
C CN N

i
i i

i i i

zz K
K= =

> >∑ ∑  (4.4-8) 

 
If the first inequality in Eq. (4.4-8) is violated, the mixture is a single-phase liquid; if 
the second is violated, the mixture is a single-phase gas. 
 
Equations of State 
 
Though the K-value approach is easily the most common representation of two-phase 
equilibria, it suffers from a lack of generality and may result in inaccuracies 
particularly near the convergence pressure. In recent years, the trend has been toward 
equation of state (EOS) representations since these are potentially able to work near 
the critical point and yield internally consistent densities and molar volumes. (For 
more details on EOS and its underlying thermodynamic principles, see Smith and van 
Ness, 1975, and Denbigh, 1968.) 
 

Pure components.  An EOS is any mathematical relationship among the 
three intensive properties molar volume, temperature, and pressure. Usually, the 
relation is written in a pressure-explicit form ( , ),MP f V T=  and the most elementary 
form is the ideal gas equation 

 
M

RTP
V

=  (4.4-9) 

 
This equation applies only to gases at low pressure. Equation (4.4-9) can be corrected 
to apply to real gases by introducing a correction factor z, the compressibility factor 
 

 
M

zRTP
V

=  (4.4-10) 

 
The compressibility factor is itself a function of temperature and pressure that is 
given in many sources (see McCain, 1973, for example). Since Eq. (4.4-10) is 
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actually a definition of the compressibility factor, the equation can also be applied to 
fluids and liquids though the latter is rarely done. Given the relation between z and T 
and P, Eq. (4.4-10) could predict volumetric behavior for all T and P. 

Consider the pressure–molar-volume behavior of a pure component as shown 
in Fig. 4-2. Figure 4-12 also shows this type of plot with two isotherms T1 and T2, 
both below the critical temperature. Equation (4.4-9) is the equation of a hyperbola 
on this plot that matches the experimental isotherm well at low pressure or high 
molar volume. The ideal gas law fails badly in the liquid region, particularly for 
pressure predictions, since it predicts a zero asymptote on the molar volume axis. 
This is equivalent to saying the component molecules themselves have no intrinsic 
volume even at the highest pressure, which is, of course, a basic hypothesis in the 
derivation of the ideal gas law from statistical mechanics. 

 

 
 

Figure 4-12  General features of cubic equations of state 
 

To introduce a nonzero asymptote, we try an equation of the form 
 

 
( )M

RTP
V b

=
−

 (4.4-11) 

 
where b is now the asymptotic value of MV  as pressure increases. Figure 4-12 shows 
this equation can be made to match the liquid molar volumes reasonably well at high 
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pressures. The value of b, the intrinsic molecular volume, is usually so small that Eq. 
(4.4-11) still provides a good estimate at low pressures. 

But Eq. (4.4-11) still fails for temperature and pressure combinations that are 
fairly close to the pure component vapor pressure curve. To predict the molar volume 
up to and including the vapor pressure curve requires a function of the form 
 

 
( ) ( ), M

M

RTP f T V
V b

= −
−

 (4.4-12) 

 
where the term ( , )Mf T V  is specific to the particular EOS. Equation (4.4-12) is 
frequently interpreted as a sum of forces, the first term being the force that will not 
allow the molecules to be compressed to zero volume (repulsive force), and the 
second being the force due to the intermolecular attraction among molecules. 

A practical EOS must be accurate, internally consistent near the critical 
point, and relatively simple. Moreover, since we are to use it to predict vapor–liquid 
equilibria, it must predict both liquid and gas properties. 
 For pure components, there can exist two values of molar volume at a 
particular temperature and pressure; hence Eq. (4.4-12) must have at least two real 
roots at this point. Moreover, since P is a monotonically decreasing function of MV  
regardless of the fluid-phase identity, f must be at least second order in MV  so that the 
entire function (Eq. 4.4-12) must be at least cubic in molar volume. Cubic EOS, 
therefore, are the simplest form that satisfy the three criteria mentioned. Though there 
have been more than 100 EOS proposed in the technical literature, many of which are 
quite complicated and have more thermodynamic rigor, we discuss only cubic EOS 
since these seem to be the most commonly used class of equations in EOR. 

In the vicinity of the vapor pressure curve (pressures between P1 and P2 at 
temperature T1 in Fig. 4-12), there are three real roots to the cubic EOS. The vapor 
pressure Pv corresponding to T1 is the y-coordinate value that causes the shaded areas 
above and below Pv to have equal areas (Abbott and van Ness, 1972). For pressures 
above Pv, only the smallest root has physical significance and corresponds to MV  of a 
compressed liquid; at pressures below Pv, the largest root corresponds to MV  of a 
superheated vapor. At the vapor pressure, both the smallest and largest roots have 
physical significance corresponding to the saturated liquid and vapor molar volumes, 
respectively. The intermediate root has no physical significance. 

As the critical point is approached, all three roots converge to the value of 
MV  at the critical point .McV  For temperatures above Tc, cubic equations have only 

one real root, that of the molar volume of a fluid. For the critical isotherm itself, there 
is also only one real root, and the critical constraints Eq. (4.1-3) are satisfied at the 
critical pressure. 

Within the two-phase region on the pressure–molar-volume plot, the 
quadratic curves defined by ( / ) 0M TP V∂ ∂ =  for P < Pc are the spinodal curves. They 
represent the maximum degree of supersaturation with respect to the particular phase 
transition. Thus theoretically at least, we could lower the pressure on a single 
compressed liquid phase at T1 to P2 without changing phase. The liquid between Pv 
and P2 is supersaturated with respect to the vapor phase. A phase transition must 



 115
occur beyond this pressure since the partial derivative ( / )M TP V∂ ∂  is constrained to 
be negative on thermodynamic and physical grounds. Similarly, a vapor phase at 
pressure P1 could be supercooled down to only temperature T2 without causing a 
phase change, and the vapor at P1 and T2 is supersaturated with respect to the liquid 
phase. These are metastable states that will change to stable states on perturbation. 

The above discussion gives the properties of any general cubic EOS. The 
particular form of such equations, of course, can take a wide variety of forms. Abbott 
(1973) gives the general form 
 

 
( )

( )
( )( )2

M

M M M M

VRTP
V b V b V V

θ η

δ ε

−
= −

− − + +
 (4.4-13) 

 
where the parameters θ, η, δ, and ε are given in Table 4-1 for nine specific equations 
of state. Equation (4.4-13) is, perhaps, not the most general form of the cubic 
equations available (Martin, 1979), but it does include most of the commonly 
accepted equations used in predicting the phase behavior of EOR fluids. 

Abbott’s original work (1973) contains complete references on each of the 
equations in Table 4-1. Thus far, only two of these equations have seen extensive use 
in predicting EOR phase behavior: the Soave modification (1972) of the Redlich-
Kwong equation (RKS) and the Peng-Robinson (1976) equation (PR). We discuss 
these two equations here. 

Except for the Clausius equation, all the equations in Table 4-1 are two-
parameter equations. The value of these parameters may be chosen to force the 
equation to make internally consistent predictions in the vicinity of the critical point 
for pure components. Thus the values of the parameters come from enforcing the 
critical constraints (Eq. 4.1-3) and from evaluating the original equation at the critical 
point. Since there are three equations, the procedure also specifies a specific value of 
the critical molar volume MV  or critical z-factor zc in addition to a and b. 

It is somewhat easier, though entirely equivalent, to use the procedure of 
Martin and Hou (1955) to determine the parameters a and b. Expressing the RKS 
equation in the z-factor form will eliminate MV  between Eq. (4.4-10) and the RKS 
equation. By applying Descartes’ rule of roots to this equation, there is either one or 
 
TABLE 4-1  CLASSIFICATION OF SOME CUBIC EQUATIONS OF STATE 
(FROM ABBOTT, 1978) 
 Equation θ η δ ε 

van der Waals (1873) a b 0 0 
Berthelot (1900) a/T b 0 0 
Clausius (1880) a/T b 2c c2 
Redlich-Kwong (1949) a/T1/2 b b 0 
Wilson (1964)* θw(T) b b 0 
Peng-Robinson (1976) θPR(T) b 2b –b2   
Lee-Erbar-Edmister (1973) θLEE(T) (T) b 0 

 
*Similarly, Barner et al. (1966) and Soave (1972) 
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three positive and no negative real roots. The z-factor equation evaluated at the 
critical point must have only one real root; hence 
 ( )3 3 2 2 33 3 0c c c cz z z z z z z z− = − + − =  (4.4-14) 
 
This equation is identically equal to the form in Table 4-2; hence equating 
coefficients, we immediately have zc = 1/3 and 
 
 2 23 cz A B B= − −  (4.4-15a) 
 3

cz AB=  (4.4-15b) 
Eliminating A from these equations gives the cubic form 
 3 227 27 9 1B B B+ + =  (4.4-16) 
 

Moreover, using Descartes’ rule, it follows that this equation has only one 
real positive root, which may be solved for directly to give B = (21/3–1)/3 = 0.08664. 
Solving for A from Eq. (4.4-15b) gives A = (9(21/3–1))–l = 0.4247. Using the 
definitions for A and B gives the forms in Table 4-2 for a and b. 

Clearly, the above procedure is valid for any a and b that are a function of 
temperature only. To match experimental vapor pressure data to subcritical 
temperatures, the a given by this procedure is multiplied by a factor αi, a function of 
temperature that reduces to unity at the critical temperature. The factor αi is also 
component specific through its dependence on the acentric factor ωi. Acentric factors 
roughly express the deviation of the shape of a molecule from a sphere and are 
available in extensive tabulations (Reid et al., 1977). 
 

Mixtures.  The true test and practical utility of any EOS is in its prediction 
of mixture properties. For mixtures, many of the arguments advanced above in 
conjunction with Fig. 4-12 do not apply. In particular, the critical constraints are no 
longer satisfied at the critical point since this point is no longer at the top of the two-
phase envelope. 

To account for mixture behavior, the pure component parameters ai and bi 
come from various mixing rules, as shown in Table 4-2. The inclusion of the 
component index in Table 4-2 means the parameters used in the definitions of these 
quantities––Tci, Pci, and ωi––are those for the pure component i. 

The most general form of the mixing rules incorporates another parameter, 
the binary interaction coefficient δij into the RKS and PR equations, which accounts 
for molecular interactions between two unlike molecules. By definition δij is zero 
when i and j represent the same component, small when i and j represent components 
that do not differ greatly (for example, if i and j were both alkanes), and large when i 
and j represent components that have substantially different properties. Ideally, the δij 
are both temperature and pressure independent (Zudkevitch and Joffe, 1970), 
depending only on the identities of components i and j. Though the interaction 
coefficients are considerably less available than acentric factors, literature tabulations 
are becoming more common (Yarborough, 1978; Whitson, 1982; Prausnitz et al., 
1980). 
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TABLE 4-2  COMPARISON OF THE RKS AND PR EQUATIONS OF STATE (FROM NGHIEM AND AZIZ, 1979) 
 RKS PR 

Equation ( )M M

RT aP
V b V V b

= −
− +

 
2 22M M M

RT aP
V b V bV b

= −
− + −

 

z-factor ( )3 2 2 0z z z A B B AB− + − − − =  ( ) ( ) ( )3 2 2 3 21 3 2 0z B z A B B z AB B B− − + − − − − − =  
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aPA
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=  bPB
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          0.08664 ci
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          20.480 1.57 0.176i i im ω ω= + −                           20.37464 1.54226 0.26992i i im ω ω= + −  
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1 1i i
ci

Tm
T

α
⎡ ⎤⎡ ⎤⎛ ⎞= + −⎢ ⎥⎢ ⎥⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

 

Mixture ,  m i j ij m i i
ij i

a x x a b x b= =∑∑ ∑  

let a = am 
     b = bm ( )( )1/ 2

1ij ij i ja a aδ= −  

Pure component 
fugacity ( )ln 1 ln .f Az z B

P B
= − − − −  ( )ln 1 ln .

2 2
f Az z B
P B
= − − − −  

use zL for fL 
      zV for fV ln z B

z
+⎡ ⎤

⎢ ⎥⎣ ⎦
 2.414ln

0.414
z B
z B
+⎡ ⎤

⎢ ⎥−⎣ ⎦
 

Fugacity of 
component i ( ) ( )ln 1 lni i

i

f b z z B
Px b

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
 ( ) ( )ln 1 lni i

i

f b z z B
x P b

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
 

use zL and xi for L
if  

      zV and yi for V
if  

2
ln

j ij
j i

x a
A b z B
B a b z

⎛ ⎞ +⎛ ⎞⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑
 

2
2.414ln
0.4142 2

j ij
j i

x a
A b z B

a b z BB

⎛ ⎞ +⎛ ⎞⎜ ⎟−⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∑
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Flash calculations.  To calculate vapor–liquid equilibria for mixtures from 

the RKS equation, an expression for the fugacity of a component i in a mixture is 
needed. This is most conveniently done by introducing a fugacity coefficient of 
component i defined as 

 i
i

i

f
x P

φ =  (4.4-17) 

In Eq. (4.4-17), and all subsequent equations in this section, the composition variable 
may be either the liquid-phase mole fraction xi, if calculating the fugacity coefficient 
of component i in the liquid phase, or the vapor-phase mole fraction yi, if calculating 
the fugacity coefficient in the vapor phase. Following the arguments presented in 
standard texts (Smith and van Ness, 1975), the fugacity coefficient is, for a mixture, 
 

 ( )
, ,

ln 1 ln
M

M
i V

i MT V n

nz dV z
n V

φ
∞ ⎡ ⎤⎛ ∂ ⎞

= − −⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∫  (4.4-18a) 

and, for a pure component, 

 ( )ln 1 1 ln
M

M
V

M

dVz z z
V

φ
∞

= − + − −∫  (4.4-18b) 

 
Equation (4.4-18b) is a special case of Eq. (4.4-18a) as one of the xi becomes unity. 
The partial derivative in the integral of Eq. (4.4-18a) is taken at constant temperature 
and total volume V, where n is the total number of moles in the mixture, and ni is the 
total number of moles of species i in the phase. Clearly, 

1
,  ,    and   / .

CN

M i i i
i

V nV n n x n n
=

= = =∑  

 
The fugacity coefficient definition (Eq. 4.4-18a) also can be written in a 

variety of equivalent forms (Smith and van Ness, 1975; Coats, 1980). To evaluate the 
integral in Eq. (4.4-18a), it is convenient to express z in an explicit form 

 
( )

M

M M

V az
V b RT V b

= −
− +

 (4.4-19) 

 
After multiplying Eq. (4.4-19) by n and introducing the mixing rules for a 

and b from Table 4-2, the resulting expression may be differentiated with respect to 
ni. After some algebra, this gives 

( )
( ) ( )2 2

, ,

1 j ijjM i iM

i M M mT V n M m M m

x anz V b abV
n V b RT V bV b V b

⎛ ⎞⎛ ∂ ⎞ ⎜ ⎟= − − −⎜ ⎟ ⎜ ⎟∂ − +− +⎝ ⎠ ⎝ ⎠

∑
 (4.4-20) 

 
Equation (4.4-20) is explicit in MV  which, when substituted into Eq. (4.4-18a) and 
integrated, leads to the closed-form expression given in Table 4-2. Similar procedures 
may be used on the PR equation (see Exercise 4F). 
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The actual calculation of vapor–liquid equilibria follows from two general 

procedures based on the EOS approach. From Eqs. (4.4-1) and (4.4-17), the 
equilibrium K-values become 

 ,      1,  . . . , 
L

i
i CV

i

K i Nφ
φ

= =  (4.4-21) 

 
since the component fugacities are equal at equilibrium. Thus based on an initial 
estimate of the Ki, a flash calculation, as described above, will obtain the vapor and 
liquid compositions from Eq. (4.4-5), the K-value definition, and the Ki calculated 
from Eq. (4.4-21). If the beginning and initial K-value estimates agree, the calculated 
compositions are the correct values; if they do not agree, new values of the Ki must 
be estimated and the entire procedure repeated until the K-values do not change. 
Since the flash calculation is itself a trial-and-error procedure, this procedure is 
somewhat analogous to the convergence pressure approach we already described. 

The second approach to calculating vapor–liquid equilibria from EOS is to 
directly use the equilibrium constraints. Thus the equations 
 
 ,      1,  . . . , L V

i i Cf f i N= =  (4.4-22a) 
 
may be regarded as a set of NC independent simultaneous nonlinear equations in 
either xi or yi (but not both since xi and yi are related through the K-values) that may 
be linearized, solved as a system of simultaneous linear equations, and iterated until 
the phase compositions do not change. Either way the calculation is fairly 
convoluted, so it is not surprising that many variations of the procedure exist (Fussell 
and Fussell, 1979; Mehra et al., 1980). 
 Equation (4.4-22a) is easily generalized to the condition for equilibrium 
among any number of phases NP 
 
 ,      1,  . . . , ;      ,  1,  . . . , ij ik C Pf f i N j k N= = =  (4.4-22b) 
 
Empirical Representations 
 
There are three common empirical representations of phase behavior. All are used 
primarily for liquid–liquid equilibria. 
 

Hand’s rule.  Hand (1939) gave a fairly simple representation of two-phase 
equilibria that has proved useful for some EOR systems (Pope and Nelson, 1978; 
Young and Stephenson, 1982). The procedure is based on the empirical observation 
that certain ratios of equilibrium phase concentrations are straight lines on log–log or 
Hand plots. 

In this section, the concentration variable Cij is the volume fraction of 
component i(i = 1, 2, or 3) in phase j(j = 1 or 2). Using volume fractions has become 
conventional in the Hand representation since these are convenient in liquid–liquid 
equilibria. 
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Figure 4-13 shows the one- and two-phase regions on the ternary diagram 

and its correspondence to the Hand plot. The line segments AP and PB represent the 
binodal curve portions for phase 1 and 2, respectively, and curve CP represents the 
distribution curve of the indicated components between the two phases. The ratios on 
the distribution curve are analogous to, but entirely different from, the definitions of 
the K-values given above. The equilibria relations based on the Hand plot are 
 

 3 3

2 1

,      1,  2
HB

j j
H

j j

C C
A j

C C
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.4-23) 

 32 31

22 11

HF

H
C CE
C C

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (4.4-24) 

 
where AH, BH, EH, FH are empirical parameters. Equation (4.4-23) represents the 
binodal curve, and Eq. (4.4-24) represents the distribution curve. In this form, these 
equations require the binodal curve to enter the corresponding apex of the ternary 
diagram. A simple modification overcomes this restriction (see Exercise 4G). 
 

 
Figure 4-13  Correspondence between ternary diagram and Hand plot 

 
Within the two-phase region of the binodal curve, there are six unknowns, 

the Cij phase concentrations and five equations, three from Eqs. (4.4-23) and (4.4-24) 
and two consistency constraints 

 
3

1
1,      1,  2ij

i
C j

=

= =∑  (4.4-25) 

 
Thus there is NF = 1 degree of freedom as required by the phase rule since 
temperature and pressure are fixed for ternary equilibria. 
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A flash calculation using the Hand procedure solves for the relative amounts 

of the two phases. This introduces two additional variables, S1 and S2, into the 
calculation, but there are now three additional equations, the mass balance Eq. (4.3-1) 
with the overall concentrations Ci known and S1 + S2 = 1. As in all the phase 
equilibria flash calculations, the procedure is trial and error though for certain special 
cases, phase concentrations follow from direct calculation. The iterative procedure is 
to first pick a phase concentration (say, C32), calculate all the other phase 
concentrations from Eqs. (4.4-23) through (4.4-25), and then substitute these into the 
tie line Eq. (4.3-2). If this equation is satisfied, convergence has been attained; if it is 
not satisfied, a new C32 must be picked and the procedure repeated until either C32 
does not change or Eq. (4.3-2) is satisfied. 

Two other empirical representations of the distribution of components 
between phases are of interest: the conjugate curve and the tie line extension curve. 
Both require separate representations of the binodal curve, as in Eq. (4.4-23). 
 

Conjugate curve.  The conjugate curve is a curve in ternary space whose 
coordinates define the ends of the tie lines. Thus for phases 1 and 2, the conjugate 
curve would be of the form 
 ( )11 22C f C=  (4.4-26) 
 
Figure 4-14 shows the projections of the coordinates of this curve onto the binodal 
curve. The Hand distribution curve is of the form shown in Eq. (4.4-26). The 
conjugate curve must pass through the plait point. 
 

Tie line extension curve.  The tie line extension curve is anq~her curve 
0 0
3 2( )C f C=  in ternary space that passes through the plait point, at which point it is 

tangent to the binodal curve (Fig. 4-15a). The two-phase tie lines are extensions of 
tangents from this curve through the binodal curve. Thus equations of the tie lines are 
given by straight lines having the equation 
 
 ( ) ( )0

2

0 0
3 2 2 2 ,      1 or 2j jC

C f C f C C j′− = − =  (4.4-27a) 

 
where 0

2C
f ′  is the slope of the tie line extension curve evaluated at the coordinate 

0
2C . The tie lines follow from Eq. (4.4-27a), the equation of the extension curve, and 

the equation for the binodal curve. 
A useful special case of the tie line extension curve occurs when all tie lines 

extend to a common point, as in Fig. 4-15(b). We need specify only the coordinates 
of this common point to define the equation for the tie lines 

 
 ( )0 0

3 3 2 2 ,      1 or 2j jC C C C jη− = − =  (4.4-27b) 

 
where η is the slope of the tie line. Note that if 0

3C  > 0, the selectivity of the 
components for the two phases can reverse near the base of the ternary. The 
representation is extremely simple because it requires only two values: any two of the 
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Figure 4-14  Schematic representation 
of a conjugate curve

coordinates 0
iC  or, alternatively, any of the plait point coordinates and one of the 0

iC  
since the tie lines must be tangent to the binodal curve there. 

This representation is far less general than either Eq. (4.4-24), (4.4-26), or 
(4.4-27). But experimental accuracy is often not enough to warrant more complicated 
equations. Moreover, the form (Eq. 4.4-27b) is extremely convenient for calculating 
the flow behavior of two-phase mixtures; we use it extensively in Chaps. 7 and 9. 
 
 

4-5 CONCLUDING REMARKS 
 
Multiple representations of phase behavior are clear evidence that no single method 
is sufficient. In most cases we find ourselves compromising between accuracy and 
mathematical ease in the resulting calculation. Our goal here is the exposition of the
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Figure 4-15  Tie line extension 
representation of phase behavior

 
 
underlying principles of EOR phenomena; hence we emphasize phase behavior 
representations which lend themselves to visual or graphical analysis in later 
calculations––as long as the representations themselves are qualitatively correct. The 
important points to grasp in this chapter, then, are graphical representations in Sec. 
4-3, particularly as related to the ternary diagram; the physical meaning of tie lines 
and binodal curves; and the component distribution expressed by Eqs. (4.4-23), 
(4.4-24), and (4.4-27b). 
 
 
EXERCISES 
 
4A. Pure Component Phase Behavior. Sketch the following for a pure component: 

(a) Lines of constant pressure on a temperature–molar-volume plot 
(b) Lines of constant temperature on a density–pressure plot 
(c) Lines of constant molar volume on a temperature–pressure plot 
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4B. Paths on a Pressure–Volume Plot. Indicate the paths AA′, BB′, and DD′, shown on 

the pressure–specific-volume plot in Fig. 4B, on the corresponding pressure–
temperature plot. 

 

 
Figure 4B  Pressure–specific-volume plot for Exercise 4B 

 
4C. Migration of P-T Envelope. Figure 4C shows the hypothetical change in the pressure–

temperature envelope of a crude oil as it is diluted with a more volatile component 
(CO2). The quality lines within each envelope are in volume percent. For this data, 
sketch the pressure–composition diagram at 340 K and 359 K (152°F and 180°F). 
These temperatures are the critical temperatures for the 40% and 20% CO2 mixtures. 
Include as many quality lines as possible. 

4D. Lever Rule Application. Consider the three-component system represented in Fig. 4-11. 
(a) Estimate the relative amounts of each phase present at overall compositions A, C, 

D, and E. 
(b) Derive the expressions (indicated on the figure) for the relative amounts of each 

phase present at the three-phase overall composition. 
(c) Estimate the relative amounts of each phase present at B. 

4E. Parameters for RKS and RP Equations of State 
(a) Derive the parameters a and b for the RKS equation using the critical constraints 

and the original equation given in Table 4-1. 
(b) Derive the parameters a and b for the PR equation using the procedure of Martin 

and Hou (1955). Compare your results to Table 4-2. 
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Figure 4C  Change in crude oil pressure–temperature diagram with dilution by CO2 
 
4F. Fugacity Coefficient from an Equation of State 

(a) Derive the expressions for the fugacity coefficient starting with Eq. (4.4-18a) for 
the PR equation. 

(b) Show for both the PR and RKS equations that the fugacity coefficient for a 
mixture approaches that of a pure component as one of the xi approaches 1. 

4G. Partially Soluble Binaries (Welch, 1982). For cases when the partially soluble binaries 
on a ternary plot have some mutually soluble region, the Hand representation may be 
altered as 

 

 3 3

2 1

,      1,  2
HB

j j
H

j j

C C
A j

C C
′ ′⎛ ⎞
= =⎜ ⎟⎜ ⎟′ ′⎝ ⎠

 (4G-1) 

 
 and 
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22 11
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H
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E
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 (4G-2) 

 
 where the C1j are normalized concentrations 
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( )2 1

2
1 1

1j U
j

U L

C C
C

C C
− −

′ =
−

 (4G-4) 

 

 3
3

1 1

j
j

U L

C
C

C C
′ =

−
 (4G-5) 

 
 C1U and C1L are the upper and lower solubility limits of the 1-2 binary. Take BH = –1 

and FH = 1 in the following. 
(a) Derive an expression for AH in terms of the true maximum height of the binodal 

curve C1 – C2. Show that the binodal curve takes value C3max when 1C′  = 2C′  
(symmetrical in normalized concentrations). 

(b) Express EH as a function of AH and the component 1 coordinate of the plait point 
(C1p). The AH and EH in parts (a) and (b) will also be a function of C1U and C1L. 

(c) Plot the binodal curve and the two representative tie lines for C1U = 0.9, C1L = 0.2, 
C3max = 0.5, and C1p = 0.3. 

 
4H. Using the Hand Representations. The following data were collected from a three-

component system at fixed temperature and pressure. 
 
 

Phase 1  Phase 2 

Component 1 Component 2  Component 1 Component 2 

0.45 0.31  0.015 0.91 
0.34 0.40  0.020 0.89 
0.25 0.48  0.030 0.85 
0.15 0.60  0.040 0.82 

 
 
 The concentrations are in volume fractions. 

(a) On a ternary diagram, plot as many tie lines as possible, and sketch in the binodal 
curve. 

(b) Make a Hand plot from the data, and determine the parameters AH, BH, EH, and FH. 
(c) Estimate the coordinates of the plait point from the plot in part (b). 

 
41. Application of Conjugate Curve. Consider the ternary diagram in Fig. 41 for a three-

component system. The binodal curve is the solid line, and the conjugate curve the 
dotted line. 
(a) Sketch in three representative tie lines. 
(b) For the overall composition, marked as A, give the equilibrium phase compositions 

and the relative amounts of both phases. 
(c) Plot the two-phase equilibria on a Hand plot. 
(d) If the Hand equations are appropriate, determine the parameters AH, BH, EH, and 

FH. 
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Figure 4I  Diagram for Exercise 4I 
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5  
 
 
 
 

Displacement Efficiency 
 
 
 
 
 
 
 
 
The definitions for recovery, displacement, and sweep efficiencies in Eq. (2.5-5) 
apply to an arbitrary chemical component, but they are almost exclusively applied to 
oil and gas displacement. Since displacement efficiency and sweep efficiency are 
multiplied by each other, they are equally important to the magnitude of the recovery 
efficiency and, hence, the oil recovery. In Chap. 6, we discuss volumetric sweep 
efficiency; in this chapter, we present fundamental concepts in displacement 
efficiency. 

For the most part, we restrict our discussion to oil displacement efficiency 
based on solutions to the fractional flow Eq. (2.4-3). We apply these equations to 
displacements in one-dimensional, homogeneous, isotropic permeable media. Thus, 
the results apply most realistically to displacements in laboratory floods, the 
traditional means of experimentally determining displacement efficiency. These 
results do not, of course, estimate recovery efficiency for three-dimensional, 
nonlinear flows without correcting for volumetric sweep efficiency and without 
correcting the displacement efficiency to account for differences in scale. 
 
 

5-1 DEFINITIONS 
 
If we assume constant oil density, the definition of displacement efficiency for oil 
becomes 

 Amount of oil displaced
Amount of oil contacted by displacing agentDE =  (5.1-1) 
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ED is bounded between 0 and 1. The rate at which ED approaches 1 is strongly 
affected by the initial conditions, the displacing agent, and the amount of displacing 
agent. Fluid, rock, and fluid–rock properties also affect ED. If the displacement is 
such that the displacing agent will contact all the oil initially present in the medium, 
the volumetric sweep efficiency will be unity, and ED becomes the recovery 
efficiency ER. 

From Eq. (2.5-4) then, 

 2

2

1D
I

SE
S

= −  (5.1-2) 

 
for an incompressible, single-component oil phase flowing in an incompressible 
permeable medium. Equation (5.1-2) says ED is proportional to the average oil 
saturation in the medium. For cases where the oil may occur in more than one phase, 
or where more than oil can exist in the hydrocarbon phase, we must use the general 
definition (Eq. 2.5-5b). 
 
 

5-2 IMMISCIBLE DISPLACEMENT 
 
Virtually all of our understanding about EOR displacements begins with an 
understanding of the displacement of one fluid by an immiscible second fluid. The 
specific case of water displacing oil was first solved by Buckley and Leverett (1942) 
and later broadened by Welge (1952). In this section, we develop the 
Buckley-Leverett theory in a manner much like the original paper and several 
subsequent references (Collins, 1976; Craig, 1971; Dake, 1978). 

For the isothermal flow of oil and water in two immiscible, incompressible 
phases in a one-dimensional permeable medium, the mass conservation equations of 
Table 2-2 reduce to 

 1 1 0S fu
t x

φ ∂ ∂
+ =

∂ ∂
 (5.2-1) 

 
for flow in the positive x direction, as we discussed in Chap. 2. In this equation, f1 is 
the fractional flow of water, 
 

 1 1 2
1

1 2

sin1r

r r

u k gf
u u

λ λ ρ α
λ λ

Δ⎛ ⎞= = −⎜ ⎟+ ⎝ ⎠
 (5.2-2) 

 
in the absence of capillary pressure. In Eq. (5.2-2), α is the dip angle defined to be 
positive when measured in the counterclockwise direction from the horizontal, and 
Δρ = ρ1 – ρ2 is the density difference between the water and oil phases. 

The choice of S1 as the dependent variable in Eq. (5.2-1) is largely a matter 
of convention; we could easily have chosen S2 since S2 + S1 = 1, and f2 + f1 = 1. An 
important point is that in the absence of capillary pressure, f1 is uniquely determined 
as a function of S1 only through the relative permeability relations λr1 = kr1/μ1 and 
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2 2 2/r rkλ μ=  discussed in Sec. 3-3. In fact, since the shape of the f1-S1 curve proves 
to be the main factor in determining the character of the displacement, we digress 
briefly to discuss how flow conditions affect this curve. 
 
Fractional Flow Curves 
 
If we introduce the exponential form of the oil–water relative permeability curves 
(Eq. 3.3-4) into Eq. (5.2-2), we obtain 
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0

1

0

1 (1 ) sin
(1 )1
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 (5.2-3a) 

where 
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Reduced water saturation
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S SS
S S
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− −
 (5.2-3b) 

and 
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= = Endpoint water–oil mobility ratio (5.2-3c) 

 
0

0 2

2

Gravity numberr
g

kk gN
u
ρ

μ
Δ

= =  (5.2-3d) 

 
0
gN  is the ratio of gravity to viscous pressure gradients based on the endpoint oil 

relative permeability. In the form of Eq. (5.2-3a), f1 depends parametrically on M0, 
0 ,gN  α, and the shape of the relative permeability curves (n1 and n2). The f1-S1 curve 

is sensitive to all these factors, but usually M0 and 0
gN  are most important. Figure 5-1 

shows f1-S1 curves for various values of M0 and 0
gN  sin α with the other parameters 

fixed (S1r = 0.2, S2r = 0.2, n1 = n2 = 2). The S-shaped curves have an inflection point 
that varies with M0 and 0

gN  sin α. The curvature of all curves generally becomes 
more negative as M0 increases or 0

gN  sin α decreases. The curves where f1 is less than 
0 or greater than 1 are physically correct. This circumstance indicates a flow where 
gravity forces are so strong that flow in the negative x direction occurs (water flows 
in the negative x direction for f1 < 0). In Sec. 3-3, we showed that shifting the 
wettability of the permeable medium from water wet to oil wet caused 0

1rk  to increase 
and 0

2rk  to decrease. Thus for constant phase viscosities, making the medium more 
oil wet is qualitatively equivalent to increasing M0. But for fixed relative permeability 
curves, the effect of increasing μ1 or decreasing μ2 is to decrease M0. 
 
Buckley-Leverett Solution 
 
Returning now to Eq. (5.2-1), to calculate ED, we seek solutions S1(x, t) subject to the 
initial and boundary conditions 
 1 1( ,0) ,      0IS x S x= ≥  (5.2-4a) 
 1 1(0, ) ,       0JS t S t= ≥  (5.2-4b) 
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Figure 5-1  Fractional flow curves for m = n = 2 and S1r = S2r = 0.2 
 
In core floods, a specified fractional flow is usually imposed on the inflow (x = 0) so 
that we may replace Eq. (5.2-4b) with 
 
 1 1 1 1 1 1(0, ) ( (0, )) ( ),      0J Jf t f S t f f S t= = = ≥  (5.2-4c) 
 
This equation shows that f1 is a function of x and t only through its dependence on S1. 
The definition used in a given instance depends on the particular application. The 
conditions (Eqs. 5.2-4) also have a convenient geometrical interpretation in xt space 
because at the point t = x = 0, all values of S1 between S1I and S1J exist. The Buckley- 
Leverett problem is usually posed with S1I and S1J taken to be S1r and 1 – S2r, 
respectively. 

For greater generality, we render Eqs. (5.2-1) and (5.2-4) into the following 
dimensionless forms: 

 1 1 1

1

0
D D

S df S
t dS x

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂
+ =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (5.2-5a) 

 1 1( ,0) ,      0D I DS x S x= ≥  (5.2-5b) 
 1 1(0, ) ,       0D J DS t S t= ≥  (5.2-5c) 
 
where the dimensionless variables xD and tD are 
 

 Dimensionless positionD
xx
L

= =  (5.2-6a) 
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0

Dimensionless time
t

D
udtt

Lφ
= =∫  (5.2-6b) 

 
L is the total macroscopic permeable medium dimension in the x direction. In these 
equations, u may be a function of time but not of position because of the assumption 
of incompressibility. Moreover, df1/dS1 is a total derivative since f1 is a function of S1 
only. Introducing dimensionless variables reduces the number of parameters in the 
problem from four (φ, u, S1I, and S1J) in Eqs. (5.2-1) and (5.2-4) to two (S1I and S1J). 
We could further reduce the number by redefining the dependent variable S1 (see 
Exercise 5A). 

The dimensionless time tD can also be expressed as 

 
0 0

t t

D
p

Audt qdtt
AL Vφ

= =∫ ∫  (5.2-7) 

 
where A is the cross-sectional area of the one-dimensional medium in the direction 
perpendicular to the x axis, q is the volumetric flow rate, and Vp is the pore volume. 
tD is the total volume of fluid injected up to time t divided by the total pore volume of 
the medium. In principle, Vp is well defined even for a highly irregular geometry so 
that tD is a scaling variable in virtually any application. In fact, tD is the fundamental 
variable used to scale from the laboratory to the field. It has been used with a wide 
variety of definitions for the reference volume Vp (see Table 5-1). Numerical values 
of tD are frequently given as “fraction of a pore volume,” or simply “pore volume”; 
thus it is easy to confuse with Vp, the actual pore volume, which has units of L3 (tD, of 
course, has no units). 

We seek solution to Eqs. (5.2-5) in the form S1(xD, tD). S1 may be written as a 
total differential 

 1 1
1

D D

D D
D Dt x

S SdS dx dt
x t

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (5.2-8) 

 
 

TABLE 5-1  TABULATION OF VARIOUS DEFINITIONS 
FOR DIMENSIONLESS TIME 

Reference volume Usage 

Area × length × porosity Core floods 
Area × thickness × porosity 
 (Aφh = Vp = total pore volume) 

General 

Vp × volumetric sweep efficiency 
 (Vp × Ev = floodable pore volume = VPF) 

 
Micellar polymer floods 

VPF × ΔS2 = movable pore volume Waterfloods 
VPF × S2I = hydrocarbon pore volume (HCPV) Miscible floods 

Note: }Total volume of fluid injected
consistent units

Reference volume
Dt =  
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from which follows that the velocity 

1Sv  of a point with constant saturation S1 in xDtD 
space is 

 
1

1

1

1

( )
( )

D

D

D xD
S

D D tS

S tdx v
dt S x

∂ ∂⎛ ⎞
= − ≡⎜ ⎟ ∂ ∂⎝ ⎠

 (5.2-9) 

1Sv  is the “specific” velocity of the saturation S1 because it has been normalized by 
the bulk fluid interstitial velocity u/φ. It is dimensionless. You can see this by 
converting Eq. (5.2-9) back to dimensional quantities using the definitions (Eqs. 
5.2-6). 
 Eliminating either of the derivatives in Eq. (5.2-9) by Eq. (5.2-5a) gives 

 
1

1
1

1
S

dfv f
dS

′= =  (5.2-10) 

This equation says the specific velocity of a constant saturation S1 is equal to the 
derivative of the fractional flow curve at that saturation. In dimensional form, Eq. 
(5.2-10) is the Buckley-Leverett equation. Since all saturations between S1I and S1J 
are initially at the origin in xD-tD space, and 

1Sv  is defined with S1 constant, the 
position of any saturation 1 1 1I JS S S≤ ≤  at a given tD is 

 
1

1

1
1 1

1

| ( )D S D D
S

dfx t f S t
dS

′= =  (5.2-11) 

 
where we include evaluation symbols to help clarify the subsequent development. 
Equation (5.2-11) is the solution to the one-dimensional water-displacing-oil 
problem; by selecting several S1’s between S1I and S1J, we can construct S1(xD, tD). 
Figure 5-2(a) shows the procedure for one of the fractional flow curves of Fig. 5-1. 
Except for relatively simple cases (see Exercise 5E), the relation (Eq. 5.2-11) 
generally cannot be solved explicitly for S1(xD, tD). 
 
Shock Formation 
 
Figure 5-2(a) also shows a disconcerting tendency for an S-shaped f1-S1 curve to 
generate solutions that have three values of S1 at the same xD and tD. In Fig. 5-2(b), 
this occurs for 0.64 < xD < 0.94. Of course, such triple values are nonphysical though 
they are entirely valid mathematically. The triple values are the result of the 
saturation velocity 

1Sv  increasing over some saturation region 1 1 1( IS S S ′< <  in Fig. 
5-2) as S1 changes from its initial (downstream) value to the final (upstream) value. 

We eliminate the triple value region by invoking the formation of shocks, 
discontinuous changes in a physical quantity such as pressure (as in the case of sonic 
booms), concentration, or in this case, saturation. Shocks are characteristic features of 
hyperbolic equations, a class of which are the dissipation-free conservation 
equations. Strictly speaking, shocks are not present in nature since some dissipation 
(dispersion, diffusion, capillary pressure, compressibility, and thermal conductivity) 
is always present, which militates against their formation. When such effects are 
present, the shocks are smeared or spread out around the shock front position, but the 
position of the shock is unaltered. Despite this restriction, shocks play a central role
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Figure 5-2  Buckley-Leverett 
construction of S1(xD, tD)

 
in fractional flow theory, where dissipative effects are neglected, and describe many 
actual flows to a good approximation. 

To calculate the velocity and magnitude of the shock, we recast the 
differential equations of this chapter into difference equations. This we do generally 
in Sec. 5-4; here we restrict ourselves to the water-displacing-oil problem already 
begun. Paradoxically, we find that calculations are considerably easier when shocks 
form. Figure 5-3(a) shows a water saturation shock moving from left to right. The 
water saturation ahead of the shock is 1S −  (downstream direction), and that behind
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Figure 5-3  Water saturation profiles 
with shocks

 
the shock is 1S +  (upstream direction). The quantity ΔS1 = 1S +  – 1S −  is the saturation 
jump across the shock. A cumulative water balance on a control volume that contains 
the shock in the time interval Δt is 
 

( ) ( ) ( ) ( )  Volume water Volume water Volume water Volume water
present at    present at   in during  out during t t t t t− = −+ Δ Δ Δ  

1 1 2 1[( ( ) ) ( ( )) ]v t t x S x v t t S Aφ+ −+ Δ − + − + Δ  

1 1 2 1 1 1 1 1[( ) ( ) ] [ ( ) ( )]
t t

t
vt x S x vt S A f S f S qdtφ

+Δ+ − + −− − + − = − ∫  

After some cancellation, we obtain a specific shock velocity 
 

 
1

1 1 1 1 1

1 1 1

( ) ( )
S

f S f S fv
S S S

+ −

Δ + −

− Δ
= ≡

− Δ
 (5.2-12) 
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To incorporate shock formation into the water-displacing-oil problem, 

consider a saturation profile containing a triple value over some region and 
containing a single value elsewhere (Fig. 5-3b). In general, some saturation *

1S  will 
mark the end of the continuous water saturation region and the beginning of a shock. 
This saturation must simultaneously satisfy Eqs. (5.2-10) and (5.2-12); Eq. (5.2-12) 
gives velocities of S1 greater than *

1 ,S  and Eq. (5.2-12) gives velocities of S1 less than 
*
1 .S  Equating Eqs. (5.2-10) and (5.2-12) yields the following equation for *

1S : 

 *
1

*
1 1 1 1

1 *
1 1

( ) ( )| I
S

I

f S f Sf
S S

−′ =
−

 (5.2-13) 

 
where we have taken 1S −  = S1I in Eq. (5.2-12). Equation (5.2-13) lends itself to a 
graphical solution since 
 1 1 1 1 1( ) ( )I If f S m S S− = −  (5.2-14) 
 
is the equation of a straight line of slope m passing through the point (f1I, S1I) on the 
fractional flow plot. If 

11 | ,Sm f ′=  then m is the slope of the fractional flow plot at *
1 .S  

Comparing Eq. (5.2-14) to Eq. (5.2-13), *
1S  is at the tangent to the fractional flow 

curve of a straight line passing through the point (f1I, S1I). Figure 5-4 schematically 
illustrates this construction. The slope of this straight line is the specific shock 
 
 

 
Figure 5-4  Schematic illustration of shock construction 
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velocity. The shock itself is a discontinuous change in saturation from S1I to *

1S  at  
1D S Dx v tΔ=  as Fig. 5-3(b) illustrates. The saturation *

1S  is not the same as 1S −  (Fig. 
5-2), the saturation having the largest 

1
.Sv  *

1S  is the saturation whose position 
requires the net area between the mathematical solution and the physical solution 
(shaded region in Fig. 5-3b) to be zero. This requires the shock to preserve the 
material balance. With this construction, all saturation velocities are monotonically 
(though not continuously) decreasing in the upstream direction. Figure 5-3(b) 
illustrates the results of the entire construction. The resulting saturation profile is 
sometimes called the leaky piston profile. 
 
 
Wave Classification 
 
Before further developing this theory and its applications to EOR, we define a few 
more terms used in subsequent discussions. These definitions are important to the 
interpretation of xD-tD plots that graphically present the solution S1(xD, tD). 

We have been discussing how to calculate water saturation as a function of 
position and time for water–oil displacements. A plot of saturation, or concentration, 
versus time at fixed position is a saturation history. If the fixed position in such a plot 
is at the outflow end of the permeable medium, it is an effluent history. Plots of 
saturation versus position at fixed time are saturation profiles. Figure 5-2(b) is a 
water saturation profile. Changes in saturation with time and position are saturation 
waves. Thus the previous development estimates the rate of propagation of waves 
through a permeable medium. 

An important and unifying aspect of our understanding of EOR 
displacements is the study and characterization of the number and types of waves 
they form. Depending on their spreading characters, waves may be classified into 
four categories. 
 

1. A wave that becomes more diffuse on propagation is a nonsharpening, 
rarified, or spreading wave. When these waves occur, the rate of spreading is 
usually much larger than that caused by dissipation. 

2. A wave that becomes less diffuse on propagation is a sharpening wave. In 
the absence of dissipation, these waves will become shocks even if the initial 
saturation profile is diffuse. When dissipation is present, these waves will 
asymptotically approach a constant pattern condition (see Sec. 5-3). 

3. A wave that has both spreading and sharpening character is mixed. The 
Buckley-Leverett water saturation wave of Fig. 5-2(b) is mixed, being a 
sharpening wave for S1I < S1 < *

1S  and a spreading wave for *
1S  < S1 < S1J. 

4. A wave that neither spreads nor sharpens on propagation is indifferent. In the 
absence of dissipation, indifferent waves appear as shocks. 

 
This behavior may be summarized by defining a dimensionless mixing or 

transition zone ΔxD. This is the fraction of the total system length that lies between 
arbitrary saturation limits at a given time. We take the saturation limits to be 0.1 and
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0.9 of the span between the initial and injected saturations 
 

0.1 0.9
( ) | |D D D S D Sx t x xΔ = −  (5.2-15a) 

 
where 
 0.1 1 1 10.1( )J I IS S S S= − +  (5.2-15b) 
 0.9 1 1 10.9( )J I IS S S S= − +  (5.2-15c) 
 
The exact value of the limits is unimportant to the behavior of the mixing zone. The 
wave classification, which may be restated as ΔxD, increases with time for spreading 
waves, decreases for sharpening waves, and either increases or decreases for mixed 
waves depending on whether the shock portion of the wave exceeds the saturations 
used to define ΔxD. The mixing zone concept has general use in classifying mixing 
phenomena in a wide variety of displacements. 

The final definition concerning the Buckley-Leverett development is the 
time–distance diagram. These diagrams are plots of xD versus tD on which appear 
lines of constant saturation. Figure 5-5 shows a time–distance diagram for the water–
oil displacement in Figs. 5-3(b) and 5-4. The constant saturation curves are straight 
lines with slope given by 

1Sv  from Eq. (5.2-9). Similarly, shocks are the bold straight 
lines with slope given by Eq. (5.2-12). The region having varying saturation is 
shaded. Regions of constant saturation are adjacent to the waves and have no 
saturation lines. Time–distance diagrams are very convenient since they subsume 
both profiles and histories. 
 

 
 

Figure 5-5  Time–distance diagram for displacement of Figs. 5-3(b) and 5-4 
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From the definition of effluent history, the shock portion of the water–oil 

displacement arrives at xD = 1 when 

 
*

0 1 1
*

1 1

I
D

I

S St
f f

−
=

−
 (5.2-16a) 

 
from Eqs. (5.2-12) and (5.2-13). The breakthrough time 0

Dt  is an important event in 
the displacement; for values tD > 0 ,Dt  we are producing some of the water being 
injected. The obvious inefficiency of this should suggest that we would like to 
conduct the displacement so that 0

Dt  is as large as possible; that is, we would like to 
enhance the shock-forming character of the displacement. For tD > 0 ,Dt  the water 
saturation at the outflow end is given implicitly by 

 1 1
1|

Dx
D

f
t=′ =  (5.2-16b) 

 
from Eq. (5.2-10). In laboratory floods, it is usually more direct to measure 1 1| ,

Dxf =  
the water “cut,” than the saturation at the effluent end. The water and oil cuts 

1 1(1 | )
Dxf =−  are functions of only time from Eq. (5.2-16b). 

 
Average Saturations 
 
In the displacement efficiency, we must have some way to calculate average 
saturations since, from Eq. (5.1-2), these appear in the definition of ED. These 
averages are provided by the Welge integration procedure (Welge, 1952). Consider 
the saturation profile in Fig. 5-3(b) at fixed tD, and let xD1 be any dimensionless 
position at or behind the shock front position, 

11 .D S Dx v tΔ≤  The average water 
saturation behind xD1 is 

 1

1 10
1

1ˆ ( ) Dx

D D
D

S t S dx
x

= ∫  (5.2-17) 

 
Equation (5.2-17) may be integrated by parts 

 ( )111

1
1 1 10

1

1ˆ ( ) D

J

Sx
D DS

D

S x S x dS
x

= − ∫  (5.2-18) 

 
where S11 = 

1
1 .

Dx
S  Since xD1 is in the spreading portion of the saturation wave, the xD 

integrand may be substituted by Eq. (5.2-11) 
 

 11

1
1 11 1 1

1

1ˆ
J

S

DS
D

S S t f dS
x

′= − ∫  (5.2-19) 

 
which may be readily integrated (recall tD is fixed) to 

 1 11 11 1
ˆ ( )D

J
D

tS S f f
x

= − −  (5.2-20) 
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Equation (5.2-20) relates the average water saturation behind xD1 to the fractional 
flow and saturation at that point. tD may be replaced by Eq. (5.2-11) at this point to 
give 

 11 1
1 11

11

( )ˆ Jf fS S
f
−

= −
′

 (5.2-21) 

 
Equation (5.2-21) is the final form of the Welge integration. 

The most common use of this procedure is to let xD1 = 1 after water break-
through 0( ),D Dt t≥  at which point 1 1

ˆ ,S S=  and f11 becomes the water cut. Thus the 
water saturation at the outflow end may be calculated from Eq. (5.2-20) as 
 
 1 1 1 1 1 1| ( | )

D Dx D J xS S t f f= == − −  (5.2-22) 
 
If we know the water cut and average water saturation from direct measurement, 
simultaneously applying Eqs. (5.2-16) and (5.2-22) provides a way of estimating 
fractional flow curves 1 1

(
Dx

f
=

 versus 1 1Dx
S

=
 or f11 versus S11) from experimental data. 

The average water saturation follows from Eq. (5.2-21) for 1S  with the f1-S1 
curve known. This equation may be rearranged to give 
 1 1 1 1 1 1 1 1| | ( | )

D D Dx J x xf f f S S= = =′− = −  (5.2-23) 
 
Thus 1S  at any 0

D Dt t≥  is given by the extension of a straight line tangent to the 
fractional flow curve at 1 1 1( ,  )

Dxf S =  to intersect with the y coordinate at f1 = f1J. The 
dimensionless time required to bring this point to xD = 1 is the reciprocal slope of this 
line from Eq. (5.2-16). Figure 5-4 shows the graphical procedure for this. From the 

1S  thus determined, 2S  = 1 – 1S  may be used in the definition (Eq. 5.1-2) to 
calculate ED. 

The above construction and Eqs. (5.2-22) and (5.2-23) apply only to 
dimensionless times after breakthrough. Before breakthrough the average water 
saturation is 
 0

1 1 1 1( ),      I D J I D DS S t f f t t= + − <  (5.2-24) 
 
by applying the overall water material balance (Eq. 2.5-2) to this special case. 
Equations (5.2-22) and (5.2-24) are identical except for the value used for the effluent 
water cut. 

We are now ready to demonstrate the effect of endpoint mobility ratio M0, 
relative permeability, and 0

gN  sin α on oil displacement efficiency. Figure 5-6 
schematically shows the effect of these parameters for displacements with f1I = 0 and 
f1J = 1. Figure 5-6 shows, from top to bottom, plots of ED versus tD, water saturation 
profiles at various tD, and the fractional flow curve that would give the indicated 
behavior. From left to right, the figures show oil displacement behavior for 
decreasing M0, increasing 0

gN  sin α, and increasing water wetness through shifts in 
the relative permeability curves. Figure 5-6 represents three of the four types of 
waves––spreading, mixed, and sharpening. Several important conclusions follow 
directly from Fig. 5-6. 
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Figure 5-6  Schematic illustration of effect of mobility ratio on displacement 
efficiency 

 
1. Any change that increases the size of the shock portion of the water 

saturation wave also increases ED at any given tD. These changes also delay 
water breakthrough and decrease the time over which the permeable medium 
is simultaneously producing two phases. 

2. Decreasing M0, increasing 0
gN  sin α, and increasing water wetness improve 

ED. Of these three, M0 is usually the only one we can have any impact on. In 
Chap. 6, we see that decreasing mobility ratio also increases vertical and 
areal sweep efficiency; hence decreasing the mobility ratio improves oil 
recovery in at least three ways. EOR processes that rely, partly or totally, on 
lowering the mobility ratio between the displacing and displaced fluids are 
said to be based on the mobility ratio concept of oil recovery. Figure 5-6 
shows that when the water saturation wave becomes a complete shock, no 
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advantage is to be gained on ED by further lowering M0. Finally, there is no 
unique value of M0 at which the wave changes from spreading to sharpening 
since the displacement is affected also by the shape of the relative 
permeability curves. 

3. However low M0 might be, the ultimate displacement efficiency 
2 2

2

( )I r
D

I

S SE
S

∞ −
=  

is limited by the presence of a residual oil saturation. EOR methods that 
intend to recover residual oil must rely on something other than the mobility 
ratio concept, such as displacing with miscible agents (see Sec. 5-5 and 
Chap. 7) or lowering the water–oil interfacial tension (see Chap. 9). 

 
Besides M0, at least two other mobility ratios are in common use. The 

average mobility ratio ,M  defined as 

 1 1

1 1

1 2

1 2

( ) |
( ) |

I

r r S S

r r S S

M
λ λ

λ λ
=

=

+
=

+
 (5.2-25a) 

is the ratio of total relative mobility at the average water saturation behind the shock 
front to the same quantity evaluated at the initial water saturation. M  is commonly 
used to correlate the areal sweep efficiency curves (see Chap. 6). The shock front 
mobility ratio Msh is 

 
*

1 1

1 1

1 2

1 2

( ) |

( ) |
I

r r S S
sh

r r S S

M
λ λ

λ λ
=

=

+
=

+
 (5.2-25b) 

Msh is the quantity that controls the formation of viscous fingers. For pistonlike 
displacements, all three definitions are the same. 

The most general definition of mobility ratio is actually the ratio of pressure 
gradients ahead of and behind a displacing front. The above definitions, depending 
on the character of the displacing front, follow from this for the case of 
incompressible flow (spatially independent volumetric flow rate). For compressible 
flows or flows of condensing fluids, the general definition is more appropriate (see 
Chap. 11 and Exercise 5J). 
 
 

5-3 DISSIPATION IN IMMISCIBLE DISPLACEMENTS 
 
In this section, we discuss two common dissipative effects in one-dimensional flows: 
capillary pressure and fluid compressibility. Both phenomena are dissipative; they 
cause mixing zones to grow faster than or differently from a dissipation-free flow. 
Both phenomena also bring additional effects. 
 
Capillary Pressure 
 
We do not present a closed-form solution to the water conservation equation. But we 
can qualitatively illustrate the effect of capillary pressure on a water–oil displacement 
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and can give, through scaling arguments, quantitative guidelines on when it might be 
important. For incompressible fluids and with capillary pressure Pc included, the 
water material balance (Eq. 5.2-1) still applies, but the water fractional flow (Eq. 
5.2-2) becomes (see Exercise 5F) 
 

 11 2
1 1)

1 2 1 2

( / )sin( 1
(1 / )

r cr r

r r r r

k P xk gf S
u u

λλ λ ρ α
λ λ λ λ

∂ ∂Δ⎛ ⎞= − +⎜ ⎟+ +⎝ ⎠
 (5.3-1) 

 
The first term on the right side of Eq. (5.3-1) is simply the water fractional flow in 
the absence of capillary pressure (Eq. 5.2-2); thus many of the conclusions about 
displacements with Pc = 0, though somewhat modified, carry over to displacements 
with capillary pressure. The second right term in Eq. (5.3-1) is the contribution of Pc 
to the water fractional flow. Including the capillary pressure term causes the character 
of Eq. (5.2-1) to change from hyperbolic to parabolic, a general result of dissipative 
effects because of the spatial Pc derivative. 

The capillary pressure in Eq. (5.3-1) is the phase pressure difference between 
two continuous oil and water phases (see Sec. 3-2). The derivative ∂Pc/∂x = 
(dPc/dS1)•(∂S1/∂x) has a positive sign for displacements in both oil-wet or water-wet 
media since dPc/dS1 is negative for both cases (see Fig. 3-5), and ∂S1/∂x is also 
negative. Therefore, for waterfloods, capillary pressure increases the water fractional 
flow at a given water saturation. This augmentation is particularly important in 
regions having large saturation gradients, that is, around shock fronts predicted by the 
Buckley-Leverett theory. In an oil displacement of water, Pc causes a smaller water 
fractional flow since ∂S1/∂x > 0. 

The effect of Pc on a one-dimensional displacement is to spread out the water 
saturation wave, particularly around shocks; Fig. 5-7, which illustrates how this 
comes about, is a simulated water saturation and pressure profile for a one-
dimensional waterflood in a water-wet medium. Figure 5-7(a) shows water saturation 
profiles with and without capillary pressure; Fig. 5-7(b) shows the corresponding 
pressure profiles. Both panels are at the same tD. The dotted phase pressures in Fig. 
5-7(b) are those that would be present if the shock remained in the water saturation 
profile. Of course, representing shock waves with Pc ≠ 0 is not correct, but such a 
portrayal presents the driving force for capillary mixing. 

Ahead of the front (downstream), the difference between the oil and water 
phase pressures is constant and equal to the capillary pressure at S1I. At the front, the 
phase pressures change rapidly. But behind the front (upstream), the difference 
between the oil and water phase pressures declines to the value at S1 = S1J. Compare 
these comments to Figs. 5-7(a) and 3-5. There is now a local pressure gradient at the 
shock that causes oil to flow upstream (countercurrent imbibition) and water to flow 
downstream faster than under the influence of viscous forces only. The resulting local 
mixing causes the shock to spread (Fig. 5-7a) and the pressure discontinuity to 
disappear. Behind the front, in the spreading portion of the water saturation wave, the 
effect of capillary pressure is small. 

Capillary pressure will be small if the system length L is large. Consider the
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Figure 5-7  Saturation and pressure 
profiles under longitudinal capillary 
imbibition (Yokoyama, 1981)

 
 
dimensionless water conservation equation with Eq. (5.3-1) substituted and α = 0 
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 (5.3-2) 

 
The last term on the left side of this equation is nonlinear in S1 and thus difficult to 
estimate. Using the Leverett j-function expression (Eq. 3.2-2), we can write Eq. 
(5.3-2) as 
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 (5.3-3) 
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where g is a positive dimensionless function of water saturation 
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 (5.3-4) 

 
and NRL, the Rapoport and Leas number, is a dimensionless constant first implied by 
these authors (1953) to indicate when capillary pressure effects will be important. 

 
1/ 2
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 (5.3-5) 

 
Figure 5-8 is a plot of fractional oil recovery at water breakthrough versus 

μ1vL (recall v = u/φ) from the experimental work of Rapoport and Leas. Since the 
1 0IS =  in their cores, the vertical axis in Fig. 5-8 is the breakthrough displacement 

efficiency, 0 .DE  As μ1vL increases, 0
DE  increases to a maximum of 0.58. For 

larger μ1vL, 0
DE  is constant at the value predicted by the Buckley-Leverett theory. 

Rapoport and Leas did not plot their results against the more general NRL; 
however, using the given k = 0.439 μm2 and φ = 0.24, and taking 0

1 12 cosrk σ θ  = 1 
mN/m (typical for water-wet media), Pc will not affect a one-dimensional water–oil 
 

 
Figure 5-8  Relation between oil recovery at breakthrough and scaling coefficient 
in dry-filmed alumdum cores with no connate water. Different symbols represent 
varying core lengths and oil viscosities. (From Rapoport and Leas, 1953) 
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displacement if NRL is greater than about 3. Because of the length appearing in the 
numerator of Eq. (5.3-5), Pc will affect the displacement front to a much greater 
degree in laboratory floods than in field-scale displacements because of the large 
disparity in L. 

Of course, on a microscopic scale, capillary forces are important in 
determining the amount of trapped or residual oil in either laboratory or field 
displacements. In Sec. 3-3, we saw that the S2r depended on a local viscous- 
to-capillary-force ratio, the capillary number Nvc. A common form of capillary 
number Nvc = 0

1 1 12/ cosrv kμ σ θ  is embedded in the definition of NRL 
 

 
1/ 2
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 (5.3-6) 

 
The factor, L(φ/k)1/2 , is a measure of the ratio of the macroscopic permeable medium 
dimension to a characteristic rock dimension. Therefore, Nvc and NRL are expressing 
the same physical idea––capillary-to-viscous-force ratios––but at different scales. 

Recall that if Nvc is less than about 10–5, the residual phase saturations are 
roughly constant. For well-sorted media, we can then put limits on NRL so that 
capillary forces, on any scale, do not affect the displacement 
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(no dissipation)     (constant residual
                                   saturations)  

 
For large L, this is an extremely wide range and accounts for the common neglect of 
all capillary forces in one-dimensional displacement calculations. For laboratory 
scale, it may not be possible to satisfy both requirements. 

NRL may be expressed in more direct ways. From Eq. (5.3-5), we can 
substitute Darcy’s law for water evaluated at S1 = 1 – S2r for v = u/φ to obtain 
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where ΔP1 is the pressure drop across the permeable medium measured through the 
water phase. The terms containing permeability and interfacial tension may be 
expressed in terms of the Leverett j-function to give yet another approximation to NRL 

 1
RL

c

PN
P

Δ′′ =
Δ

 (5.3-9) 

 
where ΔPc is the change in capillary pressure between the initial and final water 
saturation states. Equation (5.3-9) is a direct comparison of viscous to capillary 
pressure drops and is the least rigorous, but most direct, of all the measures. 
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For small NRL, capillary pressure will cause shock waves to spread out. 

Though there is a parallel between dispersion in miscible displacements (see Sec. 
5-5) and Pc effects in immiscible displacements, the analogy does not carry over to 
mixing zone growth. We show in Sec. 5-5 that dispersive mixing zones grow in 
proportion to the square root of time. Capillary pressure generally causes mixing 
zones to grow exponentially to some asymptotic limit where it proceeds, without 
further growth, in simple translation. How this comes about may be qualitatively 
explained by considering: a water saturation wave that would be a shock over the 
entire possible Saturation range, as in the right column in Fig. 5-6, where we 
neglected Pc effects. As we have seen, Pc effects cause such a wave to spread, but 
there is still a strong tendency for the wave to sharpen because of the convex-upward 
shape of the fractional flow curve. These two effects tend to balance each other, 
causing the wave to approach an asymptotic limit. The existence of such a limit 
further restricts the importance of capillary pressure as a mixing mechanism in one 
dimension. Asymptotic or “stabilized” mixing zones in one-dimensional laboratory 
waterfloods have been noted by several authors (Bail and Marsden, 1957). 

No discussion of how capillary pressure influences a one-dimensional dis-
placement is complete without some mention of the capillary end effect. This effect 
occurs when there is a discontinuity in the capillary pressure curve as, for example, 
when the one-dimensional permeable medium consists of two homogeneous media of 
differing permeabilities arranged in series. But it most commonly occurs at the end of 
a laboratory core where the flowing phases pass from a permeable to a nonpermeable 
region. The saturation behavior at the plane of discontinuity is considerably different 
from that predicted by the Buckley-Leverett theory. 

Consider the water saturation and pressure profiles of a waterflood in a 
water-wet medium shown in Fig. 5-9. Capillary forces are such that they cannot be 
neglected. Figure 5-9(a) shows the instant that water arrives at the outflow end (x = 
L), and Fig. 5-9(b) shows some time later. On the right of the outflow end, there is no 
permeable medium. This region has a capillary pressure curve that is zero 
everywhere except at S1 = 0, where all values of capillary pressure exist. The oil and 
water phase pressures must be continuous at x = L; hence the water saturation for x > 
L is constrained to be zero because there is a nonzero phase pressure difference. This, 
in turn, implies water cannot flow across the outflow end of the medium until the 
capillary pressure just inside the system vanishes. With no production at x = L, but 
with continual water transport to the outflow end, the water saturation must build up 
at x = L until Pc = 0 (S1 = 1 – S2r) at this plane. Hence the capillary end effect causes a 
delay in water production and a distortion of the water saturation at x = L compared 
to that predicted by the Buckley-Leverett theory (Fig. 5-9b). 

This delay can cause considerable error in applying the Welge integration 
procedure (Eq. 5.2-22). The capillary end effect has been observed experimentally by 
Kyte and Rapoport (1958) and in simulations by Douglas et al. (1958). Figure 5-10 
reproduces data reflecting the capillary end effect. 
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Figure 5-9  Schematic of the capillary end effect 
 
 

To eliminate the capillary end effect, laboratory floods have been run at high 
velocities and with long lengths (both increase NRL) or by placing a second permeable 
material at the outflow end to ensure good capillary contact. 
 
Fluid Compressibility 
 
A second dissipative effect is fluid compressibility. Figure 5-11 shows water 
saturation profiles for two waterfloods having compressible oil and incompressible 
water (Fig. 5-11a) and compressible water and incompressible oil (Fig. 5-11b). The 
completely incompressible Buckley-Leverett case is shown for comparison. These 
results are from computer simulations that were at constant water injection rate (Fig. 
5-11a) and constant oil production rate (Fig. 5-11b). We present the results as the 
product of compressibility and total pressure drop ΔP (neglecting capillary forces) 
since this quantity determines the appropriateness of the small compressibility fluid 
assumption in well test analysis. For cjΔP products of 0.01 or less, the effect of fluid 
compressibility is negligible; the smearing of the shock fronts for the cjΔP = 1.25 × 
10–3 runs is because of numerical dispersion, which is an artificial dissipative effect.
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Figure 5-10  Correlation of waterflood test data in strongly water-wet alumdum 
cores (from Kyte and Rapoport, 1985) 

 
 
The cjΔP products shown in Fig. 5-11 are, of course, unrealistically high; we have 
selected these values merely to emphasize the effect of compressibility. 

The effect of either oil or water compressibility is to spread out the Buckley-
Leverett shock front in addition to the spreading caused by numerical dispersion but 
the effect does not become pronounced until cjΔP is 1 or more. However, we would 
expect displacements in which both fluids are compressible to experience a combined 
dissipative effect with greater spreading. In Fig. 5-11(a), the water saturation exceeds 
1 – S2r at the inflow end. At higher pressure, oil compression below its residual 
occurs. Similarly, in Fig. 5-1l(b), the water saturation exceeds S1r at the effluent end 
because, at the reduced pressure, the water will expand. These effects are 
characteristics of the particular conditions the runs were made under. If we had held 
the production pressure constant and not allowed phase saturations to decrease below 
their respective residuals, neither effect would be present. Still, we can see from Fig. 
5-11 that the effect of compressibility is qualitatively similar to that of capillary 
pressure; a spreading of the shock fronts occurs but with a smaller effect on the 
saturation “tail.” 
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Figure 5-11  Water saturation profiles for one-dimensional water-displacing-oil 
floods at t = 200 days (adapted from Samizo, 1982) 
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5-4 IDEAL MISCIBLE DISPLACEMENTS 

 
Two components are mutually miscible if they mix in all proportions without an 
interface forming between them. The definition is translated into the fluid flow 
equations by allowing a phase to be composed of several components they are 
mutually miscible within. 

In this section, we discuss isothermal miscible displacements using fractional 
flow theory and with one or more phases present. Our presentation considers ideal 
miscible displacements with components that do not change the properties of the 
phases they are formed in (see Chap. 7 for more complicated displacements). 
 
Concentration Velocities 
 
Many of the concepts in Sec. 5-2 readily generalize to miscible displacements. We 
write a one-dimensional conservation equation for i = 1, . . . , Nc components as 
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t x

φφ
φ= =
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∑ ∑  

 1,  . . . , Ci N=  (5.4-1) 
 
Equation (5.4-1) is a special case of Eq. (2.4-10) with dispersion neglected. fj is the 
fractional flow of phase j, given by Eq. (2.4-2) with capillary pressure neglected, and 
Cij and Cis are the phase concentrations of component i in phase j and on the solid, 
respectively. Of course, the assumptions associated with Eq. (2.4-10)––constant 
porosity, incompressible fluids, and ideal mixing––also apply. In nondimensional 
form, Eq. (5.4-1) becomes 
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where 

 Overall fluid phase concentration of species iC i=  
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 Solid phase concentration of  on a pore volume basisisC i′ =  
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Overall flux of species iF i=  
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The transform accomplished by Eq. (5.4-3b) changes the solid phase concentration 
from a solid volume basis (Cis is amount i on solid/volume solid) to a pore volume 
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basis ( isC′  is amount i on solid/pore volume). Thus Ci and isC′  are directly comparable 
and may be used together in later work without the need to manipulate units. The 
definition of overall flux is from Hirasaki (1981) and Helfferich (1981). 

In principle, the fluxes Fi are functions of the Ci for i = 1, . . . , NC, and we 
may carry over many of the definitions, particularly those of saturation velocity, 
directly from Sec. 5-2. In practice, however, the relations Fi = Fi(C1, C2, . . . , CNC ) 
are extremely convoluted. We discuss this in more detail later, but we can give a 
summary of this relation here. 

With Ci known, the Cij and Sj may be calculated from phase equilibrium 
relations. The exact nature of the “flash” calculation depends on the nature of the 
phase -behavior (see Sec. 4-4 and Chaps. 7 and 9). With the Sj and Cij known, the 
phase relative permeabilities krj = krj(Sj, Cij) and viscosities μj = μj(Cij) may be 
calculated from petrophysical relations (see Sec. 3-3). From these follow the relative 
mobilities λrj = krj/μj, which lead directly to the fj from Eq. (2.4-2). If the phase 
densities are also required (if, for example, the permeable medium is not horizontal), 
they follow from ρj = ρj(Cij) (Eq. 2.2-12). With the fj and Cij known Fi follows from 
Eq. (5.4-3c). If needed, isC′  = isC′ (Cij) may be calculated also from the adsorption 
isotherm (see Chaps. 8 and 9). 

Despite this complexity, we can write Eq. (5.4-2) as 

 1 0,      1, . . . , 
D D

is i i i
C

i D i Dx t

C C F C i N
C t C x

⎛ ⎞′⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟+ + = =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (5.4-4) 

 
The partial derivatives ( / )

Dis i xC C′∂ ∂  and ( / )
Di i tF C∂ ∂ in Eq. (5.4-4) follow from the 

chain rule. These derivatives are not the same as ( / )
m jis j CC C

≠
′∂ ∂ , which are in the 

definition of the total differential. The latter derivatives may be calculated directly 
from isC′  = isC′ (Cij) and Fi = Fi(Ci), whereas the former derivatives require knowledge 
of Ci = Ci(xD, tD), which are solutions. Therefore, Eq. (5.4-4) is of little use except to 
allow the definition of specific concentration velocity 
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by analogy with Eq. (5.2-10). The definition of the specific shock velocity 

iCvΔ  is 
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Without additional constraints, the definitions (Eqs. 5.4-5a and 5.4-5b) 

impart no new information. But for the water-oil case of Sec. 5-2, they reduce to Ci = 
S1, Fi = f1, and isC′  = 0, giving 
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The last equality is possible because f1 is a function of S1 only; hence 1f ′  = 
1 1( / )

Dt
F S∂ ∂  = 1 1( / )

DxF S∂ ∂ . Certainly for more complicated cases, this simplification 
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is not possible; still, many of the displacements of interest may be solved with the 
coherent or simple wave theory that we discuss in Sec. 5-5. We now discuss other 
particularly simple special cases of miscible displacements. 
 
Tracers in Two-Phase Flow 
 
The simplest case we consider is the miscible displacement in single-phase flow of 
component 2 by component 1. For this case, fj and Sj are zero for all j except 1. For 
this particular j, fj and Sj are unity. If component 1 does not adsorb, the concentration 
velocity becomes 
 

1
1Cv =  (5.4-7) 

 
from either Eq. (5.4-5a) or (5.4-5b). This seemingly trivial result has two important 
consequences. 
 

1. The dimensional velocity of component 1 is equal to the bulk fluid velocity, 
meaning the dimensionless breakthrough time 0

Dt  for component 1 is also 
unity. From Eq. (5.2-7), we may estimate the pore volume of the medium by 
knowing the cumulative fluid injected when breakthrough occurs (see 
Exercise 5K). Components that travel at the bulk fluid velocity are 
“conservative” tracers for this reason. 

2. The specific concentration velocity is independent of C1, meaning waves 
caused by conservative tracers are indifferent, which is generally true for 
ideal miscible displacements. 

 
Most EOR displacements are only partially miscible. To illustrate a partially 

miscible displacement, we now consider a displacement of oil–water mixture at water 
saturation S1I by another at a water fractional flow f1J = f1(S1J). We wish to distinguish 
between the initial and injected oil and water, so let's suppose the injected fluids 
contain conservative tracers. The oil-miscible tracer is completely immiscible in 
water, and the water-miscible tracer is similarly immiscible in oil. The process is now 
the displacement of an oil–water mixture by a tagged oil–water mixture. To keep this 
simple, we assume the tracers do not affect the fractional flow functions at all. The 
specific velocity of the tagged water-resident water wave is 
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from Eq. (5.4-5a), where C11 is the water tracer concentration. Similarly, the specific 
velocity of the tagged oil is 
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v1′  and v2′ are both independent of tracer concentration; hence the miscible tagged 
water and oil waves are indifferent. Of course, since neither of the tracers affects f1, 



 154
the saturation velocity of the water––tagged or untagged––is given by Eq. (5.2-10) or 
Eq. (5.2-12). The values of f1 and S1 in Eq. (5.4-8) are determined by the character of 
the oil–water wave. 

Figure 5-12 illustrates some of the cases that can occur for this displacement. 
On each plot, the fractional flow curve is on the left, and a saturation-concentration 
profile is on the right. In case A, S1I = S1J and the specific velocities are the slopes of 
straight lines passing through (0, 0) and (f1, S1)J and (1, 1) and (f1, S1)J, respectively, 
from Eqs. (5.4-8a) and (5.4-8b). v2′ > v1′, and the tagged oil wave leads the tagged 
water wave. 
 

 
 

Figure 5-12  Illustration of various partially miscible displacements 
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Figure 5-12  Continued. 
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In case B, S1J > S1I, and the f1 curve is such that the oil–water wave is a 

shock. Both tagged waves lag the oil–water wave. The region between the tagged 
water and oil–water waves contains a “bank” of resident water that will be produced 
before the injected water breakthrough. Breakthrough of a resident water bank in this 
manner has been observed experimentally (Brown, 1957) though dispersion tends to 
be large in such displacements (see Fig. 5-18). 

Case C illustrates a spreading water–oil wave with v2′ > v1′ but with all tagged 
concentration waves having a smaller velocity than the smallest saturation velocity at 
S1J. 

Case D is the same as case C with the fractional flow curve more convex 
upward. This shape causes the oil–water wave to spread more and the tagged oil front 
to fall somewhere in the spreading portion of the oil–water wave. The saturation, S1′, 
whose velocity is the same as the tagged oil wave, is given by 
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The line whose slope is v2′ does not pass through S1J, as it did in all previous cases. 
This is because a line through (1, 1) and (S1, f1)J would have a second intersection 
point with the fractional flow curve. The tagged oil front would then travel with two 
different water saturations––a physical impossibility. 

Case E, the traditional Buckley-Leverett problem, is the inverse of case D 
where the tagged water front is now traveling in the spreading zone region. The oil–
water displacement in case E is mixed, whereas in case D, it is spreading. 

The important points in Fig. 5-12 are as follows: 
 
 

1. As postulated, neither the tagged oil nor the tagged water causes deviation in 
the water–oil displacement character. When banks of resident fluids form, 
they do so within their respective phases. 

 
2. One can easily imagine the tagged oil to be a hydrocarbon of less value than 

the oil. The tracer fronts now take on added significance since these miscible 
fronts are now displacing the resident oil. The resident oil, in turn, is 
completely displaced. Thus the ultimate ED for these idealized displacements 
is 1.0. This maximum efficiency occurs without interfacial tension lowering, 
changes in wettability, or mobility reduction. 

 
 

Of course, we have not as yet discovered a fluid that is simultaneously 
cheaper than and miscible with crude oil and that does not drastically change the 
hydrocarbon transport properties. These changes can return the ultimate displacement 
efficiency to something less than 1; still, the idea of displacing with miscible fluids, 
or those that will develop miscibility, is the central concept of Chap. 7. 
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5-5 DISSIPATION IN MISCIBLE DISPLACEMENTS 

 
Because miscible waves are ideally indifferent, they are also susceptible to 
dissipation. By far the most prominent of the dissipative effects in miscible 
displacements are dispersion and viscous fingering. The latter is a two-dimensional 
effect, so we postpone our discussion of it to Chaps. 6 and 7. In this section, we 
discuss the effects of dispersion on a miscible front. 
 
The Error Function Solution 
 
Consider now the isothermal miscible displacement of a component by another it is 
completely miscible with in a one-dimensional, homogeneous permeable medium. 
The convection–diffusion (CD) equation (Eq. 2.4-7) describes the conservation of the 
displacing component with mass concentration C, 
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Equation (5.5-1) also assumes incompressible fluid and rock, ideal mixing, and a 
single phase at unit saturation. The following development is valid if other phases are 
present (Delshad, 1981) and as long as all fractional flows and saturations are 
constant (see Exercise 5M). Kl is the longitudinal dispersion coefficient. In 
dimensionless terms, Eq. (5.5-1) becomes 
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which is solved with the following boundary and initial conditions on C(xD, tD): 
 
  ( ,0) ,      0D I DC x C x= ≥  (5.5-3a) 
    ( , ) ,      0D D I DC x t C t→ ∞ = ≥  (5.5-3b) 
   (0, ) ,      0D J DC t C t= ≥  (5.5-3b) 
 
where CI and CJ are the initial and injected compositions, respectively. In Eq. (5.5-2), 
NPe, the Peclet number, is defined as 

 Pe
l

uLN
Kφ

=  (5.5-4) 

 
which is the ratio of convective to dispersive transport. NPe is the analogue of NRL for 
immiscible displacements as seen by comparing Eqs. (5.3-3) and (5.5-2). This 
displacement must take place at constant u unlike Eqs. (5.2-6b). The equation and 
boundary conditions contain three independent parameters, CI, CJ, and NPe, but the 
problem may be restated with only NPe as a parameter by defining a dimensionless
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concentration CD 
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With this definition, the equation and boundary conditions become 
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  ( ,0) 0,      0D D DC x x= ≥  (5.5-7a) 
    ( , ) 0,      0D D D DC x t t→ ∞ = ≥  (5.5-7b) 
   (0, ) 0,      0D D DC t t= ≥  (5.5-7c) 
 
We have replaced the original boundary condition at xD = 0 (Eq. 5.5-3c) with one at 
xD → –∞ (Eq. 5.5-7c). This is an approximation to simplify the following derivation 
of an analytic solution. The approximate solution thus obtained will be valid, strictly 
speaking, for large tD or large NPe where the influence of the inlet boundary appears 
as though it were a great distance from the displacing front. In practice, the resulting 
approximate analytic solution accurately describes single-phase displacements for all 
but extreme cases. 

The first step in deriving CD(xD, tD) is to transform Eqs. (5.5-6) and (5.5-7) to 
a moving coordinate system Dx′  where Dx′  = xD – tD. This may be done by regarding 
CD as a function of xD and tD where a differential change in CD caused by differential 
changes in xD and tD is 
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But regarded as a function of Dx′  and tD, dCD is 
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Differential changes in variables are equal regardless of the coordinate 

system they are viewed in. The right- hand sides of Eqs. (5.5-8a) and (5.5-8b) are 
therefore equal. But Dx′  is a known function of xD and tD, from which  
 D D Ddx dx dt′ = −  (5.5-9) 
 
When Ddx′  is replaced in the above equality, we have 
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Since xD and tD are independent variables, dxD and dtD are not linearly related; hence 
the terms in brackets in Eq. (5.5-10) are zero, giving 
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When these are substituted into Eq. (5.5-6), we have 
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and the boundary conditions retain the form of Eq. (5.5-7) thanks to the replacement 
of the inlet boundary condition at xD = 0 with one at xD → –∞. 

Equation (5.5-12) is now the heat conduction equation whose solution may 
be obtained by the method of combination of variables (Bird et al., 1960). To do this, 
we define yet another dimensionless variable η = Pe/ 2 /D Dx t N′ , with which the 
governing equations and boundary conditions may be transformed into 
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 ( ) 0DC η → ∞ =  (5.5-13b) 
 ( ) 1DC η → −∞ =  (5.5-13c) 
 
As required for the successful transformation of a partial to an ordinary differential 
equation, the conditions (Eqs. 5.5-7a and 5.5-7b) collapse into the single condition 
(Eq. 5.5-13b). The transformation to an ordinary differential equation is sometimes 
called Boltzmann's transformation. Equations (5.5-13) may be separated and 
integrated twice to give 
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The product times the integral on the right side of Eq. (5.5-14) is the error function, a 
widely tabulated integral (see Table 5-2 and Fig. 5-13), and abbreviated with the 
symbol erf(η). By substituting the definitions for η and Dx′ , we have the final form 
for the approximate analytic solution. 
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 (5.5-15) 
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TABLE 5-2  TABULATED VALUES OF ERF (x) (FROM JAHNKE AND EMDE, 1945) 

x  0 1 2 3 4 5 6 7 8 9 d 

0.0 0.0 000 113 226 338 451 564 676 789 901 *013 113 
1 0.1 125 236 348 459 569 680 790 900 *009 *118 111 
2 0.2 227 335 443 550 657 763 869 974 *079 *183 106 
3 0.3 286 389 491 593 694 794 89 992 *090 *187 100 
4 0.4 284 380 475 569 662 755 847 937 *027 *117 93 
5 0.5 205 292 379 465 549 633 716 798 879 959 86 
6 0.6 039 117 194 270 346 420 494 566 638 708 76 
7  778 847 914 981 *047 *112 *175 *128 *300 *361 65 
8 0.7 421 480 538 595 651 707 761 814 867 918 56 
9  969 *019 *068 *116 *163 *209 *254 *299 *342 *385 46 

1.0 0.8 427 468 508 548 586 624 661 698 733 768 38 
1  802 835 868 900 931 961 991 *020 *048 *076 50 
2 0.9 103 130 155 181 205 229 252 275 297 319 24 
3  340 361 381 400 419 438 456 473 490 507 19 
4 0.95 23 39 54 69 83 97 *11 *24 *37 *49 14 
5 0.96 61 73 84 95 *06 *16 *26 *36 *45 *55 10 
6 0.97 63 72 80 88 96 *04 *11 *18 *25 *32 8 
7 0.98 38 44 50 56 61 67 72 77 82 86 6 
8  91 95 99 *03 *07 *11 *15 *18 *22 *25 4 
9 0.99 28 31 34 37 39 72 44 47 49 51 3 

2.0 0.995 32 52 72 91 *09 *26 *42 *59 *73 *88 17 
1 0.997 02 15 28 41 53 64 75 95 95 *05 11 
2 0.998 14 22 31 39 46 54 61 67 74 80 8 
3  86 91 97 *02 *06 *11 *15 *20 *24 *28 5 
4 0.999 31 35 38 41 44 47 50 52 55 57 3 
5  59 61 63 65 67 69 71 72 74 75 2 
6  76 78 79 80 81 82 83 84 85 86 1 
7  87 87 88 89 89 90 91 91 92 92 1 
8 0.9999 25 19 33 37 41 44 48 51 54 56 3 
9  59 61 64 66 68 70 72 73 75 77 2 

 
 
where erfc denotes the complementary error function. The exact analytic solution as 
derived by Laplace transforms is (Marle, 1981) 
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 (5.5-16) 

 
The second term in Eq. (5.5-16) approaches zero exponentially as xD and NPe grow. 
 Figure 5-14 shows concentration profiles of CD versus xD with tD and NPe 
varying. As NPe increases, the concentration profile approaches the step function at xD 
= tD suggested by Eq. (5.4-7). In fact, the concentration profile given by Eq. (5.5-15)
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Figure 5-13  The function En(x) = (1/ ) 1
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− −∫ , where n = 2 is the error 

function (from Jahnke and Emde, 1945) 
 
 
is symmetric and centered on this point. The complete solution (Eq. 5.5-16) is not 
symmetric, but as we noted, this effect is small. Dispersion, therefore, does not affect 
the rate of wave propagation, but it does affect the degree of mixing in the wave. 

The displacement efficiency for the displaced component is 
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 (5.5-17) 

 
where ierfc (x) = erfcx

∞
∫ (ξ) dξ is the integral complementary error function also 

tabulated (Carslaw and Jaeger, 1959). Figure 5-15 plots ED versus tD for various NPe. 
ED decreases at fixed tD as dispersion increases. Since miscible displacements do not 
have residual phase saturations, ED approaches 1 as tD increases. Figures 5-14 and 
5-15 indicate a stronger effect of NPe on concentration profiles than on displacement
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Figure 5-14  Dimensionless concentration 
profiles

 
 
efficiency; hence concerns about the detrimental effect of dispersion on recovery are 
usually limited to slugs. This topic we defer to Sec. 7-6. 

The dimensionless mixing zone, the distance between the distances where CD 
= 0.1 and CD = 0.9, follows from Eq. (5.5-15), 
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To arrive at this, invert Eq. (5.5-15) for 0.1|

DD Cx =  to yield 
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Figure 5-15  Displacement efficiency for one-dimensional miscible displacements 

 
A similar procedure yields 0.9|

DD Cx = , and these substituted into the definition for ΔxD 
give Eq. (5.5-18). Equation (5.5-18) shows that dispersive mixing zones grow in 
proportion to the square root of time. Immiscible mixing zones grow in proportion to 
time. The growth suggested by Eq. (5.5-18) is generally slower than that for an 
immiscible mixing zone, particularly if NPe is large. This slow growth is a partial 
justification for neglecting dispersion in modeling sernimiscible displacements 
compared to fractional flow effects. 

ΔxD is also useful to compare laboratory to field mixing zone lengths. An 
immiscible mixing zone contains no free parameters if dissipation is small. 
Therefore, if we conduct a laboratory immiscible flood under conditions as nearly 
identical to a field prototype as possible (displacement in native or restored state 
cores, at reservoir temperature and pressure, using actual reservoir fluids), the 
laboratory ΔxD will be the same as in the field. 

In miscible displacements, we are generally unable to make NPe equal 
between the laboratory and the field. Moreover NPe is usually smaller in the 
laboratory; thus ΔxD usually will be larger in the laboratory than in the field. Of 
course, the dimensional mixing zone length, ΔxDL, will always be greater in the field 
because L is much greater. Why we are unable to match NPe is derived from the 
following discussion of dispersion coefficients. 
 
Dispersivity 
 
Bear (1972) suggests “hydrodynamic” dispersion is “the macroscopic outcome of the 
actual movements of the individual tracer particles through the pores and various 
physical and -chemical phenomena that take place within the pores.” This movement 
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can arise from a variety of causes. In this text, dispersion is the mixing of two 
miscible fluids caused by diffusion, local velocity gradients (as between a pore wall 
and a pore center), locally heterogeneous streamline lengths, and mechanical mixing 
in pore bodies. Gravity tonguing and viscous fingering are two-dimensional effects 
that we discuss in Chap. 6. Here we summarize experimental findings on dispersion 
coefficients and some qualitative reasons for these observations. 

For one-dimensional flow, the longitudinal dispersion coefficient Kl is given 
by 

 1 2
0 0

| | pl v DK C C
D D

β
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (5.5-19) 

where C1, C2, and β are properties of the permeable medium and the flow regime. D0 
is the effective binary molecular diffusion coefficient between the miscible 
displacing and displaced fluids. Dp is an average particle diameter. 

For very slow flows, the second term in Eq. (5.5-19) is negligible, and Kl is 
proportional to D0. This case is analogous to a slow displacement in a wide channel 
where mixing is due entirely to molecular diffusion. The constant C1 has een found to 
be 1/φF, where F is the electrical formation resistivity factor (Pirson, 1983) to 
account for the presence of the stationary phase. 

For faster displacements, the second term in Eq. (5.5-19) becomes 
significant. Deans (1963) has shown that well-stirred tanks in series give mixing 
zones that can be described by dispersion coefficients proportional to velocity. Here, 
mixing is the result of the highly irregular flow paths in the REV, which cause fluids 
to mix completely as they are produced from each cell. Diffusion, of course, is 
negligible if the fluids are well mixed. 

An alternate, two-dimensional interpretation, including diffusion in this flow 
regime, is the theory of Taylor (1953), whereby the flow channels are visualized as 
having lateral dimensions much smaller than the longitudinal dimensions. For this 
idealization, diffusion equalizes concentration gradients in the lateral direction giving 
rise to an “effective” diffusion coefficient. Mixing is now the result of transverse 
diffusion and variations in velocity caused by the no-slip condition at the pore wall. 
Taylor’s theory predicts dispersion coefficients proportional to velocity squared. 

Experimentally, it is found (Perkins and Johnston, 1963) that β = 1 to 1.25 in 
Eq. (5.5-19); hence it seems the local mixing interpretation is closer to the mark than 
Taylor’s theory. 

This local mixing flow regime is where most EOR processes will occur. In 
fact, if the interstitial velocity is greater than about 3 cm/day, the local mixing term in 
Eq. (5.5-19) dominates the first term, and we can write 
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 (5.5-20) 

 
This does not imply that diffusion is categorically negligible in miscible flow. 
Several phenomena involve flow around stagnant regions (for example, dead-end 
pores, water blocked pores, or adjacent nonflowing zones) where diffusion rates are 
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important even in regimes that would otherwise be well described by Eq. (5.5-20). αl 
in Eq. (5.5-20) is the longitudinal dispersivity of the permeable medium (Eq. 2.2-14), 
a measure of the local heterogeneity scale. Bear (1970) classifies αl as one of the 
fundamental properties of the medium. For the local mixing flow regime, αl is a more 
fundamental measure of dispersion than Kl. 

Figure 5-16 shows the three flow regimes from Perkins and Johnston (1963). 
Similar data is in Bear (1970) and in several references of Perkins and Johnston. 

The form of Eq.  (5.5-20) is particularly convenient as the Peclet number 
(Eq. 5.5-4), and the dimensionless concentration balance (Eq. 5.5-2) now become 
independent of velocity 

 Pe
l
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α

=  (5.5-21) 

 
Therefore, the dimensionless mixing zone is directly related to αl through Eq. 
(5.5-18). In fact, αl/L can be crudely regarded as the dimensionless mixing zone 
length. 

Suppose we try to design a laboratory displacement that has the same 
dimensionless mixing zone length as a field prototype. Then we must have 
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Figure 5-16  Longitudinal dispersion coefficients in permeable media flow (from 
Perkins and Johnson, 1963) 
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Equation (5.5-22) clearly cannot be satisfied if the laboratory and field dispersivities 
are assumed equal. 

To enforce the equality in Eq. (5.5-22), we must have laboratory and field 
values of αl. Laboratory-measured αl’s are available through correlations or 
experiments. They are generally a few centimeters or less depending on the core 
material. The estimated field-measured values of αl are far less certain. A good 
summary of field-measured dispersivities is shown in Fig. 5-17. This figure shows 
field-measured αl’s for several formation types plotted against the length scale it was 
measured over. On the log–log scale, there is clearly considerable variation in αl at 
 
 

 
Figure 5-17  Field and laboratory measured dispersivities (from Arya et al., 1988) 
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the same length, and even for the same formation, even though there is little or no 
correlation with the latter. 

Despite the scatter, there is a clear trend of increasing αl with measurement 
distance. We can explain this increase qualitatively by saying the scale of 
heterogeneity captured by a given measurement increases as the volume sampled 
increases. Quantitatively, the phenomenon is the subject of active research (Gelhar et 
al., 1979; Dagan, 1984) because of the complicated interplay between heterogeneity, 
local dispersion coefficients, diffusion, and other permeable media properties that 
combine to make αl length dependent. 

Figure 5-17 points out the interesting and significant behavior of αl as system 
macroscopic length increases. But even on a local scale, the behavior of longitudinal 
dispersivity is not well known when multiple phases are flowing. Figure 5-18 gives 
experimental data showing how the intraphase dispersivity changes as the phase 
saturation changes. The data in this figure are for constant saturation flow of micellar 
fluids for which the more general definition of Kl (Eq. 2.2-14) is appropriate. Figure 
5-18 shows that aqueous phase dispersivity can increase by more than a factor of 10 
as the aqueous phase saturation decreases. (This dispersivity increases as the 
effective heterogeneity increases, but now the “heterogeneity” must be related to the 
 

 
 

Figure 5-18  Dispersivities for constant saturation miscible flows (from MacAllister, 
1982) 
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characteristics of the flowing fluids.) It is likely that wetting conditions play a large 
role in the αl increase since no such changes in αl were observed for the nonwetting 
phase in Fig. 5-18. 

We summarize the most important points about the effects of dispersion on 
one-dimensional miscible flow as follows: 
 

1. Dispersion controls the rate of mixing of two fluids but does not affect wave 
velocity. 

2. Dispersive mixing zones can grow no faster than in proportion to the square 
root of time. 

3. The fluid velocity of most EOR processes is such that the flow is in the local 
mixing flow regime where the dispersion coefficient is proportional to the 
interstitial velocity. The proportionality constant is the longitudinal 
dispersivity αl. 

4. αl is a measure of the heterogeneity of the permeable medium and varies 
with phase saturation and the measurement scale. 

4. Neglecting dispersion in field-scale displacements is not proper because 
dispersivity appears to increase with travel distance. 

 
 

5-6 GENERALIZATION OF FRACTIONAL FLOW THEORY 
 
In this section, we present the mathematical formalities to broaden the fractional flow 
theories of Secs. 5-2 and 5-4 to multiple component, multiphase flow. As in those 
sections, we neglect dissipative effects and restrict the equations to one-dimensional 
flow. Our presentation is based on a subset of the method of characteristics (MOC) 
solution technique known as simple wave theory, or coherence theory. (For more 
careful mathematical detail, see Courant and Friedrichs, 1948; Helfferich and Klein, 
1970; and Jeffrey and Taniuti, 1964.) 

The fundamental principle in the MOC is to solve partial differential 
equations (PDEs) by first converting them to a set of ordinary differential equations 
(ODEs) that may then be integrated simultaneously. This set of ODEs can rarely be 
integrated in closed form, but there is a large class of permeable media flow problems 
for which the integrations will appear in a general form. To illustrate these ideas, we 
consider first a single PDE and then pairs of PDEs in the dependent variables u and v. 
The theory may be generalized to more than two PDEs, but in practice, the 
procedures become cumbersome. 
 
One Dependent Variable 
 
Consider the following partial differential equation for u(x, t) 
 
 ( ) 0t xL u Au Bu E= + + =  (5.6-1) 
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where A, B, and E are known functions of u, x, and t. The operator L(u) is linear in 
the derivatives of u. The notation ux and ut means partial differentiation with respect 
to x and t holding the other variable constant. We want solutions to Eq. (5.6-1) in the 
form u(x, t) subject to the appropriate initial and boundary conditions. In the MOC, 
we seek these solutions in the form u(s), where s is a parameter along a curve C in x-t 
space such that x = x(s) and t = t(s). We may, therefore, write the total derivative of u 
with respect to s as 
 s s t s xu t u x u= +  (5.6-2) 
 
Equation (5.6-2) is a mixture of total derivatives us, ts, and xs and partial derivatives ut 
and ux. However, we use the same notation for both types of derivatives since the 
type of derivative should be clear from the usage. Comparing Eqs. (5.6-1) and (5.6-2) 
leads to 
  st A=  (5.6-3a) 
 sx B=  (5.6-3b) 
    su E= −  (5.6-3c) 
 
Equations (5.6-3), which imply the operator L(u) is a directed derivative along C, are 
a set of three ODEs that may be integrated from an initial curve, as shown in Fig. 
5-19(a), to give a characteristic curve C in xt space along which u varies as given by 
the integration of Eq. (5.6-3c). 

The various integrations are possible only if C is nowhere tangent to the 
initial curve. Figure 5-19(a) schematically shows the integration of these equations 
for a curve C that begins at the point (x0, t0) on the initial curve. We could take other 
points on the initial curve and thereby cover the shaded domain of dependence in Fig. 
5- 19(a) defined by the characteristics through the points A and B on ends of the 
initial curve. If α is a parameter along the initial curve, the solution to Eqs. (5.6-3) is 
t = t(s, α), x = x (s, α), and u = u(s, α). s and α are the coordinates of a natural, 
generally curved, coordinate system for Eq. (5.6-1). Since α, in effect, determines 
which curve C passes through the point (x, t), at which the value of u is desired, the 
characteristics for Eq. (5.6-1) are a one-parameter (α) family of curves, and α is a 
label for this one-parameter family. An important observation is that at every point 
(x, t) in the shaded region in Fig. 5-19(a), the slope of the characteristic curve is given 
by 

 ( , , )s

Cs

x dx B u x t
t dt A

σ= = =  (5.6-4) 

 
σ is the characteristic direction at a given (x, t). Equation (5.6-4) implies it will 
generally be unnecessary to determine t = t(s, α) and x = x(s, α) since t = t(x, α) will 
follow directly from Eqs. (5.6-4) and (5.6-3c). 

Consider now a special case of Eq. (5.6-1) where E = 0, and A and B are 
functions of u only. The initial data are a curve that coincides with the x axis, where
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Figure 5-19  Domains of dependence for one-variable hyperbolic equations 
 
 
u = uI and then coincides with the t axis, where u = uJ. Thus the boundary (x = 0) and 
initial (t = 0) data are uniform except for a step change at the origin where all values 
of u between uI and uJ exist. It follows immediately from Eqs. (5.6-3c) and (5.6-4) 
that u is constant along the characteristics C, which are themselves straight lines. 
Figure 5-19(b) shows the characteristics for this case. In regions adjacent to the x and 
t axes, the characteristics are parallel with slopes σ(uI) and σ(uJ), respectively. These 
regions are constant-state regions since the dependent variable u is constant therein. 
The shaded region in Fig. 5-19(b) is a fanlike region where σ changes continuously 
between the limits imposed by the constant-state regions. Each ray emanating from 
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the origin carries a particular constant σ from the infinite numbers of u’s between uI 
and uJ, and each has a slope σ evaluated at that u. Therefore, the shaded region in 
Fig. 5-19(a) is a wave since, in any noncharacteristic direction, u is changing. 

From Fig. 5-19(b), the characteristics cannot cross, but there is nothing that 
requires σ to decrease monotonically, as in the case shown. When σ does not 
decrease monotonically, a mathematically valid solution exists that leads to the 
formation of shock waves, u being a physical variable. 

Finally, the characteristic direction σ may clearly be interpreted as a velocity 
(if x and t are distance and time) and written as 

 
C u

dx dx
dt dt

σ = =  (5.6-5) 

 
With the appropriate forms for A, B, t, and x, Eq. (5.6-5)becomes the 

Buckley-Leverett equation (Eq. 5.2-10) for water displacing oil in a permeable 
medium as we discussed in Sec. 5-2. Note the similarity between Figs. 5-5 and 
5-19(b). 
 
 
Two Dependent Variables 
 
Let us consider now a pair of PDEs in the dependent variables u(x, t) and v(x, t) 
 
 1 1 1 1 1 1( , ) 0t x t xL u v A u B u C v D v E= + + + + =  (5.6-6a) 
 2 2 2 2 2 2( , ) 0t x t xL u v A u B u C v D v E= + + + + =  (5.6-6b) 
 
Initially, we consider the most general case of the coefficients A–E being functions of 
x, t, u, and v. The first pair of terms in the linear operators L1 and L2 may be regarded 
as directed derivatives of u and v. From the total derivative of du and dv, there are 
four such directions (A1ut + B1ux, C1vt + D1vx, and so on) for each PDE. But to 
transform the pair to a set of ODEs, we seek a curve in (x, t) space where u = u(s), v = 
v(s), x = x(s), and t = t(s). We, therefore, seek a combination L = λ1L1 + λ2L2 so that L 
is a linear function of total derivatives us and vs. As before, s is a parameter along 
such a curve. For solutions to the equations, the operator L must be equal to zero, 
hence 

 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( ) ( ) ( )
                                      ( ) ( ) 0

t x t

x

L A A u B B u C C v
D D v E E

λ λ λ λ λ λ
λ λ λ λ

= + + + + +
+ + + + =

 (5.6-7) 

 
For the directed derivatives of u and v to be colinear, it is necessary that 
 

 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

s

x

x B B D D
t A A C C

λ λ λ λσ
λ λ λ λ

+ +
= = =

+ +
 (5.6-8) 

 
be obtained from the total derivative for each dependent variable. The two equations
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in Eq. (5.6-8) may be written as 
 1 1 1 2 2 2( ) ( ) 0s s s sA x B t A x B tλ λ− + − =  (5.6-9a) 
 1 1 1 2 2 2( ) ( ) 0s s s sC x D t C x D tλ λ− + − =  (5.6-9b) 
 
For nonzero λ1 and λ2, the determinant of the coefficient matrix must be zero; hence 

 
2

1 2 2 1 2 1 2 1 1 2 2 1

1 2 1 2

( ) ( )
                                                                ( ) 0
A C A C A D D A C B C B

B D D B
σ σ− + − + −

+ − =
 (5.6-10) 

 
where we have substituted the characteristic direction σ from Eq. (5.6-8). 
Immediately, it is apparent that there are, in general, two characteristic directions, not 
one as in the analogous expression (Eq. 5.6-4) for the one variable problem. Whether 
or not these directions are real for all (x, t) depends on the form of the coefficients. 
For permeable media flow problems, σ is real in at least some, and usually all, of the 
domain (x, t). This, in fact, is the definition of hyperbolic PDEs. Further, the roots in 
Eq. (5.6-10) are generally distinct. Let σ+ designate the larger root and σ– the smaller 
of Eq. (5.6-10). Clearly, the corresponding characteristic curves, C+ and C–, cover the 
domain of dependence in (x, t) since the slope of C+ is everywhere larger than the 
slope of C–. Figure 5-20 shows these curves. The shaded domain of dependence is 
bounded for the two dependent variable problem by the fast σ+ characteristic through 
B and the slow σ– characteristic through A. 

Each point in the domain of dependence is on the intersection of an σ+ and σ– 
characteristic. The coordinates of a point may then be located as a distance s along a 
particular characteristic having label α; that is, x = x(s, α), and t = t(s, α). 
Alternatively, the coordinates may also be located by giving the labels of both 
characteristics passing through it, or x = x(α, β) and t = t(α, β), where β is now the 
label of the other characteristic. The notion of labels is somewhat confusing since α 
and β can take on the same numerical values on the initial curve; however, in the 
interior of the domain of influence, they are distinct. 

The characteristic curves cannot be obtained, in general, unless it is known 
how u and v change along the characteristic directions. This may be obtained by 
replacing the coefficients of ux and vx in Eq. (5.6-7) by the numerators in Eq. (5.6-8) 
 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) 0s s sA A u C C v E E tλ λ λ λ λ λ+ + + + + =  (5.6-11a) 
 
where we have rearranged with us = uxxs + utts, and so on. A similar procedure on ut 
and vt gives 
 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) 0s s sB B u D D v E E xλ λ λ λ λ λ+ + + + + =  (5.6-11b) 
These equations rearranged are 
 1 1 1 1 2 2 2 2( ) ( ) 0s s s s s sA u C v E x A u C v E tλ λ+ + + + + =  (5.6-12a) 
 1 1 1 1 2 2 2 2( ) ( ) 0s s s s s sB u D v E x B u D v E tλ λ+ + + + + =  (5.6-12b) 
 
Again, for nontrivial λ1 and λ2, the determinant of the coefficient matrix must be 
zero, and again, the characteristic equation has two real, distinct roots for us or vs. 
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Figure 5-20  Domains dependence for two-variable hyperbolic equations 
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The roots to these equations form, along with the two roots to Eq. (5.6-10), four 
ODEs that may be integrated simultaneously for u, v, x, and t from an initial curve. 

Rather than expound further on this, let’s consider the special case where E1 
and E2 = 0, and the remaining coefficients are functions of u and v only. Such 
equations are said to be reducible. The characteristic directions from Eq. (5.6-10) are 
a known function of u and v only. Further, along each characteristic curve, there is a 
relation between u and v given by 
 

 2 1 1 2 1 2 1 2 1 2 1 2( ) ( ) ( )duB A B A B C C B C A A C
dv

σ ±− = − + −  (5.6-13) 

 
from the determinant of the singular matrix formed by Eqs. (5.6-9a) and (5.6-12a). 
There are three equivalent forms to this equation, but the important point is that u and 
v are related to each other along the C± curves in x-t space since all the coefficients in 
Eq. (5.6-13) are known functions of u and v. The u-v plot that contains the above 
solution is said to be the image, or hodograph, space and the function u = u(v) for C+ 
is the image curve Γ+ or C+, as is u = u(v) for Γ– the image curve for C–. In this text, 
we call the u-v space the composition path diagram, and the Γ+ and Γ– curves the 
composition paths. 

Besides the restriction to reducible PDEs, let’s now consider the special case 
of u = uI and v = vI being specified on the x axis, and u = uJ and v = vJ being specified 
on the t axis. As before, this means that all (u, v) values between (u, v)I and (u, v)J 
exist at the origin. Also as before, there are regions of constant state adjacent to both 
axes where the characteristic directions, and hence, the labels α and β are constant. 
But unlike before, there are now two fan-shaped regions (Fig. 5-20b) where first the 
fast or a characteristics change slope, and then the β characteristics change. The 
regions cannot overlap, or there would be finite regions where σ+ < σ–. This fact 
causes the creation of a new constant-state region (u, v) between the fans that is, in 
general, different from either (u, v)I or (u, v)J. Within the fan-shaped regions, the α 
and β characteristics cannot both be straight, or else these would be constant-state 
regions. But one of the characteristic directions must be straight in each region (σ+ in 
the first shaded region in Fig. 5-20(b), and σ– in the second). This is so because two 
points A and D on the boundary have the same (u, v) values since they can be 
regarded as being in the constant-state region. This must be true of all other rays in 
the fan-shaped region, for example, that passing through C and B. Otherwise, the ray 
would be curved (from Eq. 5.6-10) and would ultimately intersect either of the 
constant-state regions. It follows, then, that all points on the straight-line 
characteristic carry the same (u, v) value. Since (u, v)A = (u, v)D and (u, v)B = (u, v)C, 
it follows that B Cσ σ− −=  and the slope of the a characteristics is the same on all the σ+ 
characteristics. This means the u = u(v) relationship defined by Eq. (5.6-13) is the 
same on any slow characteristic in the region. Thus ( / )du dv

σ −  and ( / )du dv
σ +  

uniquely determine the variations in u and v in the respective fan-shaped regions. The 
function u = u(v) is always calculated based on the curved characteristic. 
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The above concepts apply generally to reducible sets of PDEs in any number 

of N dependent variables. Stated concisely, the observations are 
 

1. Adjacent to any constant-state region, there is a region having at least one 
straight line characteristic. The second region is a simple wave region. 

2. Within a simple wave region, the dependent variables are related to each 
other through a set of ODEs. 

3. For boundary and initial conditions that are uniform except for a step change 
at the origin, the entire (x, t) domain consists of alternating constant-state and 
simple wave regions. The simple waves in this case are centered simple 
waves. 

 
Coherence 
 
The information on reducible equations may be restated with more physical insight 
by referring to simple waves in the terminology of coherent waves (Helfferich and 
Klein, 1970). Since (u, v) is constant on a straight-line characteristic in a simple or 
coherent wave region, and since σ is a function of u and v only, it follows that 

 
u v

dx dx
dt dt

=  (5.6-14a) 

 
or for u1, . . . , uN dependent variables 

 
1 2

,  . . . , 
Nu u u

dx dx dx
dt dt dt

= =  (5.6-14b) 

 
Equation (5.6-14b) states that the velocity of constant values of the dependent 
variables is the same––the coherence condition. As we illustrate in Sec. 5-7, the 
coherence method of calculating simple waves is more direct than using MOC. 
Equation (5.6-14b) implies, further, that there can be no more than N waves. 
 
 

5-7 APPLICATION TO THREE-PHASE FLOW 
 
 
In this section, we apply the results of the coherence theory by calculating the 
displacement efficiencies for a three- phase water (i = 1), oil (i = 2), gas (i = 3) flow 
problem. We assume away dissipative effects––capillary pressure and pressure-
dependent fluid properties––and restrict the fluids to be single pseudocomponent 
phases. The assumption of an incompressible gas phase is, of course, realistic only if 
 

 3
Pc P

P
Δ

Δ ≅  (5.7-1) 

is small. This condition is not met in general although for flows in high permeability 
media c3ΔP can be fairly small, particularly considering that gas viscosity is also 
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small. But even if c3ΔP is large, we have seen from Sec. 5-3 that fluid 
compressibility causes waves to spread and does not affect wave velocity. 

Subject to the above restrictions, the species conservation Eq. (5.4-1) 
becomes 

 0,      1 or 2j j

D D

S f
j

t x
∂ ∂

+ = =
∂ ∂

 (5.7-2) 

in dimensionless form, where for a horizontal reservoir 

 3

1

rj
j

rm
m

f
λ

λ
=

⎛ ⎞
= ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠
∑

 (5.7-3) 

 
The relative mobilities in Eq. (5.7-3) are known functions of S1 and S2. Only two 
independent saturations are in this example, since S1 + S2 + S3 = 1, which we 
arbitrarily take to be the water and oil saturations. Equation (5.7-3) implies that the 
fractional flows are known functions of S1 and S2. 

From Eq. (5.4-5), the specific velocity of a constant saturation Sj is 

 ,      1 or 2
j

D

j
S

j t

f
v j

S
⎛ ⎞∂

= =⎜ ⎟⎜ ⎟∂⎝ ⎠
 (5.7-4a) 

if the wave is nonsharpening and 

 ,      1 or 2
j

j
S

j

f
v j

SΔ

Δ
= =

Δ
 (5.7-4b) 

 
if the wave is a shock. We cannot take the derivative in Eq. (5.7-4a) without knowing 
the solution to the problem Sj(xD, tD). The results of the previous section carry over to 
this problem with A1 = 1, B1 = f11, D1 = f12, B2 = f2l, C2 = 1, D2 = f22, A2 = C1 = 0, E1 = 
E2 = 0. For brevity, we have adopted the convention that f12 = (∂f1/∂S2)S1, and so on. 
B1, B2, C1, and C2 are known functions of S1 and S2––though perhaps very 
complicated––but we can calculate them without knowing the solution S1(xD, tD) and 
S2(xD, tD). 

Let’s now let the initial saturations in the medium be uniform at (S1, S2)I and 
impose at xD = 0 the saturations (S1, S2)J. From Sec. 5-6, we know the coherence 
condition applies at all points in the domain where 

 1 2

1 2

df df
dS dS

σ= =  (5.7-5) 

 
from Eqs. (5.6-14b) and (5.7-4a). The derivatives in Eq. (5.7-5) are total derivatives 
since the coherence condition implies the existence of a relation S2 = S2(S1) in 
saturation space. We expand the derivatives in Eq. (5.7-5) and write the two 
equations in matrix form as 

 11 12 1 1

21 22 2 2

   
   

f f dS dS
f f dS dS

σ
⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (5.7-6) 
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To solve for S2(S1), we first solve this equation for the eigenvalues, σ± 

 2 1/ 2
22 11 22 11 21 12

1{( ) [{( ) 4 ] }
2

f f f f f fσ ± = + ± + +  (5.7-7) 

 
Both roots to Eq. (5.7-7) are real, σ+ > σ–, and both are known functions of S1 and S2. 
Recall that the σ± are saturation velocities. Solving for dS1 and dS2 in Eq. (5.7-6) 
gives 

 1 11

2 12

dS f
dS f

σ ± −
=  (5.7-8) 

Equations (5.7-7) and (5.7-8)are the special cases of Eqs. (5.6-10) and (5.6-13). 
Equation (5.7-8) is an ordinary differential equation whose integration gives the 
function S2(S1). There are two such functions corresponding to σ+ and σ–. The 
velocity of any saturation along S2(S1) is given by σ+ and σ– depending on whichever 
is physically realistic. 

The above procedure could perhaps be made clearer by addressing a 
particular problem. Consider an oil–gas–water mixture being displaced by water. To 
make the problem simple, we take the relative permeabilities to be 

 
1 2 3

,      1 or 2
1

j jr
rj

r r r

S S
k j

S S S
−

= =
− − −

 (5.7-9) 

 
and let S1r = S2r = S3r = 0.1. Equation (5.7-9) is not a realistic three-phase relative 
permeability function (see Exercise 5N), but it is sufficient for illustration. We 
further take μ1 = 1 mPa-s, μ2 = 5 mPa-s, and μ3 = 0.01 mPa-s, and consider the initial 
conditions to be S2I = 0.45, and S1I = 0.1. Therefore, the medium is initially at 
residual water saturation with equal volumes of oil and gas. We are to displace this 
mixture with water, that is S1J = 0.8 and S2J = 0.1. This procedure corresponds to a 
waterflood initiated well into the primary production phase. 
 Figure 5-21 shows the functions S2(S1) obtained by numerically integrating 
Eq. (5.7-8) with the indicated physical relations. The plot is on a triangular diagram 
to emphasize the relation S1 + S2 + S3 = 1. The integration of Eq. (5.7-8) for various 
initial values of S1 and S2 produces two families of curves corresponding to σ+ and 
σ–, which are the image curves σ+ and σ– (light lines in Fig. 5-21) referred to 
previously. Since σ+ > σ–, the image curves nowhere coincide, and further, to every 
point in the saturation diagram, there are associated two velocities σ+ and σ–. The two 
families of curves we call the saturation paths after Helfferich (1981). The particular 
paths that pass from the initial to the injected condition are the saturation routes (bold 
lines in Fig. 5-21). Though we henceforth restrict our attention to the saturation 
routes, Fig. 5-21 gives a rapid visual perspective for any displacement having 
arbitrary initial and injected conditions. 

In moving from the initial to injected conditions, there are two alternative 
saturation routes: (1) a σ– segment going from the initial conditions to the upper apex 
of the three-phase flow region and then a σ+ segment on the gas–water boundary to 
the injected condition and (2) a σ+ segment from the initial conditions to (S1, S2) =



 178

 
 

Figure 5-21  Three-phase flow saturation paths 
 
(0.36, 0.54) followed by a σ– segment along the oil–water boundary to the injected 
conditions. Both routes are mathematically valid solutions to the problem; in fact, an 
infinite number of mathematical solutions correspond to a route that arbitrarily 
switches from al to a paths in going from (S1, S2)I to (S1, S2)J. From the Buckley- 
Leverett problem in Sec. (5-2), we know that saturation velocities must decrease 
monotonically (though not continuously) in the upstream direction. The only physical 
solution for the problem is route (2) because σ+ > σ– forces this to be the only 
possible route where σ decreases monotonically from (Si, S2)I to (S1, S2)I to (S1, S2)J. 

Within a route segment, the saturation velocities must decrease monotonic-
ally in the upstream direction also. This condition is not met on the σ+ route segment 
(the arrows on the saturation routes indicate the direction of increasing saturation 
velocity). Such behavior indicates the wave is a shock, and we can find the shock 
velocity by a procedure entirely analogous to that used in Sec. (5-2). Figure 5-22(a)
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Figure 5-22  Diagrams for three-phase flow example 
 
plots the oil and water fluxes (f1, f2) versus (S1, S2) along the composition route. The 
shock construction is exactly as suggested in Fig. 5-4, and may be performed on 
either the f1-S1 curve or the f2-S2 curve. Equation (5.7-5) guarantees this equivalence. 
The only real difference between the three-phase and two-phase flow problems at this 
point is the existence of the constant-state region at IJ. The time-distance diagram for 
the displacement is in Fig. 5-22(b), which should be compared to Figs. 5-5 and 
5-20(b). 
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Despite the simplified nature of the relative permeability curves used in this 

example, Fig. 5-22 illustrates that the most important feature of three-phase oil–gas–
water flow is the extremely small gas viscosity. This viscosity causes the oil 
fractional flow to be small initially and to delay the appearance of an appreciable 
amount of oil at the outflow end until tD = 0.28. This delay, or “fill-up,” time is an 
omnipresent feature of waterfloods begun with appreciable amounts of free gas in the 
medium (Caudle, 1968). A fill-up period occurs because of the very large gas 
mobility, not as the result of gas compressibility or redissolution. The last two effects 
would serve to reduce the fill- up time. A second consequence of the small gas 
viscosity is no simultaneous three-phase flow occurs in the medium. In fact, by 
assuming an oil–water mixture banks up the free gas, it is possible to repeat the 
results in Figs. 5-21 and 5-22 with much less effort (see Exercise 5O). A final 
consequence of the small gas viscosity is this behavior is qualitatively accurate 
regardless of the relative permeability functions used. 

We end this section by discussing the displacement efficiency of the three-
phase flow problem. There is now a displacement efficiency for both oil and gas for 
which we need average saturations for the definition (Eq. 5.1-2). Considering the 
fractional flux-saturation curve in Fig. 5-22(a), the average saturations follow from a 
procedure directly analogous to the Welge procedure in Sec. 5-2. 
 1 1| ( | ),      1,  2, or 3

D Dj j x D j x jJS S t f f j= == − − =  (5.7-10) 
 
where tD = (dfj/dSj)–1 is the reciprocal slope of the fj-Sj curve evaluated at xD = 1. 
Figure 5-22(a) shows the average water saturation at water breakthrough, and Fig. 
5-23 shows the displacement efficiencies for this example. Once again ED is limited 
by the residual phase saturations, oil production is delayed for a fill-up period, and 
 

 
 

Figure 5-23  Displacement efficiencies for three-phase flow problem 
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the oil displacement efficiency is determined by the water–oil relative permeabilities 
and viscosities. 

This example demonstrates the strength of simple wave theory. In later 
chapters, we return to these procedures for specific EOR applications. 
 
 

5-8 CONCLUDING REMARKS 
 
Any oil recovery calculation of a field-scale displacement based solely on the 
procedures discussed in this chapter will seriously overestimate the actual recovery: 
Such one-dimensional calculations neglect volumetric sweep issues which are at least 
as important as displacement efficiency. Nevertheless, the fractional flow 
calculations are important in establishing a framework for advancing our study. The 
items important in establishing this framework are the Buckley-Leverett theory and 
its generalization in Sec. 5-7, the ideas of coherent waves and their representations, 
and the notion of the ideal miscible displacement. 
 
EXERCISES 
 
5A. Parameter-Free Statement. Show that Eqs. (5.2-5) can be reduced to a parameter-free 

statement by defining and introducing a reduced saturation SD, where 
 

 1 1

1 1

I
D

J I

S S
S

S S
−

=
−

 (5A-1) 

 
5B. Radial Form of Water Material Balance 

(a) Show that the one-dimensional water conservation Eq. (5.2-1) for incompressible 
flow in radial geometry is 

 1 1 0
2 t

S fq
t H r r

φ
π

∂ ∂⎛ ⎞+ =⎜ ⎟∂ ∂⎝ ⎠
 (5B-1) 

where q is the volumetric flow rate, Ht the medium thickness, and f1 is the same as 
Eq. (5.2-2). 

(b) If we let rD = (r/R)2 and tD = 2
0 /t

tqdt H Rπφ∫  = 0 /t
pqdt V∫ , show that Eq. (5B-1)

becomes identical to the linear Eq. (5.2-5a). 
5C. Buckley-Leverett Application. Calculate effluent histories (water cut 1 1|

Dxf =  versus t) 
for water (μl = 1 mPa-s) displacing oil given the following experimental data (Chang 
et. al., 1978): 

S1 kr1 kr2 

0.40 0.00 0.36 
0.45   0.005 0.26 
0.50   0.009 0.14 
0.55 0.02 0.08 
0.60   0.035   0.036 
0.65   0.050   0.020 
0.70   0.080 0.00 
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Use three values of oil viscosity: μ2 = 1, 5, and 50 mPa-s. For μ2 = 5 mPa-s, calculate 
the endpoint, shock, and average saturation mobility ratios. The dip angle is zero. 

5D. Gravity and Fractional Flow Theory. For the exponential relative permeability 
functions of Eq. (3.3-4), plot water saturation profiles at tD = 0.3 for dip angles of α = 
0°, 30°, and  –30°. Additional data are S1r = S2r = 0.2, n1 = 1, n2 = 2, 0

1rk  = 0.1, 0
2rk  = 

0.8, μ1 = 1 mPa-s, μ2 = 10 mPa-s, k = 0.5 μm2, Δρ = 0.2 g/cm3, and μ = 0.6 cm/day. 
5E. Buckley-Leverett Theory with Straight Line Relative Permeabilities. Use straight line 

exponential relative permeability functions with zero residual phase saturations in the 
following (n1 = n2 = 1, Slr = S2r = 0 in the exponential relative permeability functions). 
Also take f1I = 0 and f1J = 1. 

 
(a) Show that the sign of (1 – M0 + M0 0

gN  sin α) uniquely determines the character 
(spreading, indifferent, sharpening) of the water saturation wave. 

(b) For the spreading wave case––(1 – M0 + M0 0
gN  sin α) < 0––Eq. (5.2-10) may be 

inverted explicitly for S1(xD, tD). Derive this expression in terms of the quadratic 
formula. 

(c) Use the equation in part (b) to show that for α = 0 the water saturation function is 
given by 
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 (5E-1) 

 
(d) Use Eq. (5E-1) to derive an expression for the average water saturation ( )DS t  and 

the displacement efficiency ED(tD). 
 
5F. Water Fractional Flow with Capillary Pressure. Derive the expression for water 

fractional flow including capillary pressure (Eq. 5.3-1). 
5G. Analytic Relative Permeability Ratios (Ershaghi and Omoregie, 1978). Over 

intermediate water saturation ranges, the oil–water relative permeability ratio plots 
approximately as a straight line on a semilog scale, using 
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−=  (5G-1) 

 
where A and B are positive constants. Using the Buckley-Leverett theory, show that a 
plot of the product of oil and water cuts is a straight line with slope 1/B when plotted 
against 1/tD. The dip angle is zero. 

5H. Fractional Flow with Two Inflections. For the fractional flow curve of Fig. 5H, 
construct plots of fractional flow versus dimensionless distance at breakthrough for 
saturation S1 = 1 displacing S1 = 0, and S1 = 0 displacing S1 = 1. 
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Figure 5H  Fractional flow curve for 
Exercise 5H

 
5I. The Reversibility of Dispersion and Fractional Flow. Fluid 2 is to be partially 

displaced by fluid 1 in a one-dimensional permeable medium. Fluid 1 is injected until 
just before it is produced, and then the flow is reversed (that is, fluid 2 is injected at the 
effluent end). In all that follows, take the initial (I) condition to be 100% fluid 2 
flowing and the injected (J) condition to be 100% fluid 1. 
(a) Sketch two time–distance diagrams for this case using fractional flow curves like 

those on the extreme right and left of Fig. 5-6. 
(b) If fluids 1 and 2 are completely miscible with identical viscosities and mix only by 

dispersion, use Eq. (5.5-18) to sketch the time–distance diagram. 
(c) Based on the results of parts (a) and (b), what can you conclude about the mixing 

caused by fractional flow compared to that caused by dispersion? 
(d) If fluids 1 and 2 are water and oil and a fractional flow curve like that on the 

middle panel of Fig. 5-6 applies, calculate and plot the time–distance diagram. 
5J. Mobility Ratio for Compressible Flow. Consider the pistonlike displacement of fluid 2 

by fluid 1 in the x direction. Use the general definition of mobility ratio (pressure 
gradient ahead of front divided by pressure gradient behind front) in the following: 
(a) Show that the mobility ratio becomes the endpoint mobility ratio if the volumetric 

flowrate uA is not a function of x (fluids are incompressible). 
(b) If the mass flux ρuA is not a function of x, on the other hand, show that the 

mobility ratio becomes 

 
o
1 2

o
2 1
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k v
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k v
=  (5J-1) 

 where v = μ/ρ is the kinematic viscosity. 
(c) Calculate both M0 and Mv for the following conditions: ρI = mg/cm3, μ1 = 1 μPa-s, 

ρ2 = 0.8 g/cm3, ρ2 = 2 mPa-s, o
1rk  = 0.1 and o

2rk  = 1.0. 
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5K. Using Tracer Data. Consider a one-dimensional permeable medium containing oil at a 

uniform residual saturation S2r, and through which is flowing 100% water at a constant 
rate. At t = 0, a second water stream is introduced at the inlet that contains two ideal 
(nondispersing and nonabsorbing) tracers. Tracer 1 remains only in the water phase, 
but tracer 2 partitions into the residual oil phase with a partition coefficient of 2. The 
partition coefficient is the ratio of the concentration of tracer 2 in the oil phase to that 
in the water phase 2

21K  = C22/C21. Tracer 1 breaks through after three hours, and tracer 
2 after six hours. If the volumetric injection rate is 1 cm3/min, calculate the pore 
volume and S2r. 

5L. Laboratory Estimation of Dispersivity. Dispersivity may be estimated from laboratory, 
first-contact miscible displacements with the following development: 
(a) Show from Eq. (5.5-15) that a plot of (1 – tD)/ Dt  versus erf–1(1 – 2Ce) will 

yield a straight line with slope 1/ 2
Pe2N − . Here Ce is the effluent concentration 

1( | )
DD xC =  

(b) Estimate the pore volume, dispersion coefficient, and dispersivity from the 
following experimental data: 

 

Volume 
produced (cm3) 

Effluent 
concentration 

  60 0.010 
  65 0.015 
  70 0.037 
  80 0.066 
  90 0.300 
100 0.502 
110 0.685 
120 0.820 
130 0.906 
140 0.988 
150 0.997 

 
The interstitial velocity is 20 cm/day, and the length is 0.5m. Note that 
erf–1(1 – 2x) is the probability axis (x axis) on probability paper. 

5M. Tracers in Two-Phase Flow. Consider a permeable medium flowing oil and water at 
constant oil fractional flow (case A in Fig. 5-12). Show that if a tracer with partition 
coefficient defined as in Exercise 5K is introduced at tD = 0, the conservation equation 
for the tracer concentration C in the aqueous phase is (Delshad, 1981) 
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Kl1 and Kl2 are the longitudinal dispersion coefficients for the tracer in the oil and water 
phases. Take (q/Aφ) to be constant. 

5N. Three-Phase Coherence Calculation. A more realistic three-phase relative permeability 
for oil, gas, and water is 
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where 
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These are modifications of the Stone relative permeability model (1970). 

In Eqs. (5N-1) through (5N-5) 
 

n2l = Oil relative permeability exponent in water–oil system 
n23 = Oil relative permeability exponent in gas–oil system 
S2rl = Residual oil saturation in water–oil system 
S2r3 = Residual oil saturation in gas–oil system 

 
Calculate and plot the following: 
(a) Lines of constant kr1, kr2, kr3, in the triangular composition space, S1, S2, and S3. 
(b) The composition paths and a waterflood composition route for initial saturations of 

0.5, 0.3, and 0.2 for oil, gas, and water. 
(c) The wave positions in a dimensionless time–distance diagram. 
Use the following data: 

 
μ1 = 1 mPa-s μ2 = 2 mPa-s μ3 = 0.01 mPa-s 

S2rl = 0.3 0
2rk = 0.6 n2l = 1.5 

S2r3 = 0.05 0
1rk = 0.3 n23 = 2 

S1r = 0.2 0
3rk = 0.7 n1 = 3 

S3r = 0.05 α = 0 n3 = 2.5 
 

This problem requires a numerical solution. 
5O. Simplified Three-Phase Fractional Flow. Rework part (c) of Exercise 5N by assuming 

the displacement becomes a shock wave from the initial conditions to a region of 
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simultaneous two-phase oil-water flow followed by a wave of undetermined character 
to the injected conditions. The velocity of the first wave is given by 
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where 1f

+  and 1f
+  1are the water fractional flow and saturation behind the shock. The 

velocity of the second wave is then given by the Buckley-Leverett construction. Plot an 
effluent history of oil and water cuts to demonstrate the fill-up phenomenon. 

5P. Method of Characteristics for Reducible Equations. Consider the following pair of 
partial differential equations for u(x, t) and v(x, t) 
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where both u and v are less than or equal to 1. 
(a) Write these equations in the “canonical” form of Eqs. (5.6-6). Are these reducible? 

Why or why not? 
(b) Write the coherence requirement for Eqs. (5P-1) and (5P-2). Use this to develop an 

expression for σ, the composition velocity along the characteristic directions. 
(c) Use σ to develop an expression for u = u(v) along both characteristic directions. 
(d) If the boundary data are specified along a line u = 1 plot the “composition” path 

grid (u, v space) for u < 1 and v < 1. 
(e) On the plot of part (d) show the “composition” route for (u, v)J = (0.6, 0.2) 

displacing (u, v)I = (1, 1). Treat u and v as physical variables so that the composi-
tion velocity must decrease monotonically from I to J. Plot the time (t) – distance 
(x) diagram for this “displacement” where t > 0 and 1 > x > 0. 

(f) Based on this problem and what you know about the ideal miscible displacement, 
discuss why the constructions in Fig. 5-12 can be done without the procedures in 
parts (a) through (e). 

5Q. Gravity Segregation and Fractional Flow. Consider the homogeneous, 
one-dimensional permeable medium shown in Fig. 5Q for which all the fractional flow 
assumptions apply. Both ends of the medium are sealed. For t < 0, the medium contains 
a completely saturated water zone above a saturated oil zone (0 < ε < 1). At t = 0, the 
more dense water is allowed to flow downward while the less dense oil flows upward. 
This results in a complete reversal of the oil and water zones after a sufficiently long 
time. Figure 5Q also shows the long-time condition of the medium. 
(a) Show that there is no bulk flow (u = 0) at any point in the medium. 
(b) Derive a water conservation equation for this special case from the general 

equations in Chap. 2. Give also the boundary conditions needed to solve this 
equation for S1(x, t). 

(c) Make the equation of part (b) dimensionless by introducing appropriate scaling 
factors. 

(d) Derive a dimensionless water flux (analogous to a fractional flow) by eliminating 
the water pressure gradient from the equation of part (c). The absence of bulk flow 
does not eliminate pressure gradients (Martin, 1958). 
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Figure 5Q  Gravity segregation with fractional flow 

 
(e) For the following values, plot the dimensionless water flux of part (d) versus water 

saturation. 
 

kr1 = 0.1 4
1S  kr2 = .8(1 – S1)2 

μ1 = 1 mPa-s μ2 = 5 mPa-s 
 

(f) Based on the curve of part (e) and ε = 0.6, construct the time–distance diagram 
showing the progress to complete gravity segregation of the water and oil zones. 
Estimate the dimensionless time this occurs at. 

5R. An Alternate Derivation of the Characteristic Equations. Consider the following 
reducible equations for u(x, t) and v(x, t): 
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(a) Suppose that u and v are functions of the combined variable σ = x/t. Show that Eq. 

(5R-1) can be written as 
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where u′ = du/dσ, and so on. 
(b) For a nontrivial solution, the determinant of the coefficient matrix of Eq. (5R-2) 

must be zero. Show that this gives the characteristic directions given by Eq. 
(5.6-10). 

(c) Again, for a nontrivial solution, the determinant of the augmented matrix (matrix 
with the solution vector substituted for a column) must also be zero. Show that if 
we replace the second column, this operation yields the following relation between 
u and v: 
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Solutions that can be expressed in terms of (x/t) are said to be se4f-similar. 
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6  
 
 
 
 

Volumetric Sweep 
Efficiency 
 
 
 
 
 
 
 
 
Typical values of residual oil and connate water saturations indicate ultimate 
displacement efficiency should normally be between 50% and 80% of the contacted 
oil in a waterflood. This range is substantially higher than the 30% average recovery 
efficiency observed in waterfloods; it is also higher than recovery efficiency in most 
EOR projects (see Sec. 1-4). Of course, the reason displacement efficiency is higher 
than the recovery efficiency is that not all the oil is contacted by the displacing agent. 
This effect is present in the oil recovery Eq. (2.5-5) where the displacement 
efficiency is multiplied by the volumetric sweep efficiency EV. Based on these 
approximate figures, the volumetric sweep efficiency is between 40% and 60% for a 
waterflood. For many EOR processes, it can be much smaller, and for others, 
effecting a large EV is a primary design objective. 
In this chapter, we provide both an overview of volumetric sweep efficiency and 
techniques to combine areal, vertical, and displacement sweep to arrive at a recovery 
efficiency. We deal almost exclusively with the immiscible water–oil displacement 
since this literature on recovery efficiency is well established and many of the more 
important features also carry over to EOR. In later chapters, we discuss the 
volumetric sweep efficiency of specific EOR processes. To further distinguish 
between volumetric and displacement sweep efficiency, we usually deal with 
indifferent or self-sharpening displacements in which dispersive effects are small. For 
these cases, the calculation techniques are equally valid whether the displacement is 
miscible or immiscible since there is no simultaneous flow of components. 
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6-1 DEFINITIONS 

 
Based on the overall material balance of Sec. 2-5, the cumulative mass of oil 
recovered is 

2 2 2p b I RN V W E=  
from Eq. (2.5-3) with no oil injection. We wish to convert this equation to a more 
standard form by the following transformations: Eliminate the recovery efficiency 
ER2 through Eq. (2.5-5a), and replace 2 IW  with φ(ρ2S2ω22)I, which assumes oil is in 
only the liquid oleic phase. This gives 

2 2 2 2( )p b I D VN V S E Eφ ρ ω=  
Next, eliminate (ρ2ω22)I with the oil formation volume factor definition Eq. (2D-5), 
and let Vbφ = Vp, the pore volume, and Np = o

2 2/pN ρ , the oil production in standard 
volumes. These substitutions yield  

 2

2

D V I p
p

I

E E S V
N

B
=  (6.1-1) 

 
In Eq. (6.1-1), ED is the displacement sweep efficiency defined in Eq. (5.1-1), 

and EV is the volumetric sweep efficiency defined as  

 Volumes of oil contacted by displacing agent
Volumes of oil originally in placeVE =  (6.1-2) 

  

The term 2

2

( )I p

I

S V
B

 represents the oil in place at the start of the displacement in 

standard volumes. We have also dropped the subscript i = 2 because all efficiencies 
in this chapter refer to oil recovery. 

The volumetric sweep efficiency can be decomposed into the product of an 
areal sweep efficiency and a vertical sweep efficiency 
 V A IE E E=  (6.1-3) 
  
The definition of the areal sweep efficiency is  

 Area contacted by displacing agent
Total areaAE =  (6.1-4) 

 
Figure 6-1(a) shows a schematic of a highly idealized pistonlike displacement in a 
four-layer areally homogeneous reservoir. Figure 6-1(b) is an areal view of Figure 
6-1(a). Based on the definition of Eq. (6.1-4), EA is the doubly cross-hatched area (at 
t2) divided by the singly cross-hatched area. The vertical sweep efficiency, 

 Cross-sectional area contacted by displacing agent
Total cross-sectional areaIE =  (6.1-5) 

 
is also similarly defined in Fig. 6- 1 (a) at a particular time. 
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Figure 6-1  Sweep efficiency schematic 

 
The definitions of Eqs. (6.1-3) through (6.1-5) have several subtle 

difficultties. Both areal and vertical sweep efficiency are ratios of areas; therefore, 
their product EV must be a ratio of areas squared. This observation contradicts the 
definition of Eq. (6.1-2) which says EV must be a ratio of lengths cubed. The 
redundant dimension in either Eq. (6.1-4) or (6.1-5) is the dimension parallel to the 
displacement direction. This direction is nonlinear and varies with both position and 
time. Thus the decomposition Eq. (6.1-3) transforms EV into a product of two plane 
flows. 

A second consequence of the redundant dimension in EV is that both EA and 
EI depend on each other. Note from Fig. 6-1 that EA depends on vertical position. 
Similarly, though not so obviously, EI will be different from the cross section shown 
for each cross section between the injector and producer. If we restrict ourselves to 
cross sections defined by pathlines between the injector and producer (dotted lines in 
Fig. 6-1b), EI will be the same for each cross section if it can be expressed in a 
dimensionless form independent of rate. But for the general case, EI is a function of 
rate and will be different for each cross section. As we see in Sec. 6-7, the practical 
consequence of this observation is that neither the areal nor the vertical sweep 
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efficiency in Eq. (6.1-3) can be evaluated at the same time for which the volumetric 
sweep efficiency is desired. 

To use Eq. (6.1-1), even with the above complications, we must have 
independent estimates of EA and EI. For certain very special cases––confined 
displacements in areally homogeneous regular patterns with no or very good vertical 
communication––these are available to us through correlation (see Sec. 6-2) or 
calculation (see Secs. 6-3 through 6-5). When these conditions are not met, EV must 
be estimated through scaled laboratory experiments or numerical simulation. In the 
latter case, though certainly possible to obtain sweep efficiency estimates, the oil 
recovery itself may be obtained directly, and Eq. (6.1-1) is unnecessary. Still, the 
equation provides a better understanding of sweep efficiency concepts and the factors 
necessary to maximize EV than does simulation alone. 
 
 

6-2 AREAL SWEEP EFFICIENCY 
 
Though areal sweep efficiency may be determined through simulation or by 
analytical methods (Morel-Seytoux, 1966), the most common source of areal sweep 
efficiency data is from displacements in scaled physical models. Figures 6-2 through 
 

 
 

Figure 6-2  Areal sweep efficiency for a confined five-spot pattern (from Dyes et 
al., 1954) 
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Figure 6-3  Areal sweep efficiency for a confined direct line drive pattern, 
d/a = 1 (from Dyes et al., 1954) 

 
6-4 present three of these areal sweep “correlations” from the work of Dyes et al. 
(1954) for three different regular well patterns. Several more of these correlations are 
in the work of Craig (1971), and an extensive bibliography of areal sweep efficiency 
is given by Claridge (1972). For the patterns shown in the lower right-hand corner, 
Figs. 6-2 through 6-4 plot EA on the y axis versus the reciprocal mobility ratio on the 
x axis with time as a parameter. Since mobility ratio and pattern type are fixed for a 
given displacement, time is actually the dependent variable. The dimensionless time 
in Figs. 6-2 through 6-4 is cumulative displaceable pore volumes of displacing agent 
injected. Since time is the dependent variable in these correlations, a more direct 
representation would be a plot of EA versus dimensionless time at fixed mobility ratio 
and pattern type (see Exercise 6A). You should remember that these correlations are 
for pistonlike displacements in regular, homogeneous, confined patterns. When the 
well patterns are unconfined, the reference area in Eq. (6.1-4) can be much larger, 
and EA smaller. Based on an extensive survey of the available correlations for 
spreading displacements, Craig (1971) determined that the appropriate mobility ratio 
for the areal sweep correlations is the average saturation mobility ratio M  given by 
Eq. (5.2-25a). 

From the correlations, EA increases with increasing time, or throughput, and 
decreasing mobility ratio. At a fixed mobility ratio, EA is equal to the displaceable



 193

 
Figure 6-4  Areal sweep efficiency for a staggered line drive pattern, d/a = 1 
(from Dyes et al., 1954) 

 
pore volumes injected until breakthrough and then given by the indicated curves in 
Figs. 6-2 through 6-4 thereafter. EA also increases as the pattern type more closely 
approaches linear flow, but this sensitivity is not great for the more common patterns. 
The decrease in EA with increasing M  is in the same direction as the change in 
displacement efficiency with mobility ratio discussed in Sec. 5-2; thus large mobility 
ratios are detrimental to both areal and displacement sweep. 
 
 

6-3 MEASURES OF HETEROGENEITY 
 
Considering the manner reservoirs are deposited in and the complex diagenetic 
changes that occur thereafter, it should not be surprising that no reservoir is homo-
geneous. This does not imply all reservoirs are dominated by their heterogeneity 
since in many cases, one mechanism is so strong that it completely overshadows all 
others. For example, gravity can be so pronounced in a high-permeability reservoir 
that it may be considered homogeneous to good approximation. 

Nevertheless, heterogeneity is always present in reservoirs, is the most 
difficult feature to define, and usually has the largest effect on vertical sweep 
efficiency. Therefore, before we explore vertical sweep efficiency, we discuss the 
most common measures of heterogeneity and their limitations. 
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Definitions 
 
The three principal forms of nonidealities in reservoirs are anisotropies, 
nonuniformities, and heterogeneities. These terms can be applied to any property but 
usually describe permeability, porosity, and occasionally, relative permeability. An 
anisotropic property varies with the direction of measurement and, hence, has 
intrinsic tensorial character (see Sec. 2-2). Following Greenkorn and Kessler (1969), 
the definitions of nonuniformity and heterogeneity are closely related (Fig. 6-5). A 
homogeneous, uniform property is represented on a frequency distribution plot as a 
single delta function (spike), and a heterogeneous, uniform property by a finite 
number of these functions. A homogeneous, nonuniform property cannot be 
represented by a finite number of delta functions but can be a continuous function 
having only one peak. A heterogeneous, nonuniform property is represented by a 
continuous distribution function having two or more peaks. Most laboratory 
displacements are homogeneous and nonuniform. Most calculation techniques 
assume the reservoir is uniform and heterogeneous. Actual nonuniformities are 
frequently “averaged” out by capillary pressure or dispersion. 
 
 

 
 

Figure 6-5  Probability distribution functions for parameter A (from Greenkorn 
and Kessler, 1965) 
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Flow and Storage Capacity 
 
Since permeability can change several factors of 10 within a short distance in a 
reservoir, whereas porosity changes by only a few percent over the same scale, it is 
common to view the reservoir as homogeneous with respect to porosity and 
heterogeneous with respect to permeability. Although most of the traditional 
measures of heterogeneity adopt this convention it is not necessary and can even lead 
to occasional errors. In the following discussion, we include porosity variations in the 
definitions; the more traditional definitions can be recovered by letting porosity and 
thicknesses be constant. 

Imagine an ensemble of NL permeable media elements each having different 
permeability kl, thickness hl, and porosities φl. The elements are arranged as 
resistances parallel to flow. From Darcy’s law, the interstitial velocity of the 
single-phase flow of a conservative tracer is proportional to the ratio of permeability 
to porosity rl = kl/φl. Thus if rl is a random variable, we can rearrange the elements in 
order of decreasing rl (this is equivalent to arranging in order of decreasing fluid 
velocity), and we can define a cumulative flow capacity at a given cross section as 
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where Ht is the total thickness, 
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The average quantities are defined as 
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and similarly for porosity. A cumulative storage capacity follows in a similar fashion 
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The physical interpretation of Fn is that if the NL elements are arranged in 

parallel, Fn is the fraction of total flow of velocity rn or faster. Cn is the volume 
fraction of these elements. A plot of Fn versus Cn yields the curve shown in Fig. 
6-6(a); if NL becomes very large, the ensemble approaches the continuous distribution 
shown in Fig. 6-6(b). We designate the continuous distribution by F and C without 
subscripts. From the definitions F, C, and r, the slope of either curve at any C is the 
interstitial velocity at that point divided by the average interstitial velocity of the 
whole ensemble 
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Figure 6-6  Schematic of discrete and continuous flow-storage capacity plots 
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Because the elements were rearranged, the slope is monotonically decreasing and, 
from the definitions, Fn = Cn = 1, when n = NL. 
 
Measures of Heterogeneity 
 
A common measure of reservoir heterogeneity is the Lorenz coefficient Lc, defined as 
the area between the F-C curve and a 45° line (homogeneous F-C curve) and 
normalized by 0.5, 
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for the continuous curve. The Lorenz coefficient varies between 0 (homogeneous) 
and 1 (infinitely heterogeneous). A second, perhaps more common, measure that lies 
between the same limits is the Dykstra-Parsons (1950) coefficient VDP. 
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Both Lc and VDP are independent of the particular form of the k/φ distribution, and 
both rely on the rearrangement of this ratio. As originally defined, VDP is actually 
taken from a straight line fit to the k-φ data plotted on a log–probability scale. This 
procedure introduces a nonuniqueness (two different distributions having the same 
VDP) into VDP when the data are not lognormal (Jensen and Lake, 1986). For 
lognormal data, Eq. (6.3-4) is unique. 
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To relate F to C, we assume the permeability assembly is lognormally 

distributed; hence the relationship between cumulative frequency Λ and r is (Aithison 
and Brown, 1957) 
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 (6.3-5) 

where r̂  is the geometric or log-mean of the distribution, and vLN is the variance of 
the distribution. The relationship between r̂  and r  is given by 
 ( / 2)ˆ LNvr re=  (6.3-6) 
 
If we identify Λ with the storage capacity C and use Eqs. (6.3-2), (6.3-5), and (6.3-6), 
we obtain 
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 (6.3-7) 

Equation (6.3-7) may be solved for F’ and then integrated subject to the boundary 
condition F = C = 0, 
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We integrate Eq. (6.3-8) numerically to give the F-C curve for fixed VLN. Figure 6-7, 
which uses VDP instead of vLN, shows the results of such an integration where the 
 

 
 

 
 
 
Figure 6-7  Flow-capacity–storage-
capacity curves (from Paul et al., 1982)
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filled points are the results of the integration. It follows from Eqs. (6.3-4) and (6.3-5) 
that 
 DP 1 LNvV e−= −  (6.3-9) 
and, further, that the relationship among Lorenz and Dykstra-Parsons coefficients and 
vLN is 

 DPln(1 )erf erf
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v VL
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 (6.3-10) 

 
Note from Eq. (6.3-10) that Lc and VDP are bounded, whereas vLN is not. 

Considering the three heterogeneity measures in Eq. (6.3-10), it must seem 
odd to propose a fourth, but none of the measures discussed so far directly relates to 
flow in permeable media. To ameliorate this, Koval (1963) proposed a heterogeneity 
factor HK as a fourth measure of heterogeneity. HK is defined by 
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i  (6.3-11) 

 
Equation (6.3-11) follows from observing the similarity between a homogeneous 
media fractional flow curve having straight-line relative permeabilities and zero 
residual phase saturations, and the points generated in Fig. 6-7. In fact, the solid lines 
in Fig. 6-7 are calculated from Eq. (6.3-11), with HK adjusted to fit the calculated 
points. Hence there is a unique correspondence between VDP and HK, which is shown 
in Fig. 6-8 as the filled points. From Eqs. (6.3-8) and (6.3-11), it follows that HK → ∞ 
 

 
 

 
 
 
Figure 6-8  Relation between effective 
mobility ratio and heterogeneity (from 
Paul et al., 1982)
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as VDP → 1 (infinitely heterogeneous) and HK → 1 as VDP → 0. Between these limits, 
the relation between VDP and HK is given by the following empirical fit to points in 
Fig. 6-8: 

 DP
0.2

DP

log( )
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VH
V

=
−

 (6.3-12) 

 
which is also shown in Fig. 6-8. 

Using the F-C curve in Eq. (6.3-11), the vertical sweep efficiency of a unit 
mobility ratio displacement may be calculated by the one-dimensional theory in Sec. 
5-2 (see Exercise 5E). 

Table 6-1 shows various statistical information from several producing 
formations. VDP varies between 0.65 and 0.89 for these formations. This rather tight 
range corresponds to the range in Fig. 6-7 where HK begins to be an exceedingly 
strong function of VDP. Since EI decreases with increasing HK, displacements in most 
reservoirs should be affected by heterogeneity. Table 6-1 also shows the areal VDP 
based on the distribution of the average well permeabilities. In only three of the 
entries shown are the areal variations larger than the vertical variations. This, plus the 
lack of sensitivity of EI to heterogeneous permeabilities arranged in series, partly 
accounts for the popularity of the stratified, or “layer-cake,” model for reservoirs. We 
use the layer-cake model (uniform and heterogeneous) in the next two sections to 
calculate EI. Finally, Table 6-1 shows the number of wells in each formation whose 
core plug permeabilities most closely conform to the normal, lognormal, and 
exponential distributions. As you can see, the wells are usually lognormal though 
there are significant exceptions (see Jensen et al., 1987). If the permeabilities are 
distributed normally, the procedure for calculating VDP and Lc is still correct, but the 
form of the distribution function (Eq. 6.3-5) changes (see Exercise 6B). 

None of the measures of heterogeneity given above are entirely satisfactory 
for predicting displacement performance. Since all the measures capture both 
heterogeneities and nonuniformities, there is a persistent, and largely ignored, 
question about how to use them in displacement calculations. It seems reasonable that 
nommiformities would alter values of the permeable media properties such as 
dispersivity and capillary pressure; however, the scale of the nonuniformity is 
different between the field and laboratory measurements, and there is little to suggest 
how labmeasured properties can be changed to reflect these nonuniformities. For this 
reason, nonuniformities are usually ignored, and displacement calculations are based 
on uniformly heterogeneous permeable media models. A second reason for the 
inadequacies in the heterogeneity measures is that for many reservoirs it is 
inappropriate to treat permeability and porosity as independent variables. 
Correlations exist between permeability and porosity (bivariate correlations), and 
these variables themselves can have spatial structure (autocorrelation). When such 
structure does exist, the displacement response of a rearranged ensemble of layers 
will not be the same as that of the original distribution of layers. Determining when 
structure exists, and separating it from the random stochastic component, are tasks 
usually left to the geological interpretation in current practice.
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TABLE 6-1  TYPICAL VALUES OF VERTICAL AND AREAL DYKSTRA-PARSONS COEFFICIENTS 
(ADAPTED FROM LAMBERT, 1981) 

 

Field Formation 

Number 
of wells 
studied* Lognormal Exponential k  φ  (VDP)areal DPV  

1 El Dorado Admire 262   35   42 370.14 0.2538 0.484 0.697 
2 Keystone Cardium   67   61     5 15.15 0.1063 0.752 0.653 
3 Garrington Meanville B   38   35     2 5.73 0.1124 0.671 0.822 
4 Madison Bartlesville   36   10   10 29.95 0.1790 0.238 0.823 
5 Pembina Cardium   16   13     0 273.64 0.1220 0.837 0.894 
  Belly River   17   15     0 12.66 0.1623 0.687 0.814 

6 Hamilton Dome Tensleep   33   11   10 98.24 0.1430 0.501 0.694 
7 Rozet Muddy   33   25     3 43.14 0.1708 0.457 0.846 
8 Salt Creek 2nd Wall Creek   30     8     6 59.08 0.1843 0.495 0.851 
9 Kitty Muddy   20   19     0 11.74 0.0871 0.795 0.731 
10 E. Salt Creek 2nd Wall Creek     5     3     2 35.71 0.1660 0.124 0.840 
  Lakota     7     6     0 38.01 0.1540 0.424 0.899 

11 Dixie West Tradewater   16     5     3 129.13 0.1880 0.202 0.598 
12 Burke Ranch Dakota   14     6     3 23.18 0.1191 0.625 0.663 
13 Oklahoma City Prue   14     6     4 15.90 0.1368 0.473 0.683 
14 Gas Draw Muddy   14     6     0 71.61 0.1572 0.615 0.899 
15 Recluse Muddy   12     9     0 74.93 0.1437 0.591 0.855 
16 W. Moorcroft Muddy     8     6     0 201.39 0.2150 0.973 0.833 
17 S. Rozet Minnelusa     8     7     1 135.86 0.1283 0.443 0.861 
18 Ute Muddy     8     2     2 62.14 0.1790 0.752 0.758 
19 Riverton Dome Tensleep     7     2     0 2.68 0.0480 0.474 0.729 
20 Carson-Hamm Minnelusa     7     2     3 160.36 0.1624 0.465 0.722 
21 N.W. Sumatra Heath     6     0     2 124.98 0.1285 0.254 0.890 
22 Pitchfork Tensleep     5      1     4 91.54 0.1410 0.229 0.728 
  Phosphoria     6     4     1 18.16 0.1430 0.544 0.833 
  Total 689 297 102     

* Difference between lognormal and exponential represents number of normally distributed wells
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6-4 DISPLACEMENTS WITH NO VERTICAL 
      COMMUNICATION 

 
In this section, we illustrate the effects of mobility ratio and heterogeneity for 
noncommunicating reservoirs. We treat pistonlike displacements of oil (i = 2) by 
water (i = 1) in uniformly heterogeneous, horizontal layer-cake models (see Exercise 
6C). Further, we do not allow permeability or transmissibility in the vertical 
direction, a condition that could apply in actual practice if the reservoir contains 
impermeable and continuous shale breaks in the total interval. The reservoir now 
consists of an ensemble of one-dimensional elements arranged in parallel. Since there 
is no vertical communication, we can rearrange the layers in decreasing k/φ, as in 
Sec. 6-3. We also ignore dissipative effects to derive the noncommunication 
displacement model first proposed by Dykstra and Parsons (1950). 

Subject to the above assumptions, the vertical sweep efficiency of the 
reservoir is 
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where xDl is the dimensionless front position (xfl/L) between the displacing fluid 
(water) and the displaced fluid (oil). The index n denotes the layer that has just 
broken through to the producer at a particular dimensionless time tD 
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where xDl for l > n is greater than 1, W is the width of the cross section, and L is the 
length. 
 
Two Layers 
 
First, let’s consider the case of a reservoir having only two layers (NL = 2) as shown 
in Fig. 6-9 with water saturation change ΔS = S1J – S1I. The k/φΔS for the upper or 
fast layer is greater than that for the lower or slow layer. The front position in each 
layer may be determined from Darcy’s law 
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 (6.4-3) 

 
where vl is the interstitial x velocity in layer l, and 

lreλ  is the effective relative 
mobility in layer l defined by 
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Figure 6-9  Schematic illustration of 
heterogeneous reservoir for Dystra-
Parsons model

 
Taking the ratio of the interstitial velocities in the two layers will eliminate time and 
the pressure drop since both layers experience the same ΔP. This equality implies 
communication in the wells even though there is no communication elsewhere. 
Because ΔP cancels, the calculation is valid whether the displacement is at constant 
rate or constant ΔP. Thus before breakthrough (xD1 < 1), we have 
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where r12, the heterogeneity contrast (k1φ2ΔS2/k2φ1ΔS1), is greater than 1. After 
breakthrough (xD1 > 1), the same quantity is 
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In both equations, M0 is the endpoint mobility ratio defined in Eq. (5.2-3c). Before 
breakthrough xD1 and xD2 are less than 1, we can integrate Eq. (6.4-5a) subject to the 
boundary condition that xD1 = 0 when xD2 = 0 to give 
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The front position in the lower layer at breakthrough 2

2Dx  follows from Eq. (6.4-6) by 
setting xD1 = 1 
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After breakthrough, the front in the upper layer (outside the reservoir) is given by 
integrating Eq. (6.4-5b) with the boundary condition xD2 = 0

2Dx  when xD1 = 1. 
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The front “position” in the upper layer at complete sweepout is given by Eq. (6.4-7b)
with xD2 = 1 
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 (6.4-7c) 

 
For fixed values of the mobility ratio, and heterogeneity contrast, EI at a 

given dimensionless cumulative injection may be obtained by substituting the front 
positions calculated from Eqs. (6.4-6) and (6.4-7) in the definitions (Eqs. 6.4-1 and 
6.4-2). Figure 6-10 shows the results of this procedure for three values of M0 and two 
values of the permeability contrast. 
 

 
 

Figure 6-10  Two-layer Dykstra-Parsons calculation 
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For increasing permeability contrast EI decreases (Fig. 6-10a). A decreasing 

M0 improves, and an increasing M0 worsens EI, just as similar changes do for the 
areal and displacement sweep efficiencies. Fig. 6-10(b) plots the ratio of the 
volumetric flow rate into layer 1 to the total flow rate as a function of tD. This follows 
from Eqs. (6.4-6) and (6.4-7) 
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 (6.4-8) 

 
Equation (6.4-8) shows the reason for the changes in EI. For M0 < 1, the fast layer is 
filling up with a low mobility fluid faster than the slow layer. Thus the fast layer 
resistance to flow is increasing faster than the slow layer resistance, causing the fast 
layer flow rate to decrease. For M0 > 1, the situation is exactly reversed. Of course, 
for M0 = 1, there are no changes in mobility, and the ratio of fast layer rate to total 
rate stays constant. Mobility ratio can have an effect on EI even if there is no vertical 
communication. This effect has qualitatively the same trend as the areal and 
displacement sweep. 
 
NL Layers 
 
The above results may be readily generalized to an ensemble of NL layers. First, we 
generalize the heterogeneity contrast to be between any two layers l and n 
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 (6.4-9) 

 
At a particular time, if n is the number of the layer breaking through, the front 
position in all the faster layers is given by 
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from Eq. (6.4-7c). Similarly, the position in all the slower layers is 
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from Eq. (6.4-7a). By letting n take on values between 1 and NL, calculating all NL 
front positions, and substituting these into Eqs. (6.4-1) and (6.4-2), we can construct 
a plot of EI versus tD (see Exercise 6D). The EI-tD plot follows from this by 
connecting these points by straight-line segments. That this procedure is not rigorous 
may be seen from Fig. 6-10, where the curves between breakthrough and sweepout 
are slightly curved. But if NL is large, the error introduced by this procedure will be 
small. The procedure may be easily modified to calculate EI in an ensemble having 
the continuous F-C distribution discussed in Sec. 6-3. Using the water–oil ratio 
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as the time variable in place of tD, Johnson (1956) has presented the vertical sweep 
efficiency as a function of VDP and M0 in graphical form. 
 
 

6-5 Vertical Equilibrium 
 
A useful procedure for making general oil recovery calculations is to invoke the 
assumption of vertical equilibrium (VE) across the cross section of the reservoir the 
displacement is taking place in. When VE applies, it is possible to combine vertical 
and displacement sweep efficiencies into a pseudodisplacement sweep, which then 
may be estimated by the one-dimensional theory of Sec. 5-2. This combination 
means recovery efficiency ER becomes 
 R A I D A DE E E E E E= =  (6.5-1) 
 
where DE  is the pseudodisplacement sweep efficiency. Of course, the areal sweep 
efficiency EA must still be estimated and used in Eq. (6.5-1). We discuss how to 
combine EA and DE  in Sec. 6-7. Another consequence of the VE assumption is this 
represents a state of maximum transverse fluid movement, or crossflow. Thus 
calculations based on VE are useful in estimating the tendency of crossflow to affect 
displacements when compared to the noncrossflowing calculations of Sec. 6-4. 
 
The VE Assumption 
 
Formally, vertical equilibrium is a condition where the sum of all the fluid flow 
driving forces in the direction perpendicular to the direction of bulk fluid flow is 
zero. We see this condition is more nearly met by flow in reservoirs having large 
aspect ratios (length to thickness) and good vertical communication. Moreover, Sec. 
6-6 shows that several classical displacement calculations in the petroleum literature 
are, in fact, subsets of the more general theory of vertical equilibrium. 
 To derive a general VE theory, we restrict ourselves to incompressible, 
immiscible displacements of oil by water and derive the water saturation profile in 
the transverse direction (z direction) at a fixed cross section (x position). For the 
assumptions listed above, the conservation Eq. (2D-1) for water becomes in x-z 
coordinates, 

 11 1 0x zuS u
t x z

φ
∂∂ ∂

+ + =
∂ ∂ ∂

 (6.5-2) 

 
If we introduce Darcy’s law (Eq. 2.2-5) into Eq. (6.5-2) and scale the independent 
variables x and z as 
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Eq. (6.5-2) becomes 
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The terms in this equation represent water accumulation, x-direction flow, and z-
direction flow, respectively (see Fig. 6-11). We assume flow in the z direction is 
finite; therefore, if the group 2 2/ tL kH  large, it follows that the term it multiplies must 
be small. This means the z-direction water flux is a function of x only, or 
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Since the water flux in the z direction is finite, if kz is large, Eq. (6.5-5) implies 
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Clearly, the above reasoning breaks down at water saturations near the irreducible 
water saturation where λr1 is zero. But it is true that the saturation range where Eq. 
(6.5-6) breaks down is precisely the range where the analogous equation for the oil 
phase is most relevant. Therefore, the arguments leading to Eq. (6.5-6) should be 
valid in some average sense when applied to both the water and oil phases. 

Assuming the group 2 2/ tL kH  large is reasonable for many practical cases. 
But assuming kz is large strains credibility since for most naturally occurring media kz 
is less than k. For permeable media having dispersed shale barriers, kz can be much 
smaller than k. 

The requirements of large 2 2/ tL kH  and kz may be combined into a single 
requirement that the effective length-to- thickness ratio 
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be large. In Eq. (6.5-7a), the permeabilities are an arithmetic average for 
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and a harmonic average for kz 
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A displacement actually approaches VE asymptotically as RL becomes large. Based 
on numerical solution (Zapata, 1981) and analytic solutions (Lake and Zapata, 1987), 
an RL greater than 10 is sufficient to ensure that the z-direction sweep efficiency is 
reasonably well described by VE. You may easily verify that RL can be large for a 
wide variety of reservoirs. For example, for a 16.2 hm2 (40-acre) spacing of five-spot 
patterns, the injector–producer distance is 285 m (933 ft). If we take this to be L, then 
for Ht = 6.1 m (20 ft) and zk  = 0.1 k , we have RL = 14.8, which is large enough for 
VE to be a good approximation. By taking the k  to be a harmonic average over the 
reservoir interval, it is clear the zk  = RL = 0 if there are one or more impermeable 
barriers (for example, continuous shale layers) within the interval Ht. Clearly, the VE 
assumption will not apply in this case. But the pseudodisplacement sweep efficiency 
of the intervals between the barriers may be estimated based on VE, and the 
combined response of all such intervals may be estimated by the communicating 
methods of Sec. 6-4. 
 RL may be regarded as a ratio of a characteristic time for fluid to cross the 
reservoir in the x direction to that in the z direction. If RL is large, saturation or 
pressure fluctuations in the z direction decay much faster than those in the x direction. 
Therefore, we neglect the z-direction perturbations. Thus when we say that the VE 
assumption applies or that the subject reservoir is in vertical equilibrium, we are 
saying, for the bulk of the reservoir, z-direction fluctuations are negligible. 
Arguments based on the decay time of perturbations were originally advanced by G. 
I. Taylor for flow in capillary tubes (Lake and Hirasaki, 1981). 
 For large RL, the P1 profile in the z direction is gien by Eq. (6.5-6) for most of 
the cross sections in the reservoir. This procedure applies equally well to the oil 
phase, giving 
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When the definition for oil–water capillary pressure Pc = P2 – P1 is introduced into 
this equation, we have 

 1 2( ) cos coscP g g
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ρ ρ α ρ α
∂
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 (6.5-9) 

 
Equation (6.5-9) implicitly describes the water saturation profile in the z direction 
since Pc is a known function of water saturation. But this saturation distribution is 
just what would be observed in the transition zone between oil and water under static 
conditions. Compare Eqs. (6.5-9) and (2A-1), noting the z and Pc increase in the 
opposite directions. Hence the z-direction saturation profile given by Eq. (6.5-9) is 
identical to that predicted by assuming no flow in the z direction. 

We stated that VE is a condition that causes maximum crossflow of fluids, so 
it is surprising, to say the least, that the same equation describes the saturation profile 
under conditions of zero and maximum z-direction flow. The situation is analogous 
to heat conduction in metal rod where the driving force for heat transfer is a 
temperature gradient along the axis of the rod (Coats et al., 1971). If the thermal 
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conductivity of the rod is not zero and no heat flows along the rod, the temperature 
difference between the ends of the rod is zero. But if heat flows at a fixed finite rate 
along the rod, and the thermal conductivity of the rod is large, the temperature 
difference is again small. The latter case is analogous to the VE flow in the z 
direction of Fig. 6-11 where, since the thermal conductivity is large, the heat transfer 
rate is maximum; the former case is the analogue to hydrostatic equilibrium. 
 

 
 

Figure 6-11  Schematic cross-section for vertical equilibrium procedure 
 
Displacement Classification 
 
One of the consequences of VE is a classification of displacements according to 
degree of segregation. Let 1S +  be some water saturation slightly below 1 – S2r, and 

1S −  slightly above S1r. We can define a capillary transition zone thickness zCTZ as the 
z-direction distance over which the water saturation changes between these two 
limits. From Eq. (6.5-9) and Fig. 6-12, this is 
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 (6.5-10) 

 
We have made the integration of Eq. (6.5-9) assuming the capillary-pressure–water-
saturation relation applies throughout zCTZ. In general, the capillary transition zone 
defined by Eq. (6.5-10) is not the same as that existing at the original water–oil 
contact, down structure to the left in Fig. 6-11. The idea of the capillary transition 
zone in a VE reservoir allows the definition of two broad classes of displacements 
(Dake, 1978). If zCTZ >> Ht, the water saturation profiles in the z direction are 
essentially flat, and the flow is said to be diffuse. If zCTZ << Ht, the capillary transition 
zone is small with respect to the reservoir thickness, and the flow is segregated. 
These definitions suggest ideas similar to the definitions of sharpening and spreading 
waves in Sec. 5-2 except that the latter definitions apply to cross-sectional averaged
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Figure 6-12  Schematic of capillary 
transition zone

 
saturation waves. The mixing or transition zones in Sec. 5-2 were in the x direction 
only and were largely caused by chromatographic effects inherent in the permeable 
medium oil–water fractional flow curves. The capillary transition zone defined by 
Eq. (6.5-10) is in the z direction and defined by the capillary-pressure–
water-saturation relation, the dip angle, and the density difference. 
 
Saturation Profile 
 
Let’s now consider the integration of Eq. (6.5-9) at the three different cross sections 
A, B, and C in Fig. 6-13. In this figure, flow is from right to left for ease of 
illustration. We take S1A, S1B, and S1C to be the water saturations at the bottom (z = 0) 
of the reservoir at the indicated cross sections x = xA, xB, and xC. Because of the 
direction of flow, and because the initial water saturation is near the irreducible value 
S1A > S1B > S1C. The water saturation profile at each of these cross sections is given 
implicitly from Eq. (6.5-9) 
 
 1 1( ( , )) ( ) cos ,      ,  ,  or c k c kP S x z P S gz k A B Cρ α= + Δ =  (6.5-11) 
 
We do not, at this point, know the x-direction position of the z = 0 water saturations, 
which we indirectly determine below. But we can schematically sketch in lines 
connecting constant values of S1, as indicated in Fig. 6- 13. For positive values of the
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Figure 6-13  Schematic of z-direction water saturation profiles at various cross 
sections 

 
density difference, the usual case, the isosaturation lines suggest an underrunning of 
the oil by the injected water. This underrunning, or gravity tongue, is a persistent 
feature of reservoirs in which gravity forces are strong. Tonguing occurs even in 
reservoirs that have no dip cos α = 1(Dz = –z). The extent of the tonguing is greatly 
influenced by the shape of the capillary pressure curve. In Sec. 6-6, we discuss a 
special case of the VE theory in which capillary forces are negligible, and the gravity 
tonguing occurs as segregated flow. 
 
Pseudoproperties 
 
To use the z-direction S1 profile, we must convert the original two-dimensional Eq. 
(6.5-2) to an equivalent one-dimensional equation. Let’s integrate Eq. (6.5-2) over 
the interval thickness Ht and divide the equation by Ht 
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Since Ht is a constant, the integration and differentiation in the first term commutes, 
and Eq. (6.5-12) becomes 
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Terms involving z-direction water flux do not appear in Eq. (6.5-13) since all fluxes
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vanish at the upper and lower impermeable boundaries of the reservoir. In Eq. 
(6.5-13), the averages are  
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In these definitions, and in those that follow, all averages are arithmetic averages 
except the water saturation, which is weighted by the porosity. Introducing the 
definitions for dimensionless independent variables   
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into Eq. (6.5-13) yields, 
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where 1 2x x xu u u= + , and 1 1x xf u u=  is a cross-sectional averaged water fractional 
flow function. Eq. (6.5-16) is identical to Eq. (5.2-5a) and can be solved in the same 
manner as the Buckley-Leverett and Welge integration procedures once we define 1f  
in terms of 1S . 

Consider the cross-sectional averaged total flux multiplied by Ht with 
Darcy’s law substituted for the local flux 
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(6.5-17) 
We can express the x-direction oil phase pressure gradient in terms of the water phase 
pressure gradient and factor to give 
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But from Eq. (6.5-6), it follows that 
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hence under VE, the water phase pressure gradient in the x direction is independent 
of z, as are both 2P x∂ ∂  and cP x∂ ∂ . All gradients may be factored from the 
integrations and solved for as 
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The pressure gradient of Eq. (6.5-19) substituted into the averaged water flux 
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gives 
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Comparing this equation with Eq. (5.3-1) suggests the following definitions for 
pseudorelative permeabilities 
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The capillary pressure in Eq. (6.5-21) is the capillary-pressure–water-saturation 
relation for any z position in the reservoir. It does not matter which z position since 

cP x∂ ∂  is equal at all z positions. From this, it does not follow that the capillary-
pressure–water-saturation relation is the same in all z positions since these can vary 
with permeability. The capillary pressure in Eq. (6.5-21) is often regarded as a 
pseudofunction, even though it is an actual local curve, since it must be a function of 

1S . 
To use the one-dimensional theory of Sec. 5-2 on these equations, we must 

neglect the x-direction capillary pressure term in Eq. (6.5-21). This omission is not 
equivalent to neglecting capillary pressure entirely since the capillary pressure in the 
z direction determines, in part, the z-direction saturation profile. Though it seems 
inconsistent to maintain capillary pressure in the z direction and neglect it in the x 
direction, one can show by scaling arguments similar to those used in Sec. 5-3 that 
when the conditions for VE apply, z-direction effects are far more important than x-
direction effects (Yokayama and Lake, 1981). 

The procedure for calculating pseudorelative permeability curves ( 1rk  and 
2rk  versus 1S ) is as follows: 

 
1. Select a water saturation at the bottom of the reservoir S1k. 
2. Determine the z-direction water saturation profile S1(xk, z) at cross section k 

using Eq. (6.5-11) and the capillary-pressure–water-saturation relation. 
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3. Calculate the average water saturation at cross section k, 1S (xk), from Eq. 

(6.5-14a) and from the z-direction porosity profile. 
4. Calculate the pseudorelative permeabilities corresponding to 1kS  from Eq. 

(6.5-22) and the z-direction permeability profile. 
 
Steps 1–4 give a single point on the pseudorelative permeability curve. To construct 
the entire curve, we repeat the procedure with different values of S1k. The procedure 
gives all possible water saturation profiles and average water saturations for the 
reservoir (see Fig. 6-13) though it does not give the x positions of these quantities, 
which come from solving the one-dimensional Eq. (6.5-13). Though the averaging 
procedure is fairly straightforward, most of the integrations in it must be evaluated 
numerically in the absence of analytic functions for the capillary pressure and relative 
permeability curves (see Exercise 6F). 

Once the pseudorelative permeabilities are constructed, the pseudodisplace-
ment sweep efficiency DE  follows from Eqs. (5.1-2) and (5.2-24) with the 
appropriately averaged quantities appearing in place of the local quantities. 

You should appreciate the generality of the VE approach, for we now have a 
means for calculating and combining displacement ED and vertical EI sweep 
efficiencies with little more trouble than calculating the displacement sweep alone, 
VE can greatly simplify oil recovery calculations in desktop procedures and 
numerical simulations (Coats et al., 1971); however, the entire procedure is restricted 
to reservoirs having a large RL. 

The generalized VE approach for EOR processes has yet to be worked out. 
(For miscible flow, see Lake and Hirasaki, 1981.) 
 
 

6-6 SPECIAL CASES OF VERTICAL EQUILIBRIUM 
 
Though the VE procedure in Sec. 6-5 is quite general, being restricted to reservoirs 
having constant properties in the x direction and a large RL, several VE flows are 
special cases, Since these cases are useful in understanding many EOR processes, in 
this section we review them and show how they follow from the general theory. 
 
Homogeneous with Large Transition Zone 
 
In this case, k and φ are both constant in the reservoir, and zCTZ >> Ht. From the 
procedure given above, the saturation profile in the z direction will be essentially flat, 
and the saturation at the reservoir bottom will not differ much from the average 
saturation. In this case, the pseudorelative permeabilities rjk  become the local (or 
REV) relative permeabilities krj. Large zCTZ would be the rule in most of the longer 
laboratory core floods. In the shorter core experiments, VE is usually not a good 
assumption, but S1 may still be uniform in a cross section since the S1 profile has not 
had much time to distort. 
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Homogeneous, Uniform with No Transition Zone 
 
Easily the most celebrated of the VE theories is the theory of gravity tonguing, or 
underrunning, originally proposed by Dietz (1953). This theory was first proposed as 
an alternative to the Buckley-Leverett theory, but it is actually a special case of the 
VE theory because a finite time is required for the conditions underlying the theory to 
apply. Since the publication of the original Dietz paper, the theory has been applied 
to gravity overrunning by a miscible gas process (Hawthorne, 1960), and other work 
has been published describing the approach to VE conditions (Crane et al., 1963). In 
this section, we restrict ourselves to the water-displacing-oil case though the 
overrunning case can be similarly developed. 

The key assumption in the Dietz theory is the absence of a transition zone, or 
zCTZ = 0. This condition can be accurate only for conditions where the capillary 
pressure is small (well-sorted or high-permeability media). The sharp transition zone 
or macroscopic interface resulting from this condition suggests the theory is 
applicable to any displacement where simultaneous flow of more than one 
component or phase is absent at any point in the reservoir. If Pc is identically zero, 
Eq. (6.5-8) cannot be satisfied at any point in the reservoir since the oil and water 
densities are not, in general, equal. The resolution of this is to let Eq. (6.5-6) apply to 
zones flowing water and to let the analogous equation for oil apply to zones flowing 
oil. Figure 6-14 shows the relevant cross section and these zones. 

At any cross section containing the tongue, the average water saturation from 
Eq. (6.5-14a) is 

 1 2 1
1 [ (1 ) ( )]r r t

t

S b S S H b
H

= − + −  (6.6-1) 

 
and the pseudorelative permeability functions from Eq. (6.5-22) are 
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 (6.6-2a) 

 
Figure 6-14  Schematic cross section of a water tongue 
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The interface height b may be eliminated between Eqs. (6.6-1) and (6.6-2) to give 
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 (6.6-3) 

 
Thus the pseudorelative permeabilities are straight-line functions of the average 
water saturation. 

We can also derive the tilt angle β of the oil–water interface. Consider the 
rectangle ABCD of height Δb and width Δx shown in Fig. 6-14. The dimensions Δx 
and Δb are small (we pass to zero limit below) so that the interface between points A 
and C is the diagonal of the rectangle. Along the BC side of the rectangle, the x-
direction water flux is 
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and along the AD side, the x-direction oil flux is 
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In the limit of Δx → 0, these two fluxes approach a common value ux since there can 
be no accumulation at the interface. Further, the pressures at A and B, and at D and C, 
are related because of the VE conditions (Eq. 6.5-8) 
 1 2cos ,      cosB A C DP P g b P P g bρ α ρ α− = Δ − = Δ  (6.6-5) 
 
The four equations (Eqs. 6.6-4 and 6.6-5) may be combined to eliminate the four 
pressures. This procedure gives 
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The tangent of the tilt angle is defined as 
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Δ
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 (6.6-7) 

 
β is defined to be positive and can take on the entire range of values between 0° and 
90°. If β is greater than 90°, the tongue is overrunning, and this procedure must be 
repeated with the displacing fluid above the resident fluid. 

For β > 0––that is, the interface is not parallel to the x axis––the interface 
reaches a stabilized shape where β is independent of both time and z position. This 
limit is not an automatic consequence of VE, but the time interval between the onset 
of the VE conditions and the attainment of the stabilized interface shape appears to 
be small (Crane et al., 1963). When this steady-state tilt angle βs is reached, the x-
direction fluxes ux1 and ux2 become independent of z and equal to the cross-sectional
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average flux xu . Equation (6.6-6) then becomes 
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1tan tan
coss

g

M
M N

β α
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−
= +  (6.6-8) 

where 0
gN  and 0M  are gravity numbers and mobility ratios defined in Eq. (5.2-3). 

Equation (6.6-8) approaches the correct limits of an interface perpendicular 
to the x direction for 0

gN  = 0 (no tonguing) and of a horizontal interface for 0M →1. 
In the case of a stable gravity tongue, the cross-sectional average water saturation 
profile approaches a “constant pattern” mixing zone, whereas the directly analogous 
case of a one-dimensional displacement with straight-line relative permeabilities 
approaches a shock front. This is a consequence of the finite length of time required 
for the VE conditions to apply in the tonguing case. 

For β < 0, the interface completely underruns the oil and is said to be 
unstable. The condition for stability is, from Eq. (6.6-8), 
 0 0 01 singM M N α− <  (6.6-9) 
 
The equality form of Eq. (6.6-9) naturally leads to definitions of a critical endpoint 
mobility ratio 0 0
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and of a critical flux or rate 0|
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The conditions to prevent complete underrunning of the oil by the water are ux < uc or 
M0 < 0

cM . Equation (6.6-10a) indicates gravity stabilization is possible even when 
M0 > 1. Equation (6.6-10b), in particular, is used in estimating the flooding rates in 
gravity-stabilized miscible displacements. 
 
Layered, Uniform Horizontal Media with Pc = zCTZ = 0 
 
For this case of the permeable medium consisting of NL layers, each of contrasting 
thickness hl, permeability kl, and porosity, φl, the integrals in the definitions (Eqs. 
6.5-14 and 6.5-22) become finite sums 

 
1

1 ( ) ,      1 or 2
LN

rj rj l
lt

k khk j
H k =

= =∑  (6.6-11a) 

 1 1
1

1 ( )
LN

l
lt

S hS
H

φ
φ =

= ∑  (6.6-11b) 

 
The definitions (Eqs. 6.6-11a and 6.6-11b) are valid regardless of the ordering of the 
layers; hence we assume, without loss of generality, they are ordered with decreasing 
velocity as in Sec. 6-3. 
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Since neither gravity nor capillary pressure is present, Eq. (6.5-8) is trivially 

satisfied, and there is no constraint on the saturations in the z direction. To resolve 
this, Hearn (1971) assumed segregated flow within a layer, as in Fig. 6-15(a). The 
definitions become 
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where n is the number of the slowest layer (smallest k/φ) flowing water at a given 
cross section. Thus the average water saturation and pseudorelative permeabilities are 
parametrically functions of n and can be regarded as functions of each other in this 
way. 

 
 
Figure 6-15  Schematic cross section of VE in stratified reservoir with no capillary and 
gravity effects 
 
 

Based on arguments related to the direction of flow caused by the viscous 
pressure driving forces, Zapata and Lake (1981) have shown that assuming 
segregated flow within a layer is correct when the displacement is favorable M0 < 1. 
In fact, if VE holds, it is possible for the M0 to be so low that the effect of the 
heterogeneities is entirely suppressed (see Exercise 6E). But when the displacement 
is unfavorable, the viscous forces cause a mixing zone to develop between the front 
in the fastest layer and that in the slowest layer (Fig. 6-15b). This mixing zone causes 
the vertical sweep efficiency to be actually greater than the corresponding segregated 
flow case since the mixing zone attenuates the unfavorable mobility ratio. That 
diffuse flow can occur in VE displacements in the absence of capillary pressure is a 
major revelation in the understanding of these processes. The implication is clear that 
such crossflow might be a source of mixing in all unstable flows. 
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Stratified, Uniform with ΔP = 0 and Constant Mobility 
 
Here, there are no gravity forces to counteract the z-direction imbibition, and the z-
direction water saturation profile is uniform within each layer. But because of the 
variable properties in the z direction, the Pc – S1 function changes. Figure 6-16(a) 
illustrates this change for the four-layer medium shown. From Eq. (6.5-9), the 
capillary pressure (not the capillary pressure function) is a constant through any cross 
section. As indicated in Fig. 6-16, if the constant is known, this specifies the water 
saturation in each layer at that cross section. Because the mobility is constant, the x-
direction viscous pressure gradient is independent of both position and time. For this 
case, the average water saturation and pseudorelative permeability curves are given 
by Eq. (6.6-11), but each of the water saturations S1l are determined by the relation Pc 
= constant and the Pc-S1 relation. Again, the average water saturation and 
pseudorelative permeabilities are parametrically related through this constant. This 
procedure yields an immiscible mixing zone between the most advanced and the least 
advanced front, as shown in Fig. 6-16(b). 
 
 

 
Figure 6-16  Schematic of stratified cross section with no gravity and viscous forces 

 
 

6-7 COMBINING SWEEP EFFICIENCIES 
 
In this section, we seek to provide an estimate of the recovery efficiency ER = EDEV, 
from Eq. (2.5-5), as a function of dimensionless time by combining vertical, areal, 
and displacement sweeps. As we mentioned in Sec. 6-1, this procedure is 
complicated because all three sweep efficiencies depend on one another, and all must 
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be evaluated at times different from that at which the recovery efficiency is desired. 
If the reservoir is layered and noncommunicating, we could, of course, calculate the 
areal sweep efficiency of each layer and then average the φh of each layer times its 
areal sweep to obtain the volumetric sweep efficiency. The procedure we describe 
here includes this method as a special case, but it is valid for combining all types of 
sweep efficiency curves, not just those for layer-cake models. 

Our procedure is based on the idea of apparent pore volumes first presented 
by Claridge (1972). We assume we have independently determined curves for EA, EI, 
and ED as functions of tD. For ED, it is more convenient to work in the average water 
saturations 1S , but there is no loss of generality since the two are related through Eq. 
(5.1-2). Here, we are restricted to sweep efficiency functions that depend on 
dimensionless time, heterogeneity, capillary pressure, and so on but that do not 
depend explicitly on rate or fluid velocity. 
 
Combining Areal and Vertical Sweep 
 
The definition for volumetric sweep efficiency is repeated here as EV = EAEI. From 
Fig. 6-1 (or Fig. 6-17), EA depends on the z position in the reservoir, and EI on a 
particular cross section between the injector and producer. Rather than directly 
determining these positions, we seek to determine that value of the dimensionless 
time argument at which the respective values of EA and EV will give average values. 
Therefore, we can rewrite Eq. (6.1-3) as 
 ( ) ( ) ( )V D A DA I DIE t E t E t=  (6.7-1) 
 
where tDA and tDI are dimensionless times based on the apparent pore volumes for 
areal and vertical sweep, respectively. 

Figure 6-17(a) schematically shows the positions of a pistonlike 
displacement at or after breakthrough. Imagine that the shaded volumes have no 
porosity or permeability, then the volumetric sweep efficiency is equal to the vertical 
sweep efficiency. The ultimate volume to be swept out, for this rather oddly shaped 
reservoir then, at infinite throughput is the unshaded or apparent pore volume. But 
this is just the EA times the total pore volume; hence the dimensionless time for EI is 

 D
DI

A

tt
E

=  (6.7-2a) 

 
By a similar argument, though it is much more difficult to show parallel cross 
sections, the dimensionless time for the EA is 
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The equation for the volumetric sweep may be written in combined form as 

 D D
V A I

I A

t tE E E
E E

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
i  (6.7-3) 



 220

 

 
 
 
 
 
Figure 6-17  Schematics for combining 
sweep efficiencies

 
Since EA and EI appear as both multiplications and in the arguments, 

constructing a volumetric sweep function requires a trial-and-error procedure. 
 

1. Determine the cumulative injection at breakthrough o
Dt . This is just the 

product of EA and EI at their respective breakthrough values, 0
AE  and 0

IE . 
2. Pick some tD after breakthrough o

Dt . 
3. Select a trial EI. 
4. Calculate the areal sweep efficiency from EA = EA(tD/EI). 
5. Calculate the vertical sweep from EI = EI(tD/EA) using EA. 

 
If EI agrees with that assumed in step 3, EA • EI is the volumetric sweep efficiency at 
tD. If EI is different from step 3, select a new trial EI, and return to step 4. 
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Experience has shown that the procedure converges within two to three 

iterations for typical EA and EI functions using direct substitution. By repeating the 
procedure for several values of tD, a volumetric sweep efficiency curve may be 
calculated (see Exercise 6H). 
 
Combining Pseudodisplacement and Areal Sweep 
 
The pseudodisplacement sweep efficiency DE  may be determined from the VE 
theory of Sec. 6-5. The recovery efficiency follows from this as 
 
 ( ) ( )R D DA A DDE E t E t=  (6.7-4) 
 
where tDA and tDD are the dimensionless times based on the apparent pore volumes 
appropriate for the particular sweep efficiency. 

Combining a displacement and areal sweep in the manner described here is 
again a generalization of the procedure proposed by Claridge (1972) and is repeated 
in Chap. 7 for a miscible flood. The dimensionless time for DE  is the same as Eq. 
(6.7-2a), but for EA, we must view the displacement differently. Consider Fig. 
6.17(b), which shows an areal view of a displacement divided into a swept and an 
unswept region. The unswept region contains oil and water saturations at the values 
present at the initiation (S1, S2)I of the displacement. We identify the saturations 1S , 

2S  in the swept region with the cross-sectional averaged saturations determined from 
DE  

 1 1 1(1 )I D IS S E S= + −  (6.7-5) 
 
At a particular time, the pore volume available to flow for a pistonlike displacement 
whose front occupies the same position as that shown in Fig. 6-17(b) is the water 
volume in the swept region. (Another way of viewing this is to suppose the oil 
saturation 2S  is part of the immobile phase.) Therefore, the dimensionless time for 
EA is now 
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S

=  (6.7-6) 

 
The procedure for calculating the recovery efficiency is similar to that given above. 
 

1. Calculate the cumulative injection at breakthrough o
Dt . This is equal to the 

product of the breakthrough values of DE  and EA. 
2. Pick some tD after breakthrough o

Dt . 
3. Select a trial DE , and calculate 1S  from Eq. (6.7-6). 
4. Calculate the areal sweep efficiency from EA = EA(tD/ 1S ). 
5. Calculate the pseudodisplacement sweep from DE  = DE ( tD/EA). 
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If the DE  agrees with that in step 3, the recovery efficiency is the product of DE  and 
EA. If DE  does not agree, return to step 3 with a new trial value. 
 
 
Combining Vertical, Areal, and Displacement 
Sweep Efficiencies 
 
If all three efficiencies are independently available, the above procedure may easily 
be generalized as 
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 (6.7-7) 

The procedure now requires a two-level trial and error, which is equivalent to first 
combining EA and EI and then combining EV and ED. The final result in Eq. (6.7-7) is 
independent of the order the combinations are carried out in. 

As a conclusion to this section, we remind you of the limitations inherent in 
these procedures. First, we must have independently specified functions of EA, EI, 
and ED, and these functions must be independent of explicit rate dependence. If a rate 
dependence is present, the function EI will depend on the particular pathline it was 
evaluated on. Perhaps we could evaluate on a pathline having a fluid velocity 
representative of the entire pattern (this is commonly tried), but there is considerable 
uncertainty about what this representative value is even in the most well-defined 
displacements. Recall that, particularly in the VE approaches, the dependence of the 
sweep efficiencies on rate may not be particularly evident (for example, the Dietz 
theory is strongly rate dependent, but this is not evident from the general VE 
approach when capillary pressure becomes small). Further recall that independent 
specifications of each of the three efficiencies are available through relatively 
idealized calculations (see Secs. 6-4 through 6-6) for extremes in certain physical 
properties or through physical models. When any of the above conditions are 
seriously violated––and their violation significantly affects the results––one must 
resort to numerical simulation, from which the oil recovery could be directly 
calculated. 

A second more subtle, and perhaps more serious, limitation of the combined 
sweep efficiency approach deals with scaling. Scaling simply means any of the sweep 
efficiencies, however determined, must themselves be adjusted for the considerably 
different scale between the laboratory experiment or analytical calculation and the 
field application. For example, few of the independent determinations of ED or EI 
account for the nonuniformities surely present in a field displacement. 

A classical example of this scale effect involves applying ED to a viscously 
unstable field-scale displacement. Much theoretical and experimental work has gone 
into showing that the size of the instabilities formed, and indeed, whether they 
propagate or not, is a function of the characteristic lengths of the laboratory 
experiment or calculation. Thus unless the scaling is such that both effects are the 
same in the laboratory and in the field (a sometimes impossible task), the lab-derived 
ED will be too optimistic. We cover the subject of viscous instabilities in the next 
section. 
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6-8 INSTABILITY PHENOMENA 

 
No EOR process is free from some sort of instability. Hence substantial effort has 
gone into minimizing or preventing instabilities (using polymer to drive surfactants 
and alkaline agents, or foaming agents to drive CO2 and steam) and into predicting 
the oil recovery if fingering is inevitable. We discuss predicting the results of a 
fingering process in Chap. 7 in connection with solvent flooding where instability 
phenomena have received the most attention. In this section, we deal with the 
formation of fingers. 

We use the term fingering to describe the bypassing of a resident fluid by a 
displacing agent in a homogeneous, nonuniform medium. The actual bypassing 
region is a finger. This definition encompasses instabilities caused by both viscous 
forces (viscous fingers) and gravity forces (gravity fingers) but does not include 
bypassing by permeability heterogeneities. This definition is a little more rigid than 
that used in the literature, but we believe the inherent distinction is useful because 
fingering can be prevented from displacements, whereas bypassing caused by 
heterogeneities cannot (though it can be reduced). In this section, we deal with 
isothermal flows; in Chap. 11, we discuss the stability of a nonisothermal 
displacement. 
 
A Necessary Condition for Stability 
 
In keeping with the notion that fingering is a general phenomenon, consider the 
incompressible, dissipation-free displacement of fluid 2 by fluid 1 in a dipping 
reservoir, as shown in Fig. 6-18. This figure is a cross section of a displacement, but 
fingering can occur in either the vertical or areal sense. There is no z-direction 
communication in this problem. We also consider a perturbation of length ε of the 
displacement front (caused, perhaps, by an isolated nonuniformity in the permeability 
field), and strive to determine the conditions under which ε(t) will grow or decay as a 
function of time. The actual fingering phenomenon is, of course, much more random 
and chaotic than that shown in Fig. 6-18, as evidenced by an areal view of a fingering 
displacement in a quarter five-spot model shown in Fig. 6-19. Nevertheless, the 
 
 

 
 

 
 
Figure 6-18  Viscous fingering 
schematic
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Figure 6-19  Viscous fingering in a 
quarter five-spot model, Mo = 17 (from 
Habermann, 1960)

 
simple geometry of Fig. 6-18 is tractable to mathematical analysis and yields insights 
into the more complex situations. 

To solve for the conditions ε will grow or decay under, we proceed by the 
moving boundary technique discussed by Collins (1976). In the region behind the 
displacing fluid front, x < xf, the conservation of fluid 1 gives 
 

 0xju
x

∂
=

∂
 (6.8-1) 

 
where j = 1 for x < xf, and j = 2 for x > xf. The accumulation terms in both equations 
are zero since there is no change in concentration in the respective regions. For the 
same reason, when we substitute Darcy’s law into these equations, they become 

 sin 0,      1 or 2j
j

P
g j

x x
ρ α

∂⎛ ⎞∂
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 (6.8-2) 

 
The solutions to Eq. (6.8-2) will be of the form 
 ( sin ) ,      1 or 2j j j jP s g x b jρ α= − + =  (6.8-3) 
 
where aj and bj are integration constants to be determined with appropriate boundary 
conditions. If P0 and PL are the pressures at the reservoir inlet and outlet, 
respectively, then bj can be determined as 
 1 0b P=  (6.8-4a) 
 2 2 2( sin )Lb P a g Lρ α= − −  (6.8-4b) 
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Using these relations, and requiring continuous x velocities across the front 
 1 2| |

f fx x x x x x xu u u= == =  (6.8-5) 

gives, once again using Darcy’s law, 
 0

1 2M a a=  (6.8-6) 
Equation (6.8-6) determines a1, for we must have continuity of pressure at xf in the 
absence of capillary pressure 
 1 2| |

f fx xP P=  (6.8-7) 

Inserting Eq. (6.8-3) into Eq. (6.8-7) and using Eqs. (6.8-4) and (6.8-6), yields 

 2 1
1 0 0

sin ( ) sin
(1 )

f f

f

P g L x g x
a

M L M x
ρ α ρ α−Δ + − +

=
+ −

 (6.8-8) 

 
where ΔP = P0 – PL is the overall pressure drop. The rate of frontal advance is from 
Darcy’s law 
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Equation (6.8-9) applies to any point on the displacement front. We could have 
equally well developed an expression for a point on the perturbation front 
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Equation (6.8-10) is identical to Eq. (6.8-9) except xf + ε has replaced xf everywhere. 
The rate of change of the perturbation is 
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which yields, when Eqs. (6.8-9) and (6.8-10) are substituted, 
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In Eq. (6.8-12), we have assumed ε << xf with the corresponding simplification. 
Equation (6.8-12) could be integrated, but for our purpose it is sufficient to 
investigate only the sign of ε . The perturbation will grow if ε  > 0, will remain 
constant if ε  = 0, and will decay if ε  < 0. From the equality of these three choices, 
we find the condition of neutral stability as 
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where (ΔP)c is a critical pressure drop. The superficial velocity corresponding to this 
is the critical rate uc 
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Using the critical rate, the conditions for finger growth may be restated 
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 (6.8-15) 

 
where we have also used Darcy’s law to express ux in these inequalities. 

Note the similarity between Eq. (6.8-14) and Eq. (6.6-10b), the 
corresponding critical rate for gravity tonguing. Analogous expressions can be 
worked out for almost any segregated flow conditions, so this similarity should not 
be regarded as merely fortuitous. But the differences in the two flows should be kept 
in mind. The critical rate in Eq. (6.8-14) is based on an unstable displacement in a 
reservoir having no z-direction communication; that in Eq. (6.6-10b) is the 
consequence of a VE displacement in a reservoir with very good communication. 

To further investigate the stability issue, let’s write the condition for stability 
(finger decay) as 
 0 o

1( 1) sinx rM u k gλ ρ α− < Δ  (6.8-16) 
 
The superficial velocity ux in this inequality is always positive, but the density 
difference can be negative (less dense fluid displacing more dense), as can the dip 
angle (displacing down dip). Of course, M0 can take on only positive values though 
over quite a large range. Table 6-2 shows typical signs of M0 and Δρ for various EOR 
processes. Immediately it follows from Eq. (6.8-16) that the condition for stability in 
a horizontal reservoir is simply M0 < 1. This condition is used universally throughout 
the EOR literature to describe a stable displacement, particularly in laboratory floods, 
though the more general Eq. (6.8-16) is actually the most appropriate form (Hill, 
1952). 
 

TABLE 6-2  TYPICAL VALUES FOR MIBILITY 
RATIOS AND DENSITY DIFFERENCES 
BY PROCESS TYPE 

 M0 < 1 M0 > 1 

Δρ > 0 
Waterflood 
Polymer flood 
Micellar polymer 

Waterflood 
Polymer flood 
 

Δρ < 0 Foam Steam 

 
Considering the signs possible for α and Δρ, we can divide the stability 

possibilities into four cases, as Table 6-3 shows. Case 1 is unconditionally stable 
regardless of the values of Δρg sin α and M0 as Δρg sin α is positive, and M0 < 1. 
Similarly, if Δρg sin α < 0 and M0 > 1, case 4, the displacement is unconditionally
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TABLE 6-3  POSSIBLE CASES FOR A STABLE 
DISPLACEMENT 

Case    

1 M0 < 1 Δρg sin α > 0 Stable 
2 M0 > 1 Δρg sin α > 0 Conditionally stable (type I) 
3 M0 < 1 Δρg sin α < 0 Conditionally stable (type II) 
4 M0 > 1 Δρg sin α < 0 Unstablea 

a Infinite lateral boundaries 
Note: Write stability criterion as 0 o

1( 1) sinxM u k gλ ρ α− < Δ . For 
α = 0 (no dip), the stability criterion becomes M0 < 1. 

 
unstable. The more interesting cases are 2 and 3, which we call type I and type II 
conditional stability. 

For type I stability, if we divide through Eq. (6.8-16) by the positive quantity 
(M0 – 1), the stability criterion is written for ux as in Fig. 6-20. The criterion is an 
upper bound for ux and a plot of sweep efficiency (vertical, areal, or volumetric) 
versus the dimensionless rate uD 
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 (6.8-17) 

shows that EV remains essentially constant until uD = 1 and then decreases thereafter. 
Since increasing the displacement velocity causes the instability to form, we see that 
viscous forces destabilize the displacement (uD > 1), whereas gravity forces tend to 
stabilize the displacement (uD < 1). The resulting instability is a viscous instability or 
finger. For type II conditional stability, a similar plot (Fig. 6-21) shows sweep 
efficiency decreasing for decreasing uD, beginning a precipitous decline at uD = 1. 
This is because the stability criterion is now a lower bound since (M0 – 1) is now 
negative. For type II conditional stability, viscous forces stabilize the displacement, 
 

 
 

 
 
Figure 6-20  Type I conditional 
stability
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Figure 6-21  Type II conditional 
stability

 
 
and gravity forces destabilize. The resulting instabilty is a gravity instability. 
 

For certain values of the parameters, then, both types of displacements are or 
can be made stable. The conditional stability is most useful in determining a 
maximum rate in a dipping displacement where M0 > 1. But usually, this rate is 
below that required for economic oil production. For type II stability, a larger rate is 
required, but in practice, this situation is not commonly encountered. 
 
Critical Wavelength 
 
Whereas ux < uc is a necessary and sufficient condition for stability, the condition ux > 
uc is, unfortunately, a necessary condition only for instability. This condition is 
because dissipative effects in flows in media of limited lateral extent tend to suppress 
fingering. This effect means fingering may be abnormally suppressed in laboratory 
displacements compared to the same displacement under field conditions. One may 
legitimately wonder, then, about the purpose of doing laboratory experiments on 
unstable displacements when this scale effect is not considered. 

To investigate this scale effect, we reproduce an argument based on linear 
stability analysis originally given by Chouke et al. (1959) and then by Gardner and 
Ypma (1982). 

Based on a linear stability analysis of a downward secondary miscible 
displacement of oil by a less viscous and less dense solvent in a homogeneous, 
uniform medium, the critical wavelength λc of an unstable miscible displacement is 
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where the dispersion coefficient Kl is taken to be isotropic. Since the displacement is 
unstable, we must have M0 > 1 and ux > uc so that λc is always positive. 

The analogous expression for an initially sharp immiscible displacement was 
also determined by Chouke et al. (1959) and reproduced in greater detail by Peters 
(1979) 
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 (6.8-19) 

 
The constant C in Eq. (6.8-19) is called Chouke’s constant by Peters, who also 
determined values C = 25 for immiscible displacements with no residual water 
initially present, and C = 190 with irreducible water present. Clearly, the critical 
wavelength is greater with irreducible water initially present, but the reason for this 
stabilizing effect is not well understood. 

The necessary and sufficient conditions for a type I instability to form based 
on this analysis are now 
 0

max1   or      and   ( )x c c tM u u Hλ> > <  (6.8-20) 
 
where (Ht)max is the maximum lateral extent of the permeable medium. One may 
readily show (see Exercise 61) that λc is of the order of a few centimeters for typical 
conditions. Thus, if fingering is desired in a displacement, one must take special 
precautions that conditions (Eq. 6.8-20) are met. This usually means running 
displacements at excessively high rates, compared to field rates, or in systems having 
at least one large transverse dimension. Such a system is the Hele Shaw cell, in which 
the displacement of Fig. 6-19 is occurring. But if the intent is to suppress fingering, 
systems having very small transverse dimensions, such as the slim tube experiments 
we discuss in Chap. 7, are preferable. 

Three things are important about both the derivation of critical velocity and 
wavelength. First, neither says anything about how fingers propagate once they are 
formed. A finger forms, bifurcates into two branches, one of these dominates (or 
shields) the other, and the dominant one then bifurcates again to repeat the process 
(Homsy, 1987). If continued indefinitely, a single finger with numerous appendages 
representing the bifurcations will result. Figure 6-19 suggests the bifurcation through 
the various levels of fingers each superimposed on the next larger scale. The smallest 
scale corresponds to the critical wavelength. 

Second, both the critical wavelength and velocity derivations depended on 
the perturbation being small. It is impossible to say from this what the response to a 
large perturbation would be, and we can be assured that such large perturbations do 
exist. Thus Eq. (6.8-20) should also be regarded as only necessary conditions. 

Finally, the issues of fingering and heterogeneity cannot be rigorously 
separated. After all, heterogeneity caused the perturbation in Fig. 6-16 even though 
we proceeded as though the reservoir was homogeneous. The merging of the 
fingering and heterogeneity issues is one of the most interesting topics in EOR 
research; in Chap. 7, we discuss some primitive attempts at this merging. 
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6-9 SUMMARY 

 
That volumetric sweep efficiency is a complex issue accounts for the scarcity of 
treatment in this text compared to displacement efficiency. Three factors account for 
this complexity: a strong dependency on operational issues, nonlinear and irregular 
geometries, and the difficulty in capturing realistic heterogeneities. Numerical 
simulators can handle all three of these issues to some extent even though some 
questions remain about how to represent heterogeneity in simulation models. 

There is little in the behavior of the volumetric sweep efficiency of actual 
reservoir displacements that cannot be at least qualitatively understood through the 
material we present here. Examples of such behavior are reservoirs with high-
permeability thief zones that behave essentially as a two-layer medium, generally 
high-permeability reservoirs dominated by gravity that conform well to the Dietz 
theory, low-permeability reservoirs in which crossflow tends to be unimportant, and 
high-permeability reservoirs with large well spacing that tend to the VE limit rather 
quickly. 

Above all, the recognition of bypassing––through channeling, viscous 
fingering, gravity segregation, or some combination of these––is important, for this 
seems to occur in a good many waterfloods and EOR projects. 
 
 
EXERCISES 
 
6A. Using Areal Sweep Correlations. Use the areal sweep efficiency correlations for a 

confined five-spot in this exercise. 
(a) Plot areal sweep efficiency EA versus dimensionless time tD for a mobility ratio of 

6.5. 
(b) If the pattern pore volume is 106 m3, and the average injection rate is 500 m3/D, 

plot cumulative oil recovery (SCM) versus time (months or years). Assume the 
displacement is pistonlike, vertical sweep is 1, and the pore volume given above is 
movable. The residual water and oil saturations are 0.2 and 0.3, respectively. 

6B. Heterogeneity Measures of Normal Distributions. As Table 6-1 shows, permeability 
often is distributed normally rather than lognormally. When this happens, the 
cumulative frequency distribution function (Eq. 6.3-5) becomes 
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where r  is the average permeability–porosity ratio, and vN is the variance of the 
normal distribution. Using Eqs. (6B-1), (6.3-3), and (6.3-4), derive formulas for the 
Lorenz and Dykstra-Parsons coefficients in terms of vN. 

6C. Vertical Sweep Efficiency in a Two-Layer Reservoir 
(a) Derive Eq. (6.4-4) for flow in layer l in a horizontal reservoir. 
(b) Calculate and plot the vertical sweep efficiency EI and the fraction of total flow 

going into the high velocity layer for a two-layer horizontal reservoir with k1 = 2k2, 
φ1 = φ2, ΔS1 = ΔS2, and h1 = 3h2. Take M0 = 0.5. 
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6D. Vertical Sweep Efficiency in a Noncommunicating Reservoir. For a reservoir having no 

vertical communication, calculate and plot the vertical sweep efficiency versus 
dimensionless cumulative water injected for the following five-layer cross section: 

 

hl(m) φl kl(μm2) 

   5 0.2 0.100 
 10 0.22 0.195 
   2 0.23 0.560 
 15 0.19 0.055 
   4 0.15 0.023 

 
The endpoint mobility ratio is 0.5. 

6E. Vertical Equilibrium for Continuous Layers. For a reservoir for which the VE Hearn 
model applies with M0 < 1 and α = 0, 
(a) Show that if the permeability distribution is continuous, the cross-sectional 

averaged water fractional flow may be written as 
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where HK is the Koval heterogeneity factor (Fig. 6-8). 

(b) Recalculate and plot the vertical sweep efficiency for the two-layer model of part 
(b) in Exercise 6C. Use M0 = 0.5. 

(c) In a two-layer horizontal reservoir, show that the effects of the heterogeneity 
contrast may be completely suppressed (that is, the fronts travel at equal velocities 
in both layers) if 
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where 1 and 2 represent the high and low velocity layers, respectively. 
6F. Calculating Pseudorelative Permeabilities. For the discrete permeability–porosity data 

of Exercise 6D, 
(a) Calculate and plot the pseudorelative permeabilites for a waterflood in a horizontal 

reservoir using the VE Hearn model. 
(b) Calculate and plot the vertical sweep efficiency for this flood. 
(c) Repeat part (a) for a nonzero capillary pressure function given by 
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where σ12 is the oil–water interfacial tension, θ is the contact angle, and 
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(d) Calculate and plot the vertical sweep efficiency for part (c). 

Additional data for this problem are Δρ = 0, S1r = S2r = 0.2, μ1 = 1 mPa-s, μ2 = 10
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mPa-s, o

1rk  = 0.05, o
2rk  = 0.9, and the relative permeability curves are given as 

 o 2 o
1 1 2 2,      (1 )r r r rk k S k k S= = −  (6F-3) 

 
6G. Deriving Pseudorelative Permeabilities. The water–oil capillary-pressure–water-

saturation function often may be represented as 
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where K is a constant, and S is the reduced saturation (Eq. 6F-2). If the VE assumptions 
apply and the reservoir is homogeneous, 
(a) Derive the water saturation profile in the dip normal or z direction in terms of a 

water saturation at the bottom of the reservoir (S1B or SB). 
(b) Derive an expression for the average water saturation as a function of S1B or SB. 
(c) If the local (laboratory-measured) relative permeabilities are approximated by Eq. 

(6F-3), show that the oil and water pseudorelative permeabilities expressed in 
terms of the average saturation of part (b) are 

 

o 2

o
2 o1 o 2

1 2 2o

1
ln ,      (1 )

1
4

g

r
r r rg

g

N S
k

k k k SN S
N

+
= = −

−

⎧ ⎫
⎪ ⎪

⎛ ⎞⎨ ⎬
⎜ ⎟⎪ ⎪

⎩ ⎭⎝ ⎠

 

where 

 o cos t
g

g H
N

K

ρ αΔ
=  

(d) For o
gN  = 1 and M0 = 4, calculate and plot the pseudodisplacement sweep 

efficiency versus dimensionless time. The dip angle of the reservoir is zero. 
6H. Combining Sweep Efficiencies. The vertical sweep efficiency curve for a pistonlike 

displacement is shown in Fig. 6H. Combine this curve with the areal sweep efficiency 
curve of Exercise 6A to give the volumetric sweep efficiency curve. 

6L. Viscous Fingering Calculations 
(a) Calculate the critical rate for a miscible displacement having the following 

properties: 
 

k = 0.12 μm2 
M0 = 50 
Oil-solvent density difference = – 0.8 g/cm3 
Solvent mobility = 10 (mPa-s)–1 
Dip angle = –10° 

 
(b) If the superficial velocity in the above displacement is 0.8 μm/s, calculate the 

critical wavelength from stability theory. Take the dispersion coefficient to be 10–5 
cm2/s. 
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Figure 6H  Vertical sweep efficiency function for Exercise 6H 
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7  
 
 
 
 

Solvent Methods 
 
 
 
 
 
 
 
 
 
 
One of the earliest methods for producing additional oil is through the use of solvents 
to extract the oil from the permeable media. In the early 1960s, interest centered on 
injecting liquified petroleum gas (LPG) in small “slugs” and then displacing the LPG 
by a dry “chase” gas. This process became economically less attractive as the value 
of the solvent increased. In the late 1970s, interest in solvent methods resurged 
because of an increased oil price and more confidence in the ability to estimate oil 
recovery. During this period, the leading solvent became carbon dioxide though 
several other fluids were used also (Stalkup, 1985). 
 Two fluids that mix together in all proportions within a single-fluid phase are 
miscible. Therefore, miscible agents would mix in all proportions with the oil to be 
displaced. But most practical miscible agents exhibit only partial miscibility toward 
the crude oil itself, so we use the term solvent flooding in this text. Many solvents, of 
course, will become miscible with crude under the right conditions, but all solvents of 
commercial interest are immiscible to an aqueous phase. 
 Solvent flooding refers to those EOR techniques whose main oil recovering 
function is because of extraction, dissolution, vaporization, solubilization, conden-
sation, or some other phase behavior change involving the crude. These methods 
have other, sometimes very important, oil recovery mechanisms (viscosity reduction, 
oil swelling, solution gas drive), but the primary mechanism must be extraction. 

This oil extraction can be brought about by many fluids: organic alcohols, 
ketones, refined hydrocarbons, condensed petroleum gas (LPG), natural gas and 
liquified natural gas (LNG), carbon dioxide, air, nitrogen, exhaust gas, flue gas, and 
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others. In this chapter, we emphasize miscible flooding with gaseous solvents CO2, 
CH4, and N2, but you should remember there are many potential agents. 
 
 

7-1 GENERAL DISCUSSION OF SOLVENT FLOODING 
 
Considering the wide variety of solvents, process types, and reservoirs, our 
discussion must ignore one or more interesting variations. Thus in this section, we 
discuss CO2 solvent flooding, and later, we indicate more general aspects of solvent 
flooding. 

Figure 7-1 shows an idealized vertical cross section between an injection and 
production well. By far the most common application of solvent methods is in a 
displacement mode as shown, but injection and production through the same wells 
have been reported (Monger and Coma, 1986). Solvent injection commences into a 
reservoir in some stage of depletion, most commonly at residual oil or true tertiary 
conditions. Most solvent floods are in reservoirs containing light crudes (less than 3 
mPa-s oil viscosity) though there are exceptions (Goodrich, 1980). The solvent may 
be introduced continuously in undiluted form, alternated with water in the 
water-alternating-gas (WAG) process as in Fig. 7-1, or even injected simultaneously 
with water through paired injection wells. Water is injected with the solvent in this 
fashion to reduce the usually unfavorable mobility ratio between the solvent and the 
oil. Carbon dioxide, in particular, can be injected dissolved in water in a distinctly 
immiscible fashion that recovers oil through swelling and viscosity reduction 
(Martin, 1951). 
 If the solvent is completely (first-contact) miscible with the oil, the process 
has a very high ultimate displacement efficiency since there can be no residual phases 
(see Sec. 5-4). If the solvent is only partially miscible with the crude, the total 
composition in the mixing zone (miscible zone in Fig. 7-1) between the solvent and 
the oil can change to generate or develop miscibility in situ. Regardless of whether 
the displacement is developed or first-contact miscible, the solvent must immiscibly 
displace any mobile water present with the resident fluids. 
 The economics of the process usually dictates that the solvent cannot be 
injected indefinitely. Therefore, a finite amount or slug of solvent is usually followed 
by a chase fluid whose function is to drive the solvent toward the production wells. 
This chase fluid––N2, air, water, and dry natural gas seem to be the most common 
choices––may not itself be a good solvent. But it is selected to be compatible with the 
solvent and because it is available in large quantities. The similarity between the 
chase fluid in solvent flooding and the mobility buffer drive in micellar-polymer 
flooding is evident in Figs. 7-1 and 9-1. 
 Though the process shown in Fig. 7-1 appears relatively simple, the 
displacement efficiency and volumetric sweep efficiency are quite complex. In Secs. 
7-6 and 7-8, we apply the theory of Chaps. 5 and 6 to solvent flooding, but first we 
must discuss selected physical properties of solvents and solvent–crude oil systems. 
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Figure 7-1  Schematic of a solvent flooding process (drawing by Joe Lindley, U.S. 
Department of Energy, Bartlesville, Okla.) 
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7-2 SOLVENT PROPERTIES 

 
Figure 7-2 shows phase behavior data (P-T diagram) for various pure components 
and air. For each curve, the line connecting the triple and critical points is the vapor 
pressure curve; the extension below the triple point is the sublimation curve (see Sec. 
4-1). The fusion curve is not shown. The pressure–temperature plot for air is really an 
envelope, but its molecular weight distribution is so narrow that it appears as a line in 
Fig. 7-2. Flue gas is also a mixture of nitrogen, carbon monoxide, and carbon dioxide 
with a similarly narrow molecular weight distribution; its P-T curve would fall near 
the nitrogen curve in Fig. 7-2. 
 The critical pressures for most components fall within a relatively narrow 
range of 3.4–6.8 MPa (500–1,000 psia), but critical temperatures vary over a much 
wider range. The critical temperatures of most components increase with increasing 
molecular weight. Carbon dioxide (molecular weight, MW = 44) is an exception to 
this trend with a critical temperature of 304 K (87.8°F), which is closer to the critical 
temperature of ethane (MW = 30) than to propane (MW = 44). (See Vukalovich and 
Altunin (1968) for a massive compilation of CO2 properties.) Most reservoir 
applications would be in the temperature range of 294–394 K (70–250°F) and at 
pressures greater than 6.8 MPa (1,000 psia); hence air, N2, and dry natural gas will all 
be supercritical fluids at reservoir conditions. Solvents such as LPG, in the molecular 
weight range of butane or heavier, will be liquids. Carbon dioxide will usually be a 
supercritical fluid since most reservoir temperatures are above the critical 
temperature. The proximity to its critical temperature gives CO2 more liquidlike 
properties than the lighter solvents. 
 Figures 7-3 and 7-4 give compressibilities factors for air and carbon dioxide, 
respectively. From these the fluid density ρ3 can be calculated 
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The formation volume factor at any temperature and pressure B3, a specific molar 
volume, also follows 
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In Eq. (7.2-2), Ts and Ps are the standard temperature and pressure, respectively. All 
fluids become more liquidlike, at a fixed temperature and pressure, as the molecular 
weight increases. The anomalous behavior of CO2 is again manifest by comparing its 
density and formation volume factor to that of air. For CO2 at 339 K (150°F) and 17 
MPa (2,500 psia), ρ3 = 0.69 g/cm3, and B3 = 2.69 dm3/SCM. The values for air at the 
same temperature and pressure are ρ3 = 0.16 g/cm3, and B3 = 7.31 dm3/SCM. The 
CO2 density is much closer to a typical light oil density than is the air density; hence 
CO2 is much less prone to gravity segregation during a displacement than is air. 
Usually, gravity segregation in a CO2 flood is more likely where the water saturation 
is high since CO2 tends to segregate more from water than oil. 
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Figure 7-2  Vapor pressure curves for various substances (from Gibbs, 1971) 
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Figure 7-3  Compressibility chart for air (from Gibbs, 1971) 
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Figure 7-4  Compressibility chart for carbon dioxide (CO2) (from Gibbs, 1971) 
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 From the formation volume factors, 370 SCM of CO2 is required to fill one 
cubic meter of reservoir volume, whereas only 140 SCM air is required at the same 
temperature and pressure. Thus about three times as many moles (recall that B3 is a 
specific molar volume) of CO2 are required to fill the same reservoir volume as air. 
 Figures 7-5 and 7-6 give the viscosities of a natural gas mixture and pure 
CO2. Over the pressure and temperature range shown, which includes the conditions 
of interest in EOR, the viscosities of natural gas, and CH4, air, flue gas, and N2 are 
about the same. But the CO2 viscosity is generally two or three times higher. Relative 
to a hydrocarbon liquid or water viscosity, the values are still low, so there should be 
no appreciable difference in the ease of injection of these solvents. However, the 
CO2––crude-oil mobility ratio will be two or three times smaller than the other light 
solvents; hence volumetric sweep efficiency will generally be better for CO2. (For the 
correlations for other solvents and solvent mixtures, see McCain, 1973; Reid et al., 
1977; and Gas Processors Suppliers Association, 1973.) 
 
 

 
 

 
 
 
 
Figure 7-5  Viscosity of a natural gas 
sample (from Lee et al., 1966)
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Figure 7-6  Viscosity of carbon dioxide as a function of pressure at various 
temperatures (from Goodrich, 1980) 

 
 

7-3 SOLVENT–CRUDE-OIL PROPERTIES 
 
 
In Secs. 4-1 and 4-2, we discussed general aspects of phase behavior for pure 
components and mixtures. In this section, we give specific features of solvent–crude 
phase behavior necessary for the development in later sections. 
 Figures 7-7 and 7-8 show pressure–composition (P-z) diagrams for two 
different solvent–crude systems. Recall that these diagrams are plots, at constant 
temperature, of pressure versus the overall mole percent of solvent in contact with a 
crude oil. These plots show the number and types of phases and the volume percent 
liquid. Figure 7-7 is for the recombined Wasson crude oil at 105°F (314 K), and Fig. 
7-8 is for the Weeks Island “S” Sand crude at 225°F (381 K). Other diagrams are 
reported elsewhere (Turek et al., 1980; Orr and Jensen, 1982). The data in Figs. 7-7 
and 7-8 represent behavior typical of low- and high-temperature systems. Recall that 
no water is present during the phase behavior measurements. For mixtures, the mole 
percent can represent both phase and overall concentrations. 
 The P-z diagrams have the same general form regardless of the temperature. 
The left vertical axis gives the phase behavior of the CO2-free crude; thus the bubble 
point of the recombined Wasson crude at 314 K (105°F) is 6.81 MPa (1,000 psia) 
from Fig. 7-7. The right vertical axis similarly gives pure CO2 properties, which will
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Figure 7-7  P-z diagram for recombined 
Wasson crude, CO2 system (from 
Gardner et al., 1981)

 
 
be a single-phase fluid for Figs. 7-7 and 7-8 since both are above the CO2 critical 
temperature. At low pressures and for all CO2 concentrations, except very near the 
right axis, the mixture is two-phase liquid and vapor. The liquid volume quality lines 
are also shown. At high pressures and low CO2 concentration, the mixture is single 
phase. At about 60% CO2, a critical point exists through which pass two single-phase 
boundaries. The CO2 composition at this point is the critical composition for the 
fixed temperature and indicated pressure. The phase boundary line below the critical 
point is a bubble point curve, and that above is a dew point curve. Thus the upper left 
corner of the P-z diagram is a supercritical fluid region. The system could form a 
liquid phase as the light component increases in concentration at a constant pressure 
greater than the critical. This change is a type of retrograde behavior. 
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Figure 7-8  Phase envelope for Weeks 
Island “S” Sand crude and 95% CO2, 5% 
plant gas at 225°F (from Perry, 1978)

 
  

Though few P-z diagrams are for solvents other than CO2 in the literature, it 
appears, based on the N2–crude-oil data in Fig 7-9, that the above qualitative 
character applies to other solvents as well. The critical pressure for the N2 solvent 
mixture in Fig. 7-9 is much larger (off the scale) than either of the critical pressures 
of the CO2 systems in Figs. 7-7 and 7-8. 
 The main difference between the low- and high-temperature phase behavior 
is the presence, in Fig. 7-7, of a small three-phase region just below and to the right 
of the critical point. These phases are two liquids––a light or upper phase and a heavy 
or lower phase––and a vapor phase. Such behavior has generally not been observed 
at high temperatures (Fig. 7-8) (Turek et al., 1980). Moreover, at low temperatures, a 
small amount of solid precipitate can exist over some composition and pressure 
ranges. The precipitate is composed mainly of asphaltenes, the n-heptane insoluble
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Figure 7-9  Pz diagram for reservoir fluid B-nitrogen system at 164°F (347 K) 
(from Hong, 1982) 

 
fraction of crude oil (Hirshberg et al., 1982). The region of precipitate formation may 
overlap the three-phase region. This behavior offers a complication to the 
displacement process and may even present operational problems since the solid 
precipitate can cause formation plugging. 
 Consider now a displacement of a crude by a pure solvent in a permeable 
medium at some time before solvent breakthrough. The conditions at the injection 
end of the medium plot on the right vertical axis of the P-z diagram, and those at the 
production end plot on the left axis at some lower pressure. Conditions in the medium 
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between these extremes are not represented on the P-z diagram since the relative 
amounts of each hydrocarbon component do not remain constant during a 
displacement, as they do in the PVT measurements of Figs. 7-7 through 7-9. 
Therefore, the diagrams are not particularly useful for displacement classification, 
which is based on the ternary diagrams we describe next. Still, one can see 
qualitatively from these diagrams that completely miscible displacements––those that 
are a single phase for all solvent concentrations––would require high reservoir 
pressures, in excess of 66.7 MPa (9,800 psia) for the data in Fig. 7-8. 
 Ternary diagrams are more useful in classifying solvent floods because they 
impart more compositional information than do P-z diagrams. Figures 7-10 through 
7-12 show representations of these. On these diagrams the solvent–crude mixture is 
represented by three components; a light component on the top apex, an intermediate 
crude fraction on the right apex, and a heavy crude fraction on the left apex. The 
exact split between intermediate and heavy crude components is immaterial to the 
general features of the phase equilibria or to the miscibility classification. In Figs. 7- 
10 and 7-11, the split is between the C6 and C7 molecular weight fractions. Therefore, 

 

 
 

Figure 7-10  Ternary equilibria for CO2-recombined Wasson crude mixture 
(Gardner et al., 1981) 
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Figure 7-11  Ternary equilibria for CO2-recombined Wasson crude system (from 
Gardner et al., 1981) 

 
none of the corners of these ternaries are pure components, hence the designation 
pseudocomponents. As before, no water is on the diagrams. In addition to those given 
here, ternary diagrams are in the literature in several other sources: for alcohol 
solvents (Holm and Csaszar, 1965; Taber and Meyer, 1965), for natural gas solvents 
(Rowe, 1967), for CO2 (Metcalfe and Yarborough, 1978; Orr et al., 1981; Orr and 
Silva, 1982), for N2 solvents (Ahmed et al., 1981), and for mixtures of CO2, SO2, and 
CH4 (Sazegh, 1981). 
 A good example of CO2–crude-oil equilibria is shown in Fig. 7-10 for the 
recombined Wasson crude (compare Figs. 7-10 and 7-11 with Fig. 7-8, the P-z 
diagram for the same mixture). In these solvent–crude systems, the phase equilibria is 
strongly dependent on reservoir temperature and pressure (recall that the ternary is at 
constant T and P). Typically, though, the pressure is larger than the cricondenbar of 
the light–intermediate component pseudobinary; hence these two components are 
miscible in all proportions. The pressure is smaller than that of the light–heavy 
binary, and there is a region of limited miscibility or two-phase behavior along the
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Figure 7-12  Methan–crude oil ternary phase behavior (from Benham et al., 1961) 
 
light–heavy axis. This region of two-phase behavior extends into the interior of the 
ternary and is bounded by a binodal curve (see Sec. 4-3). Within the binodal curve, 
there are tie lines whose ends represent the composition of the equilibrium phases. 
These shrink to a plait point where the properties of the two phases are indistin-
guishable. The plait point is the critical mixture at this temperature and pressure. 
 Of great importance in what follows is the critical tie line, the fictitious tie 
line tangent to the binodal curve at the plait point. The critical tie line is the limiting 
case of the actual tie lines as the plait point is approached. As pressure increases, the 
two-phase region shrinks––that is, light–heavy miscibility increases. No general 
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statement is possible about the effect of temperature though the two-phase region 
generally increases with increasing temperature. For low pressure and low 
temperature, a three-phase region can intrude into the two-phase region (Fig. 7-11). 
 These general characteristics apply for solvents other than CO2 (Fig. 7-12). 
The composition of the reservoir crude can be placed on the ternary, as can the 
composition of the solvent. In doing this, we are neglecting the pressure change that 
is, of course, an essential ingredient in making the fluids flow in the reservoir. Even 
with this approximation, all compositions in the solvent crude mixing zone do not lie 
on a straight line connecting the initial and injected. This is because the composition 
changes are affected by the phase behavior. In fact, these changes are the basis for the 
classification of solvent displacements that we give in the next few paragraphs 
(Hutchinson and Braun, 1961). 
 We represent a one-dimensional displacement of a crude by a solvent on the 
schematic ternary diagram in Fig. 7-13. The crude is in the interior of the ternary, 
indicating some of the light component is present initially in the crude. If a straight-
line dilution path between the solvent and the crude does not intersect the two-phase 
 

 
 

Figure 7-13  Schematic of the first-contact miscible process 
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region, the displacement will consist of a single hydrocarbon phase that changes in 
composition from crude to undiluted solvent through the solvent oil mixing zone. The 
dilution path is linear (see Sec. 7-6) since the only mechanism for mixing is 
dispersion, there being no water or fractional flow effects associated with the single 
hydrocarbon phase. A displacement that occurs entirely within one hydrocarbon 
phase is first-contact miscible. There is a range of solvent compositions that will be 
first-contact miscible with the crude at this temperature and pressure. 
 Suppose the solvent consists entirely of the light component (Fig. 7-14). The 
displacement is not first-contact miscible since the dilution path passes through the 
two-phase region. Imagine a series of well-mixed cells that represent the permeable 
medium in a one-dimensional displacement. The first cell initially contains crude to 
which we add an amount of solvent so that the overall composition is given by M1. 
The mixture will split into two phases, a gas G1 and a liquid L1, determined by the 
equilibrium tie lines. The gas G1 will have a much higher mobility than L1, and this 
phase moves preferentially into the second mixing cell to form mixture M2. Liquid L1 
remains behind to mix with more pure solvent. In the second cell mixture, M2 splits 
into gas G2 and liquid L2, G2 flows into the third cell to form mixture M3, and so 
 
 

 
 

Figure 7-14  Schematic of the vaporizing gas drive process (adapted from 
Stalkup, 1983) 
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forth. At some cell beyond the third (for this diagram), the gas phase will no longer 
form two phases on mixing with the crude. From this point forward, all compositions 
in the displacement will be on a straight dilution path between the crude and a point 
tangent to the binodal curve. The displacement will be first-contact miscible with a 
solvent composition given by the point of tangency. The process has developed 
miscibility since the solvent has been enriched in intermediate components to be 
miscible with the crude. Since the intermediate components are vaporized from the 
crude, the process is a vaporizing gas drive. Miscibility will develop in this process 
as long as the injected solvent and crude are on opposite sides of the critical tie line. 
 Suppose the crude and solvent compositions are again on opposite sides of 
the critical tie line but reversed from the vaporizing gas drive (Fig. 7-15). In the first 
mixing cell, the overall composition M1 splits into gas G1 and liquid L1. Gas G1 
moves on to the next mixing cell as before, and liquid L1 mixes with fresh solvent to 
form mixture M2. Liquid L2 mixes with fresh solvent, and so forth. Thus in the first 
mixing cell, this mixing process will ultimately result in a single-phase mixture. 
 
 

 
 

Figure 7-15  Schematic of the rich-gas drive process (adapted from Stalkup, 
1983) 
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Since the gas phase has already passed through the first cell, the miscibility now 
develops at the rear of the solvent–crude mixing zone as a consequence of the 
enrichment of the liquid phase in intermediate components there. The front of the 
mixing zone is a region of immiscible flow owing to the continual contacting of the 
gas phases G1, G2, and so on, with the crude (this is also true at the rear of the mixing 
zone in the vaporizing gas drive). The process in Fig. 7-15 is the rich gas drive 
process since intermediates were added to enrich the injected solvent. Since these 
intermediates condense into the liquid phase, the process is sometimes called a 
condensing gas drive. Figure 7-12 shows that more than twelve contacts are 
necessary to develop miscibility in an actual system. 
 Figure 7-16 shows a schematic of an immiscible displacement. The crude 
and solvent are in single-phase regions, but both are on the two-phase side of the 
critical tie line. Now the initial mixture M1 in the first mixing cell will form gas G1, 
which will flow forward to form mixture M2, and so forth. This gas is being enriched 
in intermediate components at the leading edge (forward contacts) of the solvent–
crude mixing zone as in a vaporizing gas drive. But the enrichment cannot proceed 
beyond the gas-phase composition given by the tie line whose extension passes 
 
 

 
 

Figure 7-16  Schematic of an immiscible displacement 
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through the composition crude. At the forward contacts, there will be an immiscible 
displacement of the crude by a mixture on the limiting tie line. Back at the first 
mixing cell, liquid L1 mixes with solvent to form mixture M–1, just as in the 
condensing gas drive. The displacement is immiscible here since a single-phase 
solvent is displacing a two-phase mixture. The liquid phase becomes progressively 
stripped of intermediates (L–1, L–2 and so on) until it reaches another limiting tie line. 
The displacement is entirely immiscible, then, at both the forward and reverse 
contacts. The intermediate components are in a gas phase near the production end of 
the permeable medium, and in a liquid phase at the injection end. An immiscible 
flood entirely devoid of injected intermediates is a dry gas flood. 
 Figure 7-17 summarizes the classification of solvent displacements. A 
dilution path (I2-J3) that does not pass through the two-phase region is a first-contact 
miscible displacement. A dilution path entirely on the two-phase side of the critical 
tie line constitutes immiscible displacement (I1-J1). When initial and injected 
compositions are on opposite sides of the critical tie line, the displacement is either a 
 

 
 

Figure 7-17  Summary of miscibility and developed miscibility 
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vaporizing gas drive (I2-J1) or a condensing gas drive (I1-J2). The last two cases are 
developed or multiple-contact miscible displacement. 
 At the conditions shown in Fig. 7-10, CO2 displaces oil as a vaporizing gas 
drive. At comparable conditions (Figs. 7-12 and 7-18), N2 and CH4 are usually an 
immiscible solvent. The CH4 in Fig. 7-12 can be converted into a condensing gas 
drive by adding about 35 mole % intermediates. 
 The solvent flooding classifications given here are corroborated by simple 
wave theory (see Sec. 7-7) and experimental results. Figure 7-19 shows the effluent 
history of three CO2 floods in a Berea core. The oil in this displacement was a 
mixture of 25 mole % C1, 30 mole % C4, and 45 mole % C10. The three runs were at 
10.2 MPa (1,500 psia) (run 4), an immiscible displacement; 12.9 MPa (1,900 psia) 
(run 5), a first-contact miscible displacement; and 11.6 MPa (1,700 psia) (run 6), a 
vaporizing gas drive. The temperature was 344 K (160°F) for all runs. 
 The effluent histories in Fig. 7-19 are plots of C1, C4, and C10 concentrations, 
normalized by their initial values, versus the hydrocarbon pore volumes (HCPV) of 
CO2 injected (see Table 5-1). If the dilution path between the oil and the solvent were 
a straight line, the normalized concentration of all displaced components would be 
identical. They are identical in the first-contact miscible run 5. The vaporizing gas 
drive run 6 shows that the normalized concentrations of the heavy component C10 
declines slightly before the C4 curve declines (Fig. 7-19b). (The run 6 composition at 
 

 
Figure 7-18  Ternary equilibria for N2–crude-oil mixture (from Ahmed et al., 
1981) 

 



 255

 
 

Figure 7-19  Effluent histories from laboratory displacement run 4 immiscible, run 5 first-
contact miscible, run 6 multiple-contact miscible (from Metcalfe and Yarborough, 1978) 
 
0.9 HCPV is relatively rich in C4.) In addition, the light components C1 go through a 
maximum at about the same point (Fig. 7-19a). The C1 maximum is even more 
pronounced in the immiscible displacement probably because the fluids can now be 
saturated with respect to C1. A similar effect should occur in a condensing gas drive 
process though the enrichment will now occur at the rear of the mixing zone. 
 The immiscible displacement and vaporizing gas drive process are similar; 
however, the oil recovery (displacement efficiency) in the immiscible run (80%) was 
considerably smaller than that for either the first-contact (97%) or the vaporizing gas 
drive run (90%). Developed miscibility displacements can give oil recoveries 
approaching first-contact miscible displacements; immiscible processes are usually 
much poorer. 

Immiscible displacements have merit since pressure requirements are not 
large, the solvents are usually less expensive, and they can recover some oil. The 
principal recovery mechanisms for immiscible solvents are (1) a limited amount of 
vaporization and extraction, (2) oil viscosity reduction, (3) oil swelling, (4) solution 
gas drive during pressure decline, and (5) interfacial tension lowering. All immiscible
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Figure 7-20  Solubility (mole fraction) of carbon dioxide in oils as a function of UOP number 
(from Simon and Graue, 1965)
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displacements recover oil in this manner though the data showing these effects are 
most complete on CO2-immiscible displacements (Simon and Graue, 1965). 
 Figures 7-20 through 7-22 show experimental data that emphasize 
immiscible recovery mechanisms 1–3. Figure 7-20(a) shows the solubility of CO2 in 
oil versus temperature and saturation pressure for a crude with a Universal Oil  
 

 
Figure 7-21  Viscosity correlation charts for carbon-dioxide–oil mixtures (from 
Simon and Graue, 1965) 
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Figure 7-22  Swelling of oil as a function of mole fraction of dissolved carbon 
dioxide (from Simon and Graue, 1965) 

 
Characterization factor (K) of 11.7. This factor is the ratio of the cube root of the 
average boiling point in degrees R to the specific gravity. It can be related to API 
gravity and viscosity (Watson et al., 1935). The saturation pressure is the bubble 
point pressure; hence Fig. 7-20(a) is giving the maximum solubility of CO2 at the 
indicated temperature and pressure. Figure 7-20(b) corrects the solubility data to 
other characterization factors. Figure 7-21 gives the viscosity ratio of a CO2-swollen 
crude (µm in this figure) to the CO2-free crude (µ0) as a function of pressure. For 
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moderate saturation pressures, the viscosity reduction is pronounced, particularly for 
large crude viscosities. 

Figure 7-22 illustrates the oil swelling mechanism by giving crude swelling 
factors correlated with ratios of molecular weight to standard density (g/cm3). Similar 
data on the swelling of crude by N2 are given by Vogel and Yarborough (1980). 

Figures 7-20 through 7-22 are complementary. Let’s estimate the CO2 
solubility, oil viscosity reduction, and swelling factor for a crude oil at 389 K (150°F) 
and 8.2 MPa (1,200 psia). Recall that we are calculating the properties of a liquid 
hydrocarbon phase immiscible with CO2. Therefore, the overall CO2 mole fraction 
must be large enough to be in the two-phase region of the ternary diagram. The 
relevant physical properties of the crude are as follows: molecular weight = 130, 
UOP characterization factor K = 11.8, specific gravity = 0.70, normal boiling point = 
311 K (100°F), and viscosity = 5 mPa-s. This gives a CO2 solubility of 55 mole % 
from Fig. 7-20. This solubility causes the oil viscosity to decrease to 1 mPa-s from 
Fig. 7-21, and the oil to swell by about 33% from Fig. 7-22. (For additional data on 
the properties of crude containing immiscible solvents, see Holm, 1961; de Nevers, 
1964; Holm and Josendal, 1974; and Tumasyn et al., 1969.) 
 

 
 

Figure 7-23  Solubility of carbon dioxide in water (from Crawford et al., 1963) 
 
 

7-4 SOLVENT–WATER PROPERTIES 
 
The solubility of CO2 in water is a function of temperature, pressure, and water 
salinity (McRee, 1977). Figure 7-23 shows this solubility as a solution gas–water 
ratio. The data in Fig. 7-23 give the maximum CO2 solubility at the indicated 
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tempeature and pressure; hence the horizontal axis is actually saturation pressure. 
The data are entirely equivalent to the data in Fig. 7-21(a) for CO2–oil mixtures. The 
solution gas–water ratio may be readily converted into mole fraction. 
 Carbon dioxide is the only solvent with appreciable solubility in water over 
EOR temperature and pressure ranges (Culberson and McKetta, 1951). The CO2 
increases the viscosity of water slightly (Tumasyn et al., 1969) and decreases the den-
sity (Parkinson and de Nevers, 1969). This density change has been shown (Welch, 
1982) to be less than that predicted by ideal solution theory. Neither the change in 
viscosity nor the change in density is likely to affect oil recovery very much. 
 
 

7-5 SOLVENT PHASE BEHAVIOR EXPERIMENTS 
 
 
Solvent phase behavior does not solely determine the character of a solvent flood, but 
it is of such fundamental importance that we devote a section to some of the common 
experiments used to measure phase behavior. This discussion leads naturally to the 
most frequently reported characteristic of solvent phase behavior––minimum 
miscibility pressure. 
 
Single Contact 
 
In a single-contact experiment, a known amount of solvent is charged into a 
transparent pressure cell containing a known amount of crude oil. After equilibrium 
is established at the desired temperature and pressure, a small amount of each phase 
is withdrawn. The phase compositions represent the ends of an equilibrium tie line. 
Only the composition of one phase need be measured since the composition of the 
other phase can be calculated from material balance. Single-contact experiments are 
useful for measuring P-z diagrams since the pressure can be changed, at fixed overall 
composition, by changing the cell volume. If the experiment is repeated for various 
amounts of solvent, the single-contact experiment traces a dilution path on a ternary 
diagram between the solvent and crude. 
 
Multiple Contact 
 
The multiple-contact experiment duplicates the process described in Sec. 7-3 under 
miscible process classification. In it (Fig. 7-24), known amounts of solvent and crude 
are charged to a transparent pressure cell as in the single-contact experiment, but 
after equilibration, the upper phase is decanted and mixed in a second cell with fresh 
crude. The lower phase in the cell is similarly mixed with fresh solvent. The upper 
phase is repeatedly decanted in this manner to simulate, discretely, the mixing that 
would take place at the forward contacts of the solvent–crude mixing zone. The 
successive mixings with the lower phase are the reverse contacts. All contacts are a 
fixed temperature and pressure. 
 From Fig. 7-24, the multiple-contact experiment for Fig. 7-10, the solvent
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Figure 7-24  Multiple-contact experiment in 105°F (2,000 psia) (from Gardner et 
al., 1981) 

 
enrichment in the forward contacts or the crude enrichment in the reverse contacts 
can cause one of the phases to disappear. This is exactly what is predicted by the 
arguments used in the process classification section: A single phase cell in the 
forward contacts indicates a vaporizing gas drive; in the reserve contacts, a 
condensing gas drive; and two or more phases in all contacts, an immiscible process. 
If the original cell is single phase for all combinations of solvent and crude oil, the 
process is first-contact miscible. 
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The experiment depends somewhat on the initial charges to the first cell, so 

the results are no more than indications of process classification. If phase 
compositions are measured at every step, the binodal curve and tie lines on a ternary 
diagram are established. Agreement between single- and multiple-contact 
experiments, as in Fig. 7-10, substantiates the pseudocomponent representation of the 
multicomponent equilibria. 

Both single- and multiple-contact experiments place a premium on visual 
observations, but with careful selection of the initial volumes, these experiments are 
convenient ways to determine complete ternary equilibria data. Orr and Silva (1982) 
have proposed a method to measure phase behavior through continuous contacting. 
 
Slim Tube 
 
Filling the gap between the above static measurements and core floods are the slim 
tube experiments. These experiments are crude displacements by solvent, in the 
absence of water, at fixed temperature. The permeable medium consists of beads or 
unconsolidated sands packed in tubes of very thin cross section and, frequently, large 
length. The displacements are run with a fixed pressure at the one end of the system, 
and because the permeability of the medium is large, pressure gradients are 
negligible. Table 7-1 shows characteristics of selected slim tube experiments. 

The overriding feature of slim tube experiments is the large aspect ratio 
(length-to-diameter ratio). This is intended to suppress viscous fingering since the 
long length means there is sufficient time during the displacement for all 
perturbations to be suppressed by transverse dispersion. Small wavelength 
perturbations will not form at all since the tube diameter is smaller than the critical 
wavelength (see See. 6-8). 

The slim tube experiment, then, is designed to provide an unambiguous 
measure of solvent displacement efficiency. But because of both the highly artificial 
nature of the permeable medium and the experimental conditions (no water), this is 
not a realistic displacement efficiency. The results are best regarded as a dynamic 
measure of phase behavior properties. 
 
Minimum Miscibility Pressure 
 
Although effluent compositions can be monitored during a slim tube displacement, 
by far the most common information derived from the experiments is the minimum 
miscibility pressure (MMP). Since solvent miscibility increases with pressure, 
ultimate oil recovery should also increase with pressure. This, in fact, happens, but 
there is a pressure above which a further pressure increase causes only a minimal 
increase in oil recovery. The pressure at which oil recovery levels out is the MMP, or 
minimum dynamic miscibility pressure. MMP is variously defined as 
 

• The pressure at which the oil recovery at tD = 1.2 PV of CO2 injected was 
equal to or very near the maximum final recovery obtained in a series of tests 
(Yellig and Metcalfe, 1980) 
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TABLE 7-1  CHARACTERISTICS OF SLIM TUBE DISPLACEMENT EXPERIMENTS (ADAPTED FROM ORR ET AL., 1982) 

 
Author(s)* 

Length 
(meters) 

ID 
(cm) 

 
Geometry 

Packing 
(mesh) 

Permeability 
(μm2) 

Porosity 
(%) 

Rate 
(cm/hr) 

tK

uL

φ
 

Rutherford (1962)   1.5 1.98 Vertical tube 50–70 mesh 
Ottawa sand

24 35 37       0.2 

Yarborough and 
Smith (1970) 

  6.7 0.46 Flat coil No. 16 AGS   2.74  66     11.9 

Holm and 
Josendal (1974) 

14.6 
25.6 

0.59  No. 60 
 Crystal sand

  3.81   109.1 

Holm and 
Josendal (1982) 

15.8 0.59 Coil No. 60 
 Crystal sand

20 39 101–254     12.5 
    14.9 

Huang and Tracht 
(1974) 

  6.1 1.65     1.78 43 4.7       4.8 

Yellig and 
 Metcalfe (1980) 

12.2 0.64 OD Flat coil 160–200 mesh 
sand 

  2.5  5.2–10.2     33.4 
    58.1 

         
Peterson (1978) 17.1 0.64  60–65 mesh 

sand 
19    

Wang and 
 Locke (1980) 

18.0 0.62 Spiral coil 80–100 mesh 13 35 381 12.3 

Orr and 
 Taber (1981) 

12.2 0.64 Spiral coil 170–200 mesh 
glass beads

  5.8 37 42 13.5 

Gardner, Orr, 
 and Patel 

(1981) 

  6.1 0.46 Flat coil 230–270 mesh 
glass beads 

  1.4 37 32 
64 

15.0 

Sigmund et al. 
(1979) 

17.9 0.78  140 mesh   5 42   

* References in Orr et al.
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• The pressure that causes 80% oil recovery at CO2 breakthrough and 94% 

recovery at a gas-to-oil ratio of 40,000 SCF/stb (Holm and Josendal, 1974) 
• The pressure that causes 90% oil recovery at tD = 1.2 HCPV of CO2 injected 

(Williams et al., 1980) 
 
Others (Perry, 1978; Yellig and Metcalfe, 1980) emphasize the qualitative nature of 
the miscibility pressure determination. The importance of the exact definition is 
unknown; all definitions show the same trends in correlations. 

The results of slim tube experiments are giving the minimum pressure 
necessary for the displacement to develop miscibility. Thus the MMP corresponds to 
the pressure at which the critical tie line passes through the crude composition. This 
pressure is considerably less than that required for complete or first-contact 
miscibility (compare the MMP plots with the P-z diagrams). This is the origin of the 
plateau on the oil-recovery–pressure plot: Any further pressure increase does not 
increase oil recovery since above the MMP the displacement will tend from 
developed to first-contact miscibility. These observations are also supported by 
compositional measurements wherein the properties (viscosity, density, and 
composition) of phases produced below the MMP become closer to one another as 
the MMP is approached. 

The CO2 MMP is determined by temperature, pressure, solvent purity, and 
molecular weight of the heavy fraction of the reservoir crude. Generally, the MMP 
increases with temperature and heavy fraction molecular weight. Holm and Josendal 
(1974 and 1982) note that the development of miscibility for CO2 solvents is the 
result of extracting hydrocarbon components into a CO2-rich phase. Therefore, at a 
given temperature and crude composition, sufficient compression must be applied to 
the solvent to promote solvency with the crude. This solvency is manifest by the CO2 
density at the temperature of the test. Figure 7-25(a) shows the CO2 density required 
to develop miscibility at a given temperature with the C5–C30 percent of the 5C+  crude 
fraction. The CO2 density can be connected to MMP through Fig. 7-4 or Fig. 7-25(b). 
CO2 MMP is affected by the type of hydrocarbons (aromatic or paraffinic) in the 
crude but to a lesser degree than by temperature and CO2 density (Monger, 1985). 

Several works have presented determinations of MMP for impure CO2. 
Figure 7-26 shows the results of the effects of N2, CH4, H2S and H2S-CH4 mixtures 
on the CO2 MMP. Methane and particularly nitrogen increase the CO2 MMP, 
whereas H2S decreases it. Whether an impurity increases or decreases the MMP 
depends on whether the solvency of the solvent has been enhanced. Solvency is 
improved (MMP decreases) if CO2 is diluted with an impurity whose critical 
temperature is more than that of CO2. Solvency deteriorates (MMP increases) if CO2 
is diluted with an impurity with a critical temperature less than CO2. Compare the 
trends in Fig 7-26 with the critical temperatures in Fig. 7-2. 

The above idea of solvency can be used to estimate the MMP of an impure 
CO2 solvent. Sebastian et al. (1984) have correlated the diluted CO2 MMP by the 
following:
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Figure 7-25  Density of CO2 required for miscible displacement of various oils at 
90° to 190°F (from Holm and Josendal, 1982) 
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Figure 7-26  Effect of impurities on CO2 minimum miscibility pressure (from Johnson and 
Pollin, 1981; Whitehead et al., 1980; Metcalfe, 1981) 
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where Tpc = i ci iT y∑  is the pseudocritical temperature of the mixture, and yi is the 
mole fraction of species i in the solvent. The denominator of the left side of Eq. 
(7.5-1) can be estimated from Fig. 7-25. (For other correlations, see Johnson and 
Pollin, 1981.) No MMP correlation is especially accurate; errors as much as 0.34 
MPa (50 psia) are common. 
 
Minimum Enrichment Correlations 
 
For a dry gas process, slim tube results will give an estimate of the amount of 
intermediates that must be added to develop miscibility in a condensing gas drive. 
Such experiments were precursors to the MMP experiments (Benham et al., 1961). 
The oil recovery plot would consist of several experiments each with a successively 
richer injected solvent but each at constant pressure. When the solvent composition 
coincided with the tie line extension (through the reverse contacts), oil recovery 
would cease to increase as the solvent becomes richer in intermediates. 

Figure 7-27 is one of 12 plots from Benham et al. (1961) that shows the 
maximum methane concentration permissible in an LPG solvent that will develop 
miscibility with the subject crude. These authors correlated the maximum dilution (or 
 

 
Figure 7-27  Maximum methane dilution in LPG solvent for developed miscibility 
at 2,500 psia and for a reservoir fluid whose C5

+ component molecular weight is 
240 (from Benham et al., 1961) 
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minimum enrichment) with temperature, pressure, molecular weight of the 
intermediate component in the solvent, and molecular weight of the 5C +  fraction in 
the crude. The minimum dilution increases with decreasing 5C+  molecular weight, 
pressure, and temperature, and it increases with increasing intermediate molecular 
weight. 

Each of these trends follows from the trends in the phase behavior and the 
position of the crude and solvent on the ternary diagram. And each may be 
quantitatively established on true ternaries with accurate thermodynamic properties. 
But the pseudocomponent representation of more than three components on a ternary 
is not rigorous, and this leads to some difficulty in quantitatively predicting both the 
minimum dilution and the MMP on actual systems. 
 
 

7-6 DISPERSION AND SLUG PROCESSES 
 
In the next few sections, we look in detail at how a miscible solvent behaves during 
oil displacement. You should remember that first-contact and developed miscibility 
solvent behave very much alike. 
 
Dilution Paths 
 
The concentration of species i in a first-contact miscible displacement is from Eq. 
(5.5-15) 
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 (7.6-1) 

 
For this equation to be valid, we cannot have viscous fingering, layering, or gravity 
tonguing; hence it is restricted to constant viscosity and density floods in 
one-dimensional media. In Eq. (7.6-1), xD is the dimensionless length, tD the 
dimensionless time in fractional pore volumes, Npe the Peclet number, and the 
subscripts I and J refer to initial and injected conditions, respectively. 

If we let the component subscript i refer to the light, intermediate, and heavy 
pseudocomponents of Sec. 7-3, we can easily show from Eq. (7.6-1) that dilution 
paths are straight lines on a pseudoternary diagram. Eliminating the term in brackets 
among the three equations gives 
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The Ci in Eq. (7.6-2) lie on a straight line in composition space; hence the dilution 
path of Sec. 7-3 is linear. 
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Superposition 
 
Solvents are usually too expensive to be injected continuously. Thus a typical 
displacement consists of a finite amount or slug of solvent followed by a less 
expensive chase fluid. The concentration of a slug follows from Eq. (7.6-1) and the 
principle of superposition. This principle applies to linear partial differential 
equations, which Eq. (7.6-1) is an approximate solution to. We can, in fact, derive the 
concentration response of an infinite number of step changes in the influent 
concentration (see Exercise 7C), but we restrict our discussion here to the case of a 
single solvent slug displaced by a chase fluid. 

Let I, J, and K denote the concentrations of species i in the original fluid, the 
slug, and the chase fluids, respectively. Superposition states that the sum of individ-
ual solutions to a linear differential equation is also a solution to the equation. This 
seems easy enough to do in practice, but we must take care in selecting the boundary 
conditions of the individual solutions to give the correct composite solution. Figure 
7-28 shows the influent or imposed boundary conditions of the single front problem 
 

 
 

 
 
 
 
Figure 7-28  Schematic of influent 
boundary conditions for slugs
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(Fig. 7-28b) and that of the composite solution (Fig. 7-28c). The composite solution 
gives Ci(xD, tD) for the imposed conditions in Fig. 7-28(a), simply the sum of the 
solutions to the conditions in Figs. 7-28(b) and 7-28(c), respectively. The solution to 
the imposed conditions in Fig. 7-28(b) is Eq. (7.6-1), and that of the imposed 
condition in Fig. 7-28(c) is 
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By superposition Ci(xD, tD) for the influent condition in Fig. 7-28(a) is the sum of 
Eqs. (7.6-1) and (7.6-3) 
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 (7.6-4) 

 
Equation (7.6-4) is valid for any value of the injected concentrations. 

Frequently, we are interested in the concentration of the solvent at the 
midpoint between xD = tD and xD = tD – tDs. Evaluating Eq. (7.6-4) at xD = tD – tDs/2 
yields this midpoint concentration iC  
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 (7.6-5) 

 
This equation is valid only for relatively small tDs where the difference between the 
square roots of tD and tD – tDs in the denominator of the error function argument is not 
large. If CiJ > CiI and CiJ > CiK, the midpoint concentration is usually called the peak 
concentration. For CiI = CiK = 0, the peak concentration falls with increasing time 
according to 
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 (7.6-6) 

 
The error function may be replaced by its argument for small values of the argument. 
In this event, the peak concentration falls in inverse proportion to the square root of 
time. Since xD = tD – tDs/2 at the peak concentration, this is equivalent to iC  falling in 
proportion to the inverse square root of the distance traveled. 



 271

 
Figure 7-29  Miscible slug concentration profiles for matched viscosity and density 
displacements (from Koch and Slobod, 1956) 
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The peak concentration falling below CiJ is the consequence of -overlapping 

front and rear mixing zones. Figure 7-29 shows experimental concentration profiles 
from a miscible slug displacement at different throughputs. Figure 7-29(a) has the 
concentration profiles normalized to the midpoint position xD = tD – tDs/2 on the 
horizontal axis. The areas under all curves are the same (material balance is 
preserved), but the peak concentration falls as the number of passes (travel distance) 
increases. The unnormalized profiles in Fig. 7-29(b) show that the peak concentration 
falls approximately as the inverse square root of tD in experimental floods. 

The midpoint concentrations also trace a straight line in the pseudoternary 
diagram since the error function arguments in Eq. (7.6-5) may be eliminated to give 
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 (7.6-7) 

 
This equation says that as time increases, the midpoint concentration traces a straight 
line between the injected slug concentration CiJ and the average concentration of the 
 

 
Figure 7-30  Dilution of solvent slug by mixing (from Stalkup, 1983) 
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fluids ahead of and behind the slug. The midpoint concentrations at successive times 
a, b, and c are shown in Fig. 7- 30, as are the dilution paths given by Eq. (7.6-4). The 
dilution paths become straight line segments from CiJ to iC  and then from iC  to CiK 
for tDs small. These considerations are valid only so long as the entire dilution path 
stays in the single-phase region of the diagram. It is not necessary for iC  to fall into 
the two-phase region for the displacement to lose first-contact miscibility (see 
Exercise 7E). 
 
 

7-7 TWO-PHASE FLOW IN SOLVENT FLOODS 
 
Two or more phases are all too common in solvent floods. When this happens, the 
dispersion theory of Sec. 7-6 does not apply. But general conclusions about such 
displacements are still possible based on the coherent or simple wave theory first 
introduced in Sec. 5-6. This theory neglects dissipative effects of any kind; hence we 
omit dispersion in the following discussion and restrict our treatment to centered 
simple waves (see Sec. 5-4 for definitions). 

We treat two cases of two-phase flow in miscible displacements: (1) solvent 
floods in the absence of an aqueous phase and (2) first-contact miscible 
displacements in the presence of an aqueous phase. In both cases, fluid displacement 
takes place in a one-dimensional permeable medium at constant temperature and with 
incompressible fluids and solid. 
 
Solvent Floods in the Absence of an Aqueous Phase 
 
In this section, we give a theoretical base for the classifications of Sec. 7-3. Consider 
a three-component system consisting of an intermediate hydrocarbon (i = 2), a light 
hydrocarbon (i = 3), and a heavy hydrocarbon that can form no more than two phases 
at constant temperature and pressure. As we discussed in Sec. 4-3, the overall 
concentrations Ci, the phase concentrations Cij, and the saturations Sj (j = 2 or 3) can 
be conveniently represented on ternary diagrams. 

The topology within the two-phase region is important for this problem. 
Figure 7-31 shows a ternary diagram with a two-phase region exaggerated to point 
out certain landmarks. Within the two-phase region is a family of quality lines that do 
not intersect and converge at the plait point. The binodal curve itself is a quality line. 
There are also lines denoting the residual saturations of the two phases. These lines 
do not, in general, coincide with quality lines since residual saturations must decrease 
as the plait point is approached (see Sec. 3-4). This decrease is because the interfacial 
tension between the two phases must vanish at the plait point. Along each tie line, 
there exists a curve relating the fractional flow of one of the phases to its saturation. 
Three of these curves, along tie lines A-A′, B-B′ and C-C′, are in the upper left insert 
to Fig. 7-31. The shape of the fractional flow curves is not determined by the phase 
behavior alone, but the curves become straighter (more miscible-like) with smaller 
residual phases along tie lines near the plait point. Because phase compositions are
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Figure 7-31  Landmarks on a two-phase ternary 

 
constant along tie lines, the Cij, Sj and fj can be converted to fractional flux and 
overall concentration through Eqs. (5.4-3). The upper right insert of Fig. 7-31 shows 
an F3-C3 along the three tie lines. 

This ternary system has only two independent components, which we 
arbitrarily take to be C2 and C3. The coherence condition (Eqs. 5.4-5 and 5.6-14) for 
this case becomes 
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Using the condition f2 + f3 = 1, and the definitions for overall flux and concentration 
(Eqs. 5.4-3a and 5.4-3c), Eq. (7.7-1) can be rewritten as (Helfferich, 1982) 
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 (7.7-2) 

 
The curve in the ternary composition space that a displacement follows (the 

composition route) is quite complex, but certain segments (composition paths) are 
readily apparent from Eq. (7.7-2). 
 

1. Unit velocity paths. These occur along any direction in the single-phase 
region (all directions are coherent) or along the binodal curve. In both cases, 
f2 = S2 = 1 or f3 = S3 = 1, depending on the side of the plait point, and the 
composition velocity is 
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Equation (7.7-3) is the same result as Eq. (5.4-7). 

Within the two-phase region is an equivelocity path where f2 = S2. 
This path is the intersection of a straight line through f2 = S2 = 0 and f2 = S2 = 
1 and the family of fractional curves (Fig. 7-31). It converges to the plait 
point, but it does not, in general, coincide with a quality line. 

2. Tie line paths. On tie lines in the two-phase region, dCij = 0. This also 
satisfies Eq. (7.7-2). On these paths, the concentration velocities are 
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Equation (7.7-4) is the same as the saturation velocity in the 
Buckley-Leverett theory (Eq. 5.2-10). 

Two other types of paths are not so easily derived. Both follow from 
integrating the composition path curve 
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and so on. 
3. Singular curves. Along these curves, the velocity of the fast and slow paths is 

equal. The curves follow from setting the discriminant of Eq. (7.7-5b) equal 
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to zero. Singular curves are composition paths since they can be generated 
from Eq. (7.7-5a) as long as F23 ≠ 0. 

4. Non-tie line paths. Within the two-phase region, there are also composition 
paths whose trajectories are not readily apparent from the above equations. 
Figure 7-32 shows each of these paths. 

 
If the tie lines extend to a common point, the concentration velocity along the 

non-tie line paths is constant (Cere and Zanotti, 1985). The phase equilibria is now 
represented by Eq. (4.4-27b), which we repeat for this special case 

 

 
 

Figure 7-32  Composition path in two-phase ternary equilibria 
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 0 0

3 3 2 2( ),       = 2 or 3j jC C C C jη− = −  (7.7-6) 
A particular tie line is represented by a particular value of η. If we introduce the 
definitions for overall flux and concentration into the coherence condition Eq. 
(7.7-1), we have 
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We can substitute Eq. (7.7-6) into the third term to give, after some rearrangement 
and identification, 
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Our task is to find the combination of variables that makes this equation an identity. 

Immediately we see that the equivelocity and tie line paths are returned from 
Eq. (7.7-8), for the conditions F2 = 0

2C  = C2 and dη = 0 clearly satisfy the equation. 
But the existence of both paths is more general than this since it follows from Eq. 
(7.7-2). 

The non-tie line paths are defined by the following equations: 
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Eliminating η between these two equations gives an ordinary differential equation 
relating F2 and C2 along the non-tie line path 
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Integrating this equation yields a linear relation between F2 and C2 
 0 0

2 2 2( )cF C I C C− = −  (7.7-11a) 
 
where Ic is an integration constant independent of either F2 and C2. Immediately it 
follows from Eqs. (7.7-11a) and (7.7-1) that the velocity along the non-tie line path is 
constant and that the constant velocity is, in fact, the integration constant. The path 
itself is given by the linear relation 
 0 0( ),       = 2, 3i i C i iF C v C C i− = −  (7.7-11b) 
 
Since the above development applies for either independent species, we drop the 
subscript on vC. 

As Fig. 7-32 shows, the entire two-phase region is covered with a net of non-
tie line paths along each of which the velocity is constant. Some of these paths cross 
the tie line paths, but others merge continuously with it at a point where the velocity 
along both paths is equal. The curve defining the locus of these intersection points is 
given by 
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from Eqs. (7.7-4) and (7.7-11b). This curve is the singular curve discussed above 
wherein the discriminant of Eq. (7.7-5b) vanishes. 

Figure 7-33 shows two fractional flux curves going from points J to I along 
the lines A-A′ and B-B′. These were selected because they are on tie lines that extend 
to the points J and I, respectively. The curves consist of three segments: a portion of 
unit slope corresponding to the single-phase regions in Fig. 7-32, horizontal portions 
corresponding to single-phase flow in the presence of another residual phase, and a 
curved portion corresponding to two-phase flow. The curve with the more 
compressed curved portion corresponds to the tie line nearest the plait point. 

Figure 7-33 also shows the construction for the singular point as suggested 
by Eq. (7.7-12). Since the slope of a tie line path is the coherent velocity, the tie line 

 
 

Figure 7-33  Fractional flux curves for Fig. 7-32 
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paths are slow outside the singular point intersections, and fast within the 
intersections. Understanding how a given tie line path can be both fast and slow is 
important for what follows. 

You should compare both the above constructions with those in Fig. 5-12(d). 
Just as there are a variety of possibilities in Fig. 5-12, because of the variety of 
fractional flow shapes, so there are several possible behaviors for the singular curves. 
For example, a fractional curve without an inflection (Fig. 5-12a) will have one 
singular curve that coincides with a residual phase saturation curve. 

We use the curves in Fig. 7-33 to select the only physically possible 
composition routes in Fig. 7-32. Before doing this, we remind you of the principles 
established in Sec. 5-6 for centered simple waves. 
 

1. The composition route must stay on the composition path segments in the 
ternary diagram. 

2. The composition velocity must decrease monotonically in the upstream 
direction. (This rule is actually a special case of the more general statement 
that all concentrations must be single valued.) 

3. The correct composition route must be insensitive to infinitesimal perturba-
tions in concentration. (This rule was not needed in Chap. 5, but it is here.) 

 
We build the composition path from I to J in three segments, each of which 

must satisfy these rules. 
Consider first the displacement of J1 by J. There are an infinite number of 

paths between J and J1, but we consider only the two extreme routes J → J′ → J1 and 
J → B′ → J1. The second path is nonphysical because it involves a fast segment (in 
the single-phase region) upstream of the slow segment between B′ and J1. We could 
resolve this by putting a shock directly from J to J1 but this would no longer follow 
the composition paths. Route J → J′ → J1 also contains fast paths upstream of slow 
paths, but the resulting resolution into shocks (Fig. 7-34a) remains on the 
composition paths. In fact, this is the only route between the two extremes we discuss 
here that remains so because the switch from one tie line to the other, J to J1, takes 
place along a non-tie line path. 

We see that the general use of non-tie line paths is to switch between tie 
lines. Figure 7-34(b) shows a composition profile for this displacement. The 
displacement shocks across the residual phase 2 saturation, causing complete 
recovery of this phase. This recovery, which takes place in the absence of lowered 
interfacial tension and developed miscibility, occurs because phase 2 dissolves into 
the injected phase J. Dissolution waves are normally inefficient since their 
propagation velocity is slow (Fig. 7-34). 

These comments also apply to the path from I′1 to I. Of the two extreme 
routes, I′1 → I1 → I and I′1 → A → I, only the latter yields a route along which the 
shock resolutions will remain on the composition path segments. Figure 7-35 shows 
the construction and corresponding profiles. 
 By comparing the routes J → J1 and I′1 → I, we see both entry and exit from 
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Figure 7-34  Composition route and profiles for displacement J → I1 
 
a two-phase region take place along tie line extensions. Further, both entry and exit 
contain slow shocks, which are the direct result of the slow segments of the fractional 
flux curves. If I′1 were above the equivelocity curve in Fig. 7-35(a), the route would 
follow a fast shock along the tie line nearest the plait point. 

The third segment, J1 to I1, follows a single tie line path whose velocity is 
given by the Buckley-Leverett construction (Fig. 7-36) from Eq. (7.7-4). 

In a sense, the above constructions, particularly I′1 to I, are misleading when 
applied to the entire displacement from I to J because the rules for centered simple 
waves must apply globally rather than individually to segments. To see this, consider 
the four possible composition routes from J to I: J → J′ → J1 → I, J → J′1 → J1 → I, 
J → I′1 → I1 → I, and J → J′ → J1 → I. After you carefully consider each case, with 
shock segments interspersed, the requirement of a monotonically increasing 
concentration velocity forces you to see the only correct choice is J → J′ → J1 → I. 
The immiscible displacement J → I will consist of two shock segments between 
which is a small spreading wave; these are sketched schematically in Fig. 7-37a. 
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Figure 7-35  Composition route and profiles for displacement I′1 → I 
 

As in all MOC problems, an infinite number of mathematical solutions exist, 
but by assumption, only one physical solution exists. Finding the physical solution 
involves trial and error according to the following procedure: 
 

1. Locate a tentative composition route between the injected and initial 
conditions on the fractional flux diagram. This route consists of segments 
that conform to the paths we discussed above. 

2. Resolve all physical inconsistencies along the tentative route with shocks. In 
doing this, assume the differential and integral composition routes are the 
same. 

3. Discard any tentative solution in which the shock resolution leads to a route 
that does not follow the composition path sequence. When this happens, 
return to step 1 with another tentative route. The correct solution is usually 
clear after a few trials. 
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Figure 7-36  Composition route and profiles for displacement I1 → I′ 
 

These rules enable us to sketch the composition routes for the three types of 
displacements (Fig. 7-37). The composition route of the immiscible displacements 
(Fig. 7-37a) both enters and exits the two-phase region on tie line extensions. The 
entering segment is an extremely slow shock (a solubilization wave), which is the 
consequence of the residual phase saturations. If the system includes more than three 
true components––that is, at least one apex was a pseudocomponent––the 
displacement would not revert to single-phase behavior as suggested by Fig. 7-37(a) 
(Gardner and Ypma, 1982). Compare Fig. 7-37(a) to Fig. 7-16. 

The vaporizing gas drive process (Fig. 7-37b) shows a composition route that 
approaches the binodal curve on a tie line extension and then follows the binodal. 
curve until it reaches a point on a straight line tangent to the initial composition. 
Compare Fig. 7-37(b) to Fig. 7-14. 
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Figure 7-37  Composition routes for immiscible and developed miscibility processes 
 

In the condensing gas drive process (Fig. 7-37c), the composition route 
enters the two-phase region through the plait point (Hutchinson and Braun, 1961), 
follows the equivelocity path, and then exits from the two-phase region on a tie line 
extension. The route definitely passes through the two-phase region, but it does so as 
a shock since the concentration velocity on the equivelocity curve is unity, and the tie 
line extension segment is a shock. Compare Fig. 7-37(c) to Fig. 7-15. Auxiette and 
Chaperon (1981) give an experimental investigation of these processes. 

Both developed miscibility cases will appear as a first-contact displacement 
in the absence of dissipation. The similarity between developed and first-contact 
displacements justifies using first-contact approximations on all the developed 
miscibility displacements we discuss below. 
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First-Contact Miscible Displacements in the Presence 
of an Aqueous Phase 
 
Water does not affect hydrocarbon phase behavior, and the water solubility of most 
solvents is small. But the inevitable presence of an aqueous phase can affect 
displacement behavior through fractional flow effects. In this section, we investigate 
the effects of an aqueous phase on a first-contact miscible displacement. Although 
the treatment here can be given formally, as was that discussed above, we present 
instead an entirely equivalent, but more direct, approach based on fractional flow 
curves. 

To do this, we assume incompressible fluids and rock, no dissipative effects, 
and solvent–water relative permeabilities are the same as oil–water relative perme-
abilities. Thus a water–solvent fractional flow 1

sf  differs from a water–oil fractional 
flow f1 only by the difference between the use of solvent and oil viscosities and den-
sities. Figure 7-38 shows both the f1 and 1

sf  curves based on relative permeabilities 
from Dicharry et al. (1972). Because the relative permeabilities do not change, 
residual phase saturations of both the aqueous and oleic phases are invarient. The 
initial condition I in the one-dimensional displacement is uniform with water cut f1I. 

We take an arbitrary injection condition J to be comprised of some pre-
specified proportion of solvent and water 1

s
Jf  given on the solvent–water curve. 

Injecting water and solvent together in the so-called water-alternating-gas (WAG) 
process is commonly used in solvent floods. The solvent–water mixture has better 
volumetric sweep efficiency and is less prone to viscous fingering than solvent alone 
(Caudle and Dyes, 1958). The volumetric flow rate ratio of water to solvent in the 
injected fluid is the WAG ratio WR, given by 

 1 1
s R
J

R

Wf
W

=
+

 (7.7-13) 

 
In Eq. (7.7-13) and hereafter, we assume no solubility of solvent (i = 3) or oil (i = 2) 
in the aqueous (i = j = 1) phase, and we assume no solubility of water in the 
hydrocarbon (j = 2) phase. 

In an actual WAG process, the water and solvent are usually injected in 
alternate slugs so that the cumulative volumes of solvent and water really define the 
WAG ratio rather than Eq. (7.7-13). The differences in displacement behavior caused 
by simultaneous injection rather than alternating injection have been investigated by 
Welch (1982). 

Since the displacement is first-contact miscible, the wave between the 
injected solvent and the oil is indifferent. Hence the oil–solvent wave velocity is 
 

 1
3

1

1
1

s
J

J

fv
S

−
=

−
 (7.7-14) 

 
from Eq. (5.4-5b). Equation (7.7-14) neglects solvent adsorption. v3 can also be 
written in terms of the change in water saturation change across the solvent–oil front
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Figure 7-38  Schematic fractional flow construction for first-contact miscible 
displacements in the presence of an aqueous phase 
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 (7.7-15) 

 
Equation (7.7-14) is the equation of a straight line from the upper right-hand corner 
of the fractional flow plot through the injected conditions (Fig. 7-38). Equating Eq. 
(7.7-14) to Eq. (7.7-15) says if this line is continued, its intersection with the water–
oil fractional flow curve will give the water and oil saturation and fractional flow in 
the region ahead of the solvent–oil wave. Since 1 – f1B is larger than 1 – f1I, the 
displaced oil forms a region of high oil saturation or oil bank ahead of the solvent–
water front. 

The leading edge of this oil bank flows with specific velocity v2B given by 
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also from Eq. (5.4-5b). This is the equation of a straight line from the initial condi-
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tions I to the oil bank, point B in Fig. 7-38. Since the injected water miscibly 
displaces the resident water, the specific velocity of the displaced water wave v1′ is 
the straight line from the lower left corner of the fractional flow plot to the injected 
conditions (compare the lines for v1′ and v3 with case B in Fig. 5-12). 

The velocity of the connate water banked up by the injected water is 
 

 1
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s
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J

fv
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which is also shown in Figs. 7.38 and 7.39. The water ahead of this wave is 
banked-up connate water which, for a secondary solvent flood (f1I = 0), constitutes a 
waterflood ahead of the solvent front. Caudle and Dyes (1958) verified 
experimentally that injecting at a WAG ratio so that the banked-up connate water 
does not propagate faster than the solvent resulted in optimal oil recovery. 
 

 
Figure 7-39  Time–distance diagram and effluent history plot for the displacement 
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It is also possible to treat slug behavior with fractional flow theory. Suppose 

after injecting at condition J for some dimensionless time tDs, we follow with chase 
water at condition K on the diagram. Since the slope of the solvent–water fractional 
flow curve is monotonically decreasing from K to J, this displacement front is a 
shock with specific velocity 
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 (7.7-18) 

 
whose straight-line construction is also shown in Fig. 7-38. If the chase fluid were to 
be a second gas having the same properties as and first-contact miscible with the 
solvent, the velocity of the chase-fluid–solvent front would be given by the slope of 
the 1 1-sf S  curve since the slope of this curve is monotonically increasing from S1 = 
S1r to the injected conditions. 

Figure 7-39 shows the time–distance diagram and effluent history for the 
displacement in Fig. 7-38. We have taken tDs = 0.8 to avoid interference between the 
oil-bank–solvent and the solvent–chase water waves. In the effluent history plot, the 
miscible displacement fronts are designated by a wavy line. 

Several general observations; follow from these plots. First, the ultimate oil 
recovery is complete––that is, the final condition in the system is zero oil saturation. 
Of course, this is the natural consequence of first-contact miscible displacements 
where no residual phases are allowed. Second, oil production ceases when solvent 
breaks through. The moderately early solvent breakthrough is the consequence of the 
pore space inaccessible to the solvent caused by the presence of irreducible water: 
With no water present, the solvent slug always breaks through near tD = 1. Based on 
hydrocarbon pore volumes (1 – S1r), the solvent in Fig. 7-39 breaks through at tD = 
0.96 HCPV, which is much more in line with dispersion theory. Finally, the amount 
of solvent produced (0.14 PV) is considerably less than the amount injected (0.4 PV). 
This reduction is the consequence of trapping of the hydrocarbon-miscible solvent by 
the chase water. If the solvent slug size tDs were less than about 0.6, the chase-water–
solvent front would have overtaken the solvent–oil-bank front and trapped some oil. 
Such an observation suggests a procedure whereby we could select the minimum 
solvent slug size (tDs = 0.53 in Fig. 7-39) that effects complete oil recovery. 
 
 

7-8 SOLVENT FLOODS WITH VISCOUS FINGERING 
 
Unfortunately, first-contact miscible displacements actually behave considerably 
differently than that shown in Fig. 7-38. Figure 7-40 shows the experimental results 
of a developed miscible displacement in a Berea core in which oil initially at residual 
conditions is displaced by a CO2 solvent in a WR = 0 displacement. The deviation of 
this displacement from a straight-line composition route in the ternary diagram was 
small. In the experimental displacement, the water cut was initially 1.0 and decreased 
to about 0.15 at tD = 0.15. The water cut remained essentially constant until about
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Figure 7-40  Effluent history of a carbon dioxide flood (from Whitehead et al., 
1981) 

 
tD = 0.33, at which point, it decreased gradually to 0. But when the water cut 
originally fell to tD = 0.14, both oil and solvent broke through. This leaves a 
remaining oil saturation of about 0.25 at termination. It is unclear if 100% oil 
recovery would have been obtained had the experiment been continued. Several pore 
volumes of solvent injection would have been required, however. 

The primary cause of the simultaneous oil and solvent breakthrough and 
prolonged oil recovery in experimental displacements is viscous fingering. In Sec. 
6-8, we concluded that miscible displacements with typical solvents were always 
unstable, barring a gravity stabilization or a boundary effect, because the solvent–oil 
mobility ratio is greater than 1. Here we give descriptions of the character of 
simultaneous oil and solvent flow after the onset of fingering. 
 
Heuristic Models 
 
Because of the chaotic nature of viscous fingering, a rigorous mathematical theory is 
not possible. The behavior of a fingering displacement may be estimated by various 
heuristic theories, including (1) a modification of fractional flow theory (Koval, 
1963), (2) rate-controlled mass transfer between solvent and oil fingers (Dougherty, 
1963), (3) defining a suitably weighted mixture viscosity (Todd and Longstaff, 
1972), (4) accounting for mixing in fingers directly (Fayers, 1984), and (5) defining a 
composition-dependent dispersion coefficient (Young, 1986). 

In this section, we deal exclusively with the Koval theory; we leave the 
others as an exercise. By excluding the others, we do not imply the Koval approach is 
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superior since all involve empirical parameters that must be determined by history 
matching. However, the Koval theory is in common use, and it fits naturally into our 
fractional flow theme. 

The mixing zone length (the dimensionless distance between prespecified 
values of a cross-sectionally averaged concentration profile) of a fingering 
displacement, in the absence of boundary effects, grows in proportion to time. This 
observation prompted Koval to instigate a fractional flow theory for viscous 
fingering. If viscous fingers initiate and propagate, their growth in horizontal plane 
flow would look something like the cross section in Fig. 7-41, where the oil and 
solvent are in segregated flow. The displacement is first-contact miscible, with no 
dissipation, and without water present. If dissipation can vertically smear the fingers, 
the mixing zone will grow in proportion to the square root of time, as in dispersion 
theory. This growth can be quite small if longitudinal dispersion is small or the 
system length is large (Hall and Geffen, 1965). 

 

 
 

 
 
Figure 7-41  Idealization of viscous 
finger propagation (from Gardner and 
Ypma, 1982)

With these qualifications, the volumetric flow rate of solvent across a vertical 
plane within the mixing zone is 
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and that of oil is 
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where A3 and A2 are cross-sectional areas of oil and solvent. There are no relative 
permeabilities or capillary pressures in these equations since the displacement is 
first-contact miscible. These equations assume a horizontal displacement. The 
fractional flow of solvent in the oleic phase across the same vertical plane is 
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by definition, which, when Eq. (7.8-1) is substituted, yields 
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Equation (7.8-2) assumes the x-direction pressure gradients are equal in the oil and 
solvent fingers. Because the displacement is in plane flow, the oil and solvent cross-
sectional areas are proportional to average concentrations, or 
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where v is the oil–solvent viscosity ratio, and 32C  is the average solvent 
concentration in the oleic phase across the cross section. 

Equation (7.8-3) is a description of the segregated flow fingering in Fig. 
7-41. Koval had to modify the definition of v to match experimental displacements. 
The final form of the solvent fractional flow is 
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where Kval is the Koval factor. 
 
Koval Corrections 
 

The Koval factor modifies the viscosity ratio to account for local 
heterogeneity and transverse mixing in the following fashion: 
 
 val KK H E= i  (7.8-5) 
The parameter E changes the viscosity ratio to account for local mixing 
 1/ 4 4(0.78 0.22 )E v= +  (7.8-6) 
 
The consequence of Eq. (7.8-6) is that the numerical value of E is usually smaller 
than that of v. That is, the effect of fingering is not as severe as it appears from the 
original viscosity ratio. The 0.22 and 0.78 factors in Eq. (7.8-8) seem to imply the 
solvent fingers contain, on the average, 22% oil, which causes the viscosity ratio 
attenuation through the quarter-power mixing rule. In fact, Koval eschewed this 
interpretation by remarking that the numerical factors were simply to improve the 
agreement with experimental results. This would seem to restrict Eq. (7.8-6) to the 
exact class of experiments reported by Koval. Remarkably, Claridge (1980) has 
shown that the 0.22–0.78 factors accurately describe fingering displacements over 
large ranges of transverse dispersion. Very likely the finger dilution is being caused 
by viscous crossflow since the mechanism is consistent with linear mixing zone 
growth (Waggoner and Lake, 1987). 
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The heterogeneity factor HK corrects the reduced viscosity ratio for the local 

heterogeneity of the medium. Selecting the correct value for HK is the most subjective 
feature of the Koval theory. In Fig. 6-8, the heterogeneity factor was calculated from 
the Dykstra-Parsons coefficient. It has also been correlated with the longitudinal 
Peclet number (Gardner and Ypma, 1982). 

The fractional flow expression (Eq. 7.8-4) is the same as the water fractional 
flow in a waterflood where the oil and water have straight-line relative 
permeabilities. For such a case (see Exercise 5E), the Buckley-Leverett equation (Eq. 
5.2-10) may be integrated analytically to give the following expression for effluent 
fractional flow: 
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The oil fractional flow is 1 – 32 1|
Dxf = . This equation has been compared to 

experimental data in the original Koval paper and elsewhere (Claridge, 1980; 
Gardner and Ypma, 1982). 
 
Koval with Mobile Water 
 

The Koval theory applies to first-contact miscible displacements in the 
absence of flowing water. The theory may be readily generalized to fingering 
first-contact miscible displacements with water present by modifying the overall flux 
and concentration definitions (see Sec. 5-4). The overall flux for oil and solvent 
becomes 
 2 32 2(1 )F f f= −  (7.8-8a) 
     3 32 2F f f=  (7.8-8b) 
where f1 and f2 are the actual water and hydrocarbon fractional flow functions, and f32 
is given by Eq. (7.8-4). To be consistent with Eq. (7.8-6), the hydrocarbon phase 
viscosity in both f1 and f2 is given by the quarter-power mixing rule. 

The overall concentrations of the oil and solvent are 
 2 32 2(1 )C C S= −  (7.8-9a) 
      3 32 2C C S=  (7.8-9b) 
The water concentration is simply S1 because there is no solvent solubility in the 
water phase. Equations (7.8-8) and (7.8-9), substituted into the conservation 
equations for oil and solvent, may then be solved by the simple wave procedure 
discussed in Sec. 5-7 for the oil–gas–water problem. 

Figure 7-42 shows the effluent fluxes for four displacements using this 
procedure. Figure 7-42(a) is for a non-WAG secondary flood, which is simply the 
results of the original theory (Eq. 7.8-7). Figure 7-42(b) is for a tertiary non-WAG
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Figure 7-42  Effluent histories for four fingering cases 
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displacement. Figures 7-42(c) and 7-42(d) are for secondary and tertiary WAG 
displacements (WR = 2). The oil and water relative permeabilities in Figs. 7-39 and 7-
42 are the same so that comparing Fig. 7-39 and Fig. 7-42(d) should reveal the effect 
of fingering on a first-contact miscible displacement with water present. 

For both cases, the oil is produced as a bank of constant cut. But the bank oil 
cut is smaller for the fingering displacement, and the oil breakthrough and complete 
sweepout times are later. In the fingering case, oil and solvent break through together 
though the solvent is at low cut. By comparing Figs. 7-42(a) and 7-42(c) and Figs. 
7-42(b) and 7-42(d), we see that, regardless of the initial conditions, the WAG 
procedure delays solvent breakthrough and hastens complete oil recovery. 

Based on the comparisons in Fig. 7-42, it appears that WAG is universally 
better than injecting solvent alone, particularly when the solvent efficiency is 
considered. However, the presence of an initial mobile water saturation causes a 
residual oil saturation to even a first-contact displacement (see Sec. 7-9), and it is 
possible that the WAG process will cause this also. 

Other methods besides WAG to improve mobility control in miscible 
flooding include the use of polymers (Heller et al., 1984) and foams. To date only 
foams have been extensively investigated, and since foams are envisioned to drive a 
variety of EOR processes, we delay their discussion until Chap. 10, where they more 
naturally fit after micellar-polymer flooding. 
 
 

7-9 SOLVENT FLOODING RESIDUAL OIL SATURATION 
 
 
A residual oil saturation in solvent flooding can come about by two broad 
phenomena: (1) a local heterogeneity (dead-end pores) in the permeable medium and 
(2) an interaction of dispersion or viscous fingering with the phase behavior. The 
former phenomenon occurs in first-contact miscible displacements, and the latter in 
developed miscible flood. 

The definition of residual oil in a miscible flood (a paradoxical quantity) is 
slightly different from that in a waterflood. In a waterflood, residual oil is left behind 
as capillary-trapped globs, and no amount of throughput will displace this oil without 
some imposed change in the local capillary number. In a first-contact or developed 
miscible flood, all the oil, even that “trapped” by whatever mechanism, will 
eventually be recovered through extraction if enough solvent is injected. By residual 
oil in a miscible flood, then, we mean that quantity of oil left behind a solvent flood 
at some practical extreme of oil cut, oil rate, water–oil ratio, or gas–oil ratio (the data 
in Fig. 7-40 are up to a gas–oil ratio of about 550 SCM/SCM). Admittedly, this lacks 
the precision of the waterflood definition, but from the practical view of recovering 
oil economically, this distinction is not serious. By this definition, oil severely 
bypassed by a viscous finger is residual oil. Since we discussed capillary-trapped 
residual oil earlier in Sec. 3.4, we discuss other causes here. 
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Local Heterogeneity 
 
To investigate the effects of local heterogeneity on trapped oil saturation, researchers 
have conducted experiments in laboratory cores on first-contact miscible 
displacements (Raimondi and Torcaso, 1964; Stalkup, 1970; Shelton and Schneider, 
1975; Spence and Watkins, 1980). In these experiments, viscous fingering was 
suppressed by gravity stabilization or by matching the viscosity and density of the 
displacing and displaced fluids. 

The miscible flood residual oil was found to depend on several things, the 
most important of which is the presence of a high mobile water saturation. A sample 
of this experimental data (Fig. 7-43) plots trapped oil saturation '

2rS , normalized by 
the waterflood residual oil saturation, versus the steady-state flowing water 
saturation. The normalized trapped oil saturations approach unity at high water 
saturations in these data and are close to zero for water saturations less than 50%. 
The steepness of the curves and the magnitudes of the residual saturations at high 
water saturation are of concern in displacements where a high water saturation is 
present (tertiary floods or WAG floods). The data in Fig. 7-43 were from 
displacements in strongly water-wet media. In oil-wet or intermediate-wet media, the 
trapping is not nearly as pronounced. Thus the trapped oil saturation has been 
correlated with capillary pressure curve hysteresis (Shelton and Schneider, 1975), a 
fractional relative permeability ratio (Raimondi and Torcaso, 1964), and 
 

 
 

Figure 7-43  Oil trapped on imbibition as a function of water saturation (from 
Raimondi and Torcaso, 1964) 
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Figure 7-44  Influence of oil bank and residual oil saturation on the total stagnant 
hydrocarbon saturation (from Stalkup, 1970) 

 
dimensionless oil bank saturation (Stalkup, 1970). Figure 7-44 shows the correlation 
of trapped or stagnant oil saturation with dimensionless oil bank saturation. S2B is the 
oil bank saturation determined from the graphical construction in Fig. 7-39 and 
should contain corrections for the wettability of the medium since wettability is 
contained in the fractional flow curves. The oil bank saturation should contain 
corrections for injected water since the WAG ratio also affects the construction. 

The most common interpretation for the effect of mobile water in miscible 
flood trapped oil saturation is that on a microscopic basis the water shields, or blocks, 
the solvent from contacting the oil. This explanation also qualitatively accounts for 
the effect of wettability since the oil and water phases are, depending on the 
wettability, differently distributed in the medium. In water-wet media, oil is 
contained in the large pores mostly away from the rock surfaces. The water phase is 
far more connected compared to the oil phase and thus could serve as a shield to oil 
originally present in pores not in the main flow channels. For oil-wet media, the 
phase distribution is reversed––the oil phase is the more continuous, and water is a 
less effective shield. 

The interpretation of water blocking stagnant pores is somewhat like the 
dead-end pore model used to explain the behavior of water-free, first-contact 
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displacements. The capacitance or dead-end pore model was originally proposed to 
explain the concentration “tail” observed in the breakthrough curves of first-contact, 
stable miscible displacements. This tail is more pronounced in carbonates than in 
sandstones (Fig. 7-45) because the pore structure of a typical carbonate is more 
heterogeneous (Spence and Watkins, 1980). Mathematical solutions fit the 
breakthrough curves well (Fig. 7-45) even though the physical interpretation of the 
parameters in the dead-end pore model has been questioned (Coats and Smith, 1964). 

 

 
Figure 7-45  Typical breakthrough curves (from Spence and Watkins, 1980) 
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The dead-end pore model also qualitatively explains other features of first-contact 
miscible flood trapping, so we summarize the mathematical theory here. 

Consider a stable, first-contact miscible displacement, in the absence of 
water, flowing in a permeable medium where a fraction fa of the pore space is 
available to flow and a fraction (1 – fa) is stagnant. Solvent can flow from or into the 
stagnant or dead-end pores only by diffusion, represented by a mass-transfer 
coefficient km. The conservation equation for solvent becomes in the absence of 
dispersion 
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where C32 and C3, are the solvent concentrations in the flowing and dead-end pores. 
With dimensionless distance and time, these equations become 
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where NDa = kmLφ/u is the Damkohler number, a dimensionless quantity that is a 
ratio of the rates of diffusion from the dead-end pores to the bulk fluid flow. Equation 
(7.9-2) is a two-parameter (fa and NDa) representation of flow without dispersion. 
Deans (1963) gives the analytic solution to Eq. (7.9-2) subject to a step change in 
influent solvent concentration 
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where Z = NDa(tD – xDfa)/(1 – fa), Y = NDaxD, and I0 is the modified Bessel function of 
the first kind, zero order. Equation (7.9-3) says the solvent concentration changes 
abruptly from zero to C32/C3J = e–Y at Z = 0. 

The solvent effluent history (at xD = 1) is from Eq. (7.9-3) 
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Figure 7-46 plots Eq. (7.9-4) for fixed fa and various NDa. For very small NDa, the 
breakthrough curve behaves normally with the pore space contracted by (1 – fa). For 
this case, the miscible flood trapped oil saturation would simply be (1 – fa) times the 
oil saturation in the dead-end pores since the solvent cannot enter the stagnant pores. 
But for very large NDa, the effect of the stagnant pore space vanishes since mass 
transfer to and from the flowing fraction is rapid. In this extreme, the trapped oil 
saturation should vanish. 

These observations partly explain the dependence of miscible flood trapped
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Figure 7-46  Effluent solvent concentration 
for fixed flowing fraction fa and various 
NDa; no dispersion

 
oil saturation on velocity and system length. As suggested by the definition of the 
Damkohler number, the trapped oil saturation should decrease with decreasing 
velocity and increasing system length. At field-scale conditions, large length and 
small velocity, the Damkohler number is usually much larger than in a laboratory 
experiment. Thus laboratory experiments may be overestimating miscible flood 
trapped oil saturation. 

Including dispersion in Eq. (7.9-1) requires a numerical solution (Coats and 
Smith, 1964). Of course, the solutions so obtained fit experimental data better than 
Eq. (7.9-4) but do not alter the general conclusions. 

The effect of water blocking is difficult to see from the preceding 
mathematics. For conceptual clarity, it is best to separate the water-blocking and 
dead-end pore effects by dividing the permeable medium pore space into flowing, 
isolated, and dendritic fractions (Salter and Mohanty, 1982). The flowing pore space 
is the fraction through which a phase flows into and from at least one pore throat. The 
dendritic fraction is connected to the flowing fraction through a mass transfer 
coefficient as above but does not exhibit flow itself. The isolated fraction of a phase 
is completely surrounded by the other phase through which no diffusion can occur. 
The amounts and properties of all fractions are functions of the phase saturations, the 
wettability of the medium, and the saturation history. Generally, the isolated and 
dendritic fractions vanish as the nonwetting phase saturation increases. But these two 
nonflowing fractions can occupy most of the total pore space at low nonwetting 
phase saturations. 
 
Phase Behavior Interference 
 
When the miscibility of a displacement is developed, the analysis is considerably 
complicated because, besides the water-blocking effect, a solvent flood can now trap 
oil by interactions with the phase behavior. Fig. 7-47 gives results from a combined 
experimental and theoretical study of Gardner et al. (1981) that shows the results of 
CO2 displacements at two different pressure and dispersion levels. At both pressures,
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Figure 7-47  Results of CO2 displacements at two different pressure and dispersion levels (from 
Gardner et al., 1981)
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the displacements are vaporizing gas drives. Still, the lower pressure gives a 
measurably lower oil recovery than the higher pressure. The effect is relatively 
insensitive to rate, and there was no mobile water, indicating the lower recovery is 
caused by something more than the dead-end pore effect. 

Figure 7-47(b) shows the composition route for the 13.6 MPa (2,000 psia) 
displacement in Fig. 7-47(a). Dispersion causes the composition route for this 
developed miscibility displacement to enter the two-phase region (compare this to the 
no-dispersion extreme in Fig. 7-37b). This intrusion will lower oil recovery because 
the trapped phase saturations within the two-phase region are large, the interfacial 
tension between the two hydrocarbon phases being large. Though the effect of 
dispersion on the experimental data (“low” dispersion level) is relatively minor, the 
simulated effect at the high dispersion level is pronounced. 

The displacements in Fig. 7-47 were gravity stabilized so that it would be 
proper to ignore viscous fingering. That this phenomenon also contributes to the 
trapped oil saturation in an unstable displacement is demonstrated by the work of 
Gardner and Ypma (1982). Figure 7-48 shows literature data on trapped miscible oil 
saturation plotted versus residence (Lφ/u) time for several secondary CO2 floods. The 
decrease in trapped oil saturation with residence time is very much like the decrease 
associated with increasing NDa in the first-contact miscible floods discussed earlier. 
But the displacements in Fig. 7-48 were generally not stable, and there was no mobile 
water present. 
 

 
Figure 7-48  Literature data on trapped miscible flood oil saturation versus residence 
time (from Gardner and Ypma, 1982) 
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Gardner and Ypma interpret the large residual oil saturations at small 

residence times to be the consequence of a synergistic effect between the phase 
behavior and viscous fingering. They argue that in the longitudinal direction at the tip 
of the viscous finger, miscibility between the solvent and crude oil develops much 
like that shown in Fig. 7-37b. In the transverse direction, mixing takes place because 
of transverse dispersion and, perhaps, viscous crossflow. As we have seen, mixing 
due to dispersion causes straight-line dilution paths on pseudoternary diagrams (see 
Fig. 7-13). Such mixing does not cause developed miscibility unless very long 
residence times or very high transverse dispersion is allowed. Thus oil is first swept 
out by the longitudinal movement of a finger, the tip of which contains the 
light-enriched CO2 solvent, and then reflows back into the finger from the transverse 
direction into a region of pure CO2. Since CO2 and crude are not first-contact 
miscible, multiple phases form in the finger, and trapping occurs. In fact, in 
simulations, it was observed that the trapped oil was actually present in highest 
amounts in the regions where the solvent fingers had passed because of this 
resaturation and phase behavior effect. Though this seems paradoxical––that the 
largest remaining oil saturation is where the solvent has swept––the contention is 
supported by correlating the data in Fig. 7-48 against a transverse dispersion group, 
reproducing this correlation with simulation, and finally, matching the effluent 
history of laboratory floods with the simulation results. Interestingly, the composition 
routes of zones both inside and outside the fingers passed well into the interior of the 
two-phase region of the ternary. When transverse dispersion is large, the transverse 
  

 
Figure 7-49  Oil recovery versus injected water fraction for teriary CO2 
displacements in water-wet and oil-wet media (Tiffin and Yellig, 1982) 
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mixing takes place before the solvent fingers have emptied of the displacing mixture, 
and trapped oil saturation goes down. 

Undoubtedly, the interaction with phase behavior, dispersion, and viscous 
fingering all play a part in understanding these complex phenomena. Still, it seems 
persuasive that the wettability of the medium plays a central role, particularly since 
there seems to be a wettability effect in even the most complicated developed 
miscible, unstable, displacements (Fig. 7-49). 
 
 

7-10 ESTIMATING FIELD RECOVERY 
 
In this section, we combine the effects of areal sweep efficiency and displacement 
efficiency. 

Assume we have a plot of average solvent and oil concentration versus 
dimensionless time in a one-dimensional displacement. This can be from an overall 
material balance of a laboratory experiment or from the fractional flow calculation in 
Secs. 7-7 and 7-8. Figure 7-52 shows the average concentrations from the 
experimental data in Fig. 7-40. The solid lines are the fractional flow solution. 
 

 
 

 
 
Figure 7-50  Schematic illustration of 
contacted and invaded area in quarter 
5-spot pattern

In this section, we illustrate the correction of this data for areal sweep 
efficiency only. The procedure for correcting for vertical sweep is similar except we 
must now use a volumetric sweep efficiency function rather than an areal sweep 
efficiency function. The correction based on areal sweep would also be correct if the 
average concentration curves are corrected for vertical sweep, that is, were they 
averaged over a cross section using pseudofunctions. 

Since we are explicitly including viscous fingering in the average 
concentration function, it is important not to include it in the areal sweep correlation 
also. Claridge anticipated this event by defining an “invaded area” sweep efficiency 
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as shown in Fig. 7-51. He determined that the areal sweep correlation of Caudle and 
Witte (1959) most nearly approximated the invaded area sweep and derived 
equations to describe it for flow in a confined five-spot. He also gave a procedure for 
combining areal and displacement sweep for secondary, non-WAG displacements. 
Our procedure is a generalization of Claridge’s to first-contact floods of arbitrary 
WAG ratios and arbitrary initial conditions. 
 

 
 

 
 
 
 
Figure 7-51  Schematic of the behavior 
of average concentrations

The invaded area is defined by a curve connecting the extreme tips of the 
viscous fingers (Fig. 7-50) and given by the product of EA, the invaded areal sweep 
efficiency, and the pattern area. EA as a function of dimensionless time and mobility 
ratio is given in Claridge’s paper; it is not repeated here though it could be given 
graphically for a particular case. In Fig. 7-50, the contacted area is that actually 
occupied by the solvent fingers. 

Central to the procedure is the idea of average concentrations behind the 
front. We define these to be the average concentrations in the invaded zone 
 

 Volume of component  in invaded zone
Volume of invaded zonei

iC =  (7.10-1) 
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The average concentrations in the contacted area are (C1, C2, C3)J, the injected 
concentrations. The iC  are equal to the average concentration functions after break-
through; before this, they are constant and equal to their breakthrough value 0

iC  (see 
Fig. 7-52). 
 

 
Figure 7-52  Average concentration from the experimental displacement in Fig. 7-40 

 
Since EA and iC  are both known functions of time, the cumulative production of 
component i is 

 
0

( ),      1,  2, 3
t

pi iJ p A i ijN F qdt V E C C i= − − =∫  (7.10-2) 

 
from an overall material balance (Eq. 2.5-2). In Eq. (7.10-2), q is the injection–
production rate, Vp is the total pore volume, and t is time. All volumes in this 
equation are in reservoir volumes. For oil, in particular, we can write 

 2
2

2

1p D A
I

CN E
C

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (7.10-3) 

 
where Np2D is the cumulative oil produced expressed as a fraction of oil in place at the 
start of solvent injection (Np2/VpC2I). To express oil recovery as a fraction of original 
(at discovery) oil in place, Eq. (7.10-3) should be multiplied by the ratio of C2I to (1 – 
S1r), the original oil saturation. 

We begin here to use tD1 as the time variable for the Ci, and tD2 for EA since, 
in general, neither function depends explicitly on the actual dimensionless time tD in 
Eq. (7.10-3). We relate tD1, tD2, and tD to one another below. 

Breakthrough occurs at tD1 = (1 + WR) 0
3C  where 0

3C  is the average solvent 
concentration behind the front at or before breakthrough. In Fig. 7-52, plotted curves 
show the average concentration in the one-dimensional system versus tD1 (dotted 
lines). In the following development, we do not use system average concentrations; 
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we show them in Fig. 7-52 for completeness. Average system concentrations and 
average concentrations behind the front coincide after breakthrough. 

Imagine a continuous one-dimensional permeable medium with 2C  = 2C (tD1) 
and 3C  = 3C (tD1) known. An appropriate definition for tD1 is 
 

 1
Volume solvent + Water injected

Volume invadedDt =  (7.10-4) 

If we identify the flow-excluded regions with the uninvaded regions in Fig. 7-51, the 
dimensionless time tD1 becomes 

 1
D

D
A

tt
E

=  (7.10-5) 

On the other hand, consider a homogeneous five-spot pattern with EA = 
EA(tD2) known, into which solvent and water are being simultaneously injected. If the 
oil and water in the invaded region are regarded as part of the rock matrix, the 
appropriate dimensionless time tD2 becomes 

 2
Volume solvent injected

Volume solvent in invaded regionDt =  (7.10-6) 

which may be decomposed into 

 

2
Volume solvent injected

Volume solvent + Water injected
Volume solvent + Water injected        

Volume of pattern
Volume of pattern        

Volume solvent in invaded region

Dt =

×

×

 (7.10-7) 

 
After breakthrough, tD2 may be written in our terminology as 

 2
3(1 )

D
D

R

tt
W C

=
+

 (7.10-8) 

 
Equations (7.10-5) and (7.10-8) are the relations among the various dimensionless 
times. Claridge calls tD1 and tD2 the apparent pore volumes injected for the 
appropriate variable. tD may be eliminated between Eqs. (7.10-5) and (7.10-8) to give 

 2
1 3(1 )D

D R
A

tt W C
E

= +  (7.10-9) 

 
The definitions in Eqs. (7.10-5) and (7.10-8) may be verified by observing 

that when breakthrough happens in an areal sense, it also happens in a 
one-dimensional sense. Thus at breakthrough, we have tD2 = EA and 3C  = 0

3C  from 
which it follows that tD1 = (1 + WR) 0

3C  from Eq. (7.10-9). Figure 7-52 shows this is 
indeed the correct dimensionless breakthrough time for the one-dimensional system. 

The procedure to calculate the correct tD1, tD2, and tD is iterative. 
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1. Estimate the mobility ratio M  to be used in the areal sweep correlation. We 

take this to be the mobility ratio based on the average concentrations behind 
the front at breakthrough 

 
0( )

( )
i

iI

rt C

rt C

M
λ

λ
=  (7.10-10a) 

 
This requires a knowledge of the relative permeability curves. If these are not 
available, M  may be estimated from the one-dimensional data as 

 

 final( / )
( / )I

q PM
q P

Δ
≅

Δ
 (7.10-10b) 

where q = total volumetric rate, and ΔP = overall pressure drop. The 
numerical value of M  does not change during the calculation. 

2. For this value of M , find the breakthrough areal sweep efficiency 0 0
2D At E= . 

The dimensionless breakthrough time for the combined areal and 
displacement sweep is 0 0 0

3(1 )D A Rt E W C= +  from Eq. (7.10-8). The iterative 
calculations begin at 0

Dt . 
3. Fix tD > 0

2Dt  
4. Pick tD1 > 0

3C (1 + WR). 
5. Calculate 3C (tD1) from the one-dimensional results. 
6. Calculate tD2 from Eq. (7.10-8). 
7. Estimate EA(tD2) from the areal sweep correlation. 
8. Calculate tD1 from Eq. (7.10-5). 
9. Test for convergence. If the tD1 estimated in steps 4 and 8 differ by less than 

some small preset tolerance, the procedure has ~converged; if not, reestimate 
tD1, and return to step 4. 

10. Calculate cumulative oil produced from Eq. (7.10-3), and calculate the 
combined fraction flow of each component from 

 1
2 2

1 ( )T A A
i i D iJ

D D

dE dEF F t F
dt dt

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (7.10-11) 

 
11. Increment tD, and return to step 3 for a later time. The entire procedure 

continues until tD is larger than some preset maximum. The procedure 
converges in two to four iterations per step by simple direct substitution. The 
combined fractional flow in Eq. (7.10-11) represents contributions from the 
invaded zone (first term) and the uninvaded zone (second term), with all 
expressions being evaluated at consistent values of tD1, tD2, tD. The Fi terms in 
Eq. (7.10-11) are from the one-dimensional curves, and the derivatives are 
numerically evaluated. Once ( )T

i DF t  is known, we calculate component rates 
in standard volumes as 

 ,      1,  2, 3
T

i
i

i

qFq i
B

= =  (7.10-12a) 
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corresponding to a real time t by inverting 

 
0

t

D
P

qdtt
V

= ∫  (7.10-12b) 

 
Figure 7-53 shows the results of the corrections for areal sweep applied to the 

data in Fig. 7-52. The y-axis plots cumulative oil produced as a fraction of initial oil 
in place at the start of solvent injection, and the x-axis plots each of the three 
dimensionless times. The combined areal and displacement sweep case breaks 
through earlier than the other two and, except for early time, is everywhere smaller. 
The combined fractional oil recovery at a particular dimensionless time is not simply 
the product of displacement and areal sweep at that time. The correct dimensionless 
time for consistently evaluating the latter two is given by Eqs. (7.10-5) and (7.10-8). 
For this particular case, Fig. 7-53 indicates the combined oil recovery is roughly 
equally dependent on areal and displacement sweep efficiencies. 
 

 
 

Figure 7-53  Calculated cumulative oil produced 
 
 

7-11 CONCLUDING REMARKS 
 
Solvent methods currently occupy a large fraction of implemented EOR methods. For 
certain classes of reservoirs––low permeability, fairly deep, and with light oil––they 
are clearly the method of choice. Future technology, particularly related to gravity 
stabilization and mobility control methods, could expand this range somewhat, but 
the target oil is nevertheless immense. 

The topics of special importance in this chapter are the solvent flooding 
classifications, the usefulness of the minimum miscibility pressure correlations, and 
viscous fingering. The importance of viscous fingering remains largely unappreciated 
in large-scale displacement because of the obscuring effects of heterogeneity; 
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however, it is undoubtedly true that this phenomenon, perhaps in conjunction with 
others, accounts for the large discrepancy between lab-scale and field-scale oil 
recoveries. The material on dispersion and slugs and on solvent-water-oil fractional 
flow can form the basis for many design procedures. Of course, both topics easily 
lend themselves to the graphical presentation which is an essential part of this text. 
 
 
EXERCISES 
 
7A. Immiscible Solvent. A particular crude oil has a specific gravity of 0.76, normal boiling 

point of 324 K (124°F), molecular weight of 210 kg/kg-mole, and viscosity of 15 
mPa-s. At 8.16 MPa (1,200 psia) and 322 K (120°F), estimate 
(a) The CO2 solubility in the oil 
(b) The viscosity of the saturated CO2–crude-oil mixture 
(c) The swelling factor of the mixture 
(d) The CO2 water solubility, and express this as a mole fraction 
Use the Simon and Graue correlations (Figs. 7-20 through 7-22) and the water 
solubility correlations (Fig. 7-23). 

7B. Calculating Minimum Miscibility Pressure. An analysis of a particular separator oil is 
given below, including analyses at two different solution gas levels. Using the 1982 
Holm and Josendal correlation (Fig. 7-25), estimate the minimum miscibility pressure 
(MMP) for the separator oil and the oil with 53.4 and 106.9 SCM dissolved gas/SCM 
dissolved oil. The reservoir temperature is 344 K (160°F). 

 Weight percent 
Component Separator 

oil 
Oil + 

53.4 SCM gas/SCM oil 
Oil + 

106.9 SCM gas/SCM oil 

C1  21.3 53.0 
C2    7.4 18.4 
C3    6.1 15.1 
C4    2.4   6.0 

C5–C30 86 54.0   6.5 
C31

+ 41   8.8   1.1 

 
What can you conclude about the effect of solution gas on the MMP? How would you 
explain this with a ternary diagram? 

7C. Superposition and Multiple Slugs. Using the principle of superposition applied to M 
influent step changes to a one-dimensional medium, show the composite solution to the 
convective–diffusion equation is 
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1 1
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∑ ∑  (7C-1) 

 
where Cij = injected concentration of component i during time interval j (Ci0 is the 
same as CiI), and tDj = duration of interval j, and where 
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Eq. (7C-1) is valid only for tD > 
1

j

Dk
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∑ . 

7D. Dilution Paths on Ternary Diagrams. Plot for the following: 
(a) Concentration profiles at tD = 0.5 for the displacement of an oil of composition 

(C2, C3) = (0.1, 0) by a small slug (tDs = 0.1) of composition C2J = 1.0, which is 
then followed by a chase gas of composition C3K = 1.0. Take the Peclet number to 
be 100. 

(b) The dilution path of the concentration profile in part (a) on a ternary diagram as in 
Fig. 7-30. 

7E. Rich Gas Dilution. Based on the ternary diagram in Fig. 7E with initial oil composition 
(C2, C3)I = (0.1, 0), 
(a) Determine the minimum intermediate component concentration (C2J) that may be 

used in a continuous mixture of dry gas and intermediate displacing fluid that will 
ensure developed miscibility. 

(b) Using the C2J of part (a) as a lower bound, estimate the solvent slug size necessary 
to ensure first-contact miscibility at tD = 1 for a series of C2J values. Plot the total 
amount of intermediate injected (C2JtDs) versus the slug size to determine an 
optimum. Take the Peclet number to be 1,000. 

 
Figure 7E  Ternary diagram for rich gas design problem 

 
7F. Fractional Flow Solution of Immiscible Displacement. The fractional flow curves 

along the three tie lines in Fig. 7E are shown in Fig. 7F. The straighter curves (with the 
smaller residual phase saturations) are nearer to the plait point. Phase 3 is that richest in 
component 3. 
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Figure 7F  Fractional flow curve for 
Exercise 7F

(a) On the ternary diagram, sketch residual saturation lines, the singular curve(s), the 
equivelocity path, and as many non-tie line paths as possible. 

(b) Plot all the possible fractional flux curves you can. The initial oil composition is 
(C2, C3)I = (0.28, 0), and the injected solvent composition is (C2, C3)J = (0.09, 
0.91). These compositions are on extensions of the lines farthest and nearest the 
plait point, respectively. 

(c) Pick the physically possible solutions from the curves of part (b), and plot 
saturation and concentration profiles at tD = 0.8. 

7G. WAG Calculations. Figure 7G gives representative relative permeability curves for the 
Slaughter Estate Unit (SEU). The water, oil, and solvent viscosities are 0.5, 0.38, and 
0.037 mPa-s, respectively. 
(a) Plot the water–oil and water–solvent fractional flow curves. Assume the relative 

permeability curves for these pairs are the same and take α = 0. 
(b) Determine the optimal WAG ratio for a first-contact miscible secondary 

displacement in the absence of viscous fingering and dispersion. 
(c) If the optimal WAG ratio is used, calculate the minimum solvent–water slug size 

(tDs) for complete displacement. The chase fluid is water. 
(d) If the solvent–water slug size is 50% greater than that calculated in part (c), plot 

the time–distance diagram and effluent history for this displacement. 
(e) Estimate the miscible flood trapped oil saturation '

2rS  from Fig. 7-44. 
7H. Solvent Velocity with Water-Oil Solubility 

(a) Show that by including the solvent water solubility and the solubility of the sol-
vent in a trapped oil saturation, the solvent specific velocity (Eq. 7.7-14) becomes 

 1 31
3 '

1 31 2 32

1 (1 )

1 (1 ) (1 )

s
J

J r

f C
v

S C S C

− −
=

− − − −
 (7H-1) 

where C31 = solvent solubility in water = R31B3/B1, and C32 = solvent solubility in 
oil = R32B3/B2. Rij is the solubility of component i in phase j in standard volumes of 
i per standard volumes of j. See Fig. 7-20 and 7-23. 
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Figure 7G  Slaughter Estate Unit relative 
permeability curves (from Ader and Stein, 
1982)

 
(b) Using the '

2rS  from part (e) of Exercise 7G, and taking R31 = 17.8 SCM/SCM, R32 
= 214 SCM/SCM, B3 = 10–3 m3/SCM, B1 = 1 m3/SCM, and B2 = 1.2 m3/SCM, 
repeat parts (b–d) of Exercise 7G. 

(c) Repeat parts (c) and (d) of Exercise 7G if the chase fluid is a gas having the 
identical properties of the solvent instead of water. 

 
71. Carbonated Waterflooding Fractional Flow. One of the earlier EOR techniques is 

displacement by CO2-saturated water. This technique is amenable to fractional flow 
analysis (de Nevers, 1964). 
(a) Show that the specific velocity of a pistonlike carbonated water front is given by 
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Equation (7I-1) assumes flow behind the front is at a CO2-saturated residual oil 
phase. 

(b) By matching the specific velocity of the oil bank rear to Eq. (7I-1) show the oil 
bank saturation and fractional flow must satisfy 
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In these equations, 3

21K  is the volumetric partition coefficient of CO2 (i = 3) 
between the water (j = 1) and oil (j = 2) phases, and C32 is the volume fraction of 
CO2 in the oil. f1(S1) is the water fractional flow curve. 

(c) Estimate C32 and 3
21K  from Fig. 7-20 at 15 MPa and 340 K. You may assume ideal 

mixing in both phases. 
(d) Calculate and plot the effluent oil cut of a carbonated waterflood in a 

one-dimensional permeable medium with initial (uniform) oil cut of 0.1. 
(e) On the same graph, plot the effluent oil fractional flow of a noncarbonated 

waterflood. Finally, plot the incremental oil recovery (IOR) versus tD. 
For this problem, use the following parameters in the exponential relative 

permeability curves: n1 = n2 = 2, 0
1rk  = 0.1, φ = 0.2, 0

2rk  = 0.8, μ1 = 0.8 mPa-s, μ2 = 
5 mPa-s, S1r = S2r = 0.2, and α = 0. The oil molecular weight is 200 kg/kg-mole, its 
density is 0.78 g/cm3, and the UOP factor is 11.2. 

7J. Viscous Fingering and Displacement Efficiency. Using the Koval theory (Eq. 7.8-7), 
plot the effluent history of a first-contact miscible displacement where the oil–solvent 
viscosity ratio is 50, and the heterogeneity factor is 5. 

7K. Viscous Fingering by Mixing Parameter. In the Todd-Longstaff (1972) representation 
of viscous fingering, the Koval factor Kval in Eq. (7.8-4) is replaced by KTL where 

 12

3

e
TL

e

M
K v

M
ω−= =  (7K-1) 

 
where M2e and M3e = effective solvent and oil viscosities in the mixing zone, v = 
viscosity ratio, and ω  = mixing parameter (0 < ω  < 1). 
(a) Repeat Exercise 7J with ω = 1/3. 
(b) Determine the correspondence between Kval and KTL by setting KTL = Kval in Eq. 

(7.8-5) and plotting ω versus v for various Hk. 
7L. Dispersion as a Normal Distribution. One view of dispersion is that it is the result of 

the mixing of a large number of fluid particles along independent paths. If so, the 
distribution of particles should follow a normal distribution. In this exercise, we show 
that the equations in Sec. 7-6 reduce to such a form. 
(a) Show that Eq. (7.6-4) applied to a unit slug CiI = CiK = 0 and 

 1Ds iJt C =  (7L-1) 
 

reduces to 
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 (7L-2) 

for tD >> tDs. 
(b) Using the definition for the error function (Eq. 5.5-14), show that Eq. (7L-2) 

becomes 
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as tDs → 0. Equation (7L-3) says the distribution of a large number of particles at 
xD = 0 initially approaches a normal distribution with mean position xD = tD and a 
standard deviation of Pe2 /Dt N . 

7M. Calculating Solvent Oil Recovery. Figure 7M shows the volumetric sweep efficiency of 
a tertiary solvent displacement. 
(a) Using the procedure in Sec. 7-10, estimate and plot cumulative oil recovery 

(fraction of oil in place at start of solvent injection) and oil cut versus 
dimensionless time. Use the average concentrations of Fig. 7-50. 

(b) If the oil formation volume factor is 1.2 m3/SCM, the reservoir pore volume is 160 
hm3, and the average injection rate is 80 m3/day, calculate and plot the cumulative 
oil produced and oil rate versus time. 

 
Figure 7M  Volumetric sweep efficiency for miscible displacement 
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8  
 
 
 
 

Polymer Methods 
 
 
 
 
 
 
 
Polymer flooding consists of adding polymer to the water of a waterflood to decrease 
its mobility. The resulting increase in viscosity, as well as a decrease in aqueous 
phase permeability that occurs with some polymers, causes a lower mobility ratio. 
This lowering increases the efficiency of the waterflood through greater volumetric 
sweep efficiency and a lower swept zone oil saturation. Irreducible oil saturation does 
not decrease although the remaining oil saturation does, approaching S2r for both 
waterflooding and polymer flooding. The greater recovery efficiency constitutes the 
economic incentive for polymer flooding when applicable. Generally, a polymer 
flood will be economic only when the waterflood mobility ratio is high, the reservoir 
heterogeneity is high, or a combination of these two occurs. 

Polymers have been used in oil production in three modes. 
 
1. As near-well treatments to improve the performance of water injectors or 
watered-out producers by blocking off high-conductivity zones. 

2. As agents that may be cross-linked in situ to plug high-conductivity zones at 
depth in the reservoir (Needham et al., 1974). 

These processes require that polymer be injected with an inorganic metal cation 
that will cross-link subsequently injected polymer molecules with ones already bound 
to solid surfaces. 
3. As agents to lower water mobility or water–oil mobility ratio. 
 
The first mode is not truly polymer flooding since the actual oil-displacing agent is 
not the polymer. Certainly most polymer EOR projects have been in the third mode, 
the one we emphasize here. We discussed how lowering the mobility ratio affects 
displacement and volumetric sweep efficiency in Chaps. 5 and 6. 
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Figure 8-1  Schematic illustration of polymer flooding sequence (drawing by Joe Lindley, 
U.S. Department of Energy, Bartlesville, Okla.)
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Figure 8-1 shows a schematic of a typical polymer flood injection sequence: 

a preflush usually consisting of a low-salinity brine; an oil bank; the polymer solution 
itself; a freshwater buffer to protect the polymer solution from backside dilution; and 
finally, chase or drive water. Many times the buffer contains polymer in decreasing 
amounts (a grading or taper) to lessen the unfavorable mobility ratio between the 
chase water and the polymer solution. Because of the driving nature of the process, 
polymer floods are always done through separate sets of injection and production 
wells. 

Mobility is lowered in a polymer flood by injecting water that contains a high 
molecular weight, water- soluble polymer. Since the water is usually a dilution of an 
oil-field brine, interactions with salinity are important, particularly for certain classes 
of polymers. 

 
Figure 8-2  Salinities from representative oil-field brines (from Gash et al., 1981) 
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Salinity is the total dissolved solids (TDS) content of the aqueous phase. 

Figure 8-2 shows typical values. Virtually all chemical flooding properties depend on 
the concentrations of specific ions rather than salinity only. The aqueous phase’s total 
divalent cation content (hardness) is usually more critical to chemical flood 
properties than the same TDS concentration. Figure 8-2 also shows typical brine 
hardnesses. 

Because of the high molecular weight (1 to 3 million), only a small amount 
(about 500 g/m3) of polymer will bring about a substantial increase in water 
viscosity. Further, several types of polymers lower mobility by reducing water 
relative permeability in addition to increasing the water viscosity. How polymer 
lowers mobility, and the interactions with salinity, can be qualitatively illustrated 
with some discussion of polymer chemistry. 
 
 

8-1 THE POLYMERS 
 
Several polymers have been considered for polymer flooding: Xanthan gum, 
hydrolyzed polyacrylamide (HPAM), copolymers (a polymer consisting of two or 
more different types of monomers) of acrylic acid and acrylamide, copolymers of 
acrylamide and 2-acrylamide 2-methyl propane sulfonate (AM/AMPS), 
hydroxyethylcellulose (HEC), carboxymethylhydroxyethylcellulose (CMHEC), 
polyacrylamide (PAM), polyacrylic acid, glucan, dextran polyethylene oxide (PEO), 
and polyvinyl alcohol. Although only the first three have actually been used in the 
field, there are many potentially suitable chemicals, and some may prove to be more 
effective than those now used. 

Nevertheless, virtually all the commercially attractive polymers fall into two 
generic classes: polyacrylamides and polysaccharides (biopolymers). In the 
remainder of this discussion, we deal with these exclusively. Figure 8-3 shows 
representative molecular structures. 
 
Polyacrylamides 
 
These are polymers whose monomeric unit is the acrylarnide molecule. As used in 
polymer flooding, polyacrylamides have undergone partial hydrolysis, which causes 
anionic (negatively charged) carboxyl groups (––COO–) to be scattered along the 
backbone chain. The polymers are called partially hydrolyzed polyacrylamides 
(HPAM) for this reason. Typical degrees of hydrolysis are 30%–35% of the 
acrylamide monomers; hence the HPAM molecule is negatively charged, which 
accounts for many of its physical properties. 

This degree of hydrolysis has been selected to optimize certain properties 
such as water solubility, viscosity, and retention. If hydrolysis is too small, the 
polymer will not be water soluble. If it is too large, its properties will be too sensitive 
to salinity and hardness (Shupe, 1981). 

The viscosity increasing feature of HPAM lies in its large molecular weight. 
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Figure 8-3  Molecular structures (from Willhite and Dominguez, 1977) 

 
This feature is accentuated by the anionic repulsion between polymer molecules and 
between segments on the same molecule. The repulsion causes the molecule in 
solution to elongate and snag on others similarly elongated, an effect that accentuates 
the mobility reduction at higher concentrations. 

If the brine salinity or hardness is high, this repulsion is greatly decreased 
through ionic shielding since the freely rotating carbon–carbon bonds (Fig. 8-3a) 
allow the molecule to coil up. The shielding causes a corresponding decrease in the 
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effectiveness of the polymer since snagging is greatly reduced. Virtually all HPAM 
properties show a large sensitivity to salinity and hardness, an obstacle to using 
HPAM in many reservoirs. On the other hand, HPAM is inexpensive and relatively 
resistant to bacterial attack, and it exhibits permanent permeability reduction. 
 
Polysaccharides 
 
These polymers are formed from the polymerization of saccharide molecules (Fig. 
8-3b), a bacterial fermentation process. This process leaves substantial debris in the 
polymer product that must be removed before the polymer is injected (Wellington, 
1980). The polymer is also susceptible to bacterial attack after it has been introduced 
into the reservoir. These disadvantages are offset by the insensitivity of 
polysaccharide properties to brine salinity and hardness. 

Figure 8-3(b) shows the origin of this insensitivity. The polysaccharide 
molecule is relatively nonionic and, therefore, free of the ionic shielding effects of 
HPAM. Polysaccharides are more branched than HPAM, and the oxygen-ringed 
carbon bond does not rotate fully; hence the molecule increases brine viscosity by 
snagging and adding a more rigid structure to the solution. Polysaccharides do not 
exhibit permeability reduction. Molecular weights of polysaccharides. are generally 
around 2 million. 

Today, HPAM is less expensive per unit amount than polysaccharides, but 
when compared on a unit amount of mobility reduction, particularly at high salinities, 
the costs are close enough so that the preferred polymer for a given application is site 
specific. Historically, HPAM has been used in about 95% of the reported field 
polymer floods (Manning et al., 1983). Both classes of polymers tend to chemically 
degrade at elevated temperatures. 
 
Polymer Forms 
 
The above polymers take on three distinctly different physical forms: powders, broths 
and emulsions. Powders, the oldest of the three, can be readily transported and stored 
with small cost. They are difficult to mix because the first water contacting the 
polymer tends to form very viscous layers of hydration around the particles, which 
greatly slow subsequent dissolution- Broths arc aqueous suspensions of about 10 wt. 
% polymer in water which are much easier to mix than powders. They have the 
disadvantage of being rather costly because of the need to transport and store large 
volumes of water. Broths are quite viscous so they can require special mixing 
facilities. In fact, it is this difficulty which limits the concentration of polymer in the 
broth. Emulsion polymers, the newest polymer form, contain up to 35 wt. % polymer 
solution, suspended through the use of a surfactant, in an oil-carrier phase. Once this 
water-in-oil emulsion is inverted (see Fig. 9-5), the polymer concentrate can be 
mixed with make-up water to the desired concentration for injection. The emulsion 
flows with roughly the same viscosity as the oil carrier, which can be recycled. 
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B-2 POLYMER PROPERTIES 

 
In this section, we present qualitative trends, quantitative relations, and representative 
data on the following properties: viscosity relations, non-Newtonian effects, polymer 
transport, inaccessible pore volume, permeability reduction, chemical and biological 
degradation, and mechanical degradation. 
 
Viscosity Relations 
 
Figure 8-4 shows a plot of Xanflood viscosity versus polymer concentration. This 
type of curve has traditionally been modeled by the Flory-Huggins equation (Flory, 
1953) 
 2 3

1 1 1 41 2 41 3 41[1     ]a C a C a Cμ μ′ = + + + + ⋅ ⋅ ⋅ +  (8.2-1) 
 
where C41 is the polymer concentration in the aqueous phase, μ1 is the brine (solvent) 
viscosity, and a1, a2, and so on are constants. In the remainder of this chapter we drop 
the second subscript 1 on the polymer concentration since polymer is always in an 
aqueous phase. The usual polymer concentration unit is g/m3 of solution, which is 
approximately the same as ppm. The linear term in Eq. (8.2-1) accounts for the dilute 
range where the polymer molecules act independently (without entanglements). For 
most purposes, Eq. (8.2-1) can usually be truncated at the cubic term. 

For a 1,000 g/m3 Xanflood solution at 0.1 s–1 in 1 wt % NaCl brine at 24°C, 
 

 
 

 
 
 
Figure 8-4  Xanflood viscosity versus 
concentration in 1% NaCl brine (from 
Tsaur, 1978)
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the viscosity is 70 mPa-s (70 cp) from Fig. 8-4. Compared to the brine at the same 
conditions, this is a substantial increase in viscosity brought about by a relatively 
dilute concentration (recall that 1,000 g/m3 = 0.1 wt %). Xanflood at these conditions 
is an excellent thickener. 

A more fundamental way of measuring the thickening power of a polymer is 
through its intrinsic viscosity, defined as 
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[ ] limit
C C

μ μμ
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⎣ ⎦
 (8.2-2) 

 
From its definition, [μ] is a measure of the polymer’s intrinsic thickening power. It is 
insensitive to the polymer concentration. The intrinsic viscosity for the Xanflood 
polymer under the conditions given above is 70 dl/g, the units being equivalent to 
reciprocal weight percent. Intrinsic viscosity is the same as the a1 term in Eq. (8.2-1). 

For any given polymer–solvent pair, the intrinsic viscosity increases as the 
molecular weight of the polymer increases according to the following equation 
(Flory, 1953): 
 [ ] a

wK Mμ ′=  (8.2-3) 
 
The exponent varies between about 0.5 and 1.5 and is higher for good solvents such 
as freshwater. K′ is a polymer-specific constant. 

The above relationships are useful for characterizing the polymer solutions. 
For example, the size of the polymer molecules in solution can be estimated from 
Flory’s (1953) equation for the mean end-to-end distance 
 1/ 38( [ ])p wd M μ=  (8.2-4) 
 
This equation, being empirical, presumes certain units; [μ] must be in dl/g, and dp is 
returned in Angstroms (10–10 m). This measure of polymer size is useful in 
understanding how these very large molecules propagate through the small pore 
openings of rocks. The molecular weight of Xanthan gum is about 2 million. From 
Eq. (8.2-4), dp is about 0.4 μm. This is the same size as many of the pore throats in a 
low-to-moderate permeability sandstone. As a result, we would expect to, and in fact 
do, observe many polymer–rock interactions. 
 
Non-Newtonian Effects 
 
Figure 8-5 shows polymer solution viscosity 1μ′  versus shear rate γ  measured in a 
laboratory viscometer at fixed salinity. At low shear rates, 1μ′  is independent of γ  
( 1μ′  = 1.01), and the solution is a Newtonian fluid. At higher γ , 1μ′  decreases, 
approaching a limiting ( 1 1μ μ ∞′ = ) value not much greater than the water viscosity μ1 
at some critical high shear rate. This critical shear rate is off-scale to the right in Fig. 
8-5. A fluid whose viscosity decreases with increasing γ  is shear thinning. The shear 
thinning behavior of the polymer solution is caused by the uncoiling and unsnagging
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Figure 8-5  Polymer solution viscosity versus shear rate and polymer concentration 
(from Tsaur, 1978) 

 
of the polymer chains when they are elongated in shear flow. Below the critical shear 
rate, the behavior is part reversible. 

Figure 8-6 shows a viscosity–shear-rate plot at fixed polymer concentration 
with variable NaCl concentration for an AMPS polymer. The sensitivity of the 
viscosity to salinity is profound. As a rule of thumb, the polymer solution viscosity 
decreases a factor of 10 for every factor of 10 increase in NaCl concentration. The 
viscosity of HPAM polymers and HPAM derivatives are even more sensitive to 
hardness, but viscosities of polysaccharide solutions are relatively insensitive to both. 

The behavior in Figs. 8-5 and 8-6 is favorable because, for the bulk of a 
reservoir’s volume, γ  is usually low (about 1–5 s–1), making it possible to attain a 
design mobility ratio with a minimal amount of polymer. But near the injection wells, 
γ  can be quite high, which causes the polymer injectivity to be greater than that 
expected based on 0

1μ . The relative magnitude of this enhanced injectivity effect can 
be estimated (Sec. 8-3) once quantitative definitions of shear rate in permeable 
media, and shear-rate–viscosity relations are given. 

The relationship between polymer-solution viscosity and shear rate may be 
described by a power-law model 

 
 1

1 ( ) pln
plKμ γ −′ =  (8.2-5) 
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Figure 8-6  Polymer solution viscosity versus shear rate at various brine salinities (from 
Martin et al., 1981) 
 
where Kpl and npl are the power-law coefficient and exponent, respectively. For shear 
thinning fluids, 0 < npl < 1; for Newtonian fluids, npl = 1, and Kpl becomes the 
viscosity. γ  is always positive. Equation (8.2-5) applies only over a limited range of 
shear rates: Below some low shear rate, the viscosity is constant at 0

1μ , and above the 
critical shear rate, the viscosity is also constant 1μ ∞ . 

The truncated nature of the power law is awkward in some calculations; 
hence another useful relationship is the Meter model (Meter and Bird, 1964) 
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 (8.2-6) 

 
where nM is an empirical coefficient, and 1/ 2γ  is the shear rate at which 1μ′  is the 
average of 0

1μ  and 1μ ∞ . As with all polymer properties, all empirical parameters are 
functions of salinity, hardness, and temperature. 

When applied to permeable media flow, the above general trends and 
equations continue to apply. 1μ′  is usually called the apparent viscosity μapp and the 
effective shear rate eqγ  is based on capillary tube concepts, as we  derived in Sec. 3-1 
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for Newtonian fluids. For power-law fluids, the procedure is identical (see Exercise 
8B) except the beginning equation is Eq. (8.2-5). We give only the results here. 

The apparent viscosity of a flowing polymer solution is 
 1pln

app plH uμ −=  (8.2-7) 
where (Hirasaki and Pope, 1974) 
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 (8.2-8) 

 
The right side of Eq. (8.2-7) is 1pln

pl eqK γ −  which yields the equivalent shear rate for 
flow of a power-law fluid 
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 (8.2-9) 

 
In both Eqs. (8.2-8) and (8.2-9), k1, the aqueous phase permeability, is the product of 
the phase’s relative permeability and the absolute permeability. φ1, the aqueous phase 
porosity, is φS1. 

The only difference between the equivalent shear rate and that for the 
Newtonian fluid (Eq. 3.1-11) is the first term on the right-hand side. This factor is a 
slowly varying function of npl; hence the Newtonian shear rate affords an excellent 
approximation of the shear rate in non-Newtonian flow. 

Even though eqγ  has units of reciprocal time, shear rate is essentially a 
steady-state representation since it can be realized in steady laminar flow in a tube. 
Thus the constitutive Eqs. (8.2-5) and (8.2-6) are representing purely viscous effects 
since an instantaneous change in eqγ  causes a similar change in 1μ′ . In reality, 
fluctuations in eqγ , or elastic effects, do affect polymer properties; these we discuss 
separately below. 
 
Polymer Transport 
 
All polymers experience retention in permeable media because of adsorption onto 
solid surfaces or trapping within small pores. Polymer retention varies with polymer 
type, molecular weight, rock composition, brine salinity, brine hardness, flow rate, 
and temperature. Field-measured values of retention range from 7 to 150 μg 
polymer/cm3 of bulk volume, with a desirable retention level being less than about 20 
μg/cm3. Retention causes the loss of polymer from solution, which can also cause the 
mobility control effect to be lost––a particularly pronounced effect at low polymer 
concentrations. Polymer retention also causes a delay in the rate of the polymer and 
generated oil bank propagation (see Sec. 8-4). 

For more quantitative work, we represent polymer adsorption by a Langmuir-
type isotherm 

 4 4
4

4 41s
a CC

b C
=

+
 (8.2-10) 
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where C4 and C4s are the species concentrations in the aqueous and on the rock 
phases. The units of adsorption can take on a variety of forms, but mass of polymer 
per mass of rock is most common. In our notation, this is ω4s/(1 – ω4s), strictly 
speaking, but ω4s is very much smaller than 1. The units conversion between 
C4s(g/m3) and ω4s(μg/g-rock) are embedded in the constants a4 and b4. The b4 in Eq. 
(8.2-10) controls the curvature of the isotherm, and the ratio a4/b4 determines the 
plateau value for adsorption (Fig. 8-7). 
 

 
 

Figure 8-7  Typical Langmuir isotherm shapes 
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In the original Langmuir theory, the plateau adsorption corresponded to 

monolayer coverage of the surface by physical adsorption (see Exercise 8C). 
Considering the anionic character of water-soluble polymers, the adsorption is more 
likely to be chemical adsorption described by an exchange isotherm like Eq. (3.5-4). 
In fact, polymer adsorption does increase with increasing salinity and hardness but 
measured surface coverages are much smaller than monolayer coverage. Moreover, it 
is unknown if adsorption is reversible. Hence Eq. (8.2-10) and Fig. 8.7 are simply 
empirical representations of physical observations. (This is the origin of the term 
Langmuir-type.) Typical polymer adsorption isotherms are quite steep; that is, they 
attain their plateau value at very low C4. The values given above for polymer 
adsorption are referring to the plateau adsorption. 

Equation (8.2-10) is a general isotherm function. The specific form depends 
on the units of the retention; unfortunately, no standard form exists for this. Common 
ways to report retention are 
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The last of these is often called the frontal advance loss. 
 
Inaccessible Pore Volume 
 
Offsetting the delay caused by retention is an acceleration of the polymer solution 
through the permeable medium caused by inaccessible pore volume (IPV). The most 
common explanation for IPV is that the smaller portions of the pore space will not 
allow polymer molecules to enter because of their size. Thus a portion of the total 
pore space is uninvaded or inaccessible to polymer, and accelerated polymer flow 
results. A second explanation of IPV is based on a wall exclusion effect whereby the 
polymer molecules aggregate in the center of a narrow channel (Duda et al., 1981). 
The polymer fluid layer near the pore wall has a lower viscosity than the fluid in the 
center, which causes an apparent fluid slip. 

IPV depends on polymer molecular weight, medium permeability, porosity, 
and pore size distribution and becomes more pronounced as molecular weight 
increases and the ratio of permeability to porosity (characteristic pore size) decreases. 
In extreme cases, IPV can be 30% of the total pore space. 
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Permeability Reduction 
 
For many polymers, viscosity–shear-rate data derived from a viscometer ( 1μ′  versus 
γ ) and those derived from a flow experiment (μapp versus eqγ ) will yield essentially 
the same curve. But for HPAM, the viscometer curve will be offset from the 
permeable medium curve by a significant and constant amount. The polymer 
evidently causes a degree of permeability reduction that reduces mobility in addition 
to the viscosity increase. 

Actually, permeability reduction is only one of three measures in permeable 
media flow (Jennings et al., 197 1). The resistance factor RF is the ratio of the 
injectivity of brine to that of a single-phase polymer solution flowing under the same 
conditions 
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For constant flow rate experiments, RF is the inverse ratio of pressure drops; for 
constant pressure drop experiments, RF is the ratio of flow rates. RF is an indication of 
the total mobility lowering contribution of a polymer. To describe the permeability 
reduction effect alone, a permeability reduction factor Rk is defined as 
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 (8.2-12) 

 
A final definition is the residual resistance factor RRF, which is the mobility of a 
brine solution before and after (λ1a) polymer injection 
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1
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R λ
λ

=  (8.2-13) 

 
RRF indicates the permanence of the permeability reduction effect caused by the 
polymer solution. It is the primary measure of the performance of a channel-blocking 
application of polymer solutions. For many cases, Rk and RRF are nearly equal, but RF 
is usually much larger than Rk because it contains both the viscosity-enhancing and 
the permeability-reducing effects. 

The most common measure of permeability reduction is Rk, which is 
sensitive to polymer type, molecular weight, degree of hydrolysis, shear rate, and 
permeable media pore structure. Polymers that have undergone even a small amount 
of mechanical degradation seem to lose most of their permeability reduction effect. 
For this reason, qualitative tests based on screen factor devices are common to 
estimate polymer quality. 

The screen factor device is simply two glass bulbs mounted into a glass 
pipette as shown in Fig. 8-8. Into the tube on the bottom of the device are inserted 
several fairly coarse wire screens through which the polymer solution is to drain. To 
use the device, a solution is sucked through the screens until the solution level is 
above the upper timing mark. When the solution is allowed to flow freely, the time 
required to pass from the upper to the lower timing mark td is recorded. The screen
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Figure 8-8  Screen factor device 
(adapted from Foshee et al., 1976)

 
factor for the polymer solution is then defined as 
 

 d
F

ds

tS
t

=  (8.2-14) 

 
where tds is the similar time for the polymer-free brine. 
Because of the normalization, screen factors are independent of temperature, device 
dimensions, and screen coarseness, and they are fairly independent of screen spacing. 
The screen factor is not independent of polymer concentration, but its primary intent 
is to measure the time-dependent portion of the polymer’s solution configuration; that 
is, it measures the rate at which a polymer molecule returns to its steady-state flow 
configuration after it has been perturbed. This relaxation time is evidently very fast 
for the polysaccharides because they do not have a measurable screen factor even at 
high concentrations. HPAMs have much slower relaxation times because their screen 
factors can be large even at the same viscosity as a polysaccharide solution. The 
above explanations are consistent with the chemical properties of the two polymer 
groups given in Sec. 8-1 and can be used to deduce the sensitivity of screen factors to 
brine salinity and hardness. 

Screen factors are particularly sensitive to changes in the polymer molecule 
itself. One definition of polymer quality is the ratio of the degraded to the undegraded 
screen factors. This use is important for screen factor devices, particularly in 
locations that prohibit more sophisticated equipment. 

Another use for screen factors is as a correlator for RF and RRF (Fig. 8-9). The 
explanation for such a correlation is consistent with that given above on polymer
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Figure 8-9  Correlation of resistance factors with screen factors (from Jennings et 
al., 1971) 

 
relaxation. On a pore scale, steady flow in permeable media is actually a succession 
of contracting and diverging channels. The frequency with which the solution 
experiences these contractions, compared with the polymer relaxation time, 
determines the degree of permeability reduction. Such an effect also qualitatively 
explains the increase in viscometer viscosity at very high shear rates (Hirasaki and 
Pope, 1974). 

The relaxation time argument cannot completely account for permeability 
reduction because such effects have been observed in glass capillaries. For this case, 
permeability reduction seems to be caused by polymer adsorption, which decreases 
the effective pore size (see Exercise 8E). 

A reasonable question is whether permeability reduction is a desirable effect. 
Rk is difficult to control, being sensitive to even small deteriorations in the polymer 
quality. Moreover, an extremely large Rk will cause injectivity impairment. But it is 
possible to achieve a predesignated degree of mobility control with less polymer if Rk 
> 1. If 0

TM  is a design or target endpoint mobility ratio, 
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In this equation, 0

1kR
M

=
 is the mobility ratio of a polymer having no permeability 

reduction, and M0 is the endpoint water–oil mobility ratio. Clearly, if Rk > 1, the 
polymer viscosity 0

1μ  can be smaller than if Rk = 1, which indicates a given 
concentration of HPAM will have a lower mobility ratio than polysaccharide under 
conditions where both polymers have the same flowing viscosity. Note that the 
limiting viscosity 0

1μ  is used to estimate M0 from Eq. (8.2-15). 
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Chemical and Biological Degradation 
 
The average polymer molecular weight can be decreased, to the detriment of the 
overall process, by chemical, biological, or mechanical degradation. We use the term 
chemical degradation to denote any of several possible processes such as thermal 
oxidation, free radical substitution, hydrolysis, and biological degradation. 

For a given polymer solution, there will be some temperature above which 
the polymer will actually thermally crack. Although not well established for most 
EOR polymers, this temperature is fairly high, on the order of 400 K. Since the 
original temperature of oil reservoirs is almost always below this limit, of more 
practical concern for polymer flooding is the temperature other degradation reactions 
occur at. 

The average residence time in a reservoir is typically very long, on the order 
of a few years, so even slow reactions are potentially serious. Reaction rates also 
depend strongly on other variables such as pH or hardness. At neutral pH, 
degradation often will not be significant, whereas at very low or very high pH, and 
especially at high temperatures, it may be. In the case of HPAM, the hydrolysis will 
destroy the carefully selected extent of hydrolysis present in the initial product. The 
sensitivity to hardness will increase, and viscosity will plummet. For Xanthan gum, 
hydrolysis is even more serious since the polymer backbone is severed, resulting in a 
large decrease in viscosity. 
 

TABLE 8-1  SELECTED BACTERICIDES AND OXYGEN 
SCAVENGERS (ADAPTED FROM ENHANCED OIL RECOVERY, 
NATIONAL PETROLEUM COUNCIL, 1984) 

 
Bactericide Oxygen scavengers 

Commonly used  
Acrolein Hydrazine 
Formaldehyde Sodium bisulfite 
Sodium dichlorophenol Sodium hydrosulfite 
Sodium pintachlorophenol Sulfur dioxide 

Proposed or infrequent use  
Acetate salts of coco amines  
Acetate salts of coco diamines  
Acetate salts of tallow diamines  
Alkyl amino  
Alkyl dimethyl ammonium chloride  
Alkyl phosphates  
Calcium sulfate  
Coco dimethyl ammonium chloride  
Gluteraldehyde  
Paraformaldehyde  
Sodium hydroxide  
Sodium salts of phenols  
Substituted phenols  
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Oxidation or free radical chemical reactions are usually considered the most 

.serious source of degradation. Therefore, oxygen scavengers and antioxidants are 
often added to prevent or retard these reactions. These chemicals are strong reducing 
agents and have the additional advantage of reducing iron cations from the +3 to the 
+2 state. They, in turn, help prevent gelation, agglomeration, and other undesirable 
effects that can cause wellbore plugging and reduced injectivity. Wellington (1980) 
has found that alcohols such as isopropanol and sulfur compounds such as thiourea 
make good antioxidants and free radical inhibitors. 

Laboratory results indicate Xanthan can be stabilized up to about 367 K, and 
HPAM to about 394 K. In the case of Xanthan, the results depend strongly on the 
precise conditions such as salinity and pH, with high salinity and pH between 7 and 9 
being preferred. Obviously, one should test the particular polymer solution under the 
particular reservoir conditions of interest to establish the expected behavior. 

Biological degradation can occur with both HPAM and polysaccharides, but 
is more likely with the latter. Variables affecting biological degradation include the 
type of bacteria in the brine, pressure, temperature, salinity, and the other chemicals 
present. As in waterflooding, the preventive use of biocide is highly recommended. 
Often too little biocide is used or it is started too late, and the ensuing problems 
become almost impossible to correct. Table 8-1 lists typical polymer flooding 
additions. 
 
 
Mechanical Degradation 
 
 
Mechanical degradation is potentially present under all applications. It occurs when 
polymer solutions are exposed to high velocity flows, which can be present in surface 
equipment (valves, orifices, pumps, or tubing), downhole conditions (perforations or 
screens), or the sand face itself. Perforated completions, particularly, are a cause for 
concern as large quantities of polymer solution are being forced through several 
small holes. For this reason, most polymer injections are done through open-hole or 
gravel-pack completions. Partial preshearing of the polymer solution can lessen the 
tendency of polymers to mechanically degrade. Because flow velocity falls off 
quickly with distance from an injector, little mechanical degradation occurs within 
the reservoir itself. 

All polymers mechanically degrade under high enough flow rates. But 
14PAMs are most susceptible under normal operating conditions, particularly if the 
salinity or hardness of the brine is high. Evidently, the ionic coupling of these anionic 
molecules is relatively fragile. Moreover, elongational stress is as destructive to 
polymer solutions as is shear stress though the two generally accompany each other. 
Maerker (1976) and Seright (1983) have correlated permanent viscosity loss of a 
polymer solution to an elongational stretch rate-length product. On a viscosity-
shear-rate plot (purely shear flow), mechanical degradation usually begins at shear 
rates equal to or somewhat less than the minimum viscosity shear rate. 
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8-3 CALCULATING POLYMER FLOOD INJECTIVITY 

 
The economic success of all EOR processes is strongly tied to project life or injection 
rate, but polymer flooding is particularly susceptible. In many cases, the cost of the 
polymer itself is secondary compared to the present value of the incremental oil. 
Because of its importance, many field floods are preceded by single-well injectivity 
tests. Here we give a simple technique for analyzing injectivity tests based on the 
physical properties given in the previous section. 

The injectivity of a well is defined as 
 

 iI
P

≡
Δ

 (8.3-1) 

 
where i is the volumetric injection rate into the well, and ΔP is the pressure drop 
between the bottom-hole flowing pressure and some reference pressure. Another 
useful measure is the relative injectivity 
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where I1 is the water injectivity. Ir is an indicator of the injectivity decline to be 
anticipated when injecting polymer. Both I and Ir are functions of time, but the 
longtime limit of Ir for a Newtonian polymer solution is simply the viscosity ratio if 
skin effects are small. However, the ultimate Ir for an actual polymer solution can be 
higher than this because of shear-thinning. 

We make several simplifying assumptions, many of which can be relaxed 
(Bondor et al., 1972). The well, of radius Rw, whose injectivity we seek, is in a 
horizontal, homogeneous, circular drainage area of radius Re. The pressures at Re and 
Rw are Pe and Pwf, respectively. Pe is constant (steady-state flow), but Pwf can vary 
with time. The fluid flowing in the reservoir is a single aqueous phase, at residual oil 
saturation, which is incompressible with pressure-independent rheological properties. 
Dispersion and polymer adsorption are negligible although the polymer can exhibit 
permeability reduction. The flow is one-dimensional and radial. Finally, the entire 
shear rate range in the reservoir lies in the power-law regime; hence Eq. (8.2-7) 
describes the apparent viscosity. 

Subject to these assumptions, the continuity equation (Eq. 2.4-11) reduces to 

 ( ) 0r
d ru
dr

=  (8.3-3) 

 
where ur is the radial volumetric flux. This equation implies the volumetric rate is 
independent of r and equal to i since 
 2 t ri rH uπ=  (8.3-4a) 
 
Equation (8.3-4a) is a consequence of the incompressible flow assumption; however, 
i is not independent of time. Let us substitute Darcy’s law for ur in Eq. (8.3-4a) 
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from Eq. (8.2-7). This equation has been defined so that i is positive. The 
permeability reduction factor is introduced through Eq. (8.2-12). Eliminating ur with 
Eq. (8.3-4a) yields an ordinary differential equation, which may be integrated 
between the arbitrary limits of P1 at r1 and P2 at r2. 
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The Newtonian flow limit, npl = 1 = Rk and Hpl = μ1, of this equation is the familiar 
steady-state radial flow equation,   
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We now apply these equations to the polymer flood injectivity. 

At some time t during the injection, the polymer front (assumed sharp) is at 
radial position Rp where 
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The left side of this equation is the cumulative volume of polymer solution injected. 
Therefore, Eq. (8.3-5a) applies in the region Rw < r < Rp, and Eq. (8.3-5b) applies in 
the annular region Rp < r < Re. With the appropriate identification of variables, we 
have for the second region 
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and for the first 
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where 

pR
P , is the pressure at the polymer–water front. Adding these two equations 

gives the total pressure drop from Rw to Re. 
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where Sw the intrinsic skin factor of the well, has been introduced to account for well 
damage. 
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Equation (8.3-8) substituted into the injectivity definition (Eq. 8.3-1) gives 
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 (8.3-9) 

 
The water injectivity I1 is given by Eqs. (8.3-1) and (8.3-5b), with r1 = Rw and r2 = Re. 
This and I, calculated from Eq. (8.3-9), yield an expression for Ir through Eq. (8.3-2). 
Both I and Ir relate to the cumulative polymer solution injection (or to time) through 
Eq. (8.3-6). 
 
 

8-4 FRACTIONAL FLOW IN POLYMER FLOODS 
 
The fractional flow treatment of polymer floods resembles the water–solvent 
treatment in Sec. 7-7. The only major complications are the addition of terms for 
polymer retention and inaccessible pore volume (IPV). In this section, we apply the 
usual fractional flow assumptions: one-dimensional flow, incompressible fluid and 
rock, and nondissipative mixing. 
 
Single-Phase Flow 
 
First, consider the case of a water-soluble species that is being adsorbed from 
solution via a Langmuir-type isotherm. The isotherm is given by Eq. (8.2-10). 

Let the flow be such that species concentration C4I is being displaced by 
concentration C4J in single-phase flow where C4J > C4I. From Eq. (5.4-5a), the 
specific velocity of concentration C4 is 
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From Eq. (8.2-10), the specific velocity becomes 
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But since C4J > C4I, we have 

4 4C CJ I
v v> , and the displacement is a shock; if C4J < 

C4I (see Exercise 8J), it would be 4 spreading wave. But for C4J displacing C4I, the 
front between C4J and C4I moves with specific velocity 
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from Eq. (5.4-5b). In this equation, Δ( ) = ( )J – ( )I. If, as is usually the case for 
polymer floods, C4I = 0, Eq. (8.4-2) reduces to 
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 (8.4-3) 

 
where D4 is the frontal advance loss for the polymer. It is also called the retardation 
factor because adsorption causes the front velocity to be lower than that of the ideal 
miscible displacement (see Sec. 5-4). D4 is one of the most useful concepts in both 
polymer and micellar-polymer flooding because it expresses retention in pore volume 
units which are consistent with slug size. 
 
Two-Phase Flow 
 
The fractional flow treatment will consist of two phases (aqueous j = 1 and oleic j = 
2) and three components (brine i = 1, oil i = 2, and polymer i = 4). Let the permeable 
medium have a uniform original water saturation of S1I. We inject an oil-free polymer 
solution (S1J = 1 - S2r). The initial overall polymer concentration is 0, and the polymer 
concentration in the aqueous phase is C4J. Polymer and water do not dissolve in the 
oil (C12 = C42 = 0); the oil has no solubility in the aqueous phase (C21 = 0). 
 

Effect of lPV  The aqueous phase porosity is φS1. Only a portion of this pore 
volume fraction, (φS1 – φIPV), is accessible to the polymer; hence the overall polymer 
concentration per unit bulk volume is 
 
 4 1 IPV 1 41 4( ) (1 ) s sW Sφ φ ρ ω φ ρ ω= − + −  (8.4-4a) 
 
Similarly, the overall water concentration is 
 
 1 1 IPV 1 41 IPV 1( ) (1 )W Sφ φ ρ ω φ ρ= − − +  (8.4-4b) 
 
since only water is present in the excluded pore volume φIPV. But the IPV can be 
easily neglected in Eq. (8.4-4b) because the polymer concentration is very small 

11( 1)ω ≅ . The overall oil concentration and Eqs. (8.4-4a) and (8.4-4b) sum to the 
porosity as required by the assumption of incompressible flow. 
 

Oil Displacement  The polymer itself alters neither the water nor the oil 
relative permeabilities because, as we have seen in Sec. 3-4, the apparent viscosity 
cannot be increased enough to change residual phase saturations. Moreover, when 
permeability reduction is significant, it applies over the entire saturation range but 
only to the wetting phase (Schneider and Owens, 1982). We may, therefore, construct 
a polymer-solution-oil (polymer–oil) water fractional flow curve simply by using the 
apparent viscosity in place of the water viscosity and dividing kr1 by Rk. Figure 8-10 
shows both the water–oil (f1 – S1) and polymer–oil 1 1( )pf S−  fractional flow curves. 
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Figure 8-10  Graphical construction of polymer flooding fractional flow 

 
Because the polymer adsorption is Langmuir-like, and because the polymer 

displaces the connate water miscibly, the polymer front is pistonlike and has specific 
velocity 

 
4

*
1 1

*
1 4

( )p

C
e

f Sv
S D φΔ =

+ −
 (8.4-5a) 

where D4 is the polymer retardation factor defined in Eq. (8.4-3), and 
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1 1( )pf S  are the water saturations and fractional flows at the polymer shock 
front. *

1S  may also be regarded as a point in the spreading portion of the mixed 
polymer–oil wave given by the Buckley-Leverett equation, whence from Eq. (8.4-5) 
we can define *
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since *
1S  is also in the shock portion of the polymer–oil wave. The Buckley-Leverett 

treatment in Sec. 5-2 used a similar argument. 
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Equation (8.4-6) will also determine the oil bank saturation since S2 will 

change discontinuously with velocity given by 

 
2 1

*
1 1 1 1

*
1 1

( ) ( )p
B

C C
B

f S f Sv v
S SΔ

−
= =

−
 (8.4-7) 

 
Equations (8.4-6) and (8.4-7) are particular statements of the coherence condition 
(Eq. 5.6-14). 

As in the solvent–water treatment in Sec. 7-7, the velocity of the front of the 
oil (or water) bank is given by 

 
2 1

1 1

1 1

B I
C C

B I

f fv v
S SΔ Δ

−
= =

−
 (8.4-8) 

 
Figure 8-11  Figures for the fractional flow curves in Fig. 8-10 
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for a pistonlike oil bank front. The construction proceeds in the same manner as in 
Sec. 7-7. Figure 8-11 shows the time–distance diagram and a composition profile at 
tD = 0.35 for the construction in Fig. 8-10. 

Though relatively direct, the construction in Figs. 8-10 and 8-11 has several 
important insights into polymer floods. 
 

1. The oil bank breakthrough time (reciprocal of the oil bank specific velocity 
2CvΔ ) increases as S1I increases, suggesting polymer floods will be more 

economic if they are begun at low initial water saturation. Of course, the 
lower S1I, the higher the mobile oil saturation, also a favorable indicator for 
polymer floods. 

2. Adsorption (large D4) causes a delay of all fronts. D4 can be large if the poro-
sity is low, the retention is high, or the injected polymer concentration C4J is 
low. Usually, C4J is so low that D4 can be high even if retention is moderate. 

3. Inaccessible pore volume causes an acceleration of all fronts, exactly 
opposite to retention. In fact, retention and IPV can exactly cancel so that the 
polymer front and the denuded water front 1v ′  (Fig. 8-10) travel at the same 
velocity. 

4. Both D4 and IPV influence the oil bank saturation, which in turn, influences 
the oil bank mobility and the desired injected polymer concentration. 

 
8-5 ELEMENTS OF POLYMER FLOOD DESIGN 

 
Polymer flood design is a complex subject. But most of the complexity arises from 
reservoir- specific aspects of a particular design. In this section, we deal in 
generalities that apply to all types of polymer flooding. 

A polymer flood design procedure will follow these six steps. 
 

1. Screen the candidate reservoirs. The distinction between technical and 
economic feasibility is important. Technical feasibility means a given 
reservoir can be polymer flooded regardless of the funds available. Economic 
feasibility means the project has a good chance of being profitable. Technical 
feasibility is measured by a series of binary screening parameters (see 
National Petroleum Council, 1984). But for polymer flooding, there are only 
two: the reservoir temperature should be less than about 350 K to avoid 
degradation, and the reservoir permeability should be greater than about 0.02 
μm2 to avoid plugging. Economic feasibility can be estimated by simple hand 
calculations (as in the fractional flow method) or through using predictive 
models (Jones et al., 1984), which requires deciding how the polymer is to be 
used. 

2. Decide on the correct mode. The choices are (a) mobility control (decrease 
M), (b) profile control (improve the permeability profile at the injectors or 
producers), or (c) some combination of both. We have not discussed profile 
control, but the concepts and goals are similar to polymer flooding. We want 
to inject an agent that will alter the permeability so that more fluid will go 
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into the tight rock than into the high-permeability rock. We can do this by 
using gels, polymers, and solids and by using selective perforation. When 
selective perforation is ineffective or incompletely effective, we use chemical 
agents or solids. 

3. Select the polymer type. The requirements for EOR polymers are severe. An 
outline of the principal ones is as follows: 
(a) Good thickening. This means high mobility reduction per unit cost. 
(b) High water solubility. The polymers must have good water solubility 

under a wide range of conditions of temperature, electrolyte composition, 
and in the presence of stabilizers. 

(c) Low retention. All polymers adsorb on reservoir rocks to various 
degrees. Retention may also be caused by plugging, trapping, phase 
separation, and other mechanisms. Low here means less than 20 μg/g. 

(d) Shear stability. During flow through permeable media, stress is applied 
to the polymer molecules. As we discussed, if this is excessive, they may 
mechanically break apart or permanently degrade, resulting in less 
viscosity. HPAM is especially subject to shear degradation. 

(e) Chemical stability. Polymers, like other molecules, can chemically react, 
especially at high temperature and in the presence of oxygen. 
Antioxidants are used to prevent this. 

(f) Biological stability. Both HPAM and polysaccharides can be degraded 
by bacteria, but the latter are more susceptible. Biocides are required to 
prevent this. 

(g) Good transport in permeable media. This catchall includes essentially the 
ability to propagate the polymer through the rock intact and without 
excessive pressure drop or plugging. Good transport also means good 
injectivity and no problems with microgels, precipitates, and other 
debris. 

Obviously, no one polymer can universally meet these requirements 
for all reservoir rocks. Thus we must tailor the polymer to the rock to 
some extent. Some general guidelines are possible for minimum 
standards, but the ultimate criterion must be economics. 

4. Estimate the amount of polymer required. The amount, the total mass in 
kilograms to be injected, is the product of the slug size, the pore volume, and 
the average polymer concentration. Ideally, the amount would be the result of 
an optimization study that weights the present value of the incremental oil 
against the present value of the injected polymer. Each iteration of the 
optimization procedure requires estimating the polymer concentration in 
initial portion (spike) of the slug and estimating the volume of the polymer 
slug (spike plus rate of taper). 
(a) Estimating the spike concentration. Suppose we have decided on a target 

mobility ratio that might come from simulation studies (see Chap. 6) or 
simply injectivity limitations. If the target mobility ratio is MT 
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Estimating the spike concentration simply means picking the value of 
injected polymer concentration that gives the correct MT in this 
equation. The translation between apparent viscosity follows from 
permeability reduction factor correlations and shear rate data as in Fig. 
8-4. The latter must be evaluated at a sheer rate corresponding to the 
median velocity in the flood––usually the low shear rate plateau. 
Estimating the denominator of Eq. (8.5-1), the oil bank relative mobility, 
is a little more difficult. 

One procedure is to estimate the oil bank saturation through the 
graphical procedure of Sec. 8-4, and then estimate the oil bank mobility 
from the relative permeability curves evaluated at this saturation 
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 (8.5-2) 

This procedure is iterative inasmuch as S1B depends on the polymer–oil 
fractional flow curve. This, in turn, depends on the polymer apparent 
viscosity whose value we are estimating in Eq. (8.5-1). Fortunately, the 
dependence between S1B and apparent viscosity is weak, and a 
trial-and-error procedure should converge rapidly. 

A second procedure is to base the total mobility of the oil bank on 
the minimum in the total relative mobility curve (Gogarty et al., 1970). 
The minima in such curves do not, in general, correspond to the oil bank 
saturation from fractional flow theory. However, taking MT based on the 
minimum will yield a conservative design since the mobility ratio with 
the actual oil bank saturation will always be less than or equal to MT. The 
method has the advantage of simplicity since it is noniterative. 

Both methods require care in measuring relative permeability curves 
since hysteresis can render the drainage and imbibition kr’s different 
(Chang et al., 1978). Such hysteresis effects are particularly difficult to 
reproduce when the initial water saturation begins at an intermediate 
value. The second method is also commonly used in micellar- polymer 
design (see Fig. 9-34). 

(b) Estimate the polymer slug volume. One way to do this is to simply let the 
slug volume be somewhat larger than the retention. Although this is the 
basic premise in designing a micellar slug, retention is not the dominant 
factor in polymer slug sizing. The major control affecting slug size is 
viscous fingering between the chase water and the polymer spike. 

In predicting the extent of fingering, all the problems in estimating 
the rate of finger propagation that we discussed in Sec. 7-8 apply. Once 
again, we apply the Koval model, but here the effective mobility ratio 
must be modified to account for the polynomial mixing expressed in Eq. 
(8.2-1). 
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where C4 = 0.22 C4J. The use of this equation, particularly the constant 
mixing factor 0.22, is relatively untested in polymer flooding. We have 
assumed complete analogy between the first-contact miscible flooding 
case and the unstable chase water displacement in this regard. 

We use the time–distance diagram to sketch slug sizing alternatives. 
An obvious sizing technique is to begin chase water injection just as the 
polymer breaks through (Fig. 8-12a). This is excessively conservative 
since much full-strength polymer is produced. A second possibility is to 
adjust the polymer slug size so that the polymer and chase water break 
through simultaneously (Fig. 8-12b), leading to the following equation 
for slug size 

 
 

 
 
 
 
 
Figure 8-12  Time–distance diagrams 
for polymer grading
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where we have taken *
1S  = 1 – S2r, and φIPV = 0. An equally viable 

alternative is to grade the polymer back to chase water in steps. Figure 
8-12(c) shows two such steps with the size of the spike and the 
intermediate step adjusted so that the chase water again breaks through 
with the polymer. The isoconcentration lines become curved after there 
is wave interference. 

The case in Fig. 8-12(c) uses less polymer than that in Fig. 8-12(b). 
In fact, Claridge (1978) has shown that a continuously graded polymer 
drive uses the least amount of polymer. Such grading is impractical 
except as a limiting case to compare it to the no-grading case (Fig. 
8-12b). But a succession of finite grading steps is extremely difficult to 
deal with theoretically because of the numerous degrees of freedom 
present. That is, the engineer must decide on the N number of steps, the 
N slug volumes, and the N – 1 intermediate concentrations. In practice, 
single-step (no-grading) polymer floods, and logarithmic grading 
(Mungan, 1968) are the most common procedures. 

5. Design polymer injection facilities. Getting a good quality solution is, of 
course, important, but the cost of the injection facilities is usually small 
compared to well and chemical costs. 

The three essential ingredients are mixing facilities, filtration, and 
injection equipment. The type of mixing apparatus depends on the polymer. 
For solid polymers, a skid-mounted solid mixer is required. Concentrates or 
emulsion polymers require somewhat less sophistication although the latter 
may require some emulsion breaking. Filtration largely depends on the 
success of the mixing, but ordinarily it is no more stringent than what is 
required by waterflooding. But if exotic and difficult filtration is required, the 
complexity and cost can become significant. Injection equipment is the same 
as that for waterflooding. All surface and downhole equipment should be 
modified to avoid all forms of degradation. 

6. Consider the reservoir. Little is required here beyond the usual waterflood 
considerations such as the optimal well pattern and spacing, completion 
strategy, pattern allocation (balance), reservoir characterization, and 
allowable injection rates. 

Optimal values of these quantities imply precise values that will result in 
the maximum rate of return on investment. Since several quantities are 
involved, it is usually not possible to perform optimizations on everything. 
Hence most of the parameters must be fixed by other considerations (such as 
striving for a target mobility ratio). But for the most sensitive quantities, 
optimization is required. 

Figure 8-13 shows a schematic optimization for the amount of polymer 
injected. The vertical axes plot both an economic measure, such as the 
cumulative incremental discounted cash flow (DCF), and incremental oil
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Figure 8-13  Schematic incremental oil recovered and economic trends for a 
mobility control flood. 
 
recovery (IOR) versus the amount of polymer injected. The IOR curve is 
monotonically increasing from zero. The DCF curve begins at zero, 
decreases for small polymer amounts, and then rises to a maximum at 
substantially larger amounts. After this point, the DCF decreases 
monotonically. The DCF decreases initially because the entire expense of the 
polymer is assessed in the initial stages of a project when little incremental 
oil has yet been produced. This front-end loading effect is present in all EOR 
processes, particularly chemical floods. Such a curve is highly instructive 
because it counters a tendency to short-cut the amount of polymer injected if 
the initial economics are unfavorable. Unfortunately, many actual polymer 
flood applications have used less than the optimum amount of polymer. 

 
 

8-6 FIELD RESULTS 
 
The incremental oil recovery (IOR) from a polymer flood is the difference between 
the cumulative oil actually produced and that which would have been produced by a 
continuing waterflood (see Exercise 8L). Thus for a technical analysis of the project, 
it is important to establish a polymer flood oil rate decline and an accurate waterflood 
decline rate. Figure 8-14 shows the IOR for the North Burbank polymer flood. 

Table 8-2 summarizes other field results on more than 250 polymer floods 
based on the comprehensive survey of Manning et al. (1983). The table emphasizes 
oil recovery data and screening parameters used for polymer flooding. 
Approximately one third of the reported projects are commercial or field-scale 
floods. The oil recovery statistics in Table 8-2 show average polymer flood 
recoveries of 3.56% remaining (after waterflood) oil in place and about 1 m3 of IOR 
for each kilogram of polymer injected with wide variations in both numbers. The 
large variability reflects the emerging nature of polymer flooding in the previous 
decades. Considering the average polymer requirement and the average costs of 
crude and polymer, it appears that polymer flooding should be a highly attractive
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Figure 8-14  Tertiary polymer flood response from North Burbank Unit, Osage County, 
Okla. (from Clampitt and Reid, 1975) 

 
EOR process. However, such costs should always be compared on a discounted basis, 
reflecting the time value of money. Such a comparison will decrease the apparent 
attractiveness of polymer flooding because of the decreased injectivity of the polymer 
solutions. 
 
 

8-7 CONCLUDING REMARKS 
 
In terms of the number of field projects, polymer flooding is the most common 
enhanced oil recovery technique in existence. The reasons for this are that, short of 
waterflooding, polymer flooding is the simplest technique to apply in the field and 
requires a relatively small capital investment. Most of the field projects have been 
small, however, as has the amount of oil recovered, a fact that should be expected 
from the treatment given in this chapter. Nevertheless, there can exist significant 
potential for an acceptable rate of return even when recovery is low. 

The most important property covered in this chapter is the non-Newtonian 
behavior of polymer solutions, because such behavior impacts on the polymer
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TABLE 8-2  POLYMER FLOOD STATISTICS (ADAPTED FROM MANNING, 1082) 

Value 
standard 
(units) 

 
Number 
projects* 

 
 

Mean 

 
 

Minimum 

 
 

Maximum 

 
Standard 
deviation 

Oil recovery 
(% remaining OIP) 

 
  50 

 
    3.56 

 
    0 

 
     25.3 

 
       5.63 

Polymer utilization 
(m3/kg polymer) 

 
  80 

 
    0.94 

 
    0 

 
     12.81 

 
       1.71 

Oil recovery 
(m3/hm3 bulk volume) 

 
  88 

 
    3.1 

 
    0 

 
     24.3 

 
       4.72 

Permeability variation 
(fraction) 

 
118 

 
    0.70 

 
    0.06 

 
       0.96 

 
       0.19 

Mobile oil saturation 
(fraction) 

 
  62 

 
    0.27 

 
    0.03 

 
       0.51 

 
       0.12 

Oil viscosity 
(mPa-s) 

 
153 

 
  36 

 
    0.072 

 
1,494 

 
   110.2 

Resident brine salinity 
(kg/m3 TDS) 

 
  10 

 
  40.4 

 
    5.0 

 
   133.0 

 
     33.4 

Water-to-oil mobility 
Ratio (dimensionless) 

 
  87 

 
    5.86 

 
    0.1 

 
     51.8 

 
     11.05 

Average polymer 
Concentration (g/m3) 

 
  93 

 
339 

 
  51 

 
3,700 

 
   343 

Temperature (K) 172 319 281    386    302 
Average permeability 

(μm2) 
 

187 
 
    0.349 

 
    0.0015 

 
7.400 

 
       0.720 

Average porosity 
(fraction) 

 
193 

 
    0.20 

 
    0.07 

 
       0.38 

 
       0.20 

*Partial data available on most projects; includes both commercial and pilot projects 
 
 
requirements through the design mobility ratio, and on the ability to accurately 
forecast the rate of polymer injection. Polymer injection rate determines project life 
which, in turn, determines the economic rate of return. Injectivity estimates along 
with estimates of mobile oil saturation and the likelihood that polymer will remain 
stable in a given application are the most important determinants in polymer flooding 
success. 
 
 
EXERCISES 
 
 
8A. Calculating Shear Rates. Calculate the equivalent shear rate under the following 

conditions: 
(a) In an open-hole completion (entire well cylinder open to flow) where q = 16 

m3/day, Rw = 7.6 cm, and net pay Ht = 15.25 m. 
(b) In the field where the interstitial velocity is 1.77 μm/s. 
(c) Using the data for Xanflood at 297 K and 1% NaCl (Fig. 8-5), estimate the 

effective permeable medium viscosity at the above conditions for a 600 g/m3 
polymer solution. 
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(d) Suppose the well in part (a) is perforated with 1 cm (ID) holes over its entire net 

pay at a density of 4 holes/m. Assuming a uniform fluid distribution, estimate the 
shear rate in the perforations. 

(e) Comparing the results of parts (a) and (d), what do you conclude about the 
preferred completion technique in polymer flooding? Use k1 = 0.1 μm2, φ = 0.2, 
and S1 = 1.0 in all parts. 

8B. Derivation of Power Law in Permeable Media. Equation (8.2-9) may be derived in the 
same manner as Eq. (3.1-11). The procedure is as follows: 
(a) Show that a force balance on an annular element of a single-phase fluid flowing 

through a tube (as in Fig. 3. 1) in Ian- iinar steady-state flow is 

 
( )1 rzd r P

r dr L
τ Δ

=  (8B-1) 

 
where τrz is the shear stress on the cylindrical face at r, and ΔP/L is the pressure 
gradient. This equation, when integrated, yields 
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The shear stress must be finite at r = 0. 

(b) The power-law expression relating shear stress to shear rate is 
 1pln

rz plKτ γ −=  (8B-3) 
where 

 dv
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γ = −  (8B-4) 

 
is the shear rate. Show that combining Eqs. (8B-2) through (8B-4) leads to a 
differential equation whose solution is 
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 (8B-5) 

 
This equation has used the no-slip condition v(R) = 0. 

(c) Using Eq. (8B-5), show that the shear rate at the wall of the tube depends on the 
average velocity as 
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(d) When the equivalent radius from Eq. (3.1-4) is substituted, this gives 
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With appropriate variable identifications, this equation yields Eqs. (8.2-7) and 
(8.2-8) when substituted into 
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8C. Langmuir Calculations. The Langmuir isotherm and various other insights may be 

derived fairly simply. Suppose a permeable medium in contact with a solution 
containing an adsorbing species consists of a fixed number of surface sites. A fraction 
φ of these sites is covered when the solution concentration of an adsorbing species is C. 
(a) Let the rate of adsorption be kf C (1 – φ) and the rate of desorption be krφ. kf and kr 

are the forward and reverse rate constants. At equilibrium, the forward and reverse 
reaction rates are equal. Show that the fractional surface coverage is 
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(b) Show that φ may be related to ωs, adsorption in mass per unit of rock mass by 
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where ρr is the adsorbed species density, av is the specific surface area of the 
medium, Mw is the molecular weight of the adsorbed species, and NA is 
Avogadro’s number. Assume the adsorbed species exists on the surface as a 
monolayer of cubes of diameter dp. 

(c) If the observed polymer adsorption is 18 μg/g-rock, calculate φ. Take the medium 
to have the Berea properties tabulated in Table 3-5. You must derive the effective 
polymer sphere diameter from the intrinsic viscosity (Eq. 8.2-4) and the data in 
Fig. 8-4. The polymer molecular weight is 2 million. 

(d) What can you conclude about the nature of the adsorption of polymers from this? 
8D. Complications to Langmuir Isotherm 

(a) Suppose there is Langmuir adsorption of a single adsorbing species with a finite 
mass transfer rate rmt between the bulk solution and the solid–fluid interface given 
by 

 ( )mtr h C C= −  (8D-1) 
 

In this expression, C and C  are the bulk and interface concentrations, and h is the 
specific mass transfer coefficient. Show that an isotherm relating φ to C has the 
same form as Eq. (8C-1) but with fk ′ replacing kf where 

 1 1 1

f fk k h
= +

′
 (8D-2) 

 
You must assume the rate of adsorption is equal to rmt, 

(b) Show that if h → ∞, the isotherm approaches the expression derived in Exercise 
8C. 

(c) Consider now a case where h → ∞ and there are i = 1, . . . , NC adsorbing species, 
each competing for a fixed number of sites. Derive the Langmuir isotherm relating 
the adsorbed concentration of species i, φi, to its bulk concentration Ci. 

(d) Use this expression to justify the fractional coverages calculated in part (d) of 
Exercise 8C. 



 348
8E. Simplified Permeability Reduction. One of the explanations for permeability reduction 

is that the effective pore size is decreased (or the effective grain diameter increased) 
because of the adsorption of a layer of polymer on the rock surface. In the following, 
take the medium to be comprised as spheres of diameter Dp: 
(a) Derive an expression for the permeability reduction factor Rk based on the polymer 

adsorbing as a uniform layer of thickness δ on the rock surface. You must use the 
hydraulic radius concept developed in Sec. 3-1. 

(b) Make two plots, at φ = 0.1 and 0.2, of polymer adsorption (in mg polymer/g-rock) 
versus Rk. Take the density of the adsorbed polymer to be 1.5 g/cm3 and the 
density of the rock to be 2.5 g/cm3. 

8F. Representation of Linear Viscoelasticity. A powerful conceptual model of a liquid that 
has some elastic effects is the Maxwell model, which is the series combination of a 
spring and a dashpot 

 
where F is the force sustained by the model, and εl and ε2 are the strains (dimensionless 
deformations). Let the spring be a linear elastic element so that 

 
 1F kε=  (8F-1) 
 

likewise, the dashpot is a Newtonian viscous element 
 

 2F με=  (8F-2) 
where k and μ are the spring constant and viscosity of the element. Because of the 
series arrangement, the force supported by both elements is the same; however, the 
total strain ε is 

 1 2ε ε ε= +  (8F-3) 
 

(a) Show that the relationship between the time behavior of the force and the strain is 
 

 F Fμε θ= +  (8F-4) 
 

In this equation, θ = μ/k is the relaxation time of the model, and ε  is the time 
derivative of ε. 

(b) To integrate this, we treat ε  as a known function of time. Show that the general 
solution is 

 / / / 0

0
( ) (0)

tt t dF t e F ke e d
d

θ θ ξ ε ξ
ξ

− −= + ∫  (8F-5) 

 
The next three steps complete the analogy between the Maxwell model and 
viscoelastic flow. 

(c) If the rate of strain is constant and the initial force of the model is zero, show that 
 

 /( ) (1 )tF t e θμε −= −  (8F-6) 
 

(d) The apparent viscosity of the model is defined as / .F ε  Show from Eq. (8F-4) that 
this becomes 
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(e) Use this equation and Eq. (8F-6) to show that 
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The quantity in the denominator of Eq. (8F-8) is the Deborah number 

 DebN
t
θ

=  (8F-9) 

 
This number, the ratio of relaxation time to undisturbed flow time around a rock 
grain, is a measure of viscoelastic effects in permeable media flow when the 
characteristic flow time t has been replaced by φDp/μ. 

8G. Analysis of Screen Factor Device. The screen factor device in Fig. 8-8 may be analyzed 
as a permeable medium experiencing gravity drainage. The volume V of fluid in the 
bulb at any height h(h1 > h > h2) is 

 2 2( )(3 )
3

V h h R h hπ
= − − +  (8G-1) 

 
from the bulb geometry. If we treat the screen pack as a permeable resistive element, 
the flux through the screens is 
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(a) Since u = –1/πr2(dV/dt), show from these equations that the height h is the solution 

to 
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L in these equations is the height of the screen pack. 

(b) Neglecting the drainage times in the tubes above and below the lower bulb, derive 
an expression for the drainage time for a Newtonian fluid. The drainage time td is 
defined as 
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(c) Repeat part (b) with a viscoelastic fluid whose apparent viscosity is 
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In view of Eqs. (8G-4) and (8.2-14), show that the screen factor SF is given by 

 

 
1 1

VEH k gSF bI
L

ρ
μ μ

= +  (8G-6) 



 350
where I is a geometric factor. From Exercise 8F, the screen factor is directly 
proportional to the fluid’s relaxation time. 

8H. Injectivity Calculation 
Use the following data for the Coalinga HX sand (Tinker et al., 1976): 

 
φ = 0.28 k1 = 0.036 μm2 
Kpl = 7.5 mPa-s(s) 1pln −  μ1 = 0.64 mPa-s 
npl = 0.8 Ht = 2.44 m 
Rk = 3 Rw = 10 cm 
Re = 284 m i 

S2r

= 30 m3/D 
= 0.2 

 
(a) Calculate the relative injectivity Ir versus cumulative polymer injected. Plot Ir 

versus tD (up to tD = 0.5) on linear graph paper. 
(b) Show that when Rp = Re, the Newtonian polymer case (npl = 1) reduces to 
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=  (8H-1) 

 
(c) Plot the Newtonian polymer case for the HX sand on the same plot as in part (a). 

8I. Improvements to Injectivity Calculations. If the shear rate range in a cylindrical 
reservoir is outside the power-law range, the following truncated form of Eq. (8.2-7)
must be used: 
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where u0 and u∞ are superficial velocities which define the limits of the power law 
range. 
(a) Repeat the derivation in Sec. 8-3 for I and Ir using Eq. (8I-1), assuming both the 

maximum and minimum velocities fall outside the power-law range. 
(b) For numerical simulation, it may be more convenient to define injectivity in terms 

of the average reservoir pressure P  rather than Pe (Bondor et al., 1972). Rederive 
the expression for I defined in this manner. 

(c) For large numerical simulations, the entire non-Newtonian range of polymer 
behavior is confined within one grid block of the well. This being the case, the 
non-Newtonian effect can be effectively expressed as a time-varying skin factor in 
terms of an average polymer “saturation.” Derive an expression for this skin 
factor. 

8J. Transport of Adsorbing Slugs. The leading edge of a polymer slug adsorbing as a 
Langmuir isotherm is self-sharpening. 
(a) Show that the rear of the slug (CK < CJ) is a spreading wave. 
(b) If the Langmuir parameters in Eq. (8.2-10) are a = 2 and b = 20, plot the time–

distance diagram and effluent history of tDs = 0.4 slug displacement. Take CI = CK 
= 0 and CJ = 1. 

(c) The propagation of slugs satisfies an overall material balance 
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Use the analogy to the Welge integration in Sec. 5-2 to show that Eqs. (8.4-1) and 
(8.4-2) satisfy this identically. In all these calculations, take the flow to be single 
phase with the usual fractional flow assumptions. 

8K. Asymptotic Mixing Zone Length (Lake and Helfferich, 1978). Stabilized mixing zones 
occur in miscible displacements if the transported species adsorbs according to a 
Langmuir isotherm. The spreading caused by dispersion is balanced by the sharpening 
caused by adsorption. In the following, take the dimensionless material balance of an 
adsorbing species to be 
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where C and Cs are the solution and adsorbed concentrations for an adsorbing species. 
C is normalized so that the injected concentration is unity, CJ = 1, and CI = 0. 
(a) Show that Eq. (8K-1) may be transformed to a moving coordinate system ( , ),D Dx t′  

where ,D D C Dx x v tΔ′ = −  and vΔC is the shock velocity of C. This gives 
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(b) The displacement will asymptotically approach stabilized flow where the time 

derivatives in Eq. (8K-2) are zero. Show that in this limit the resulting ordinary 
differential equation may be integrated to give 
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Equation (8K-3) uses the boundary conditions C(+∞) = dC(+∞)/dxD = 0 and the 
definition of dimensionless mixing zone given in Eq. (5.2-15a). 

(c) When CJ = 1, it is convenient to write the Langmuir isotherm (Eq. 8.2-10) so that 
the plateau adsorption appears in the equation in place of the parameter a 
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where Csj is the maximum adsorbed concentration. Substitute Eq. (8K-4) into Eq. 
(8K-3), and perform the indicated integration to show that 
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where this equation has used a form of vΔC consistent with Eq. (8K-4). 

(d) Take Eq. (8K-5) in the limits of b → ∞, b → 0, and NPe → ∞, and justify each 
answer on physical grounds. 

8L. Fractional Flow and Incremental Oil 
(a) Calculate the polymer frontal advance lag D4 when the maximum polymer 

adsorption is 38 g/m3 (bulk volume), the injected polymer concentration is 1200 
g/m3, and the porosity is 0.2. 
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(b) Using the D4 of part (a) and the water–oil relative permeabilities in Fig. 8L, 

calculate the effluent history of polymer and oil for a polymer flood with 0
1 30μ =  

mPa-s. Take the oil and water viscosities to be 20 and 1 mPa-s, respectively, the 
dip angle to be 0, the permeability reduction factor to be 1, and the initial water 
saturation to be 0.4. 

(c) The technically correct way to evaluate a polymer flood is by the incremental oil 
recovery (IOR) 

 

 
Polymer flood  Waterflood

IOR
 oil produced oil produced

⎛ ⎞ ⎛ ⎞
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 (8L-1) 

 

 

 
 
 
 
 
Figure 8L  Relative permeabilities for 
Exercise 8L (from El Dorado, 1977).
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Calculate and plot IOR (in SCM) versus time (years). Take the pore volume to be 
1.6 × 106 m3, the injection rate constant at 480 SCM/day, and all formation volume 
factors to be 1.0 m3/SCM. 

8M. Fractional Flow and Slugs. Fractional flow theory can be used to gain insight into the 
behavior of polymer slugs, under idealized conditions, and into the polymer utilization 
factor. 
(a) Assume the polymer is to be injected as a slug. If the chase water displaces the 

polymer as an ideal miscible displacement at residual oil saturation, show that the 
polymer chase water front travels with specific velocity 
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if the polymer adsorption is irreversible and excluded pore volume negligible. 

(b) Show that the polymer slug size just needed to satisfy adsorption is equal to D4. 
(c) The data to use in the remainder of this exercise are 

 
a = 1 cm3/g-rock C4J = 800 g/m3 
b = 100 cm3/mg ρs = 2.65 g/cm3 
φ = 0.2  

 
Plot the time–distance and effluent histories (oil and polymer) if the slug size used 
is one half that demanded by adsorption. Use the fractional flow curves and initial 
condition of Exercise 8L. 

8N. Polymer Flood Design. You want to design a polymer flood in a reservoir containing an 
oil and brine whose viscosities are 25 mPa-s and 0.38 mPa-s, respectively, at reservoir 
temperature of 73°C. The relative permeability curves of Fig. 8L apply, and conditions 
indicate the Xanflood data in Figs. 8-4 and 8-5 are satisfactory for this reservoir. 
(a) Plot the total relative mobility curves. If the desired mobility ratio is 0.7, estimate 

the polymer concentration required to bring this about. Use the data in Fig. 8-5, 
and recall that 1 1/μ μ′  is essentially independent of temperature. 

(b) Estimate the power-law parameters Kpl, npl, and Hpl for the polymer solution in part 
(a). 

(c) The flood is to be done at a constant volumetric injection rate of 20 m3/D. Estimate 
and plot as a function of volume injected the bottom-hole injection pressure in 
MPa. Justify the shape of this curve on physical grounds. 

(d) For an open-hole completion, estimate the shear rate the polymer solution will be 
exposed to. Does this portend mechanical degradation of the polymer? 

Take the reservoir to be circular with Re = 950 m and Pe = 18 MPa. 
Additional properties are k = 0.05 μm2, Sw = 0, Rw = 5 cm, Ht = 42 m, φ = 0.2, and 
S2r = 0.3. 



 354
 
 
 

9  
 
 
 
 

Micellar-Polymer 
Flooding 
 
 
 
 
From the earliest days, it was recognized that capillary forces caused large quantities 
of oil to be left behind in well-swept zones of waterflooded oil reservoirs. Capillary 
forces are the consequence of the interfacial tension (IFT) between the oil and water 
phases that resists externally applied viscous forces and causes the injected and 
banked-up connate waters to locally bypass oil. Similarly, early efforts of enhanced 
oil recovery strove to displace this oil by decreasing the oil-water IFT. Though many 
techniques have been proposed and field tested, the predominant EOR technique for 
achieving low IFT is micellar-polymer (MP) flooding. 
 Lowering interfacial tension recovers additional oil by reducing the capillary 
forces that leave oil behind any immiscible displacement. This trapping is best 
expressed as a competition between viscous forces, which mobilize the oil, and 
capillary forces, which trap the oil. The local capillary number Nvc, the dimensionless 
ratio of viscous to capillary forces, determines the residual oil and water saturations 
through a capillary desaturation curve (CDC). Section 3-4 gives general features 
about the CDC and Nvc. In this chapter, we specialize those results to MP flooding. 
Recall that ultralow IFTs are required––of the order of 1 μN/m––and that these 
values can be attained only through highly surface-active chemicals. 
 
 

9-1 THE MP PROCESS 
 
MP flooding is any process that injects a surface-active agent (a surfactant) to bring 
about improved oil recovery. This definition eliminates alkaline flooding (see Chap. 
10) where the surfactant is generated in situ and other EOR processes where lowering 
the capillary forces is not the primary means of oil recovery. 
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MP flooding has appeared in the technical literature under many names: 

detergent, surfactant, low-tension, soluble oil, microemulsion, and chemical flooding.  
We use the term micellar-polymer flooding because it is the least ambiguous 
(chemical flooding, for example, could describe all nonthermal EOR processes) and 
most comprehensive (no other name implies the polymer component). Moreover, 
several names imply a specific sequence and type of injected fluids as well as the 
specific nature of the oil-recovering MP slug itself. Though there are differences 
among processes, in this chapter we emphasize the similarities since they are more 
numerous and important. 
 Figure 9-1 shows an idealized version of an MP flooding sequence.  The 
process is usually applied to tertiary floods and is always implemented in the drive 
mode (not cyclic or huff ’n puff). The complete process consists of the following: 
 
 Preflush. A volume of brine whose purpose is to change (usually lower) the 

salinity of the resident brine so that mixing with the surfactant will not cause 
loss of interfacial activity. Preflushes have ranged in size from 0% to 100% 
of the floodable pore volume (Vpf) of a reservoir. In some processes, a 
sacrificial agent is added to lessen the subsequent surfactant retention (Holm, 
1982). 

 MP slug. This volume, ranging from 5% to 20% Vpf in field applications, 
contains the main oil-recovering agent, the primary surfactant. Several other 
chemicals (Fig. 9-1) are usually needed to attain the design objectives. We 
discuss the purpose of these chemicals in more detail later. 
Mobility buffer. This fluid is a dilute solution of a water-soluble polymer 
whose purpose is to drive the MP slug and banked-up fluids to the production 
wells. All the polymer flooding technology discussed in Chap. 8 carries over 
to designing and implementing the mobility buffer. Thus in this chapter, we 
deal relatively little with the mobility buffer though there is good evidence 
(see Fig. 9-33) that this volume is very important to the oil recovering ability 
 

 
 

Figure 9-1  Idealized cross section of a typical micellar-polymer flood (from 
Lake, 1984) 
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of the entire sequence. The target oil for an MP flood––the residual oil––is 
different from that of a polymer flood––the movable oil. 
Mobility buffer taper. This is a volume of brine that contains polymer, 
grading from that of the mobility buffer at the front end (the spike) to zero at 
the back. The gradual decrease in concentration mitigates the effect of the 
adverse mobility ratio between the mobility buffer and the chase water. 
Chase water. The purpose of the chase water is simply to reduce the expense 
of continually injecting polymer. If the taper and mobility buffer have been 
designed properly, the MP slug will be produced before it is penetrated by 
this fluid. 

 
 

9-2 THE SURFACTANTS 
 
Since much is required of the MP surfactant, we discuss surfactant solutions here. 
This discussion can be no more than a précis of the voluminous literature on 
surfactant properties. (For more on oil-recovering surfactants, see Akstinat, 1981.) 
 A typical surfactant monomer is composed of a nonpolar (lypophile) portion, 
or moiety, and a polar (hydrophile) moiety; the entire monomer is sometimes called 
an amphiphile because of this dual nature. Figures 9-2(a) and 9-2(b) show the 
 
 

 
 

Figure 9-2  Representative surfactant molecular structures (from Lake, 1984) 
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molecular structure of two common surfactants and illustrate a shorthand notation for 
surfactant monomers: The monomer is represented by a “tadpole” symbol, with the 
nonpolar moiety being the tail and the polar being the head. 
 Surfactants are classified into four groups depending on their polar moieties, 
(Table 9-1). 
 

Anionics. As required by electroneutrality, the anionic (negatively charged) 
surfactant molecule (distinct from monomer) is uncharged with an inorganic 
metal cation (usually sodium) associated with the monomer. In an aqueous 
solution, the molecule ionizes to free cations and the anionic monomer. 
Anionic surfactants are the most common in MP flooding because they are 
good surfactants, relatively resistant to retention, stable, and can be made 
relatively cheaply. 
Cationics. If the polar moiety is positively charged, the surfactants are 
cationic. In this case, the surfactant molecule contains an inorganic anion to 
balance the charge. Cationic surfactants are used little in MP flooding 
because they are highly adsorbed by the anionic surfaces of interstitial clays. 
Nonionics. A class of surfactants that have seen extensive MP use, mainly as 
cosurfactants but increasingly as primary surfactants, is the nonionics. These 
surfactants do not form ionic bonds but, when dissolved in aqueous solutions, 
exhibit surfactant properties by electronegativity contrasts between their 
constituents. Nonionics are much more tolerant of high salinities than 
anionics and historically have been poorer surfactants. 
Amphoterics. This class of surfactants contains aspects of two or more of the 
other classes. For example, an amphoteric may contain both an anionic group 
and a nonpolar group. These surfactants have not been used in oil recovery. 

 
TABLE 9-1  CLASSIFICATION OF SURFACTANTS AND EXAMPLES (ADAPTED FROM 
AKSTINAT, 1981) 
 

 

Sulfonates 
Sulfates 
Carboxylates 
Phosphates 
 

Quaternary ammonium 
organics, pyridinum, 
imidazolinium, piperi-
dinium, and sulfonon-
ium compounds 

Alkyl-, Alkyl- aryl-, acyl-, 
acylamindo-, acyl- 
aminepolyglycol, and 
polyol ethers 

Alkanolamides 

Aminocarboxylic 
acids 

 
 
 

 
Within any one class, there is a huge variety of possible surfactants. Figure 

9-2 shows some of this variety by illustrating differences in nonpolar molecular 
weight (C12 for the sodium dodecyl sulfate (SDS) versus C16 for Texas No. 1), polar 
moiety identity (sulfate versus sulfonate), and tail branching (straight chain for SDS 
versus two tails for Texas No. 1) all within the same class of anionic surfactants. 
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Besides these, there are variations in both the position of the polar moiety attachment 
and the number of polar moieties (monosulfonates versus disulfonates, for example). 
Even small variations can drastically change surfactant properties. For example, 
sulfates tend to be less thermally stable than sulfonates. (For more details on the 
effect of structure on surfactant properties, see Graciaa et al., 1981; Barakat et al., 
1983.) 

The most common primary surfactant used in MP flooding is petroleum 
sulfonates. These are anionic surfactants produced by sulfonating a pure organic 
chemical (sometimes called synthetic sulfonates), an intermediate molecular weight 
refinery stream, or when appropriate, even a crude oil itself. If R––C=C––H 
represents the molecular formula of the feedstock, the sulfonation reaction proceeds 
as 
 R––C=C––H +  SO3 →  R––C=C–– 3SO−  +  H+ (9.2-1) 
The reaction can also proceed to saturate the carbon–carbon double bond 
  R––C=C–– 3SO−  +  H2 →  R––CH––CH–– 3SO−  (9.2-2) 
 
Here we adopt a shorthand notation that shows only the atoms participating in the 
chemical reaction. The surfactant produced in Eq. (9.2-1) is an α-olefin sulfonate, 
and that produced in Eq. (9.2-2) is an alkyl sulfonate. If the feedstock is aromatic, the 
sulfonation produces an alkyl benzene sulfonate 
                                     R –      +  SO3 →  R –      – 3SO− + H+ (9.2-3) 
 

The sulfate in these reactions comes from bubbling SO3 gas through the 
feedstock or through contact with a solvent the SO3 is dissolved into. The sulfonation 
reactions (Eqs. 9.2-1 through 9.2-3) yield a highly acidic aqueous solution through 
the parallel reactions 
                            H2O +  SO3  →  H2SO4 (9.2-4) 
 H2SO4 →  H+ 4 HSO−+ →  2H+ 2

4SO −+  (9.2-5) 
The solution is subsequently restored to a neutral pH by adding a strong base, such as 
NaOH or NH3, dissolved in water. This neutralization step also provides the 
counterion for the sulfonate; for the α-olefin sulfonate this is 
 Na+ +  R––C=C–– 3SO−  →  R––C=C–– SO3––Na (9.2-6) 
 
 If the feedstock is unrefined, a mixture of surfactant types will result. The 
mixture can contain a distribution of isomeric forms, molecular weights, and degrees 
of sulfonation (mono- versus disulfonation). The mixture is extremely difficult to 
characterize except through several gross properties. Table 9-2 shows some typical 
properties of commercial sulfonates. Typical molecular weights range from 350 to 
450 kg/kg-mole, with the lower values indicating greater water solubility. In some 
calculations, it is better to use the surfactant equivalent weight (molecular weight 
divided by charge) instead of the molecular weight. Thus equivalent weight (mass per 
equivalent) and molecular weight are the same for monosulfonates. Some products 
contain impurities: unreacted oil from the sulfonation step and water from the 
neutralization. Part of the surfactant, as purchased, is inactive. Inasmuch as it is the
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TABLE 9-2  SELECTED PROPERTIES OF A FEW COMMERCIAL ANIONIC SURFACTANTS 
 
 

Company 
 
     Surfactant name 

Molecular 
weight 

Activity 
(wt %) 

Oil 
(wt %) 

Water 
(wt %) 

Salt 
(wt %) Type 

ALCOLAC SIPONATE DS-10 350 98.0    Sodium dodecyl benzene sulfonate 
ALCOLAC SIPONATE A168 350 70.0     
CONOCO AES 14125  58.3   1.7   Alfonic ether sulfates 
CONOCO AES 1412A  60.0   3.0   Alfonic ether sulfates 
EXXON RL 3070 334 60.0 14.0 25.2  Alkyl aryl sodium sulfonates 
EXXON RL 3011 375 64.4 25.2 10.0  Alkyl aryl sodium sulfonates 
EXXON RL 3330 390 66.0 24.0   9.5  Alkyl aryl sodium sulfonates 
EXXON RL 3331 391 65.0 36.5   8.1  Alkyl aryl sodium sulfonates 
EXXON RL 3332 460 60.0 31.4   8.1  Alkyl aryl sodium sulfonates 
EXXON RL 2917 515 65.7 25.7   8.5  Alkyl aryl sodium sulfonates 
KAO LS 8203 330 65.0  53.0  Linear alkyl sulfonate 
KAO LS 8202 480 44.1 54.6     0.06  Linear alkyl sulfonate 
LION LEONOX E  94.0   2.0  2.0  
LION LEONOX D 350 94.0   2.0  3.0 Alpha olefin sulfonate 
LION LION AJS-2 375 35.0     
LION LEONOX K 570 30.0    Alfonic ether sulfates 
SHELL ENORDET AOS 310–40 317 38.0  61.0 < 1 Alcohol ethoxy sulfonate 
SHELL ENORDET LXS 370–60 375 60.1  38.0 1.9 Linear alkyl xylene sulfonates 
SHELL ENORDET LXS 395–60 395 60.0  37.4 2.6 Linear alkyl xylene sulfonates 
SHELL ENORDET LXS 420–60 417 60.6  36.6 2.8 Linear alkyl xylene sulfonates 
SHELL ENORDET 3ES–441–60 441 59.3  29.5 1.2 Linear alkyl xylene sulfonates 
STEPAN PS HMW  50.7 24.4 22.1   
STEPAN PS MMW  53.2 18.4 26.6   
STEPAN PS 360 360 65.8 18.9 12.4   
STEPAN PS 420 420 56.1 13.0 28.8   
STEPAN PS 465 464 58.7 14.9 24.2   
WITCO TRS 40 330–350 40–43 18.0 40.0   
WITCO TRS 10–410 315–430 61–63 33.0 4–5   
WITCO TRS 16 440–470 61–63 32.5 4–5   
WITCO TRS 18 490–500 61–63 32.5 4–5   
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surfactant itself we are interested in, all slug concentrations should report the 
surfactant concentration only (100% active basis). 

In the following discussion, we ignore distinctions between surfactant types 
by simply treating the surfactant as the tadpole structure of Fig. 9-2. 
 If an anionic surfactant is dissolved in an aqueous solution, the surfactant 
disassociates into a cation and a monomer. If the surfactant concentration is then 
increased, the lypophilic moieties of the surfactant begin to associate among 
themselves to form aggregates or micelles containing several monomers each. A plot 
of surfactant monomer concentration versus total surfactant concentration (Fig. 9-3) 
is a curve that begins at the origin, increases monotonically with unit slope, and then 
levels off at the critical micelle concentration (CMC). Above the CMC, all further 
increases in surfactant concentration cause increases only in the micelle 
concentration. Since CMCs are typically quite small (about 10–5 to 10–4 
kg-moles/m3), at nearly all concentrations practical for MP flooding, the surfactant is 
predominantly in the micelle form. This is the origin of the name micellar-polymer 
flooding. The representations of the micelles in Fig. 9-3 and elsewhere are schematic. 
The actual structures of the micelles are not static and can take on various forms. 
 
 

 
 

 
 
 
Figure 9-3  Schematic definition of the 
critical micelle concentration (from 
Lake, 1984)

When this solution contacts an oleic phase (the term oleic phase indicates 
this phase can contain more than oil), the surfactant tends to accumulate at the 
intervening interface. The lipophilic moiety “dissolves” in the oleic phase, and the 
hydrophilic in the aqueous phase. The surfactant prefers the interface to the micelle; 
however, only small surfactant concentrations are needed to saturate the interface. 
The dual nature of the surfactant is important since the accumulation at the interface 
causes the IFT between the two phases to lower. The IFT between the two phases is a 
function of the excess surfactant concentration at the interface. The excess is the 
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difference between the interface and bulk concentration. The interface blurs in much 
the same manner as do vapor–liquid interfaces near a critical point. 
 The surfactant itself and the attending conditions should be adjusted to 
maximize this effect, but this affects the solubility of the surfactant in the bulk oleic 
and aqueous phases. Since this solubility also impinges on the mutual solubility of 
brine and oil, which also affects IFTs, this discussion leads naturally to the topic of 
surfactant–oil–brine phase behavior. Curiously, the surfactant concentration itself 
plays a rather minor role in what follows compared to the temperature, brine salinity, 
and hardness. This is true of many micellar properties. 
 
 

9-3 SURFACTANT–BRINE–OIL PHASE BEHAVIOR 
 
Surfactant–brine–oil phase behavior is conventionally illustrated on a ternary 
diagram (see Sec. 4-3). By convention, the top apex of the ternary diagram represents 
the surfactant pseudocomponent (i = 3), the lower left represents brine (i = 1), and the 
lower right represents oil (i = 2). Table 9-3 summarizes these and other notational 
conventions. 
 
TABLE 9-3  NOTATION AND COMMON UNITS FOR MP FLOODING 

i      Specicies    Concentration unit 

1 Water Volume fraction 
2 Oil Volume fraction 
3 Surfactant Volume fraction 
4 Polymer Weight percent or g/m3 
5 Anion meq/cm3-pore volume 
6 Divalents meq/cm3-pore volume 
7 Cosurfactant Volume fraction 
8 Monovalents meq/cm3-pore volume 

 
j Phase 

1 Aqueous 
2 Oleic 
3 Microemulsion 

  
MP phase behavior is strongly affected by the salinity of the brine. Consider 

the sequence of phase diagrams, Figs. 9-4 through 9-6, as the brine salinity is 
increased. The phase behavior we now describe was originally given by Winsor 
(1954) and adapted to MP flooding later (Healy et al., 1976; Nelson and Pope, 1978). 
 At low brine salinity, a typical MP surfactant will exhibit good 
aqueous-phase solubility and poor oil-phase solubility. Thus an overall composition 
near the brine–oil boundary of the ternary will split into two phases: an excess oil 
phase that is essentially pure oil and a (water-external) microemulsion phase that 
contains brine, surfactant, and some solubilized oil. The solubilized oil occurs when 



 362
globules of oil occupy the central core of the swollen micelles. The tie lines within 
the two-phase region have a negative slope. This type of phase environment is 
variously called a Winsor type I system, a lower-phase microemulsion (because it is 
more dense than the excess oil phase), or a type II(–) system. We adopt the type II(–) 
terminology here. II means no more than two phases can (not necessarily will) form, 
and (–) means the tie lines have negative slope (Fig. 9-4). The plait point in such a 
system PR is usually located quite close to the oil apex. Any overall composition 
above the binodal curve is single phase. 
 
 

 
 

 
 
 
 
Figure 9-4  Schematic representation 
of the type II(–) system (from Lake, 
1984)

For high brine salinities (Fig. 9-5), electrostatic forces drastically decrease 
the surfactant’s solubility in the aqueous phase. An overall composition within the 
two-phase region will now split into an excess brine phase and an (oil-external) 
microemulsion phase that contains most of the surfactant and some solubilized brine. 
The brine is solubilized through the formation of inverted swollen micelles, with 
brine at their cores. The phase environment is a Winsor type II system, an 
upper-phase microemulsion, or a type II(+) system. The plait point PL is now close to 
the brine apex. 
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Figure 9-5  Schematic representation of 
high-salinity type II(+) system (from 
Lake, 1984)

 
The two extremes presented thus far are roughly mirror images: The 

microemulsion phase is water-continuous in the type II(–) systems and oil-continuous 
in type II(+) systems. The induced solubility of oil in a brine-rich phase, a type II(–) 
system, suggests an extraction mechanism in oil recovery. Though extraction does 
play some role, it is dwarfed by the IFT effect discussed below, particularly when 
phase behavior at intermediate salinities is considered. 
 At salinities between those of Figs. 9-4 and 9-5, there must be a continuous 
change between type II(–) and II(+) systems. The obvious change of a 
counterclockwise tie line rotation and corresponding plait point migration is 
incorrect; there is no salinity where the solubility of the surfactant in the brine- and 
oil-rich phases are exactly equal. But there is a range of salinities where a third 
surfactant-rich phase is formed (Fig. 9-6). An overall composition within the 
three-phase region separates into excess oil and brine phases, as in the type II(–) and 
II(+) environments, and into a microemulsion phase whose composition is 
represented by an invariant point. This environment is called a Winsor type III, a 
middle-phase microemulsion, or a type III system. To the upper right and left of the
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Figure 9-6  Schematic representation of 
optimal-salinity type III system (from 
Lake, 1984)

 
 
three-phase region are type II(–) and II(+) lobes wherein two phases will form as 
before. Below the three-phase region, there is a third two-phase region (as required 
by thermodynamics) whose extent is usually so small that it is neglected (Anderson et 
al., 1976). In the three-phase region, there are now two IFTs between the 
microemulsion and oil σ32 and the microemulsion and water σ31. 
 Figure 9-7, a prism diagram, shows the entire progression of phase 
environments from type II(–) to II(+). The type III region forms through the splitting 
of a critical tie line that lies close to the brine–oil boundary as the salinity increases to 
CSel (Bennett et al., 1981). A second critical tie line also splits at CSeu as salinity, is 
decreased from a type II(+) environment. Over the type III salinity range, the 
invariant point M migrates from near the oil apex to near the brine apex before 
disappearing at the respective critical tie lines. Equally important, as the migration 
takes place, the surfactant concentration in the microemulsion phase goes through a 
minimum near where brine–oil ratio at the invariant point becomes 1. 

The migration of the invariant point implies essentially unlimited solubility
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Figure 9-7  Pseudoternary or “tent” diagram representation of micellar-polymer 
phase behavior (from Lake, 1984) 

 
of brine and oil in a single phase. This has generated intense research into the nature 
of the type III microemulsion (Scriven, 1976). The middle-phase microemulsion 
cannot be simultaneously oil- and water-external. Somewhere between CSel and CSeu, 
the micelles contained therein undergo an inversion, and many phase properties (for 
example, electrical conductivity) abruptly change from being characteristic of the 
water to being characteristic of the oil. Moreover, several other properties (see Fig. 
9-13) take on extreme values. Though logically appealing, the phase inversion 
salinity does not necessarily indicate optimal salinity. 
 Several variables other than brine electrolyte content can bring about the Fig. 
9-7 phase environment shifts. In general, changing any condition that enhances the 
surfactant’s oil solubility will cause the shift from type II(–) to II(+). We discuss 
some of the more important below. 
 
Surfactant Structure 
 
In general, increasing the importance of the nonpolar end of the surfactant will 
increase oil solubility. Such changes include increasing the nonpolar molecular 
weight, decreasing the tail branching (Graciaa et al., 1981), decreasing the number of 
polar moieties (from disulfonates to monosulfonates), and decreasing the strength of 
the polar moiety. 
 Two common measures of the competition between the hydrophile and 
lipophile indicate oil solubility. The surfactant’s charge density is the number of 
dissociated ions per molecule divided by the molecular size. Surfactant brine 
solubility goes up as charge density increases. A second measure is the hydrophile–
lipophile balance (HLB) number. For certain types of surfactant (for example, 
nonionics), the HLB number is simply related to molecular structure. But for others, 
the HLB number cannot be uniquely defined apart from the oil and brine it is 
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competing for (Shinoda and Kunieda, 1979). Though both measures have enjoyed a 
degree of success, they are difficult to apply to petroleum sulfonate because of the 
many chemical species contained therein. 
 

Cosurfactants 

 
One of the first uses for cosurfactants was to adjust the surfactant pseudocomponent 
so that the II(–) → II(+) transition occurs at different salinities. A water soluble 
cosurfactant (for example, tertiary amyl alcohol, a second petroleum sulfate, or 
n-butanol) also causes the surfactant to be more water soluble. Higher molecular 
weight alcohols cause increased oil solubility (Salter, 1977). Bourrel et al. (1978) 
have derived mixing rules for the properties of surfactant–cosurfactant mixtures. 
 

Oil Properties 

 
If the oil can be made more polar, it will act as a better solvent for the surfactant, 
hastening the II(–) → II(+) transition. There are several measures for this tendency. 
High specific gravity crudes tend to be rich in organic acids; thus surfactant oil 
solubility is lower in high gravity oils (Puerto and Reed, 1982). Similarly, low 
specific volume crudes behave in the same fashion (Nelson, 1982). Cash et al. (1976) 
devised a measure of oil effects on surfactant–brine–oil phase behavior by comparing 
the transitions observed with a crude to a refined hydrocarbon. The surfactant in all 
cases is Texas No. 1 (Fig. 9-2) in a NaCl brine. If the transition from the II(–) → 
II(+) for a crude occurs at the same salinity as the linear alkane, the alkane carbon 
number (ACN) of the refined oil and the equivalent alkane carbon number (EACN) 
of the crude are equal. Therefore, EACN is relatively easy to measure and gives an 
indication of the model oil to be used in formulation. The same idea can be used to 
categorize surfactants (Graciaa et al., 1981). 
 

Decreasing Temperature 

 
There is little generality in the tendency for the surfactant to dissolve in oil as 
temperature increases. For most anionics, higher temperatures mean more brine 
solubilities (Nelson and Pope, 1978). This trend is reversed for most nonionics. 
 
Decreasing Pressure 
 
MP phase behavior, being an all-liquid system, is relatively insensitive to pressure. 
But Nelson (1982) has noted a substantial pressure effect in gassy crudes. 
Interestingly, the trend here parallels that of the oil properties given above: As the 
specific volume of the oil increases (through decreased pressure), the surfactant 
becomes more water soluble. 
 Decreasing the surfactant’s oil solubility will cause the reverse of these
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changes. Thus Fig. 9-7 could be redrawn with any of the above variables on the base 
of the prism with the variable CSe increasing in the direction of increased oil 
solubility. These observations have occupied a very great share of the MP literature. 
Their utility will become apparent under our discussion of IFTs in the next section. 
 
 

9-4 NONIDEAL EFFECTS 
 
In much the same manner as the ideal gas law approximates the behavior of real 
gases, Figs. 9-4 through 9-6 are approximations to actual MP phase behavior. Though 
nonidealities are significant in many instances, in this section, we mention only the 
most important. 
 

1. At high surfactant concentrations or low temperatures (Scriven, 1976; Healy 
and Reed, 1974) or even in the presence of pure surfactants (Salter, 1983), 
phases other than those in Fig. 9-7 have been observed. These phases tend to 
be high-viscosity liquid crystals or other condensed phases. The large 
viscosities are detrimental to oil recovery since they can cause local viscous 
instabilities during a displacement or decreased injectivity. Frequently, 
low-to-medium molecular weight alcohols (cosolvents) are added to MP 
formulations to “melt” these undesirable viscosities. Because most alcohols 
are weak surfactants, the term cosurfactant has enjoyed popular usage for 
these additions, as it has for the addition of other surfactants. When the brine 
contains polymer, a condensed phase occurs at low surfactant concentration 
because of exclusion of the polymer from the microemulsion phases. 
Cosurfactants can be used to eliminate this polymer–surfactant 
incompatibility (Trushenski, 1977). 

2. When cosurfactants are present, it is often inappropriate to lump all the 
chemicals into the surfactant apex of the prism in Fig. 9-7. If the 
cosurfactants do not partition with the primary surfactant during a 
displacement, much of the benefit from adding the chemical is lost; hence 
surfactant–cosurfactant separation effects are an important concern. Efforts 
to account for the preferential partitioning of the cosurfactant include a 
quaternary phase behavior representation (Salter, 1978) and a pseudophase 
theory (Hirasaki, 1982). 

3. The type III salinity limits (CSel and CSeu) are functions of surfactant 
concentration. This dependency may be visualized by tilting the vertical 
triangular planes in Fig. 9-7 about their bases. This is sometimes called the 
dilution effect. 

One way to graphically represent the dilution effect is through the 
salinity requirement diagram (Fig. 9-8). This diagram is a plot of overall 
surfactant concentration C3 (horizontal axis) versus the salinity (vertical 
axis). All other variables are held constant. Figure 9-8 represents salinity as 
percent dilution of a particular high salinity brine. The upper curve shows the 
boundary between the types II(+) and III environments or a curve of CSeu
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Figure 9-8  Salinity-requirement 
diagram (from Nelson, 1982)

 
 

versus C3. Similarly, the lower curve shows CSel versus C3; hence the region 
between the two curves give the extent of the type III region as a function of 
C3. Other plots (Glover et al., 1979; Bourrel et al., 1978) plot the extent of 
observed three-phase behavior in a similar fashion. Figure 9-8 also shows a 
three-phase region within the type III region. 

The MP system in Fig. 9-8 shows a type III region that decreases with 
salinity. For other surfactants and brines, the trend can be entirely opposite 
(Bourrel et al., 1978). For ideal MP phase behavior, neither CSeu nor CSel 
should depend on C3––that is, the salinity requirement diagram should 
consist of two horizontal lines. Frequently, the behavior of soft brines will 
approximate this since the dilution effect is particularly pronounced when the 
brine contains significant quantities of divalent ions. 

4. The phase behavior shifts are specific to the exact ionic composition of the 
brine, not simply to the total salinity. Hence just as in polymer flooding, it is 
insufficient to characterize the brine as merely “fresh” or in terms of its total 
dissolved solids content. For anionic surfactants, other anions in solution 
have little effect on the MP phase behavior, but cations readily cause phase 
environment changes. Divalent cations (calcium and magnesium are the most 
common) are usually 5–20 times as potent as monovalent cations (usually 
sodium). Divalents are usually present in oil-field brines in smaller quantities 
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than monovalents (Fig. 8-1), but their effect is so pronounced that it is 
necessary, as a minimum, to separately account for salinity––total dissolved 
solids––and hardness––total divalent cation concentration. Nonconstant 
monovalent–divalent ratios will also cause electrolyte interactions with clay 
minerals through cation exchange. The disproportionate effects of the salinity 
and hardness are accounted for by defining a weighted sum of the 
monovalent and divalent concentrations as an “effective” salinity CSe. 

The salinity effects discussed here are much less significant with 
nonionic surfactants where there are no ionic associations. Even for anionics, 
they can be greatly attenuated by adding nonionic cosurfactants. The 
cosurfactant monomers add into the micelle between the larger primary 
surfactant monomers, thus lessening the charge density of the micelle surface 
and making the “mixed” micelle more like a nonionic. 

 
 
 

9-5 PHASE BEHAVIOR AND INTERFACIAL TENSION 
 
 
You may be wondering what this discussion of MP phase behavior has to do with the 
goal of recovering oil through lowered IFT. Early MP flooding literature contains 
much information about the techniques of measuring IFTs and what causes them to 
be low (Cayias et al., 1975). IFTs depend on the types and concentration of 
surfactant, cosurfactant, electrolyte, oil, polymer, and temperature. However, in 
surely one of the most significant advances in all MP technology, all IFTs have been 
shown to directly correlate with the MP phase behavior. Healy and Reed (1974) 
originally proposed the correlation, which has been theoretically substantiated by 
Huh (1979) and experimentally verified by several others (for example, Glinsmann, 
1979; Graciaa et al., 1981). 
 A practical benefit of this correlation is immediately realized: Relatively 
difficult measurements of IFTs can be largely supplanted by relatively easy phase 
behavior measurements. Indeed, in the recent literature, the behavior of IFTs has 
been inferred by a narrower subset of phase behavior studies based on the 
solubilization parameter (Bourrel et al., 1978). As important as this benefit is, a more 
important benefit is that the correlation logically provides a basis for MP design. We 
discuss design in Sec. 9-13. 
 To investigate further the relation between IFTs and phase behavior, let C23, 
C13, and C33 be the volume fractions of oil, brine, and surfactant in the microemulsion 
phase. According to Figs. 9-4 through 9-6, the microemulsion phase is present at all 
salinities; hence all three quantities are well defined and continuous. For systems 
containing alcohol, C33 is the surfactant coordinate less the cosurfactant content. 
Solubilization parameters between the microemulsion-oleic phases S32, for type II(–) 
and III phase behavior, and between the microemulsion-aqueous phases S31 for type 
II(+) and III are defined as 
 



 370

 23
32

33

CS
C

=  (9.5-1a) 

 13
31

33

CS
C

=  (9.5-1b) 

 
The interfacial tensions between the corresponding phases, σ32 and σ31, are empirical 
functions only of S32 and S31. Figure 9-9 shows a typical correlation. 
 Figure 9-10 shows the corresponding behavior of the solubilization 
parameters and IFTs in a different manner. Consider a locus at constant oil, brine, 
and surfactant overall concentrations in Fig. 9-7, but with a variable salinity. If 
nonideal effects are unimportant and the locus is at low surfactant concentration and 
intermediate brine–oil ratios, σ32 will be defined from low salinity up to CSeu, and σ31 
from CSel to high salinities. Both IFTs are the lowest in the three-phase type III region 
between CSel and CSeu where both solubilization parameters are also large. Further, 
there is a precise salinity where both IFTs are equal at values low enough (about 1 
μN/m) for good oil recovery. This salinity is the optimal salinity CSopt for this 
 
 

 
 

Figure 9-9  Correlation of solubilization parameters with interfacial tensions (from 
Glinsmann, 1979) 
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Figure 9-10  Interfacial tensions and solubilization parameters (from Reed and 
Healy, 1977) 

 
particular surfactant–brine–oil combination, and the common IFT is the optimal IFT. 
Optimal salinities have been defined on the basis of equal IFTs, as in Fig. 9-10, equal 
solubilization ratios (Healy et al., 1976), equal contact angles (Reed and Healy, 
1979), and the midpoint between CSeu and CSel. Fortunately, all definitions of optimal 
salinity give roughly the same value. 

The optimal salinity based on solubilization parameters also corresponds to 
the salinity where oil recovery in a core flood is a maximum. Figure 9-11 illustrates 
this oil-recovery optimal salinity. The middle panel, Fig. 9-1lb, shows a plot similar 
to the upper panel in Fig. 9-10 for a different surfactant system; the lower panel 
shows the oil recovery for a series of constant-salinity core floods. The optimal 
salinity based on solubilization parameters, IFTs, and oil recovery agree well. Since 
optimal phase behavior salinity is the same as maximum oil recovery salinity, clearly 
one of the goals of an MP design is to generate this optimal salinity in the presence of 
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Figure 9-11  Correlation of phase volume and IFT behavior with retention and oil 
recovery (from Glinsmann, 1979) 

 
the surfactant. The optimal salinity does not correspond to minimum surfactant 
retention (Fig. 9-11c), but this is because of competing effects as we mention below. 
 Because of the dilution effect mentioned above, maximum oil recovery is 
really where the combination of electrolyte, surfactant, and cosurfactant 
concentrations bring about maximum solubilization parameters. Hence one should 
speak of optimal conditions rather than optimal salinity. The optimal salinity 
terminology is deeply embedded within the MP literature, but it is precise only for 
the ideal Fig. 9-7 phase behavior. Do not confuse the optimal salinity CSopt, an 
intrinsic property of the oil–brine–surfactant combination, with the prevailing salinity 
CSe, an independent variable in the MP design. 

Optimal salinities can vary greatly depending on the nature of the surfactant 
and brine pseudocomponents. But it is dismaying that for many commercially 
attractive surfactants in most MP candidate reservoirs, the optimal salinity is smaller 
than the resident brine salinity. Optimal salinities can be raised by adding to the slug 
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any chemical that increases the primary surfactant’s brine solubility. Adding 
cosurfactants to the MP slug normally increases the optimal IFT. 
 The notion of optimal conditions is directly connected to the phase behavior 
of MP systems. Even properties of MP systems apparently unrelated to phase 
behavior (retention, for example) are functions of salinity, cosurfactant concentration, 
and temperature. This observation leads to the interesting speculation that all MP 
properties (retention, phase behavior, IFT, mobilities) correlate to optimal salinity 
and, perhaps, to solubilization parameters. 
 
 

9-6 OTHER PHASE PROPERTIES 
 
Our understanding of MP phase behavior follows from the ternary representation of 
the Winsor phase behavior progression. Other representations are common, 
particularly to show phase properties. 
 A very useful phase-behavior representation is the volume fraction diagram 
(VFD) (Fig. 9-12). Imagine a point of fixed overall composition (parallel to the 
salinity axis) in the ternary planes in Fig 9-6. The volumes of each phase are 
observed and plotted as the brine salinity changes. Starting with a low salinity, the 
VFD shows a succession of decreasing oleic-phase volume and increasing aqueous-
phase volume with some three-phase overlap in the middle. If the overall surfactant 
concentration is low and the brine–oil ratio (WOR) is about 1, the appearance of the 
lower brine phase corresponds approximately to the onset of the type III region (CSel), 
and the disappearance of the upper oleic phase corresponds approximately to the 
termination of the type III region (CSeu). The salinity at which the brine and oleic 
phases have equal volumes is a good approximation of the optimal salinity if the 
surfactant and cosurfactant concentration is low enough. Compare the VFD in Fig. 
9-11a to Fig. 9-12b. 
 Varying salinity while holding other variables constant is sometimes called a 
salinity scan. Varying the salinity is the most common presentation of the VFD; 
however, a derivative of the VFD, in which the cosurfactant concentration is varied 
in place of the salinity, is sometimes useful. To minimize the number of 
measurements, each scan can be relatively coarse (about ten measurements) and then 
supplemented with fill-in measurements to refine the estimate of the important 
events. 

Of course, any phase property can be plotted in place of the phase volumes. 
Figure 9-13 shows the microemulsion-phase viscosity as a function of salinity. Over 
this range, the microemulsion phase, as defined above, is continuous and shows a 
viscosity maximum at a salinity near the optimal. The maximum indicates molecular 
ordering in the phase that seems to be the strongest at the phase inversion salinity. 
Such maxima can be either beneficial, if it can be used to provide mobility control in 
the slug, or detrimental, if it leads to excessively viscous fluids. It was to counteract 
the latter tendency that cosurfactants were first added to MP slugs. Over the same 
salinity range in Fig. 9-13, the excess phase viscosities do not change appreciably. 



 374

 
 

Figure 9-12  Phase volume diagrams (salinity scans) at three water–oil ratios 
(from Englesen, 1981) 
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Figure 9-13  Microemulsion phase viscosity as a function of salinity (from Jones, 
1981) 

 
 

9-7 QUANTITATIVE REPRESENTATION OF MICELLAR 
     PROPERTIES 

 
Prediction of MP response rests on being able to quantitatively represent the 
foregoing behavior in equations. Given the complexities, many of which we have 
only alluded to, it is not possible to derive comprehensive representations. Here we 
seek to capture the major features by following these assumptions. 
 

1. All fluids are incompressible and mix ideally. 
2. Temperature does not change, and the phase behavior is insensitive to 

pressure. These restrictions mean phase behavior is driven only by changes 
in the effective salinity CSe. 

3. The ternary equilibria in Fig. 9-11 apply. For the moment, we neglect the 
nonideal effects. 

4. The height of the binodal curve passes through a minimum near the optimal 
salinity CSopt. The minimum forces the optimal salinity based on IFT and 
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phase behavior to be equal since the solubilization parameters will be a 
maximum at CSopt. 

5. The splitting of the critical tie line as the type III system forms or disappears 
is so close to the ternary base that we can take the incipient invariant points 
to coincide with the left and right apexes at these events. 

 
 We strive for a representation that captures the basics of the MP behavior 
without becoming burdened with an excessive number of parameters. Such simplicity 
means equations are used to describe as much of the behavior as possible, and we 
choose these equations to have a small number of adjustable parameters. Though 
many of the equations are empirical, we strive to make limiting cases theoretically 
rigorous. 
 
Salinity Events 
 
We form the equations so that the adjustable parameters have physical significance 
on the previously described diagrams. The effective salinity corresponding to the 
type II(–) to III transition CSel is approximately the salinity on a VFD where the third 
microemulsion phase appears. CSeu is where the microemulsion phase disappears. For 
best approximation for both quantities, use a VFD with a water–oil ratio of 1. At this 
water–oil ratio, the optimal salinity CSopt is the CSe where the excess phases have 
equal volumes. 
 In what follows, the effective salinities are normalized by CSopt. The resulting 
dimensionless effective salinities 

 Se
SeD

Sopt

CC
C

=  (9.7-1) 

 
are those that control the phase behavior. Clearly, CSeD can take on any positive value 
and is equal to 1 at optimal conditions. 
 Other events coming from the VFD relate to the surfactant maximum 
coordinate on the binodal curve at low, optimal, and high salinities. At CSeD = 1, the 
surfactant coordinate of the invariant point is 
 

 3
3 3max1

3
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CC C
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= =  (9.7-2) 

 
where S3 is the volume fraction (saturation) of the microemulsion phase. The oil and 
brine coordinates at optimal conditions are 
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= =  (9.7-3) 

 
These equations assume the excess phases are free of surfactant. 
 At low salinity, the height of the binodal curve is 
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and the similar quantity at high salinity is 

 3
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=  (9.7-4b) 

 
Equations (9.7-4a) and (9.7-4b) generally provide underestimations of the binodal 
curve heights. Figure 9-14 shows the quantities in Eqs. (9.7-2) and (9.7-4). 
 

 
 

Figure 9-14  Definition of quantities for phase-behavior representation 
 
 Events not observable from the VFDs are the plait point locations. We 
assume the oil coordinates of the plait point vary linearly between the limits of CSeuD 
and CSelD as shown in Fig. 9-15. C2PL and C2PR, the left and right plait point oil 
coordinates, apply to the type II(–) and II(+) systems, respectively. also shows the 
assumed linear variation of the invariant point oil coordinate C2M. The superscript * 
refers to low and high salinity limiting cases. Typical values of C2PL and C2PR are 0.05 
and 0.95, respectively. 
 These seven parameters (CSelD, CSeuD, C3max0, C3max1, C3max2, C2PL, and C2PR) 
are sufficient to define the phase behavior with a few additional assumptions. 
 
Binodal Curve 
 
We use the same formalism to represent the binodal curve in all phase environments. 
For type III, this means (Fig. 9-14) the two two-phase lobes are defined by a
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Figure 9-15  Migration of plait and 
invariant points with effective salinity

 
 
continuous curve. For simplicity, let the Hand representation from Eq. (4.4-23) define 
the binodal curve with BH = –1. 

 3 1

2 3

,      1,  2, or 3j j
H

j j

C C
A j

C C
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 (9.7-5) 

 
Equation (9.7-5) forces the binodal curve to be symmetric. Solving Eq. (9.7-5) for C3j 
in terms of C2j gives (recalling that C1j + C2j + C3j = 1) 

 2 1/ 2
3 2 2 2 2

1 ([( ) 4 (1 )] )
2j j H j H j j HC C A C A C C A= + − −  (9.7-6) 

 
Since the curve is symmetric, the maximum C3j occurs when C2j = C1j or, 
alternatively, when C2j = (1 – C3j)/2, as in Eq. (9.7-3). This substituted into Eq. 
(9.7-6) gives 
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 (9.7-7) 

 
where m = 0, 1, or 2 corresponding to the salinity extremes. The AHm’s are linearly 
interpolated as 

 0 1 0

1 2 1
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H H H H SeD SeD

H H H H SeD SeD

A A A A C C
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= + − ≤
= + − − ≥

 (9.7-8) 

 
Tie Lines in Two-Phase Systems 
 
Since the treatment for the II(+) system is identical, let us deal with the tie lines in a 
II(–) system only, but we use C2PL instead of C2PR. Again, using the Hand 
representation, but with FH = 1, the phase distribution (Eq. 4.4-24) now becomes 
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 (9.7-9) 

 
This equation applies at the plait point from which we have EH = C1PL/C2PL = 
(1 – C2PL – C3PL)/C2PL. Since the plait point is also on the binodal curve, Eq. (9.7-6) 
applies to give 
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C2PR being defined as a function of salinity, this equation and Eq. (9.7-8) give the 
salinity dependence of EH. 
 
Type III 
 
The three-phase portion of this environment poses no difficulties since the excess 
phases are pure by assumption, and the composition of the microemulsion phase is 
given by the coordinates of the invariant point. For a given CSeD, C2M is fixed, and 
C3M follows from Eq. (9.7-6). 
 The two-phase lobes are somewhat more trouble. Once again, we consider 
only the II(–) lobe since the II(+) lobe is analogous. Let’s suppose the Hand 
representations (Eqs. 9.7-5 and 9.7-9) apply to transformed concentrations (denoted 
by superscript prime) where 
                                          2 2 secj jC C ξ′ =  (9.7-11a) 
                                          3 3 2 tanj j jC C C ξ′ = −  (9.7-11b) 
 1 2 31 ,       2 or 3j j jC C C j′ ′ ′= − − =  (9.7-11c) 
 
The angle ξ in these equations is from Fig. 9-14 
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or, alternatively, 
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These relations allow the parameter EH to be expressed in terms of the untransformed 
coordinates of the plait point as 
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 (9.7-13) 

 
When the relation between C3 and C2 (Eq. 9.7-6) is used, this gives EH as a function
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of salinity in the type II(–) lobe (CSel < CSe < CSeu). You can verify that these 
manipulations for the type III lobes merge continuously with the two-phase 
environments. 
 
 

9-8 ADVANCED MP PHASE BEHAVIOR 
 
For ideal surfactant–brine–oil systems, phase boundaries and optimal salinity would 
be independent of brine salinity. This observation means plots of phase boundaries 
and optimal salinity versus overall surfactant concentration––the salinity requirement 
diagram (SRD)––would consist of horizontal lines. Petroleum sulfonate systems 
generally do not manifest this type of behavior (Fig. 9-8 or Fig. 9-16); how ever, this 
nonideality can be explained by the pseudophase theory (Hirasaki, 1982; Camilleri et 
al., 1987). The theory also illustrates the correct measure of optima conditions, 
accounts for preferential partitioning of a cosurfactant among the various phases, and 
fits nicely into the formalism of the previous section. 

Figure 9-17(b) shows a three-phase type III system with a water-external 
 

 
 

Figure 9-16  Salinity requirement diagram for brine, decane, isobutanol, TRS 10-
410. Surfactant/alcohol = 1, Na/Ca = 10 (equivalents), Water–oil ratio = 1 (from 
Prouvost, 1984) 
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middle phase, and Fig. 9-17(a) shows the pseudophase representation. Since the only 
volume occupying components in the system are water, oil, surfactant, and 
cosurfactant, the system is naturally represented on a quaternary diagram (Fig. 
9-17a). All charged species, except those we mention below, exist in unassociated 
form. The system consists of three pseudocomponents. 
 

1. An oleic pseudocomponent consisting of the excess oil phase and the oil at 
the center of the swollen micelles. 

2. An aqueous pseudocomponent consisting of the excess brine phase and the 
brine in the microemulsion. This phase contains all charged species not 
associated with the micelles. Both the oleic and aqueous pseudocomponents 
can contain cosurfactant but neither contains surfactant. 

3. An interfacial pseudocomponent consisting of the surfactant, cosurfactant, 
and counterions associated with the micelles. Micelles containing two or 
more surfactant types are mixed micelles. 

 
 The theory has three separate facets: definition of effective salinity, 
cosurfactant partitioning, and cation association with the mixed micelles. 
 
Definition of Effective Salinity 
 
The phase rule (Eq. 4.1-2) states there are two (NC = 7, NP = 3, NR = 2) degrees of 
freedom for an optimal surfactant system at fixed temperature and pressure. Thus 
there must be two variables specified to fix optimal conditions. The phase rule gives 
no indication of what the two degrees of freedom should be except that they should 
be intensive thermodynamic variables, an observation that rules out overall 
concentrations. 
 Glover et al. (1979) present experimental data that suggests the divalent 
cations bound to the micelles are the most direct indicator of optimality. They 
suggest optimal salinity decreases linearly with 3

6 ,f  the fraction of the total divalent 
cations bound to the micelles. 
 3

6 6Optimal salinity fβ−∼  (9.8-1) 
 
where β6 is a positive constant. Moreover, ample experimental evidence (Baviere et 
al., 1981) suggests optimal salinity varies linearly with cosurfactant concentration. 
 
 3

7 7Optimal salinity fβ−∼  (9.8-2) 
 
where 3

7f  is the fraction of the cosurfactant associated with the micelles. The 
constant β7 can be positive if the cosurfactant is more water-soluble than the 
surfactant, and it can be negative otherwise. Equations (9.8-1) and (9.8-2) suggest the 
following combination for the optimal salinity expressed as the anion concentration 
in the aqueous phase: 
 * 3 3

51 51 6 6 7 7(1 )(1 )C C f fβ β= − +  (9.8-3) 
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Figure 9-17  Schematic representation of pseudophase theory for surfactant– 
brine–oil–cosurfactant systems 
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In this equation, *

51C  is the optimal anion concentration in the absence of divalents 
and cosurfactants. Equation (9.8-3) suggests a definition of effective salinity 

 51
3 3

6 6 7 7(1 )(1 )Se
CC

f fβ β
=

− +
 (9.8-4) 

 
CSe is the effective salinity used as a normalizing factor in Sec. 9-7. The remaining 
tasks are to define 3

6f  and 3
7f  

 
Cosurfactant Partitioning 
 
In the following, we use j

iC  to designate pseudophase compositions. Let’s estimate 
the pseudocomponent compositions at point P(C1, C2, C3, C7) in Fig. 9-17(a). If the 
pseudocomponents are the apexes of the indicated triangle, 
 1 2 3

7 1 7 2 7 3 7C C C C C C C= + +  (9.8-5) 
 
That the pseudocomponent concentrations occupy the role of phase saturations in the 
equation accounts for why the theory is called the pseudophase theory. Now let's use 
partition coefficients to eliminate two of the pseudocompositions 
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Ideally, the partition coefficients should be equal to the cosurfactant partition 
coefficients in the absence of surfactant (Prouvost, 1984). These substituted into Eq. 
(9.8-6) give the cosurfactant concentration in the aqueous pseudophase 

 
3

1 7
7 7 1

1
j j

j
C C C K

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (9.8-7a) 

 
Because this pseudophase contains only cosurfactant and water 
 1 1

1 71C C= −  (9.8-7b) 
 
Equations (9.8-7b) and (9.8-6) can be used to calculate all pseudophase compositions 
from overall compositions and the partition coefficients. 
 To use the equations of the previous section, we must express the overall and 
phase compositions in terms of the pseudocomponents. We define CPi as 

 Volume of  + Volume of 7 associated with
Total volumePi

i iC =  (9.8-8) 

 
which gives 
 7(1 ),      1, 2, 3i

Pi iC C C i= + =  (9.8-9) 
 
The CPi are overall concentrations and are to be used directly in the strict ternary 
representation. The equations collapse to the Sec. (9-6) equations when cosurfactant 
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and divalent concentrations are zero. Further, Eq. (9.8-9), summed over three phases, 
equals unity from Eq. (9.8-7a). 

The fractional cosurfactant associated with the micelle follows directly from 
this also. By definition 

 3
7

Volume of 7 in pseudophase 3
Volume of pseudophase 3

f =  (9.8-10) 

 
which is simply 

 3
7

3
7

1
11

f

C
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 (9.8-11) 

 
also by definition. 
 
Divalent Cation Association 
 
Competition for anionic sites on the micelle surface is through electrical forces. 
Hence a cation exchange law of the following form applies: 

 
3 2 2

3 39 9
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( ) ( )C CC
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 (9.8-12) 

 
This equation is a form of Eq. (3.5-4) in which the constant (β3) is multiplied by a 
factor that will convert the volume fraction 3

3C  into units of meq/L3 of pore volume. 
Equation (9.8-12) assumes the cosurfactant is nonionic and all the surfactant is 
available to exchange. 
 Two types of electroneutrality now apply: on the micelle surface 
 3 3

61 81 31C C C+ =  (9.8-13a) 
 
and in the bulk aqueous phase 
 61 81 51C C C+ =  (9.8-13b) 
 
These form three equations in four unknowns, from which it becomes possible to 
solve for the bound divalents in terms of the unassociated species concentrations 

 3 3 3 3 2 3 3 1/ 2
61 31 86 86 86 31

1 [ (( ) 4 ) ]
2

C C r r r C= + − +  (9.8-14a) 

 
where 

 
3 2

3 3 3 81
86 3 3
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( )Cr C
C

β=  (9.8-14b) 

 
Compare these equations to Eq. (3.5-7). Once the left side of Eq. (9.8-14a) is known, 
the fraction of the total divalents bound to the micelle follows from 
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3

3 6
6

3

Cf
C

=  (9.8-15) 

 
and CSe can be estimated from Eq. (9.7-3). 
 The above theory will fit experimental data very well. Figure 9-16 shows the 
agreement between estimated and calculated phase boundaries for a system of 
petroleum sulfonate, decane, isobutanol, Na, and Ca. To construct this match, 
Prouvost (1984) assumed the above theory applies to phase boundaries as well as to 
optimal salinities. The theory and experiment agree well even though the SRD is far 
from ideal. 
 
 
 

9-9 HIGH CAPILLARY NUMBER RELATIVE PERMEABILITIES 
 
 
A transport property that deserves treatment in a separate section is the high capillary 
number relative permeability. In this section, we discuss two- and three-phase 
experimental results based on the work of Delshad et al. (1987) (see Sec. 3-3 for 
discussion of low capillary number relative permeabilities). 
 Few theoretical relations exist for relative permeabilities in general, much 
less for those at high capillary number. We do know the extreme values of relative 
permeability functions occur at residual phase saturations. The latter are functions o 
capillary number Nvc through the capillary desaturation curve (CDC) (see Sec. 3-4). 
Further, for very high values of Nvc, we expect the relative permeabilities to approach 
straight-line functions between zero and unit endpoints with no residual phase 
saturations. For low Nvc, the relative permeabilities should return to the two- or 
three-phase high IFT functions. The variation between these extremes is not well 
established. 
 High Nvc relative permeabilities are difficult to measure. In one type of 
experiment, the large Nvc may be attained by increasing the flow rate. This technique 
causes experiments to proceed rapidly since, as we saw in Sec. 3-4, Nvc must increase 
by several factors of 10 before a significant effect occurs. Such high rates art clearly 
unrepresentative of typical reservoir fluid velocities. If the high Nvc is established by 
lowering the IFT, the experiments tend to be dominated by transient composition 
changes. In principle, these transients could be analyzed by the method given in Sec. 
9.10, but this requires knowing the relative permeabilities, whose measurement is the 
point of the experiment. 
 The most reliable measurement is of steady-state relative permeabilities 
using preequilibrated fluids. For micellar fluids in two-phase flow, this consists of 
displacing a composition on one end of a tie line with another on the same tie line at 
constant salinity. When the effluent and injected fractional flows are equal, and 
transients caused by nonideal phase behavior are gone, the relative permeability to 
the flowing phases may be calculated from the measured effluent cuts and pressure 
drop. A similar provision exists in the three-phase ideal systems where all 
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compositions are in equilibrium at constant salinity. Of course, such transients may 
take some time to die out; thus steady-state experiments can be time consuming. The 
uniform saturations established by such a procedure follow from material balance or, 
preferably, tracer data interpreted by a suitable numerical model (Delshad et al., 
1987). 
 Despite these difficulties, high Nvc relative permeabilities for two-phase flow 
have been rather intensively measured, but three-phase data are rare. Figure 9-18 
shows steady-state relative permeabilities to brine, oil, and microemulsion phases for 
both two- and three-phase flow. The permeable medium was strongly water wet in 
both cores A and B at high Nvc conditions. Nvc = 0.01 at the optimal salinity used in 
the experiments. The micellar system under test closely followed ideal phase 
behavior. From these high Nvc data, several observations can be made. 
 

1. The residual phase saturations are nonzero. Of course, these values are points 
on the CDC. Except for the oleic phase, whose endpoint was already high in 
the water-wet medium, the endpoint relative permeabilities are substantially 
different from their low Nvc values. 

2. The high Nvc relative permeabilities are not straight lines. The curves in these 
figures are the matches of the exponential forms Eq. (3.3-4) to the data. But 
the exponents n1 and n2 in these equations are not substantially different from 
their low Nvc values. 

3. The two- and three-phase data follow essentially the same curves. 
4. The relative permeability for all three phases are functions of their own 

saturations. This observation is at odds with the high Nvc behavior of 
three-phase gas, oil, and water flows (Stone, 1970). 

5. Probably the most surprising conclusion is that the excess brine phase was 
not the most strongly wetting phase as it was under low Nvc conditions. This 
observation is supported by a variety of observations not present in Fig. 9-16. 
However, the microemulsion and excess brine residual phase saturations 
have about the same value at Nvc = 0.01. 

6. The shape of the microemulsion curve is concave downward. This 
observation is highly atypical of relative permeabilities and can be explained 
only as wall or interfacial slippage. 

 
 For approximate calculation, let the exponential relative permeabilities of Eq. 
(3.3-4) approximate two-phase high Nvc behavior. Suppose the CDC of a type II(–) 
system is represented by Fig. 3-19, with (Nvc)c and (Nvc)t corresponding to the wetting 
state of phase j. We can define linear interpolants for the endpoints and the 
curvatures. For example, the endpoints vary according to 
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Figure 9-18  Two- and three-phase relative permeabilities (from Delshad et al., 1987) 
 
where 2rS ′  and 3rS ′  are the high Nvc residual phase saturations. This approximate 
linear relation has been substantiated by Stegemeier (1976). The nonunit curvatures 
of the relative permeabilities seem to persist beyond the point of zero residual phase 
saturations; hence it seems reasonable that the logarithm of Nvc itself be used as an 
interpolating function 
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Relations for type II(+) systems, where j = 1 or 3, follow analogous arguments. 
 We can now estimate two-phase relative permeabilities from phase behavior, 
a solubilization parameter correlation, the CDC curves, and low Nvc relative 
permeability curves. Suppose we know the overall composition of a type II(–) system 
that splits into two equilibrium phases. The phase compositions follow the ternary 
diagram. These can be converted to solubilization parameters using Eq. (9.5-1) and 
then into IFTs from the appropriate correlations. We use this to calculate Nvc, and the 
CDCs to estimate residual phase saturations. The high Nvc curves follow from Eqs. 
(9.9-1) and (9.9-2). If additional data are available about viscosities, dip angles, and 
densities, we can easily calculate phase fractional flows. 
 For three-phase flow, even such rough estimates are not warranted. 
Theoretical models by Hirasaki et al. (1983) and Delshad et al. (1987), though 
plausible in limiting senses, account neither for the intermediate wetting of the excess 
brine phase nor for the observation that the phase relative permeabilities are functions 
only of their own saturations. Clearly, we are hindered by a lack of understanding 
about the pore-level nature of high capillary number flows. 
 
 

9-10 FRACTIONAL FLOW THEORY IN MICELLAR-POLYMER 
       FLOODS 

 
Fractional flow theory can be just as insightful for MP floods as for the solvent and 
polymer floods we covered in Secs. 7-7 and 8-4. In fact, there are so many 
similarities to those processes that we draw heavily on the material in those sections. 
 To make the analysis, we invoke the usual fractional flow assumptions: 
incompressible fluid and rock, one- dimensional flow, and no dissipative effects. In 
addition, we neglect the presence of the polymer drive (the polymer treatment can be 
added as an exercise), assume three-component MP floods with a step change in 
concentration at the origin of a time–distance diagram, and treat only those floods 
with constant phase behavior environment. Further, we neglect surfactant retention 
until later in this section where we invoke more restrictive assumptions about the 
phase behavior. To shorten the development, we cover only the high-salinity type 
II(+) floods. Fractional flow treatment for three-phase MP floods has not been 
extensively investigated (Giordano and Salter, 1984), but it could be so treated with 
the numerical technique of Sec. 5-7. 
 
Ternary Landmarks 
 
Figure 9-19(a) shows the basic phase and saturation behavior. This is very much like 
the behavior in Fig. 7-31 except that the miscibility gap extends entirely across the 
bottom edge of the ternary, and of course, water is explicitly included on the diagram. 
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Figure 9-19  Ternary diagram and 
composition paths for micellar–polymer 
system

 
All phase diagrams in this section have exaggerated two-phase regions. One 
significant difference with solvent flooding is lines of residual oleic and aqueous 
phase saturations merge with the binodal curve at some distance from the plait point. 
This happens because the oleic-aqueous capillary number increases (IFT decreases) 
rapidly as the plait point is approached, which causes S2r and S1r to approach zero 
(see Sec. 3-4). For continuous surfactant injection, as we are treating here, this issue 
is entirely secondary. But for finite slugs in highly dissipative displacements––that is, 
the realistic cases––the rate of approach to zero S2r is very important. The aqueous-
oleic fractional flow curve follows from the large Nvc relative permeabilities we 
discussed in Sec. 9-9. 
 
MP Flooding without Retention 
 
The relative permeability behavior does not affect the qualitative features of the 
composition path diagram (Fig. 9-19b). The development in Sec. 7-7 applies directly: 
We see the presence of “hair-pin” fast paths along tie lines, slow paths on either side, 
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and a succession on nontie line paths. Because of the graphical possibilities, we 
assume the component distribution between phases is given by a family of straight 
lines intersecting at C3 = 0 and C2 = 0

2C  (the tie line envelope is a point on the C3 
axis) 
 0

3 2 2( ),      1 or 2j jC C C jη= − =  (9.10-1) 
from which we have 0 0

1 21 .C C= −  The parameter η is the slope of the phase 
distribution line. 
 To review briefly, the component velocities along a tie line are 
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The nontie line paths carry the constant specific velocities given by 
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At the tangent intersection of the tie line and nontie line paths, we must have 
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 (9.10-4) 

 
which defines the two singular curves and allows the location of the appropriate 
constructions on a fractional-flux–overall-concentration plot. Other paths include the 
binodal curve itself and the equivelocity curve where f1 = S1. 
 In Fig. 9-19(b), we illustrate behavior for fractional flux curves whose 
S-shape persists even to low IFT. Our task is to string together the paths so that the 
composition route leads to monotonically decreasing composition velocities. 
 We focus on the three different injection conditions. Condition J1 is an 
aqueous (oil-free) surfactant solution below the critical tie line extension, J2 is an 
aqueous surfactant solution above the extension, and J3 is an oleic (brine-free) slug 
below the extension. Conditions J1 and J2 represent low- and high-concentration 
aqueous surfactant solutions, and condition J3 is an oil-soluble solution. In each case, 
the initial condition will be at I, a uniform tertiary condition. 
 Figure 9-20 shows the composition route and the S2 and C3 profiles at fixed 
tD for the low-concentration surfactant displacement. Starting at the injection 
condition, the composition route enters the two-phase region along a tie line 
extension, switches to the nontie line path at the second singular point on the tie line, 
switches again to the fast path along the ternary base, and then to the initial condition 
I. For typical fractional flux curves, this causes a shock to an oil bank saturation S2B, 
and a mixed wave from S2B to S2 = 0. Following the tie line causes the curious effect 
that the flowing surfactant concentration can be greater than the injected 
concentration. The displacement can also be relatively inefficient if the spreading 
portion of the oil bank rear is large. 
 For the high-concentration surfactant displacement (Fig. 9-21), the 
composition route passes through the plait point, follows the equivelocity path to the
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Figure 9-20  Composition route and 
profiles for low-concentration surfactant 
flood

 
oil bank saturation, and then on to the initial condition. This displacement is directly 
analogous to a condensing gas drive miscible displacement since the surfactant wave 
is indifferent and moves with unit specific velocity (compare this displacement with 
the lower panel in Fig. 7-35b). As such, it is highly efficient; however, the greater 
efficiency is bought with a higher surfactant concentration. The oil bank saturation is 
also somewhat lower than in Fig. 9-20. 
 The oleic surfactant behavior is shown in Fig. 9-22. Here the composition 
route also enters along a tie line extension, branches to a non-tie line path at the first 
singular point, and then on to the oil bank and the initial condition. In many respects, 
this displacement is the mirror image of that in Fig. 9-20. However, the ultimate 
microemulsion phase saturation is unity, meaning the oil bank saturation S2B is 
between the initial and 1.0. The surfactant concentration decreases monotonically in 
this displacement, which as in Fig. 9-20, can also be inefficient. 
 There is great variety of behavior in the displacement character even under
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Figure 9-21  Composition route and 
profiles for high-concentration surfactant 
flood

 
 
the restrictive assumptions invoked here. Some of this variety is present in the 
constructions used to infer Figs. 9-20 through 9-23. The cases for type II(–) are 
analogous. The nature of the composition route does not change with the shape of the 
fractional flux curve even though the latter greatly affects the efficiency of the 
displacement. 
 
MP Flooding with Retention 
 
Adding retention complicates the analysis because the composition route no longer 
follow tie lines. But by making a few additional assumptions, we can develop a 
fractional flow solution that uses fractional flow curves instead of fractional fluxes. 
 Let us now analyze the type II(–) system where the right plait point is in the 
oil corner of the ternary, and the amount of solubilized oil in the microemulsion 
phase is negligible. The aqueous and microemulsion phase are now equivalent (S1 = 
S3). If the injected slug composition is below a tangent from the binodal curve at the
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Figure 9-22  Composition route and 
profiles for high-concentration oleic 
surfactant flood

 
 
plait point, it must necessarily be on a tie line even if it contains no oil. Let the 
residual oil saturation on this tie line be 2 ,rS ′  the ultimate value of a low IFT (high 
Nvc) aqueous-phase fractional flow curve as shown in Fig. 9-24. This figure also 
shows the water-oil fractional flow curve f1 along the tie line on the base of the 
ternary. Since this aqueous slug miscibly displaces the irreducible water, the velocity 
of the corresponding indifferent wave is 
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from Eq. (5.4-8a). Note that 1

sf  is the microemulsion (aqueous) phase high Nvc 
fractional flow. In this equation, D3 is the surfactant’s frontal advance loss given by 
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Figure 9-23  Fractional flux and composition routes for aqueous and oleic surfactant 
displacements 

 
The most general case occurs when the rear of the oil bank travels as a mixed wave. 
At the leading edge of the spreading portion of this wave, the specific velocity in Eq. 
(9.10-5) must be equal to the specific oil velocity at some saturation *

1S  given 
implicitly by 
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The specific velocity of the shock portion of the oil bank rear is 
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This must be equal to 

3Cv  evaluated at *
2S  = 1 – *

1 .S  If the oil bank front is a shock, it 
travels with velocity given by 
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Figure 9-24  Graphical construction for simplified II(–) surfactant displacements 

 
 These equations are entirely suggestive of the polymer flooding construction 
in Sec. 8-4. This parallel is also apparent from comparing the construction given in 
Fig. 9-24 with the one in Fig. 8-10. The construction of the time–distance and profile 
diagrams corresponding to Fig. 9-24 is left as an exercise. 
 An issue not dealt with in Sec. 8-8 is the minimum slug size needed to satisfy 
retention. Let’s suppose the surfactant displacement is pistonlike, that is, S2I = 

*
2 2 .rS S′ =  The minimum surfactant slug size is attained when the similarly pistonlike 

surfactant–polymer front overtakes the surfactant front at the injection end of the 
medium. This gives a minimum surfactant slug size of tDs = D3, meaning the frontal 
advance loss is an expression of the retention capacity of the medium expressed in 
units consistent with the slug size. Therefore, knowing D3 is the beginning point in 
estimating surfactant requirement in MP flooding. The above result does not depend 
on the existence of a pistonlike surfactant front. 
 
 

9-11 ROCK-FLUID INTERACTIONS 
 
Brine salinity and hardness would have far less importance to MP flooding if the host 
permeable medium were unreactive. Unfortunately, in all but the most artificial 
cases, reservoir minerals provide an almost limitless source of monovalent and 
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divalent cations as well as ample sites for surfactant retention. Two sources of cations 
are mineral dissolution and cation exchange. Dissolution usually occurs at such a low 
level that it can be neglected in MP floods (but not in high-pH floods). Cation 
exchange is rarely negligible. For this reason, we discuss it at some length in this 
section. In the second half of the section, we deal with surfactant retention. 
 
Cation Exchange 
 
We treat the simplest case of monovalent–divalent exchange in single-phase flow in 
the absence of surfactant or oil. The displacement satisfies the fractional flow 
assumptions. (For more complicated treatment, see Pope et al., 1978.) 
 Each point in the permeable medium must satisfy solution electroneutrality 
 5 6 8C C C= +  (9.11-1a) 
and electroneutrality on the clays 
 6 8v s sZ C C= +  (9.11-1b) 
 
The units on all concentrations are in equivalents per unit pore volume, and the 
superfluous phase subscript has been dropped. These equations imply the 
monovalent, divalent, and anion concentrations are not independent; hence for 
convenience, we choose to proceed with the divalent and anion concentrations as the 
dependent variables. At local equilibrium, each point in the medium must also satisfy 
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which is simply the cation exchange isotherm of Eq. (3.5-4). Using Eq. (9. 11-1), we 
can express the adsorbed divalent concentration as 
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Equations (9.11-3) are the basic equilibrium representations. 
 Let’s now consider the displacement of solution I by solution J under the 
above conditions. The coherence conditions (Eq. 5.6-14) 
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are satisfied at all points in the medium. Equation (9.11-4) implies 
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where λ is the eigenvalue for this problem. In matrix form, Eq. (9.11-5) becomes 

 5 555 56

65 66 6 6

dC dCC C
C C dC dC

λ
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
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 (9.11-6) 

 
where 

665 6 5( / ) ,s CC C C= ∂ ∂  and so on. The matrix on the left side has a row of zeros 
because the anion does not adsorb. Solving Eq. (9.11-6) for the eigenvalues gives 
 560,      Cλ λ− += =  (9.11-7) 
 
From this, it is obvious that λ+ > λ– and that the wave corresponding to λ– is faster 
than that corresponding to λ+ from Eq. (9.11-4). 
 The eigenvector corresponding to each eigenvalue gives the concentration 
change across each wave. For the fast wave, inserting λ– gives 
 65 5 66 6 0C dC C dC+ =  (9.11-8a) 
and from the slow wave, inserting λ+ gives 
 5 0dC =  (9.11-8b) 
 
 Immediately we see that the anion concentration is constant across the slow 
wave since dC5 = 0. The fast wave interpretation is only a little less obvious. 
Equation (9.11-8a) is the change in C5 and C6 that would occur at constant C6s. We 
can see this by setting the total differential dC6s 
 6 66 6 65 5sdC C dC C dC= +  (9.11-9) 
 
equal to zero. The result (Eq. 9.11-9) is independent of the form of the exchange 
isotherm. 
 The coherent solution, therefore, predicts two waves: an indifferent salinity 
wave that moves at unit velocity across which the clay concentration remains 
constant and an exchange wave where the clay changes to be in equilibrium with the 
injected solution at constant anion concentration. The character of the latter wave 
depends on the direction in which the concentration velocity is increasing through 
Eqs. (9.11-3) and (9.11-4). 
 For example, consider Fig. 9-25(a), which shows the composition space for 
the two cation system plotted on a ternary representation. Lines of constant anion 
concentration are parallel to the right edge, and lines of constant clay composition are 
curves converging to the lower left corner. These curves are described by Eq. 
(9.11-3). Both sets of lines form the composition path diagram. The bold line 
segments I-J′ (salinity wave) and J′-J (exchange wave) form the composition route. 
This particular sequence is selected because it is the only one for which the 
concentration velocities monotonically decrease from I to J. The exchange wave is 
spreading if the concentration velocity decreases from J′ to J; otherwise, it is a shock. 
Figure 9-25(b) shows a time-distance diagram for the former case. 
 To illustrate the accuracy of the above predictions, Fig. 9-26 shows the 
effluent histories of two laboratory core floods through which are flowing solutions 
containing only calcium (divalents), sodium (monovalents), and chloride (anion). In
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Figure 9-25  Diagrams for two exchanging cation case (from Pope et al., 1978) 
 
both cases, the injected calcium was the same; hence in the absence of exchange, the 
effluent calcium concentration should not change. But because the anion 
concentration changes, cation exchange occurs, and the effluent calcium does change. 
In Fig. 9-26(a), the increased anion concentration causes calcium to be expelled from 
the clays. In Fig. 9-26(b), the reverse occurs. In both cases, the prediction based on 
the coherent treatment agrees well with the observed results. Calculated results 
including dispersion match even better (Lake and Helfferich, 1978). 

These results hold immense practical significance for MP flooding in general 
and the use of low-salinity preflushes in particular. One of the intentions of a preflush 
is to remove divalent cations so that the slug can work more effectively. However, 
the above theory suggests the following hindrances: 
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Figure 9-26  Comparison between theory and experiment for two exchanging cation 
displacement (from Pope et al., 1978) 
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1. It is entirely possible to inject a low-salinity preflush that actually loads the 

clays with divalent cations because changes in the ratio r determine clay 
loading. If r decreases, the clays will take up divalents, which regardless of 
the salinity, are available for subsequent release into solution. 

2. Even if r decreases so that the clays unload divalents, this normally takes a 
large preflush because the exchange wave velocity is very slow at typical 
cation exchange capacities and brine concentrations. 

3. If the injected solution is entirely devoid of divalents, the clays will still only 
partially unload because the dissolution of a small amount of divalent-
containing minerals acts as a persistent source of hardness. 

 
 One philosophy for preflushes is to avoid upsetting the clays at all costs. 
Doing this is simple in principle: One just injects the preflush, slug, and polymer 
drive at the same r ratio as exists in the formation brine. But in practice, this 
procedure is complicated by dispersion-induced mixing (Lake and Helfferich, 1978) 
and by exchange of divalents with micelles (see Sec. 9-8). 
 
Surfactant Retention 
 
Surfactant retention is probably the most significant barrier to the commercial 
application of MP flooding. The problem here is one of selectivity. The surfactants 
should have good selectivity for oil–water interfaces, but they should also have poor 
selectivity for fluid–solid interfaces. 
 Surfactants are retained through four mechanisms. 
 

1. On metal oxide surfaces (Fig. 9-27), the surfactant monomer will physically 
adsorb through hydrogen bonding and ionically bond with cationic surface 
sites. At higher surfactant concentrations, this association includes tail-to-tail 
interactions with the solution monomers, resulting in proportionally greater 
adsorption. At and above the CMC, the supply of monomers becomes 
constant, as does the retention. The Langmuir-type isotherm of adsorption 
versus overall surfactant concentration resembles the CMC plot in Fig. 9-4, 
which can be expressed as 

 

 3 3
3

3 31s
a CC

b C
=

+
 (9.11-10) 

 
where a3/b3 represents the plateau adsorption value. C3 here is the surfactant 
concentration in the liquid phase wetting the substrate. The parameter b3 is 
large, being related to the CMC, which is very small compared to practical 
surfactant concentrations (see Fig. 9-28). The surfactant isotherm therefore 
attains its plateau at such a low C3 that it may be usefully represented as a 
step function. This form of retention should be reversible with surfactant 
concentration. The parameters a3 and b3 are functions of salinity since they 
depend on the number of surface sites available for adsorption. 
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Figure 9-27  Surfactant adsorption on metal oxide surfaces (adapted from Harwell, 
1983) 

 

 
 

Figure 9-28  Effect of cosurfactant on surfactant retention. Surfactant is 4-phenyl dodecyl 
benzene sulfonate. (adapted from Fernandez, 1978) 
 

2. In hard brines, the prevalence of divalent cations causes the formation of 
surfactant–divalent complexes 

 2
3 3 22R-SO M (R-SO )M− +

↓+ →  (9.11-11) 
 

which have a low solubility in brine. Precipitation of this complex will lead 
to retention. When oil is present, it can compete for the surfactant. Of course, 
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the precipitate must also compete with the micelles for the surfactant 
(Somasundrun et al., 1979). 

3. At hardness levels somewhat lower than those required for precipitation, the 
preferred multivalent surfactant will be a monovalent cation that can 
chemically exchange with cations originally bound to the reservoir clays 
(Hill and Lake, 1978). 
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3 3

3 3

          R-SO M MR-SO

Na-Clay MR-SO MR-SO -Clay Na

− + +

+ +

+ →

+ → +
 (9.11-12) 

 
This effect is not unlike the divalent-micelle effect we discussed in Sec. 9-8. 
The surfactant bound to the clays will exhibit tail–tail interaction as in Fig. 
9-27. 
As a consequence of the ionic bonding and tail–tail interactions, adding a 
cosurfactant will reduce both types of retention (Fig. 9-28). Cosurfactants 
perform this service in two ways: (1) by filling surface sites that might 
otherwise be occupied by surfactant and (2) by mitigating the tail-to-tail 
associations. The retention expressed by Eq. (9.11-12) can also be lessened 
by filling the clay sites with a more preferred metal cation. This form of 
retention is reversible with both M2+ and surfactant concentration. 

4. In the presence of oil in a II(+) phase environment, the surfactant will reside 
in the oil-external microemulsion phase. Because this region is above the 
optimal salinity, the IFT is relatively large, and this phase and its dissolved 
surfactant can be trapped. Figure 9-29 illustrates this phenomenon. The filled 
squares represent the surfactant injected, and the open squares the surfactant 
retained in a series of constant-salinity core floods. Retention increases 
smoothly with salinity (both a3 and b3 are functions of salinity) until 3% 
NaCl, at which point it increases so substantially that all the injected 
surfactant is retained. 3% NaCl is just above CSeu for this system; hence the 
deviation can be nicely explained by phase trapping. A similar phase 
trapping effect does not occur in the II(–) environment because the aqueous 
mobility buffer miscibly displaces the trapped aqueous-external 
microemulsion phase. Using less than optimal salinities can, therefore, 
eliminate phase trapping. This form of retention is strongly affected by the 
MP phase behavior. 

 
 Most studies of surfactant retention have not made these mechanistic 
distinctions. Therefore, which mechanism predominates in a given application is not 
obvious. All mechanisms retain more surfactant at high salinity and hardness, which 
in turn, can be attenuated by adding cosurfactants. Precipitation and phase trapping 
can be eliminated by lowering the mobility buffer salinity at which conditions the 
chemical adsorption mechanism on the reservoir clays is predominant. In this event, 
there should be some correlation of surfactant retention with reservoir clay content. 
Fig. 9-30 attempts to make this correlation by plotting laboratory and field surfactant 
retention data against clay fraction. The correlation is by no means perfect since it



 403

 
 

Figure 9-29  Surfactant retention caused by phase trapping; 3% NaCl is a type 
II(+) microemulsion system (from Glover, et al., 1979) 

 
 
ignores variations in MP formulation and clay distribution as well as salinity effects. 
However, the figure does capture a general trend useful for first-order estimates of 
retention. In addition, note that the difference between lab- and field-measured 
retention is not significant. This observation implies that surfactant retention can be 
effectively measured in the laboratory. 
 A useful way to estimate the volume of surfactant required for an MP slug is 
through the dimensionless frontal advance lag D3 defined in Eq. (9.10-6). C3s is the 
surfactant retention from Fig. 9-30 (the plateau value a3/b3 on the appropriate 
isotherm), φ is the porosity, C3J is the surfactant concentration in the MP slug, and ρs 
is the surfactant density. D3 is a fraction that expresses the volume of surfactant 
retained at its injected concentration as a fraction of the floodable pore Vpf. For 
optimal surfactant usage, the volume of surfactant injected should be large enough to 
contact all Vpf but small enough to prevent excessive production of the surfactant.
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Figure 9-30  Overall surfactant retention correlated with clay content (adapted 
from Goldburg et al., 1983) 

 
Besides wasting an expensive chemical, the produced surfactant can cause severe 
produced emulsions. Thus the MP slug size should be no less but not much greater 
than D3. The total amount of surfactant injected is independent of injected surfactant 
since, from Eq. (9.10-6), D3C3J is independent of C3J. 
 
 

9-12 TYPICAL PRODUCTION RESPONSES 
 
In this section, we review responses of typical laboratory core and field flood 
showing the important features and expectations of MP flooding. 
 
Laboratory Flood 
 
Fig. 9-31 plots an effluent response of a typical MP flood in a Berea core showing oil 
cut, produced surfactant (Mahogany AA), cosurfactant, (isopropyl alcohol), polymer, 
and chloride anion concentrations. All concentrations have been normalized by their 
respective injected values. The chloride indicates the salinity in this flood. At the top 
of the figure is the phase environment of the produced fluids. The slug size is tDs = 
0.1, and the horizontal axis is tD, the volume of fluid injected since the start of the 
slug expressed as a fraction of the core’s pore volume. There was no preflush. (For 
further details of this and similar core floods, see Gupta, 1980.) 
 Figure 9-31 shows a typical, though by no means optimal, oil recovery 
experiment. Before surfactant injection, the core was waterflooded so that it produces 
no oil initially. Oil breaks through at about tD = 0.2, with relatively sustained cuts of
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Figure 9-31  Typical core-flood produce response (from Gupta, 1980) 
 
 
about 40% until about tD, = 0.6, at which point the surfactant appears. The behavior 
in this portion of the flood is consistent with the fractional flow theory in Sec. 9-10. 
About 60% of the produced oil is free of the injected chemicals. That 40% of the oil 
is produced with the surfactant indicates a viscous instability apparently caused by 
nonideal phase behavior. A well-designed flood will produce 80% to 90% of the oil 
ahead of the surfactant. Even here, though, the oil is invariably produced early and at 
fairly low cuts in laboratory experiments. 
 Surfactant breaks through at tD = 0.6, reaches its maximum produced 
concentration of 30% of the injected concentration at tD = 0.8, and ceases at tD = 1.5. 
The total amount of surfactant produced is about one half that injected, which 
indicates substantial, though not excessive, retention. 
 The surfactant is preceding both the chloride and polymer by about 0.3 Vp. 
This separation indicates preferential partitioning of the cosurfactant between the 
aqueous and microemulsion phases (see Sec. 9-8 on phase behavior nonidealities). 
Though this did not drastically affect oil recovery, which is in excess of 90% of the 
residual oil, the separation is not a favorable indication for this design. A good MP 
design should show simultaneous production of all MP slug constituents as well as 
good oil recovery. 
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Field Response 
 
As a field example, consider Fig. 9-32, which shows the produced fluid analyses of 
well 12-1 in the Bell Creek (Carter and Powder River counties, Montana) MP flood. 
This flood used a high oil content MP slug preceded by a preflush that contained 
sodium silicate to lessen surfactant retention and reduce divalent cation 
concentration. Well 12-1 was a producer in the center of an unconfined single 
five-spot pattern. (For further details on the flood, see Holm, 1982; Aho and Bush, 
1982.) 
 

 
 

Figure 9-32  Production response from Bell Creek Pilot (from Holm, 1982) 
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 Before MP slug injection in February, 1979, well 12-1 was experiencing low 
and declining oil cuts. Beginning in late 1980, MP oil response reversed the decline 
and reached peak cuts of about 13% about six months later. The pre-MP decline must 
be clearly established to accurately evaluate the MP oil recovery, an unnecessary step 
in evaluating the core flood. Moreover, compared to the core flood, there is no 
evident clean oil production; surfactant production actually preceded the oil response. 
Simultaneous oil and surfactant production is a persistent feature of field MP floods 
probably because of heterogeneities and dispersive mixing. The surfactant is 
preceding the oil in Fig. 9-32 because of preferentially water-soluble disulfonate 
components in the MP slug. The peak oil cut is invariably lower in field floods (13% 
in Fig. 9-32 versus nearly 60% in Fig. 9-31). 
 Other significant features in Fig. 9-32 are the evident presence of the preflush 
preceding the MP slug, inferred from the maxima in the pH and silicate 
concentrations, and the very efficient removal of the calcium cations ahead of the 
surfactant. But when oil production commenced, calcium rose roughly to its 
premicellar level. 
 Figure 9-33 shows ultimate oil recovery efficiency ER (ultimate oil produced 
divided by oil in place at start of MP process) from a survey of more than 40 MP 
field tests correlated as a function of mobility buffer slug size tDmB. Similar analyses 
on other process variables showed no or weak correlation (Lake and Pope, 1979). 
The strong correlation in Fig. 9-33 indicates the importance of mobility control in 
MP design. Though we have largely ignored mobility control in this chapter, it is 
 

 
 

Figure 9-33  Recovery efficiencies from 21 MP field tests (adapted from Lake and 
Pope, 1979) 
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clearly an important variable. Note from Fig. 9-33 that the high oil content slugs have 
generally been driven by polymer drives larger than the high water content slugs. 
 Ultimate oil recovery efficiency averages about 30% of residual oil 
saturation in field tests (Fig. 9-33). Since oil recovery efficiency can be quite high in 
core floods, it seems that the peak oil cut and ultimate oil recovery efficiency in a 
technically successful MP field flood will average about one third of their respective 
values in core floods. 
 
 
 

9-13 DESIGNING AN MP FLOOD 
 
 
A successful MP flood must achieve three things for efficient oil recovery (Gilliland 
and Conley, 1975). 
 

1. The MP surfactant slug must propagate in an interfacially active mode (i.e., 
at optimal conditions). 

2. Enough surfactant must be injected so that some of it is unretained by the 
permeable media surfaces. 

3. The active surfactant must sweep a large portion of the reservoir without 
excessive dissipation because of dispersion or channeling. 

 
The first of these objectives is met through the formulation step of the MP design 
procedure; the second two objectives are met through scale up. Though there is 
considerable overlap, the formulation step consists mainly of test tube experiments 
and core floods; the scale-up steps consist mainly of core floods and numerical 
simulations. 
 
 
Generating Optimal Conditions 
 
 
There are three techniques for generating optimal conditions in MP floods. 
 

1. Raise the MP slug optimal salinity to that of the resident brine salinity in the 
candidate reservoir. Philosophically, this procedure is the most satisfying of 
the three possibilities, and it is usually the most difficult. Though the subject 
of intensive research, surfactants having high optimal salinities that are not, 
at the same time, unstable at reservoir conditions, excessively retained by the 
solid surfaces, or expensive are yet to be discovered. Field successes with 
synthetic surfactants have demonstrated the technical feasibility of this 
approach (Bragg et al., 1982). A second way to make the optimal salinity of 
the MP slug closer to the resident brine salinity is to add cosurfactant. This 
approach is the most common implementation to date; however, as we 
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mentioned, there are penalties in surfactant–cosurfactant separation, loss of 
interfacial activity and expense. 

2. Lower the resident salinity of a candidate reservoir to match the MP slug’s 
optimal salinity. This common approach is the main purpose of the preflush 
step illustrated in Fig. 9-1. A successful preflush is appealing because, with 
the resident salinity lowered, the MP slug would displace oil wherever it goes 
in the reservoir, and retention would also be low. Preflushes generally require 
large volumes to significantly lower the resident salinity owing to mixing 
effects and cation exchange (see Sec. 9-11). With some planning, the 
function of preflush could be accomplished during the waterflood preceding 
the MP flood. 

3. Use the most recent salinity gradient design technique for generating active 
MP slugs (Paul and Froning, 1973; Nelson and Pope, 1978; Hirasaki et al., 
1983). This technique tries to dynamically lower the resident salinity to 
optimal during the course of the displacement by sandwiching the MP slug 
between the overoptimal resident brine and an underoptimal mobility buffer 
salinity. Table 9-4 illustrates the results of experimental core floods for 
different sequences of salinities. The experiment numbers on this table match 
the uncircled numbers in Fig. 9-8. Three core floods––numbers 3, 6, and 7––
stand out both with respect to their low ultimate saturation and surfactant 
retention. The common feature of all these experiments is that the salinity of 
the polymer drive is underoptimal. In fact, no other variable, including, 
paradoxically, surfactant slug concentration, has such a similarly strong 
effect (Pope et al., 1982). The salinity gradient design has several other 
advantages: it is resilient to design and process uncertainties, provides a 
favorable environment for the polymer in the mobility buffer, minimizes 
retention, and is indifferent to the surfactant dilution effect. 

 
 
TABLE 9-4  PHASE-ENVIRONMENT TYPE AND MP FLOOD PERFORMANCE FOR THE 
SALINITY-REQUIREMENT DIAGRAM IN FIG. 9-8 (FROM NELSON, 1982) 
 

Phase type promoted by the  
Chemical 

flood 
number 

 
Waterflood 

brine 

 
Chemical 

slug 

 
Polymer 

drive 

Residual oil 
saturation after 
chemical flood 

(% PV) 

 
Injected surfactant 

retained by the core 
(%) 

1 II(–) II(–) II(–)          29.1*                52 
2 II(+)/III II(+)/III II(+)/III          25.2*              100* 
3 II(+)/III II(+)/III II(–)            2.0†                61* 
4 II(–) II(–) II(+)/III          17.6*              100* 
5 II(–) II(+)/III II(+)/III          25.0              100 
6 II(+)/III II(–) II(–)            5.6†                59† 
7 II(–) II(+)/III II(–)            7.9*                73* 
8 II(+)/III II(–) II(+)/III          13.7†              100* 

* Average of duplicates 
† Average of triplicates 
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Injecting Enough Surfactant 
 
The first aspect of overcoming retention is to design the flood so that retention is as 
low as possible- This includes minimizing the chemical and physical adsorption 
effects discussed above and eliminating phase trapping by propagating the slug in a 
low-salinity environment. Cosurfactants and sacrificial agents in a preflush may also 
be appropriate. Once a low surfactant retention value is in hand, enough surfactant 
must be injected so that some of it transports to the production wells. As in polymer 
flooding, there are two aspects to this issue: the slug’s surfactant concentration and 
the slug size 
 Strong theoretical or practical reasons for selecting the slug surfactant 
concentration do not exist. The concentration must be large enough so that a type III 
region can form when the salinity is optimal but small enough so that the slug can be 
easily handled and transported. The latter requirement usually means the slug is 
single-phase and not excessively viscous and the surfactant does not precipitate. 
 Perhaps a more stringent lower bound on surfactant concentration is in its 
relative rate of propagation. The frontal advance loss of D3 contains surfactant 
concentration in the denominator. This means the rate of slug propagation, as well as 
the maximum oil cut calculated from fractional flow theory (Fig. 9-24), decreases as 
concentration decreases. Because of the worth of the oil, the resulting delay in oil 
production is a liability to the process even if the ultimate oil recovery were 
unaffected. This argument suggests the concentration should be as large as possible, 
and the slug size should be correspondingly small. But extremely small slugs would 
seem to be sensitive to dispersive mixing in the reservoir. 
 Once the slug concentration is set, the slug size follows from the value of D3, 
as in Sec. 9-11. To satisfy retention, the slug size, based on floodable pore volume, 
must be somewhat larger than retention. Of course, how much larger is a strong 
function of the prevailing economics and reservoir characteristics. (For a graphical 
procedure, see Jones, 1972.) 
 
 
Maintaining Good Volumetric Sweep 
 
Figure 9-33 attests that the importance of this issue, particularly with respect to the 
mobility buffer, cannot be overstated. 
 The mobility control agent in the slug can be polymer or oil as in Fig. 9-13. 
Whatever the agent, it is of paramount importance that the slug–oil bank front be 
made viscously stable since small slugs cannot tolerate even a small amount of 
fingering. Thus we seek a slug less mobile than the oil bank it is to displace. To 
provide a margin of safety in estimating the oil bank mobility, use the minimum in 
the total relative mobility curves (see Sec. 3.3) to base the mobility control on. Such 
curves (Fig. 9-34) show that the minimum can be substantially less than the total 
relative mobility of either endpoint. Since these curves are subject to hysteresis, it is 
important that the relative permeability curves be measured in the direction of 
increasing oil saturation for tertiary floods. 
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Figure 9-34  Total relative mobilities for samples of the same reservoir (from 
Gogarty et al., 1970) 

 
 Sizing the mobility buffer proceeds like the polymer drive we discussed in 
Sec. 8-5. Here the spike portion of the buffer must have mobility equal to or less than 
the slug mobility. Since the latter depends on the degree of oil desaturation, the 
buffer mobility cannot be designed independently of the slug. 
 
 

9-14 MAKING A SIMPLIFIED RECOVERY PREDICTION 
 
In the next few paragraphs, we describe a simple procedure to estimate oil recovery 
and oil rate–time curves for an interfacially active MP process. Since interfacial 
activity may be lost in innumerable ways, the procedure will be most accurate for 
processes that clearly satisfy the first design goal in Sec. 9-13. The procedure has two 
steps: estimating the recovery efficiency of an MP flood and then proportioning this 
recovery according to injectivity and fractional flow to give an oil rate–time curve. 
(For further details of the procedure, see Paul et al., 1982.) 
 
Recovery Efficiency 
 
The recovery efficiency ER of a tertiary (S2I = S2R) MP flood is the product of a 
volumetric sweep efficiency EV, a displacement efficiency ED, and a mobility buffer 
efficiency EMB 
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 R D V MBE E E E=  (9.14-1) 
Each quantity must be independently calculated. 
 
 
 Displacement efficiency.  The displacement efficiency of an MP flood is the 
ultimate (time-independent) volume of oil displaced divided by the volume of oil 
contacted 

 2
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= −  (9.14-2) 

 
where 2rS ′  and S2r are the residual oil saturation to an MP and a waterflood, 
respectively. S2r must be known, but 2rS ′  can be obtained from a large slug (free from 
the effects of surfactant retention) laboratory core flood. Low values of 2rS ′  indicate 
successful attainment of good interfacial activity in the MP slug. If core flood results 
are not available, 2rS ′  may be estimated from a CDC using a “field” capillary number 
(Lake and Pope, 1978) based on the median velocity in a confined five-spot pattern. 

 0.565     (dimensionless)vc
t p

qN
H A

σ
=  (9.14-3) 

 
Here, q is the volumetric injection rate and Ap is the pattern area. For approximate 
calculation, assume σ = 1 μN/m in Eq. (9.14-3). The CDC chosen to estimate 2rS ′  
should be consistent, as much as possible, with conditions of the candidate reservoir. 
 
 
 Volumetric sweep efficiency.  Volumetric sweep efficiency EV is the 
volume of oil contacted divided by the volume of target oil. EV is a function of MP 
slug size tDs, retention D3, and heterogeneity based on the Dykstra-Parsons coefficient 
VDP. 
 Consider the layered medium in Fig. 9-35 into which is injected an MP slug 
of size tDs. If the flow is apportioned by kh, and there is no crossflow, the slug size in 
layer l is 

 
lDs Ds Ds l

l

kt t t F
k
φ

φ
⎛ ⎞⎛ ⎞ ′= =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.14-4) 

 
where Eq. (9.14-4) has introduced the derivative of the flow-capacity–sorage-
capacity curve (F-C curve) first discussed in Sec. 6-3. Besides invoking a continuous 
permeability–porosity distribution, using F-C curves implies the layers are arranged 
as decreasing (k/φ). If 3mDst D>  in a particular layer m, it will be completely swept; 
otherwise, the layer’s volumetric sweep will be in proportion to 3/

mDst D  
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3
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 (9.14-5) 
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Figure 9-35  Schematic representation of MP slug sweep in a layered medium 

 
 
Figure 9-35 illustrates this division. EVm summed over n = 1, . . . , m, . . . , NL layer 
after being weighted by (φh)m gives 

 
3

(1 )Ds
V m m

tE C F
D

= + −  (9.14-6) 

To calculate EV with tDs, D3, and F-C curve known, begin by finding the layer number 
m where 3.mDst D=  This determines the coordinates (F, C)m in Eq. (9.14-6) to 
determine EV. Equations (6.3-11) and (6.3-12) establish a relation between the F-C 
curves, the heterogeneity factor HK, and VDP for a lognormal continuous permeability 
distribution; thus EV in Eq. (9.14-6) can be related directly to VDP. Figure 9-36 shows 
this relationship. VDP may be estimated from geologic study, matching the prior 
waterflood, or core data (see Table 6-1). The D3 is from Eq. (9.10-6). 
 
 Mobility buffer efficiency.  The mobility buffer efficiency EMB is a function 
of EV and VDP 

 1.2

0.4(1 ) 1 exp DMB
MB MBe MBe

V

tE E E
E

⎡ ⎤⎛ ⎞−
= − − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (9.14-7a) 

and 
                                DP0.71 0.6MBeE V= −  (9.14-7b) 
 
where EMBe is the mobility buffer efficiency extrapolated to tDMB = 0, and tDMB is the 
mobility buffer volume, fraction Vpf. Equation (9.14-7) was obtained by numerical 
simulation. 
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Figure 9-36  Effect of slug size–retention ratio on vertical sweep efficiency (from 
Paul et al., 1982) 

 
 The recovery efficiency ER now follows from Eq. (9.14-1), which may be 
checked for reasonableness against Fig. 9-33. 
 
Calculation of an Oil-Rate–Time Plot 
 
The production function (oil rate q2 versus time) is based on ER and the following 
procedure. We assume the dimensionless production function is triangular with oil 
production beginning when the oil bank arrives. From here, q2 increases linearly to a 
peak (maximum) oil cut when the surfactant breaks through and then decreases 
linearly to the sweep-out time. The triangular shape is imposed by the reservoir 
heterogeneity. 
 The first step is to calculate the dimensionless oil bank and surfactant 
breakthrough times for a homogeneous flood 

 2 2

2 2

B

B

B

I
D Ds

I

S S
t t

f f
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (9.14-8a) 

 3 21Ds rt D S ′= + −  (9.14-8b) 
 
where 

BDt  is the dimensionless oil bank arrival time, and tDs is the surfactant arrival 
time. 2B

S and 2B
f  may be estimated from the simplified fractional flow theory (see 

Sec. 9-10) or directly from laboratory experiments. 
 The second step is to correct these values for the heterogeneity of the 
candidate reservoir using the heterogeneity factor HK defined in Eq. (6.3-11). 
 The corrected breakthrough times are now 
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and the peak oil cut f2pk is 
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H H
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f f

H

⎛ ⎞⎛ ⎞
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−
 (9.14-10) 

 
The symbol ˆ represents a quantity in a layered medium. 
 The final step is to convert the dimensionless production function to oil rate 
q2 versus time t. This follows from 
 2 2̂q qf=  (9.14-11a) 
 

 
 

Figure 9-37  Comparison between predicted and observed oil-rate–time responses 
for the Sloss micellar–polymer pilot (from Paul et al., 1982) 
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ˆ

pf DV t
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q
=  (9.14-11b) 

Here 2̂f  and D̂t  are any points on the triangular oil recovery curve that begins at 
ˆ( ,0),

BDt  peaks at 2̂
ˆ( , ),Ds pkt f  and ends at ˆ( ,0).Dswt  ˆ ,Dswt  the dimensionless time at 

complete oil sweepout, is selected to make the area under the 2̂
ˆ- Df t  curve equal to 

ER, 
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Dsw D

pk

E St t
f

= +  (9.14-12) 

 
Figure 9-37 compares the results of this procedure with the Sloss MP pilot. 
 
 

9-15 CONCLUDING REMARKS 
 
In terms of the number of design decisions required, micellar-polymer flooding is the 
most complicated enhanced oil recovery process. This complexity, along with 
reservoir heterogeneity and the need for a rather large capital investment, make 
micellar-polymer flooding a high-risk process. Consequently, recent years have seen 
a decline in interest in the process. The potential for the process is immense, 
however, even slightly exceeding that of thermal methods, at least in the United 
States. Moreover, both polymer and MP flooding seem uniquely suited for light-oil 
reservoirs in isolated areas of the world. 
 Reservoirs amenable to micellar-polymer flooding contain light- to medium-
weight oils with moderate to high permeability. Since injectivity is essential in this 
process as in polymer flooding, we seek reservoirs with depth sufficient to tolerate 
high injection pressures but not so deep as to promote thermal degradation. Finally, 
the process is sensitive to high brine salinities, although this can be dealt with 
somewhat by suitable surfactant/polymer selection and design. 
 The important topics in this chapter deal with the association of interfacial 
activity with brine salinity and hardness through phase behavior, the importance of 
surfactant retention, and the need for good mobility control. In a sense, the design 
criteria given in Sec. 9-13 apply to all EOR processes, but it is only in micellar-
polymer flooding that all criteria seem to apply with equal severity. Finally, the 
screening estimation of recovery in Sec. 9-14 is a useful yet simple tool for assessing 
the suitability of a reservoir and for estimating the risk associated with the process. 
 
 
EXERCISES 
 
9A. The Units of MP Flooding. A particular petroleum sulfonate surfactant has an average 

molecular weight of 400 kg/kg-mole, a density of 1.1 g/cm3, and a monosulfonate-to-
disulfonate mole ratio of 4. Express the overall surfactant concentration of a 5 volume 
percent aqueous solution in g/cm3, kg-moles/cm3, meq/cm3, mole fraction, and mass 
fraction. 
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9B. Surfactant Equilibria and Aggregation. Relatively simple models can reveal much 

about surfactant equilibria. The surfactant is a monosulfonate in this problem. 
(a) The aggregation of surfactant monomers into micelles in a NaCl brine may be 

represented by the following reaction: 
 +

3 3(NA +RSO ) (RSO Na)
AA NN −  (9B-1) 

 
where NA is the aggregation number. Using the definition for total surfactant 
(monomer + micelles), derive an expression between total and monomer sulfonate 
concentrations. If the equilibrium constant for Eq. (9B-1) is 1015 and NA = 10, 
estimate the critical micelle concentration. The total sodium concentration is 
10,000 g/m3. 

(b) Consider a more complicated situation where 0.3175 kg-moles/m3 monosulfonate 
surfactant solution is added to a NaCl brine. In a NaCl brine solution, five species 
can form: surfactant monomer 3(RSO ),−  surfactant micelles 3[(RSO Na) ],

AN  free 
sodium-surfactant (RSO3Na), precipitated sodium-surfactant 3(RSO Na ),↓  and 
free sodium (Na+). Calculate the concentration of each species when the overall 
sodium concentration is 100 g/m3. Use the data in part (a) for the monomer–
micelle reaction, and take the equilibrium constant for the sodium-sulfonate 
formation to 3 × 106 and the solubility product for the precipitate to be 10–8. 

(c) Repeat the calculation of part (b) if the overall sodium concentration is 100,000 
g/m3. What can you conclude about the effect of high salinities on surfactant 
precipitation? 

9C. Phase Ratios for Hand’s Rule. In Sec. 4.4, we saw that flash calculations for vapor– 
liquid equilibria required using flash vaporization ratios or K-values. The analogous 
quantities for Hand’s rule are phase ratios defined as 

 ijj
ik

kj

C
R

C
=  (9C-1) 

 
for components i and k. Nearly all the flash calculation can be formulated in terms of 
the phase ratios. Assume a type II(–) phase behavior (j = 2 or 3) in the following: 
(a) Show that the Hand equations for the binodal curve (Eq. 4.4-23) and the 

component distribution (Eq. 4.4-24) can be written as 
 

 32 31( ) ,      2 or 3j j B
HR A R j= =  (9C-2) 

                                                      2 3
32 31( )F

HR E R=  (9C-3) 
 

(b) We can interchange the roles of phase concentrations and phase ratios. Show that 
the consistency relation 3

1 1i ijC= =∑  reduces to 
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where 1.j

iiR =  
There are 18 phase ratios in two-phase systems. But only 4 of these are independent 
since 

 1( )    and   
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j j j im
ik ki ik j
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−= =  (9C-5) 
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As is consistent with the phase rule, specifying any one of these will determine the 
others and all phase concentrations through Eq. (9C-4). Solve for the phase 
concentrations when 2

31 5.R =  Take AH = 0.5, BH = –1.5, EH = 0.137, and FH = 0.65. 
Note that the phase ratios for the microemulsion phase are the same as solubilization 
parameters. 

9D. Using the Hand Equations 
(a) For the Hand parameters AH = 2, BH = –0.5, EH = 600, and FH = 2.3, plot the 

binodal curve and at least two tie lines on triangular coordinates. Flash calculations 
in two-phase regions require an additional constraint over those in Exercise 9C. 
The constraint here is the equation of a tie line 

 3
1

1 3

,      1, 2, or 3i i

i i

C C
S i

C C
−

= =
−

 (9D-1) 

 
for type II(+) systems (where j = 1 replaced j = 2 in Eqs. [9C-2] and [9C-3]). Any 
two of these may be used for a flash calculation, for example, 
 

 1 13 2 23

11 23 21 23

C C C C
f

C C C C
− −

− =
− −

 (9D-1) 

 
The flash consists of picking the correct phase ratio (see Exercise 9C) so that f = 0 
with the Ci known. 

(b) Calculate the compositions and amounts of each phase present if the overall 
composition Ci is (0.45, 0.45, 0.1). 

9E. Two-Phase Flash Calculation (Plait Point in Corner). In a type II(+) system with the 
plait point in the brine corner, we have C11 = 1, and C21 = C31 = 0. The phase 
distribution Eq. (9.7-9) now becomes superfluous, as does the binodal Eq. (9.7-5) for 
the aqueous phase. The entire Hand representation collapses to 
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H
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⎛ ⎞
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(a) Show that the tie line equation for this special case reduces to 

 2
23 33

3

C
C C

C
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9E-2) 
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which express the microemulsion phase concentrations as ratios of each other. 

(b) Show that Eqs. (9E-1) through (9E-3) may be used to solve explicitly for the 
surfactant concentration in the microemulsion phase as 

 
1/

31

33 3 2

11 HB

H
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C C A C
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⎛ ⎞−
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 (9E-4) 

 
(c) For an overall composition of Ci = (0.45, 0.45, 0.1), solve Eq. (9E-4) for the phase 

composition and the saturation of the aqueous phase. Take AH = 2 and BH = –0.5. 
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(d) Compare the results of part (c) with the results of part (b) of Exercise 9D. What do 

you conclude about approximating this phase behavior with the plait point in one 
of the corners of the ternary? 

9F. Equilibrium Calculations with Simplified Phase Behavior. Use the simplified Hand 
representations with BH = –1 and FH = 1 in the following. Further, take the left and 
right oil coordinates of the plait point to be 0.05 and 0.95, respectively; the low-, 
optimal-, and high-salinity binodal curve heights to be 0.2, 0.1, and 0.2, respectively; 
and the lower- and upper-effective salinity limits to be 0.06% and 1.4% NaCl. The 
optimal salinity is at the midpoint between these two. Make all the calculations at a 
salinity of 0.08% NaCl where the phase environment is type III. 
(a) Calculate the Hand parameter AH and the coordinates of the two plait points and of 

the invariant point. 
(b) Plot the binodal curve and the three-phase region on a ternary diagram. 
(c) Calculate the phase concentrations and saturations at an overall concentration of Ci 

= (0.65, 0.3, 0.05). 
(d) Repeat part (c) at an overall concentration of Ci = (0.44, 0.44, 0.12). 
Plot both points on the diagram of part (b). 

9G. Phase Behavior and IFT. Fig. 9G shows the bottom half of six surfactant–brine–oil 
mixtures. These diagrams are on rectangular coordinates having a greatly expanded 
vertical scale. CSe is the salinity in wt. % NaCl. In the following, the surfactant 
concentration is 0.05 volume fraction: 
(a) Calculate and plot volume fraction diagrams at brine–oil ratios of 0.2, 1.0, and 5. 
(b) At a brine–oil ratio of 1, calculate and tabulate the solubilization parameters. 
(c) Use the correlation in Fig. 9-9 to convert the solubilization parameters to 

interfacial tensions. Plot these solubilization parameters against salinity, and 
estimate the optimal salinity. 

(d) Plot the IFTs in part (c) against salinity on semilog paper. Estimate the optimal 
salinity based on IFT and the optimal IFT. 

(e) Compare the optimal salinities in parts (c) and (d) to the midpoint salinity. The 
latter is the salinity halfway between CSeu and CSe1. 

9H. Fractional Flow Construction for Type II(–) Systems. Fig. 9H shows water fractional 
flux curves for a type II(–) MP system for which all tie lines extend to the common 
point o

iC  = (0. 1, 1. 1, 0). 
(a) Calculate and plot an overall water concentration (C1) profile at oil bank 

breakthrough and an effluent water flux (F1) for the following cases: 
 
 

 Injected composition (J) Initial composition (I) 
Case  C2 C3   C1 C2  

1  0 0.10   0.66 0.34  
2  0.97 0.03   0.66 0.34  
3  0 0.10   0.20 0.80  

 
 

For all cases, the displacement satisfies the fractional flow assumptions, the 
surfactant is not retained by the permeable medium, and the surfactant injection is
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Figure 9G  Ternary diagrams at various salinities (from Engleson, 1981) 
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Figure 9H  Water fractional flux for 
Exercise 9H

 
continuous. All injected compositions lie on extensions of the tie lines whose 
fractional flux curves are shown in the figure. 

(b) On the water concentration profiles of part (a), sketch (no calculation necessary) 
the microemulsion phase saturation S3 profile. 

(c) On the water effluent histories of part (a), sketch the overall surfactant C3 effluent 
history. 

9I. Two-Phase II(–) Fractional Flow. Use the data in Figs. 9G and 9-9 in the following. 
Take the oil-free injected slug concentration to be 0.05 volume fraction surfactant, and 
the salinity to be constant at 0.56% NaCl. The surfactant is in an ideal mixture. The 
low Nvc relative permeability curves are given by 

 
S2r = 0.3, 0

2 0.8,rk =  n2 = 1.5 
   
S3r = 0.2, 0

3 0.1,rk =  n2 = 3 
 

Phase 3 is water when Nvc. The displacement occurs at a superficial velocity of 10 
μm/s. The microemulsion, oil, and water viscosities are 2, 5, and 1 mPa-s. The medium 
is horizontal. Use Fig. 3-19 as the capillary desaturation curve. 
(a) Estimate and plot the relative permeability curves corresponding to the tie lines the 

initial and injection conditions are on. Use the high Nvc relative permeabilities of 
Eqs. (9.9-1) and (9.9-2). 

(b) Estimate and plot the microemulsion ftactional flow curves along the two tie lines 
in part (a). 

(c) Plot the time–distance diagram and a composition profile at oil bank breakthrough 
for this displacement if the injection is continuous surfactant. Use the simplified 
fractional flow analysis of Eqs. (9.10-5) through (9.10-9). Take D3 = 0.1. 

9J. Slugs and Simplified Fractional Flow. Use the simplified fractional flow of Eqs. 
(9.10-5) through (9.10-9) in the following. The displacement is a constant II(–) phase 
environment consisting of an oil-free surfactant slug followed by a polymer drive. The 
water-, oil-, and microemulsion-phase viscosities are 1, 5, and 10 mPa-s, respectively, 
and the relative permeability data at low and high Nvc are 
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 Oleic phase Microemulsion phase 
 S2r 0

2rk  n2 S3r 0
3rk  n3 

Low Nvc 0.3 0.8 1.5 0.2 0.1 5.0 
High Nvc   0.05 0.9 1.2 0.1 0.6 2.5 

 
 

(a) Estimate the polymer solution viscosity in the mobility buffer if the mobility ratio 
between the slug and drive is to be 0.8. The polymer has no permeability reduction 
effect. 

(b) Calculate and plot the three aqueous-phase fractional flow curves (water–oil, 
microemulsion–oil, polymer-solution–oil) based on the data in part (a) and the 
polymer solution viscosity. 

(c) Estimate the minimum slug size required to entirely sweep the one-dimensional 
medium with slug. Take D3 = 0.2 and D4 = 0.1. There is no polymer in the slug. 

(d) Calculate and plot the time–distance diagram if the slug size is one half that 
estimated in part (c). 

(e) Calculate and plot saturation profiles at tD = 0.3 and 0.8 for the conditions of part 
(d). 

9K. Fractional Flow with Oil-Soluble Slug. For this exercise, take the displacement to be 
constant type II(+) phase environment (j = 1 or 3) with the plait point in the brine 
corner. The surfactant is now dissolved in a predominantly oleic phase. 
(a) Show that the surfactant-specific velocity is analogous to Eq. (9.10-5) 
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and the oil bank saturation is given by the solution to 
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 (9K-2) 

 
(b) Illustrate the graphical solution of Eq. (9K-2) on an aqueous-phase fractional flow 

plot. What is the effect of injected oil concentration on the oil bank saturation? 
Justify this observation on physical grounds. 

(c) Figure 9K shows high- and low-Nvc fractional flow curves for a particular 
displacement. Based on these curves, calculate and plot an oleic-phase saturation 
profile at tD = 0.5. Take D3 = 0.1 and the surfactant injection to be continuous. 

9L. Preflush Size Estimation. The composition of an initial reservoir brine and a possible 
preflush solution are as follows: 

 
 

 
Species 

Reservoir 
brine (I), meq/cm3 

Preflush 
(J), meq/cm3 

Na+ 0.02 0.01 
Ca2+ 0.06   0.005 
Cl– 0.08   0.015 
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Figure 9K  Aqueous-phase fractional 
flow curves for Exercise 9K

 
The cation exchange capacity of the reservoir is Zv = 0.05 meq/cm3 of pore volume. 
The cation exchange satisfies Eq. (9.11-3) with KN = 0.1. Assume single-phase flow of 
an ideal solution that contains only the species explicitly stated above. 
(a) Sketch this displacement in composition space as in Fig. 9-25a. 
(b) Estimate the pore volumes of fluid J required to reduce the effluent calcium 

concentration to the injected value. What percentages of the clays are in the 
calcium form at this point? 

(c) Calculate and plot the time–distance diagram for this displacement. 
(d) State whether you think this would be an effective preflush for an MP flood. 

9M. Importance of Mobility Control in MP Floods. In the absence of other data, high Nvc 
relative permeabilities for a type II(–) system may be approximated by straight lines 
through the points 3( ,0)rS ′  and 0

2 3(1 , )r rS k ′−  for the aqueous phase and through 
0

3 2( , )r rS k ′  and 2(1 ,0)rS ′−  for the oleic phase. 
(a) Plot two high-Nvc fractional flow curves for aqueous-phase (j = 3) viscosities of 5 

and 50 mPa-s. Take μ2 = 5, μ3 = 0.8 mPa-s, 3 0.15,rS ′ =  2 0.05,rS ′ =  0
3( )rk ′  = 0.8, 

and 0
2( )rk ′  = 0.6. The medium has no dip. 

(b) Using the El Dorado relative permeabilities of Fig. 8L, illustrate the effects of 
good mobility control on an MP flood by calculating oil saturation profiles for the 
two cases in part (a) at tD = 0.3. The frontal advance lag D3 = 0.16. The injected 
aqueous surfactant is continuous. 

9N. Performance Prediction. Use the following information to perform a screening 
estimation of oil recovery on an MP project. The water–oil relative permeability data in 
Fig. 9K is appropriate. 
(a) Estimate the swept zone oil displacement efficiency ED if the injection rate per 

pattern is 65 m3/day. The pattern area is 8.1 hm2, and the formation thickness is 2 
m. Take the IFT to be 1 μN/m, and use the CDC in Fig. 3-19 for the nonwetting 
phase. 

(b) Calculate the volumetric sweep efficiency EV. Take the Dykstra-Parsons 
coefficient to be 0.5, the slug size to be 0.16, and D3 = 0.12. 

(c) Estimate the recovery efficiency based on the above if the mobility buffer size is 
0.8 PV. 

(d) Calculate and plot the oil production rate versus time. 
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