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Preface

Fossil fuels, including oil and gas, store a part of the energy which the earth
has received from the sun during the last several hundred million years. These
days, oil and gas account for around 64 % of the total world energy consump-
tion. Despite the efforts in developing new renewable energy sources, oil and
gas will continue to play a major role in meeting the world’s ever increasing
energy demand for the next few decades. Moreover, oil and gas are expected
to remain the most cost effective and the most convenient sources of energy
that we have at our disposal.

The required exploration and production of hydrocarbons, however, in-
corporate great technological challenges for the oil and gas industry. Indeed,
about 70 % of today’s oil and gas production rate comes from hydrocarbon
fields that are more than 30 years old. But several of these fields are ex-
hibiting a significant production decline. In order to meet the world’s future
demand for oil and gas, further technological advances are essentially needed,
where new developments should aim at efficiency and accuracy in sub-surface
mapping, monitoring of reservoir depletion, and numerical simulation of pro-
duction scenarios. This requires research across multiple disciplines, including
mathematics, geophysics, geology, petroleum engineering, signal processing,
and computer science.

This work explains important aspects and fundamental concepts in hydro-
carbon exploration and production. Moreover, new developments and recent
advances in the relevant research areas are discussed, where special empha-
sis is placed on mathematical methods and modelling. The book reflects the
multi-disciplinary character of the hydrocarbon production workflow, ranging
from seismic data acquisition through imaging, seismic analysis & interpreta-
tion, and geological model building to numerical reservoir simulation. Various
challenges concerning the production workflow are discussed in detail.

The thirteen chapters of this joint work, authored by international experts
from academic and industrial institutions, include survey papers of expository
character as well as original research articles. The material of this book is
arranged in three parts.

Part I. Seismic Interpretation;
Part II. Geological Model Building;
Part III. Reservoir Modelling and Simulation.



VI Preface

The first part of the book, comprising Chapters 1-5, treats the analy-
sis and interpretation of the input seismic data. The first chapter provides
a very brief and basic introduction to geology and seismic. The next two
chapters present a set of seismic attributes (measures computed from the
seismic data) which are useful for the subsequent classification of geological
responses. Chapters 4 and 5 propose novel pattern recognition strategies for
the automated interpretation of seismic data.

The second part of the book, Chapters 6-9, addresses the construction of
models of the sub-surface. Chapter 6 provides a very comprehensive treat-
ment of geological modelling and reservoir simulation. The following Chap-
ters 7 and 8 propose new concepts for 3D geo-body model building. The
approach taken in Chapter 7 is based on hierarchical segmentation, whereas
the method of Chapter 8 works with level set and marching methods. Velocity
estimation is an important task in sub-surface model construction, and tech-
niques from tomography are effective tools in this respect. The complexity of
tomographic inversion from seismic data is, however, significant. Chapter 9
uses modern techniques from seismic tomography in order to design efficient
tomographic inversion methods.

The last part of the book, Chapters 10-13, is concerning the simulation
of oil and gas production from geological models. Chapter 10 presents an in-
tegrated workflow and a case study, where advanced concepts from previous
chapters of the book are applied. The resulting workflow, ranging from seismic
data acquisition to reservoir simulation, is orders of magnitude faster than
the conventional workflow. In order to effectively model physical phenomena
in reservoir flow, multiscale methods are essentially required for reservoir sim-
ulation. To this end, a novel finite volume method over adaptive triangular
meshes is explored in Chapter 11, where multivariate scattered data interpo-
lation is an important ingredient. Selected details and principles of optimal
multivariate interpolation are discussed in Chapter 12. Finally, Chapter 13
provides a practical approach to history matching the model with time-lapse
measurements. This includes an illustrative real-world case study concerning
monitoring the injection of CO2 into the sub-surface.

Large parts of the material presented in this book were developed between
November 2000 and April 2004 through the European research and training
network NetAGES, ”Network for Automated Geometry Extraction from Seis-
mic”. The NetAGES project hosted a distributed multi-disciplinary team of
young researchers, PhD and postdoctoral students, and senior researchers at
one industrial partner (Schlumberger Stavanger Research, Norway) and three
academic partners (Munich University of Technology, University of Vienna,
and Stavanger University College). Recent research results of the NetAGES
young researchers and their supervisors are presented in Chapters 7-12.



Preface VII

In addition, collaborators from other institutions contributed to this
book, either through interconnected projects (University of Surrey, Univer-
sity of Oxford and Schlumberger Abingdon Technology Centre, UK) or by
extensions of the NetAGES training network (SINTEF Petroleum Research,
Trondheim, Norway). Chapters 1-6 and Chapter 13 were written on the basis
of such joint work.

All thirteen contributions to this book are invited chapters. In order to
ensure their scientific and instructive quality, the chapters went through two
stages of reviews. The first stage was organized by the editors in October 2003,
where each chapter was carefully reviewed by independent experts external
to NetAGES, as well as by experts from the NetAGES consortium and by
young researchers from NetAGES. After submission of its prefinal version to
Springer-Verlag in March 2003, the entire manuscript was then reviewed by
a panel of ten anonymous reviewers. This second review stage was organized
by Springer-Verlag.

Finally, we wish to thank those who supported the making of this book.
It is in particular our great pleasure to acknowledge Dr. Martin Peters from
Springer-Verlag, Heidelberg, for his everlasting support and great enthusiasm
towards the book project. Moreover, the friendly and effective collaboration
with Ute McCrory (Springer-Verlag) is kindly appreciated. Special thanks
go to the authors for their fine contributions, and to the reviewers for their
constructive comments and suggestions. Last but not least, partial financial
support was granted by the European Commission through the NetAGES
network (contract no. IST-1999-29034).

Stavanger, October 2004 Armin Iske
Trygve Randen
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Part I

Seismic Interpretation



Introduction to Seismic Texture

Jürgen Schlaf, Trygve Randen, and Lars Sønneland

Schlumberger Stavanger Research, P.O. Box 8013, N-4068 Stavanger, Norway

Summary. This chapter introduces the concept of seismic texture analysis. Several
seismic textures and their geological messages are described with respect to depo-
sitional history and reservoir quality. Finally, a strategy of how to automatically
map these textures is recommended and limitations of this method are mentioned.

1 Introduction

Most of the hydrocarbons (gas and oil) occur in sedimentary rocks that were
generated in different depositional environments (e.g. river channels, delta
systems, submarine fans, carbonate mounds and reefs). Seismic waves pen-
etrating into and reflected within sedimentary rock bodies yield a seismic
image of their external shape and of their internal texture. Therefore, the
analysis of the external shape of seismic bodies and its internal textures,
which is called seismic facies analysis [2], helps to specify the depositional
environment of the investigated sedimentary rocks. An analysis of the seis-
mic facies is a must in seismic interpretation to determine the depositional
environment and to locate potential reservoirs, especially in complex oilfields.

Generally, different sedimentary rocks yield different seismic facies. The
seismic facies of a buried carbonate mound or reef, for example, differs sig-
nificantly from a submarine fan or a delta system. Hence, each depositional
system has its particular seismic facies.

Fig. 1. [Reproduced in colour in Plate 1 on page 421.] Seismic section showing
one example of a reflection termination surface or sequence boundary. Reflection
termination surfaces are the boundaries of seismic bodies.
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For a seismic interpreter, seismic facies analysis is a monotonous and time
consuming task because it still has to be done manually by scanning through
hundreds to thousands of seismic cross sections. Hence, a process is highly
required which makes this interpretation step automatic.

The following of this chapter explains (1) the principals of seismic facies
analysis, (2) what kind of principal external shapes and internal textures are
desirable to extract, and, (3) what kind of strategy should be developed to
achieve an automatic mapping of the specified features. The attention of this
chapter is directed to carbonate mounds of the Barents Sea and their seismic
facies.

2 Seismic Facies Analysis

In every exploration program it is a must to find out in what kind of deposi-
tional environment the investigated rocks were generated. To locate reservoirs
it has to be known if they were generated in a deltaic, fluvial or reef environ-
ment. Reservoir sands in a reef environment show a different seismic facies
than sands of a fluvial environment. If the depositional environment of a sedi-
mentary rock is known then further exploration and production strategies can
be refined and optimised. A tool to describe depositional environments out

(a) (b) (c)

Fig. 2. The three basic types of reflection terminations for upper and lower bound-
aries of seismic sequences. Upper boundary type: (a) toplap. Lower boundary types:
(b) onlap and (c) downlap.

of seismic data is called seismic facies analysis. It applies certain techniques
that can help to specify depositional environments. This technique is based on
(1) the external shapes of seismic bodies, (2) boundary relationships between
those bodies, and, (3) the internal texture of those bodies. These three crite-
ria should be taken into account when describing and mapping seismic facies.
Therefore, seismic facies analysis subdivides a seismic data set into seismic
facies units which are mappable three-dimensional units of reflections whose
characteristics differ from that of the adjacent facies unit.

2.1 External Shapes and Boundary Relationships

Eight basic types of external shapes can be differentiated. The boundaries
between different shapes are reflection terminations (Figure 1, Figure 2), so
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that they meet the requirements of seismic sequences. The mapping of reflec-
tion terminations is the key to seismic facies analysis. Problems in mapping
reflection terminations can arise when terminations laterally pass into con-
cordant relationships as indicated in Figure 3. Normally, termination surfaces
are characterised by high reflection strengths. Therefore, following reflection
terminations through regions where there is no angularity should be possi-
ble by virtue of their amplitude standout. The eight basic shapes that are
bounded by reflection terminations are: sheet, sheet drape, wedge, bank, lens,
mound, fan, and fill (Figure 4 to Figure 5).

area of reflection termination

no reflection termination

no reflection termination

Fig. 3. Scheme explaining the mapping of reflection terminations. The solid line
in the middle indicates an area where reflections terminate with an angle onto a
surface (sequence boundary, see annotation). This surface, however, continues into
areas where no terminations exist (left and right solid line, see annotations). It is
important to automatically map also the continuation of the termination surface
into areas where no reflection terminations occur.

(a) (b) (c) (d)

Fig. 4. External shapes of seismic bodies: (a) sheet, (b) sheet drape, (c) wedge, and
(d) lens. The boundaries of all of them should be, at least in some parts, reflection
terminations.

All the shapes mentioned above can consist of different textures. A sheet
geometry, for example, can contain several textures simultaneously, e.g. a
chaotic texture and a parallel texture side by side. On the other hand, there
is no texture that is restricted only to a certain shape. Prograding textures,
for example, can occur in almost all shapes.
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(a) (b)

(c) (d) (e)

Fig. 5. External shapes of seismic bodies: (a) mound, (b) fan, (c) basin fill, (d)
channel fill, and (e) slope front fill.

2.2 Texture: Reflection Configuration and Reflection Continuity

The external shapes mentioned above can be investigated with respect to the
configuration of the reflections and their continuity, which is called texture.
Mentioned below are the most important textures that an automatic system
should be able to detect.

Parallel and Subparallel Textures (Figure 6). Parallel seismic events
can be even or wavy and occur as sheets, sheet drapes and fill units. Intervals
consisting of parallel events can be further subdivided with respect to reflector
spacing and continuity. Parallel textures indicate uniform rates of deposition
on a uniformly subsiding shelf or stable basin plain setting.

(a) (b)

Fig. 6. Parallel textures: (a) even and (b) wavy (modified after Mitchum et al. [2]).

Divergent Textures and Convergent Textures (Figure 7). This tex-
ture is characterised by a wedge-shaped unit in which most of the lateral
thickening or thinning is accomplished by thickening of individual reflections
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within the unit, rather than by onlap, toplap, or erosion at the base or top.
Lateral terminations of reflections are probably due to progressive thinning of
strata to below the resolution of the seismic tool. Divergent and convergent
textures suggest lateral variations in the rate of deposition, or progressive
tilting of the depositional surface (e.g. growth fault).

(a) (b)

Fig. 7. Divergent and convergent textures: (a) divergent and (b) convergent (mod-
ified after Mitchum et al. [2]).

Prograding Textures (Figure 8). This texture indicates lateral outbuild-
ing or progradation of a sedimentary system due to lateral development of
gently sloping depositional surfaces, called clinoforms. Prograding textures
are among the most common depositional features. They occur in deltas,
carbonate platforms, beaches, shelfes and submarine fans. Therefore, the pro-
grading texture should be further subdivided into several sub-textures, each
reflecting different depositional modes.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Different prograding textures: (a) sigmoid, (b) oblique tangential, (c)
oblique parallel, (d) complex sigmoid-oblique, (e) shingled, and (f) hummocky
(modified after Mitchum et al. [2]).

Prograding sub-Texture Sigmoid. This texture shows S-shaped reflections
with thin, gently dipping upper and lower segments. The upper segments
show almost horizontal dips. The middle segments are thicker and form lenses.
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Depositional angles are low, usually. The lower segments approach the lower
surface at very low angles. The most distinctive feature of the sigmoid is
the parallelism and concordance of the upper segments coincident with the
progradation of the middle segments. A low sedimentary regime can be in-
terpreted, the possibility of reservoir sands being small.

Prograding sub-Texture Tangential-Oblique. The dips of the clinoforms de-
crease in lower portions forming concave-upward strata which pass into gen-
tly dipping bottomset strata. This texture indicates low to moderate energy
and points to a decrease in grain size downslope.

Prograding sub-Texture Parallel-Oblique. The relatively steep-dipping paral-
lel foreset strata terminate downdip at a high angle by downlap against the
lower surface. This texture indicates coarse grain sizes on the slope because
of the steeper angles. The steep angles can also be generated by carbonates
and reefs. Furthermore, steep slope angles point also to sedimentary by pass.

Prograding sub-Texture Complex Sigmoid-Oblique. This pattern consists of
a combination of variably alternating sigmoids and oblique progradational
textures within one single unit. This subdivision allows to differentiate higher
energy segments from lower energy segments.

Prograding sub-Texture Shingled. This represents a thin prograding texture,
commonly with parallel upper and lower boundaries, and with gently dip-
ping parallel oblique internal reflections that terminate by apparent toplap
and downlap. The overall pattern resembles that of the parallel oblique con-
figuration, except that the thickness of the unit is just at the point of seismic
resolution of the oblique beds. Shingled seismic textures are one of the most
common textures in seismic indicating progradation into shallow water.

Prograding sub-Texture Hummocky Clinoforms. This texture consists of ir-
regular discontinuous subparallel reflections forming a practically random
hummocky pattern marked by nonsystematic reflection terminations and
splits. Hummocky clinoforms are indicative for deltaic lobes prograding into
shallow water.

Chaotic Texture (Figure 9). A chaotic texture is characterised by dis-
continuous, discordant reflections suggesting a disordered arrangement of re-
flection surfaces. Chaotic textures can represent a wide range of features like
slumped areas, reefs and carbonate mounds, cut-and-fill channel complexes,
and highly faulted and folded areas.

Reflection-Free Areas. Reflection-free textures on seismic sections indi-
cate large igneous masses (e.g. buried volcanoes), salt features or shales.
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Fig. 9. Chaotic Texture.

2.3 Channels (Figure 10)

Channels are very important shapes because they are indicative of fluvial
channels or submarine channels. Generally, channels point to high deposi-
tional energy and the possibility of deposited sand, either within a channel
or close by.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Different channel fill textures: (a) onlap fill, (b) mounded onlap fill, (c)
divergent fill, (d) prograded fill, (e) chaotic fill, and (f) complex fill (modified after
Mitchum et al. [2]).

In most of the cases channels show a concave upward base and a more or
less flat top. This is due to the filling of negative-relief features due to erosion
of a flowing medium in the underlying strata.

Channels can show different types of textures due to various filling mech-
anisms and size, aspect ratio, sinuosity, etc. We can differentiate onlap fill,
prograded fill (progradational clinoforms can have all the shapes described
in Subsection 4.2), mounded onlap fill (in this case the channel top is convex
upward), chaotic fill, divergent fill, and complex fill.

2.4 Mounds (Figure 11)

Due to the fact that one of the key objectives of the Barents Sea data set is to
map carbonate mounds, these features will be described here in more detail.
The characteristic of a mound is its elevation above a rather flat surface.
Therefore, an automatic system should be able to capture these topographic
elevations.
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(a) (b) (c)

Fig. 11. Different textures of mounds: (a) concave upward simple, (b) concave
upward complex, and (c) chaotic.

Internally mounds can consist of different textures each reflecting different
environments, ranging from volcanoes to reefs Mitchum et al. [2] differenti-
ate six main textures of mound. However, we will focus here mainly on the
external shape and on a few basic textures.

Concave Upward Simple. The texture of the mound consists of a stack of
concave upward events. Surrounding events show a pronounced onlap onto
the mound surface. This texture can be typical for volcanoes.

Concave Upward Complex. The texture consists of a complex arrangement
of parallel and wavy events. The seismic events surrounding the mound show
onlap. This texture is characteristic for submarine fans.

Chaotic. The seismic events show a chaotic arrangement. This can be indica-
tive for reefs or slumps.

3 Strategy for Automatic Mapping

To automatically subdivide a seismic cube into shapes and textures, a cer-
tain strategy should be applied. It is recommended to follow the proposal of
Mitchum and Vail [1]. They propose two steps: (1) subdivide a seismic data
set into bodies (sequences) that have a certain external shape and that are
separated by surfaces of discontinuity, called sequence boundaries, and, (2) to
analyse the texture of those bodies.

It is of high importance that the shapes of geological bodies are mapped.
This can only be done if we take reflection terminations into account. Differ-
ent shapes (e.g. wedges, sheets, mounds, channels) represent packages that
show pronounced terminations of seismic events at their base and at their
top and fulfil, therefore, the requirements of seismic sequences. The mapping
of textures should be achieved after having subdivided the seismic data into
shapes. An idealised scheme of seismic facies mapping is shown below (Fig-
ure 12). An attempt to apply seismic facies mapping on the Barents Sea data
is shown in Figure 13 and Figure 14.

If a seismic data set is mapped based on textures only, then we take
the risk to subdivide the data neglecting geological meaning. We should, if
possible, always focus on a subdivision first into shapes (or sequences) and
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Shape: slope front fill 
Texture: parallel, even

Shape: wedge
Texture: convergent

Shape: slope front fill 
Texture: parallel, even

Shape: sheet 
Texture: parallel, even

Shape: slope front fill 
Texture: divergent

Shape: mound 
Texture: chaotic & 
prograding

Shape: bank
Texture: prograding,
sigmoid

Shape: slope front fill 
Texture: parallel, even

Shape: sheet 
Texture: parallel, even

Shape: channel 
Texture: onlap 

Shape: sheet 
Texture: parallel, even

Fig. 12. Simplified scheme of seismic facies analysis. The thick lines indicate the
boundaries of different shapes which represent seismic sequences. The different
shapes show different textures.

Fig. 13. [Reproduced in colour in Plate 2 on page 421.] Segmentation of a two-
dimensional inline of the Barents Sea data set into different shapes and textures.
This figure shows that a manual interpretation is challenged when it comes to defin-
ing the lateral boundaries of the mound shape in two dimensions, not mentioning
three dimensions.
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then into textures. In the Barents Sea data set we deal with carbonate mounds
which internally very often, but not always, consist of a chaotic texture. The
priority of the mapping approach would be (1) to map the mounds based on
their shape, and then (2) to detect chaotic textures within them.

Fig. 14. [Reproduced in colour in Plate 3 on page 422.] Overlay of different colours
onto the same inline as for Figure 13. This represents a vision how a seismic data
set should be segmented into shapes and textures. Different colours correspond to
different shapes and textures. Compare Figure 13 for legend.

3.1 Limitations

The mapping of seismic textures is a very important step in interpreting seis-
mic data because the seismic texture contains information about the reservoir
quality. Until recently seismic texture mapping has been done manually which
is a time consuming procedure. Automated seismic texture analysis has been
proven to be a powerful tool to quickly and precisely map distinct seismic
textures. However, some limitations exist that one should be aware of.

Compressional Tectonic Regimes. In compressional tectonic regimes a
sedimentary package can be distorted by faults and fractures. Intense faulting
and fracturing can generate a chaotic or reflection-free texture that does not
represent the primary depositional environment in which the rock was formed.
Compressional tectonic regimes can produce stacked thrust systems, called
duplexes, which can be confused with prograding clinoforms. Additional fea-
tures are imbricate fans that resemble downlap geometries. Channel fill pat-
terns can be distorted significantly. When exposed to compressional forces
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a channel filled with an onlap pattern can easily be turned into a mounded
onlap fill or even into a chaotic fill. However, with respect to reservoir quality
there is a big difference between an onlap fill and a chaotic fill. The angle
of prograding clinoforms can be changed in a compressional regime. Gently
dipping clinoforms, normally indicative for lower energy regimes and poor
reservoir quality can be transformed into steeply dipping prograding system.
Steeper slope angles, however, indicate either carbonates or a larger grain
sizes.

Steeply Dipping Reflectors. The amount of seismic energy that is re-
flected at a boundary depends on many factors [3]. However, important
factors are the contrast in acoustic impedance and the angle of incidence.
Sedimentary packages consisting of steeply dipping reflectors can generate a
reflection free seismic texture even if the acoustic impedance contrasts are
high. This is mainly due to the fact that steeply dipping reflectors reflect the
seismic energy over such a broad area that it cannot be gathered properly.
Due to this dispersion no clear reflection can be produced. An additional
disadvantage is that steeply dipping reflectors generate too much refracted
energy that cannot be compensated for. Therefore, a sedimentary package
that consists of e.g. parallel reflections would give a reflection free texture
when this package shows steep dips. In this case an automatic seismic tex-
ture program would lead to an erroneous interpretation of the depositional
environment.

Recommendations. As discussed above, automatic seismic texture analy-
sis is a very powerful tool in extensional tectonic domains and in tectonically
undisturbed areas. There it quickly sorts the data set into a number of seis-
mic facies. Compressional tectonic environments, however, are prone to alter
the seismic texture and can lead, when applied uncritically, to wrong conclu-
sions with respect to the reservoir quality. When automatic seismic texture
analysis is applied to compressional regimes, the results should be interpreted
carefully. To avoid wrong conclusions, the seismic data set under considera-
tion should be interpreted by a geologist before automatic texture algorithms
are applied to map out potential areas of error.

4 Summary

A useful automatic seismic facies mapping tool has to combine information
about shapes and textures within these shapes. Only a combination of shapes
and textures enables a meaningful seismic facies analysis fulfilling the require-
ments of seismic stratigraphy. Mapping of seismic bodies has to be done on
the basis of reflection terminations. As soon as a seismic data set is subdi-
vided into different shapes, texture analysis within each of the shapes can be
achieved.
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Appendix: Catalog of Seismic Facies Types

4.1 Termination Patterns

Upper Boundary.

Texture Name Geological Message

Erosional
Truncation

Unconformity; sequence boundary
caused by (subaerial or subaque-
ous).

Toplap
Upper boundary caused mainly by
nondeposition rather than by ero-
sion.

Lower Boundary.

Texture Name Geological Message

Onlap

(1) In a shelfal environment, rising
of relative sea level; (2) In a deep-
sea environment, modest rate of de-
position, on modest gradient; (3) In
an eroded channel, low-energy fill.

Downlap Sediment starvation (at least where
lower boundary is horizontal).
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4.2 Principal Seismic Textures

Texture Name Geological Message

Parallel
Uniform rate of deposition on an
uniformly subsiding shelf or stable
basin plain.

Subparallel
Commonly in zones of fill; also above
situation disturbed by marine cur-
rents.

Subparallel
between
Parallel

General stable tectonic and deposi-
tional environment; probably fluvial
plain, with dirty medium-grained
sediments.

Wavy
Parallel

(1) compressional folding of paral-
lel strata over detachment surface,
or diapirism (2) sheet drape: very
fine-grained deposition, out of sus-
pension.

Divergent
During deposition, progressive tilt-
ing of a depositional surface above a
hinge line.

Chaotic

Very variable high-energy deposi-
tion (mounding, cut-and-fill chan-
neling), or major post-depositional
deformation (faulting, movement of
overpressured shale).

Reflection-
free

Igneous rocks, salt, interior of single-
stage reefs.

Local
Chaotic

Slump (normally deap-sea) trig-
gered by earthquake or gravitational
instability; extremely rapid undiffer-
entiated deposition.
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4.3 Prograding Textures

Texture Name Geological Message

Sigmoid

Outbuilding with upbuilding; mod-
est sediment supply coupled with
rapid rise of relative sea level; low-
energy depositional regime, such
as prograding slope; generally fine-
grained sediments.

Oblique
Tangential

Outbuilding only; modest to large
sediment supply; stillstand of rela-
tive sea level; higher-energy deposi-
tional regime, such as delta; some
coarse-grained sediments on delta
plain and particular in channels and
bars.

Oblique
Parallel

Variant of oblique-tangential; per-
haps sediment better sorted.

Complex

Locally alternating upbuilding
sigmoid-oblique and depositional
bypass; typical of section across
high-energy deltaic lobes within a
low-energy prograding slope.

Shingled Outbuilding into shallow water; gen-
erally low-energy regime.

Hummocky

Small interfingering sediment lobes
building into shallow water (typ-
ically between deltas); modest-
energy regime.
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4.4 Channel Fill Textures

Texture Name Geological Message

Onlap Fill Relatively low-energy filling of ero-
sional channel.

Mounded
Onlap Fill

Higher-energy fill in at least two
stages.

Divergent
Fill

Compactible (shale-prone) low-
energy sediments; also typical of
last stages of graben fill.

Prograded
Fill

Sediment transport over edge, or
along channel at a bend.

Chaotic
Fill

Very high-energy fill.

Complex
Fill

Changing sediment provenance
and/or water flow.
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4.5 Mounded Textures in a Carbonate Setting

Texture Name Geological Message

Reflection-
free
Mound

Patch reef or pinnacle reef; drape
shows flanking sediments more com-
pactible (probably shale).

Pinnacle
with
Velocity
Pull-Up

Patch reef or pinnacle reef, multi-
stage growth, possibly porous.

Bank-Edge
with
Velocity Sag

Shelf-edge reef, with very good
porosity; overlying sediments prob-
ably carbonate-prone.

Bank-Edge
Prograding
Slope

Shelf-edge reef overlain and flanked
by clastics; change in sediment sup-
ply.
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4.6 Mounded Textures in Other Settings

Texture Name Geological Message

Fan
Complex

Lateral section of fan close to sedi-
ment entry.

Volcanic
Mound

Earlier convergent margin; center of
rifting activity in rift basin.

Compound
Fan
Complex

Superposed lobes of different fans
coalesce laterally and as greater de-
positional activity moves from one
lobe to another.

Migrating
Wave

Major ocean currents, deep-water.
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4.7 Basin Slope and Floor Seismic Facies Types

Texture Name Geological Message

Sheet-Drape
(Low
Energy)

Uniform, deep-marine deposition in-
dependent of bottom relief, uniform
lithology, no sand.

Slope-Front
Fill

Deep-water fans, clays and silts (low
energy).

Onlap-Fill
(Low
Energy)

Deposited by gravity-controlled
flows (low velocity turbidity cur-
rents) along the bottom.

Fan-
Complex
(High
Energy)

Deposited as fans, contourite
mounds and slumps; although high
energy deposits; may contain good
reservoir sandstones.

Contourite
(Variable
Energy)

Usually fine-grained and therefore of
no interest for exploration; elongate,
asymmetric features; unidirectional
flows.
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Texture Name Geological Message

Mounded
Onlap-Fill
(High
Energy)

Intermediate facies between chaotic-
fill and onlap-fill; gravity-controlled
flow (turbidity currents) along the
sea bottom; discontinuous reflec-
tions that thicken towards topo-
graphic lows indicate high energy
deposits.

Chaotic Fill
(Variable
Energy)

Mounded external form; located in
topographic lows; slump, creep and
high energy turbidites; composition
depends on the source; commonly
little sand due to lack of winnowing;
diffractions are common.
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Summary. Seismic attributes have been a common tool in seismic data analysis
since the mid to late seventies. Seismic attributes may highlight geological or geo-
physical effects, thus leading to a quicker analysis of the data. In the early works,
seismic attributes were to a large degree limited to capture 1D effects occurring
along the vertical seismic trace. Since the mid nineties, extensions to multi-trace
attributes have become more popular. In this chapter we present a set of three-
dimensional attributes for seismic data analysis. The attributes are designed to
highlight the seismic expression of faults and stratigraphic features, and are de-
signed to be genuine 3D with no implicit directionality bias on the result. The
chapter is written to be an introduction to the technology. Feasibility tests of some
of the approaches can be found in the chapter [4] of Carrillat and Vallès.

1 Introduction

A reservoir trap typically belongs to one of two categories: structural or
stratigraphic. Structural traps (anticlines, faults, and domes) have been far
easier to detect, and are the dominating traps in most detected reservoirs. It
is however anticipated that a large part of the undiscovered reservoirs involve
stratigraphic traps [15]. Furthermore, most stratigraphic accumulations of
hydrocarbons that have been found were found by chance when searching for
something else [15]. Proper stratigraphic interpretation of a seismic data set
is a huge task requiring months of effort. Still, the seismic contractors around
the world introduce more and more acquisition capacity. Hence, if we want
to extend seismic exploration to enable detection of these potentially vast
reserves, we need tools capable of handling the new trap models.

Stratigraphic interpretation involves the identification and recognition
of upper and lower boundaries and internal configuration. Upper and lower
boundaries typically consist of reflectors and terminations. Reflector tracking
solutions are available in most commercial interpretation packages and an
approach to automatic termination detection is proposed in Section 4.

Internal configuration is another word for texture (some sketches can be
seen in Figure 1). In this chapter we propose several new texture attributes
with the potential of significantly simplifying the interpretation task.

A few moves towards texture attribute extraction in seismic data are
presented by Sheriff et al. [15]. The probably most common seismic texture
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(a) (b) (c) (d)

Fig. 1. A few example sketches of internal seismic stratigraphic facies configura-
tions. From left, (a) chaotic, (b) parallel, (c) divergent, and (d) wavy parallel. See
the chapter [14] of Schlaf, Randen, and Sønneland for more examples.

attributes are amplitude, instantaneous frequency and phase, and integrated
versions of these. These are typically one-dimensional. In the recent years
there has been a growing focus on three-dimensional attributes, such as dip
and azimuth, see Section 2, and continuity, see Section 5.

This chapter is intended for experts from both the seismic solution sciences
(e.g. mathematics, signal processing, pattern recognition), as well as from the
application sciences (e.g. geology). The chapter is more focused towards being
a quick reference than an in-depth treatment of the approaches.

More specifically, in Section 2 we discuss the geometrical tensor (the tip
and azimuth), in Section 3 we introduce a few texture attributes targeted
towards stratigraphic interpretation, in Section 4 we present the termination
attribute, designed to detect termination interfaces, in Section 5 attributes
for fault detection are presented, and finally in Section 6, techniques for
preconditioning the data are discussed.

2 Dip and Azimuth

Key Principle: Estimates the local dominating strata angle; represented by
the dip and azimuth [3, 12].

Main Uses: (a) Input to other processes or (b) cubes representing strati-
graphic orientation, without requiring a full interpretation of the data.

Key Features:

• Genuine 3D.
• No trace-bias (as opposed to many alternative techniques, such as co-

herency/semblance techniques).

Any robust seismic attribute must be able to handle dipping layers, a char-
acteristic feature of seismic signals in general, in a consistent way. The tradi-
tional approach of extracting attributes along vertical traces, irrespective of
any dipping nature of the data, clearly imposes a risk of introducing artifacts.
This kind of artifacts may not be apparent on horizon or time-slice views of
the attributes, but do still impose risks of poor mapping, wrong positioning
of detected events, and false event detections. In order to avoid such artifacts,
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the attribute extraction must either be invariant to dip and azimuth, or we
need to compensate for dip and azimuth.

The approach we present to dip and azimuth estimation consists of three
steps:

1. Gradient vector estimation, ∇x(t1, t2, t3);
2. Local gradient covariance matrix estimation, C(t1, t2, t3);
3. Principal component analysis. The principal eigenvector represents the

normal to the local reflection dip and azimuth.

In the sequel, we describe the elements of this setup.

2.1 Gradient Vector Estimation

If a three-dimensional signal, x(t1, t2, t3), has a fixed dip and azimuth, then
the loci of the signal’s iso-value surfaces, i.e., the points where the signal
has constant value, will be parallel planes. Furthermore, the gradient of the
signal, ∇x, will be perpendicular to these parallel planes. In real world data,
the loci of the iso-value surfaces are not likely to be exact planes and will be
varying over the volume. Hence, we must estimate the local dominating dip
and azimuth. The first element in this is the gradient estimate.

For discrete data, the gradient is a discrete estimate. Several approxi-
mations of the derivative are possible, and we have chosen to primarily use
the derivative of Gaussian, due to joint optimum resolution in time and fre-
quency of Gaussian filters and nice scalability properties [6]. Adjusting the
scale allows tuning of resolution vs. noise sensitivity.

The unit pulse response of a multi-dimensional derivative of Gaussian
filter is separable, and has the equation

hκ(k) = ακk exp
(
− k2

2σ2
κ

)
(1)

in the differentiated dimension and

hλ(l) = αλ exp
(
− l2

2σ2
λ

)
(2)

in the non-differentiated dimensions, where

∇x(t1, t2, t3) =

⎡
⎢⎢⎢⎣

∂x(t1,t2,t3)
∂t1

∂x(t1,t2,t3)
∂t2

∂x(t1,t2,t3)
∂t3

⎤
⎥⎥⎥⎦ , (3)

with one partial derivative component for each dimension. The αs are con-
stant scaling factors (not complicated, but not really interesting either).
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Fig. 2. Gradient estimates for a horizontal reflector with locally varying amplitude.
The black lines correspond to reflection amplitude countours and the arrows to the
gradient vectors.

2.2 Local Gradient Covariance Matrix Estimation and Principal
Component Analysis

The three-dimensional gradient vector represents the local dip and azimuth
of the data, but might be contaminated by noise and other artifacts. For
example, a horizontal reflector with slight amplitude variations will not be
represented by a vertically pointing gradient vector, but with gradient vectors
pointing in several directions, as illustrated in Figure 2. Hence it is necessary
to smooth the gradient estimate.

Due to wraparound effects (the effect occurring when the angle changes
slightly, but its representation changes abruptly, e.g. wrapping from -180
to +180 degrees) of the dip and azimuth estimates, this smoothing is non-
trivial. An approach dealing with this is to estimate the covariance matrix of
the gradient vectors and determine the dip as the direction of the principal
eigenvector of this matrix.

The covariance matrix is given by

C =

⎡
⎣C11C12C13

C21C22C23

C31C32C33

⎤
⎦ , (4)

where

Cij = E

{(
∂x

∂ti
− ηi

)(
∂x

∂tj
− ηj

)}
and

ηk = E

{
∂x

∂tk

}
.

However, the expectation operator, E{·}, is global in nature. A localized es-
timate is obtained by replacing the global covariance estimate by a windowed
local estimate,

Cij(t1, t2, t3) =
∑

τ1,τ2,τ3

w(τ1, τ2, τ3) ·
[
∂x(t1 + τ1, t2 + τ2, t3 + τ3)

∂ti
− ηi

]

·
[
∂x(t1 + τ1, t2 + τ2, t3 + τ3)

∂tj
− ηj

]
,
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(a) (b) (c)

Fig. 3. [Reproduced in colour in Plate 4 on page 423.] Examples of the dip (b)
and azimuth (c) attributes computed from the seismic cube (a). For the dip cube,
increasing dip is here encoded from green through red to darker red. For the azimuth
cube, yellow/green indicates that the layers are dipping to the right, whereas pink
indicate layers dipping to the left.

yielding a localized covariance matrix, C(t1, t2, t3), at each sample position.
The window function, w(s) = w(τ1, τ2, τ3), will typically be a low-pass filter.
An implication of the windowing function is a smoothing of the dip and
azimuth estimate. We have had good experience using a Gaussian low-pass
filter,

w(τ1, τ2, τ3) =
1

σ1σ2σ3

(√
2π
) exp

(
−1

2

(
τ1

σ1

τ2

σ2

τ3

σ3

)2
)

,

for the window function, allowing us to easily adjust the noise sensitivity ver-
sus the resolution, and at the same time obtain joint optimum time-frequency
resolution [6].

The dip and azimuth is found as the spherical angles of principal eigen-
vector, v1(t1, t2, t3), of the localized covariance matrix, C(t1, t2, t3); one pair
of angle estimates for each voxel.

The dip and azimuth attributes are powerful both for capturing properties
of the seismic data and as a basis for compensating for the dip and azimuth.
Examples of the dip and azimuth attributes are shown in Figure 3.

3 Stratigraphic Texture Attributes

Stratigraphic texture attributes are attributes capturing various internal con-
figurations properties,which may be related to the stratigraphy.

3.1 Chaos

Key Principle: Maps the chaoticness of the local seismic signal, within a 3D
window [12].
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Main Uses: Fault, stratigraphy, or fluid type indicator, mapping for example

• Gas chimneys;
• Reef internal texture;
• Sink holes;
• Channel infill;
• Faults/discontinuities.

Key Features:

• Genuine 3D.
• No trace-bias (as opposed to many alternative techniques, such as co-

herency/semblance techniques [1], variance cube [2], etc.).
• Amplitude-invariant; will produce the same response for the same seismic

signature, whether in a low- or high-amplitude region.
• Orientation-invariant; will produce the same response for the same seismic

signature, whether in tilted or non-tilted strata.

There will be three eigenvectors, vi(t1, t2, t3), of each C(t1, t2, t3)-matrix, each
of them associated with one eigenvalue, λi(t1, t2, t3). The larger λi(t1, t2, t3),
the better vi(t1, t2, t3) describes the dip and azimuth. The larger the differ-
ence between the dominating λi(t1, t2, t3) and the two other λi(t1, t2, t3)’s,
the more reliable the dip and azimuth estimate is. Assuming without loss of
generality that λ1 ≥ λ2 ≥ λ3, one possible measure that captures this is the
chaos measure

J =
2λ2

λ1 + λ3
− 1. (5)

By using this measure, regions with low consistency in the estimate typi-
cally correspond to regions with chaotic signal patterns. Hence, this mea-
sure is a suitable attribute for chaotic texture. This attribute is shown in
Figures 4 (d) and 5(b). The chaos texture attribute is inherently dip- and
azimuth-invariant, in addition to being amplitude-invariant. This invariance
is crucial and allows us to select whether to explicitly accommodate for these
properties in the analysis. Dip, azimuth and amplitude may require special
treatment.

3.2 Flatness

Key Principle: Maps the flatness of the local seismic signal. Flatness is the
degree to which local reflectors are flat/planar (not necessarily horizontal).

Main Uses: Stratigraphy indicator, mapping for example:

• Reef internal texture;
• Sink holes;
• Channel infill.
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(a) (b) (c) (d)

Fig. 4. [Reproduced in colour in Plate 5 on page 423.] An example of a seismic
cube with a chaotic pattern representing a gas chimney is shown in (a), its dip and
azimuth attributes in (b) and (c) and a chaos texture attribute highlighting the gas
migration path in (d).

Key Features:

• Genuine 3D.
• No trace-bias (as opposed to many alternative techniques, such as co-

herency/semblance techniques, variance cube, etc.).
• Amplitude-invariant; will produce the same response for the same seismic

signature, whether in a low- or high-amplitude region.
• Orientation-invariant; will produce the same response for the same seismic

signature, whether in tilted or non-tilted strata.

Given that we have a proper orientation estimate for the 3D data cube (Sec-
tion 2), measuring flatness is a matter of computing statistics of the orienta-
tion field. The flatness can thus be measured as the variance in the orientation
field, locally. An example can be seen in Figure 5 (c).

3.3 Divergence

Key Principle: Maps the divergence of the local reflections by analysing re-
flection angles in short traces. A consistent trend in the angles will give a
high divergence measure.

Main Uses: Stratigraphy indicator.

Key Features:

• Amplitude-invariant; will produce the same response for the same seismic
signature, whether in a low- or high-amplitude region.

• Orientation-invariant; will produce the same response for the same seismic
signature, whether in tilted or non-tilted strata.
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(a) (b)

(c) (d)

Fig. 5. Examples of the (b) chaos, (c) flatness, and (d) divergence texture at-
tributes.

3.4 Dip Histogram Attributes

Key Principle: Captures an orientation-invariant measure by analysing the
dip angles within a small window.

Main Uses: Generic stratigraphy indicator.

Key Features:

• Genuine 3D.
• No trace-bias (as opposed to many alternative techniques, such as co-

herency/semblance techniques, variance cube, etc.).
• Amplitude-invariant; will produce the same response for the same seismic

signature, whether in a low- or high-amplitude region.
• Orientation-invariant; will produce the same response for the same seismic

signature, whether in tilted or non-tilted strata.

Kovalev et al. [9] presented an approach based on 3D gradient histograms
for 3D texture characterization. Their approach is very attractive in the de-
scriptive power, but sensitive to the tradeoff between bin size and histogram
accuracy. However, if we go back to Vail et al. [17], the stratigraphic textures
are classically described by their 2D cross sectional views. Assuming validity
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Fig. 6. Illustrations of the dip spectra of different subvolumes (the spectra are
computed from 3D subvolumes).

of this approach also on 3D data, we expect that most of the information is
captured in the dip angle alone, which opens up for faster and easier descrip-
tion of the orientation field by the histogram of only the dip angle.

Ignoring the amplitude of the gradient vectors when constructing the
histogram easily incorporates amplitude-invariance. Furthermore, by using
the dip angle from a 3D gradient vector, the method is genuinely three-
dimensional. However, a few challenges still remain:

• The angle histogram is not orientation-invariant.
• The classical trade-off between bin sizes vs. numerical accuracy always

applies to histogram techniques.

To overcome these, we suggest applying a modification to the scheme. A
classical way of obtaining rotational invariance for shapes in image processing
is the use of the Fourier descriptor [7]. The idea here is basically that by
using a periodic Fourier transform (e.g. discrete Fourier transform, DFT)
and discarding the phase (angle) of the Fourier coefficients, the orientation
of a shape is not influencing the measure. The same can easily be applied
to the histogram curves we have. By assuming the histogram to represent a
periodic function and applying a periodic Fourier transform, the magnitude
of the Fourier coefficients is representing the histogram at the same time as
the phase (i.e., orientation) is discarded.

The next challenge is the bin sizes. However, the Fourier approach also
comes in handy here. Consider if we construct the Fourier descriptor by
applying the following steps:

• Compute angular histogram, implying fixed bin intervals.
• Compute the DFT of the histogram [5],
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Fig. 7. Illustrations of the dip Fourier descriptors of different subvolumes. We can
easily see how different textures are illustrated by different descriptor curves.

Fig. 8. Illustrations of the dip Fourier descriptors before and after rotation of the
subvolumes. The dotted curves represent the descriptors before rotation and the
solid curves after. We see that only minor changes can be observed, probably due
to numeric effects in the rotation.

F (m) =
N−1∑
k=0

f(k)e−jmk2π/N .

• Represent the histogram by the magnitudes of the Fourier coefficients.

The DFT computation on the histogram is identical to using the individual
angles as input with k representing the angular bin. However, if we use the
non-binned angles, we can still use the same framework, simply by replac-
ing the DFT with a continuous and periodical Fourier transform, typically
referred to as (continuous time) Fourier series [5]. This hence also avoids the
bin size problem. We denote the magnitude of the resulting Fourier coeffi-
cients as the dip Fourier descriptors (dFd). The particular attribute cubes
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Example dFd attributes. From the combined attribute response, we see
discrimination between at least the 3-4 dominating facies in this section. The fre-
quencies represented here are (b) ω = 2π/8, (c) ω = 6π/8, (d) ω = 7π/8, (e)
ω = 8π/8, and (f) ω = 10π/8.

produced are samples of the continuous Fourier series spectrum. Illustrations
of the dFd attribute are given in Figure 9.

3.5 Gabor Filter Bank

Key Principle: Maps the frequency characteristic of pseudo-traces orthogonal
to the stratification.

Main Uses: Generic stratigraphy indicator.

Key Features:

• Amplitude-invariant; will produce the same response for the same seismic
signature, whether in a low- or high-amplitude region.

• Orientation-invariant; will produce the same response for the same seismic
signature, whether in tilted or non-tilted strata.

Seismic trace frequency attributes, such as instantaneous frequency [15], are
widely used in seismic data analysis. The instantaneous frequency attribute
is available in most standard seismic data analysis packages.

An alternative to the instantaneous frequency, with the potential for cap-
turing more than the single dominating frequency, is to use a multi-band
frequency decomposition, in other words a filter bank. A very popular fil-
ter bank in the texture analysis literature is the Gabor filter bank [11]. In
this case we use a one-dimensional Gabor filter bank applied along vertical
or layer-orthogonal traces. Layer-orthogonal traces means short signal traces
extracted orthogonal to the dominating dip and azimuth of the data (see
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Section 2). The 1D Gabor filter is a band-pass filter constructed by a cosine
modulated Gaussian. Its unit pulse response is

h(k) = e−
1
2

k2

σ2 cos (2πf0k) , (6)

where f0 is the center frequency of the pass-band and σ is the unit pulse
response width. The parameter σ thus determines the pass-band width in
the frequency domain (large σ implies small pass-band width and vice versa).
The filter has infinite support, but is in practical experiments approximated
by a finite discrete time filter through a cut-off at 2.0σ to 2.5σ.

Based on findings in [8], the center frequencies 2−3.5
√

2, 2−3.0
√

2, 2−2.5
√

2,
2−2.0

√
2, and 2−1.5

√
2 are used, thus constituting a 5-band filter bank. The

filters are, along with the approach published in [8], followed by a local en-
ergy [11] extraction operation consisting of an absolute value and a Gaussian
smoothing operation (see Subsection 6.1).

Finally, the amplitude is normalized such that the square sum of the
attributes at a specific voxel position is constant. This last step is important
since it will ensure a unified response irrespective of the local seismic contrast
level. Thus a specific stratigraphic pattern will be equally well highlighted in
low and high amplitude regions.

In the resulting attribute cubes, a large amplitude indicates a high pres-
ence of the specific frequency content. In Figure 10 we can see some examples
of the Gabor attribute cubes.

3.6 Volume Reflection Spectral (VRS) Decomposition

Key Principle: Maps the VRS spectral frequency characteristic of analytic
traces [16].

Main Uses: Generic stratigraphy indicator.
A similar measure to the Gabor filter bank, Subsection 3.5, may be ex-

tracted using the volume reflection spectral (VRS) decomposition [16]. In this
approach, the seismic traces are decomposed by a Chebychev polynomial, and
the polynomial coefficients are used as spectral components, representing an
attribute volume. An example for this is shown in Figure 11.

4 Terminations

Key Principle: Traces the orientation field (see Section 2) to detect termi-
nating strata [13].

Main Uses: Termination detection.



Atlas of 3D Seismic Attributes 35

(a) (b)

(c) (d)

Fig. 10. A seismic cube and three of its Gabor attribute cubes. We can see how
the different facies generate different attribute signatures.

Key Features:

(a) (b)

Fig. 11. Example of a VRS attribute volume.



36 T. Randen, L. Sønneland

• Genuine 3D.
• Amplitude-invariant; will produce the same response for the same seismic

signature, whether in a low- or high-amplitude region.
• Orientation-invariant; will produce the same response for the same seismic

signature, whether in tilted or non-tilted strata.

The primary target of the automated termination detection technique is
the identification of stratigraphic boundaries, such as erosional truncation,
toplap, onlap, and downlap. In the technique, the local orientation of the
seismic cross section is first estimated, see Section 2. Starting at any sample
position (seed position) a flow line is generated. The flow line is the curve
through that position having the orientation of the local angle estimates in
its path.

A sketch of flow lines and terminations is given in Figure 12. The flow lines
trace the local orientation of the seismic data, and in the position marked
by an ×, these lines intersect. This intersection may be likely to correspond
to one sedimentary package terminating into another. Several termination
surfaces may be identified in the lower picture in Figure 12.

Note that the approach is fully automated. It is not restricted to detection
of terminations only at reflectors. The terminations pinpoint the boundaries
by virtually continuous lines or zones, provided sufficient quality and clarity
of the seismic data. Care is taken to avoid artefacts with noisy data, low
resolution, interference between neighbouring reflectors, etc.

The termination surfaces that are highlighted by the method correspond
well to the surfaces that may be determined by a tedious manual interpreta-
tion done on the seismic cross section.

5 Discontinuities and Faults

Enhancing faults means enhancing discontinuities in the seismic data. This
is, however, not straightforward, as the intersections between the different
reflection layers constitute great amplitude changes. Hence, we need to en-
hance changes along the reflection layers and not orthogonal to them. In
order to obtain this, the subsequently described attributes use a local dip
estimate of the reflection layers as input. It is noted that also the chaos cube,
Subsection 3.1, is a good fault attribute.

We would also like to point the attention towards the chapter [10] of
Pedersen, Skov, Randen, and Sønneland, presenting a very attractive fur-
ther processing step beyond the fault attributes for extracting the faults as
surfaces in 3D.
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Truncation

Onlap

Fig. 12. The principles of termination detection by flow lines.

5.1 Fault Edge

Key Principle: Estimates the edginess of the seismic parallel to the stratifi-
cation, using a derivative edge attribute.

Main Uses: Fault highlighting.

Key Features:

• Genuine 3D.
• Amplitude-variant; will produce different responses depending on low-

vs. high-amplitudes. This is a good feature in the cases where amplitude
correlates well to signal quality, but may be undesired if there are severe
amplitude anomalies in the data.

• Orientation-invariant; will produce the same response for the same seismic
signature, whether in tilted or non-tilted strata.

A fault appears as changes in amplitude in the reflectors. We should thus be
able to enhance faults by measuring changes in the signal amplitude which is
exactly what the edge enhancement attribute does. As previously discussed,
the intersections between different layers comprise sharp edges and will pro-
duce large outputs by using conventional edge detection techniques. The edge
enhancement attribute reduce this problem by using the local dip estimates
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Fig. 13. Illustration of the concept of dip guided edge enhancement. (a) Derivatives
indicating change along the reflector produces a projection with large magnitude in
the dip plane, whereas (b) derivatives indicating change orthogonal to the reflector
projects with a small magnitude.

of the reflection layers. The local dip estimate represents a plane, and by
projecting the gradient vector with the derivatives,

∇x(n1, n2, n3) =

⎡
⎢⎢⎢⎣

∂x(n1,n2,n3)
∂n1

∂x(n1,n2,n3)
∂n2

∂x(n1,n2,n3)
∂n3

⎤
⎥⎥⎥⎦ , (7)

onto this plane, changes that are nearly perpendicular to the reflector will
produce projections with small magnitudes, whereas changes in the direction
of the reflector will produce projections with larger magnitudes.

Taking the magnitude of the projected vector as the attribute value makes
this attribute dependent on the amplitude in the seismic data. Faults in
areas of low amplitude will thus have a weak signature which may be hard
to detect for a human interpreter. The visual appearance can be corrected
by applying some amplitude correction, but with the appropriate subsequent
steps this may prove unnecessary in an automated fault extraction setting.
This attribute does not introduce artifacts by smoothing and picks up very
small amplitude changes (dimming effects of sub-seismic resolution faults).
Hence, even very subtle faults, which are very hard to visually detect from the
seismic data, are captured. Figure 14 shows an example of an edge enhanced
cube.

5.2 Projected Principal Gradient

Key Principle: Estimates the edginess of the seismic parallel to the stratifi-
cation, using the principal component of the derivative.

Main Uses: Fault highlighting.

Key Features:

• Genuine 3D.
• Amplitude-invariant; will produce the same response for the same seismic

signature, whether in a low- or high-amplitude region. See Subsection 5.1
for an amplitude variant attribute.

• Orientation-invariant; will produce the same response for the same seismic
signature, whether in tilted or non-tilted strata.
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(a) (b)

Fig. 14. Edge enhanced cube (right) generated from the seismic cube (left).

(a) (b) (c)

Fig. 15. The fault edge cube (b) and the projected principal gradient cube (c),
showing the improved mapping of faults in low-amplitude regions.

Edges are important in many 3D data types, as they contain significant infor-
mation on properties of the data. In seismic data, edges describe properties
such as faults, horizons, and horizon continuity.

Referring to the previous section, one approach to make that attribute
amplitude-invariant, is to project the principal component of the gradients
within a small window, instead of projecting the gradient itself. The window
can in general be arbitrary, but good results have been obtained by using a
Gaussian window. An illustration is given in Figure 15.
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(a) (b) (c) (d)

Fig. 16. (d) Orientation-tuned chaos continuity attribute computed, with the input
seismic shown in (a). The result in (b) and (c) shows non-adaptive chaos attributes,
with an isotropic computation window (a) and a narrow vertical window (b). By
careful examination, it can be observed that the result in (d) has a better definition
of the fine features than the results in (b) and (c) on this data set.

5.3 Orientation-Tuned Chaos

Key Principle: Computes the chaos attribute (see Subsection 3.1) in pseudo-
traces orthogonal to the local stratification (see Section 2).

Main Uses: Fault highlighting.

Key Features:

• Amplitude-invariant; will produce the same response for the same seismic
signature, whether in a low- or high-amplitude region.

• Orientation-invariant; will produce the same response for the same seismic
signature, whether in tilted or non-tilted strata.

This attribute, shown in Figure 16, is extracted guided by the dip and azimuth
and is thus operating equally well in dipping as in non-dipping strata. It
is a variant of the already described chaos attribute, but more tuned to
detection of sharp lineaments orthogonal to the stratification. This property
makes it attractive for highlighting faults that are more or less orthogonal
to the stratification. The attribute will yield continuous and sharp responses
irrespective of dipping layers and poor amplitude.

5.4 Variance Attribute

Key Principle: Estimates the variance in small horizontal planes and smoothes
the result vertically [2].

Main Uses: Fault highlighting.

Key Features:

• Amplitude-invariant; will produce the same response for the same seismic
signature, whether in a low- or high-amplitude region.

• Not orientation-invariant.
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(a) (b)

Fig. 17. Variance cube (b) generated from the seismic cube (a).

The variance cube has the local variance as a measure of signal unconformity.
For each voxel, the local variance is computed from horizontal sub-slices. If
this slice is within an unbroken reflection layer, the amplitude variance will
be small whereas amplitude changes due to a fault will result in a larger
variance. Next, the variance estimate is smoothed by a vertical window and
amplitude normalized. For more details on the variance attribute, refer to
Bemmel and Pepper [2].

5.5 Thinning

Key Principle: Cuts any seismic attribute orthogonal to the key features
and retains only the peak values, thus obtaining a thinned (skeletonized)
volume [12].

Main Uses: Fault attribute enhancement.

Key Features:

• Genuine 3D.
• Orientation-invariant; will produce the same response for the same seismic

signature, whether in tilted or non-tilted strata.

The response resulting from the fault enhancement method are not always
sharp. Conditioning of the result may be performed by thinning. The thinning
operation will for each voxel check whether the current voxel is the peak
value of a neighborhood of n voxels forming a line perpendicular or nearly
perpendicular to the fault. If so, it is retained, otherwise it will be discarded.
As a result, the surfaces will be thinned. In order to identify the neighborhood
in which to look for a peak value, an estimate of the normal to the fault in
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the voxel of interest is needed. One way to make this estimate is to use the
orientation of the gradient vector after projection onto the orientation plane,
as described in connection with the edge enhancement attribute. This vector
will generally be orthogonal to the fault. The estimates should be smoothed,
Section 2, in order to increase reliability.

Another approach to fault attribute enhancement is presented in the chap-
ter [10] of Pedersen, Skov, Randen, and Sønneland.

6 Pre- and Post-Conditioning

The noise level of seismic data varies tremendously and noise is a signifi-
cant problem in many data sets. One way to suppress noise is smoothing.
Furthermore, using the principles of scale-space theory, detection of geolog-
ical features at different resolutions may also take advantage of smoothing;
large smoothing leaves primarily the major features, etc. In this section, we
present two variants of seismic data smoothing, differing in the preservation
of features of interest.

6.1 Gaussian Low-Pass Smoothing Filter

Key Principle: Smooths a data set by local averaging with a Gaussian
weighted averaging.

Main Uses:

• General smoothing.
• Increased signal to noise ratio.
• Estimating local signal magnitude.

Key Features:

• Genuine 3D.

The Gaussian filter is one of the most popular filters for smoothing data,
in particular for its joint optimum time-frequency localization properties [6].
The Gaussian filter is given by

hG(k) =
1√
2πσ

exp
(
−1

2
k2

σ2

)
, (8)

where the parameter σ defines the width of the filter, or in other words the
degree of the smoothing. A larger σ gives more smoothing. Depending on the
application, useful values for σ range from 0.5 to 4.0 or higher. The Gaussian
filter is separable, meaning that the filter above is applied (convolved) in each
dimension separately. Typically, different σ’s are allowed for each dimension.

One particular application of smoothing filters is for generating local en-
ergy cubes. Smoothing the absolute value of a seismic cube, for example,
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(a) (b) (c)

Fig. 18. (b) Illustration of the use of a Gaussian low-pass filter for extracting the
local signal magnitude of (a). Here the Gaussian filter with σ = 3.0 in all three
dimensions was preceded by an absolute value pre-processor. (c) Gaussian dip-
guided layer-parallel smoothing result. Observe how the continuity of the seismic
signal has been enhanced in the filtered image compared to the original (a).

produces a cube with high values at positions where the local seismic mag-
nitude is high (irrespective of whether the seismic signal has a zero crossing,
etc. at that voxel). The illustration in Figure 18 (b) is an example for this.

6.2 Gaussian Dip-Guided Filter – Layer-Parallel Smoothing

Key Principle: Smooths a data set by local averaging with a Gaussian
weighted averaging along flow surfaces following the local dip/azimuth (see
Section 2), thus obtaining increased layer continuity without sacrificing ver-
tical resolution.

Main Uses:

• Increased reflector continuity.
• Increased signal to noise ratio.
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(a) (b) (c) (d)

Fig. 19. Gaussian dip-guided layer-parallel smoothing result (b). Observe how the
continuity of the seismic signal has been enhanced. Fault attribute cubes corre-
sponding to the data in (a) and (b) can be seen in figures (c) and (d), respectively.
The improved fault mapping is clearly observed.

Key Features:

• Structurally consistent smoothing along reflections.
• No smoothing vertically.

By knowing the locally dominating strata orientation in the seismic data
(the dip and azimuth), it is possible to do any kind of filtering parallel or
orthogonal to the strata. One incarnation of this general concept is smoothing
parallel to the layers, while not applying smoothing orthogonally. With such
a filter, the vertical resolution is preserved, but lateral continuity is enhanced.
A Gaussian filter applied parallel to the dominating orientation is used. This
module first estimates the dip and azimuth (see Section 2) of the seismic data,
then extracts surfaces guided by the dip and azimuth and finally smooths the
signal along these surfaces. See the examples in Figures 18 (c) and 19(c).

6.3 Gaussian Dip-Guided Flow Line Filter – Layer-Orthogonal
Smoothing

Key Principle: Smooths a data set by local averaging with a Gaussian
weighted averaging along flow lines orthogonal to the local dip/azimuth (see
Section 2), thus obtaining increased continuity of vertical events without sac-
rificing horizontal resolution.

Main Uses: Increasing fault attribute continuity.
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(a) (b) (c)

Fig. 20. Gaussian dip-guided layer-orthogonal smoothing result. The seismic image
(left) is used for computing the dip and azimuth, and then the projected principal
gradient fault attribute (Subsection 5.2) (middle) is smoothed along short layer-
orthogonal traces by a Gaussian filter to yield the result to the right.

Key Features:

• Structurally consistent smoothing perpendicular to reflections.
• No smoothing horizontally.

When enhancing vertically aligned events, for example faults, a filter smooth-
ing orthogonal to the layer structure may be desirable. Such a filter may be
realized by applying a Gaussian filter to traces extracted orthogonal to the
locally dominating dip and azimuth (see Section 2). A result of this approach
is illustrated in Figure 20.
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The Use of Structure Tensors in the Analysis
of Seismic Data
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Summary. The first and second order structure tensors, simply estimated by dif-
ferencing the image, can be used to quantify the local structure of seismic data and
their departure from laminar structure. They can be used to distinguish chaotic
regions as well as regions of interest, like mounds and horizon terminations from
stratified regions. They have been well established in the processing of 2D images,
but their application to 3D volume data is still a largely unexplored field of re-
search. This chapter reviews the properties of these tensors and their application
to image processing in general, and demonstrates their usefulness in the analysis of
2D and 3D seismic data.

1 Introduction

Seismic images are characterised by specific textures which can provide valu-
able information for locating potential oil reservoirs. The volume of available
data, however, is very large and manual assessment is very time consuming
and tedious. In addition, the human vision system has not been made to see
through volumes, but only surfaces. Any tool, therefore, which can help the
analyst either to partly automate the process, or to see aspects of the data
which are not obvious to the human vision system, is always a welcome ad-
dition to the library of software tools at the disposal of the analyst. Figure 1
shows an example image of a seismic cross-section. A non-specialist can easily
identify three texture areas in this image, i.e., parallel, chaotic and mixed.
An expert may identify several structures of interest in the image, such as a
mound indicating a carbonate built-up, horizon terminations indicating the
location of a prehistoric coastline, faults, etc. In this chapter we shall explore
the use of the so called structure tensors in enhancing and isolating such
regions of interest.

Structure tensors have been shown to work well in segmenting and locat-
ing structures of specific shape. Several books published in the recent years
present extensive literature reviews on structure tensors and their applica-
tions [13, 15, 19, 48]. In this chapter, we present in Section 2 a brief review
of their application in image processing, focusing on their application to the
analysis of seismic data. Section 3, describes the 2D first and second order
structure tensors and their properties in more detail. Also, two well known
corner detectors, based on the structure tensors, namely the Harris and the
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Hessian-based (otherwise known as DET) corner detector are reviewed. In
Section 4, we present the 3D first and second order structure tensors and
their properties. Section 5 demonstrates the use of these tensors in the anal-
ysis of 2D and 3D seismic data, and in Section 6 we draw our conclusions.

Fig. 1. A seismic section showing three different textures. The ovals mark regions
of interest.

2 Literature Review

2.1 First Order Tensor

The first order structure tensor has been extensively used in image analysis
for locating distinctive regions in images. This tensor is known by many differ-
ent names: gradient structure tensor, second-moment matrix, scatter matrix,
interest operator and windowed covariance matrix. It is defined in terms of
the first derivative of the image and has been introduced for the detection
of lines, edges and corners. One of the first attempts to use it was that of
Moravec [29] who simply calculated the average variation (un-normalised au-
tocorrelation function) of the image inside a rectangular window, by shifting
the window in several directions and measuring the minimum value of the
autocorrelation function. This minimum value was a measure of curvature of
the point under consideration [30]. Constant image intensity would produce
a small variation in all shifts, and this would imply absence of significant
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local curvature. An edge would produce a small variation along one direction
and a large variation perpendicular to the edge, and this would indicate the
presence of a small curvature along the direction of the edge. Finally, if a
corner point existed in the windowed area, then a large variation would have
been observed in all shifts, indicating the presence of high local curvature.
As a result, corner points were detected in images as the points where the
variation in all shifts was above a certain thereshold.

Harris and Stephens [16] identified the problem created by using rectan-
gular windows, which enhance noise due to their sharp edges, and proposed
the use of smoothly decaying windows such as Gaussian ones. Another short-
coming pointed out by Harris and Stephens was the anisotropy introduced
due to the use of four directions for the estimation of the variation, which
was dealt with by using first order Taylor expansion about the origin to in-
clude all possible small shifts. They defined the first order image structure
tensor, and introduced a measure of cornerness and edginess based on its
eigenvalues. The eigenvalues of the tensor were shown to be proportional to
the principal curvatures of the autocorrelation function seen as a surface. A
mathematical proof that explains how the Harris corner detector estimates
the image surface curvature is given by Noble [31].

The gradient structure tensor has been used extensively in the estimation
of local structure and local orientation. This is known as the shape-from-
texture problem where the distortion of texture patterns can provide infor-
mation about surface shape or orientation. Some of the first works based on
the gradient tensor was that of Knutsson [23]. The tensor was used for the
estimation of the orientation of 3D surfaces so that the ambiguity introduced
by the use of the normal vector was overcome. Even before that, the struc-
ture tensor constructed from the first derivatives had been adopted by Kass
and Witkin [21] for the calculation of the local orientation of texture pat-
terns in 2D images. Vliet and colleagues produced a considerable amount of
work extending Knutsson’s approach. They used the average gradient-square
tensor for orientation estimation of anisotropic patterns in 2D. Its advan-
tage was the removal of the ambiguity introduced by averaging the gradient
orientation vectors in windows which normally cancel out in areas of linear
structures [45]. The curvature of 2D curvilinear structures [46] and 3D ones [2]
was also calculated by a modified version of the gradient structure tensor. Lo-
cal curvature of iso-grey-level surfaces in images was estimated with the help
of the gradient structure tensor used to estimate local orientation [36, 35].

Based on Knutsson’s work, Westin et al., detected effectively thin bone
structures in 3D Computer Tomography (CT) data [51] and enhanced blood
vessels in 3D Magnetic Resonance Angiography (MRA) images [52], by per-
forming adaptive filtering using the gradient tensor for the estimation of the
local orientation.

Scale space theory is another tool of image analysis. The idea is to produce
a one-parameter family of versions of the original image which are gradually
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smoothed with the details being progressively blurred. The terms diffusion
tensor and scale-space are highly related [47, 48]. Diffusion is the physical
process of equalising concentration differences between two areas, creating a
flux. The diffusion equation relates the flux to the gradient of the concen-
tration. In image processing the concentration represents the grey values of
the image. A diffusion tensor was introduced to describe the diffusion mech-
anism. This diffusion tensor is either constant over the image, which is the
case of isotropic diffusion, or it is applied in specific directions, which is the
case of anisotropic diffusion. In addition, the diffusion may be linear or non-
linear depending on the linearity of the diffusion equation. Diffusion is used
to smooth images in all directions when linear isotropic diffusion filtering
is applied, or along specific structures as in anisotropic diffusion filtering.
The first case yields the theory of scale-space and is equivalent to a simple
smoothing with a Gaussian filter. The second case has been shown to pro-
cess better line-like or other structures. A significant amount of work that
uses the diffusion tensor is based on the idea of applying anisotropic diffusion
filtering on the image which results in smoothing the image along preferred
directions, in different scales. The preferred orientation or coherence orienta-
tion is estimated from the eigenvectors of the structure tensor of the image.
The diffusion tensor is also constructed from these eigenvectors so that diffu-
sion is applied in one direction. Thus, flow-like structures [11, 49] and creases
(ridges and valleys) [39] can be detected in images.

Creases in images may also be detected by use of the gradient structure
tensor directly [28]. Ridges in medical images were detected with the use of
both the gradient and Hessian tensors in different scales of smoothing, with
the gradient tensor outperforming the Hessian tensor [41].

Diffusion Tensor Magnetic Resonance Imaging, or DT-MRI, is a tech-
nology that measures the random motion of hydrogen atoms within water
molecules referred to as diffusion. Water in tissues containing a large number
of fibres, like skeletal muscle, cardiac muscle, and brain white matter, dif-
fuse fastest along the direction of the fibres, and slowest along the direction
orthogonal to it. In contrast, in tissues which contain few fibres, water dif-
fuses in a spherical pattern. DT-MRI includes such information about how
water diffuses in tissues, and it adds to conventional MRI the capability of
measuring the random motion of water molecules in three dimensions. Basser
et al. [6, 7], were the first to describe the explicit relationship between a dif-
fusion tensor and the magnetic resonance signal. Since then, there has been
a large amount of work on the diffusion tensor used in medical images [50].

Finally, the structure tensors found also application in image and video
analysis. Hladuvka et al. [17] performed direction driven grey level interpola-
tion along the directions identified by the analysis of the structure tensor in
3D images. More specifically, they calculated the eigensystem at grid points
and employed interpolation in the directions defined by the eigenvectors of
the structure tensor for the estimation of the grey values at off-grid localities.
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Image sequences have been regarded as functions of space and time, thus
they define hyper-surfaces. The curvature of the hyper-surfaces gives impor-
tant information, so the structure tensor has been used in relation to motion
parameter estimation [3, 4, 5] and optical flow estimation [20, 40].

2.2 Second Order Tensor

The second order tensor or Hessian matrix of the image function is defined
in terms of the second partial derivatives of the image.

It was initially used by Baudet [8], who calculated the image Gaussian
curvature and searched for saddle points on the image brightness surface.
More specifically, he found the extrema of the product of the eigenvalues
of the Hessian matrix which actually correspond to the Gaussian curvature.
Dreschler [12] detected corners as points between two extrema of the Gaussian
curvature.

The second order tensor in 2D images was also used by Noble [31], who
pointed out that the local image surface can be classified according to the
Hessian matrix determinant as a planar point (zero determinant), parabolic
point (zero determinant), hyperbolic point (negative determinant) and elliptic
point (positive determinant). Points of interest are those which contain strong
intensity variation such as the hyperbolic and elliptic points.

The Hessian matrix appears also in scale-space theory. The connection of
the diffusion equation with the image structure expressed in terms of the Hes-
sian matrix in different scales was initially made by Koenderink [24]. Frangi
et al. [14] exploited the three eigenvalues of the second order Hessian matrix of
3D medical images with the purpose of developing vessel enhancement filters.
A vesselness function was introduced, which combined the three eigenvalues
with the scale of the Gaussian filter used for differentiation. The final result
was obtained by integrating the vesselness measure for different scales of the
filter. In this way, both thin and wide vessels were detected. Furthermore,
Sato et al. used the Hessian matrix first to detect lines by multi-scale inte-
gration [37], and then to detect sheets and blobs in 3D images [38]. Lin [26]
introduced an alternative way of describing the shapes in an image by using
the spherical harmonics in combination with the Hessian matrix, and per-
formed enhancement and detection of string structures and stenosis in 3D
MRA medical images.

Hladuvka et al. [18] thresholded two out of the three eigenvalues of the
Hessian matrix of 3D brain images to reduce the volume data for visualisa-
tion purposes. Blood vessels were identified in 3D medical images by Bhalerao
and Wilson [9, 10]. Initially, the local structures were modelled with Gaussian
profiles. For the estimation of the parameters of the profiles and their classi-
fication into lines, planes, or spheres, the Multiresolution Fourier Transform
was used, which takes into consideration different scales enabling the local
structure to be fixed in a specific scale.
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Finally, Medioni and colleagues [25, 42, 43, 44] used the tensor voting
technique in different applications of image analysis. Tensor voting is an ap-
proach of extracting salient structures by encoding data and corresponding
uncertainties in the Hessian matrix.

2.3 Structure Tensors in Seismic Image Analysis

Although the image structure tensor has recently been introduced in the
medical imaging field, where clear structures exist and need to be identified,
there is limited amount of work done in the field of seismic images. This may
be explained by the fact that structures present in the Earth’s subsurface are
not of the same nature one can find in other images depicting specific objects
that need to be identified and segmented.

Segmentation of chaotic patterns in 3D seismic images, based on the eigen-
values of the covariance matrix of the gradient vectors, was performed in [33].
Curvilinear structures called channels were also detected in seismic volumes,
[2], by use of the eigenvalues of the gradient tensor.

Just recently, Bakker et al. [2] and Bakker [1] detected channels and faults
in 2D and 3D seismic images, by using the gradient structure tensor for de-
tecting the position of these structures. More specifically, they estimated
their orientation by using the eigenvectors of the tensor and used steered
adaptive anisotropic filters, elongated according to the shape of the structure
under examination along the estimated orientation. These filters enhanced
the structure by noise removal without degrading it. Furthermore, the gradi-
ent structure tensor was modified into a curvature corrected structure tensor,
to account for plane-like and line-like curvilinear structures.

In this chapter, we shall demonstrate the use of both the first and second
order tensors in 2D and 3D seismic images for the detection and segmentation
of areas of interest for geophysicists. The identification of the chaotic area can
be based on the fact that the small line segments that make up the texture
have very different orientations, creating junctions at the points they inter-
sect, called corners. Thus, a simple corner detection algorithm could identify
such areas. The Harris corner detector (otherwise known as the Plessey algo-
rithm) [16], is an improvement of the Moravec algorithm and has been proven
to work well in detecting corners in the past. Its use is demonstrated here on
seismic cross-sections for the isolation of chaotic regions.

3 Definitions of the 2D Structure Tensors

3.1 First Order Tensor

The image structure tensor has often been used especially for corner detec-
tion [8, 16, 29]. The idea is based on the fact that the change of image intensity
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or squared difference of the image will dramatically vary in areas of points of
interest, e.g. corners. The squared difference of an image is defined as

E(x, y) ≡
∑
x′,y′

w(x′, y′)[I(x′ + x, y′ + y) − I(x′, y′)]2

= 〈[I(x′ + x, y′ + y) − I(x′, y′)]2〉, (1)

where (x,y) is the position of a pixel in the image, w(x, y) is a window func-
tion which can be a rectangle or a smooth Gaussian filter, and I(x, y) is the
intensity value at the specific position of the image. The symbol 〈·〉 repre-
sents the average value, produced by the smoothing procedure. The squared
difference is related to the autocorrelation function C(x, y) by the expression

E(x, y) = 〈I(x′ + x, y′ + y)2〉 + 〈I(x′, y′)2〉 − 2〈I(x′ + x, y′ + y)I(x′, y′)〉

= 〈I(x′ + x, y′ + y)2〉 + 〈I(x′, y′)2〉 − 2C(x, y).

Note that if the local energy of the image is constant, i.e.,

〈I(x′ + x, y′ + y)2〉 = 〈I(x′, y′)2〉 = const,

then the minima of the square difference and the maxima of the autocorre-
lation function will coincide.

For small shifts (x, y), the image function at (x′ + x, y′ + y) can be ap-
proximated by Taylor series expansion at point (x′, y′) as

I(x′ + x, y′ + y) ≈ I(x′, y′) + xIx + yIy +
x2

2
Ixx +

y2

2
Iyy + xyIxy (2)

and therefore,

I(x′ + x, y′ + y) − I(x′, y′) ≈ xIx + yIy, (3)

where Ix and Iy are the first partial derivatives of the image in direction x and
y, respectively. Moreover, Ixx and Iyy are the second order partial derivatives
in these two directions and Ixy is the mixed second order partial derivative,
all computed at point (x′, y′). In the above Taylor expansion the left hand
side of equation (2) can be approximated by the first three terms only of the
right hand side. In this case, the difference of the image in two positions can
be represented by the equation of a line, as it can be seen from equation (3).
The square which appears in equation (1) is then given by

[I(x′ + x, y′ + y) − I(x′, y′)]2 ≈ [xIx + yIy]2

= x2I2
x + y2I2

y + 2xyIxIy

=
(
x y

)( I2
x IxIy

IxIy I2
y

)(
x

y

)
.
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Since only the values of the derivatives depend on (x′, y′), E(x, y) can be
rewritten as

E(x, y) =
(
x y

)( 〈I2
x〉 〈IxIy〉

〈IxIy〉 〈I2
y 〉

)(
x

y

)
≡
(
x y

)
M

(
x y

)T
, (4)

where T denotes the transpose of a matrix and M is called the image structure
tensor. It has been proven that this matrix is invariant under translation and
its eigenvectors are rotationally invariant.

It is immediately obvious that two scales were introduced in the definition
of the tensor, the scale involved in differentiation (local scale) and the scale
involved in the smoothing window (integration scale) [27]. The first scale is
the local smoothing done when the derivatives are determined, since deriva-
tives estimated from un-smoothed data are very noisy. The integration scale
refers to the size of window w(x, y) which defines the area around which the
average is taken, and is related to the size of the structure that needs to
be detected. The two scales are closely related since the integration scale is
generally an upper limit of the local scale. More specifically, the integration
scale is three to ten times the local scale [1]. In general, a Gaussian function
is used for the smoothing since it is rotationally invariant and separable.

The squared difference will have a specific shape according to the local
feature present in the image. It will be bowl-shaped if pixel (x, y) is different
from its surroundings, implying a corner in the region; it will be ridge shaped
parallel to a linear feature, if (x, y) is a point of a line, and it will be constant
in the case (x, y) is in a constant grey value region.

The information extracted from the structure tensor is based on the eigen-
vectors and the eigenvalues of it. Due to the fact that the tensor is symmetric
and positive semi-definite, the structure tensor can be graphically represented
by an ellipse shown in Figure 2. Also it is expected that the eigenvalues are
real and positive and they represent the gradient magnitude. The largest
eigenvalue corresponds to the dominant orientation of the largest variation.
The eigenvectors define a gauge-coordinate system and the eigenvector cor-
responding to the largest eigenvalue shows the direction along which the first
derivative is maximal.

The eigenvalues λ of the image structure tensor can be used to detect
lines, corners or constant grey value regions. The characteristic equation of
matrix M is

λ2 − (〈I2
x〉 + 〈I2

y 〉)λ + 〈I2
x〉〈I2

y 〉 − 〈IxIy〉2 = 0.

The solutions of this characteristic equation are the eigenvalues of tensor
M :

λ =
1
2

[
〈I2

x〉 + 〈I2
y 〉 ±

√
(〈I2

x〉 + 〈I2
y 〉)2 − 4[〈I2

x〉〈I2
y 〉 − 〈IxIy〉2]

]
.
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Fig. 2. Ellipse corresponding to the 2D tensor.

The orientation φ of each eigenvector is given by

tan φ =
λ − 〈I2

x〉
〈IxIy〉

,

and the determinant |M | of the tensor is |M | = 〈I2
x〉〈I2

y 〉 − 〈IxIy〉2.
It is easy to show how information extracted from the structure tensor is

related to the structure present in an image. Let us consider that image I
depicts a linear feature which can be represented by a function f(ax + by),
where a and b are some constants. The direction of the linear structure is
−a/b. The first partial derivatives Ix and Iy are

Ix =
∂f

∂x
= af ′ and Iy =

∂f

∂y
= bf ′. (5)

The ratio of Ix over Iy is a constant, equal to c ≡ a/b. Then Ix = c× Iy and
the determinant |M | becomes

|M | = 〈I2
x〉〈I2

y 〉 − 〈IxIy〉2

= 〈c2I2
y 〉〈I2

y 〉 − 〈cIyIy〉2

= c2〈I2
y 〉〈I2

y 〉 − c2〈I2
y 〉2 = 0.

The solutions of the characteristic polynomial are in this case

λ1 = 〈I2
x〉 + 〈I2

y 〉 and λ2 = 0.

Note that one eigenvalue is zero, corresponding to the direction along
the line where there is no grey value variation, and the other eigenvalue
corresponds to the direction of the greatest variation. The orientation of the
eigenvector corresponding to the non-zero eigenvalue, is given by
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tan φ =
Iy

Ix
=

b

a
.

That is, the orientation of this eigenvector coincides with the direction of
the largest grey value variation which is perpendicular to the linear structure.

In summary, we have the following cases. In the case of a constant grey
value region, the two eigenvalues of the tensor are very small, and approx-
imately zero, since Ix = Iy = 0. One eigenvalue is zero and the other is
large when the local structure is linear. If the determinant is large the two
eigenvalues are large and indicate the presence of a corner. These results are
summarised in Table 1.

Local Structure Eigenvalues

constant intensity λ1 ≈ λ2 ≈ 0

line λ1 � 0 λ2 ≈ 0

corner λ1 � 0 λ2 � 0

Table 1. Local structure conditions.

In practice, the eigenvalues cannot be exactly zero due to noise. Thus, a
threshold value has to be introduced.

Harris Corner Detector. In this subsection, we briefly describe the de-
tection of corners as introduced by Harris and Stephens [16]. They used the
image structure tensor M with the window w(x, y) being a Gaussian. Instead
of estimating the eigenvalues λ1 and λ2 of M separately, they introduced a
cornerness measure or corner response R which is a function of the eigenval-
ues but it can be expressed directly in terms of the matrix elements. Thus,
the corner response is defined as

R = |M | − k Tr(M)2, (6)

where |M | = λ1λ2 is the determinant of the matrix M , Tr(M) = λ1+λ2 is the
trace of the matrix M , and the coefficient k is a positive parameter, such that
R is positive in a corner region, negative in an edge region and small or below
a threshold value in a constant grey value region. Taking into consideration
these criteria, it is possible to separate the corners, the edges and the flat
regions in an image. A non-maxima suppression procedure follows, according
to which a candidate corner pixel is compared with its eight neighbours. If it
is the local maximum in the neighbourhood, then it is the only corner pixel
in the region. This last step usually produces a map of isolated points being
the corner points.

In our case, we use the detector first to simply separate the corner regions
and use them for segmenting the chaotic areas of the seismic image and then
we perform the non-maxima suppression for detecting the most important
corner points in the remaining areas of the image.
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3.2 Second Order Tensor

In the previous subsection, we kept only the first three terms of the expan-
sion shown by equation (2). This resulted in the squared difference being
approximated by a line. Another tensor can be defined as

I(x′ + x, y′ + y) ≈ I(x′, y′) + xIx + yIy +
x2

2
Ixx +

y2

2
Iyy + xyIxy,

provided that six terms of the Taylor expansion are kept, and therefore,

I(x′ + x, y′ + y) − I(x′, y′) − xIx − yIy ≈ x2

2
Ixx +

y2

2
Iyy + xyIxy. (7)

The left hand side of equation (7) represents the deviation of the local
structure from a line. Following the previous steps, the average deviation
from a line can be expressed as

〈I(x′ + x, y′ + y) − I(x′, y′) − xIx − yIy〉

≈ 1
2
〈[x2Ixx + y2Iyy + 2xyIxy]〉

=
1
2
(
x y

)( 〈Ixx〉 〈Ixy〉
〈Ixy〉 〈Iyy〉

)(
x

y

)
≡ 1

2
(
x y

)
A
(
x y

)T
.

This new image tensor A is the Hessian matrix of the image function, and
is defined in terms of the second partial derivatives of the image. This tensor
measures the deviation from a straight line and it is also expected to have a
zero determinant in a region with line-like structure.

Its maximum eigenvalue gives the maximum second derivative value and
the eigenvector corresponding to this eigenvalue represents the direction along
which the second image derivative is maximal. If a grey level image can
be seen as a 2D surface in 3D space, with the grey value being the third
dimension, then the Hessian tensor is related to the curvature of this surface.
More specifically, in certain cases the eigenvalues of the Hessian tensor equal
the principal curvatures of this surface. The characteristic equation of matrix
A is

λ2 − (〈Ixx〉 + 〈Iyy〉) λ + 〈Ixx〉〈Iyy〉 − (〈Ixy〉)2 = 0.

The largest eigenvalue is the largest solution of the characteristic polyno-
mial, which is given by

λ =
1
2

[
〈Ixx〉 + 〈Iyy〉 +

√
(〈Ixx〉 − 〈Iyy〉)2 + 4(〈Ixy〉)2

]
.
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The orientation of the corresponding eigenvector is given by

tan φ =
λ − 〈Ixx〉
〈Ixy〉

.

In this way, it is possible to calculate one orientation value per pixel in
an image. Some limit cases are the following ones.

• 〈Ixx〉 = 〈Ixy〉 = 0: no change in the horizontal direction, thus φ = 0o;
• 〈Iyy〉 = 〈Ixy〉 = 0: no change in the vertical direction, thus φ = 90o.

We show now that when a linear feature is present, the determinant of
tensor A becomes zero and one of the eigenvalues becomes zero. If we consider
that the image function is f(ax + by) where a and b are some constants, the
first partial derivatives Ix and Iy are given by equation (5) and the second
partial derivatives are

Ixx =
∂2f

∂x2
= a2f ′′, Iyy =

∂2f

∂y2
= b2f ′′, Ixy =

∂2f

∂x∂y
= abf ′′.

Then, the ratio of Ixx over Iyy is a constant, equal to d ≡ a2/b2. As a
result, Ixx = d × Iyy. Similarly, the ratio of Ixy over Iyy is also a constant,
equal to e ≡ a/b, and Ixy = e × Iyy. Then the determinant |A| becomes

|A| = IxxIyy − I2
xy = dIyyIyy − e2I2

yy =
a2

b2
I2
yy −

(a

b

)2

I2
yy = 0.

Thus, the determinant of tensor A becomes zero in the case a linear feature
is present in the image. The solutions of the characteristic polynomial in this
case are

λ1 = 〈Ixx〉 + 〈Iyy〉 and λ2 = 0,

and the orientation of the eigenvector corresponding to λ1 coincides with the
orthogonal direction to that of the linear feature:

tan φ =
Iyy

Ixy
=

b

a
.

The features, which the Hessian matrix can be used to detect, are also
listed in Table 1, which applies to both the first and the second order ten-
sors. In this case, however, the matrix is not positive semi-definite and so its
eigenvalues may be positive or negative of the same or different signs. If they
are both positive, a dark structure is detected and if they are both negative,
a bright structure is detected. The elliptical representation of Figure 2 is
inadequate in describing all possible image structures indicated by the Hes-
sian matrix, when the signs of its eigenvalues are different. An alternative
representation was introduced by Lin [26] who used expansion in spherical
harmonics.
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Hessian-Based Corner Detector. Baudet [8] showed that the product of
the two eigenvalues of tensor A which is equal to its determinant, is actually
the local Gaussian curvature of the image. Thus, the extrema of the determi-
nant after thresholding, would be identical with the corner points. However,
Baudet proved that near a corner point there is a positive maximum and a
negative minimum of the Gaussian curvature but the corner position is not
well located. Further research has been done in this field by Dreschler and
Nagel [12] who found a way of combining the maxima and minima to locate
the exact corner point that lies between them. Further elaborations of the
use of this approach were presented in [53], where the problems of detecting
straight oblique lines were highlighted. We are adopting the same technique
as Baudet here, but we combine it with the determinant of one more ten-
sor which involves diagonal differentiation, for better detection of regions of
interest.

Enhanced Hessian-Based Corner Detector. The determinant of the
Hessian tensor is

|A| = IxxIyy − I2
xy. (8)

The determinant of tensor A always becomes zero at a region of linear
vertical or horizontal feature, thus a non-zero value of the determinant would
detect all non-linear features. When we have a horizontal or vertical line,
either Ixx or Iyy is zero and certainly Ixy is zero since either Ix or Iy is
zero. Therefore, |A| is zero as the sum of zero terms. If, however, the line is
oblique, then Ixx ≈ Iyy ≈ Ixy and theoretically |A| should also be zero. This
zero value, however, arises from the subtraction of two non zero numbers
which are expected to be approximately equal, and it is therefore prone to
errors. That is why oblique lines are not found to have |A| = 0 in practice.
This means that identifying points where |A| > 0 as points of non-linear
structure, will also include the places where there is linear structure but
simply it is oblique with respect to the coordinate system used. This is in
agreement with the findings of Zheng et al. [53] that Baudet’s method falsely
responds to oblique lines.

So, in addition to using tensor A, we also use a similar tensor defined for
the image rotated by 45o. To compute it, we estimate the partial derivatives
of the image along the diagonal directions. Thus, we define tensor B as

B ≡
[
〈Id11〉 〈Id12〉
〈Id12〉 〈Id22〉

]
,

where Id11 is the second derivative of the image differentiated along the diag-
onal direction from top left to bottom right, Id22 is the second derivative of
the image differentiated along the diagonal direction from top right to bot-
tom left, and Id12 is the second derivative of the image differentiated along
both diagonal directions. For the calculation of all derivatives the image is
smoothed first by a Gaussian filter along one diagonal direction and then
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differentiated using second derivatives of Gaussian filters, along the other di-
agonal direction. The determinant of tensor B is expected to become zero in
regions of diagonal linear features and non-zero in regions of linear horizontal
or vertical features.

The simultaneous consideration of the largest determinant values of both
tensors A and B should isolate areas which are not linear in the vertical,
horizontal or diagonal directions. This would be a useful approach in detecting
the chaotic regions, as well as regions of interest in the seismic images which
do not contain linear features.

4 Definitions of the 3D Structure Tensors

4.1 First Order Tensor

The squared difference of a 3D image is defined as

E(x, y, z) ≡
∑

x′,y′,z′
w(x′, y′, z′)[I(x′ + x, y′ + y, z′ + z) − I(x′, y′, z′)]2

= 〈[I(x′ + x, y′ + y, z′ + z) − I(x′, y′, z′)]2〉, (9)

where (x, y, z) is the position of a voxel in the image, w(x, y, z) is a window
function which can be a rectangle or a smooth Gaussian filter, and I(x, y, z)
is the intensity value at the specific position of the data.

For small shifts (x, y, z), the image function at (x′ + x, y′ + y, z′ + z) can
be expanded in Taylor series as

I(x′ + x, y′ + y, z′ + z) ≈ I(x′, y′, z′) + xIx + yIy + zIz

+
x2

2
Ixx +

y2

2
Iyy +

z2

2
Izz

+xyIxy + xzIxz + yzIyz. (10)

Then
I(x′ + x, y′ + y, z′ + z) − I(x′, y′, z′) ≈ xIx + yIy + zIz, (11)

where Ix, Iy and Iz are the first order partial derivatives of the image in the
three directions x, y and z respectively, Ixx, Iyy and Izz are the second order
partial derivatives in the three directions, and Ixy, Ixz and Iyz are the mixed
second order partial derivatives, all computed at point (x′, y′, z′). In the above
Taylor expansion, the left hand side of equation (10) can be approximated
by the first four terms only of the right hand side. In this case, the difference
of the image in two positions can be represented by the equation of a plane,
as it can be seen from equation (11). The square which appears in equation
(9) is then given by
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[I(x′ + x, y′ + y, z′ + z) − I(x′, y′, z′)]2

≈ [xIx + yIy + zIz]2

= x2I2
x + y2I2

y + z2I2
z + 2xyIxIy + 2xzIxIz + 2yzIyIz

=
(
x y z

)
⎛
⎜⎜⎝

I2
x IxIy IxIz

IxIy I2
y IyIz

IxIz IyIz I2
z

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ .

Since only the values of the derivatives depend on (x′, y′, z′), E(x, y, z)
can be rewritten as

E(x, y, z) =
(
x y z

)
⎛
⎜⎜⎝

〈I2
x〉 〈IxIy〉 〈IxIz〉

〈IxIy〉 〈I2
y 〉 〈IyIz〉

〈IxIz〉 〈IyIz〉 〈I2
z 〉

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

≡
(
x y z

)
N
(
x y z

)T
,

where N is the image structure tensor. The squared difference will have a
specific shape according to the feature present in the image.

The characteristic equation of N is

λ3 −
(
〈I2

x〉 + 〈I2
y 〉 + 〈I2

z 〉
)
λ2

−
(
〈I2

x〉〈I2
y 〉 + 〈I2

x〉〈I2
z 〉 + 〈I2

y 〉〈I2
z 〉 − 〈IxIy〉2 − 〈IxIz〉2 − 〈IyIz〉2

)
λ

+ 〈I2
x〉〈I2

y 〉〈I2
z 〉 − 〈I2

x〉〈IyIz〉2 − 〈I2
z 〉〈IxIy〉2 − 〈I2

y 〉〈IxIz〉2

+ 2〈IxIy〉〈IxIz〉〈IyIz〉 = 0.

This matrix is positive semi-definite and so it is expected to have three
positive eigenvalues. The solution of this cubic equation is not a trivial matter.
Instead of estimating the roots of the characteristic equation in this case, it
is preferable to use a more general method and estimate the eigenvalues of
matrix A, defined by equation (8), by use of the Jacobi transformation of
the matrix. The Jacobi transformation (or orthogonalisation) is an iterative
application of rotations to a matrix until all its off-diagonal values are zero
at machine precision.

The orientation of each eigenvector can be described by two angles, the
zenith angle θ and the azimuth angle φ:

cos φ =
x√

x2 + y2
, sin φ =

y√
x2 + y2

, cos θ =
z√

x2 + y2 + z2
, (12)

where the two angles have values in the ranges

0o < φ < 360o and 0o < θ < 180o.



62 M. Faraklioti, M. Petrou

The system of equations that has to be solved for estimating the orienta-
tion of the eigenvectors is the following one.⎛

⎜⎜⎝
〈I2

x〉 〈IxIy〉 〈IxIz〉
〈IxIy〉 〈I2

y 〉 〈IyIz〉
〈IxIz〉 〈IyIz〉 〈I2

z 〉

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ = λ

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

and therefore,

(〈I2
x〉 − λ)x + 〈IxIy〉y + 〈IxIz〉z = 0,

〈IxIy〉x + (〈I2
y 〉 − λ)y + 〈IyIz〉z = 0,

〈IxIz〉x + 〈IyIz〉y + (〈I2
z 〉 − λ)z = 0.

After some algebraic manipulations of the above system of equations, we
obtain the angle values

cos φ =
〈IxIz〉(〈I2

y 〉 − λ) − 〈IxIy〉〈IyIz〉√[
(〈I2

y 〉 − λ)〈IxIz〉 − 〈IxIy〉〈IyIz〉
]2 +

[
(〈I2

x〉 − λ)〈IyIz〉 − 〈IxIy〉〈IxIz〉
]2

sin φ =
〈IyIz〉(〈I2

x〉 − λ) − 〈IxIy〉〈IxIz〉√[
(〈I2

y 〉 − λ)〈IxIz〉 − 〈IxIy〉〈IyIz〉
]2 +

[
(〈I2

x〉 − λ)〈IyIz〉 − 〈IxIy〉〈IxIz〉
]2

cos θ =
{
〈IxIy〉 − (〈I2

x〉 − λ)(〈I2
y 〉 − λ)

}
×{[

〈IxIy〉2 − (〈I2
x〉 − λ)(〈I2

y 〉 − λ)
]2

+
[
(〈I2

y 〉 − λ)〈IxIz〉 − 〈IyIz〉〈IxIy〉
]2

+
[
(〈I2

x〉 − λ)〈IyIz〉 − 〈IxIz〉〈IxIy〉
]2}−1/2

.

Let us consider that image I depicts a linear feature which can be repre-
sented by a function f(ax + by + cz), where a, b and c are some constants.
The first partial image derivatives Ix, Iy and Iz are in this case given by

Ix =
∂f

∂x
= af ′, Iy =

∂f

∂y
= bf ′, Iz =

∂f

∂z
= cf ′.

The ratio of Ix over Iy is a constant, equal to d ≡ a/b, i.e., Ix = d × Iy.
In the same way, the ratio of Iz and Iy is a constant value e ≡ c/b, i.e.,
Iz = e × Iy.

Then, the determinant |N | becomes

|N | = 〈I2
x〉〈I2

y 〉〈I2
z 〉 − 〈I2

x〉〈IyIz〉2 − 〈I2
z 〉〈IxIy〉2 − 〈I2

y 〉〈IxIz〉2 + 2〈IxIy〉〈IxIz〉〈IyIz〉

= d2〈I2
y 〉〈I2

y 〉e2〈I2
y 〉 − d2〈I2

y 〉e2〈I2
y 〉2 − e2〈I2

y 〉d2〈I2
y 〉2 − 〈I2

y 〉e2d2〈I2
y 〉2

+ 2e〈I2
y 〉ed〈I2

y 〉d〈I2
y 〉 = 0.
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In this case, the characteristic equation of N becomes

λ3 −
(
〈I2

x〉 + 〈I2
y 〉 + 〈I2

z 〉
)
λ2 = 0.

It is obvious that this equation has three real solutions, two of which are
zero and one different from zero (λ1 = 〈I2

x〉+ 〈I2
y 〉+ 〈I2

z 〉, λ2 = λ3 = 0). This
proves that when the local structure is stratified, the structure tensor has one
non-zero eigenvalue and two eigenvalues approximately zero. The orientation
of the eigenvector corresponding to the non-zero eigenvalue is the same as
the normal to the strata.

In summary, the shape of the 3D tensor describes locally the structure of
the image, in terms of how much it resembles a plane, a line or a sphere. The
tensor can be visualised in 3D by an ellipsoid, as shown in Figure 3, the axes
of which are along the directions of the eigenvectors of the tensor and their
semi-lengths are equal to the magnitudes of the corresponding eigenvalues.

λ2

e2

λ1 e1

λ3

e3

x

y

z

Fig. 3. Ellipsoid corresponding to the 3D structure tensor.

For linear features, the eigenvector associated with the smallest eigenvalue
is the direction of the line. For planes, the eigenvector associated with the
largest eigenvalue is the normal to the plane. In the isotropic case, such as
for the sphere, there is no dominant orientation of change. These cases are
summarised in Table 2.

The assumption that the variation of a 3D image can be represented by
an ellipsoid was mainly based on the fact that all eigenvalues of the matrix
are positive since the gradient matrix is usually positive definite or positive
semi-definite.
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Local Structure Eigenvalues

Plane λ1 � λ2 ≈ λ3 ≈ 0

Line λ1 ≈ λ2 � λ3 ≈ 0

Uniform λ1 ≈ λ2 ≈ λ3

Table 2. Local structure conditions.

4.2 Second Order Tensor

In the previous subsection we kept only the first order terms in the expansion
of equation (10). Another structure tensor can be defined as

I(x′ + x, y′ + y, z + z′)
≈ I(x′, y′, z′) + xIx + yIy + zIz

+
x2

2
Ixx +

y2

2
Iyy +

z2

2
Izz + xyIxy + yzIyz + xzIxz,

provided that the second order approximation of the image is used or if ten
terms of the Taylor expansion are kept, and so

I(x′ + x, y′ + y, z + z′) − I(x′, y′, z′) − xIx − yIy − zIz

≈ x2

2
Ixx +

y2

2
Iyy +

z2

2
Izz + xyIxy + yzIyz + xzIxz. (13)

The left hand side of (13) represents the departure of the local structure
from stratification. Following the previous steps, the average deviation from
stratified structure can be written as

〈I(x′ + x, y′ + y, z + z′) − I(x′, y′, z′) − xIx − yIy − zIz〉

≈ 1
2
〈[x2Ixx + y2Iyy + z2Izz + 2xyIxy + 2yzIyz + 2xzIxz]〉

=
1
2
(
x y z

)
⎛
⎜⎜⎜⎝

〈Ixx〉 〈Ixy〉 〈Ixz〉
〈Ixy〉 〈Iyy〉 〈Iyz〉
〈Ixy〉 〈Iyz〉 〈Izz〉

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

≡ 1
2
(
x y z

)
C
(
x y z

)T
.

This new structure tensor C is the Hessian matrix of the data function,
and it is defined in terms of the second partial derivatives of the volume data.
The second order local structures that can be classified using the eigenvalues
of the tensor are sheet-like, line-like and blob-like.
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The characteristic equation of the above matrix is the cubic polynomial

λ3 − (〈Ixx〉 + 〈Iyy〉 + 〈Izz〉) λ2

−
(
〈I2

xy〉 + 〈I2
yz〉 + 〈I2

xz〉 − 〈Ixx〉〈Iyy〉 − 〈Iyy〉〈Izz〉 − 〈Ixx〉〈Izz〉
)
λ

+ 〈Ixx〉〈Iyy〉〈Izz〉 − 〈Ixx〉〈I2
yz〉 − 〈Izz〉〈I2

xy〉 − 〈Iyy〉〈I2
xz〉

+ 2〈Ixy〉〈Ixz〉〈Iyz〉 = 0.

The orientation of each eigenvector may be described by the two angles
mentioned earlier, the zenith angle θ and the azimuth angle φ defined by
equation (12). After some algebraic manipulations we deduce that

cos φ =
〈Ixz〉(〈Iyy〉 − λ) − 〈Ixy〉〈Iyz〉√

[(〈Iyy〉 − λ)〈Ixz〉 − 〈Ixy〉〈Iyz〉]2 + [(〈Ixx〉 − λ)〈Iyz〉 − 〈Ixy〉〈Ixz〉]2
,

sin φ =
〈Iyz〉(〈Ixx〉 − λ) − 〈Ixy〉〈Ixz〉√

[(〈Iyy〉 − λ)〈Ixz〉 − 〈Ixy〉〈Iyz〉]2 + [(〈Ixx〉 − λ)〈Iyz〉 − 〈Ixy〉〈Ixz〉]2
,

cos θ =
{
λ(〈Ixx〉 + 〈Iyy〉 + 〈Izz〉 − λ) + 〈Ixy〉2 − 〈Ixx〉〈Iyy〉

}{[
λ(〈Ixx〉 + 〈Iyy〉 + 〈Izz〉 − λ) + 〈Ixy〉2 − 〈Ixx〉〈Iyy〉

]2
+ [(〈Iyy〉 − λ)〈Ixz〉 − 〈Iyz〉〈Ixy〉]2

+ [(〈Ixx〉 − λ)〈Iyz〉 − 〈Ixz〉〈Ixy〉]2
}−1/2

.

Let us consider the form of I for the case of stratified local structure,
which can be represented by a function f(ax + by + cz), where a, b and c are
some constants. The second order partial derivatives Ixx, Iyy, Izz, Ixy, Iyz,
and Ixz are in this case given by

Ixx = ∂2f
∂x2 = a2f ′′, Iyy = ∂2f

∂y2 = b2f ′′, Izz = ∂2f
∂z2 = c2f ′′,

Ixy = ∂2f
∂x∂y = abf ′′, Iyz = ∂2f

∂y∂z = bcf ′′, Ixz = ∂2f
∂x∂z = acf ′′.

Next we form the ratios:

Ixx =
a2

b2
Iyy, Izz =

c2

b2
Iyy, Ixy =

b

c
Ixz, Iyz =

b

a
Ixz, Ixz =

ac

b2
Iyy.

Then, determinant |N | becomes |N | = 0. In this case the characteristic
equation is

λ3 − (〈Ixx〉 + 〈Iyy〉 + 〈Izz〉) λ2 = 0.

It is obvious that the above equation has two zero solutions and yields
only one non-zero eigenvalue (λ1 = 〈Ixx〉 + 〈Iyy〉 + 〈Izz〉, λ2 = λ3 = 0). The
eigenvector that corresponds to the non-zero eigenvalue is orthogonal to the
direction of the strata.
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In summary, the 3D Hessian tensor may be visualised in 3D by an el-
lipsoid, as shown in Figure 3, when all its eigenvalues have the same sign.
The structures that may be detected are also summarised in Table 2, where
the conditions on the eigenvalues concern the detection of a black structure
against a white background. Similar conditions exist for the case, where the
contrast is reversed.

5 Experiments with Seismic Sections

5.1 Data Preprocessing

The 3D data used to demonstrate the application of the structure tensors
were obtained from the Barent Sea area and are of 16 bits precision and of
dimensions 400 × 451 × 50. They are shown in Figure 4 (a). For displaying
purposes, the 16 bits were transformed to 8 bits by mapping the range of
pixel values [0,65535] to the range [0,255]. In Figure 4 (c) the histogram
of the 3D image is shown. As it can be seen, the largest number of pixels
is concentrated in a specific range around grey value 33000. It is better,
therefore, to threshold the histogram and map to 8 bits only the range of
values which contain useful information. Thus, only the pixels in the range
[30000,35000] are kept and they are mapped in the range [0,255] for displaying
purposes in Figure 4 (b). A cross-section of the volumetric data is shown in
Figure 4 (d). As it can be observed, the texture of the cross-section becomes
visible as a whole, and three main areas of texture are clearly differentiated:
The parallel area which is the top part of the image, characterised by the
linear nature of the texture, the chaotic area, which is the bottom part of
the image, characterised by randomness in the texture orientation, and the
middle part which is an area of a mixture of different textures (see Figure 1).

5.2 Harris Corner Detector Applied to Seismic Sections

In order to detect the corners in a seismic image, it is necessary to form
matrix M of equation (4). The partial derivatives of image I, Ix and Iy

are produced by convolving the image with the simple differentiating mask
(−1, 0, 1). More specifically, Ix is the result of horizontal convolution of I
with the mask (−1, 0, 1) and Iy is the result of vertical convolution of I with
the same mask. Output maps I2

x, I2
y and IxIy are computed and they are

smoothed by applying a 1D Gaussian convolution filter along one direction
first and to the result the same filter along the other direction. The Gaussian
function is given by

w(u) = e−
u2

2σ2 , (14)

where we chose standard deviation σ = 2 which corresponds to a filter of size
13 pixels long. This function is used to compute the filter weights at sampling
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(a) (b)

0 10000 20000 30000 40000 50000 60000
0
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(c) (d)

Fig. 4. (a) Seismic volume data mapped to 8-bits from their original 16-bit values,
by direct scaling of the full range of values. (b) The same seismic volume when
the mapping from 16-bits to 8-bits is restricted only to a range of values identified
by thresholding the histogram of the original values. (c) Histogram of the original
data. (d) A cross-section of the seismic volume shown in (b).

points which correspond to the integer values of its argument. The filter as
generated by equation (14) has to be normalised by dividing its weights by
the sum of all weights, so it does not alter a flat input signal.

Next, we calculate the determinant of matrix M and its trace and thus
compute the value of the corner measure R of equation (6) for every pixel in
the image. The only parameter which needs to be defined is the coefficient
in the quality measure k. A default value proposed in [16] is k = 0.04. This
value may vary though with different differentiation and smoothing masks
used. It can be approximately estimated from

k =
t

(1 + t)2
,

1
t

<
λ1

λ2
< t, (15)

where t is a real number [53]. After some experimentation with the seis-
mic images, we found that the ratio of the two eigenvalues lies in the range
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0.05 < λ1/λ2 < 1. Considering this, t should be in the range (1, 20). We
chose to experiment with two values of t, t = 2 and t = 20 which, according
to equation (15), yield k = 0.2 and the default value k = 0.04, respectively.
The image on which we perform the corner detection is shown in Figure 4 (d).

The Harris corner pixels1 are shown in Figure 5 in red. This result was
produced with k = 0.2, standard deviation of the Gaussian smoothing filter
σ = 2 and without any non-maxima suppression. The same procedure was
followed for the case of k = 0.04, σ = 2 but too many candidate corner pixel
were detected. For the moment we are only studying the areas of candidate
corner pixels. These areas actually correspond to positive R values since as
it was mentioned earlier, R > 0 represents corners, R < 0 represents edges
and R ≈ 0 represents constant grey value areas. A threshold value TR other
than 0 could be used for R, for isolating the corner pixels. In general the
positive R values are very large, with very few pixels having small positive R
values. After experimenting, it was concluded that any threshold TR in the
range (0, 105) would provide very similar results, so we adopted for threshold
TR the value 0. As it can be observed from Figure 5, the chaotic area, where
most of the corners lie, is very well isolated, but many small regions dense in
corners have also been identified all over the image.

Fig. 5. [Reproduced in colour in Plate 6 on page 424.] Corner pixels detected by
the Harris corner detector for k = 0.2, σ = 2.

This result may be postprocessed in various ways. The first post-processing
is that of Harris and Stephens [16], i.e., to apply non-maxima suppression for
identifying the real corner points out of the candidate corner points. A can-
didate corner pixel is compared with its eight neighbours and if it is the local

1We use the terminology Harris corner pixels for abbreviation of pixels that are
candidate corner pixels.
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maximum in the neighbourhood, then it is accepted as a corner pixel. Due to
the large number of points detected in this case, only some of them are kept,
the most important ones, namely those which exhibit the highest positive
value of the cornerness measure R. The most significant 100 corner points,
as detected by the Harris corner detector for the two cases of k = 0.2, σ = 5
and k = 0.04, σ = 4, are shown in Figure 6. We can still see too many corner
points scattered all over the image, without any significant difference in the
small regions we are interested in.

(a) (b)

Fig. 6. [Reproduced in colour in Plate 7 on page 424.] (a) The most significant
100 corner points for k = 0.2, σ = 5 and (b) for k = 0.04, σ = 4.

Another possible post-processing of the results shown in Figure 5 is to
use connected component analysis, in order to remove all agglomerations of
corner pixels that consist of fewer than a certain number of pixels. The image
is first transformed into a binary image, with black marking the corner areas
and white marking the background pixels as shown in Figure 7 (a). Then,
all black pixels in the image are grouped, based on pixel connectivity and
are assigned a label so that the image is divided into patches of different
labels. Figure 7 (b) shows the different labels by different grey values. Then,
connected components with fewer than T2 = 1000 pixels are marked as back-
ground pixels. The result is shown in Figure 7 (c) and superimposed on the
original image in Figure 7 (d). This is a very promising result, which in ad-
dition to the large chaotic region has also isolated the small chaotic patches
of interest.

The points of interest can be separated by performing a further connected
component analysis on Figure 7 (c). First, we are interested in isolating the
very small insignificant areas. The image in Figure 7 (c) is divided into patches
of different labels and connected components with fewer than a threshold
T3 = 200 pixels are marked as background. The resulting image is shown
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in Figure 7 (e). Then, connected component analysis is performed again but
this time we are specifically interested in eliminating the large chaotic area
and keeping only small areas of interest. Thus, connected components with
more than a threshold of T4 = 5000 pixels are marked as background and
connected components with fewer than T4 = 5000 pixels are marked as of
interest. The resulting image is shown in Figure 7 (f).

Finally, a third post-processing technique which can be applied on the
output of the Harris corner detector of Figure 7 (a) is based on mathematical
morphology. Figure 8 (a) shows the result of eroding the binary image of
Figure 7 (a) by a 3 × 3 structuring element: any detail of the black regions
smaller than 3 × 3 is removed. Figure 8 (b) shows the image of Figure 7 (a)
dilated by a 3 × 3 structuring element: any hole in it smaller than 3 × 3 has
been filled in. Applying erosion again to the result in Figure 8 (a) with the
same structuring element is equivalent to having eroded Figure 7 (a) by a 5×5
structuring element. This result is shown in Figure 8 (c). The result of double
dilation is shown in Figure 8 (d). Applying dilation in the eroded image or
erosion to the dilated image produces the result of opening (Figure 8 (e))
and closing (Figure 8 (f)) of the original image. The opening and closing are
important morphological transformations. Opening is used to eliminate small
image details while closing fills up small holes and connects objects close to
each other. These two transformations do not distort the original shape or
change the size of the depicted object. An interactive user may choose to
apply these operations with whatever size structuring element they wish by
repeating the erosions and dilations applied. These results, however, are not
satisfactory enough, as we either loose the regions of interest, or have too
many of them.

5.3 The Enhanced Hessian-Based Corner Detector Applied to
Seismic Sections

First, it is necessary to determine the second order derivatives of the image
differentiating it horizontally and vertically to create matrix A for each voxel.

Smoothing the image I(x, y) is done by convolving it with Gaussian filter
w(u) in the two directions x and y. The second derivative Ixx is estimated by
convolving the image with the Gaussian filter w(u) in the vertical direction
and convolving the result with the second derivative of the Gaussian filter
w′′(u) in the horizontal direction. The second derivative Iyy is estimated by
convolving the image with w(u) in the horizontal direction and the result with
w′′(u) in the vertical direction. Finally, the second derivative Ixy is estimated
by convolving the image with w′(u) in the horizontal direction and the result
with w′(u) in the vertical direction. The derivatives of the smoothing filter
(14) are given by
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w′(u) = − u

σ2
e−

u2

2σ2 ,

w′′(u) = − 1
σ2

e−
u2

2σ2 +
u2

σ4
e−

u2

2σ2 . (16)

(a) (b)

(c) (d)

(e) (f)

Fig. 7. [Reproduced in colour in Plate 8 on page 425.] (a) Binary image with
corner points, (b) different labels of each connected component, (c) binary image
after small regions have been thresholded away, (d) final result superimposed on
the original image, (e) binary image after very small regions have been thresholded
away, (f) areas of interest.
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(a) Erosion (b) Dilation

(c) Erosion-Erosion (d) Dilation-Dilation

(e) Opening (f) Closing

Fig. 8. [See Colour Plate 9 on page 426.] Several morphological transformations.

The standard deviation of the Gaussian filter was chosen to be σ = 2 cor-
responding to a filter of size 13. These functions are used to compute the filter
weights at sampling points which correspond to the integer values of their
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arguments. Filters w′(u) and w′′(u) should have zero direct component as
they are high pass filters. Therefore, in order to normalise them, we subtract
from each filter weight the mean value of the originally computed weights
using equations (16). With such a normalisation, the three filters used in the
convolution procedure in both directions x and y are given in Table 3.

filter -6 -5 -4 -3 -2 -1 0

w 0.002 0.009 0.027 0.065 0.121 0.176 0.199

w′ 0.016 0.055 0.135 0.243 0.303 0.220 0.000

w′′ -0.023 -0.059 -0.103 -0.103 -0.001 0.164 0.249

Table 3. Filter weights. Due to symmetries, only the left half of each filter is shown.
The values for sampling points 1–6 are symmetric about sampling point 0 for the
top and bottom filters, while for the middle filter they are equal to the weights
in their symmetric positions on the left of 0, but with opposite sign, due to the
antisymmetry of this filter.

The image convolved with these filters is the image of Figure 4 (d). The
derivatives of the image in both directions are shown in Figure 9.

It is also necessary to determine the diagonal second order derivatives of
the image for creating determinant |B|. For that reason, the Gaussian filter
is convolved with the image along the diagonal directions. The filter used for
the diagonal convolution is the Gaussian filter, of length 13 and σ = 2. In
order for the filter length to remain equal to 13 interpixel distances as for the
horizontal and vertical convolutions, the number of pixels the filter occupies
in the diagonal direction becomes 13/

√
2 ≈ 9, since

√
2 is the distance of

two pixels along the diagonal direction. The filter values are also normalised
and we end up with the filter weights for the diagonal convolution shown in
Table 4.

The second derivative Id11 is estimated by convolving first with the Gaus-
sian filter w(u) along the diagonal direction from top right to bottom left,
and the result with the second derivative of the Gaussian filter w′′(u) along
the diagonal direction from top left to bottom right. The second derivative
Id22 is estimated by convolving the image with w(u) along the top left to bot-
tom right direction and the result with w′′(u) along the top right to bottom
left direction. Finally, the second derivative Id12 is estimated by convolving
the image with w′(u) along one diagonal direction and the result again with
w′(u) along the other diagonal direction.

The results of the differentiation are shown in Figure 10.
After tensors A and B are formed for each pixel, the absolute values of

their determinants are estimated. The histogram of the absolute values of the
determinant of A is shown in Figure 11 (a). We threshold the determinant
values, choosing a threshold TA = 4000. The pixels, for which the determinant
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(a) (b)

(c)

Fig. 9. (a) Horizontal second derivative Ixx of Figure 4 (d), (b) vertical second
derivative Iyy of Figure 4 (d), and (c) mixed second derivative Ixy of Figure 4 (d).

filter -4
√

2 -3
√

2 -2
√

2 -
√

2 0
√

2 2
√

2 3
√

2 4
√

2

w 0.0026 0.0149 0.0520 0.1100 0.141 0.1100 0.0520 0.0149 0.0026

w′ 0.0259 0.1120 0.2600 0.2750 0.000 -0.2750 -0.2600 -0.1120 -0.0259

w′′ -0.0350 -0.0960 -0.0950 0.0940 0.246 0.0940 -0.0950 -0.0960 -0.0350

Table 4. Filter weights for diagonal convolution.

exceeds the threshold, are marked with red colour in Figure 12 (a). As it was
expected, the diagonal features are also detected.

In a similar way, the histogram of the absolute values of the determinant
of B is shown in Figure 11 (b). We threshold the determinant values choosing
a threshold TB = 3000. The pixels, for which the determinant exceeds the
threshold, are marked again with red colour in Figure 12 (b). As it was
expected, the linear horizontal features are also detected.
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(a) (b)

Fig. 10. (a) Diagonal top left-bottom right second derivative of image Id11, (b) di-
agonal top right-bottom left second derivative of image Id22, and (c) mixed diagonal
second derivative of image in both diagonal directions Id12.

A combination of both determinants by using the above threshold values
produces a map of points of interest as shown in Figure 12 (c) where the red
points represent points, whose determinants |A| and |B| exceed the chosen
thresholds. Several points of interest in the chaotic and mixed regions are
identified.

In order to improve the results by reducing these unwanted features and
obtain better segmentation, connected component analysis is applied to the
output image. The binary image which contains the points under examination
is shown in Figure 13 (a) where the points of interest are black and the back-
ground is white. After pixels that belong to patches with fewer pixels than
a certain threshold TC are removed, we obtain Figure 13 (b). The result of
segmentation after applying connected component analysis of 4-connectivity
is shown in Figure 14 (a) where the identified points of interest are superim-
posed on the initial image.
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Fig. 11. (a) Histogram of the absolute values of the determinant of matrix A, (b)
histogram of the absolute values of the determinant of matrix B.

In the final result, the regions of interest in the mixed and chaotic areas
are differentiated from the stratified areas although some wrongly detected
lines still persist.

More experiments can be performed, by varying the three threshold val-
ues, TA, TB and TC . Another example is shown in Figure 14 (b) which
shows the combination of the two determinants A and B where TA = 6000,
TB = 2000 and TC = 20. In this case, the unwanted features in the stratified
area are fewer but so are the points detected in the chaotic area.

As it will be shown next, it is possible to isolate the chaotic from the
mixed area and extract regions of interest by doing some further analysis.

5.4 Detection of Chaotic Areas and Points of Interest

The gradient operator is generally used to detect rapid changes in an image.
The gradient of an image has extensively been used for edge detection [32]
where the magnitude of the gradient represents the edge magnitude and the
gradient orientation is rotated with respect to the edge orientation by 90o.
The gradient direction has also been used in the past for corner detection.
At the position of a corner point, the direction of the gradient changes sig-
nificantly [22, 54].

The gradient has been used in texture segmentation before. More specifi-
cally, the dominant local orientation of the gradient vector has been employed
to characterise oriented textures [34].

In this subsection, the local gradient orientation is employed for segment-
ing the seismic image. Especially the chaotic area is isolated due to its ran-
domness in orientation. Also, the points of interest are detected by combining
the gradient results with the Hessian results, described in the previous sub-
section.
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(a) (b)

(c)

Fig. 12. [Reproduced in colour in Plate 10 on page 427.] (a) Image after thresh-
olding the determinant of tensor A with TA = 4000, (b) image after thresholding
the determinant of tensor B with TB = 3000, and (c) combination of results (a)
and (b) with an AND operator.

Local Image Orientation. The magnitude of the local gradient of the
image is defined as |∇I(x, y)| = (I2

x + I2
y )1/2, and the orientation of the

gradient vector as θ̃ = tan−1(Iy/Ix).
Special care should be taken so that the estimated orientation angles θ

fall in the range 0o to 360o. This can be achieved by considering the sign of
the derivatives Ix and Iy,

• Ix > 0 and Iy > 0, θ = θ̃,
• Ix > 0 and Iy < 0, θ = θ̃ + 2π,
• Ix < 0 and Iy > 0, θ = θ̃ + π,
• Ix < 0 and Iy < 0, θ = θ̃ + π,
• Ix = 0 and Iy �= 0, θ = π/2.
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Furthermore, there is the possibility that Ix = Iy = 0 for some pixels in
the image. This is the case where there is no edge in the image at that point,
so no orientation can be defined. Then a flag number is given to such a pixel
with no orientation, so that it does not take part in any further analysis.

Local Average Image Orientation: Isolating the Chaotic Regions.
Our aim is to isolate the chaotic regions of the image by considering the
local orientation. We compute the local orientation, as the average gradient
orientation inside an N×N window. We represent the orientation of each pixel
inside the window by the unit vector (cos θ, sin θ) along the direction of its
gradient. Then we compute the average of these orientation vectors, to obtain
the average gradient vector. It is expected that the average orientation vector
will be zero in the chaotic area where the orientation vectors are random, but
different from zero and quite large in the linear areas.

There is a problem, however, when we average the sine or the cosine of
the orientation angles θ inside a window. The two edges a line consists of,
give rise to two angles, one differing from the other by π. In this case, the
sum of the cosine and the sum of sine of the two angles will be zero. As a
result, the linear area will also be characterised by a magnitude of average
gradient close to zero, just like a chaotic area where the gradient vectors point
in all directions. Thus, no differentiation between linear and chaotic regions
is possible this way. If we consider, however, the angle 2θ instead of θ, [45],
the problem is solved. In this case, if two angles in the linear area differ by π,
then when we double them, they differ by 2π and so their sines and cosines
are the same and do not cancel each other.

Thus, we define G as the magnitude of the average gradient vector by

G = (sin 2θ)2 + (cos 2θ)2,

(a) (b)

Fig. 13. (a) Binary image of points of interest, (b) binary image after connected
component analysis and thresholding away regions with fewer than ten pixels.
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(a) (b)

Fig. 14. [Reproduced in colour in Plate 11 on page 428.] (a) Final image of chaotic
and mixed areas after connected component analysis with TA = 4000, TB = 3000
and TC = 10, (b) final image of chaotic and mixed areas after connected component
analysis with TA = 6000, TB = 2000 and TC = 20.

where

sin 2θ =
1

N2

∑
i

sin 2θi and cos 2θ =
1

N2

∑
i

cos 2θi,

and the average is taken inside a window of size N × N .
The histogram of |Ḡ| is shown in Figure 15 (a) for N = 20. It is obvious

that thresholding the histogram will differentiate two major areas of different
magnitude of gradient in the image. The peak of the histogram, where the
magnitude is close to zero, represents the chaotic area, while the tail repre-
sents the linear area. By choosing a threshold value TD = 0.22, we obtain the
result shown in Figure 15 (b). As it can be observed, two main regions are dif-
ferentiated, the region of the chaotic texture (black region), and the region of
the parallel texture (white region). At this point it has to be mentioned that
regions where the orientation value does not exist, because Ix = Iy = 0, are
also shown in white. For better segmentation, connected component anal-
ysis is applied on the binary magnitude image and areas with fewer than
TE = 1000 pixels are removed. The result of segmentation after applying
connected component analysis with 4-connectivity is shown in Figure 15 (c).

It is then possible to combine the segmented image of Figure 15 (c) with
the results obtained in the previous subsection by use of the determinants,
shown in Figures 14 (a) and (b). The first image separates the chaotic region
from the linear and the mixed regions. The second image approximately sep-
arates the chaotic and the mixed regions from the linear region. Therefore,
combination of these two would isolate the points of interest in the mixed
region. In Figure 16 (a) the red points are actually the red points of Fig-
ure 14 (a) which also belong to the white area of Figure 15 (c). As it can
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Fig. 15. (a) Histogram of the average gradient magnitude image, (b) magnitude
image after histogram thresholding, (c) magnitude image after connected compo-
nent analysis and removal of small regions.

be observed, some points of interest are quite well-separated, and applica-
tion of connected component analysis and removal of small areas of less than
TF = 20 pixels, improves the results as shown in Figure 16 (b).

In Figure 16 (c) the red points are actually red points in Figure 14 (b)
which also belong to the white area of Figure 15 (c). Application of connected
component analysis and removal of small areas of fewer than TF = 40 pixels,
improves the results as shown in Figure 16 (d), with fewer pixels from the
linear regions appearing. Points of horizon termination and other geologically
interesting areas are roughly detected.

Local Average Image Orientation: Separating the Linear from the
Mixed Regions. If we exclude the chaotic region from our analysis, since
it was isolated quite accurately in Figure 15 (c), then we expect that the
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(a) (b)

(c) (d)

Fig. 16. [Reproduced in colour in Plate 12 on page 429.] (a),(c) Combination
of both determinant and magnitude methods, (b),(d) combination of both deter-
minant and magnitude methods after connected component analysis and region
thresholding.

average orientation angle inside local windows will be near zero in the linear
areas and non-zero in the mixed areas.

In order to separate the parallel from the mixed areas, first the orientation
angle of each pixel in the image is doubled as before, and the angle of 360o is
subtracted from the new doubled angle, if this angle is larger than 360o. In
this way, we ensure that the new angle falls in the range 0 to 360o. Then the
average value of the new angles is estimated within sliding windows of 21×21
and also divided by 2. The histogram of these values is shown in Figure 17 (a).
The histogram is bimodal, and by picking a threshold value TG = 1.87 it is
possible to separate two texture areas. Pixels with values larger than the
threshold are shown as grey in Figure 17 (b), while pixels in the stratified
region are shown as black. The pixels previously identified with the chaotic
region are flagged white in the same image. It is clear that the grey area
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represents the mixed texture and the black area is the parallel texture area.
Thus, in this way, we managed to approximately isolate the areas of interest
lying in the mixed texture area, as shown in Figure 17 (c) where the grey
areas are superimposed on the initial cross-section as red points. Finally, by
removing regions with fewer than 70 pixels, we end up with Figure 17 (d),
which highlights quite clearly the areas of interest.

1.2 1.7 2.2
0

2000

4000

(a) (b)

(c) (d)

Fig. 17. [Reproduced in colour in Plate 13 on page 430.] (a) Histogram of the orien-
tation image averaged in windows, (b) final thresholded image, (c) areas of interest
on the original cross-section, and (d) areas of interest after connected component
analysis.

5.5 Experiments in 3D

Figure 18 shows the histograms of the eigenvalues of the first order structure
tensor in 3D. If we accept that the chaotic region is characterised by all three
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eigenvalues being large, then the use of a simple threshold, T = 2800 allowed
us to produce Figure 19 (a) where we show a cross section of the volume data
inside which all voxels with three eigenvalues above the chosen threshold are
highlighted.
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Fig. 18. (a) Histogram of the eigenvalue λ1, (b) histogram of the eigenvalue λ2,
and (c) histogram of the eigenvalue λ3.

In a similar way, by playing with the choice of such thresholds, we were
able to produce Figure 19 (b), where some of the faults present in the volume
are highlighted. This result was produced by highlighting all voxels with
λ1, λ2 > 6000 and λ3 > 1300.
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(a) (b)

Fig. 19. [Reproduced in colour in Plate 14 on page 431.] (a) Chaotic region and
mounds, (b) faults detected.

6 Conclusions

The segmentation of seismic images is a crucial step in seismic analysis. We
demonstrated here the use of image structure tensors and features extracted
from them, for segmenting seismic sections and highlighting some regions
of interest. Image tensors have been very popular in the past due to their
simplicity, speed and easiness of implementation, since only convolutions of
the image with certain filters is necessary.

The structure tensor consisting of the first image derivatives was used for
corner detection. It was shown to be useful in isolating chaotic regions. The
chaotic area was also successfully detected by the use of a simple average of
the local orientation of the image.

A tensor which consists of the second order image derivatives was also
used, and in combination with a tensor consisting of the diagonal second
order derivatives of the image, it proved useful in detecting corner points.
This corner detector proved quite useful in separating the chaotic and mixed
regions from the stratified regions.

Finally, combining the results of chaotic region detection and corner de-
tection or average orientation estimation, allowed the isolation of geologically
distinct regions in the seismic image.

The field of 2D seismic data analysis is quite mature now, but the field of
3D data analysis is still under intensive research. In particular, the potential
of the 3D structure tensors to isolate structures of interest in the data has
not been fully investigated yet. We presented here some results using the
3D structure tensors. They appear to be promising in enhancing various
structures, including faults.
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PhD thesis, Linköping University, Department of Electrical Engineering, Com-
puter Vision Laboratory, Linköping, Sweden, October 2001.
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Automated Structural Interpretation Through
Classification of Seismic Horizons
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Summary. A novel method for extracting geometry primitives from seismic data
is presented. All events in the 3D seismic cube will be detected and can be com-
bined into geometric primitives based on similarities in the local wave form. No
assumptions of continuity in the geometric primitives are required. The geometric
primitives can therefore represent faulted horizons, which furthermore facilitates
quantification of the fault displacement.

The accuracy with which the local waveform can be represented is defined as a
user input, implying that subtle lateral changes in the reflectivity can be detected
and exploited. This characteristic enables analysis of stratigraphic variations along
horizons.

1 Introduction

Interpretations of seismic horizons play an important role in structural char-
acterization of 3D seismic data. Interpretations can be obtained manually,
by signal consistent automatic extraction of minimum, maximum or zero
crossing surfaces, or by combining automated surface extraction with man-
ual interpretation. Structurally complex regions are a challenge to the ex-
isting interpretation procedures, since a continuity requirement is often im-
posed by automatic tracker algorithms. When the seismic signal along the
horizon being tracked changes abruptly, or discontinuities occur in the hori-
zon, the algorithm may fail to provide a good estimate. The classification
approach presented in this paper addresses this problem, by attempting to
group horizon segments according to similarities in the shape of the seismic
signal around the horizons. The grouping is then performed without continu-
ity requirement, but only on the basis of the seismic wave form. The shape of
each seismic horizon can be represented through a set of attributes with one-
point support, selected along minimum or maximum positions. This reduces
the number of data points to be classified, allowing the 3D classification to
be run on a sparse 3D volume.

Classification tools are widely used in both 3D and 4D reservoir charac-
terization, for example in mapping 3D structures, lithological properties and
production effects [8]. In this work we extend the area of application of the
classification methodology into automated interpretation of seismic horizons
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[1]. By classifying the seismic signal along horizons we gain an improved auto-
mated interpretation that performs well also in structurally complex regions,
e.g., across faults. The classification may not provide a complete automated
interpretation, but instead a set of surface segments is obtained. These sur-
face segments serve as primitives for constructing a horizon interpretation,
where a final manual interpretation is performed by grouping and combin-
ing these surface primitives. Thus, the classification procedure constitutes a
tool for automating parts of the traditionally manual horizon interpretation.
In particular, the new methodology has its strength as a guide when the
complexity of the seismic data may result in ambiguities in the manual inter-
pretation. It is also demonstrated how the surface primitives are applicable
for automated fault displacement estimation.

2 Seismic Extrema Representation

A 3D seismic volume is represented by a cube S = {S(x, y, z)} containing
seismic amplitudes at each voxel position (x, y, z), where x and y are po-
sitions in the two horizontal directions, measured in distance, and z is the
position in the vertical dimension, measured in depth or two-way travel-time.
The column S(x0, y0, z) at position (x0, y0) is denoted a seismic trace. A seis-
mic horizon is a piecewise continuous surface in 3D, consisting of positions
z = g(x, y) within the seismic volume. Throughout this work, seismic horizon
segments are used as primitives for structural interpretation. Horizon inter-
pretations are often placed on minimum, maximum or zero crossing events
in the seismic cube, and are defined as piecewise continuous surfaces in 3D
falling along these types of events. Minimum and maximum events in a seis-
mic cube are commonly referred to as seismic extrema, and are chosen as the
basis for the automated horizon interpretation presented in this paper. A set
of seismic extrema can be described as a contour surface

g(x, y) =
{

z :
dS(x, y, z)

dz
= 0

}
.

All extrema within a 3D seismic volume can be represented by two sparse
3D cubes, containing only information about the minimum and maximum
events in the seismic data. A vertical trace of the first cube contains the actual
maximum or minimum seismic amplitude values along this trace, stored in
the vertically closest voxel along the trace. This cube is referred to as the
extrema value cube. The second cube, denoted the extrema position cube,
contains sub-sample information about the exact location of the extrema,
i.e., the vertical correction to the seismic sampling resolution. Both extrema
cubes are sparse cubes, with value zero at voxel positions not falling on an
extremum. The set of voxels containing extrema data is the same for the two
cubes, but contains amplitudes and sub-sample positions respectively.
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The extrema cubes are generated using volume reflection spectral analysis
technology [9, 10], where each seismic trace is locally reconstructed using the
orthogonal basis defined by the Chebyshev polynomials. Thus, locally the
seismic trace is represented as

S(x0, y0, z) = b0p0(z) + b1p1(z) + · · · + bnpn(z),

where pi(z) is a polynomial of order i and bi, i = 1, . . . , n, are coefficients
estimated from the seismic trace in a window around z. The analytical form
of the local polynomial representation of the seismic trace enables sub-sample
precision calculations of all the extrema positions E = {E(x, y, z)} within the
seismic cube, defined as

E(x, y, z) =

{
S(x, y, z), if dS(x, y, z)/dz = 0,

0, otherwise.
(1)

Figure 1 shows an example of a sparse extrema representation of a seismic
section, illustrating the cube containing amplitude values. All events from
the original seismic section are preserved in the extrema value cube, but are
represented only through the position of its minimum or maximum.

Negative 0 Positive

Fig. 1. The left image shows a vertical section through a seismic cube. The right
image shows the corresponding section of the sparse extrema value cube, where
only minimum or maximum positions have non-zero values.

3 Seismic Wave Form Attributes

The seismic wave form around a seismic extremum can be described through
a set of seismic attributes. The seismic attributes are obtained using recon-
struction techniques of the seismic trace, such that the seismic signal is locally



92 H.G. Borgos, T. Skov, L. Sønneland

(a) (b)

Fig. 2. Reconstruction of a single trace from a seismic section. Image (a) shows the
seismic section, with the seismic trace marked with white. The plots in (b) show
the seismic trace (solid curve) and corresponding reconstructions (dashed curves).
The number of attributes applied in the reconstructions increases from left to right.

described through a limited number of attributes a1, a2, . . . , anA
, being the

coefficients from the reconstruction of the seismic trace. These attributes can
then be used as input to classification, to enable grouping of seismic horizon
segments based on their local wave form.

Figure 2 (a) gives an illustration of an observed seismic trace, and Fig-
ure 2 (b) shows corresponding reconstructions of the trace obtained from the
attribute values at an extremum point along the trace. Several reconstructions
using an increasing number of attributes are displayed. It is observed that
the error term is insignificant within a vertical window around the extremum
point, covering the distance to the next shallower and deeper extrema points
when using a sufficiently large number of attributes. Thus, from one single
extremum point the overall local shape of the seismic signal is well described
through the chosen set of attributes. The quality of the seismic reconstruction
depends on the number of attributes applied, and by increasing the number
of attributes (Figure 2 (b)), a minor error is observed in an increasing vertical
window around the extremum. In this way, the choice of number of attributes
can control how much of the seismic wave form should be taken into account
in the automated interpretation of seismic horizons.

4 Extrema Classification

The shape of the seismic signal along a specific seismic horizon is assumed to
inhabit similar characteristics laterally. This results in similar values of the
attributes along the extrema surface representing the horizon. Classification
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is applied to group the attributes into classes of similar responses. The use
of clustering algorithms to detect natural clusters of attribute responses is
referred to as unsupervised classification. Each resulting class may then rep-
resent a single horizon, or a group of horizon segments with similar seismic
wave form. Classification based on a set of training data, which describes the
attribute responses and thus the wave form of the seismic horizons of interest,
is referred to as supervised classification. The resulting classes then represent
horizon patches of similar seismic wave form as the chosen training regions,
which are likely to belong to the same seismic horizon.

4.1 Statistical Model of Input Attributes

The classification of the seismic wave form attributes is performed in a sta-
tistical framework, by defining a probability density function (pdf) of the
input attributes. Only the set of voxels representing extrema positions in (1),
denoted E = {(x, y, z);E(x, y, z) �= 0}, are included in the classification, and
the notation k ∈ E is used below to represent an element (xk, yk, zk) in E .
The set of nA input attributes is denoted A = {A(x, y, z)} = {Ak}, where
each element k ∈ E has an attribute vector Ak of length nA representing
the seismic wave form around this extremum position. The set of attribute
responses is treated as a stochastic variable, and a statistical notation is ap-
plied, where capital letter A represents the stochastic variable and lower case
letter a a realized value of the variable. In both the unsupervised and the
supervised classification scheme, the underlying model assumption is that at-
tribute vectors within each class follows a multivariate Gaussian distribution
of dimension nA. Correlation between input attributes within a class is ac-
counted for through the covariance matrix of the Gaussian distribution, while
all attribute vectors are assumed to be spatially independent. Let c = {ck},
where ck ∈ {1, 2, . . . , nC}, represent the class indexes in a classification into
nC classes, and denote the mean and variance of the Gaussian distributions
µ = {µ1, µ2, . . . , µnC

} and Σ = {Σ1, Σ2, . . . , ΣnC
} respectively. The mean

vector of one class represents the center of attribute values from this class
in the nA–dimensional attribute space, and the covariance matrix describes
the shape and orientation of the class in the attribute space. The pdf of the
independent attribute vectors is then given as

f(a|c, µ,Σ) =
∏
k∈E

f(ak|ck, µck
, Σck

)

=
∏
k∈E

(2π)−nA/2|Σck
|−1/2 exp

{
−(ak − µck

)′Σ−1
ck

(ak − µck
)/2

}
, (2)

where f(ak|ck, µck
, Σck

) is the marginal pdf of attribute vector Ak. The aim
of the classification procedure is to estimate the unknown parameters of the
pdf (2), i.e., the set of Gaussian parameters µ and Σ, and the classification
indexes c. The estimation is performed based on the likelihood function of
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c, µ and Σ, which is derived by considering the right hand side of (2) as a
function of these parameters, given the observed attribute vectors a.
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Fig. 3. The figure examines graphically the Gaussianity of 5000 attribute vectors
ak = (ak1, ak2), at randomly selected locations k within a seismic cube. The upper
plots show quantile-quantile plots of ak1 and ak2, comparing their empirical quan-
tiles to the theoretical quantiles of a Gaussian distribution (dots). The lines join the
first and third quartiles of the distributions. The lower left figure shows histograms
of ak1 and ak2, with fitted Gaussian distributions superimposed for ak1 (dotted
line) and ak2 (solid line). The lines are almost identical due to normalization. The
lower right figure illustrates a joint frequency plot of ak1 and ak2.

The choice of an underlying Gaussian distribution is validated graphically
in Figure 3, through quantile-quantile plots, histograms and joint frequency
plots of the two first attributes ak1 and ak2. The plots illustrate the Gaus-
sianity of normalized seismic attributes, prior to classification, and at any
location within the seismic cube, not only extrema. This is done to illustrate
that these types of seismic attributes can in general be fitted fairly well by
Gaussian distributions. For a perfect Gaussian distribution, quantile-quantile
plots should produce straight lines. The plots for ak1 and ak2 show a proper
linearity in the center of the distribution, with slightly heavier tails for the
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seismic attributes than a theoretical Gaussian distribution. Similar plots for
higher order attributes, not shown here, produce an ever more pronounced
linearity in quantile-quantile plots. The histogram of ak1 and ak2 show a good
fit with the Gaussian pdfs obtained by estimating the mean and variance of
the two attributes. The joint 2D frequency plot of ak1 and ak2 shows that the
two attributes are highly correlated, supporting the choice of a full covariance
matrix in the statistical classification model.

A joint Gaussian behavior of attribute vectors Ak with nA > 2 cannot
be examined graphically, due to the dimensionality. However, if the attribute
vector Ak follows a Gaussian distribution with parameters µ and Σ, the
univariate variable

Wk = (Ak − µ)′Σ−1(Ak − µ) (3)

follows a χ2 distribution with nA degrees of freedom. Figure 4 illustrates a
histogram of wk, based on 5000 vectors ak of length nA = 8, showing a good
fit between the histogram and the theoretical pdf of the χ2 distribution.
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Fig. 4. A histogram of the variables wk in (3), with nA = 8 attributes and estimated
parameters µ and Σ, is compared to the pdf of the corresponding χ2 distribution
with 8 degrees of freedom (solid line).

4.2 Supervised Classification

In supervised classification, a set of training data Tc = {Ak; k ∈ ETc
} is

provided for each class c = 1, 2, . . . , nC . The training set consists of observed
attribute values Ak from a set of extrema positions k ∈ ETc

belonging to class
c. The training set ETc

should thus be chosen as a set of extrema positions
along one specific seismic horizon. The training data can be picked manually,
or they can be generated automatically as described in Subsection 5.3.

Numerous criteria for supervised classifications exist, see for example [5].
In this work a maximum likelihood criterion is applied for classification. Max-
imum likelihood estimators of the Gaussian parameters µc and Σc within each
class c = 1, 2, . . . , nC are first obtained based on the training data



96 H.G. Borgos, T. Skov, L. Sønneland

µ̂c =
1

|ETc
|
∑

k∈ETc

Ak, (4)

Σ̂c =
1

|ETc
|
∑

k∈ETc

(Ak − µ̂c)2, (5)

and the classification is performed based on these estimated values. The like-
lihood of class ck in point (xk, yk, zk), given the attribute vector Ak and the
estimated class parameters µ̂c and Σ̂c, is given as

f(ck|ak, µ̂c, Σ̂c) =
f(ak|ck, µ̂ck

, Σ̂ck
)∑nC

c=1 f(ak|c, µ̂c, Σ̂c)
. (6)

The corresponding maximum likelihood classification rule is

ĉk = argmax
ck

f(ck|ak, µ̂c, Σ̂c), (7)

classifying the point (xk, yk, zk) into the class giving the highest probability
to the observed attribute values Ak.

4.3 Unsupervised Classification

In the case of unsupervised classification, the classification is aiming at reveal-
ing natural clusters in the attribute set A. This approach is also referred to as
clustering analysis. When running unsupervised classification on the extrema
attribute set, each resulting class may represent a single seismic horizon, or
a group of horizon segments with similar seismic wave form. In unsupervised
classification, both the class indexes c = {ck}, and the Gaussian parameters
µ = {µ1, µ2, . . . , µnC

} and Σ = {Σ1, Σ2, . . . , ΣnC
} are unknown, and must

be estimated in the classification algorithm. This can for example be done by
performing maximum likelihood estimation of the unknowns by applying an
expectation–maximization (EM) algorithm [2] or an agglomerative hierarchi-
cal clustering method [3]. Another approach is to define prior distributions on
c, µ and Σ in a Bayesian framework and solve the inversion using a Markov
chain Monte Carlo algorithm, see [4] and references therein.

In this chapter a maximum likelihood approach is chosen, and an EM-
algorithm is applied to estimate the classification indexes and the Gaussian
parameters describing each class. The maximum likelihood estimates are de-
rived by maximizing f(a|c, µ,Σ) in (2) with respect to c, µ and Σ. The
estimates of each µc and Σc are obtained through differentiation of (2) with
respect to these parameters, and setting the derivatives equal to zero. It can
be shown that the solution to these equations are the expressions in (4) and
(5), with ETc

replaced by Ec, defined as Ec = {k; ck = c}, i.e., the set of all
voxel positions k with classification index c. Thus, the estimators µ̂c and Σ̂c

depends on the unknown classification indexes of the complete set of voxels
E . The maximum likelihood estimator for ck is given as
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ĉk = argmax
ck

f(ak|ck, µc, Σc) (8)

which, except for the normalizing constant, is equal to (6) and (7). The max-
imum likelihood estimators for c, µ and Σ are mutually dependent, forming
a nonlinear system of equations that cannot be solved analytically. Instead
an EM-algorithm is applied to solve the set of equations iteratively. In each
iteration of the EM-algorithm, ĉ, µ̂ and Σ̂ are updated by plugging in the
current values of the parameters in (4), (5) and (8) successively. Alternatively,
the estimate µ̂c in (4) could be replaced by

µ̂c =
1
|E|

∑
k∈E

f(c|Ak, µ̂c, Σ̂c)Ak

and correspondingly for Σ̂c in (5), where the estimates of the Gaussian pa-
rameters of class c are derived from weighted sums, with weights given by
the class likelihood in each data point k.

4.4 Number of Attributes

The number of attributes applied in the extrema classification, nA, controls
the length of the segment of the seismic trace being represented in the classi-
fication (Figure 2). Figure 5 illustrates the effect of increasing the number of
attributes. The figure displays three images of the class index extracted along
an existing horizon, where the white regions are fault zones with lacking hori-
zon interpretation. Ideally, if the class index is constant along the horizon,
the horizon is solely described by this class. Random variations in class index
along the horizon are interpreted as noise, while systematic variations can be
caused by changes in the seismic wave form along the horizon. In Figure 5 the
number of attributes increases from left to right, and it is observed that the
noise level in the class index along the horizon decreases accordingly. Thus,

Fig. 5. Extrema class indexes are extracted along a horizon interpretation, where
the extrema classification was run with two (left), four (center) and seven (right)
attributes. Each color represents one class, and the white regions are fault zones
void of horizon interpretation.
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a higher number of attributes implies a better continuity in the classification
result along a horizon, due to an improved description of the seismic wave
form around the extrema. However, if the number of attributes is chosen too
high, dependencies in the attributes (Figure 3) may lead to covariance ma-
trices Σc that are close to non-singular, resulting in numerical instabilities in
the classification algorithm. The choice of number of attributes should thus
be a compromise between continuity and numerical stability.

5 Geometry Extraction

The output of the extrema classification is a sparse class cube with values only
at extrema locations, so all classified data points are positioned on a seismic
horizon. Each extremum point is assigned a class index, and neighbouring
extrema points are likely to be assigned the same class index, since the seismic
wave form typically is similar from one trace to its neighbour. Thus, starting
in an extremum point with a specific class index, it is possible to track a
connected region of extrema points with equal class index. This tracked region
is referred to as a horizon patch, and serves as a primitive for geometry
extraction from the extrema class cube.

Fig. 6. A set of horizon patches is extracted from a seismic cube using extrema
classification. The patches belong to three different classes, assigned three different
gray scale colors, and are drawn as 3D surfaces expanding out from a vertical seismic
cross section.
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0 0.25 0.5

Fig. 7. The figure compares an existing seismic horizon interpretation (left) with
the corresponding interpretation obtained using extrema classification (center).
White regions are fault zones void of horizon interpretation. The absolute value
of the difference between the two interpretations (right) is mainly within 0.5 sam-
ple.

Figure 6 illustrates a set of horizon patches extracted from a faulted seis-
mic volume using extrema classification. The patches belong to three different
classes, and represent a vertical sequence of three different seismic horizons.
The vertical sequence is repeated in each fault block. If each class repre-
sents one seismic horizon, then this repetition makes sense geologically, since
the geological layer sequence typically would be the same within each fault
block. Thus, the constant vertical sequence of classes laterally across faults is
a strong indicator of consistency in the extrema classification results. Figure 7
gives a further validation of extrema classification results, where a horizon
extracted with this new technology is compared to an existing interpretation
of the same seismic horizon. The difference between the two is mainly within
0.5 sample in the vertical direction.

5.1 Seismic Horizons

Continuous patches of class consistent horizon interpretations extracted from
an extrema class cube can be combined laterally to form a complete horizon
interpretation covering the full area of interest. A class consistent horizon
interpretation then consists of extrema points with a similar shape of the
seismic wave form in a neighborhood around the extrema, which are likely
to belong to the same horizon. Extraction of class consistent interpretations
provides a way to automatically interpret horizons in structurally complex
regions, for example across faults, since lateral combination of horizon patches
is performed based on class index, and not only spatial connectivity.

The unsupervised extrema classification method (Subsection 4.3) has been
applied to automatically extract an overburden horizon from a North Sea
field, offshore Norway. The extrema classification was applied within a sub-
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Fig. 8. A seismic horizon extracted using extrema classification is marked (dashed
line) on a vertical cross section through the seismic cube.

volume of size 191× 461 samples horizontally and 38 samples vertically. The
horizontal dimension is meters, with sample rates of 25m and 12.5m in the
two directions. The vertical dimension is two-way travel-time, with a sample
rate of 4ms. The number of attributes in this classification run was eight, and
the extrema points were classified into eight classes. The number of classes
was chosen in relation to the number of seismic horizons observed within this
vertical interval.

Figure 8 shows the horizon interpretation plotted on a vertical section
through the 3D seismic volume and Figure 9 shows the horizon as a surface
in 3D. The horizon is obtained by combining patches belonging to one class,
this class being consistent throughout the section. Thus, the corresponding

Fig. 9. The extracted horizon from Figure 8 is plotted as a surface in 3D. The
fault network crossing the horizon is visible as discontinuities in the surface.
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horizon has a characteristic seismic wave form that is recognized laterally
through the classification procedure. The mapped horizon has a polynomial
structure, and is interpreted automatically across a number of faults. In the
left part of the vertical cross section in Figure 8, it is observed how the hori-
zon extraction using extrema classification has been able to complete the
interpretation within a number of relatively small, tilted fault blocks. Fur-
thermore, both the positions and offsets of the faults are indirectly mapped
by the extrema classification interpretation. The original horizon interpreta-
tion contained a number of void regions in the interior of the fault blocks,
corresponding to minor classification errors, as well as void regions along the
faults. These regions have been interpolated in Figure 9, in order to display a
full coverage horizon interpretation. The fault network intersecting the hori-
zon is then visible as discontinuities in the surface.

5.2 Seismic Bodies

In the following example unsupervised extrema classification (Subsection 4.3)
is applied to map the extent of high amplitude anomalies observed within an
overburden formation in a North Sea field, offshore Norway. The anomalies
are interpreted to represent volumes of ancient gas stored within a channel
and moraine system in the formation. The top and base of the formation is
interpreted manually in advance, and the extrema classification is run in a
seismic sub-volume confined by these two interpretations. The sub-volume
covers a horizontal region of 711× 446 samples, with a sample rate of 12.5m
in both directions. The vertical extent of the classification volume is up to 50
samples, with an average of 29 samples, and the vertical two-way travel-time
sample rate is 4ms. The extrema points within the formation was classified
into six classes, using eight attributes.

In the example presented in Subsection 5.1, the class of interest defined
a horizon with full lateral coverage. In this example, however, several classes
are of interest, and the classes are occurring as a vertical grouping of horizon

Fig. 10. The figure shows a vertical cross section through a seismic cube (top)
and the resulting extrema class cube (bottom), where classification has been per-
formed within one geological formation. The darkest colored classes correspond to
the high amplitude anomalies observed in the seismic cube, interpreted as channel
and moraine systems containing ancient gas.
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Channel Moraines

Fig. 11. Three dimensional bodies are generated by defining the closure of the
darkest colored classes in Figure 10. A channel and a system of end moraines are
interpreted from these 3D bodies, as marked with arrows and dashed lines.

segments belonging to the same class, as illustrated in Figure 10. Thus, each
class does not represent one unique, consistent horizon in 3D, but collectively
they constitute a 3D body representation of the channels and moraines. The
outlines of these bodies in 3D are defined in Figure 11 as the volumetric
closure of the classes of interest. By examining these bodies in 3D, a clear
channel structure and crescent shaped features resembling end moraines are
observed.

5.3 Fault Displacement Estimation

The examples of horizon patches in Figure 6 and the extracted horizon in
Figure 8 illustrate how automatic interpretations from extrema classification
contain discontinuities along faults. The actual magnitude of the disconti-
nuity, i.e., the fault displacement, can be quantified based on the horizon
interpretation on either side. The extrema classification methodology is now
adapted to fault displacement estimation, by focusing only on horizon seg-
ments close to fault surfaces, instead of extracting the full coverage interpre-
tations of the seismic horizons.

Faults are represented as surfaces, described through a set of coordinates
in 3D, and are extracted from the seismic data in advance ([6, 7]). Horizons
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on one side of the fault surface are first identified automatically as continu-
ous surfaces in the extrema value cube, and attributes extracted along these
horizon segments are used as training data. A minimum size of the extracted
horizons is required, to ensure sufficiently large training sets. Next, extrema
points on the opposite side of the fault surface are classified, and continuous,
class consistent horizon patches are extracted on this side of the fault. The
classification approach is thus supervised with training data automatically
picked, hence no manual effort is needed. The extrema classification results
are applied to match pairs of corresponding horizon patches on opposite sides
of the fault surface. For consistency, the same vertical sequence of horizon
patch classes is required on either side of the fault, and horizon patches out of
sequence are not included in the displacement estimations. All pairs of hori-
zon patches are extrapolated from each side of the fault until the intersection
with the fault surface is reached, and the displacement is calculated as the
distance between the intersection points in the direction orthogonal to the
fault plane. Figure 12 shows a sketch of the fault displacement estimation in
a vertical cross section orthogonal to the fault plane. Figure 13 gives a 3D
illustration of pairs of horizon patches on opposite sides of a fault plane, and
their intersection points with the fault plane.

The displacement distance is measured along the fault plane, thus it pro-
vides an estimate of the dip-slip component of the displacement, not only
a vertical throw estimate. However, since the vertical dimension is often
two-way travel-time and the horizontal dimension is meter, the displacement
should be decomposed into a vertical throw component measured in millisec-
onds and a horizontal heave component measured in meters. Since several
horizon pairs are involved in the displacement estimation, and all horizon
pairs contribute with displacement measurements along an intersection line,

Extrapolation
of horizon patch

Displacement
estimate

Horizon patch

Fault plane

Fig. 12. In a vertical cross section through a fault plane, horizon patches on either
side of the fault are extrapolated into the fault plane (dotted lines). The displace-
ment is measured as the distance between pairs of intersection points belonging to
a pair of matching horizon patches.
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numerous point estimates of displacement are provided for each fault sur-
face. The displacement estimates may vary spatially along the fault surface,
and thus describe both the vertical and lateral change in displacement along
the fault surface. The described procedure can be applied for all estimated
fault surfaces, and constitutes an automatic fault displacement estimation of
a complete fault population.

Fig. 13. Pairs of horizon patches on opposite sides of the fault plane (transpar-
ent), belonging to the same class, are assigned equal gray scale color. Estimated
intersection points between the extrapolation of the horizon patches and the fault
plane are plotted (dots), and the displacement is measured as the distance between
pairs of points from opposite horizon patches.

6 Discussion

Classification of seismic horizons, denoted extrema classification, has been de-
scribed, and has proved valuable for mapping automatically seismic horizons
in structurally complex regions. Furthermore, a new procedure for automatic
fault displacement estimation across pre-interpreted fault surfaces is designed
with the extrema classification as the core methodology. The performance of
the extrema classification method has been illustrated through a set of real
data examples.

The main assumption of the presented methodology is that seismic hori-
zons inhabit lateral similarities in seismic wave form. Similarities in signal
wave form along horizons are revealed through classification of a set of wave
form attributes, enabling grouping of horizon segments. This assumption
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is not always fulfilled, for example when the acoustic impedance contrast
changes due to changing lithology above or below a reflector, or in seismic
tuning regions where the wave form changes due to interference between
closely located reflectors. In these cases one should expect a possible change
of extrema class index along the seismic horizon. However, such a change
of class index may also provide information about the underlying physical
conditions leading to the change in the seismic wave form.

The extrema classification helps detect the most possible lateral contin-
uation of a horizon or structure in complex regions, in particular across
faults. Structural interpretations can be obtained by focusing on a single
class, and extracting automatically class consistent surfaces from the sparse
extrema classification cube. The automatic extraction provides a set of hori-
zon patches, where the structural interpreter is afterwards able to manually
combine the segments into a full coverage horizon interpretation. Horizon
patches obtained through extrema classification also form the basis for auto-
mated fault displacement assessment.

The choice of attributes and the statistical classification algorithms are
not crucial to the extrema classification methodology. In the extrema clas-
sification the seismic wave form attributes are defined as coefficients from a
reconstruction of the seismic trace. These attributes can in general be re-
placed by other set of attributes describing the shape of the seismic trace,
as the classification algorithm itself is valid for any type of input attribute
vectors. Furthermore, the statistical framework can be generalized, and the
Gaussian model in the statistical classification model can be replaced by other
appropriate statistical models. Alternatively, the unsupervised classification
algorithm can be replaced by other clustering algorithms, for example neural-
net approaches. The core of the extrema classification methodology is thus
the choice of the extrema as the primitives for geometry interpretation, and
the classification approach itself for lateral recognition of seismic horizons.
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Netherlands Institute of Applied Geoscience/National Geological Survey and
Sintef Petroleum Research for permission to publish data.



106 H.G. Borgos, T. Skov, L. Sønneland

References

1. H.G. Borgos, T. Skov, T. Randen, and L. Sønneland (2003) Automated ge-
ometry extraction from 3D seismic data. Expanded Abstr., Int. Mtg., Soc.
Exploration Geophys., 1541–1544.

2. G. Celeux and G. Govaert (1995) Gaussian parsimonious clustering models.
Pattern Recognition 28(5), 781–793.

3. C. Fraley (1998) Algorithms for model-based Gaussian hierarchical clustering.
SIAM Journal of Scientific Computing 20, 270–281.

4. C. Fraley and A.E. Raftery (2002) Model-based clustering, discriminant anal-
ysis, and density estimation. Journal of the American Statistical Associa-
tion 97(458), 611–631.

5. R.A. Johnson and D.W. Wichern (1992) Applied Multivariate Statistical Anal-
ysis. Prentice Hall International, Inc., 3rd edition.

6. S.I. Pedersen, T. Skov, T. Randen, and L. Sønneland (2004) Automatic fault
extraction using artificial ants. This volume.

7. T. Randen, S.I. Pedersen, and L. Sønneland (2001) Automatic extraction
of fault surfaces from three-dimensional seismic data. Expanded Abstr., Int.
Mtg., Soc. Exploration Geophys., 551–554.

8. L. Sønneland, P. Tennebo, T. Gehrmann, and Ø. Yrke (1994) 3D model-based
Bayesian classification. Extended Abstr., Eur. Assoc. Expl. Geophys.

9. L. Sønneland, P. Tennebø, T. Gehrmann, Ø. Yrke, K. Boge, and G. Berge
(1994) Volume reflection spectral analysis. Technical report, Schlumberger,
Research & Development, July 1994, 1–17.

10. L. Sønneland, P. Tennebø, T. Gehrmann, Ø. Yrke, K. Boge and G. Berge
(1998) Orthogonal polynomial spectral decomposition. PCT Patent No.
WO/9837437.



Automatic Fault Extraction Using Artificial
Ants

Stein Inge Pedersen, Thorleif Skov, Trygve Randen, and Lars Sønneland

Schlumberger Stavanger Research, P.O. Box 8013, N-4068 Stavanger, Norway

Summary. A high-level fault interpretation workflow using automatically ex-
tracted surfaces is presented. The first step of the workflow is to generate a fault
attribute that enhances the discontinuities in the seismic data. Fault-like surfaces
are then extracted using an algorithm called ant tracking. The surfaces are then
loaded into an analysis tool where the interpreter, by interactively working with the
surfaces, decides on the final interpretation. The interpreter works on two levels in
the analysis tool. Firstly, on the system level, where the fault surfaces are split into
separate systems according to their strikes. Faults that are created at the same time
period typically form a fault system. This separation is geologically meaningful and
gives the interpreter an overview of the structural history of the area. Secondly,
the interpreter groups and modifies individual surfaces within each fault system to
form the final interpretation. The workflow is demonstrated as a case study of two
fields offshore mid Norway.

1 Introduction

In geomechanics and structural geology there is vast evidence - from both
laboratory experiments and field observations - that faults developed when
the differential stress has reached a critical value, are not randomly oriented,
but their orientation is controlled by the direction of the principal stresses [3].
A striking feature is the occurrence of conjugate sets of parallel faults that
often cooperate in accommodating imposed deformations. This feature exists
on any scale, ranging from microscopical size to fault systems of continen-
tal dimensions. Structural geologists use rose diagrams and polar diagrams
to help analyzing these fault systems. We present a procedure for extract-
ing faults automatically from 3D seismic data [4] and propose a change of
paradigm for seismic fault interpretation by allowing the geologist to analyze
fault systems instead of manually mapping individual faults. Analyzing the
fault systems in this manner will help reconstructing the paleo-stress orienta-
tions. This type of information can be valuable e.g. when fracture orientations
of reservoir rocks are being mapped.
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Fig. 1. A fault attribute is generated from seismic data. The ant tracking algorithm
extracts surfaces from the attribute, and the human interpreter works with them in
the structural editing tool. The surfaces are then exported as interpreted surfaces
or written to a cube to produce an enhanced fault attribute.

2 Workflow

The fault interpretation workflow is illustrated in Figure 1. The first step
of the workflow is to generate a fault attribute from seismic data. A fault
attribute enhances spatial discontinuities. Any fault attribute can be used
in the workflow, and a few are mentioned in [5] and [6]. It is important to
note that fault attributes will not only enhance faults in the data; other
discontinuities, like processing effects, channel boundaries, chaotic responses
and internal reflector amplitude variations, will also be enhanced. A bet-
ter attribute can be obtained by preconditioning the data prior to attribute
computation. For example, applying layer-parallel smoothing with edge en-
hancement [7] has proven good results. Fault-like surfaces are then extracted
from the fault attribute by the ant tracking algorithm [4]. Ant tracking will
extract surface-like features from 3D data having orientations within some
predetermined orientation ranges. Fault surfaces are expected to be more or
less vertical, so surfaces having dip between ± 45 degrees from the vertical
can be considered to be likely faults. If there are dipping reflectors, the fault
extraction can be dip guided [5, 7] so that it will only extract events having
some angle to the reflector dip estimates. The detail level and quality of the
surfaces depend on the fault attribute. Manual interaction is provided in the
third step, where the interpreter works with the extracted surfaces in an anal-
ysis tool to create a final interpretation. The surfaces can then be exported
to the database as objects, or they can be written to a cube by marking the
voxels they intersect. The latter solution will produce an enhanced attribute
cube, which is useful in cases where detailed fault mapping produces a number
of fault surfaces that is larger than what the database can handle.
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3 Fault Surface Extraction by Ant Tracking

Extraction of surfaces from fault attributes is nontrivial due to the noisy
nature of these attributes. The surfaces usually appear more like trends than
well-defined, continuous surfaces. In the fault extraction step, only features
that are continuous and likely to be faults are extracted. This is achieved by
using the principles of swarm intelligence.

Swarm intelligence [1] is a term describing the collective behavior that
emerges from a group of social insects. An example is how ants find the
shortest path between the nest and a food source by communicating via
pheromone, a chemical substance that attracts other ants. Figure 2 illustrates
how the shortest path is found.

Fig. 2. (a) Two ants start at the same time at the nest. (b) The ant choosing
the shorter path will arrive at the nest before the ant choosing the longer path.
The shorter path will thus be marked with more pheromone than the longer path,
and hence the next ant, influenced by the pheromone, is more likely to choose the
shorter path.

By encoding fault property expectations as behavior of intelligent soft-
ware agents, we are able to enhance and extract fault-like responses in the
attribute. An agent will act very similar to an ant in the foraging situation
described above, by making decisions based on its pre-coded behavior and
emitting electronic pheromone along its trail. The idea is to distribute a large
number of agents in the volume, and let each agent move along what appears
to be a fault surface while emitting pheromone. Agents deployed at points
where there is no surface, only unstructured noise, or where there is a sur-
face which does not fulfill the conditions for a fault (e.g. a reflector), will be
terminated shortly or immediately after their deployment. Agents deployed
on a fault, on the other hand, should be able to trace the fault surface for a
while upon being terminated. We expect that surfaces fulfilling our expecta-
tions for faults will be traced by many agents deployed at different positions
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in the volume, and hence be strongly marked by pheromone. Noise and sur-
faces unlikely to be faults should be unmarked or weakly marked, and will
be removed by thresholding.

Figure 3 and Figure 4 show some results from applying ant tracking to
fault attributes. Note how noisy responses from chaotic layers in the at-
tributes have been removed and how the fault surfaces have been made
sharper and more continuous.

(a) (b)

Fig. 3. (a) Time slice of a fault attribute (variance) with (b) corresponding ant
tracking results.

The agents make an orientation estimate of the surfaces they are track-
ing. This estimate is stored along with the extracted surface as the surface
normal, and it is hence possible to make selections of surfaces on their ori-
entations. Other surface properties, like the input attribute’s value along the
surface, are also stored, allowing separation of faults on how strongly they
are supported in the input data. The surface properties play an important
role in the structural analysis, and their use will be explained in the next
section.

4 Fault Analysis

In order to obtain a consistent fault interpretation, human interaction is
required. This interaction is provided through a fault analysis tool. The most
important role of this tool is to provide the interpreter with functionality to
validate the extracted surfaces. Since the fault attributes do not only enhance
events due to faulting, surfaces that are not faults will be extracted and have
to be deleted. Second, the analysis tool must provide the interpreter with
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(a) (b)

Fig. 4. (a) Inline section of fault attribute (variance) with (b) ant tracking results.

some surface manipulation functionality. The surface extraction algorithm
may not have been successful in combining surface patches that are clearly
parts of the same surface, and the interpreter may want to group and re-
triangulate these into larger surfaces.

3D visualization is imperative to the analysis tool. Figure 5 shows an
example of 3D visualization of extracted surfaces from a field offshore mid
Norway. The horizontal slice is an enhanced attribute produced by the ant
tracking, mapping all extracted surfaces, and a transparent seismic section.
More about applying the fault interpretation workflow on this data can be
found in [8].

Along with the extracted surfaces, orientation, size and some confidence
measures of the surfaces are stored. These properties are used to make se-
lections among the surfaces. If less detail is desired, the interpreter can use
the size property to remove all small surfaces. By thresholding on confidence
measures, the low confidence surfaces can be removed. Confidence can be
measured as the amplitude of the fault attribute along the surface, or as the
amplitude of the ant tracks [4]. Plotting the surface properties as functions
of orientation may also give valuable information. Averaging the value of the
property in each cell of the polar plot, provides an indication of the property
of the fault system. For example, plotting a confidence measure will indicate
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Fig. 5. The fault surfaces can be displayed as 2D lines on seismic or attributes,
or as 3D patches by double clicking on the 2D lines. A seismic section and a fault
attribute slice from the main field example are displayed together with the fault
surfaces.

which fault systems are strongly supported in the data. A method to estimate
displacement along a fault surface has recently been developed by Borgos [2],
and applied on the extracted surfaces. A displacement estimate will then be
attached to each surface and can be used for surface filtering like the other
properties.

Fig. 6. (a) Fault systems can be seen as clusters being symmetrical around the
center of the polar plot. (b) The surfaces can be split into fault systems by marking
regions on the polar plot. (c) Surface patches can be combined and retriangulated
into larger surfaces.
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The orientation is represented by the surface normal given in spherical
coordinates, and can be plotted in a polar plot. It is known that faults, due
to the direction of the stress field that once created them, typically appear in
systems, i.e., having the same strike and conjugate dips. In a polar plot, such
a system will appear as clusters symmetrical around the center, as can be seen
from the polar plot in Figure 6. The interpreter can make surface selections
directly from the polar plot (Figure 6 (b)). By selecting the clusters, the
surfaces can be split into separate systems. Without the interference of other
surfaces, the interpreter can then validate each system and consider if they
are likely fault systems, or if they are due to e.g. coherent noise or processing
artifacts in the data. Having studied the various systems, the interpreter can
keep the systems that are likely to be due to faulting, and remove those that
are not. The interpreter completes the interpretation by working (group and
triangulate, smooth, delete) on individual surfaces within each fault system
(Figure 6 (c)). By working with the surfaces both individually and in terms
of systems, the interpreter has an overall impression on the fault network and
the flexibility to change individual surfaces.

5 Data Examples

The workflow has been applied to two fields offshore mid Norway, where the
motivation was to obtain an objective fault interpretation and to enhance
small-scale heterogeneities produced by small faults. The two fields are lo-
cated close to each other and are covered by the same data set (Figure 7).
The first field is defined by a horst structure with relatively horizontal lay-
ers. The simple geometry makes it easy to verify the automatically extracted
internal faults with manual interpretation in the seismic data. The second
field, which is the main focus in this work, is defined by a large and strongly
rotated fault block. This field is structurally much more complex with locally
intensive internal deformation.

From the horst structure (the first field), the overall impression is that the
automatic method is able to track reasonable continuous surfaces of the in-
ternal faults. Still, some structural editing is needed. From the seismic section
displayed in Figure 8, several of the surfaces (displayed in 2D) clearly repre-
sent offsets and/or flexures of the seismic reflections. Other surfaces represent
only subtle flexures or dimming of the amplitude, and are consequently more
uncertain. The result is considered to give a good qualitatively reference for
the rotated block, regarding tracking of faults of the same size and the data
quality.

The rotated block is more deformed, and a high number of surfaces were
tracked. To simplify the editing, the surfaces were organized after the fol-
lowing properties: (1) The surfaces were subdivided into several work-areas
based on inline intervals of the seismic cube. (2) The surfaces were subdivided
into five orientation populations. (3) The surfaces were filtered by a top and
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Fig. 7. 3D visualization of automatically extracted fault surfaces from the two
reservoir fields, offshore mid Norway (left). A polar plot shows the orientation
distribution of the extracted surfaces (right). Properties of the surfaces are displayed
in the histogram below the polar plot.

Fig. 8. Edited faults in the horst structure, displayed in 2D. The interpreter has
to decide which faults are real, and which fault segments need to be combined.

a base horizon (Figure 10), meaning all potential faults cutting the reser-
voir zones. (4) The surfaces were filtered by size, meaning that the smallest
surfaces were considered to have too low confidence.

To preserve the objectiveness from the ant tracking as good as possible,
the editing was performed in the following way. Surfaces that were obviously
not representing faults, such as surfaces following a layer boundary or sur-
faces with unreal geometry, were deleted. Surfaces that intersected and had
the same orientation were anticipated to represent the same fault and were
thereby grouped and retriangulated. After analyzing each of the subsets, they
were added back together. This implied that the structural editing was re-
considered with the same criteria (surfaces that cross or merge). After the
last editing iteration, the final result was considered to represent a detailed
network of internal faults.
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Fig. 9. Edited faults from the rotated fault block displayed with a seismic inline
and a fault-attribute time slice (left). Pole plot of the edited internal faults in the
rotated fault block (right).

Fig. 10. A top and a base horizon can be used to focus the structural editing to a
rock volume, e.g. reservoir zone. This means that every fault surface that cuts this
volume is kept while others are filtered out.
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6 Conclusion

The workflow outlined represents a paradigm shift in seismic fault interpre-
tation. Automatic surface extraction results in a highly detailed mapping
of discontinuities. First principles from structural geology and geomechanics
state that faults occur in conjugated sets of parallel faults. The workflow
enables the interpreter to operate on such fault systems, as well as on indi-
vidual fault surfaces. The extracted surfaces needs to be edited in order to
obtain the final interpretation. The workflow reduces interpretation time and
increases the level of detail.
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Summary. The main mathematical techniques used in building geological mod-
els for input to fluid flow simulation are reviewed. The subject matter concerns the
entire geological and reservoir simulation modelling workflow relating to the subsur-
face. To provide a realistic illustration of a complete fluid flow model, a short outline
of two-phase incompressible flow through porous media is given. The mathematics
of model building is discussed in a context of seismic acquisition, processing and
interpretation, well logging and geology. Grid generation, geometric modelling and
spatial statistics are covered in considerable detail. A few new results in the area
of geostatistics are proved. In particular the equivalence of radial basis functions,
general forms of kriging and minimum curvature methods is shown. A Bayesian
formulation of uncertainty assessment is outlined. The theory of inverse problems
is discussed in a general way, from both deterministic and statistical points of view.
There is a brief discussion of upscaling. A case for multiscale geological modelling
is made and the outstanding research problems to be solved in building multiscale
models from many types of data are discussed.

1 Introduction

1.1 Model Based Decision Making under Uncertainty

Hydrocarbons are found in rocks at depths of up to five or more kilometers
below the surface of the Earth. Temperatures can be higher than 130 oC and
pressures can reach the order of 1000 atmospheres. The rocks may be more
than 100 million years old.

Finding and recovering hydrocarbons uses knowledge from most of the
geosciences, physics and engineering. The focus of this article is upon the
contribution of mathematics to these disciplines in building, analysing and
applying models of fluid flow in the subsurface.

Hydrocarbon recovery involves drilling wells into the rock. Usually these
wells are cased with metal tubing. The tubing is perforated at various places,
called completions, to allow flow in and out of the well. Some wells are injec-
tors in which fluid, usually water and sometimes gas, is pushed into the rocks
to force other fluid toward the producing wells. Designing and operating the
system of wells, and the associated surface facilities is an expensive and risky
activity.
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Reservoir engineers, who decide where to drill, how to complete and how
to operate the wells, work in conditions of considerable uncertainty. Although
the dominating uncertainty is the price of oil, uncertainties concerning sub-
surface structure and properties are under some control. This control involves
assimilating various measurements into models. Sometimes only one model
will be constructed, but usually several models, all incorporating the available
data, are made. Some models will be optimistic, some pessimistic, but all are
designed to characterise the reservoir and the uncertainty about the reser-
voir. There is a definite trend toward ensemble reservoir forecasting, where
a wide range of models are developed that sample probability distributions
of reservoir parameters. Such stochastic models represent, in some sense, an
infinite number of deterministic models.

The models may be simple conceptual models in the mind of an engi-
neer, sophisticated but relatively simple mathematical models that can be
understood with analytical methods or more complicated models that in-
volve numerical approximations and computer simulation. The idea is that
an optimal decision over the models will be optimal in the real world.

The following explains how geological and flow simulation model building
takes place.

1.2 About this Chapter

The following chapter is mainly a review. However, there are a few new
mathematical results in Section 4, and some personal opinions of the author,
about the current state of the art and possible ways to progress, are expressed
throughout.

At the centre of the decision making workflow is the fluid flow model. This
model is normally solved using numerical methods. The review describes a
simplified version of such an approach so that the focus - building the flow
model input - makes sense to a general reader.

Fluid flow models require quantitative description of all input parameters.
These include functions of spatial position such as porosity and permeability.
Techniques for building quantitative descriptions are reviewed in the follow-
ing.

The following material is a mixture of general background, mathematical
detail and a guide to the literature. It is hoped the review adds some extra
ingredients helping relate the referenced articles and books to one another to
develop a coherent story.

Structure of the Chapter: This chapter is written with a view to helping
engineers, mathematicians, geoscientists and others, gain an appreciation of
the more mathematical parts of an interdisciplinary subject.

The main stages in the workflow are to gather seismic observations, take
cores from wells, to log wells, to study outcrops chosen via examination of
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cores, to perform well tests, and to incorporate production history into the
models. All stages involve direct interaction with data. To use the data there
are intermediate stages involving geometric modelling, property interpolation
and assimilation of measurements into the models.

It is impossible to devise a structure, following the workflow used in oil
companies and oil service companies, that is comprehensible to all readers
without excessive use of footnotes and digressions. The structure of the fol-
lowing is thus designed to enable a linear development of the subject.

The structure follows an order where, at the beginning, essentially isolated
subjects are reviewed. In the later sections these are brought together in a
description of geological and simulation modelling. The first major topic, in
Section 2, is flow through porous media and reservoir simulation. Then, in
Section 3 the topic of grid generation is covered. Following this, in Section 4,
the subject of spatial statistics, also known as geostatistics, scattered data
interpolation or property modelling is reviewed in some depth. Section 4 is
at the centre of the chapter and places the most demands upon the reader.
This section contains some new results that link different methods together.

In Section 5 a general discussion of approaches to inverse problems is
provided. The geoscience aspects of the chapter start in Section 6 where the
various types of field measurements are described. With all the main concepts
in place, Section 7 describes how geological models are constructed. This sec-
tion on geological modelling also contains additional material on grid gener-
ation and spatial statistics that is special to geological modelling. Section 8
covers the topics of upscaling and upgridding - the theory of approximating
detailed models with less detailed models. Upscaling and upgridding are cur-
rently necessary, in general, if a flow simulation is to be performed with the
geological model as input. Of course, upscaling is always needed when it is
necessary to relate data on one scale to data on a different scale.

The topic of history matching, where the inverse problem for reservoir
simulation is tackled is the subject of Section 9. This builds on the general
discussion of inverse problems given in Section 5. In Section 10 an outline
analysis of possible workflows is given. The concluding discussion, Section 11,
lists some of the suggested open problems and fruitful areas for further re-
search and finishes with a summary of the main conclusion.

This structure, it is hoped, will help readers, depending on their back-
grounds and their objectives, to read this chapter in a selective and perhaps
nonlinear manner.

Summary of the Argument: With a view to building models suitable for
flow simulation, the current approach is explained and criticised. The current
approach involves building as detailed model as possible of the whole system.
The detailed model is then coarsened by averaging out detail that cannot be
resolved in flow models.

The difficulties with this approach are that (i) the initial level of detail
is insufficient to resolve all that is important and (ii) the averaging process



122 C.L. Farmer

leads to inaccurate coarse models even if the fine model is, itself, accurate.
This is a dilemma; on the one hand the model is not fine enough and on the
other hand it is too fine.

A way around this dilemma, at least for stable flow processes, is suggested
in which exceptionally detailed models, but only in the vicinity of the wells
are subjected to careful analysis of their scaling behaviour. It is suggested
that the coarse model is then constructed by interpolation (stochastic or
deterministic) of the scaled local models.

2 Flow Through Porous Media and Reservoir
Simulation

This section, after some general remarks, outlines the theory of two-phase
flow through porous media. The intention is to introduce readers to a con-
crete example for later discussion on inverse modelling, scale dependence and
heterogeneity. This example also motivates ideas and activities involved in
geological and reservoir simulation modelling. Detailed reviews of fluid flow
can be found in [11, 37, 50, 128]. For information on reservoir engineering in
general and more about reservoir simulation see [9].

Some Remarks about Continuum Mechanics: Continuum mechanics stud-
ies deformation and flow of material bodies defined as continua of mate-
rial points. This idealisation is analogous to idealisations in geometry where
properties of shapes and surfaces, defined by simple rules or equations, are
analysed. Indeed some scientists view continuum mechanics as a body of the-
oretical knowledge of the same status as other branches of mathematics such
as differential geometry. If one takes this view, then it is necessary that the
axioms of the theory are not regarded as a priori truths but rather as assump-
tions characterising a possible material that might be found to approximate
the behaviour of some physically real material.

Continuum theories characterise the state of a physical system using
scalar, vector and tensor valued functions of position x, a three dimensional
point, and time t, a real number. These functions sometimes correspond to
observable characteristics, such as velocity or position, and other times to
more indirectly observable characteristics such as stress. Indirectly observable
fields are theoretical constructs of a theory, and need the theory to determine
their values. Note that in the following, the symbol x is used to represent a
3D point, an N -D point or the x-component of a 3D vector, x = (x, y, z) or
a 2D vector, x = (x, y); the particular meaning of the symbol is always clear
from the context.

The principles of continuum theory fall into two classes: balance laws, per-
taining to wide classes of materials, and constitutive laws defining particular
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materials. Wide classes of system are subject to balances of energy, momen-
tum, angular momentum, and mass, but only special systems are subject to
constitutive laws such as Fourier’s law (heat conduction) or Darcy’s law (flow
through porous media). The use of the word law does not imply a universal
truth; it merely distinguishes an important component of a mathematical
model.

The Balance Laws of Porous Medium Flow: Porous medium flow theories
only use balance laws of mass and energy. This introduction will only define
objects using a mass balance.

The following considers flow of a fluid with two phases in which there
is no mass transfer between the phases. The phases are called phase-A and
phase-B. One might picture them, for example, as water and oil. The fluids
are characterised by pressures pA = pA(x, t) and pB = pB(x, t), two scalar
functions of position and time. The phase densities, ρA and ρB are generally
functions of the phase pressures, so that ρA = ρA(pA) and ρB = ρB(pB). The
rock is characterised by the porosity φ = φ(x), a function of position such
that the integral

Vf =
∫

V

φ(x)d3x

is interpreted as the volume of space within the volume V accessible to fluid
flow. In practice one must use sufficiently large volumes V, so that the gran-
ularity of the porous medium does not significantly influence volume values
obtained in measurements. A more general model might make the porosity a
function of the average pressure p = 1

2 (pA + pB). Yet more general theories
use a complete elastic model.

Introducing the function S = S(x, t), called the saturation of phase-A,
the integral

MA(t) =
∫

V

ρAφ(x)S(x, t)d3x

is interpreted as the mass of phase-A in the volume V in the pore space Vf .
By definition the phase-B saturation is 1 − S(x, t).
Volumetric flux vectors, uA and uB, are defined so that the surface inte-

grals, over the surface ∂V of V , where n is the outward pointing unit normal
vector, ∫

∂V

ρAuA · nds

and ∫
∂V

ρBuB · nds

are interpreted as net mass rates of flow through the surface of the volume
V . Finally introducing the source terms qA and qB , the mass balance laws
are,
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d

dt

∫
V

ρAφ(x)S(x, t)d3x +
∫

∂V

ρAuA · nds =
∫

V

qAd3x,

d

dt

∫
V

ρBφ(x)(1 − S(x, t))d3x +
∫

∂V

ρBuB · nds =
∫

V

qBd3x.

Darcy’s Law and Generalisations: Balance laws provide a framework requir-
ing further assumptions before interesting or useful mathematical structures,
to be used as models of real systems, can be finalised.

Now assume, for each phase, the generalised Darcy’s law, due to Muskat
and his associates (see the book by Bear [16] for the Muskat and other refer-
ences of historical interest),

uA = −kkA

µA
(∇pA − ρAg∇h),

and
uB = −kkB

µB
(∇pB − ρBg∇h).

In these equations k is a tensor valued function of position called the perme-
ability, kA = kA(S, x) is the scalar valued relative permeability of phase-A and
µA its viscosity. Similar definitions apply to phase-B. The function h = h(x)
is the depth of the point x below some horizontal datum plane and g is the
gravitational acceleration. In general k is a second order symmetric tensor.
However, it is very convenient when writing simulators or upscaling pack-
ages, to approximate k as diagonal in the selected coordinate system. This
assumption is made here, as the use of tensors is not central to our topic.
(Note, however, that the wider use of tensors by geologists when building
geological models, could reduce the eventual resolution requirements.) The
relative permeability of phase-A is a monotonic increasing function of S with
values in [0, 1] that must include zero. The relative permeability of phase-B
is a monotonic decreasing function of S with values in [0, 1] that must also
include zero.

Capillary Pressure: The system of equations is closed by the capillary pres-
sure function pc = pc(S, x) such that

pB − pA = pc(S, x).

The capillary pressure function is a monotonic function of S, often with
regions of near zero or near infinite gradient with respect to S. Capillary
pressure differences have their origin in surface tension effects, and in some
explicit forms of the capillary pressure function the surface tension appears
as a parameter. In most applications of continuum theory to porous medium
flow there is no need to consider a microscopic explanation and the capillary
function is measured in the laboratory or inferred from field data.
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Phase Behaviour: In more general models there can be three or even more
phases with mass transfer between phases. For example the black oil model is
a three component system of oil, gas and water components separating into
three phases; oleic, gaseous and aqueous. Gas can move between the oleic,
gaseous and aqueous phases. The oleic phase is a mixture of oil and gas, the
aqueous phase a mixture of water and gas, and the gaseous phase is just gas.

Compressible Single Phase Flow: Single phase flow is of theoretical and prac-
tical importance. In this simpler model there is only one phase so that a single
balance law, for phase-A say, and a single constitutive equation, the classical
Darcy’s law

uA = − k

µA
(∇pA − ρAg∇h)

are used. Note that the relative permeability is not required in this model.
The single phase compressible flow model forms the basis of much of the
theory of well and flow-based formation testing.

Incompressible Single Phase Flow: In an incompressible flow without sources,
and with constant permeability the pressure is a solution of Laplace’s equa-
tion.

Formulations: The equations of flow through porous media are generally
too complicated to have exact solutions in analytical form and numerical
methods must be used. There are special cases, however, of great theoretical
interest that are valuable for benchmarking numerical methods and validating
computer implementations. As part of the process of deriving a numerical
method it is sometimes useful to reformulate the differential equations to
clarify the mathematical structure. It is also useful to relate the theory to
diffusion, convection or wave propagation, for which there are models with
canonical interpretations. To illustrate this idea, and to derive results needed
in a later section, the reformulation of incompressible, two-phase flow will be
developed. For simplicity, the case without sources is studied.

For reference, the equations as they arise naturally from the balance law
and constitutive equations, are called the natural formulation. The derived
formulation will be called the pressure-saturation formulation.

In terms of the average pressure, p, define

pA = p − pc

2

and
pB = p +

pc

2
.
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Then the phase fluxes are given by

uA = −λAk(∇p − 1
2
∇pc − ρAg∇h)

and

uB = −λBk(∇p +
1
2
∇pc − ρBg∇h),

where the notation λA = kA

µA
and λB = kB

µB
has been introduced. λA and λB

are known as mobilities.
Multiplying the expression for uA by λB and the expression for uB by

λA, subtracting one equation from the other and substituting uB = u − uA

where the total flux, u, is defined by u = uA + uB , it follows that

uA = fAu + fAλBk∇pc + fAλBk(ρA − ρB)g∇h,

where the fractional flow of phase-A,

fA =
λA

λA + λB
,

has been introduced.
By adding the mass balance equations, and substituting Darcy’s law, one

finds that

∇ · u = 0

and

u = −k(λA + λB)∇p + k(λA − λB)
1
2
∇pc + k(λAρA + λBρB)g∇h.

Substitution of the last equation for the total flux into the zero divergence
condition provides an elliptic equation for the total pressure, p.

Substitution of the equation for the flux of phase-A into the phase-A mass
balance gives the equation

φ
∂S

∂t
+ ∇ · (fAu) + ∇ · (fAλBk(ρA − ρB)g∇h) = −∇ · (fAλBk∇pc).

This last equation, for a given flux u, is a parabolic equation for the satura-
tion, S. In the limit of high flow rates, the flux term on the left dominates
the capillary diffusion term on the right, and so the diffusion term is often
neglected. There are, however, subtleties involving boundaries and discon-
tinuities that merit further investigation regarding the neglect of capillary
effects at high flow rates.
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In the yet further specialisation of neglecting gravity effects one arrives
at the celebrated Buckley-Leverett equation, [28],

φ
∂S

∂t
+ ∇ · (fAu) = 0.

There is not enough space to describe the properties of this equation. Suffice
it to say that the Buckley-Leverett equation has shock-like solutions, where
the saturation front is a wave propagating through the reservoir. This com-
bination of an elliptic equation for the total pressure and a parabolic, but
nearly hyperbolic equation for the saturation, gives rise to great mathemati-
cal interest in two-phase flow though porous media.

For further discussion of the pressure-saturation formulation see [128].

Notes on Dual Porosity and Dual Permeability Models: Systems with two
or more distinct types of flow path such as (i) fractures and matrix blocks
or (ii) high porosity, low permeability inclusions in a moderate porosity and
permeability background, can be modelled as a single spatially rapidly vary-
ing, heterogeneous continuum or as two interpenetrating slowly varying con-
tinua. In dual porosity models, all flow takes place in one of the continua and
the other acts as a spatially distributed source or sink. In a dual permeabil-
ity model, flow can take place in both continua with mass transfer between
them. Such models are a practical way for predicting behaviour in systems
that have small length scale heterogeneities possessing different characteristic
time scales from their surroundings. The idea was introduced in the classical
paper [14]. Dual porosity and dual permeability models are usually used for
fractured reservoirs, but they could have application in a more general way
[23] to reservoirs displaying two or more local time scales.

Numerical Methods for Fluid Flow Simulation: The main classes of tradi-
tional numerical methods are: finite difference methods, finite element meth-
ods, finite volume methods, spectral methods and pseudo-spectral methods.
When applied to the saturation equation in the pressure-saturation formu-
lation, the important device of a moving coordinate system has sometimes
been tried.

Most numerical methods work by introducing a grid of points or cells in
the 3D space occupied by the reservoir model, and a discrete series of time
steps, tn.

It is assumed that the reader has at least a basic knowledge of numeri-
cal methods. The next paragraphs give an overview of the properties of the
different methods.

The finite difference technique replaces the differential operators in the
partial differential equation formulations with difference operators. For porous
media flow studies, this is almost never done, except possibly in situations
where the properties are constant. As there exists no variational principle for
the full two-phase flow equations, the finite element method must be used
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in the Galerkin approach. In its simpler forms, this uses a piecewise linear
trial function and orthogonalises the residuals against localised basis func-
tions. Finite element methods can be made to work, but there are suspicions
regarding the robustness of a pure finite element method when applied to a
hyperbolic equation. Spurious wiggles appear near shock fronts and produce
non-physical values which, in turn, cause problems when passed as arguments
to relative permeability or capillary pressure functions.

The finite volume method, which returns to the balance equation form
of the equations, where one level of spatial derivatives are removed is the
method of choice; always for the pressure equation and nearly always for the
saturation equation. Commercial reservoir simulators are, with the exception
of streamline simulators, entirely based on the finite volume method. See [11]
for some background on the finite volume method, and [26] for an introduc-
tion to the streamline method. The robustness of the finite volume method,
as used in oil reservoir simulation, is partly due to the diffusive nature of
the numerical error, known as numerical diffusion, that arises from upwind
difference methods. An interesting research problem would be to analyse the
essential role that numerical diffusion might play in the actual physical mod-
elling process; particularly in situations with unstable flow. In the natural
formulation, where the character of the problem is not clear, and special
methods applicable to hyperbolic, or near hyperbolic problems are not ap-
plicable, the finite volume method, in the opinion of the author, is the most
trustworthy approach.

Finally there are spectral and pseudo-spectral methods [75] which use a
global basis related to Fourier or Chebyshev expansions. The order of accu-
racy is O(N) in the number of nodes. In simple geometries the method is of
great power, at least for the hyperbolic equation. It has not to our knowl-
edge been tried on the pressure equation of reservoir modelling. One might
expect difficulties relating to the discontinuous nature of permeability, but
these might be surmountable. The pseudo-spectral method mixes working in
Fourier space and real space. In this way it is possible to apply spectral-like
methods to problems with non-polynomial nonlinearity. The pseudo-spectral
method, which uses spectral interpolation on a grid, is slightly less accurate
than a spectral method although it is of the same order of accuracy. How-
ever, the pseudo-spectral method is more efficient and also simpler than the
spectral method [24].

Classification of Simulation Methods by Time Stepping Scheme: Commercial
flow simulators generally discretise time derivatives using a first order finite
difference formula (Euler’s method). The time derivative thus involves the
difference of functions at the end and at the start of each time step. All other
terms in the equations are discretised to involve functions evaluated at the
start and the end of each time step. The pressure always appears at the end of
the time step and one says that the pressure is implicit. Saturations appear
at the end of the time step in the fully implicit approach. The saturation
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only appears at the start of the time step in the implicit in pressure, explicit
in saturation method (IMPES). When some regions of the flow domain are
IMPES and some are fully implicit, and the regions are modified during the
simulation, then the time stepping is said to be the adaptive implicit method
(AIM).

Generally speaking, the more implicit is the simulation method, the more
stable is the scheme. The more stable schemes can take longer time steps
without spurious, growing, transients. However, stability is usually accompa-
nied by loss of accuracy.

There are many variants on these ideas. For example, one can form a
scheme in the pressure-saturation formulation where the pressure is implicit,
as usual, but in the pressure equation the saturation is evaluated at the start
of the time step, and in the saturation equation the scheme is fully implicit in
all variables. This gives improved stability compared to the IMPES scheme,
but it is not as stable as the fully implicit method.

Finite Volume Methods: The finite volume method, when the permeability
tensor is diagonal in the selected coordinate system, approximates the pres-
sure and saturation functions as piecewise constant in each grid block. The
flux components are assumed constant in their related half-cells. Thus when
two cells are joined by a face, the related component of flux is assumed to
be the same each side of the face. The balance laws are invoked separately
on each grid block, and are discretised in time either by an explicit or fully
implicit first order Euler scheme or other variant as discussed in the previous
subsection.

The final expression for the numerical flux uses the central difference
approximation to ∇pA − ρAg∇h. When the permeability tensor is diagonal,
for the x-component say, Darcy’s law can be arranged to read

ux
A

kx
= −λA(

∂pA

∂x
− ρAg

∂h

∂x
),

where a superscript notation is used to denote the x-components of flux and
the tensor. In the central difference approximation λA is assumed constant
over the two half-cells adjoining a face with a value equal to that in the cell
which is upstream of the face. The upstream direction is determined from the
sign of ∂pA

∂x − ρAg ∂h
∂x . The device of using the upstream mobility is necessary

for numerical stability. However, it does not take into account any vector
attributes of the information flow direction. For this reason the numerical
scheme can exhibit grid orientation effects, where results are sensitive to the
grid used, and may not converge under grid refinement. This is particularly
so when the flow is physically unstable. Some further detail about the finite
volume scheme is given in [58], and for a full description, [11] is recommended.

Streamline Methods: For some years, originating with [69] there has been
interest in applying the method of characteristics to the solution of the hy-
perbolic equation. Such methods do not possess a local mass conservation
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property, as is the case with the finite volume method, but, nevertheless,
when applicable they are spectacularly more accurate than finite volume
techniques. This is particularly the case for miscible displacement, which is
analogous to using straight line relative permeabilities. Here the character-
istics are the streamlines of the velocity field, and so points distributed in
the volume of interest move in the direction of the local total velocity, and
carry a constant, or perhaps slowly changing, saturation value. For a detailed
review of these moving point methods see [54].

The paper [130] describes a method of characteristics accounting for shock
waves. In one dimension the two-phase flow problem can be solved using
characteristics even with capillary pressure effects. In two dimensions the
situation is more difficult as a result of diffraction of characteristics at per-
meability discontinuities. Other than [130] there was no progress in applying
methods using characteristics on the full two-phase flow case, with general
relative permeability curves. However in the paper of [26], the idea of sim-
ply solving the Buckley-Leverett equation along pre-calculated streamlines
was introduced. This has led to a whole new class of numerical methods,
the streamline methods. There has not been much rigorous analysis of the
convergence of these schemes, and some people are of the view that they are
not proper numerical methods. However, their simpler and older cousins the
moving point methods can be brought into the fold of rigorous approaches
(even when diffusive effects are included) and so it may not be long before
the streamline method is also rigorously analysed. (For a proof that variants
of the moving point method do converge see [53].)

Streamline methods are very fast compared to fully implicit and IM-
PES methods. This, however, has little to do with their streamline character
but more to do with their close similarity to implicit-in-pressure, implicit-
in-saturation methods, with the additional feature of very large time steps
between updates of the pressure, and many small time steps that update the
saturation between the pressure updates.

Instability and Viscous Fingering: The main method of secondary oil recovery
injects water into oil reservoirs to push oil towards the producing wells. When
the viscosity of the water is less than that of the oil, any small perturbation
in the shape of the oil-water front is unstable. Indeed, the shorter wave-
length disturbances can grow faster than longer wavelengths, until damped
by nonlinear effects. This phenomenon, known as viscous fingering, makes the
prediction of the fluid flow even more difficult. The viscous fingering insta-
bility is closely related to the famous Hele-Shaw problem upon which there
is a large mathematical literature [86].

The Effects of Heterogeneity: Natural rocks are generally very heterogeneous
in the spatial distribution of their properties. There are usually at least three
length scales in the variations of permeability. At the lamination scale of
centimeters, at the layer scale of meters, and on areal scales of 10’s of meters.
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It is impossible to resolve all of these scales in detail, and so it is necessary
to choose a cut-off length scale in any particular modelling exercise, and all
phenomena on a scale below the cut-off must be modelled by the appropriate
assignment of the properties that appear in the equations.

Different values of the cut-off imply, in general, different values of the
properties in the equations. Sometimes, even the form of the equations must
be modified for different values of the cut-off length scale.

Sometimes there might be actual or interpreted data that provides a de-
scription on some small scale. Then it becomes essential to find a model that
only predicts the larger, tractable, scales by a process of upscaling.

The Structure of a Reservoir Simulator: A reservoir simulator is software for
solving the porous medium flow equations with detailed models of the spa-
tial distribution of rock properties, detailed models of the thermodynamics
of phase behaviour, of the wells and how the wells connect with each other
through surface networks. Further, a reservoir simulator will have built-in
support for optimisation software in that derivatives of specified flow diag-
nostics, such as well rates, or masses of chemical components in specified
volumes, with respect to a variety of parameters can be computed.

Thus a simulator is a complicated item of software. The simulation of
fluid flow through rocks is just a small part.
The Assembly Stage: The simulator starts from the discrete nonlinear equa-
tions relating the state of the reservoir at one time step to the values at
a previous step. These equations are linearised using Newton’s method for
nonlinear equations. Experience shows that simulators are more robust when
linearisation derivatives are found analytically, rather than numerically. The
derivatives have to be chained through the thermodynamics in the reservoir,
up the wells and into the separators.

The result of linearisation is a large, mainly sparse, system of linear equa-
tions which are generally non-symmetric. Any significant departure from
sparsity arises from coupling of geometrically distant parts of the reservoir
along wells or large, explicitly modelled, fractures [98].
Linear Solvers: Although general purpose solvers exist, major improvements
in efficiency can be gained by exploiting structural features of the linear equa-
tions that are particular to reservoir simulation. The key parts of any linear
solver are (i) a method of pre-conditioning, essentially an approximation to
the system of equations that can be solved directly, but without storage or
speed problems (ii) an iteration scheme.

For many years the standard preconditioner has been the method of
nested factorisation due to [8]. The iteration scheme of choice, based on well
known approaches to nonlinear optimisation, has been the orthomin method
of [153]. Only recently have there been challenges to nested factorisation from
multigrid methods and domain decomposition methods. Deeper analysis may
lead to improvements on basic orthomin. (See [134] for a complete overview
and [150] for a review of multigrid.)
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Multiscale Simulation Techniques: Recent developments in geological mod-
elling have led to a need for simulations on models so large that linear solvers
cannot operate without virtual memory. One approach to this problem is up-
scaling, another is the use of multiscale simulation. Upscaling is essentially an
averaging method that can be performed separately from simulation. Thus
upscaling is usually done in another application, the model generator itself or
a special purpose model translator. Multiscale simulation is more drastic, at
least in its most promising forms. Here instead of assuming in each grid cell
that the pressures and fluxes are constant, or possibly linear plus a constant,
the variables are complicated functions of position, calculated from small-
scale simulations. This technique, introduced by [91] is the current focus of
world-wide research efforts [94].

Monte Carlo Simulation: Under most circumstances, models that are im-
plied by data are non-unique. Many different models integrate the same data.
Hence a probabilistic description is appropriate. This is reviewed in detail
later. However, it requires the results from multiple simulations to assess the
implied statistics of the diagnostic functions.

As of now, the only practical approach when dealing with nonlinear sys-
tems with stochastic input, is to sample the input and then run the simulator
to gather a sample of the diagnostics. In practice people use rather small sam-
ples, but numerical experiments show that many samples are needed if the
mean and the standard deviations of the output are to be estimated with any
accuracy.

One answer is to use smaller, less detailed models, so that many samples
can be obtained. More research is needed to establish optimal workflows
regarding this problem.

The Bayesian Analysis of the Output from Large, Complex, Computer Codes:
In practice one is faced with having to guess the answers to difficult technical
problems. This is formalised in the Bayesian approach to statistics. Some
background knowledge is needed to enable results to be guessed to some
reasonable level of accuracy. For example, this knowledge might be based
on large numbers of coarse grid simulations. Then one can form a rational
view of the statistics of the output. A few detailed simulations can then
be performed, that through the application of Bayes’ rule can be used to
update our prior probability assessment. This is a new, exciting approach,
to the analysis of simulation output and has been explored in [38, 99, 100].
Note that this application of Bayesian statistics is quite distinct from the
application to the evaluation of uncertainty arising from measurement error
and under-determination.
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3 Grid Generation

A grid is a decomposition of some volume, Ω, into a finite set of subvolumes,
Ωb such that (i) the union of the subvolumes is approximately equal to the
parent volume and (ii) most of the intersection of the surfaces of any pair
of subvolumes is included in the intersection of their respective volumes.
The subvolumes are called cells or blocks. Thus one is allowing some finite
volume of overlap between subvolumes and also some holes provided that the
offending volumes are small. Ideally the volume of overlap and of holes will
be zero, but in complicated geometries and with the possible constraint to
hexahedral cells this is not always practical.

For example, the uniformly tessellated cube or logical grid is the tessella-
tion

Ω =
⋃

i,j,k
Ωi,j,k,

where

Ωi,j,k = {x | ihx ≤ x ≤ (i + 1)hx, jhy ≤ y ≤ (j + 1)hy, khz ≤ z ≤ (k + 1)hz},
and where hx, hy, hz are the grid sizes in the x,y,z directions and i,j,k are
integers.

3.1 Structured Grid Generation

A structured grid is a cell-by-cell mapping of a given volume into a part of,
or the whole of, the logical grid. When mapped into only part of the logical
grid, it is said that the unmapped cells are inactive. An example is shown in
Figure 1 where the inactive cells are shown with dotted lines.

(a) Physical space                                                                       (b) Logical space

Fig. 1. Structured grids in 2D.

A line of constant i and j is called a coordinate line. A line of constant i
and k or j and k is called a grid line. Roughly speaking coordinate lines are
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vertical lines and grid lines are horizontal lines (in physical space, not on the
page).

Strategies: Most literature on structured grid generation concerns boundary
conforming grids. In many cases, such as flow in a pipe, the boundary is ex-
ternal, and in other cases such as flow around a vehicle, an internal boundary.
In both cases the boundary is a closed surface.

Grid generation requirements in the geosciences are more demanding. Not
only must the grid conform to an external boundary, but it must also honour
the layers and the faults. Layers tend to divide the volume or area defined
by the external boundary into well-defined segments, but the faults are not
generally introduced in such a convenient form. In a geological system there
may be many of these internal boundaries due to faults and layer boundaries.
Many of the internal boundaries will not divide the system into pieces; for
example they mark a region where rocks were fractured and then displaced
that is quite local.

Standard structured grid generation methods position the grid nodes ac-
cording to some criterion of smoothness. This can be expressed in the form of
an energy functional to be minimised. Sometimes the method is presented as
that of solving a partial differential equation, but this is normally equivalent
to minimising an energy or smoothness function or functional. In traditional
engineering grid generation the constraint on the minimisation is that the
grid conforms to the external boundary, and this formulation naturally gen-
eralises to one in which the individual internal grid nodes associated with
internal boundaries are constrained to particular values. Thus if one can
identify which grid nodes are to be related to which geological surfaces one
has solved most of the structured grid generation problem.

There are three main strategies for building structured grids which are as
follows:

Zigzagging: The first approach is to build a structured grid of coordinate lines
without reference to the internal boundaries. The coordinate lines, in some
sense nearest to the internal boundaries, are then located and the internal
boundary is displaced to the lines. That is, the geometric data is itself modi-
fied. This process is called zigzagging. This is the most robust technique and
can generate a grid for any object if the initial grid has sufficient resolution.

Snapping: The second approach is to build a structured grid that conforms
to the external boundary. An algorithm then identifies the coordinate lines
nearest to the internal surfaces and displaces them to the surfaces. This pro-
cess is called snapping. If the initial snapping only involves a small deforma-
tion, the subsequent grid may be of sufficient quality. However, the snapping
might cause badly deformed cells or even cell-folding, where a grid cell is
self-intersecting. Thus the snapped position of the nodes might be used as
constraints and the grid generation algorithm is then executed again, but this
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time applying the internal constraints. There is no theory behind this strat-
egy that guarantees a good quality grid. Nevertheless, if the grid smoothness
algorithm involves curvature terms, then the results can be good.

In practice each geological object is introduced in a sequence in which
snapping is followed by smoothing. In other words, one does not introduce
all of the internal boundaries in a single step. Success in grid generation
may be sensitive to the order in which the internal boundaries are applied as
constraints.

Block Splitting: The third approach is to divide the system into large pieces
so that the internal boundaries are included in the boundaries of the large
pieces. This requires that the internal surfaces are extended to the boundary
in some way. This is quite difficult to do, but with some help from the user,
algorithms for this can perform quite well. This particular strategy is reducing
the problem of grid generation with internal components of the boundary to a
set of problems equivalent to pure boundary grid generation problems. A good
implementation would, however, only use the topological information arising
from the splitting process, and in the grid generation it would minimise the
smoothness functional subject to the constraint that the grid nodes associated
with the internal boundaries are constrained to lie on the internal boundary
surfaces.

The second and third approaches are usually combined with the first ap-
proach, so that the most distorted internal boundaries are zigzagged and the
smoother internal boundaries, that align with parts of the external bound-
aries and amongst themselves, are modelled by splitting or snapping.

Some methods require the internal boundaries to be classified as lining
up with the i- or the j-direction. This means that the external boundary has
four main parts, corresponding to the four sides of the logical cube. Once the
external boundary is deformed there are two families of internal coordinate
lines that can be mapped onto the internal boundaries. Software needs help to
make this classification. Users can help further, by cutting the more distorted
internal boundaries into pieces, and mapping the pieces onto different families
of coordinate lines.

Partial Differential Equation Methods: The classical, beautiful, paper of [158]
is of particular significance to structured grid generation. The key idea, given
by Winslow in an appendix to his paper, is to solve heat conduction problems
- in the physical space - without sources or sinks and with boundary condi-
tions chosen so that each isotherm divides the region into two pieces. Since the
maximum principle applies, that the maximum and minimum temperatures
must occur on the boundary, the isotherms cannot cross. In two-dimensions,
by solving two problems with two sets of isotherms that intersect one another
broadly at right angles, one can construct the required grid cells. Of course, to
solve these problems one needs a grid. To escape from the obvious dilemma,
Winslow transformed the equations into the logical space and solved for the
coordinates of the cell corners, rather than the temperatures. This procedure
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works very well, although by applying the boundary conditions in the log-
ical space, rather than the physical space, the robustness of the method is
compromised. (In unpublished numerical experiments of the author, where
having first constructed an unstructured grid, and having solved the heat
conduction problems on this grid with the physical boundary conditions of
zero flux through the appropriate sides, it was possible to map essentially ar-
bitrary shapes onto a rectangle. A similar technique, [57], is outlined a little
later.)

The paper of Winslow has inspired much further work. An early contri-
bution along the Winslow path was [147].

Variational Methods: Techniques that use an elliptic partial differential equa-
tion can also be derived from a variational principle. Thus for heat conduction
analogies the functional ∫

((∇ξ)2 + (∇η)2)d2x,

is minimised, where ξ and η are the two temperatures in the 2D case. With
this variational principle it is possible to add extra terms, such as terms
to encourage orthogonality, or equi-distributed areas. The ideas generalise
easily to three dimensions. The paper of [25] develops this in some detail
and shows how to cast the principles in the logical space so that numerical
solutions can be found. The book [102] explores the variational approach
and in particular Knupp’s area-orthogonality technique. Reference [102] also
contains valuable illustrations showing the features of the different structured
grid generation methods enabling a comparison of their behavior to be made.
It is the experience of the author that the area-orthogonality method is robust
and generates pleasing grids.

Direct Discrete Methods: The related technique of solving Laplace’s equation
for the coordinates of the grid cell corners in the logical space, a technique
introduced by [6] is simple to implement but not that robust. This method is
equivalent to imagining that the energy of the grid is the sum of the squares
of the length of the cell sides. Thus one minimises the grid function∑

i,j
{(xi,j − xi−1,j)2 + (xi,j − xi,j−1)2}

prescribing and fixing the positions of the nodes on the boundary. Minimisa-
tion of this generates the same scheme as discretisation of a Laplace equation
in the logical space. As shown in the pictures of [102] it is rather easy to gen-
erate folded grids when the boundary contains non-convex regions. To try to
fix these inadequate methods, extra terms can be added, in a direct, discrete
framework. The work of [32] and [105] is representative of this approach.

An important application and extension of the idea of discrete grid gen-
eration is found in the work of [113] and [114]. See Section 4.1 for further
discussion of this discrete smooth interpolation.
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Corner Point Grids: An interesting and practically important method of grid
generation in the geosciences is that of the corner-point grid. An early exam-
ple can be found in the reservoir simulator described by [101]. The idea, when
first introduced, was a two-stage grid generation method. First an Nx by Ny

by 1 structured grid is built that honours the boundary, probably using in-
active cells, and, where possible the interior coordinate lines are aligned with
fault surfaces. Where this alignment is impossible then the fault is zigzagged
onto the grid. The surfaces that define layers are then introduced into the
grid by finding the intersection points of the surfaces with the coordinate
lines. In the absence of faults this is a simple procedure, and, as long as the
coordinate lines are broadly orthogonal to the layers the resulting grids are
of high quality and conform exactly to the layers. When there are faults,
circumstances are more challenging. If the coordinate lines are aligned with
the faults then the line can be temporarily displaced to one side of the fault
by ε and the intersection computed, and then temporarily displaced by ε
on the other side of the fault and again the intersection found. In this way
split nodes are associated with the fault. If the coordinate lines are some dis-
tance from the fault then zigzagging is used where the idea is to move, as an
approximation, the fault to the grid and repeat the procedure just described.

In the absence of faults, grid blocks conform, in the sense that the physical
neighbours are also the logical neighbours. When faulting is present the logical
and physical neighbours no longer coincide. Any physical connections that
are not also logical connections are referred to as non-neighbour connections
or NNCs.

When there are more complicated faults, such as intersecting faults in
a y-shape, it is very hard to make the corner-point grid method work, at
least without a lot of help from users. One promising technique, known as ijk
gridding or vertical zigzagging, is to build an adaptive raster using extensions
of the surfaces near faults and build a grid with some refinement around the
fault. Software that used this method was first released in [136]. The grid
blocks do not conform exactly to the geometry, but they are closer than if
the grid was just an arbitrary set of cells, as in a rectangular Cartesian grid.
Various candidate patterns of grid blocks are proposed (based on assigning
grid blocks to either of the different sides of the fault). The choice of candidate
patterns is then made on the basis of the best representation of volume and
adjacency.

More material and illustrations relating to corner point grids can be found
in Section 7.1 on structural modelling.

A Technique for Dividing a Region with Internal Components of the Bound-
ary: As the complexity of the geometry increases, so unstructured grids are
generally much easier to build than structured grids. One can exploit this
fact in building structured grids. The idea of first building an unstructured
grid and then converting to a structured grid was explored in [57]. In that
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paper an unstructured triangulation was constructed using a slicing approach
followed by building vector fields and then building the structured grid.

An initial triangulation is made by dividing the squares in a structured
rectangular grid. Then the boundary polygons, for both the external and
internal boundaries are processed, line-segment by line-segment. That is, each
line segment is used to divide any triangles which they cut into three triangles
(two in degenerate cases). At the ends of the internal boundaries, a line is
drawn at right angles to its end-point. This extra line is first absorbed into the
triangulation so that the end-point of the internal boundaries are included
amongst the nodes of the triangulation in subsequent steps.

The lines from the boundaries are then used as boundary conditions for
two vector fields, defined on the vertices of the triangulation so that they
minimise a measure of smoothness of the fields. The smoothness condition
enables an interpolation of the boundary vectors to be constructed.

Once the vector fields are constructed, they can be used to extrapolate the
internal boundaries to the external boundary. This divides the volume inside
the external boundary into large pieces whose boundaries can be used as the
external boundary of a standard structured grid generation method such as
the area-orthogonality method. See [57] for the details and some illustrations.

3.2 Unstructured Grid Generation

Conventional Unstructured Grid Methods: In general any grid that is not
structured is an unstructured grid. Of particular importance are Voronoi
tessellations and their dual the Delaunay tessellation. In three dimensions
Voronoi cells are convex polyhedra and Delaunay cells are tetrahedra. In two
dimensions Voronoi cells are convex polygons and Delaunay cells are triangles.

The Voronoi grid consists of points, called centres, that are scattered over
the domain. The Voronoi cell, Ωb, with centre xb consists of the points

Ωb = {x | ‖x − xb‖ ≤ ‖x − xb′‖,∀b′ �= b},
where the index b′ ranges over all the other centres. In words, the cells corre-
spond to those points that are closest to their respective centre. The faces of
a Voronoi cell, that do not lie on the surface of the entire volume, Ω, are flat.
The points on the interface between two grid cells are equidistant from the
centres of each cell. The lines joining the centres of cells that share a common
face, define the dual, Delaunay grid. The tetrahedra of the Delaunay grid pos-
sess the remarkable property that their circumsphere does not contain any of
the centres other than the centre at the centre of the circumsphere. See [123]
for a comprehensive review of Voronoi and Delaunay tessellation theory. See
[145] for applications to unstructured grid generation.

A problem with unstructured grid techniques, particularly in 3D, is to
build grids honouring the surface of a given volume, or internal surfaces such
as faults and horizons. This can be achieved but not without considerable
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difficulty in programming and in computation. In 2D the method is robust,
but in 3D it can fail and require user intervention to help the algorithms
achieve good results.

Unstructured grids have found widespread application in many areas of
computational fluid dynamics and elasticity theory but have not been used
very much in the geosciences. See [66] for a selective example in the geo-
sciences. Unstructured grids have, however, found application in the context
of 2.5D unstructured grid generation as explained next.

Corner Point Unstructured Grids: The idea of the corner-point unstructured
grid is to first verticalise all of the faults in the model. The fault traces of
the verticalised faults are then projected onto a plane, and a conforming
Voronoi or Delaunay grid constructed. A coordinate line is then introduced
at each vertex in the planar unstructured grid. These coordinate lines extend
vertically until they cut an upper and a lower plane, both parallel to the
projection plane. The coordinate lines that lie on the corners of each of the
unstructured cells in the plane define a coordinate tube analogous to the tubes
defined for the structured grid case. This is essentially an unstructured logical
space. The task of building the final grid is now to deform these logical tubes
to conform to the original (non-verticalised) fault surfaces and to impose the
condition that, at least in the region of space occupied by the reservoir, none
of the tubes are self-intersecting or inside-out.

The coordinate lines that lie on faults are then sloped until they lie op-
timally on the fault surface. The intersections of these coordinate lines are
found with the upper and lower planes. The intersection points are then used
as boundary conditions in two smoothing problems on the upper and lower
planes. The coordinates of the other, non-fault, coordinate lines are deter-
mined by a condition that relates their coordinates to the average of their
neighbours. This is essentially an unstructured version of the Laplace equa-
tion method in logical space. On the upper and lower planes the resulting
unstructured grid can be very complicated, with many self-intersecting cells.
Miraculously, in most cases anyway, the grid when examined in the region of
the reservoir is perfectly satisfactory.

The layers and faults are finally sampled onto the coordinate lines in
the same way as for the same task for the structured grid case. A detailed
explanation can be found in [77].

Notes on the literature. In the oil reservoir simulation literature the papers
of [82, 83, 141] are of note.

For reviews of the grid generation literature see [59, 102, 146, 148] for
information concerning structured grids or [145] for reviews of both unstruc-
tured and structured approaches.
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4 Spatial Statistics: Interpolating Scattered Data

Spatial statistics, often called geostatistics and sometimes property modelling
is concerned with problems of interpolation under conditions of uncertainty.

Consider, for example, interpolating a scalar valued function ϕ = ϕ(x),
in some region of D-dimensional space, RD, where the values of ϕ, {ϕi}, at
the points {xi} have been measured with only small errors. Further data is
abstracted from some prototype or analogue that could be said to look like
the property that ϕ is to model. To be specific; given detailed information
about a rock outcrop or a densely sampled reservoir of the same depositional
environment as the target reservoir, construct an interpolant of the actual
measurements that is qualitatively the same as the prototype. Where there
are manifest differences between the prototype and the system to be mod-
elled it is necessary to devise methods of transforming the data relating to
the prototype in response to expert judgement. The prototype is used to as-
sign realistic estimates of statistical measures such as correlation functions
(equivalent, essentially, to variograms). It is a mistake to only use the data
available from the target reservoir to ascertain the correlation structure, un-
less the data are sampled on a scale smaller than the correlation length.

In general, other types of data will be available for many different prop-
erties and on several scales. However, this level of generality will not be
considered until later sections.

There are obviously many possible interpolants of the data that look like
the prototype. Uncertainty quantification is the characterisation of the vari-
ation between these different, but data consistent, interpolants. Sometimes
only one of these interpolants is selected. For example, the one that is, in some
sense, the smoothest or the most probable. Some methods, such as kriging,
allow an estimate of uncertainty to be assigned to these single estimates. See
Section 4.6 for an explanation of the dangers in using a single representative
from the set of all possible interpolants.

There are several approaches to this interpolation problem; approaches
that are not equivalent. It is, however, generally agreed that some probabilis-
tic element is required. Having said that, it is also the case that deterministic
interpolation procedures are in widespread use. Thus, before reviewing sta-
tistical and stochastic methods, a survey of deterministic methods is given.
Later sections show that these methods are closely related to kriging. This is
not a new result [89] but does not seem to be widely known.

Note that the problem of scattered data set interpolation is discussed in
many other contexts: for example in weather forecasting [39] and in oceanog-
raphy [160].

4.1 Deterministic Methods

Delaunay Triangulation: Assuming a mappable, continuous surface project
the data points onto a datum plane. Applying Delaunay triangulation build
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an unstructured grid in the plane with the data points located at the nodes.
Then perform linear interpolation. If the data points are located at the points
{xi | i ∈ [0,M − 1]} then introducing piecewise linear basis functions {bi(x) |
bi(xj) = δij}, where δij = 1 if i = j or δij = 0 if i �= j, the interpolant
is of the form z(x) =

∑
izibi(x). This method works well if the data points

are uniformly distributed, uniformly or fully at random, in the region of
interest. When the data points are clustered, and large triangles occur, then
the method is insufficient. It is difficult to inject any interpretation or style
into the method other than by manually inserting control points. This is only
a local means of control and not based on any principle.

The method does not easily generalise to problems with overturned sur-
faces or discontinuities.

(Note that in Delaunay triangulation the data points form the vertices
of the triangles in such a way that the circumcircles of the triangles do not
contain any data points. Data points can only lie on the circumcircles of the
triangles.)

Search Radius Methods: The search radius technique assumes a single valued
surface, but accounts for discontinuities. A circle is specified by its radius
and, centred on the sampling point at which the height (or other property) is
required, all scattered data points inside the circle are located. A polynomial,
of some specified degree, is then determined by a least-squares method. Many
variants are possible, such as weighting data points by their distance from the
sampling point. Discontinuous surfaces are accommodated by ignoring data
points which are not on the same side of the discontinuity as the sampling
point. A more sophisticated version might use a restored surface estimate
from the other side of the discontinuity.

Search circle techniques, with user controls allowing increasing or decreas-
ing circle radii and changes in the order of the polynomials in response to
the number of scattered data within the circle, have been used for many
years in commercial mapping packages. However, these methods do not have
much support from theory, can be slow, and without extensive use of surface
patches and help from the user, do not work for reverse faults. See [95] for
an extended discussion of search circle techniques.

The Method of Minimum Curvature: Briggs, [27], introduced this method
which has found widespread application in commercial mapping software (for
example, see [84]). The method is known to be closely related to spline in-
terpolation [90, Chapter 9]. As shown later, minimum curvature methods are
a special case of the radial basis function approach and also of the kriging
method.

The technique is based on the requirement that interpolating surfaces
render the functional, ∫

Ω

(∇2z)2d2x
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stationary, subject to the constraints that z(xi) = z∗i , where the {xi | i ∈
[0,M − 1]} are data points at which the height, or other, data is z∗i .

Briggs studied the case where the surface was single valued and without
discontinuities. Applying the calculus of variations one obtains the problem

∇2(∇2z) = 0, z(xi) = z∗i , i = 1, . . . , N − 1,

with the natural boundary conditions

∇2z = 0, ∇2

(
∂z

∂n

)
= 0, x ∈ ∂Ω.

On a rectangular grid, with scattered data points located on the grid
vertices it is straightforward to solve this problem using a finite difference
method. A slight modification, providing the user with some qualitative con-
trol on the character of the surface, is to use the functional

α

∫
Ω

(∇2z)2d2x + (1 − α)
∫

Ω

(∇z)2d2x

with α ∈ [0, 1], which implies the partial differential equation

α∇2(∇2z) − (1 − α)∇2z = 0,

but with slightly more complicated boundary conditions. It is unnecessary to
use the natural boundary conditions for this composite problem, and using
the natural conditions for the pure biharmonic problem might be preferable,
as long as α is greater than zero. This functional contains a single parameter
that can be used to inject some interpretation or style. As α decreases to
zero from unity, the peaks and troughs that occur at the data points become
sharp, and the surface comes to resemble an elastic material suspended on a
set of vertical poles. When α is near unity the peaks and troughs are rounded
and it is often difficult to see where the data points were located.

The author has found that in applications of the minimum curvature
method to surface modelling that a linear solver (a preconditioned conju-
gate gradient method) greatly increases the speed of solution, compared to
a simple relaxation method such as the Gauss-Seidel iteration, particularly
with a non-zero value of α. A similar method, but ignoring cross-derivatives,
has been discussed at length by [10]. These authors use a fast alternating-
direction-implicit solver. An interesting and, from a practical point of view,
a very important generalisation of the Briggs method of minimum curvature
is to perform a transformation of coordinates before the surface modelling.
When the transformation is implemented via a set of, unstructured, or struc-
tured, coordinate lines all faults appear vertical in the new coordinate system,
but without error. It must be emphasised that this particular verticalisation
is very different from the active verticalisation that can be made (by default
or as an option) in some modelling systems. Once the transform is applied
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then a Briggs type method can be implemented. Care must be taken, how-
ever, now that a curvilinear coordinate system is in use. This idea is used,
with great effect, in the application described in [64].

Discrete Smooth Interpolation: DSI is as much a philosophy of mathematical
modelling as it is an interpolation method [113, 114]. A topological structure,
in the form of a set of nodes with a pre-assigned neighbourhood structure,
is assumed. A local roughness function is then defined for each node. An
essential feature of the method is the assumption that each roughness function
is a quadratic form in the values to be interpolated. Note that the interpolated
function can be vector valued.

A global roughness function is then defined as the sum of the local rough-
ness functions. The global function, too, is then a quadratic function of the
unknowns. A simple node-by-node minimisation technique can be quite effec-
tive if the number of cells in the grid is not too large. Otherwise simultane-
ously setting all of the derivatives of the global function with respect to the
unknowns, to zero defines a linear system. This system can then be solved
efficiently by one of the many methods for solving large, sparse, symmetric
linear systems.

[113] and [114] presents DSI as an essentially discrete approach although
sometimes the choice of local roughness function is motivated by discretising
a derivative. DSI is a variational method that restricts the roughness function
to be quadratic in the unknowns.

There is a long history of using variational methods in structured grid
generation - see Section 3 - in which quadratic and non-quadratic functionals
are used. During the last few years (although interest has now diminished)
there were many papers on direct discrete formulations of the grid generation
problems [33]. In the case of structured grid generation, where the problem
is to map a given shape onto a rectangular grid (in 3D and 2D) the quadratic
method, introduced by [6] is known to perform badly unless the shape is close
to rectangular. This is a very simple application of a method, equivalent
to DSI, that is known to be of limited usefulness. The technique of [158],
which solves Laplace type problems on the physical region, showed that non-
quadratic functionals are required for robust interpolation to be possible.
Thus it would seem preferable to focus on problem formulations using a
continuum approach with subsequent discretisation in the implementation.

Another disadvantage of direct discrete methods is their requirement for
the assignment of many weights. When the discrete variational form arises
from a continuum variational principle most of the weights (except those
controlling the global balance of the major terms of the functional such as
total area or curvature) are deduced via the discretisation.
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Radial Basis Functions: In these methods a continuously differentiable, radial
basis function, φ, is introduced and interpolants of the form

z(x) = a + b · x +
M−1∑
j=0

λjφ(x − xj)

are sought, where the M +1+D unknowns, the λj ’s, a and b, are coefficients
to be determined using the conditions

z∗i = a + b · xi +
M−1∑
j=0

λjφ(xi − xj), i = 0, . . . , M − 1,

M−1∑
j=0

λj = 0,

M−1∑
j=0

λjxj = 0,

noting that b and x are D-vectors. These conditions give M +1+D conditions
for the M + 1 + D unknowns. Generalisation to higher dimensions (in the x-
variable) and to generalisations which include higher order polynomials other
than the affine terms a + b · x are sometimes used. Specialisation to one or
two dimensions is straightforward, and often the affine term, a, is omitted.
The function ϕ can be chosen from a large list [31], where r, c and α are real
parameters, r satisfies r > 0, and ‖x‖ =

√
(
∑

xi
2),

φ = r = ‖x‖ linear
φ = r2 log r thin-plate spline
φ = e−αr2

Gaussian
φ = (r2 + c2)

1
2 Multiquadric.

See [31] and [117] for specific applications and interesting further details.
The classical multiquadric method of [79] has often been used in the geo-

sciences. See [63] for a review of classical methods of scattered data set in-
terpolation.

Radial basis function methods are elegant, do not need a grid, and possess
excellent convergence and robustness properties. However when the number
of scattered data points is large it requires sophisticated iteration methods
to determine the coefficients which, though in itself not an obstacle, when
coupled with a requirement to evaluate the interpolant - a sum of a large
number of products - on a large number of points, such as on a grid, reduces
the attractiveness of the method.

There is very little literature that accounts for discontinuities in radial
basis function interpolation. However, a search radius method, in which a
radial basis interpolant is used, rather than a polynomial, would be practical
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and would generalise to discontinuous cases. The paper [78] considers the
detection of vertical faults using a radial basis function technique.

Overturned surfaces are a greater problem, although application of a
search radius method in combination with sloping coordinate lines could lead
to a practical solution.

It is of interest that r = ‖x‖ is the Green’s function for the biharmonic op-
erator in 3D and r2 log r the Green’s function for the biharmonic operator in
2D. With these particular choices of φ, the radial basis function method is an
exact solution of the pure Briggs minimum curvature method, or, depending
on the implementation, a close approximation.

Thus for large sets of scattered data and with a need to evaluate the
interpolant at a large number of points on a grid one might be better served,
when D is small, by the numerical solution of a partial differential equation
as in the Briggs technique. However, the recent research into radial basis
functions with compact support [61] and application of the fast multipole
method [29] do provide efficient methods.

Recent reviews of radial basis function methods can be found in [29] and
[92].

4.2 Statistical Approaches

Two classes of probabilistic approach are possible. One class is the direct
probability density functional (pdf) approach, often generalising the multi-
variate Gaussian (normal) distribution. The other class consists of assump-
tions and rules that define a stochastic process. In this second class of method
it is not usually possible to state an explicit pdf for the interpolants; the pro-
cess must be studied via its sample realisations and their properties. The
derivation of standard geostatistical results often appears to be rule based
but, as shown in the next few pages, can be derived from an explicit pdf.
More research using explicit pdfs could lead to new results and insights into
the methods of spatial statistics.

4.3 Random Functions

There is insufficient space here to give a full treatment of the theory of random
functions. Thus the following specialises the treatment and proceeds formally.
There are many texts on basic multivariate probability theory and statistics,
and so a basic knowledge of these subjects is assumed on the part of the
reader. Texts on the theory of turbulence, such as [65], present the theory
in sufficient detail for applied geostatistics. Background in statistical field
theory as reviewed by [18, 19, 73] is very relevant.

Review of Some Basic Theory: This subsection reviews some fundamental
properties of Gaussian random fields in D-dimensions. The case D = 2 is
needed for surface modelling, and the D = 3 case for property modelling.
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The following needs the notion of the functional derivative,

δF

δϕ(x)

of a functional F [ϕ].
To define this, first introduce the first functional differential

DF [ϕ : δϕ] =
d

dε
F [ϕ + εδϕ]|ε=0

for abitrary functions δϕ. If the expression for the differential can be written
as

DF [ϕ : δϕ] =
∫

ξ(x)δϕ(x)dDx,

then the function valued functional, ξ(x), is called the functional derivative
of F and the notation

ξ(x) =
δF

δϕ(x)

is used. Higher order functional derivatives are then defined by applying func-
tional differentiation to the lower order functional derivatives, as all functional
derivatives are themselves functionals. For more information concerning the
functional differential calculus see [18, 19].

A later theorem needs the well known result that∫ ∞

−∞
e−y2/2dy =

√
2π (1)

and the further expression, obtained by completing the square that∫ ∞

−∞
e−

λ
2 γ2+jγdγ =

√
2π

λ
e

j2

2λ (2)

for real λ, γ and j. The functional probability density of a general Gaussian
random field, γ(x) with zero mean is of the form

π(γ) = C exp (−H[γ]), (3)

where
H[γ] =

1
2

∫
γ(x)a(x − y)γ(y)dDxdDy (4)

and the integral is over Ω, the volume, or area, of interest. C is a normalisation
constant such that ∫

S

π(γ)D[γ] = 1, (5)
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where D[γ] denotes integration over some suitable space of functions, S. A
general Gaussian random field with non-zero mean is written as ϕ(x) =
h(x) + γ(x), where h(x) is the expectation value, or mean of ϕ and γ has an
average of zero.

One way to make sense of functional integrals such as (5) is to discretise
on a finite grid of N cells, with γi a uniform value in the i-th cell. Then, using
the same symbol for the approximate γ function,

π(γ) = CN exp (−1
2

∑
γiai,jγj), (6)

and the summation is over i and j and ai,j =
∫

x∈Ωi,y∈Ωj
a(x − y)dDxdDy is

an integral over the cells, Ωi and Ωj . (6) is just the usual expression for the
multivariate Gaussian distribution. The coefficient CN is chosen so that the
integral of the distribution over all N variables is unity.

Introducing Green’s function, g(x − y), defined as the solution of the
integral equation ∫

a(x − y)g(y − z)dDy = δ(x − z), (7)

where δ(x − z) is the usual Dirac δ-function, the following result holds:

〈γ(x)γ(y)〉 = g(x − y). (8)

That is, the Green’s function is the correlation function, where the angular
brackets denote the average obtained by integrating over all functions in the
space, S, with the probability measure, π(γ).

To prove this result, first define the moment generating functional

Z[J ] =
∫

S

exp
(
−H[γ] +

∫
γ(x)J(x)dDx

)
D[γ].

Before giving meaning to this last formal expression note that the correlation
functions can be derived via functional derivatives of Z with respect to J
evaluated at J = 0. Thus

〈γ(x)γ(y)〉 =
1

Z[0]
δ2Z[J ]

δJ(x)δJ(y)
.

To define the functional integral and to prove the result (8), expand all func-
tions as infinite superpositions of eigenfunctions ψn(x) defined by the equa-
tions ∫

a(x − y)ψn(y)dDy = λnψn(x).

Then set
γ(x) =

∑
γnψn(x), J(x) =

∑
Jnψn(x),

assuming the eigenfunctions are normalised so that
∫

ψn(y)ψm(y)dDy = δnm.
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By substitution into the integral equation (7), it follows that

g(x − y) =
∑

n

ψn(x)ψn(y)
λn

(9)

is a representation of Green’s function. Let us also note the standard result
that

δ(x − y) =
∑

n
ψn(x)ψn(y),

(for arbitrary f(x), f(x) =
∑

fnψn,
∫

f(x)
∑

nψn(x)ψn(y)dDx =
∑

fnψn(y)).
Substitution into the generating functional gives

Z[J ] =
∫ ∞

−∞

∏
n
dγne−

1
2 λnγ2

n+Jnγn .

Exchanging the order of the product and the integral leads to

Z[J ] =
∏

n

∫ ∞

−∞
dγne−

1
2 λnγ2

n+Jnγn ,

and using (1) and (2)

Z[J ] =
∏

n

√
2π

λn
e−

J2
n

2λn .

Finally using the expression (9), gives

Z[J ] = Z[0] exp
(

1
2

∫
J(x)g(x − y)J(y)dDxdDy

)
,

where

Z[0] =
∏

n

√
2π

λn
.

It thus follows that

1
Z[0]

(
δ2Z[J ]

δJ(x)δJ(y)

)
J=0

= g(x − y).

4.4 Kriging

In this section the theory of kriging is reviewed along the lines of its usual
presentation. See, for example, [85, 96].

In some cases the variance of a property is infinite, so geostatisticians use
the variogram,

ν(x − y) =
1
2
〈[ϕ(x) − ϕ(y)]2〉,

which is an affine transformation of the correlation function. As the treatment
in this chapter is formal the correlation will be used throughout.
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Simple Kriging: Consider the problem of interpolating a random function.
That is, given M sample values ϕi, i = 1, . . . , M , at each of M spatial points
xi, estimate the value of the function, ϕ at the point x.

In simple kriging it is assumed that the interpolant is a linear superposi-
tion of the data,

ϕ = v0 +
∑

j

vjϕj ,

where the scalar parameters, vi are to be found.
Conditions for the determination of the vi’s are motivated by the argu-

ments (i) the interpolant is correct on average and (ii) if the true value, ϕ0

were known then for each realisation the interpolant should minimise the
variance of the error. Note the vi’s are not random, and have the same values
in all realisations; they are, however, functions of x.

Thus it is asserted that

ϕ̄ = v0 +
∑

j

vjϕ̄j ,

and that the error, 〈(ϕ − ϕ0)2〉 is a minimum, considered as a function of
the vi’s. Where the overbar notation and the angular bracket notation both
indicate the expectation of the expression within their scope.

If it is also assumed that the mean of the process is a known constant, m,
say, then it follows that

v0 = m −
∑

j

vjm.

Minimising the expression for the error gives the linear equations∑
j

gijvj = g0i, (10)

where gij = 〈(ϕi−m)(ϕj−m)〉 and g0i = 〈(ϕ0−m)(ϕi−m)〉 are the assumed
known covariances of the random function ϕ. In applications the covariances
are determined from sample averages of an analogue system, possibly inferred
from the data, or just guessed. The values of the covariances can also be
adjusted as part of the process of integrating further data into the model.

By solving the system of equations, (10), to give vi =
∑

j [g
−1
ij ]g0j the

interpolant

ϕ0 = m +
∑
ij

[g−1
ij ]g0j(ϕi − m)

is obtained, where [g−1
ij ] denotes the elements of the inverse of the [gij ] matrix.
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Ordinary Kriging: In ordinary kriging the mean is an unknown constant. As
before, an interpolant of the form ϕ = v0 +

∑
j vjϕj is sought. The conditions

for the vi’s are that (i) the mean error is zero and (ii) the mean square error
is a minimum. Thus

m = v0 +
∑

i

vim

for arbitrary m. This can only hold if v0 = 0 and if
∑

i vi = 1. The minimum
error variance is then sought, subject to the constraint that

∑
i vi = 1. By

introducing a Lagrange multiplier, τ say, and looking for the stationary point
of 〈(ϕ0 − ϕ)2〉 − 2τ(1 −∑

i vi), the set of equations∑
j

gijvj + τ = g0i,

∑
i

λi = 1,

is deduced. These can be solved for the vi’s so that ϕ =
∑

i viϕi. It is inter-
esting that the mean, m, is not required in evaluating the interpolant.

Universal Kriging: In universal kriging the mean is unknown but a function
of x in the form of a linear superposition of a small number of basis functions,
ψk(x) which are here assumed to be orthonormal. Thus

∫
ψk(x)ψi(x)dDx =

δki, and h(x) =
∑

k bkψk(x), where the coefficients bk are to be determined
by the interpolation procedure. In this method, once again the interpolant is
assumed to be a linear superposition, ϕ = v0 +

∑
j vjϕj , of the values at the

data points. The usual conditions (i) that the mean error should be zero and
(ii) the mean square error should be a minimum are imposed.

The zero mean error condition implies that∑
k

bkψk(x) =
∑
k,j

vjbkψk(xj).

This can only be satisfied for arbitrary bk, provided that

ψk0 =
∑

i

viψ
ki,

for k = 1, . . . , K, where ψki = ψk(xi) and ψk0 = ψk(x0). These conditions
are known as the universal kriging constraints and to compute the vi the ex-
pression 〈(ϕ0−ϕ)2〉 is minimised subject to the universal kriging constraints.

Introducing Lagrange multipliers τk, and setting the derivatives of

〈(ϕ0 − ϕ)2〉 + 2
∑

k

τk

(∑
i

ψki − ψk0

)
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to zero, the set of equations∑
j

gijvj +
∑

k

τkψki = g0i, (11)

∑
j

vjψ
kj = ψk0, (12)

ϕ0 =
∑

i

viϕi, (13)

is deduced. These can be solved for the vi and the interpolant evaluated. (11)-
(13) are the universal kriging equations introduced by Matheron in 1969. See
[34] for a sympathetic exposition.

Indicator Kriging: This technique transforms the observations into integer
valued quantities with the transformation

Iν(ϕ) = 1, ϕ < ν,

= 0, ϕ ≥ ν,

for some cut-off value ν. One then performs simple kriging [42] on these
transformed values for a sequence of ν values. The interpolants, fν , say, are
not integers, but real numbers that are interpreted as the probability that
the value is less than ν. This seems plausible, but unfortunately there is no
guarantee [85] that this honours the necessarily true requirements that fν ≥
f ′

ν if ν > ν′. Apparently the response [85] on failure to satisfy the conditions is
to impose them as constraints. [42] provide a detailed discussion of corrections
to indicator kriging so that the conditions are satisfied. The main application
of indicator kriging is to the numerical simulation of stochastic processes.
The ad hoc nature of this method implies the need for a better technique.

Disjunctive Kriging: The methods just described make an implicit assump-
tion that the underlying random process is Gaussian (this is shown in detail
in the next section). Often the data are manifestly non-Gaussian. The ap-
proach of disjunctive kriging or nonlinear geostatistics is a response to this
in which (i) a normal scores transformation is performed on the original data
before interpolation (that is, the single point probability density is trans-
formed to that of the normal distribution) (ii) the correlation structure and
mean values are assigned or estimated from the transformed data (iii) the
interpolation is performed (iv) the results are back transformed using the
inverse of the normal scores transform. There exists some elegant theory us-
ing Hermite polynomials to construct the forward and inverse normal scores
transform [85]. There is more, however, to a Gaussian random function than
just its single point probability distribution. The other key property is that
the process is completely specified by the mean and the correlation function.
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Failure of this property is not addressed in disjunctive kriging. For reasons
of space, non-Gaussian spatial statistics are not discussed in this chapter.
However see [56] or [97] for examples of non-Gaussian techniques.

4.5 Maximum Probability Interpolants

If one assumes that a given property is characterised by a general Gaus-
sian pdf of the form (3) then a natural interpolation technique is obtained
by posing the question: Given data {ϕ∗

i } on a discrete set of points {xi},
which function ϕ(x), with the values {ϕ∗

i } at the data points, maximises the
probability functional (3)?

In general the mean will be unknown, and following the lead of universal
kriging, it is assumed that the mean is given by h(x) =

∑
k bkψk(x), where

the basis functions ψk are orthonormal with
∫

ψkψldDx = δkl.
This formulation implies the task of minimising the functional argument

σ =
1
2

∫
a(x − y)(ϕ(x) − h(x))(ϕ(y) − h(y))dDxdDy

subject to the constraints ϕ(xi) = ϕ∗
i . Introducing Lagrange multipliers, λi

one can write

σ̃ = σ −
∑

i

λi(ϕ(xi) − ϕ∗
i )

or
σ̃ = σ −

∑
i

λi

∫
(ϕ(x) − ϕ∗

i )δ(x − xi)dDx.

Taking variations with respect to ϕ the equations

∫
a(x − y)

(
ϕ(y) −

∑
k

bkψk(y)

)
dDy =

∑
i

λiδ(x − xi) (14)

are deduced.
Differentiation with respect to λi gives ϕ(xi) = ϕ∗

i and differentiation
with respect to bk gives

∫
a(x − y)ϕ(y)ψk(x)dDxdDy =

∫
a(x − y)

∑
j

ψk(x)bjψ
j(y)dDxdDy. (15)

Multiplying (14) by ψk(x), integrating over x and using (15) together with
the usual properties of the δ function, leads to the expression∑

i

λiψ
k(xi) = 0,
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which is the condition used in the general radial basis function method.
Introducing a Green’s function, g(x − y), satisfying∫

a(x − y)g(y − z)dDy = δ(x − z)

reduces the calculation to solving∑
k

bkψkj +
∑

i

λigij = ϕ∗
j , (16)

ϕ(xj) = ϕ∗
j , (17)

∑
i

λiψ
k(xi) = 0, (18)

where ψkj = ψk(xj). These equations determine the λi and the bk and also
provide the interpolant

ϕ(x) =
∑

k

bkψk(x) +
∑

i

λig(x − xi). (19)

The following theorem can now be proved:
The radial basis function system (19) is the adjoint of the universal kriging

system (11) and (12).
Before the proof is given the adjoint method will be explained. Here

one has a linear system Aijx
u
j = ru

i (using the usual convention regard-
ing repeated indices) with a symmetric matrix, Aij , and multiple right hand
sides ru

i thus generating multiple solutions, where xu
i is the i-th component

of the u-th solution. The aim is to compute scalar products of the form
su =

∑
j cjx

u
j . That is, the su rather than the solution are of primary inter-

est. It is easy to prove that this problem is equivalent to solving the adjoint
problem AT

ijαj = ci and evaluating su =
∑

j αjr
u
j . This replaces many direct

linear systems with one indirect adjoint system. Adjoint methods are thus
vastly more efficient than the original formulation.

To prove the equivalence of radial basis functions and the universal kriging
method, the universal kriging system will be now transformed into the radial
basis function equations. Multiply (11) by λi and sum over i to give∑

ij

λigijvj +
∑
ik

τkψkiλi =
∑

i

λig0i.

Then using (17) and substituting (16) obtain∑
j

ϕ∗
jvj −

∑
kj

bkψkjvj =
∑

i

λig0i.

Finally substituting from (13) and (12), (18) is derived, which proves the
equivalence.
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A corollary of this result is that both the radial basis function method
and the kriging method are maximum probability interpolants.

Further results can be obtained using the maximum probability formal-
ism. For example, by discretising the functional and exploiting well-known
properties of the multivariate Gaussian distribution [115] one can derive
closed form expressions for the single point probability density.

4.6 Stochastic Sampling Techniques

The Reason for Stochastic Sampling (‘Simulation’ or ‘Monte Carlo’ ): Atten-
tion now turns to using random function theory in geological modelling and
reservoir simulation. For example, a fluid flow simulator will compute, say,
the production of oil from a producing well over some time interval. This can
be written formally as q = Q[ϕ], where Q represents the simulator and any
post-processing, and q is the numerical value obtained from the simulation
results. If ϕ is a random function (such that porosity and permeability func-
tions are specified functions of ϕ) then q is a random variable - or in general
a random function. Functionals, such as Q, are called diagnostic functionals,
or just diagnostics. The central task in applications of spatial statistics is to
determine pdfs of diagnostics, or at least to provide a summary of the prop-
erties of such pdfs. The main quantity of interest might be just the average
〈q〉 or 〈q2〉. Thus it is necessary to evaluate integrals of the form

f =
∫

S

F [ϕ]π(ϕ)D[ϕ],

where F denotes a general diagnostic functional. F is often a very expensive
functional to calculate - it might take several hours of computer time to
make a single evaluation. So how is one to calculate a function space integral,
essentially an infinite dimensional integral?

One case where the problem is simple to solve, is when the probability
density functional is sharply peaked about its maximum value, ϕ∗. This is of
course the value obtained from the maximum probability method. When π
is sharply peaked it follows that f = F [ϕ∗] is a good approximation to the
exact value. Thus the equivalent methods of kriging, radial basis functions or
minimum curvature are all valid approaches to providing input for simulation
when the functional probability density of the geological properties is vary
sharply peaked about its maximum value.

Now, what is to be done when π(ϕ) is not sharply peaked, as might be
expected to happen in an actual reservoir simulation study? In such cases
kriging or its equivalents should not be used, as the errors can be very large.

Monte Carlo Methods and the Metropolis Algorithm: If the diagnostic func-
tional is discretised on a spatial grid the dimension of the integral is then of
the order of N , the number of grid blocks. (It could be more as there may
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be several random fields involved in a model.) N can be of the order of 100’s
of thousands or even millions. This is, in terms of integration, a large dimen-
sion. It would clearly be very difficult to perform a conventional numerical
integration over so many variables, bearing in mind that the diagnostic is so
difficult to evaluate. In such circumstances it is widely accepted that methods
using random numbers - Monte Carlo methods - are a suitable approach.

The basic principle can be explained by discretising the values of ϕ into,
say, G levels. There are then GN possible arrangements of values on the grid.
Most of these arrangements approximate very rough functions, with wildly
varying values, a few will be smooth. Most of the arrangements have a very
low probability as given by the value of π. Suppose now that M sample
functions, ϕr, r = 1, . . . , M , have been generated by simply choosing a value
independently at random in each cell uniformly from the possible discrete
values.

It can be proved that as M increases, the estimate

〈f〉 ≈ 1
M

∑
r

F [ϕr]π(ϕr) (20)

will converge to the average of the diagnostic. Although the above method
will work in principle, it is very inefficient because most of the realisations
have negligible probability density of occurring. Thus methods which take
into account the structure of the pdf, π, and weight the selection of the
realisations according to π will be a vast improvement.

At least three subject areas make use of stochastic sampling: statistical
physics, statistics and geostatistics. Each area has its own favourite methods,
partly a result of the different application areas, but, one suspects, largely
due to cultural reasons. There are many texts in these areas, so the following
only gives an outline and some selected references. A relevant review may be
found in [55].

The statistical physicists were the first to use Monte Carlo methods in the
celebrated paper of [118]. The Metropolis algorithm has the following ingre-
dients. First there is a starting state, perhaps a random state with each cell
value chosen at random. Then there is an update method which is stochastic,
in that (i) the probability of choosing ϕ′ from ϕ is the same as choosing ϕ
from ϕ′ (ii) all states, ϕ′, are accessible from any other state ϕ. The algorithm,
where π′ = π(ϕ′), then visits each cell of the discrete grid and performs the
operations:

• Generate a new field ϕ′ from the current state ϕ;
• Evaluate the energy difference ∆E = lnπ′ − lnπ;
• Calculate P = min(1, e−∆E);
• Generate a uniform random number r on [0, 1];
• Accept the update, ϕ′, if r < P .

Note that if P = 1, i.e., ∆E < 0, evaluation of r is not required as the
condition, r < P , is automatically satisfied.
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To use this algorithm it is necessary to calculate the energy difference,
and the new energy very efficiently. In physics applications the energy is
a local function. That is, the energy is a sum over cells, where the energy
associated with any cell only depends on the state of the cell and its immedi-
ate neighbours. Thus only a few arithmetic operations are needed to update
each cell. Nevertheless, many Monte Carlo iterations are needed. Each cell
must be visited thousands of times before equilibrium is achieved. After that
there must be many Monte Carlo iterations between samples if the selected
realisations are to be statistically independent. Careful monitoring of conver-
gence is required. See [121] for a detailed evaluation of the method. There is
scope for simultaneous updating of multiple sites and this too, is discussed
in [121]. Parallelism is easy to achieve if the model is local. Once equilibrium
is achieved and multiple independent realisations are obtained the diagnostic
functional is calculated from

〈f〉 ≈ 1
M

∑
r

F [ϕr],

noting that the factor π(ϕr) is no longer needed as in (20). An important
property of the Metropolis algorithm is that it is unnecessary to compute the
normalisation factor in the pdf.

The Gibbs Sampler: This technique was introduced to the image processing
literature by [71] and is a stochastic simulation method of key interest in
mathematical statistics, particularly Bayesian Statistics. [67] and [122] review
the statistics literature with sections on the Gibbs sampler, the next algorithm
to be described.

The Gibbs sampler, after r iterations, updates to the (r + 1)-th iteration
by visiting each cell and setting

ϕr+1
1 by sampling from π(ϕ1|ϕr

2, ϕ
r
3, . . . , ϕ

r
N )

ϕr+1
2 by sampling from π(ϕ2|ϕr+1

1 , ϕr
3, . . . , ϕ

r
N )

. . .
ϕr+1

i by sampling from π(ϕi|ϕr+1
1 , ϕr+1

2 , . . . , ϕr+1
i−1 , ϕr

i+1, . . . , ϕ
r
N )

. . .
ϕr+1

N by sampling from π(ϕN |ϕr+1
1 , ϕr+1

2 , . . . . . . , ϕr+1
N−1),

where π(ϕi|ϕr+1
1 , ϕr+1

2 , . . . , ϕr+1
i−1 , ϕr

i+1, . . . , ϕ
r
N ) is the conditional probability

density of observing ϕi given ϕr+1
1 , ϕr+1

2 , . . . , ϕr+1
i−1 , ϕr

i+1, . . . , ϕ
r
N . It is defined

by the expression

π(ϕi|ϕr+1
1 , ϕr+1

2 , . . . , ϕr+1
i−1 , ϕr

i+1, . . . , ϕ
r
N ) =

π(ϕ)∫
π(ϕ)dϕi

.

As with the Metropolis method, it is necessary to make many iterations
before the realisations are suitable for use in (20). [122] shows that the Gibbs
sampler does produce realisations with π as their pdf.
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Using pdf functionals with local energy functions enables very efficient
algorithms to be constructed. The single site conditional pdfs used in the
Gibbs sampler can be derived by integrating out just the i-th variable. This
is straightforward for the Gaussian distributions, but also feasible for more
general, non-Gaussian probability density functionals. As with the Metropolis
method it is not necessary for us to compute the normalisation factor in the
functional pdf.

Sequential Simulation Methods: In applications of geostatistics the method
of sequential simulation has achieved great popularity. Geostatisticians do
not usually exploit locality. The pdfs are non-local as they are correlation
function based models rather than models using local coupling constants.

The sequential method is based on the following exact result that can be
proved by induction [34].

Suppose that the site labels, 1, . . . , N are ordered so that the observa-
tions are labelled by 1, . . . , M . Then the joint conditional probability of the
unknown values, conditioned on the M observed values is a product of single
point conditional probabilities as follows.

π(ϕM+1, ϕM+2, . . . , ϕN |ϕ1, . . . , ϕM ) =
N∏

i=M+1

π(ϕi|ϕ1, . . . , ϕi−1). (21)

This is proved by starting with the equation

π(ϕM+1, ϕM+2, . . . , ϕN |ϕ1, . . . , ϕM ) =

π(ϕN |ϕ1, . . . , ϕN−1)π(ϕM+1, ϕM+2, . . . , ϕN−1|ϕ1, . . . , ϕM ),

and repeatedly using the definition of conditional probability. The final ex-
pression is then written in reverse order to give (21).

A sequential simulation proceeds by performing the following operations:

Randomly order the cells after the first M cells with conditioning
data.

Visit the first cell and draw a random value from π(ϕM+1|ϕ1, . . . , ϕM ).
Visit the second cell and draw a random value from π(ϕM+2|ϕ1, . . . , ϕM+1)
. . .
At the i-th cell, draw a random number from π(ϕM+i|ϕ1, . . . , ϕM+i−1)
. . .
Finally draw a random number from π(ϕN |ϕ1, . . . , ϕN−1).

In principle this will work, and will only require a single pass through the
unconditioned cells. In practice the difficulty is in calculating the conditional
probability densities. Modifications introducing approximate locality, so that
conditional pdfs are only dependent on geometrically close points, are needed.
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As soon as this is done the elegance of the exact statement just given is lost.
The resulting methods are fast, the images that result from visualising the
results are convincing - provided a random path is taken through the uncon-
ditioned cells - but the statistics of the results are unknown. The statistics of
the results have to be determined by analysis of the numerical results. It is
likely that further analysis will show that sequential simulation is a first pass
of an approximate Gibbs sampler. Further passes are needed for the statistics
to converge to the correct values.

There is thus a basic problem in geostatistics: find a method that is as
fast as a sequential method but which has a sound theoretical basis as in the
Metropolis or Gibbs sampling methods.

Note on the literature. For further information about functional methods
see [19, 73, 164]. Reviews of geostatistics are to be found in [34] or [42].

5 Forward and Inverse Modelling

5.1 Introduction

Physical systems are modelled by postulating a relationship between three
objects - the properties, ϕ, the state ψ and the auxiliary data, ψa. The aux-
iliary data and the properties together are referred to as input. The state
is sometimes called the output. The properties characterise the unchanging
aspects of the system; the state characterises the aspects of the system that
respond to different selections of the auxiliary data. The auxiliary data cor-
responds to those aspects of the system that are under human, or other,
control. An example is that of single phase fluid flow in a porous medium;
the properties are the permeability, the state is the pressure and the flux.
The auxiliary data are the boundary conditions imposed on the flow system.
In a time dependent problem, the auxiliary data will also include the initial
conditions.

In a discrete system, ϕ will be a vector of values, one for each cell in the
system. The values themselves might be vectors, so that ϕ is a vector of vec-
tors. In a continuum system ϕ will be a function of x and sometimes also of
t. Sometimes ϕ will be a vector or tensor valued function and can be discon-
tinuous. In computer simulation the continuum system is approximated by a
discrete system. For the purposes of deterministic mathematical modelling,
the properties are supposed given as specific vectors or functions. In stochas-
tic modelling, properties are specified by probability density functions, or
perhaps implicitly by some other stochastic model.

Similarly, the state and auxiliary data are also described by vectors or
functions with the same possibilities of space or time dependence. The auxil-
iary data which models control parameters such as flow rates in wells, bound-
ary and initial conditions, can be deterministic or stochastic. The state is
deterministic if both the properties and the auxiliary data are deterministic.
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If one or both of the properties and auxiliary data are stochastic, then the
state is stochastic.

A mathematical model then takes the form of a postulated relationship
between ϕ, ψa and ψ which is written formally as

N (ϕ,ψa, ψ) = 0.

In many models of practical use, it is assumed, and can sometimes be
proved, that for any particular choice of ϕ and ψa, the state exists and is a
unique solution of the equation, N = 0.

In most cases, the state is not itself the main item of interest. Various
diagnostic functionals are needed. In the deterministic setting these will be
quantities such as the oil in place in some volume, the total production of
oil over some period of time, the rate of water production, and so on. In
the stochastic setting the expectation values of such quantities and their
associated variances will be required.

The problem of determining the output given the input is known as for-
ward modelling. The task of determining an unknown input from the values
(or expectation values) of one or more diagnostic functionals is called inverse
modelling. This inverse problem has to be solved when the values of the di-
agnostics contain errors, thus rendering the values mutually inconsistent. In
addition, there may be far too little data for the problem, as stated, to be
able to determine the input even if the input is error-free.

Deterministic and stochastic approaches to such inverse problems are dis-
cussed in the following two subsections.

References of particular value, that go further than the following brief
review, are [131], [142] and [151].

5.2 Deterministic Inverse Problems

Consider the problem of finding a function (or vector) ϕ given the values of
the vector valued diagnostic,

f∗ = F [ϕ,ψ, ψa],

such that

N (ϕ,ψa, ψ) = 0. (22)

Three possible situations are of interest; (i) there are no functions, ϕ (ii)
there is exactly one function, ϕ (iii) there are many functions, ϕ, possibly
an infinite number, that satisfy the equation N = 0 and are approximately
consistent with the values of the diagnostics.

Interest is only in functions that have a continuity property. That is, small
changes in f∗ should imply only small changes in ϕ. A problem is said to be
well-posed if it has a unique solution that is continuously dependent upon the
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data. A problem that is not well-posed is said to be ill-posed. Usually inverse
problems are ill-posed. This arises from the existence of experimental errors
in the data (thus making the f∗ constraints mutually inconsistent) and too
few measurements. There is usually far from sufficient data and what data
there is, is inconsistent.

There are several possible responses to such a problem. A popular first
step is to at least remove inconsistency by formulating a least-squares prob-
lem. When the problem is well-posed the least-squares reformulation does
not change the answer, but when the data are inconsistent it forces one or
more solutions into existence.

Thus the problem implied by (22) is written as:
Given the values f∗, find ϕ such that

J =
1
2
(f∗ − F [ϕ,ψ, ψa])2 (23)

is a minimum subject to the constraint N (ϕ,ψa, ψ) = 0.
Let SJ denote the set of functions that minimises J . SJ usually contains

more than one function and often an infinite number of functions.
To obtain a unique solution, further information is required. One approach

is to seek the function amongst SJ that minimises
∫

ϕ2dDx. This is a possible
procedure, but very difficult to implement when N is a nonlinear functional.
Thus a more common approach is to form the problem:

Given the values f∗ find ϕ such that

J =
1
2
(f∗ − F [ϕ,ψ, ψa])2 + ε

∫
ϕ2dDx (24)

is a minimum subject to the constraint N (ϕ,ψa, ψ) = 0 and where ε is a
positive real parameter.

This is known as zeroth-order Tikhonov regularisation. See [129] for an
excellent overview of deterministic inverse problem solving. The book [49]
is a treatment of inverse problems from the point of view of the applied
mathematician.

This method removes inconsistency and looks for solutions biased towards
smallness. As ε increases the value of 0 is gradually recovered everywhere.

A detailed discussion of how to interpolate scattered data has already been
given. This interpolation problem can be considered an example of an inverse
problem. Indeed the situation is very often that measurements of diagnostic
functions are available and a few direct measurements of the properties ϕ are
also available at a small number of points. Then it makes sense to combine
interpolation techniques with the general inverse problem.

Thus consider the problem:
Given the values f∗, and the values ϕ∗

i at the M points xi find ϕ such
that

J =
1
2
(f∗ − F [ϕ,ψ, ψa])2 + εα

∫
(∇2ϕ)2dDx + ε(1 − α)

∫
(∇ϕ)2dDx (25)
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is a minimum subject to the constraints N (ϕ,ψa, ψ) = 0 and ϕ(xi) = ϕ∗
i .

When the point data values, ϕ∗
i , are not available then the method implied

by the functional in (25) is called first-order Tikhonov regularisation for α = 0
and second-order Tikhonov regularisation for α = 1.

Given the background in deterministic interpolation this method of
higher-order regularisation seems quite reasonable. However, it is rather arbi-
trary and difficult to justify. For this reason it is interesting to seek procedures
that are well-founded upon statistical concepts.

5.3 Stochastic Inverse Problems

In the sections on stochastic interpolation the theory of random functions
was introduced. To apply the theory to inverse problem solutions it will be
assumed that the formalism of Bayesian statistics is a sound foundation.
There is no space here to discuss this contention, and there is no need, as an
extensive literature exists. A recommended overview of the subject is [122]. A
practical and complete review of inverse problems, with a distinct Bayesian
flavour is [131].

The main ingredients of a Bayesian formulation of the inverse problem are
(i) the prior probability distribution (ii) the likelihood function (iii) the data
(iv) Bayes’ theorem formulated as Bayes’ rule for producing the posterior
probability distribution (v) a technique for sampling from the posterior dis-
tribution (vi) techniques for visualising the posterior distribution and (vii) a
technique for summarising the posterior distribution. Summarising the distri-
bution implies, for example, calculating the mean and correlation functions.

For the inverse problem a reasonable prior might be the functional pdf
that would be used in a stochastic interpolation without the values of the
diagnostic functionals. However this needs to be extended, as the parameters
(which are also called coupling constants in the following) are also uncer-
tain. As argued in more depth later on, uncertainty in the parameters is an
important contributing uncertainty in practical multiscale modelling.

Care must be taken in developing the prior distributions. Dogmatism must
be avoided if calculations are to be useful. That is, any region of parameter
space that is assigned a probability measure of zero by the prior will remain
with a measure of zero whatever data is available. Thus a zero measure must
be applied only when complete certainty is appropriate. A similar consider-
ation applies to the deterministic methods, where badly characterised prior
information and solution algorithms can prevent convergence to realistic so-
lutions.

The precise form of the prior is a matter of individual judgement, com-
putational expedience, and familiarity with the circumstances of a particular
modelling exercise.

A convenient prior for permeability is to use the log-normal form, where
the permeability (assumed a scalar here) is given by an expression of the form
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k = b0e
b1ϕ with parameters b0 and b1 treated as known for convenience of

exposition, and π(ϕ, c) is

π(ϕ, c) = C exp (−H[ϕ, c])π(c), (26)

where

H[ϕ, c] = c2

∫
(∇2ϕ)2dDx + c1

∫
(∇ϕ)2dDx + c0

∫
ϕ2dDx

and π(c) is an appropriate characterisation of the state of knowledge of the
coupling constants, c = (c0, c1, c2). In some applications there are local, or
point, values of ϕ available. Other information, through the diagnostics, is
more global. In such cases it may be appropriate to consider the diagnostics
as providing information to improve π(c) rather than π(ϕ|c). However, it is
not clear how to analyse this intuition in more depth. It is noted that in the
statistical literature, the parameters, c, are called hyperparameters.

The likelihood function is derived from the probability distribution of the
measurement errors relating to the diagnostic functionals. An appropriate
distribution is a multivariate Gaussian with independent errors. Thus the
joint probability density of the diagnostics and the input is

π(f, ϕ, c) = Cgσ(f, ϕ, ψa) exp (−H[ϕ, c])π(c), (27)

where, as an example, consider the case of a single scalar-valued diagnostic,

gσ(f) = C ′ exp (−(f − F [ϕ,ψa])2/2σ2).

The posterior pdf for the input is then,

π(ϕ, c|f∗) = C ′′gσ(f∗, ϕ, ψa) exp (−H[ϕ, c])π(c),

for normalisation constants, C, C ′ and C ′′. In cases where σ is small, and
gσ is close to a δ-function, great difficulties are experienced in sampling from
the posterior distribution.

A convenient and popular summary of such a posterior distribution is the
maximum probability interpolant (known as the MAP, maximum a posteriori
probability estimate). If this is calculated using the calculus of variations, then
a minimisation problem, similar to that of the Tikhonov methods is obtained.
In the Bayesian formulation however, the free parameters need less ad hoc
arguments for their assignment and have a clearer interpretation.

In oil field problems, the functionals π(c) and π(ϕ|c) have large vari-
ances. Thus MAP is not appropriate, and Monte Carlo sampling, direct from
the posterior probability distribution, is perhaps the correct method. The
Tikhonov methods are best regarded as asymptotic approximations in the
limit of small variance.

Thus in general, one should not use summary values of ϕ, but instead use
the pdf and compute the expectation values of the diagnostic functionals in a
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predictive computation. Since the likelihood function is close to a δ-function
this is expensive using existing techniques. More is said about such inverse
problems in the section on history matching of production data. There is an
urgent need for further extensive research into the sampling of posterior pdfs.

At present there is only a small literature applying the Bayesian phi-
losophy of inverse problems in the oil field data integration problem. For a
representative sample see [99, 100, 125]. The number of publications in this
area is likely to grow rapidly over the next few years.

5.4 The Problem of Scale Dependence in Inverse Modelling

It is well known that the permeability of a one dimensional system, in which
there is incompressible single phase flow, can be replaced by the harmonic
mean. This ensures the same total flux for a given pressure drop. Now consider
the inverse problem, where the flux and the pressure drop are given, and the
problem is to determine the permeability distribution. In this case it is easy
to see why the problem has a non-unique solution. All distributions with
the same harmonic mean are candidates - all give complete agreement with
observations and all leave the physics of the problem unchanged without
error.

Systems defined on different scales (in the sense of the grid cell size)
can have the same harmonic mean, and so flow measurements provide no
information at all concerning the length scale of the heterogeneity in the one
dimensional case.

In the general case, therefore, one must expect very little information
regarding length scales to be available from flux and pressure measurements.
After water breakthrough there may be information regarding length scales,
but generally integration of cores, logs and outcrop studies is needed for
the assignment of length scales. Early time data from well tests may be an
exception to this general rule. Research is needed on this matter of length
scale determination during data integration.

6 Sources of Data

Our main concern is combining, or integrating, all available (and relevant)
data by building geological models to be used as input to forward models of
fluid flow. Such models are used in reserves estimation and designing optimal
recovery plans. The required data, at a minimum, consists of the porosity,
the permeability tensor, the relative permeabilities and capillary pressures,
fluid properties and the rock compressibility. All of these items are functions
of position in 3-dimensional space.

The available information is sparse, indirect and difficult to interpret.
However, oil companies and oil service companies have been building models
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for many years and there is a consensus on how to best build models, when
the best possible model is the goal.

Data quantifies the response of rocks and fluid to the introduction of
various forms of energy. All measurements require inversion, and, in principle
are uncertain. However, some measurements are more uncertain than others.
There is no neat classification of measurement processes (of which the author
is aware) and so each type of measurement is discussed independently. All
the methods share a dependence on geological knowledge that is essential
in building the prior information needed in the inversion. Thus this section
will start with a brief outline of basic geological concepts (those that are
important in reservoir simulation and geological model building). After this,
a brief outline of seismic acquisition, processing and inversion (often called
migration in the seismic community - although there are subtle nuances of
meaning involved). Well logging is discussed, and then an outline is given
of the information available from flow tests in wells. The flow tests can be
on a very small scale, in which case they are a form of logging, or the tests
can be on a large scale, in which case they are closer to production data and
are known as well tests. The final source of information is from production
history.

6.1 Geology: Geological Processes from a Mathematical
Viewpoint

Definition of Geology: Geology is the study of the structure and history of
Earth and other astronomical bodies. The main branches of the subject are:

• Petrology, the study of rocks on the smallest scale.
• Mineralogy, the study of the chemical composition of rocks.
• Structural geology, the study of the geometric forms and the forces involved

in the creation and existence of geological structures.
• Sedimentology, the study of the processes which form the rocks, before the

large scale features are formed.

See reference [48] for a useful and fascinating overview of geology, Earth
science and petroleum science.

A key principle of geology is that the present is the key to the past, also
known as the principle of uniformitarianism. This states that most structures
result from processes currently operating today. Thus, by observing and the-
orising about the geology on the surface today geologists can reconstruct
the history beneath the surface, and are able to understand the geological
features of our environment.

Another key principle is that for any two layers of rock, the youngest
layer is above the older - the law of superposition [22]. Of course this is not
a universal truth, as sometimes the forces of nature overturn the rocks to a
startling degree, nevertheless it appears to be a useful guiding principle for
understanding the layers in the ground.
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The main physical processes that operate are:

• Sedimentation (forming of rocks by transport and deposition in the sea, in
rivers, and in deserts).

• Diagenesis (fossilisation of sediments by pressurisation and chemical re-
actions, associated with fluids that flow through the rock long after the
original deposition).

• Deformation (bending, elastic and plastic, of rocks resulting from large
scale earth movements, and differential pressurisation).

• Intrusion (flow of material, such as salt, upward, causing bending, fractur-
ing and faulting).

• Jointing (breaking of the rock within a thin volume, usually idealised as a
surface) - when deformation follows jointing one speaks of faulting, other-
wise of fracturing.

• Erosion (the opposite of sedimentation, when ice, water and air remove
already deposited rock).

The combination of these processes causes the complexity observed in
surface outcrops and subsurface observations in seismic surveys, cores and
well logging.

Sedimentology: Rocks are classified into types determined by colour, texture,
fossils and electrical and other physical properties such as seismic response.
The internal structure of the layers is largely determined by the depositional
environment. In sandstone reservoirs, for example, sands may have been de-
posited in a river delta, in a desert or on the seabed. After deposition, large
scale movements - turbidites (great landslides under the sea) or earthquakes
- might occur, which mix up the sands. Other oil reservoirs are found in car-
bonate rocks, which have their own characteristic patterns, being much more
affected by diagenesis than sandstones. The geologist determines the depo-
sitional environment from the spatial association of rock types, as a single
rock type can be found in different environments. A large body of rock from
a single environment is known as a formation. Formations are divided into
members, members into beds. Beds are informally referred to as layers - but
layers can be much thinner than beds. Formations, if there are some common
factors, are combined into groups which can be further combined into super-
groups [22]. The International and the North American Stratigraphic Codes
bring order and consistency to the terminology [22].

There is a large literature involving literal modelling of the sedimentation
process, [4, 5]. There is a newer and growing literature, in which a more
abstract, schematic, view is taken [144].

At the far end of the abstraction spectrum, is the geostatistical school of
modelling, in which the pattern of rock properties is modelled without any
input from physical principles [34].

The simplest oil reservoir is a collection of broadly horizontal layers, with
varying thicknesses. Such models are frequently called layer cakes. The sur-
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faces defining the boundary between two layers are called horizons. Next
in complexity is the case where layers are (i) discontinuous or (ii) pinchout
where there was a change in the mode of deposition. A further increase in
complexity is when a geological event leads to erosion of part of a layer cake
before recommencement of deposition. With just non-uniform deposition and
erosion, complex patterns of rock can evolve. An example of this is the Grand
Canyon [110]. When the horizons are relatively smooth and continuous, it is
easy to model them with parameterised maps. These can consist of an ar-
ray of depth values on a regular rectangular grid. At points away from the
grid points, values can be interpolated. The various methods described in the
section on spatial statistics are employed in the making of computer maps.

Structural Geology: Structural geology studies rock deformation during and
after deposition. Faulting greatly complicates matters. When faults are ver-
tical, horizons are torn along the fault lines and this leads to displacement of
the maps. When faults are normal, meaning the fault surface slopes such that
any vertical line intersects a particular horizon once or not at all, descrip-
tion is fairly straightforward. In more general situations, such as intersecting
faults, or reverse faults (where a vertical line may intersect the same horizon
twice) it is not possible to describe the geometry in a simple way.

Another complication occurs when horizons are folded, as in the case of
salt domes, so that again vertical lines exist that intersect horizons more than
once. These are also difficult to model.

Operational Geology: The standard approaches to geological modelling at-
tempt to build the model as directly as possible. That is, the sequence of
operations involved in the model building does not attempt to mimic actual
geological processes (although horizons and unconformities may be ordered
in a time sequence, so as to specify the erosion rules). In operational geol-
ogy a sequence of the basic geological processes (sedimentation, deformation,
jointing, diagenesis and erosion) that is a feasible sequence is postulated.
One might even conjecture a sequence of operations as the actual history of
a particular formation.

Reconstructive Geology: In reconstructive geology, the attempt is made to
provide a model of the actual sequence of events that caused a particular
rock pattern, in as realistic a manner as is useful. Reconstructive geology is
a special case of operational geology, in that operational geology may not
suggest that the sequence of events is the actual sequence. An introduction
can be found in [76].

Basin Modelling: In basin modelling, an operational approach is applied to
a very large volume of space, in which there may be many oil reservoirs.
By looking at this larger scale it is possible to postulate the source of the
sediment that has been deposited, and to model the actual formation of the
oil - an example of a diagenetic process, [5].
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Notes on the literature. Books that introduce geology, aimed at people
involved in petroleum studies, are [43, 108, 110, 138].

6.2 Seismic Acquisition, Processing and Interpretation

Seismic acquisition involves sending acoustic energy into the subsurface and
analysing the echoes. This is an inverse problem on the wave equation. Data
are gathered from many independent experiments, as a sound source is moved
over the land or sea surface. The results are preprocessed using a wide range
of techniques designed to correct for topographical features and noise. A
complete review of these techniques can be found in [139]. Clear explanations
of the older techniques can be found in [3].

After preprocessing, the main inversion step is known as migration. The
amount of data, and the size of the system under investigation are both very
large. This precludes the use of simple numerical techniques for solving the
forward model, as described for the fluid flow forward problem. Instead a
range of semi-analytical approximations are used. The approximations vary
in accuracy, complexity and applicability. The simplest methods are known as
time migration, using Fourier processing on wave equations, linearised about
a simple background spatial distribution of properties.

The more sophisticated and more accurate methods known as depth mi-
gration are based on high-frequency ray-tracing methods. Occasionally, in
very complicated situations, full finite difference or pseudo-spectral approx-
imations are used, but the resolution requirements are very demanding. A
major decision, relating to the amount of spatial variation in the acoustic
properties, is to migrate pre- or post-stack. This refers to one of the ma-
jor preprocessing steps where an averaging technique is applied to the raw
measurements that combines the observations from different sources and re-
ceivers. This indicates the complexity of the seismic processing activities. The
mathematics is explained in detail in [21].

The results are usually presented in the time domain which, to a first
approximation, removes the effects of any layer cake background model. Users
of the inverted results are able to apply their own time-to-depth conversions
as more data becomes available, or as the seismic data is integrated with
other data. The time-to-depth conversion is performed using alternative layer
cake models of the sound speed and rock density. Note that depth processed
seismic results using depth migration are often displayed in the time domain
by applying a depth-to-time conversion.

After migration, and display in the time domain, the observations are
equivalent to a numerical experiment that measures the response that would
be observed in an ideal experiment where the sound waves are assumed to
propagate in vertical, straight lines, and that any reflectors that are encoun-
tered are locally horizontal. The resulting calculations are then displayed as
seismograms of the virtual experiment.
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It should be noted that even though the results may be very realistic, they
are not unique. There will be many different spatial distributions of acoustic
properties that will explain the observations.

The final step in the use of seismic observations is the interpretation.
Even at this stage further modelling, involving ray tracing or analytical wave
equation approximations are tried in efforts to devise models that give the
same reflection behaviour as that observed in the seismic measurements. Re-
views of this can be found in [12] and [51]. The aims of interpretation are to
locate the major structural features, perhaps by hand picking or autopick-
ing. Seismic attributes, functions of the seismic amplitudes and locations,
are sometimes selected as input to property modelling algorithms where, for
example, porosity might be interpolated using a stochastic realisation condi-
tional on the seismic attributes.

6.3 Core Data

Core data is recovered using special hollow drill bits. The rock is very valu-
able, and provides prior information for inversion of indirect measurements
such as seismic and well logs. Samples can be taken from the cores, and
measurements made in the laboratory. Such laboratory measurements do not
generally require complicated inversion procedures, but as the measurements
are on the scale of centimeters care is needed when applying this information
to inversion of properties that are on a larger scale.

One of the most important uses of core is to help geologists identify the
particular depositional environment as a function of distance along the wells.
Petrologists examine the cores through a microscope. Microscopic features
can be important in developing hypotheses about the origin of the rocks, and
the diagenetic processes that have occurred. Such interpretation is important
as it improves the reliability of conjectures concerning the larger scale texture
of the reservoir.

With an identification of depositional environment, it is then possible to
use observations from surface outcrops or well-studied reservoirs to specify
larger scale geometric features and their associated length scales.

6.4 Well Logs

Aims of well logging. Well logging is used to determine the type and proper-
ties of any fluids in the rocks and to determine the geometric and physical
properties of the rock. The results of interpreted well log measurements are
used to determine the boundaries between layers and the occurrence of frac-
turing. Interpreted results from well logging are used as input to mapping
and geological modelling models. The points along the well log that mark the
boundaries between layers are called picks or well picks. A major aim of well
logging is to tie horizons observed in wells to horizons seen in seismic data.
Such integration improves the reliability of both types of measurement.
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Recent reviews are those of [112] and of [138]. Useful, but older references,
are [45] and [149].

Passive/active measurement. Most measurements involve the introduc-
tion of energy into the formation in a controlled way. The response from
the rock is recorded and used as input to interpretation. Sometimes there is
natural energy, already present as the result of processes in the rock, or as
a result of the disturbances of drilling. In particular the presence of water
or mud with a relatively low salt concentration causes a spontaneous flow
of electric current. Measurement of the associated potential difference is the
earliest form of well logging as performed by the Schlumberger brothers in
the 1920’s [112].

The procedure of well logging involves sending a package of instruments
- called a sonde - suspended from a cable or wire, into the formation. The
well is usually drilled using a special mud, that (i) controls the pressure to
prevent blow-outs and kicks (ii) is a lubricant (iii) is a means of transporting
drill cuttings to the surface, and (iv) sometimes as a medium for transmitting
electrical signals. The mud will penetrate the reservoir rock: more where it is
permeable, less where it is not. Sometimes the drill stem will disturb the mud
cake that builds up on the walls of the well, allowing yet further mud to flow
into the formation. Thus the mud will affect the response of the instruments
and the interpretation of the results. Corrections for different mud geometries
will be required.

The different zones around the well are divided into the mudcake, the
invaded zone, the transition zone and the true zone.

Forward modelling. The design of the instruments to be lowered into the
well and the interpretation of the results depends on the use of a forward
model. This is an application of a theory such as Maxwell’s for electromag-
netics or Darcy’s for fluid flow. An initial-boundary value problem can be
constructed of the formation-measurement interaction and the processes in
the measuring instrument. The theory requires a specification of geometry
and properties. Such a theory can sometimes be solved exactly, more often
approximately using an asymptotic technique exploiting any small parame-
ters in the problem. Asymptotic theories, involving approximations such as
the Born approximation, can be rearranged to show that the properties of the
rock are a convolution of the measured response. In linear response theory
this linear relationship is simply postulated and a laboratory procedure, in-
volving actual physical mock-ups of a well, are used to calibrate the response
function of the instrument. This avoids the need for a theoretical analysis.
In practice, as usual, a combination of theoretical analysis, laboratory mea-
surement and field results yield the best interpretation.

Increasing use is being made of numerical solutions. In some ways this is
simple, but tables of numbers can be harder to understand than an analytical
result. The theory can be used to optimise the response of the instrument,
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maximising the information recovered, minimising the size and weight of the
apparatus and the energy requirements [7].

Parameter inference. The forward model or theory relates the input prop-
erties and geometry to the instrument response. In the simplest case the the-
ory will predict the response as a simple function of the input, such that the
inverse formula, stating the input parameter as a function of the response
can be obtained analytically. An example is calculating the resistance of a
conductor as the ratio of potential gradient to electric current, or permeabil-
ity as the ratio of fluid flux to pressure gradient. In a more complicated case
there may be several parameters such as the radii of the different zones of
mud invasion. When there are just a few parameters it may be possible to
infer the parameters from one or more instrument responses using a least
squares procedure. This is an application of the usual methods of the theory
of measurement as reviewed in Section 5.

In general there are naturally occurring heterogeneities that may require
hundreds or thousands of parameters for a realistic model. Such inversions are
computationally demanding, but using the adjoint method, which is reviewed
in the later section on history matching, it might be possible to make further
progress in improving the realism of inverse modelling.

Transforming the results. The end result of a well logging measurement
will be values of parameters such as electrical resistivity. This is not the
information that is actually required. Instead, porosity, permeability, elastic
constants and so on are needed. Some of these can be inferred by combining
the results of several different logs and using a law, such as Archie’s law (see
[45, 138] for an explanation) to infer the property of direct interest.

Some Notes on the Different Types of Log: Temperature log. Many other
measurements are sensitive to temperature, so this is always recorded in a
suite of logging measurements.

Spontaneous potential (SP). The low resistance water or mud used in
drilling evokes a spontaneous potential difference between a point on the well
surface and a reference point at the well head. This potential varies along
the well bore. High values correspond to high hydrocarbon saturations or
high shale density. The SP log was the first type of well log (see [112] for the
history and historical references). The method can only be used in uncased
holes.

Resistivity logs. The introduction of a source of electrical energy leads to
reliable and controllable measurements. There are many types of electrical
resistivity log. They differ by their depth of penetration and their vertical
resolution. The electrical resistivity of the different invasion zones can be
inferred from these measurements. For a review of inversion procedures see
the review of [7]. Resistivity logs measure the effective resistivity on scales of
meters down to centimeters, depending on the characteristics of the instru-
ments.
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Dielectric logs. The dielectric constant of a material is a measure of its
ability to store electric charge in an imposed electric field. The dielectric prop-
erties are fairly insensitive to the water salinity, unlike the resistivity. The
dielectric constant for the vacuum is unity and that for gases only marginally
greater. However, water has a dielectric constant of around 50 when fresh
and 80 when saline. Oil has a value of about 2.2 and sedimentary rocks range
from 4 to 10 [138]. Thus the dielectric measurement can be used to determine
the porosity and the water saturation. The log does not distinguish between
connate water, mud filtrate or the water content of shales. (Connate water
is the original formation water, and a shale is a rock made of mud parti-
cles smaller than 0.06mm [22].) By altering the frequency of electromagnetic
waves, different depths of investigation are possible.

Passive Gamma-ray logs. Radioactive elements are naturally present in
the rocks. The most commonly occurring radioactive elements are potassium,
uranium and thorium [43]. Potassium is prevalent in clays, and present to
some extent in some other minerals, and so measurement of the gamma-ray
emissions can be used to identify the chemical or mineralogical composition,
estimate the concentration of shale and, like other logs, has an important
role in well picking. More detailed measurement uses the energy wavelength
spectrum and can identify minerals with more precision.

Active gamma-ray logs. By emitting gamma radiation from a source in
the sonde, and measuring the backscattered gamma radiation reflected from
electrons in the formation, it is possible to determine the total or bulk density
of the medium. This includes the rock and fluid in the pore space. The device,
often called the gamma-gamma tool [138] can be used to estimate the bulk
rock density and provide an upper bound on the flow related porosity. The
gamma-gamma log works close to the well, in the invaded zone.

Neutron logs. A radioactive source is transported within the sonde, and
the neutron bombardment causes emission of gamma radiation in proportion
to the hydrogen content of the formation. As nearly all the hydrogen is present
in the fluids, but not in the minerals, the neutron log determines the porosity
of the rock. Since not all the pore space is open to flow (some pores contain
fluid sealed in by diagenesis) the neutron derived porosity is an upper bound
on the flow-related porosity. Neutron logs can be used in cased holes.

NMR logs. Nuclear magnetic resonance logs are another way of measuring
the hydrogen content of the formation. They work by first applying a steady
and strong magnetic field, about 1000 times stronger than the Earth’s mag-
netic field. The nuclei of the hydrogen atoms carry a small magnetic moment
and so there is an induced field of slightly larger magnitude than the strong
static field. A second magnetic field, in the form of short high bursts of high
frequency magnetic fields disturbs the induced magnetisation. By observing
the decay of these responses it is possible to determine the hydrogen content.
Remarkably there is sufficient information to enable estimates of the envi-
ronments experienced by the hydrogen atoms. Thus the fluid saturations of
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different fluids can be determined as can the size distribution of the pores
of the rock. The histogram of pore sizes enables estimates of permeability
to be made. It would appear that the scale of these measurements is of the
order of 10 cms. Only in recent years has the NMR method become available
in well logging. It would seem to be a measurement of particular power and
usefulness in reservoir characterisation.

[112] gives a quite detailed review of NMR logging and [138] provides
a short introduction, though longer than that just given. The book of [87]
contains background about NMR in general.

Sonic logs. The sonic log provides in situ measurement of the speed of
sound in the formation over the scale of the sonde. It can only be used in
open, uncased holes. The measurement is useful in seismic processing, it can
be used to infer porosity but not that accurately and can be used to identify
the rock type since the sound speed is a definite characteristic of each type
of rock. Further detail can be found in [45, 138].

Dipmeter log. The dipmeter, introduced in the 1940’s, uses small elec-
trodes to measure the resistivity along three or more parallel tracks along
the well bore surface. Analysis of correlations of the resistivity between the
tracks and fitting of a plane through the correlated points determines the tan-
gent plane to the layers passing through the well. The geologists characterise
this plane by the angle made to the horizontal by the line of steepest descent
on the plane (the dip angle) and the angle made to true north of the pro-
jection of this steepest descent line when projected onto the horizontal plane
(the azimuth). Assuming that layers of resistivity correspond to lithological
layers, this is thus a very useful measurement. [45] and [112], amongst others,
are enthusiastic about applying dip meter measurements. Both these authors
give examples of interpretations of dipmeter data best done, as usual, in con-
cert with other data. According to [112] the modern dipmeter, with a vertical
sampling rate of 0.25 cm, and an electrode size of 0.5 cm has a resolution of
1cm. That is, the measurements can be used to distinguish features separated
by a distance of 1cm. It would appear that careful geological consideration
needs to be given as to the scale of the layers whose dip is measured. That
is other data is needed along with interpretation (i.e., choosing one of many
models that fit the data) to decide if the layers are cross bedding, or small
scale laminations.

Borehole Imaging. The dipmeter has evolved into the borehole imager.
Here there are 100-200 electrodes measuring the resistivity around the well
bore. These are processed into convincing images which look like photographs
of rocks. In principle such data can replace the dipmeter but, at present,
according to [112] the dipmeter is still widely used. The borehole image can
be used to determine dip, much as with the dipmeter log. However, via a
borehole image it is also possible to determine the presence of fractures,
faults, unconformities and sedimentary structures [138].
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Rock-type analysis. Rock samples, from cores or drilling cuttings, of known
depositional environment can be correlated with a suite of well logs. Then
in other wells, the logs can be used without reference to rock samples to
infer the depositional environments along the well. The processed logs (that
is those with ascertained depositional environment) are used to make well
picks. Then the geologist can build maps or 3D models of the spatial variation
of rock type. The rock type variation can then be used in more complicated
interpolations of properties such as permeability.

Notes on the literature. An extensive and modern review, that concen-
trates on reservoir model building is [112]. This also has useful references to
the more general well logging literature. There is also an interesting history
of well logging.

A general background, at a very accessible level may be found in [108].
A similar, but slightly more detailed review can be found in [43]. The mod-
ern review of petroleum geology by [138] is a mine of interesting and useful
information. The book [72] gives case studies on how well logs are used in
building geological models.

Articles, frequently on logging topics, appearing in the Oilfield Review are
of general interest.

6.5 Well Testing, Production Logs and History Data

Observation of processes that directly involve fluid flow are of particular
importance in building a model aimed at simulating fluid flow. Well tests
provide data on pressure and flow in individual wells when such wells are
disturbed from their normal state. For example, in a shut-in test, a well
is closed to flow, and the transients in pressure and flow are used to infer
permeability in the vicinity of the well. Tests in which the well is shut and
then a very high pressure is induced in the well and allowed to decay, serve
a similar purpose. The integration, into geological and simulation models, of
production and other flow data is discussed in more detail in Section 9.

7 Geological Modelling

The aim in geological modelling is often to integrate all available data into a
single representation for subsequent decision making. Increasing use is being
made of multiple representations, in the process of quantifying uncertainty.
The historical method for model building was to use maps; maps of the
surfaces and maps of the properties in the regions close to the surfaces. Of
course, the subsurface is a volume, and not a surface and so, in tandem with
developments in computer technology, particularly in 3D graphics technology,
geologists have turned to the use of the available 3D modelling packages. Until
recently 3D models, too, were built using maps as input. This is still the most
common method for modelling, and so it will be reviewed in some detail.
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All interpolation schemes specify that the value of some property at a
point is a weighted, generally nonlinear, average of neighbouring or nearby
values. The weighting depends on direction and distance from the point to
its neighbours. Properties generally depend more strongly upon neighbours
within the same layer than in a layer above or below.

Geology shows this is not an arbitrary interpolation problem. Geological
systems show marked patterns of layering, deformation, faulting and diage-
nesis. The aim of structural modelling is to provide a geometric framework
incorporating the major discontinuities. Such discontinuities are boundaries
or horizons between layers or fault discontinuities within layers. This geo-
metric, structural, framework guides and constrains the development of a
geocellular grid that, in turn, defines the neighbourhood structure used in
property interpolation.

7.1 Structural Modelling

All software packages for geological modelling currently take the step of build-
ing a large scale structural framework.

Historically the first step in structural modelling was to focus on the
horizons (the boundaries between adjacent layers). The faults were modelled
via some indication of the fault-horizon intersections. Usually the assumption
of mappability - that the horizon surfaces are single valued height fields above
a flat datum - was made and the fault-horizon intersections were defined by
the projections onto the datum plane. The projections of the fault-horizon
intersection lines are known as fault traces.

More recently it has become the custom to model fault surfaces (not just
their fault traces) before any attempt to model horizons. This approach (see
[84]) helps ensure consistency between all horizons in a particular structural
model.

Types of Structure to Model. In this section, illustrations with explana-
tory text are used to specify the main types of geological structure. The
illustrations are all drawn as cross-sections. In three dimensions the geome-
try is much more complicated than shown, but the pictures that are shown
are sufficient to indicate the difficulty of geometric modelling and subsequent
or associated grid generation problems.

Simple Layered Systems: The simplest case is a system of layers, not nec-
essarily flat, but mappable and continuous. This particular system is often
called a layer cake and is illustrated in Figure 2.



Geological Modelling and Reservoir Simulation 175

Fig. 2. Layer cake geological model.

Layered Systems with Overturned Surfaces: Overturned surfaces, or folds,
which cannot be represented as single valued height fields relative to any flat
reference surface, may be caused by, for example, (i) compressive deformation
of sufficiently plastic layers from the boundaries or (ii) deformation from be-
low by the upward movement of subterranean salt bodies under the influence
of buoyancy forces. See Figure 3.

Fig. 3. Geological model with overturned surfaces.

Normally Faulted Layered Systems: Normal faulting, in which a gap opens up
in the layers, may be caused by extensional forces. Each horizon, starting as a
single mappable height field, remains as such but with holes appearing where
the fault surface intervenes. Figure 4 also contains a vertical fault which may
be considered a limiting case of a normal fault.

Reverse Faulted Layered Systems: A compressional force can cause a layer to
fracture and then ride over itself. The resulting surface is not mappable, in
any simple sense, as the height field is overturned. See Figure 5.
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Fig. 4. Normal fault geological model.

Fig. 5. Reverse fault geological model.

Overturned Surfaces in the Presence of Faulting: The situation shown in
Figure 6 indicates a geometry in which oil may become trapped in layers that
have been faulted by a salt dome intrusion. Although the structural geology of
the reservoir itself may not involve overturned surfaces, the seismic inversion
requirement to describe the sound speed model in a process of optimised
migration means it is necessary to model such complicated geometric features.

Fig. 6. Salt dome with faulted layers.
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An important example, involving both overturned surfaces and reverse
faulting, is the thrust fault where layers are pushed over themselves with
considerable deformation as indicated in Figure 7.

fault surfaces
xxxxx
xxxxx

xxx
xxx
xxx
xxx
xxx

Fig. 7. Thrust fault.

Complex Faulting: Complex faulting involves the interaction of two or more
faults. The example of two intersecting faults is illustrated in Figure 8.

second fault

Fig. 8. An intersecting fault, showing the evolution.

Data Used in Structural Modelling. Data arrives from three main
sources; seismic surveys, wells and geologists.

Seismic Data: Seismic data is voluminous in quantity and on a scale hor-
izontally of 20m or more and vertically 15m or more, depending upon the
circumstances. The interpretation of seismic data is subject to non-uniqueness
in the inversion and migration process. Anyone can see horizons and faults
in a seismic cross-section but it needs an expert geologist to identify such
structural features with a useful chance of being correct. In a large, often



178 C.L. Farmer

three-dimensional seismic data set, it is impossible to extract all of the sur-
faces of discontinuity in a purely manual fashion. Autotracking or autopicking
techniques [81], implemented as part of seismic interpretation packages ex-
tract large sets of three dimensional points conjectured to lie on a particular
horizon. Autotracking works by starting from a manually digitised line of
points thought to lie on a common surface. The algorithm then seeks points
on neighbouring seismic traces that have a similar pattern of seismic ampli-
tudes. Points that lie on fault surfaces can also be identified by autotracking.

Identifying seed points for the autotracking algorithm, and assigning val-
ues for the autotracking parameters are ways of injecting geological expertise
into model construction.

Well Data: Examination of cores or borehole image logs makes the position
of some horizons obvious in a particular well. In the absence of cores or
images petrophysicists and geologists must rely on a set of logs. Software
exists to help segment the logs into layers [112]. The expert can identify
the depositional environment from the patterns in selected well logs. When
combined with core data or drill cuttings, the pattern of layers or zonation
can be assigned with high confidence.

When there are several, or many wells the geologists and petrophysicists
can correlate the picks in different wells by grouping them to belong to a
particular surface. Combining this data with data on a seismic picked surface
increases confidence in the well-to-well correlations and uses the seismic data
to help interpolate the horizon surfaces between the wells.

Decisions made in correlating the layers in wells calls for considerable
geological expertise. It would seem that the people called upon to make such
judgements must imagine what the reservoir and surrounding geology must
look like, in advance.

At this stage in the model building process, the model is a list of sets of
scattered 3D points. Each set of points represents a geological horizon or fault
surface. Since horizon surfaces are conventionally regarded as continuous,
away from faults, (although horizons may touch other horizons at pinchouts)
a natural requirement is to construct a surface interpolating these points.
Techniques for doing this were reviewed in Section 4.

The Classical Map Based Methods: One structural model building approach
is to first make contour maps or mesh maps (height fields on a grid). Recent
reviews by [76] and [143] discuss such approaches in detail.

The simplest technique is to guess the projections of the fault-horizon
intersections and to treat these as discontinuities. The surface data can thus
be interpolated treating the fault traces as internal barriers. Although simple,
such a technique can lead to a strange fault surface when traces are used to
define a fault surface. A better method, but requiring more work, is to first
build a surface model for each of the fault surfaces. When working by hand
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([76, 143]) an iterative approach is adopted whereby fault traces are explicitly
calculated by intersecting map contours with the fault surface contours.

Fault Framework Modelling: It is now generally agreed that the best ap-
proach for modelling a faulted geological structure is to first focus upon the
fault surfaces. Explicit interpolations of the fault surface are needed. This ap-
proach is now used in the most commercially successful geological modelling
software packages ([64, 84]). A particular difficulty is presented by fault-fault
intersections - should they be an input or an output?

Manual Approach for Fault Framework Modelling: One approach, a manual
technique, is a possibility [64] where the intersections and the fault surfaces
are built together, interactively in a 3D visualisation environment, with visual
cues provided by seismic data, interpolated horizons or both. In such an
approach lines are digitized onto the observed intersections. Further lines
are digitized that manually construct a ruled surface. These surfaces can
be interpolated using bilinear patches or splines. Thus in this approach the
fault-fault intersections are input to the modelling, provided by the user. A
schematic is provided in Figure 9.

Fig. 9. Fault-fault intersection framework.

Automatic Approach for Fault Framework Modelling: The second approach
is to interpolate the fault data for each fault separately and then to compute
the fault-fault intersections. This may require some manual assistance to the
algorithms to help extend surfaces so that the surfaces do intersect if there is
insufficient data. In principle, surface-surface intersections are easy to com-
pute. In practice, however, the intersections may have a very complicated
topology largely arising from artefacts of the interpolation. The intersection
calculations can be very delicate. At best a great deal of computer time is
needed, and in the end a lot of user interaction may be required to clean up
the results. Ironically it appears that in practice such an automatic approach
is only suited to models with a small number of faults. The most practical
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approach, that inserts the intersections directly - not needing any intersec-
tion calculations - is the easiest and fastest method. It is difficult to provide
references to support these observations as the science of structural modelling
is dominated by commercial companies who do not publish descriptions of
their algorithms in the open literature.

Fault Block Splitting (FBS): One approach to the structural modelling prob-
lem imbeds the fault surfaces into an extended set of surfaces that divide the
volume of interest (VOI) into a set of closed compartments. When there are
only a few faults this is a simple extension of the fault framework modelling
activity. Some extra surfaces need to be added, and parts of the fault sur-
faces on which there is a throw, and the parts on which there is not must be
specified. There is however an extra burden on the user of the software; the
order of the faults has to be chosen. The reason is that a convenient approach
(for the software implementation) to fault block splitting is to build a binary
FBS tree. Thus the volume of interest is defined, the first fault is extended so
that it divides the VOI into two pieces. This operation is then repeated with
each fault in turn. The extended faults must cut one or more fault blocks -
the compartments in the binary FBS tree - into two pieces. In principle this
is simple but in practice very difficult.

In two dimensions, with vertical faults, it is possible to automatically
extend the faults and to carry out automatic subdivision [135]. This requires
delicate programming but has been commercially available for some time.
When the faults are sloping this automatic method can still be used. The
approach is able to deal with very large numbers of faults.

When the faults have shallow dips, that is they are nearly horizontal sur-
faces, as in a thrust fault, then much user editing is required. When faulting
is complex, the process of model building is essentially manual. As a gen-
eral rule, software must allow user interaction to enable interpretation and
assumptions of geological style to be imposed by a geologist. However, at
the time of writing all software requires extensive user intervention. There is
clearly much room for mathematical innovation in providing better algorith-
mic tools to assist the geological model builder.

The Corner Point Grid Method.

Geometry, Topology and Construction of Corner Point Grids: The main com-
ponents of a corner point grid are:

• The bounding box.
• The boundary.
• The internal control surfaces (usually faults).
• The coordinate tubes.
• The tube dividing surfaces (usually horizons).
• The grid blocks.
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Fig. 10. The bounding box.

Imagine a finite, rectangular bounding box containing all relevant point,
line and surface data, Figure 10.

Introduce the boundary; a surface that is broadly vertical or aligned with
the sides of the bounding box. In practice the boundary is chosen to guide
the slope of the final grid and plays an important role in guiding the general
shape of the grid.

Fig. 11. The boundary inside the bounding box.

The internal control surfaces are surfaces that are again broadly vertical.
These surfaces are divided into two sets: the honoured surfaces and the zigzag
surfaces. Most of the time the control surfaces are fault surfaces. In some
situations however, the control surfaces might be the flanks of a salt dome or
other intrusion.

The structured coordinate tubes are the cells of an Nx by Ny by 1 grid
that conforms to the boundary and the honoured surfaces. The edges of the
coordinate tubes are called the coordinate lines. On a structured grid each
tube has four coordinate lines, each one located at a corner of the tube.

In technical terms the tubes define a regular Cartesian Nx by Ny by 1
grid in a logical cube that deforms to fit the boundary and honoured surfaces.
Often the grid will also be subjected, through the grid generation algorithms,
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x

Fig. 12. Some honoured surfaces inside the boundary.

x

Fig. 13. Areal view of a structured corner point grid with honoured surfaces in
bold.

to general trends in the zigzag surfaces. The construction difficulties concern
the choice of coordinate lines to go with a particular honoured surface. Also
the honoured surfaces need to be extended, automatically by an algorithm, so
that the imbedding of the honoured surface in the grid of tubes is smooth and
natural looking to the eye. Algorithms exist for the automatic assignment of
coordinate lines to particular honoured surfaces [57].

Fig. 14. A typical coordinate tube.

The sides of the coordinate tubes need not be flat. The only essential
requirement is that the tube is a singly connected volume. In practice the
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sides are often bilinear surface patches and the edges are straight lines. In
such a case the tubes are hexahedra. The most advanced packages allow the
edges to be piecewise linear or segmented lines [64]. The tubes are then stacks
of hexahedra.

Surfaces that are not honoured by the tubes are the zigzag surfaces. In
the case of zigzag surfaces the surfaces are moved to the nearest sequence of
tube sides. This is analogous to the process of rasterisation that occurs on a
digital display, but is in a 3D space. The geometric accuracy of the grid is
proportional to the size of the tubes.

In the case of unstructured coordinate tubes an initial unstructured grid
with vertical coordinate lines is built. This unstructured grid might be a
Voronoi grid, a Delaunay grid or a grid made from aggregated cells of one of
these types of grid. The control surfaces for the initial grid are obtained by
essentially verticalising the original data. These vertical lines are then sloped
to honour the actual control surfaces. Coordinate lines that do not lie on the
control surfaces are positioned using an interpolation procedure.

The next stage in building a corner point grid introduces the tube dividing
surfaces. In the simplest approach the tubes are collected into groups and a
set of tube dividing surfaces is assigned to each group of tubes. It is assumed
that each surface is continuous within the group and forms part of a consistent
stack of surfaces. This is illustrated in Figure 15. Pinchouts are allowed but
surfaces are not allowed to cross.

coordinate lines
coordinate line
on a fault surface

first stack of tube 
dividing surfaces

second stack of tube
dividing surfaces

Fig. 15. Cross section of some tubes with two sets of tube dividing surfaces.

The simplest tube dividing method just samples the surfaces onto the
coordinate lines at the intersection points of the coordinate lines with the
surfaces. When coordinate lines are on the boundary of a tube dividing group
there is a multiple intersection; one for each group. This leads to split-nodes
on the coordinate lines. This is illustrated in Figure 16.

The corner point grid blocks are then defined by interpolating the cell
corners with straight lines. On structured grids the blocks are generally hex-
ahedra and on unstructured grids the blocks are general polyhedra. A cross
section of a corner point grid is shown in Figure 17.
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surface- coordinate line
intersection points

coordinate line
with split nodes

Fig. 16. Grid block corners at tube-dividing-surface/coordinate-line intersections.

The Slicing Method: An alternative approach for building corner point grids
has been suggested by [107]. In this method the surfaces of the horizons and
faults are assumed known and the coordinate tubes are simple vertical sided
tubes with an orthogonal areal pattern. The simulation or geological grid
cells are then defined as the intersection sets of the tubes with the layers.
The cells can thus be constructed by slicing the tubes using the fault and
horizon surfaces. In [107] the implementation is based on the assumption
that the surfaces are height fields with respect to a flat reference plane. The
method is promising and could be generalised to use overturned surfaces and
any pattern of coordinate tubes. A disadvantage of this method is that the
surfaces need to be constructed in an external application.

Fig. 17. Final stage of grid block construction.

Input Data for Corner Point Grids: In the earliest corner point grid building
applications, the input data were in the form of horizons and fault traces.
The fault traces were used to drive the construction of the tubes. The sides
of a particular sequence of coordinate tubes then defined the fault surfaces.
Horizons were used as the tube dividing surfaces. This workflow is still widely
used, although it can involve a lot of work in editing fault traces so that they
lie on their associated fault surface. An early case study is [74]. Often the
horizon surfaces are inconsistent as they are constructed separately from one
another, and the fault traces are assigned separately to each surface. If the
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traces arrive from a mapping package that knows about fault surfaces then
these difficulties can be avoided.

In the most recent corner point gridding applications there is a move to-
ward building a framework of fault surfaces before any other model building
operation. This is exemplified by the application described in [64], where it
is even possible to perform scattered data interpolation of the tube dividing
surfaces (most often horizons) directly onto the coordinate lines. One way
to understand this step further is to regard a conventional mapping package
as moving surface nodes up and down on vertical coordinate lines that are
arranged in a regular Cartesian grid. In a mapping package the tubes have
vertical, flat, sides. All faults are essentially zigzagged, although some pack-
ages perform local unstructured grid refinement, by slicing the tubes with
the fault traces. Detail from a mapping package can be high, and use is con-
venient, provided all faults are normal and there are no intrusions such as
salt domes.

When building surfaces directly inside the corner point grid application
there are no problems with reverse faults, as the coordinate lines conform to
the fault surfaces, and in the local coordinate system defined by the coordi-
nate tubes there are no reverse faults. This is very convenient and powerful.
The approach has only been partially exploited so far, and one looks forward
to improvements in efficiency and quality. Much more remains to be done
with regard to the proper evaluation of statistical uncertainty in structural
modelling. Some discussion of this can be found in [152].

Problems with Corner Point Grid Modelling: For many situations the corner
point grid approach is natural, accurate and fast. Problems occur when there
are geometric or topologically complicated systems to model. One particular
advantage of the corner point grid approach is that in simpler problems there
are no performance limitations regarding the number of faults that can be
included in the grid. Clearly, eventually memory becomes an issue, but this
is much more of a difficulty in other approaches. A corner point grid can have
1000’s of faults and yet be constructed on a relatively modest computer.

Geometric complexity often involves overturned surfaces such as found
in an intrusion. If this is not too complicated then editing of the scattered
data that lies on the surface, splitting it into groups that control the base
surface, the sides, and the top can lead to a model. It is already possible for
skilled users to build such a grid using the most sophisticated corner point
grid applications. A schematic cross section of a salt dome grid is shown in
Figure 18.

Another topological complication occurs when two or more faults inter-
sect. An example of the geological nature of the problem is indicated in
Figure 8.

These y-faults or λ-faults cause severe difficulties for current state-of-
the-art geological modelling and grid generation systems. One promising ap-
proach, successfully implemented in [136], is able to build a grid as long as
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Fig. 18. Cross section of a grid that honours a salt dome.

the surfaces are provided as in the right hand side part of Figure 8. That
is, the surfaces must be trimmed and related to one another so that all rea-
sonable topological and geometric queries can be answered. [136] constructs
an ijk or vertically zigzagged grid (see also Section 3.1). This means, essen-
tially, that the geological model is digitised onto a grid, rather in the way
that a 2D picture is rasterised onto a 2D raster of rectangular pixels. Here,
a 3D raster is built, made of a 3D adaptive grid with general curvilinear
hexahedral cells. The sophistication lies in the fact that the raster is adapted
to the local surfaces. This increases the accuracy whilst reducing the number
of grid blocks. A more natural and accurate solution can be constructed by
exactly slicing the coordinate tubes with the tube dividing surfaces, a tech-
nique that has been commercialized by [107]. Another approach might use a
vector field technique to build a system of coordinate lines that can then be
used to sample the surfaces.

The final difficulty to be highlighted, regarding corner point grid gen-
eration methods, is the listric or thrust fault problem. A schematic of this
geometry is shown in Figure 7. Again sophisticated use of curved coordinate
lines, breaking up of scattered data into tube dividers and honoured surfaces
could build adequate models, but this requires extensive work by a user of
any software. The state-of-the-art for such structural modelling problems is
to ask the users of software to construct the grid in a sequence of manual
operations. Clearly, further research is needed for these difficult modelling
problems.

7.2 Property Modelling

Spatial Statistics in Curved Spaces. Topics in spatial statistics have
been reviewed in Section 4. There the coordinate system was assumed to be
rectangular Cartesian. This assumption is often made in the geostatistical
literature and in geostatistical software. See, for example, [42].

Geological systems are manifestly non-Euclidean. Layers are twisted,
pinched-out, or faulted. At best there is a local Cartesian coordinate system.
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The situation is reminiscent of continuum mechanics. There the requirement
to describe the deformation of material objects has led to the development
and application of differential geometric and tensor analysis techniques, that
make it possible to describe systems without any particular assumption of
a coordinate system until one has to actually perform a calculation. Indeed,
if the calculation is performed numerically, by for example a finite volume
method, global coordinate systems are unnecessary. One simply requires co-
ordinates in the vicinity of various objects so that quantities such as areas
and volumes can be computed.

This section outlines common approaches to statistical interpolation in
curved layers. The last section indicates a solution along the lines of that
used in continuum mechanics.

The usual approach assumes the geostatistical algorithms are satisfactory
as they are, and that the problem is to find new coordinates (u, v, w), given
by a transformation, f ,

(x, y, z) = f(u, v, w)

with the property that for any two points, (x1, y1, z1) and (x2, y2, z2) in the
same layer with,

w1 = w2

then the distance
((u2 − u1)2 + (v2 − v1)2)

1
2

is the intrinsic distance between the points in the layers. (The intrinsic dis-
tance is defined as the length of the shortest curve joining the two points
where all the points on the curve lie on the surface.) These coordinates are
a generalisation of isometric coordinates to a faulted surface. They are very
difficult to construct and do not generally exist. However, one can treat them
as an approximate goal; one tries to find a coordinate system as close to the
isometric ideal as possible [114].

Stratigraphic Coordinate Interpretation.

Mapping Method: To introduce this method - the straw man of property
modelling - let us remind ourselves about the geometric structure of a map
of a faulted surface. Suppose that the faults are normal faults. In such a case
each (x, y) point on a horizontal reference plane is mapped into the horizon,
or into a fault surface. The boundaries of the fault surfaces are the fault
traces which are polygons in the reference plane. The horizon is not itself
a continuous surface. However, the union with the fault surfaces repairs the
horizon surface to a continuous surface. That this can be done is the main
reason for the historical success of mapping software and its main restriction
- one cannot describe reverse faults without extensive extra mathematical
(and thus software) objects.
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However, having repaired a faulted horizon to a continuous surface it is
possible to apply any 2D interpolation algorithm for any property such as the
well values of, say, porosity. This completely ignores the effect of the faults.
When the post faulting diagenesis has not markedly altered the continuity of
the rock properties, this must be incorrect. The properties on either side of
the fault, where corresponding points in the horizon were originally joined,
should have the same value, but in this mapping method this is not generally
the case. Although the approach is clearly defective, and is not used in any of
the packages which have a stratigraphic 3D grid, it provides a useful example
that contrasts in an interesting way with other, more sophisticated methods.

(i, j, k)-Method: Many geological modelling applications use a structured
grid. Thus there is a natural mapping from (x, y, z)-space to a logical, rectan-
gular (i, j, k) space. This mapping is a natural by-product of the grid genera-
tion process. The simplest technique for applying an algorithm that requires
rectangular coordinates is to apply the algorithm in (i, j, k)-space. To do
this, it is necessary to transform the scattered data into the (i, j, k)-space.
Any correlation functions have to be defined in the (i, j, k)-space.

Advantages of this method are (i) it is fast (ii) it is qualitatively correct
across faults when diagenetic effects, related to the fault are negligible and
the pre-deformation properties of the rock are appropriate. The method does
not properly account for the true distance between points, but does honour
the connectivity across a fault surface.

(x, y, k)-Method: In some structural modelling approaches a 3D corner point
grid is used to carry the properties. As part of model building, an intermedi-
ate 2D grid is built, assuming that the faults are verticalised. (This is done for
purposes of analysing the topology.) This means that each grid cell, after the
coordinate lines have been sloped or even bent into segmented lines, inherits
an (x, y) coordinate from the intermediate areal grid. If the scattered data
are transformed into this coordinate system and the properties interpolated
in this space, then the true distance between the cell centres is more prop-
erly accounted for than in the (i, j, k)-method. In other words, because the
faults are verticalised at this intermediate stage it is valid to use the map-
ping approach. Further, because the verticalisation is all through the model,
it is possible to map the curvilinear grid into a 3D model space throughout
the model. Three-dimensional property interpolation procedures can then be
applied and posted back into the true geometric configuration [137].

The method is one of the best in current use but must be regarded as an
interim solution, while research continues.

Mapping Methods. In the only book to have been published on 3D geo-
logical modelling [114], there is a section on building an isometric coordinate
system such that given the coordinates of any two points they provide the
distance using the Euclidean metric. It is possible to construct a best possible
approximating set of isometric coordinates. This is the best one can do.
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Coordinate Free Methods. The need to construct an approximately iso-
metric coordinate system is an avoidable problem. All one needs to do is to
use a functional probability density function that has a local form. That is
of the form

π(ϕ) = Ce−H[ϕ],

where H[ϕ] is a functional that is an integral of a local function of ϕ and its
derivatives of low order. (See Section 4.3 for an explanation of the symbols in
the previous equation.) Such functionals are widely studied in the statistical
physics literature. By discretising such a functional one can generate reali-
sations or construct maximum probability interpolants that do not require
any non-local coordinate system. Further research is urgently needed to fully
explore such an approach.

8 Upscaling and Upgridding: Controlling Scale
Dependence

8.1 Effective Medium Theories

Deterministic Version of Effective Medium Theory: Using the notation intro-
duced in Section 5 consider the problem of: Find ϕ̃ belonging to the subspace
S̃ of S such that selected diagnostic functionals, f̃ = F̃ [ϕ̃, ψa, ψ̃] of the prob-
lem

Ñ (ϕ̃, ψa, ψ̃) = 0

approximate as closely as possible the diagnostic functionals f = F [ϕ,ψa, ψ]
of the problem

N (ϕ,ψa, ψ) = 0,

where ϕ belongs to the space S. In many situations it is assumed that the
effective medium equations Ñ = 0 and diagnostics F̃ are of the same form as
the original equations N = 0 and diagnostics F .

However, it is usually the case that the equations change form under the
effective medium transformation. For example, in a layered system fine scale
permeability scalars can become tensors, two-phase flow models become dual-
porosity models, and so on. Further references and discussion may be found
in the book [127] and the review [58].

Stochastic Version of Effective Medium Theory: Following the pattern of in-
verse problem theory, in the study of effective media there is a stochastic ver-
sion where the problem is to find the best approximating functional probabil-
ity density. Thus the problem is: find π̃(ϕ̃) over the subspace S̃ of S such that
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the expectation values of selected diagnostic functionals, 〈f̃〉 = 〈F̃ [ϕ̃, ψa, ψ̃]〉
of the problem

Ñ (ϕ̃, ψa, ψ̃) = 0

approximate as closely as possible the expectation values with respect to π(ϕ)
of the diagnostic functionals 〈f〉 = 〈F [ϕ,ψa, ψ]〉 of the problem

N (ϕ,ψa, ψ) = 0.

This formulation is close to that studied in the theory of the renormalisation
group [19, 157, 164].

8.2 The Upscaling Approach

Full Upscaling Methods: In the deterministic effective medium problem it is
assumed that a property model ϕ is available, in the stochastic problem the
upscaling approach works on realisations of the stochastic process, π.

Upscaling methods have two aspects. First some fine scale experiments
are performed. These can be local, in that they work on a very small part of
the whole domain or global when the experiments are performed on a large
part, or even all of the domain. Then the coarse model is defined by a coarse
parameterisation - usually by introducing a coarse grid and assuming the
properties to be piecewise constant on the coarse grid. Given the fine scale
experiments and the coarse grid, a coarse grid calibration is performed. This
too, can be local or global. Finding the coarse scale properties is an inverse
problem with computationally generated data. The inverse problem requires
solution of a subsidiary forward problem; when this is local, it is said to be a
local calibration, and when the calibration inverse problem solves a forward
problem on a large portion of the domain it is said to be a global calibration.
A more detailed discussion can be found in [58]. The most common approach
is the local-local method, where both experiment and calibration involve a
single coarse grid block, perhaps including some influence from the nearest
neighbours.

Generally speaking the more global is the calibration and experiment the
more accurate will be the resulting upscaled model, but at increasing cost.

Upscaling is expected to work best when (i) the fluid process is stable (that
is the displacing fluid has a lower mobility than the fluid that is displaced)
(ii) the length scales of the heterogeneity are small compared to the averaging
scale. In general averaging is performed by seeking the best approximation in
the smoother space S̃. This idea is justified rigorously in the limit of infinite
scale separation in the theory of homogenisation.

Preconditioning by Adaptive Coarse Grid Generation: It seems necessary for
the fine grid properties within each coarse grid cell to be either constant or
possess a very small length scale compared to a characteristic length scale
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of the averaging process. Given a model with fine scale detail it might be
possible, through a process of adaptive gridding, to build coarse grids with
the desired properties.

[159] was the first to suggest a method. [106] continued to investigate the
problem along the same lines as [159]. Methods in which a flow equation
is solved on the fine grid and the equipotentials and streamlines are used
to construct optimal coarse grids have been developed further by [2]. The
heuristic approach, based on solving flow problems and then grouping layers
according to the flux through the layers, introduced in [47], is of interest. The
alternative of minimising the variance of some property in a coarse cell has
received some attention in [13, 59, 60, 68, 133].

A moving finite element approach to variance minimisation was proposed
by [13]. In [59] and [60], combinatorial aspects of the problem were tack-
led using a global optimisation algorithm. [133] made this method faster by
restricting coarse grid cells to consist of strict subsets of fine grid cells.

There are many opportunities for further work in this area. By using
unstructured grids, success might be easier. In two-dimensions progress in
image segmentation, a very similar problem, could inspire a new attack on
this upgridding problem. Deep results are available, which look as though
they generalise to three-dimensions (see [120] for references).

Multiscale Simulation: Standard numerical methods, such as the finite vol-
ume method, seek approximate solutions in the form of piecewise constant
or piecewise linear expansions. The basis functions are simple, and as the
number of grid blocks is increased - known as h-refinement - so the error is
reduced. Alternative methods, such as the spectral methods, seek expansions
as finite superpositions of basis functions; for example a Fourier expansion
in trigonometric functions. Spectral methods do not require a grid, although
they are restricted to simpler geometries as a result. A compromise method
is the finite element p-refinement method, where higher order polynomial ex-
pansion is used on a discretisation. In the interesting paper of [91] a numerical
technique for constructing finite element basis functions that respond to local
heterogeneity was described. This method is closer to the local-local upscal-
ing method than one might at first think. Indeed a finite volume version of
Hou’s method was shown to be a form of local-local upscaling in [58].

The multiscale finite element and finite volume method is difficult to
generalise to multiphase flow (however see [104] for a paper which discusses
an approximate technique for modelling rate dependency effects). The novel,
and very stimulating idea of using (i) an upscaling method for the average
pressure, and (ii) a reconstruction stage to find mass-conserving approximate
fine-scale fluxes was described in [94]. The reconstructed fluxes are used in
an explicit method for the saturations. The method is very much faster than
one solving the fine grid pressure equation with, apparently, little reduction
in accuracy.
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It will be interesting to observe research on multiscale simulation over
the next few years. Will local upscaling methods be improved so that the
two-scale method of [94] looses some of its apparent advantage?

8.3 The Homogenisation Approach

Homogenisation is a multiscale perturbation method in which the ratio of
length scales is used as a small parameter. Consider a two-scale problem, with
(i) a large-scale parameter, L, characterising, for example, the well spacing
and (ii) a heterogeneity scale l, characterising the size of high permeability
zones. In this case the expansion parameter is chosen to be ε = l/L. Then
the property model may be considered a function of the slow scale x and the
fast scale y = x/ε, that is ϕ = ϕ(x, y). The gradient operator becomes

∇f = ∇xf +
1
ε
∇yf

for arbitrary functions, f .
The method then seeks expansions of the form s =

∑∞
i=0 εisi(x, y) or even

more general expansions with non-integer powers in ε or possibly general
functions of ε. It seems that considerable skill is required to pre-scale the
equations with ε’s inserted at various strategic places. For examples see, [44]
and [127].

The procedure makes the expansion, gathers up terms of equal orders of
ε and then a variety of arguments based on averaging are used to derive an
equation for the order zero term. In the limit as ε goes to zero this lowest
order term can, by more rigorous analysis (see [88]), be shown to be an exact
model for the volume-averaged behaviour.

The method can be made rigorous, but as far as one can tell the de-
gree of intuition required to find an appropriate expansion is similar to that
required to set up an upscaling method. In many cases the homogenised equa-
tions are identical to those obtained by simpler and more intuitive upscaling
arguments.

There are clearly opportunities for further research in this area, partic-
ularly in relating the homogenisation methods to the upscaling and multi-
scale methods. The results of [23] that show the need for dual permeability
models as effective media for 2-phase flow are particularly interesting. Dual
permeability behaviour has been observed in the field, [35], in apparently
unfractured reservoirs.

8.4 The Method of Stochastic Equations

A method of considerable historical interest is the method of direct solution
of stochastic equations. Thus for a stochastic problem of the form
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N (ϕ,ψa, ψ) = 0,

where the input, ϕ is a random function is studied using analytical perturba-
tion techniques. Analytical methods for stochastic porous medium problems
have been reviewed recently by [162]. Such methods appear to be limited to
situations where a Green’s function at zeroth-order can be found in closed
form. Similar techniques have been reported in the turbulence literature for
many years, where they have reached a higher level of sophistication (see
[109]).

9 History Matching: Integrating the Production Data

9.1 The Problem of Integrating Production Data

Production data are defined to be any flow rates or pressures measured in
the well bore other than measurements made on a scale of centimeters or
less. Thus well testing and measurements made during field operation are
included.

The problem of integrating production data involves either (i) construct-
ing a deterministic property model that leads to flow diagnostics that broadly
agree with the production data or (ii) modifying some prior probability model
so that the posterior distribution is consistent with Bayes’ rule and the data.
The problem of integrating production data is often called history matching.

The general problems of forward and inverse modelling were discussed
in Section 5 and the problem of integrating production data is, in principle,
of the same type. However, in practice the large computer times needed to
perform flow simulations and the strongly time dependent nature of the data
to be processed makes the problem very difficult, compared to the inversion
of small scale measurements.

Problems in other parts of the geosciences are very similar. In partic-
ular the problem of assimilating observations into weather forecasting [39]
and ocean circulation models [160] are conceptually close to the oil reser-
voir forecasting problem. Indeed, there is probably much to be learned by
cross-fertilisation between these different fields of geoscience.

Comparison studies of several different methods have been performed as
reported in [15, 62, 111, 163].

Two key references in the petroleum simulation area are [124] and [116].

9.2 The Bayesian Formulation

The Bayesian formulation is not universally used in history matching, but
there is a general trend toward thinking in this way. One advantage that
the Bayesian formulation provides is that it places all methods in a common
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framework. Within this framework many methods are viewed as approxima-
tions to other more ideal approaches or as summary methods of the posterior
distribution.

As the Bayesian formulation was described in Section 5 it is sufficient to
recall the main uses of the formulation in the maximum a posteriori (MAP)
mode or in the stochastic sampling mode. The maximum likelihood estimation
method is obtained by setting the prior to unity in the MAP method. The
MLE method is essentially the least squares method. Without a suitable
choice of prior it may be necessary to introduce further ad hoc regularisation
in the case of MLE. A carefully chosen prior should regularise the problem
in a satisfactory way.

9.3 Deterministic Algorithms

Deterministic algorithms are methods for solving the MLE or, preferably,
the MAP equations. That is a unique, global minimum of the MLE or MAP
functionals is to be computed.

Parameterisation Methods: If the objective functional is not suitably chosen,
or the number of unknowns is considered too large, then it is necessary to
reparameterise the unknowns.

The most common way of doing this is via zonation. That is, the domain
of interest is divided into a relatively small number of subdomains, and either
the values treated as piecewise constant by subdomain or a scalar multiplier
is applied to the values in each subdomain.

Techniques for choosing the division into subdomains are assignment
by (i) subjective decision (ii) regions of maximum sensitivity [20] and (iii)
streamlines of the total flux as introduced by [155]. A clear example of the
streamline method is [1]. Several papers [30, 40, 80, 103, 119, 161] have ap-
peared recently using variants of streamline methods for history matching.

A generalisation of the subdomain method is to use a general basis, and
represent the unknown parameters as a superposition of the basis functions.
This method was used in an early and impressive paper by [70] in which all
the ingredients for MAP are in place.

A special case of the basis function method works by choosing a subset of
grid blocks - the pilot points, and setting the values in all other blocks using
kriging. The pilot points might be chosen subjectively or using sensitivities.
It was observed in [116] that the pilot point method is a version of a basis
function method. The results in Section 4 are relevant to this observation.

A very interesting variant of the basis function method, introduced in
[132], uses two or more realisations from the prior as basis functions.

Minimisation Algorithms: Production data integration must, in some way,
involve forward simulation of the fluid flow model. In MLE or MAP, even
with reparameterisation, an optimisation method must be used. There are
two choices; to use a derivative-free method, or to use derivatives.
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Derivative-Free Methods: Derivative-free methods can simply call the simu-
lator and use the results. A simple technique is simulated annealing which
was investigated in [126] and [41]. Using a fast simulator such as a streamline
method (fast by virtue of the IMPES approximation and the one-dimensional
approximation along the streamlines) or a coarse grid simulator, this might
be practical.

The recent developments in streamline zonation use a simple iterative,
derivative free, update of the permeability field along the streamlines.
Gradient Methods: If the aim is to find the MLE or MAP estimates then the
method of choice must be a derivative method. Once the effort is made to
modify the simulator so that derivatives can be calculated exactly (that is
without using numerical differentiation) then the higher order convergence of
a gradient method can easily outperform a derivative free method.

Gradient methods fall into two classes, depending on the number of deriva-
tives to be calculated [124]. If the number is small, then direct calculation of
the objective function gradient is best. The reason for this is that with knowl-
edge of the gradient vector, the Gauss-Newton method (where the Hessian
is approximated as the direct self product of the gradient) can be applied.
This tends to be a second order convergent technique. Simulators with a fully
implicit formulation calculate many derivatives as part of the Newton step
at each time step. The extra derivatives needed for the gradient (when the
number of unknowns is small) can be obtained with a small overhead.

When the number of unknowns is large, as for example in the case that
all grid block property values are regarded as unknown parameters, then it
is impractical to find the derivatives of the objective function. By treating
the fluid flow model as a constraint, the adjoint method can be used. This
is, conceptually, the same adjoint method as described in Section 4.5. The
method exploits the fact that the dot product of the gradient with a small
number of fixed vectors can be obtained at relatively low cost. However,
this means that a lower order optimisation method, such as the conjugate
gradient technique must be used. This is why for small numbers of unknowns
the direct technique is best.

9.4 Stochastic Methods

As explained in Section 4, unless the prior pdf is very sharply peaked about
the maximum, the MLE or MAP estimates are not actually all that useful.
The real problem is to compute diagnostic functional integrals of functionals,
using the posterior distribution as the probability measure.

With the ever increasing power of computers, this is now just feasible.
Monte Carlo integration is likely to become increasingly important and, in
the opinion of the author, should be regarded as the method of choice and the
method in which to invest research and development. That is to say, current
approaches to Monte Carlo need to be improved, but Monte Carlo is a fruitful
line of investigation.
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The simplest technique is to generate multiple realisations from the prior
and reject those that do not agree with the production history. Some studies
report success in this endeavour [15]. However, the study of [111] would imply
the need for caution in the use of Monte Carlo.

10 Workflow Analysis

In recent years the notion of workflow has become popular, particularly with
software vendors. The idea is that a distinctive sequence of activities involv-
ing different items of software or features in a particular application can be
identified. User decisions are needed at many critical stages, making it im-
practicable to fully automate most workflows. In the next section the older
style 2D workflow is described. This 2D workflow is still used in many, if
not most, applications of geological and reservoir modelling. Many stages in
this workflow are found in the contemporary 3D workflows as discussed in
Section 10.2. Finally a first attempt is made to classify workflows with a
view to identifying possible approaches that might help improve efficiency or
accuracy in model building.

There are many case studies in the literature of the Society of Petroleum
Engineers [140]. Three papers that give a reasonable overview are; for 2D
modelling [154]; for 3D modelling [93, 156]. The books [52] and [72] are the
only extended published discussions of workflow as a whole. The book [72]
has detailed case studies that emphasise the geoscience aspects, whereas [52]
contains more reservoir engineering detail.

10.1 The 2D Workflow

Seismic Data: Seismic data usually provides the starting point. The pro-
cessed seismic cross-sections are displayed, in the time domain, on a computer
screen. The user digitises the seismic picks that are points along an important
horizon. In sophisticated programs the well logs will also be displayed so that
identification of layer boundaries is made with all data in mind. Autopick-
ing algorithms are available that will take a users initial pick, and then by
pattern matching identifies other points on the horizon. The results can be
good, or might - because of noise or poor signal strength - require extensive
manual editing. See [36] and [12] for detailed descriptions of this process.

Each horizon is picked in this way. The resulting scattered data sets are
then passed to a mapping package, an embodiment of one or more of the
many scattered data interpolation algorithms reviewed in Section 4.

Well Logs: In some studies there may be no seismic data available, and so
all of the scattered data, used for building surface models, is obtained from
picking the layer boundaries on well log displays. Specialised software exists
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for such purposes, that automates the traditional method of placing paper
copies of logs on a large table or on meeting room walls.

It is now common for well logs and seismic cross-sections to be displayed
in the same software package. Seismic has a large scale resolution - perhaps
on the order of 20 meters but possibly 50 meters. Well logs clearly show the
existence of much smaller scale features. In the 2D workflow, the positions
of important layer boundaries, below seismic resolution but important to
flow simulation or reserves estimation, are mapped by correlating the surface
with other already mapped surfaces. Techniques for mapping are reviewed
in [95]. Maps may have a resolution of 1000 by 1000 (or more) cells, and
will explicitly store the fault polygons which define the intersections of faults
with the horizons. In many 2D workflows the faults are just modelled as a
set of such fault traces. In more rigorous workflows the fault surfaces are also
interpolated from fault picks, where fault-horizon intersections are visible in
the well logs or where the fault has been identified in the seismic.

At this stage a property map will also be made for each layer. Usually
one map per layer. Sometimes a map showing the fraction of rock that is
permeable and the fraction that is impermeable shale is made. The fractions
are expressed as a net-to-gross ratio [52]. A disadvantage of this technique is
that there is no obvious way of computing an effective permeability without
some model of the spatial distribution of the heterogeneities. Indeed, avoiding
the use of net-to-gross concepts is one of the main advantages of the newer,
3D, workflows [156].

The number of layers and thus maps might exceed the capacity of a flow
simulator to model flow on a simulation grid of the same resolution as the
maps. Therefore, even in a 2D workflow upscaling is required. In older simu-
lation gridding packages this was done using algebraic averaging, and in the
newer grid generation packages there are options for upscaling methods using
flow solvers.

Well Tests: If available, a well test permeability could be used as conditioning
data for the mapping interpolation, rather than a well log. In the absence of
clear algorithms for scaling between the log and well test scale, subjective
judgement is required in choosing the values to be used at the conditioning
points.

Simulation Grid Building: Once the surface maps are available, a simulation
grid can be built. A boundary for the simulation region is defined, and a cor-
ner point grid is constructed to honour chosen fault traces and the boundary.
In older packages this was a very manual task, but is now largely automatic
due to advances in grid generation algorithms that can handle internal com-
ponents of the boundary as constraints.

History Matching: Once the simulation grid and properties have been built,
and the simulation has been performed, the properties are modified, usu-
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ally by manual editing, but more recently with assistance from optimisation
methods [93] implemented in software.

10.2 The 3D Workflow

The 3D workflow is very similar to the 2D workflow. The differences are
quantitative, rather than qualitative. More detail is captured, and there are
growing efforts to quantify the uncertainty or non-uniqueness in the models
that are consistent with available measurements. The attempt is made, sub-
ject to computer constraints, to map all of the important layers that can be
seen at the wells. This, if successful, will capture the low and high permeabil-
ity structures which influence the flow. The consequence is that the size of
the model can be of the order of 20 million active cells. In the study of [93],
there were 25 million cells, of which 19 million were active. The cells were of a
size, 75m by 75m by 0.5m. These are actually very large objects. Nevertheless
simulation is not practical on such a grid, and so upscaling is performed. The
resulting simulation cells in [93] were 90m by 100m with thicknesses ranging
from 2-4m in a 104-layer model to tens of meters in a 19-layer simulation grid.
The areal upscaling factor is quite small in this instance, with the majority
of the averaging taking place in the vertical direction.

In [93] it is stated that an advantage of this workflow is that multiple
simulation models can be built from a single shared earth geological model.
It was found that by including the extra detail in the model the initial model
was a good starting point for history matching. In [93] five realisations were
generated, and the structural framework was deterministic.

In practice it would seem that fine models are actually quite coarse, and
that attempts to quantify uncertainty are still limited by inability to handle
large numbers of realisations.

In [17] it is stated that oil companies often underestimate risk. Of the
many possible causes of such underestimates (from the point of view of this
chapter) clearly (i) insufficient numbers of realisations in Monte Carlo studies
(ii) suppression of fluctuations caused by upscaling methods are contributors.

The question is: can one do better? One answer is to wait for improved
hardware - and this will help in some ways. The next section speculates on
possible ways in which different workflows and new algorithms could help.

10.3 Workflow Possibilities

There are six main classes of flow simulation model relevant to the question
of scaling. The first distinction is between stable and unstable flow. Instabil-
ity causes multiple length scale features to evolve in saturations and other
state variables. Knowledge about modelling such unstable behaviour is rather
scant. Stable flow is much better understood, although there are many unan-
swered questions.
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An important characteristic is ε, the ratio of the smallest heterogeneity
length scale to the flow modelling scale. The flow modelling scale is in practice
set by the grid block size and for accuracy should be a few times the grid block
size. The separation of length scales is then measured by the value of ε. Length
scales can (i) be well separated (the ε  1 case) (ii) have large fluctuations
on the averaging length scale (the ε ∼ 1 case) or (iii) have no small scale
fluctuations on the averaging scale so that properties are essentially constant
on the averaging scale ( the ε � 1 case).

Thus there are six cases in all and three cases to be discussed, as the
unstable case is not considered in this chapter.

Stable and ε  1 Case: For stable flow and ε  1 there are no insuperable
difficulties. The aim of upscaling is to transform a stable and ε  1 prob-
lem into a stable and ε � 1 problem. If this works then it was not strictly
necessary to build a finely gridded model for the whole reservoir in the first
place. By building a detailed model, in the vicinity of the wells, for example,
the large scale simulation model can be built directly. In fact, in this way
one could build models that effectively contain billions of cells. One could
go further and say that the attempt to build fine models, but with far from
sufficient computer memory available, is a cause of error and unnecessary
computation. Indeed in some cases fine grids are being used as an alterna-
tive to tensor modelling. A tensor requires three vectors, in addition to, if
it is symmetric and second order, six numbers. The vectors are defining the
bedding planes and they do not require explicit models of their geometry.

One factor preventing the increased use of tensors is the complete absence
of geostatistical theory for interpolating vector and tensor properties. (The
view expressed in [46] that “there are few areas where new algorithms need to
be developed” is perhaps too optimistic. There are in fact many outstanding
problems; for example, defining non-Gaussian geostatistics without explicit
grids, interpolating vectors and tensors and constructing realisations that are
reliable samples of the underlying distributions.)

Stable and ε ∼ 1 Case: When the problem is stable and ε ∼ 1 there are
severe difficulties with upscaling. One possible improvement follows from the
observation that the heterogeneity is almost resolved by the grid. Rather than
upscale the realisations, an alternative is to resample the original pdf, but
on the simulation grid. The change in workflow, although slight in imple-
mentation, is rather considerable in concept. That is, one realises that the
geological model is the pdf, and not realisations of that pdf. It is in this
case that shortcomings in geostatistical interpolation techniques are driving
the design of the workflow. Interpolation methods that rely on a simple grid
structure must be used in combination with an upscaling method. A grid-free
geostatistical method could be used, on demand, directly on a corner point
grid, for example.
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Stable and ε � 1 Case: In this case one need not upscale. Simple sampling
is adequate. That is the geological value at the simulation cell centre is used
for the whole simulation cell. Of course, in such a model there are always
accuracy improvements to be obtained from grid refinement, as the pressure
distribution and flow paths may be complicated as a result of the well pattern.
One must not forget that the grid has to resolve the state variables as well
as the input variables.

Unstable Flow: Unstable flow requires a review of its own. There are few
results of substance, and many opportunities for useful and interesting re-
search.

11 Concluding Discussion

11.1 Outstanding Problems in Mathematical Geoscience

As the various component disciplines have been discussed, with a focus on
the mathematical structure, several problems have been highlighted. (The
author must stress that the following remarks are expressions of personal
opinion, and must be viewed as tentative and speculative. It is, however,
useful to summarise such conclusions at the end of a review of mathematical
geoscience.)

Flow through porous media and reservoir simulation: The method of stream-
line simulation is growing in importance. However, it has not received much
attention from numerical analysts. Convergence analysis is needed, and in-
sights gained could be valuable to streamline simulation and to more conven-
tional finite volume methods.

Multiscale methods have started to appear, and show considerable promise.
However, the link with upscaling approaches has not been clarified, and it may
be the case that, as yet undiscovered upscaling workflows, are competitive.
Multiscale methods are an area of growing academic interest, with substantial
academic projects starting at several universities around the world.

Improved large scale models of the average behaviour of unstable flow are
needed. The existing models have not been derived from fundamental theories
at the small scale even in special cases. The phenomenological models do not
themselves possess proven stability properties on the smaller length scales.

Grid Generation: Even when a model of the structural geometry of a reser-
voir is available, in three dimensions there are no universally applicable and
robust grid generation methods - even in cases where the geometric input
is perfect. (Perfection here means that all intersections are well-defined and
there are no overlapping regions.) One might think that unstructured grid
generation holds the key, with elegant Voronoi or Delaunay grids. However,
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even for problems with just an external boundary this is a challenge. Geo-
logical problems, however, possess complicated internal boundaries and this
is essentially uncharted territory. There is thus a real need for innovation in
this area. But, as mentioned later, the problem is even harder than this: the
geometry has to be built first.

Spatial Statistics: Interpolating Scattered Data: Many geostatisticians regard
their subject as mature and the main task as being one of public education.
From the point of view of general applications this is far from being the
case. Spatial statistics, when stochastic realisations are required are overly
dependent upon structured, and even regular grids with cells all the same size
and shape. Ad hoc devices are needed to circumvent this problem. Grid-free
methods may be possible and are a fruitful area for research.

The link between kriging, radial basis functions and maximum probabil-
ity interpolants could be investigated in a much deeper way than in Sec-
tion 4. The huge effort to analyse and develop radial basis function methods
would be made more valuable if the participants in the growing radial basis
function literature were more aware of the need for statistical considerations
in the scattered data problem. Deterministic approaches to problems with
sparse data are not applicable in most of the problems encountered in the
geosciences.

The sequential sampling methods - popular with users because of their
high speed - are suspect when compared with methods such as the Gibbs
sampler which possess rigorous proofs of statistical convergence.

Methods that provide stochastic models of vector or tensor quantities are
essentially absent.

Forward and Inverse Modelling: Many inverse problems in the geosciences in-
volve sparse data used to constrain functions representing three-dimensional
heterogeneous property fields, such as porosity or permeability. It is not that
clear which parameters are to be determined in the inversion. Is it properties
as functions of position, or is it the parameters in the correlation functions
summarising the heterogeneity? It may be some mixture of the two, with the
parameters in the correlation functions displaying the most sensitivity to the
measurements. There is room for much research here: model problems should
be studied so that our intuitions can be further developed.

The growing influence of the Bayesian viewpoint, is something to be wel-
comed, but with caution. The relationship between traditional determinis-
tic solutions of inverse problems, maximum probability solutions and Monte
Carlo approximation of output statistics needs further clarification and anal-
ysis. Studies of model problems, once again, would help us all to understand
the issues better.

There seems to be no review of methods for inverse problems that com-
pares and contrasts the various theoretical approaches in the way that was
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outlined in earlier sections of this chapter. A substantial review, going into
far more detail than provided here, would be of enormous value.

The role of length scales in the prior, as part of the inversion process, could
be much clearer. This is related to the problems of upscaling, and clarification
might require new insights into the general methodology of mathematical
modelling.

The different inverse problems in the geosciences, particularly seismic in-
version, resistivity inversion, and the history matching of production data
are usually treated in quite different ways: is this an accident of history, or
should there be changes in all areas, so that a unified approach is used?

Geological Modelling: The characterisation of uncertainty of geometric prop-
erties has not received the same level of attention as uncertainty in properties
such as porosity. This needs to be rectified.

In general the subject of geological modelling is fraught with difficulty.
Only relatively simple systems can be parameterised in a satisfactory way -
using the corner point grid approach. Finding a way of building the geometric
aspects of geological models, so they can be easily modified, by users and by
software performing automated inversion algorithms is an open problem. A
breakthrough is needed in this area if the dream of a shared earth model is
ever to be achieved in a practical way. In situations involving complicated
geometric features, such as intersecting faults, the problems are exceptionally
difficult and interesting.

Upscaling and Upgridding: Controlling Scale Dependence: The upgridding
problem is unsolved in the general case. Sometimes the problem could be
avoided, but users are demanding better methods, as the workflow that builds
fine grids and then upscales them, demands a solution to this problem.

The ideas involved in dual-porosity and dual-permeability models could
be more widely applicable to upscaling than is generally realised. By using
models that are designed to characterise behaviour involving two time scales,
the need for fine scale models can be reduced.

History Matching: Integrating the Production Data: A solution of the history
matching problem requires (i) a method of sampling that reduces the numbers
of realisations needed for accurate Monte Carlo calculations (ii) better ways
of generating realisations that are consistent with both the prior and the
measured data.

Workflow Analysis: Deeper analysis of workflow possibilities is needed. Cur-
rent methods are applied in an uncritical fashion, and are not examined with
a view to establishing an optimum workflow for a particular engineering ob-
jective.
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11.2 Concluding Remarks

The main mathematical techniques used in building geological models for
input to fluid flow simulation have been reviewed. The subject matter con-
cerns the entire geological and reservoir simulation modelling workflow in
the subsurface. Seismic acquisition, processing and interpretation, well log-
ging and geology have only been reviewed in outline. However, the topics of
grid generation, geometric modelling and spatial statistics have been covered
in considerable detail. A few new results in the area of geostatistics were
proved. In particular the equivalence of radial basis functions, general forms
of kriging and minimum curvature methods was shown. A Bayesian formula-
tion of uncertainty assessment has been outlined. The discussion of upscaling
was brief, consisting of a summary, as a recent, detailed review in this area,
[58], is available.

The classical approach, using maps, is giving way to an approach that
builds 3D geocellular models. Some of the methods for this are still map
based - but some now work directly on the basic data - seismic picks, well
logs and cores.

Accompanying this move to 3D is a strong tendency to build as detailed
a model as computer memory allows. However computer memory is far too
limited for properly detailed models of a whole reservoir to be built, and so
geological detail is grossly under-resolved. Intuitive analysis of upscaling leads
to the conclusion, when the fluid flow is stable and the length scales are well
separated, that upscaling can be very accurate. By applying knowledge of the
scales at which the length scales are well separated, one can design multiscale
models that do upscale. When this is possible one can build fine scale - but
now truly fine scale - models near the wells. Then a second application of
geostatistics on the larger scale, conditioned on the upscaled near-well data,
can suffice.
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Summary. A new approach towards model building with the promise of signifi-
cantly shortening the turnaround time of 3D model building is presented. By in-
troducing a unified framework, efficient representation of models throughout the
lifecycle of a reservoir is enabled, all the way from velocity to simulation models.
All levels of resolution are maintained and handled simultaneously and information
is structured according to geological understanding. This enables the interpreter
to work with pre-generated geological objects, rather than spending time creating
them in the first place. Consequently, more time is spent being creative, gaining
a better understanding of the reservoir. Furthermore, the framework enables use
of new semi- or fully automatic interpretation schemes and provides real-time user
interaction with large volumes.

1 Introduction

1.1 Model Building

Throughout the lifecycle of a reservoir a variety of models are generated
and used as a means of representing the information obtained, and to un-
derstand observations, to predict future observations and to plan appraisal
strategies. The size and detail of these models depend heavily on the maturity
of the reservoir, which may be in the exploration, appraisal, development or
production phase. The various geophysical aspects of the reservoir, includ-
ing velocities, facies distributions, porosities, permeabilities, and more, are
all represented by individual models. Though different in nature and scale,
many of these models share several common boundaries, which coincide with
the major events in the sub-surface. Viewed across scale, it can be argued
that the models relate to each other in a hierarchical fashion, where the more
detailed models exist within the coarser models.

Models Used in Hydrocarbon Exploration and Production. To get
an appreciation for the wide range of models used in hydrocarbon exploration
to production, a small summary is presented here, presenting the purposes
of the models and the range of scales covered by them.
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• Velocity Models. To image the subsurface, acoustic waves are propagated
through the earth and recorded at the surface after being reflected from
boundaries down below. The two way travel time recorded at the surface
(i.e., down and up again) is a direct function of the sound velocities in the
different rock types encountered. In order to produce a correct image, it is
important to have a good knowledge of the distribution of the velocities,
since differences in medium velocities causes ray bending and affects the
recorded reflection amplitudes. Velocity models are very coarse, and can
have a resolution of up to (a couple of) hundred meters.

• Structural Models. As a consequence of gravity, the default orientation
and configuration of deposited geological layers are horizontal and parallel.
However, due to erosional, depositional and tectonic events, the default
configuration is often bent, broken up and rotated, thus, yielding a highly
complex configuration. A structural model aims at capturing the major
geological boundaries, such as strong reflectors, faults, channel boundaries,
etc. The typical resolution of structural models cover a wide range, but is
in the order of meters.

• Geological Models. The subsurface is a truly heterogeneous medium,
composed of many different rock types with highly varying physical prop-
erties. Depending on the depositional setting, some rock types are more
likely than others. A geological model tries to capture the distribution of
rock types, and their associated physical properties, such as porosity, per-
meability, etc. A geological model represents the most detailed model used
in the hydrocarbon exploration and production workflow. It incorporates
information all the way down to well log resolution. Hence, the typical
resolution is in the range of decimeters vertically and hundred meters hor-
izontally.

• Reservoir and Simulation Models. Based on the knowledge obtained
about the reservoir, especially from well logs and production data, fluid
flow simulations are done to (1) match production data, (2) to update the
models, (3) to forecast production behavior, and (4) to plan production
strategies. Based on simulations, many different scenarios may be evalu-
ated in terms of optimal reservoir drainage. Mainly due to lack of processing
power, simulations are done on models that are scaled up versions of ge-
ological models. The typical resolution is in the range of meters vertically
and hundred meters horizontally.

There are a number of ways in which these models are interrelated. In this
chapter we will consider the geometrical relationships that these models ex-
hibit across scale, and try to exploit this by generating a common framework
for model building.

From geology we know that the composition of the subsurface depends on
its geological history, and may roughly be separated into units created during
different geological time periods, and in different depositional environments.
Hence, there exists a time (geological periods) and space (depositional envi-
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ronments) type tessellation of the earth, which possess a hierarchical order-
ing, describing the relative timing of events. These major geological events
are also associated with important geophysical changes. Most of these ma-
jor geological boundaries exist across several scales and types of models, and
motivates the integration into a common modeling framework.

Several methods exist by which the subsurface may be tessellated and
labelled. Below we consider seismic sequence stratigraphy, which is one of the
most commonly used techniques.

1.2 Stratigraphic Analysis and Modeling

Sequence stratigraphy combines logs with fossil data and seismic reflection
patterns to explain both the arrangement of rocks and the depositional en-
vironment. Understanding how rock layers relate to the sequences of seismic
reflections and depositional environments allows more accurate prediction of
possible reservoirs, source rocks and caps, even in regions not intersecting the
wells.

In general, stratigraphy is the science of describing the vertical and lat-
eral relationships of rocks [17, 21, 30]. These relationships may be based on
rock type, called lithostratigraphy, on age, as in chronostratigraphy, on fossil
content, labeled biostratigraphy, or on magnetic properties, named magne-
tostratigraphy. Though different in what they describe, all types of stratig-
raphy are based on three basic principles - younger layers lie on top of older
layers, layers are initially horizontal, and layers continue until they run into
a barrier [21].

During exploration seismic data constitutes the dominant part of avail-
able data. In the case of no or few exploration wells, we have no direct mea-
surements for the majority of the reservoir. Hence, we have to rely on the
subset of sequence stratigraphy that includes seismic data (i.e., seismic se-
quence stratigraphy) to infer the depositional environments and predict the
distribution of different rock types.

Sequence stratigraphic analysis is governed by a set of simple princi-
ples [21]. A depositional sequence comprises sediments deposited during one
cycle of sea-level fluctuation, starting at low sea level, going to high and re-
turning to low (by Exxon convention). One cycle may last a few thousands
to millions of years and produce a variety of sediments, such as beach sands,
submarine channel and levee deposits, chaotic flows or slumps and deep-water
shales (see Figure 1). Sediment type may vary gradually or abruptly, or may
be uniform and widespread over the entire basin. Each rock sequence pro-
duced by one cycle is bounded by an unconformity at the bottom and top.
These sequence boundaries are the main seismic reflections used to identify
each depositional sequence, and separate younger from older layers every-
where in the basin.

Sequence stratigraphy was originally developed for explaining sand-shale
systems, but it has also been successfully applied to other systems, such as
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Fig. 1. Sequences in order of deposition [21]. The sequence begins when the sea-
level relative to the ocean floor starts to fall (according to Exxon convention).
During this period of falling sea-level, sand-rich fans are laid down (A). As the
drop in sea-level flattens out and begins to rise again (B), sands and shales are
deposited on the continental slope. Slumps and submarine channels often appear in
this period. As the sea-level continues to rise (C), sediments are deposited basinward
forming wedge-shaped structures, with sands near the shore and shales further out.
During a period of rapid rise in sea-level (D), the sand-rich sediments are deposited
landward as beaches and sandbars. The following period of lower sea-level rise (E)
allows the sediments to build basinward again. Graphic copyright Schlumberger
Oilfield Review, used with permission.
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carbonates. Though being a powerful analysis tool, sequence stratigraphy
must be used with care. In environments with low sedimentation rates, the
depositional sequences will be very thin, well below the resolving power of
the seismic wavelet. With mid to high sedimentation rates, this is not a prob-
lem since the layers within a depositional sequence will be tens to hundreds
of meters thick. Hence, in regions of thin layering, stratigraphic techniques
cannot be used reliably to explain the fine-scale structuring. What can be
done, on the other hand, is to concentrate on the larger scale, longer term
processes that control the generation of sequences.

As previously explained, depositional sequences have a basic pattern of
deposition which results from a relative rise and fall in sea-level. This pat-
tern varies widely, depending on variations in tectonics and sediment supply.
However, several levels of sea-level cyclicity may occur in a hierarchy that
allows higher-frequency cycles to be superposed or stacked into lower-level
cycles (see Figure 2). The first-order cycle, which is the longest one, relates to
the breakup of continents and the corresponding creation of new shorelines.
The second-order cycle is landward and basinward oscillations of the shore-
line that lasts 3 to 50 million years. This oscillation is produced by changes
in the rate of tectonic subsidence and uplift, caused by changes in rates of
plate motion. The third-order cycle is the sequence cycle, lasting 0.5 to 3
million years. Fourth- and higher order cycles (parasequence cycles) may be
correlated with periodic climate changes.

First order cycle
Second order cycle
Third order cycle

Fig. 2. Hierarchical ordering of depositional cycles.

Remembering how low sedimentation rates often produce depositional
sequences below the seismic resolution, and how higher sedimentation rates
do not, we see that the third-order cycle represents the lower limit of what
we are able to see on seismic data alone. Fourth- and higher order cycles are
only visible on well logs.
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Sequence stratigraphy is not without its competitors. Other sequence
stratigraphic-like types include event stratigraphy, cyclostratigraphy, allo-
stratigraphy, parasequence stratigraphy and genetic stratigraphy [23]. The
common thread linking these approaches is the recognition of cyclicity in the
rock succession and the ability to establish a time-stratigraphic framework.
The key differences between these approaches lie primarily in the determina-
tion of what should be the sequence-bounding surfaces and what should be
their recognition criteria.

The aim of this chapter is to introduce an approach towards geologi-
cal modeling which is able to encompass the structure dictated by sequence
stratigraphy, and fulfill modeling constraints from a wide range of disciplines.
Motivated by the hierarchical structuring of depositional sequences, a hier-
archical segmentation approach is presented.

1.3 Visions

The ever increasing amounts of data, and demands on turnaround times,
necessitates the development of new workflows and interpretation tools. Cur-
rent state workflows are very time consuming and involves a lot of manual
labor. A lot of the work performed are routine tasks that do not add value. As
such, there is a need for more automated interpretation tools, that help speed
up the process, allowing more time to be spent understanding the geological
aspects of the data, rather than performing tedious, repetitive tasks.

There are many possible roads to improving the interpretation workflow.
However, one of the more important ones is elevating the level of user interac-
tion. Allowing the user to work in real-time with higher level primitives, such
as fault and horizon patches or sub-volumes, instead of voxels, will strongly
impact the speed of the interpretation process, and the understanding of the
reservoir. Moreover, the way in which the interpreter works with these higher
level primitives is also of key importance. In fact, the latest push in the in-
dustry suggests adopting object based selection, grouping, un-grouping, and
analysis functionalities in the interpretation process. These operations have
become standard user interfaces for most software products, thus, presenting
a familiar interface for novice users.

Being able to fully work in 3D is also a key requirement. Due to the
3D nature of seismic data, there is a lot of understanding to be gained from
interpreting in 3D, with 3D objects, over the old 2D - slice by slice - approach.
Most of the interpretation tools developed today are 3D in nature. However,
most of them make use of 2D primitives visualized in 3D, rather than 3D
volumetric objects. Hence, we want to be able to do interpretation of closed
3D volume entities.

Due to larger surveys, higher resolution, and 4D technology, there is
an ever-increasing amount of data needing interpretation. As such, noth-
ing would be better than a fully automatic interpretation station. However,
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due to the share complexity of seismic data, this must be seen as an unre-
alistic dream. Instead of requiring a fully automatic interpretation tool, we
settle for a semi-automatic tool, where the user is in the loop, but merely for
guiding the tool in critical decision making instances. Having a tool which
relieves the user of the tedious, repetitive task that does not add value, thus
automating the non-critical parts of the interpretation process, would be very
helpful and result in great timesavings. Moreover, by automating parts of the
process, subjectivity would be replaced by objectivity, and we would be able
to make the results more consistent and user independent.

The method presented in this chapter represents a unifying modeling
framework, and is believed to be a big step forward in fulfilling most of
the above mentioned requirements.

2 Methodology

2.1 Previous Work

Model building directly from seismic reflection data can be considered as
an image segmentation problem. In general, segmentation methods rely on
the generation, analysis and classification or clustering of signal attributes.
As such, developing good attributes that describe discriminative aspects of
the data [4, 11, 20, 24, 37, 38, 39], and signal enhancement techniques [10,
25] for improving the quality of the input data are active areas of research.
Particularly active, are the topics of discontinuity detection (i.e., faults) and
region similarity classification (i.e., textures, representing the stratigraphy).

Seismic reflection data is essentially a huge collection of 3D texture. As
opposed to natural images, seismic data has no notion of foreground and
background objects that form the basis of segments. Instead, segments are
defined according to the rules of seismic sequence stratigraphy, describing
variations in properties such as reflector configuration (parallel, sub-parallel,
diverging, chaotic), continuity (continuous, discontinuous), and amplitude
(high, low). The most common method for analyzing the seismic images in
this context, is texture attribute analysis and classification [7, 12, 19, 36, 43]
(see Figure 3).

Unfortunately, texture does not capture all the necessary boundaries in
the data. The original definition of seismic sequence stratigraphy1 states that
“a depositional sequence is a stratigraphic unit composed of genetically related
strata and bounded at its top and base by unconformities or their correlative
surfaces” [17]. However, the unconformities’ correlative surfaces are often not
distinguishable from the above and below lying strata (see Figure 4), and
must be traced along flowlines2 from the boundaries of the distinguishable

1A modified definition has been published which includes system tracts [41].
2A flowline is defined as a propagation path which is normal to the local gradient

field at all positions [24].
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Fig. 3. Current state of the art in 3D seismic stratigraphic/facies analysis.

Fig. 4. Case where the unconformity is partially indistinguishable from the above
and below lying strata.

unconformities. Hence, traditional texture segmentation is not sufficient for
stratigraphic model building.

Other limiting issues of standard texture segmentation are the noisy char-
acter of the segmentations (i.e., the class regions are often highly intermixed,
thus, producing unconnected regions), the inaccuracy of the borders (i.e.,
the class borders seldom agree with the reflectors in the seismic images) and
the difficulties in quantitatively and interactively using the results in further
processing and modeling.

In the image segmentation literature, there has been a shift the last
decade towards higher-level, region- and object-based segmentation tech-
niques [15, 33]. These methods have emerged as a response to the ever in-
creasing need for more robust and more automated segmentation techniques
to cope with the enormous amount of audio-visual information generated in
today’s world of multimedia. These efforts has lead to the definition of sev-
eral multimedia compression standards, among which MPEG-4 and MPEG-7
[1, 14] are the most recent and important ones. Numerous articles have been
published trying to fulfill the objectives defined by these standards. Particu-
larly interesting for seismic image segmentation are the publications dealing
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with spatio/temporal video segmentation techniques, information manage-
ment and interactive tools.

What has video got to do with 3D seismic image segmentation and model
building? Seismic segmentation may be compared to video segmentation if we
consider the collection of inline slices of the seismic volume as video frames,
where the orthogonal (i.e., crossline) axis determines the temporal direction.
Then, as time progresses, objects in the seismic scene appears and disap-
pears, moves around, and change shapes and textures. This analogy, though
nice, is in general not valid, since a different story is told if we were to slice
and propagate in another direction. Hence, the traditional view on video pro-
cessing only provides an approximation to the problem of 3D segmentation.
However, several new graph based, spatio/temporal segmentation techniques
with very good interaction possibilities [15, 44] have lately been introduced,
where the video is treated as a 3D volume rather than an evolving set of
2D frames. The volumes are over-segmented, and then regrouped into hierar-
chies of larger, object consistent regions by analysis of the underlying graph
structure [44]. In fact, these types of techniques are also catching on within
medical image segmentation [13, 34]. Within seismic image segmentation, on
the other hand, only a few attempts have been made at model building by
such techniques [5, 18, 40].

The next section focusses on the multiscale, mathematical morphology
approaches [15, 28, 29, 44] to image segmentation.

2.2 Watershedding

Watershedding is a concept known from the fields of geology and topology,
representing a basin that divides the landscape into hydrologically defined
regions. That is, the regions are defined by a set of boundaries, called water-
shed lines, that lie on top of ridges in the terrain and have the property that
drops of rain falling on opposite sides will accumulate in different regions, or
basins [42].

The concept of topology is heavily exploited within image processing,
particularly in mathematical morphology [35]. By treating the gray values as
measures of elevation, a digital topology is created upon which operations can
be performed, and very often better understood. Viewing images as elevation
models, thus, enables concepts such as minima, watershed lines and catch-
ment basins to be defined for gray value images too. The set of catchment
basins associated with a topology comprises a collection of disjoint regions.
Grayscale morphology exploits this fact for image segmentation, an approach
which has proven very powerful.

The watershed transform, as it is called, was first introduced by Digabel
and Lantuéjoul [9] in 1977, and later improved by Beucher and Lantuéjoul [6].
Although a powerful approach, use of the watershed transform was long
avoided due to extensive processing times. It was not until Vincent and
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Soille [42] published an approach based on immersion simulations that the
transform really became popular.

Definition. Two of the most popular definitions of watersheds are based
on the concepts of rain falling and accumulating in different catchments
basins [31], and flooding of the relief by immersing it into water [42]. Though,
theoretical treatments of these approaches exists, due to issues of computa-
tional speed and special topology handling, the implementations most often
used do not adhere to the original definitions. In this section we focus on the
algorithmic definition by Vincent and Soille [42].

Considering the grayscale image as a surface, where holes have been cre-
ated at the positions of regional minima, the algorithm simulates the immer-
sion of it into a lake. The water floods the surface, creating a number of small
lakes, or basins (see Figure 5 for an illustration of a 1D analogy). At some
point, one or more basins meet and start flowing into each other. To prevent
this from happening, dams are erected at these positions, thus, maintaining
the separation of the basins. These dams are the sought watershed lines, or
simply watersheds. A segmentation of the terrain (i.e., image) now follows
directly from the regions covered by the catchment basins.

The flooding process is implemented by the use of sorted sets, geodesic
distances and influence zones [27, 42]. Consider a digital grayscale image
as a triple G = (D,E, f), where (D,E) is a graph (usually the completely
connected digital grid, but may in general be any kind of nodes with arbitrary

hmin

hmax

Fig. 5. Watershedding by immersion for a 1D signal.
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connectivity), and f : D → N is a function assigning integer values to each
p ∈ D. The values f(p) represent the gray values, or elevation (when viewing
the image as a topological relief).

With A ⊆ Z
2, and a, b ∈ A, the geodesic distance dA(a, b) is defined as the

minimum length of any path joining a and b and is totally contained within
A. Suppose A contains a set B, B ⊆ A, which consists of several connected
components B1, B2, . . . , Bk. The geodesic distance of any point a ∈ A to the
set B, is then defined as dA(a,B) = minb∈B dA(a, b). Using this definition,
we define the geodesic influence zone of the set Bi within A as

izA(Bi) = {p ∈ A : dA(p,Bi) < dA(p,Bj) for all j ∈ [1..k] \ {i}}.

The union of all the influence zones of the connected components in B
within A is defined as,

IZA(B) =
k⋃

i=1

izA(Bi),

and the complement of this set within A defines the SKIZ, i.e., skeleton of
influence zones,

SKIZA(B) = A \ IZA(B).

The SKIZ represents the set of points within A which are geodesically
equidistant from at least two of the nearest connected components of B.

It is based on these concepts that Vincent and Soille [42] algorithmi-
cally defines the watershed transform. Considering again the definition of a
grayscale image by the valued graph G, having as its minimum and maximum
values hmin and hmax. A threshold set from this topology is defined as

Th = {p ∈ D : f(p) ≤ h}.

By the use of a recursion with the gray level rising from hmin to hmax,
basins associated with minima of f are iteratively expanded. Denote by Xh

the connected components detected up to level h. The connected components
associated with the threshold set Th+1 will either be expansions of already
detected basins or new minima. In the former case, one calculates the geodesic
influence zones of Xh within Th+1 and updates Xh+1. The set of new minima
is denoted MINh.

Definition 1. (Watershed by Immersion)
Starting at level hmin, the recursion implementing the flooding becomes:{

Xhmin = {p ∈ D | f(p) = hmin} = Thmin

Xh+1 = MINh+1 ∪ IZTh+1(Xh), h ∈ [hmin, hmax)

The watershed of f can now be found as the SKIZ of Xhmax in D,

Wshed(f) = D \ Xhmax .



224 E. Monsen, T. Randen, L. Sønneland, J.E. Odegard

Fig. 6. Watershedding by immersion of the topographic relief corresponding to a
grayscale image. This approach extends directly to 3D and higher dimensions.

Fig. 7. Direct watershedding of a 3D seismic amplitude volume (left) produces
a highly detailed segmentation (middle). This level of segmentation is for most
purposes too detailed, and as is shown in Subsection 2.3, the level of detail may be
reduced to give the segment size needed (right).

The algorithmic implementation of this definition by Vincent and Soille [42]
is linear in its time complexity. However, the implementation has some draw-
backs that are discussed and solved in [27] at the expense of a theoretically
quadratic time complexity.

An important aspect of this algorithm, is that it extends directly to 3D
and higher dimensions. The algorithm is based on sets, so all that is required
for extending it is an appropriate neighborhood definition. Throughout this
chapter, a full 3D version of the algorithm is used, producing 3D volumes.

2.3 The Curse of Oversegmentation

An inherent problem of the watershed segmentation technique is oversegmen-
tation. Much of this oversegmentation is due to small, insignificant minima,
which do not contain any relevant information. Removal of these minima
prior to applying the watershed transform is one way of reducing the large
number of segments.
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When imaging the subsurface, noise, improper stacking and migration,
are just some of the effects that can make the seismic images deviate from
the true solution. The result may be distortion of geometry, blurring of the
images and degradation of reflector amplitude and continuity. In the context
of segmentation, these effects may have severe impact on the final result,
particularly if any type of automation is involved. Hence, algorithms extract-
ing information from seismic images will in general benefit from some type
of data preconditioning. Considering the fact that the watershed transform
operates by detecting and propagating regional minima, it is easily seen that
any amplitude anomalies can result in increased segmentation. Also, as will
be explained later, the order in which the basins flood each other is defined
according to the differences in minimum amplitude along the contours of the
basins and the amplitudes of the basin minima. This ordering constitutes a
hierarchical, multi-resolution view on the segmentation process. Hence, the
continuity of the reflectors, in addition to the amplitudes, will necessarily
have a big influence on this order.

Data Preconditioning.

Layer-Parallel Smoothing: Various types of image smoothing have been ap-
plied in the literature to combat oversegmentation, with signal adaptive
smoothing algorithms as the most successful [10, 25]. General lowpass type
filtering, such as in scale-space theory, is not successful in preserving contour
information, thus, resulting in non-consistent segmentations across scale.

To reduce oversegmentation in our experiments, the layer-parallel smooth-
ing reported in [25] is adopted. The method operates by producing a gradient
estimate, that it uses to steer the direction along which a Gaussian filter is
applied. Options exist to reduce smoothing in areas of poor directional es-
timate, e.g., in regions of chaotic texture. A more detailed treatment of the
method can be found in the chapter [26] of Randen and Sønneland.

The improvement in segmentation performance, as measured by the de-
gree of oversegmentation, is significant. As an example, consider Figure 8,
showing the original seismic data, its smoothed version, and their correspond-
ing segmentations.

Morphological Filtering.

h-Minima Transform: A common technique for simplifying images prior to
segmentation is the morphological h-minima operator. This is a so-called con-
nected operator which simplifies the signal by removing small or poorly con-
trasted regions without destroying the contour information. To understand
how this operator works, we will first briefly review some of the fundamental
operations involved.

In mathematical morphology the two most basic operators are erosion
and dilation. These operators act on a signal f(x) using a flat structuring
element Bn of size n (i.e., a window of size n), in the following way.
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Fig. 8. Layer-parallel smoothing may be used to remove signal noise, and increase
reflector continuity prior to feature extraction and segmentation. The original seis-
mic data, along with its segmentation at an intermediate level in the hierarchy is
shown on the left hand side. The results after layer-parallel smoothing are seen to
the right.

Erosion: εn(f)(x) = min{f(x + y), y ∈ Bn},

Dilation: δn(f)(x) = max{f(x + y), y ∈ Bn}.

Yet another set of erosion and dilation operations exist, which are defined
using geodesic transforms. These operators are defined using a reference func-
tion r, and a structuring element of size one.

Geodesic dilation: δ1(f, r) = min{δ1(f), r},

Geodesic erosion: ε1(f, r) = −δ1(−f,−r),

= max(ε1(f), r).

Geodesic erosions or dilations of greater sizes are achieved by iteration
of the two basic ones. By iterating until infinity, or stability, a new set of
operators emerges, called reconstruction by dilation (erosion).



Geological Model Building 227

Reconstruction by dilation:

γrec(f, r) = δ∞(f, r) = . . . δ1(. . . δ1(f, r) . . . , r).

Reconstruction by erosion:

ϕrec(f, r) = ε∞(f, r) = . . . ε1(. . . ε1(f, r) . . . , r).

The h-minima operator is defined using the reconstruction by erosion
operator as follows:

h − minima(f) = ϕrec(f + h, f).

By duality, there also exists a h-maxima transform:

h − maxima(f) = γrec(f − h, f).

Too see the dramatic effect these operators have on the final segmentation
result, Figure 9 shows a watershed based segmentation of a seismic volume
after applying the h-minima transform with different values for h. We see how
larger, more consistent regions emerge, whereas the smaller ones disappear.
As a consequence of the contour preserving properties of the operator, we
see that the contours of the larger regions are preserved at lower levels of
segmentation (i.e., lower h-levels).

2.4 Multiscale Model Building

The suite of models deployed in hydrocarbon exploration through production,
displays a progression in granularity from coarse to medium to very detailed,
and spans the whole range from kilometers to centimeters. Though different
in what they represent in terms of physical quantities, there is clearly a
relationship between the boundaries in the models related to changes in these
properties. For instance, the boundaries found in a structural model, often
impose limitations on the boundaries, and thus distribution of properties, of
the more detailed geological, reservoir and simulation models. This behavior
agrees with the stratigraphic analysis framework presented in Subsection 1.2.

Among the many multiscale segmentation approaches found in the lit-
erature, only a few possess the properties necessary for consistent multi-
scale model building. Particularly important are the properties of causality
of boundaries and their exact positioning across scale. The notion of causal-
ity simply implies that if a border exists at a coarse scale, it also exists at
the more detailed scales. Imposing these two constraints on the segmentation
process, and adopting the ordering dictated by sequence stratigraphy, leads
us to consider hierarchical segmentation techniques.
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Fig. 9. The h-minima transform removes catchment basins in the images that have
a depth smaller than h. Removing the finer details in this manner greatly reduces
the oversegmentation resulting from application of the watershed transform directly
on the raw seismic image.
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A possible subset of such techniques include hierarchical clustering and
classification, partition trees (herein split and merge techniques), mathemati-
cal morphology, scale-space, and more. In practice, however, only the parti-
tion tree and mathematical morphology approaches provide viable solutions.
The reason being that, clustering and classification approaches tend to pro-
duce multiple, unconnected regions for each class or cluster, and the scale-
space approaches are very computationally demanding. For our purpose, we
will consider the combined use of mathematical morphology and partition
trees.

Morphology Goes Multiscale. Geodesic reconstructions and h-minima
transforms were shown to produce segmentations of varying granularity when
applied to images prior to the watershed transform. Belonging to the set
of connected operators, these transforms preserve the positions of contours
across scales, so that a contour found at a coarse scale also is present at finer
scales. As such, we see that these operators provide us with the tools needed
to operate at multiple scales of segmentation. This concept has over the last
decade been evolving within the field of mathematical morphology to become
a versatile, and powerful way of performing data segmentation [16, 35]. In
this section, a more general overview of the techniques available and their
possible use is presented.

Consider a segmentation produced by the watershed transform, where
each region is a catchment basin corresponding to a regional minima. Without
altering the input image in any way, this is the most detailed segmentation the
watershed transform is able to generate. Next, consider removing a regional
minimum by applying the h-minima transform to the image. Due to the
contour preserving properties of this transform, all, but one, of the watershed
regions remain as they were in the original segmentation. The last region,
corresponding to the removed regional minimum, has now merged with one
of its neighboring regions (positioned at the point of lowest amplitude along
the contour). Hence, the removal of local minima corresponds to merging
regions from the initial, finest segmentation into larger regions. By iteration,
even larger regions are produced, so that in the end, the whole image is one
region. The results obtained using this methodology on seismic data are very
good, bringing the model building process one step closer to automation.

Graph Theoretic Approach. The multiscale segmentation behavior just
described may efficiently be posed as a graph problem. As such, we will in
this section review some basic graph theory and region definitions.

Partitioning:

Definition 2. (Connected Component)
A connected component is a set R where for all x, y ∈ R, there is a
connected path p in R between x and y. The connected path p is a set
of points (p1, p2, . . . , pn) where any two consecutive points, pk and pk+1,
k ∈ [1, . . . , n − 1], are connected.
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Arbitrary definitions may be used to decide whether nodes are connected.
However, digital grids are by far the most commonly used embedding rep-
resentations, thus, making 4- or 8-connectivity for 2D images, and 6- and
26-connectivity for 3D images, the most popular choices.

Definition 3. (Neighboring Regions)
Two connected regions R1 and R2 are neighboring regions, if and only if
there are elements x ∈ R1 and y ∈ R2, that are connected points.

Definition 4. (Image Partition)
A partition of the image space E is a mapping to a set of connected compo-
nents Ri, i ∈ [1, . . . , n], satisfying Ri∩Rj = ∅ for all i �= j, and

⋃n
i=1 Ri = E.

The connected regions produced by segmentation and their interrelation-
ships are often represented as graphs. In doing so, each connected component
Ri is represented as a node ni, and edges between the nodes are derived from
the neighborhood structure dictated by Definition 3. The resulting graph
structure is referred to as a Region Adjacency Graph (RAG).

Segmentation: The extreme cases of image partitioning are (1) when each
connected region represents a single pixel, and (2) when only one connected
region is produced, representing the whole image. These two extremes also
represent the outer limits for multiscale segmentation, where scale refers to
the number of regions produced by the segmentation.

Generally speaking, multiple scale segmentations are essentially a col-
lection of single scale segmentations. In theory, each of these single scale
segmentations may be produced independently of the others. However, this
produces segments that have no apparent relationship across scale. This does
not fit with the requirements set out by analysis of the hierarchical nature of
the geological models. As such, among the many possible single scale segmen-
tations, only those displaying a nesting of the regions are allowed. That is,
stepping down3 from scale k to scale k + 1, all but one region is kept exactly
the same (see Figure 10). The only change is that this region is split into
two new connected regions according to Definition 4. This defines a nested
partitioning scheme that agrees with the hierarchical ordering dictated by
seismic sequence stratigraphy (see Subsection 1.2).

One approach for generating nested partitions have already been intro-
duced, i.e., the h-minima transform. The set of segmentations produced when
applying this transform for increasing levels prior to the watershed transform,
induces a set of nested partitions. In each step, the transform simplifies the
image, producing larger, and fewer, connected regions4. Repeated applica-
tion of the transform, produces a nested, hierarchical ordering of the regions

3In the hierarchy notation adopted here, the coarsest segmentation (the whole
image), is represented as the top node (scale 1), whereas the regions of the finest
segmentation constitute the leaf nodes.

4A general property of connected operators.
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Fig. 10. Causality and persistence of contours across scale follows directly from
nesting of partitions.

in a bottom-up fashion. We see that, starting with the most detailed seg-
mentation, and its corresponding region adjacency graph, all subsequent seg-
mentations may be generated purely by operations on this underlying graph
structure.

Trees and Hierarchies: In the case of increasing removal of detail by the h-
minima transform, the incremental change from one scale to another is the
merging of two regions. On the underlying RAG, this corresponds to substi-
tuting the two nodes corresponding to the two regions and their common edge
by a new node, thus reducing both the number of nodes and edges by one.
Optionally, we may generate a hierarchy by introducing a new node having
the two nodes to be merged as its children (see Figure 11).

Fig. 11. Hierarchy representing a binary merging of nested regions.
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Definition 5. (Hierarchy)
A partition A is said to be a hierarchy, iff it satisfies the following two
properties.

• Intersection Axiom: Two elements of A which are not comparable by
the inclusion relation have an empty intersection, i.e.,

a ∩ b ∈ {a, b, ∅}, for all a, b ∈ A.

• Union Axiom: Any element a ∈ A is the union of all other elements in
A contained in a, i.e.,⋃

{b : b ∈ A; b �= a; b ⊂ a} = {a, ∅}, for all a ∈ A.

A particularly interesting construction, which we will make extensive use
of, is the stratified hierarchy [16].

Definition 6. (Stratified Hierarchy)
A hierarchy is said to be stratified, iff it is associated with an index func-
tion f : A → R which is strictly increasing with the inclusion order, i.e.,

a ⊂ b and b �= a ⇒ f(a) < f(b), for all a, b ∈ A.

The h-minima transform, for instance, can in some instances5 produce
a stratified hierarchy where the level of detail removed, h, is used as the
index function. Since all connected components associated with a level h1

is included in the connected components associated with a level h2 > h1,
the index function strictly increases with the inclusion order, and produces
a stratified hierarchy.

The reason stratified hierarchies are so interesting is the flexibility they of-
fer in hierarchy generation and segmentation. In particular, the combined use
of stratified hierarchies and ultrametric distances, enables efficient generation
of hierarchies based on any properties of interest.

Definition 7. (Ultrametric Distance)
For a stratified hierarchy A, with stratification index value 0 for its finest
partition, the following represents an ultrametric distance index.

d(i, j) = inf{f(a) : a ∈ A and i, j ∈ a}, for i, j ∈ ℘(E),

where ℘(E) denotes the set of all subsets of partitions of the image E. An
ultrametric distance satisfies the following three properties.

(a) d(i, j) = 0 implies i = j, for i, j ∈ A;
(b) d(i, j) = d(j, i) for all i, j ∈ ℘(E);
(c) d(i, j) ≤ max{d(i, k), d(k, j)} for all i, j, k ∈ ℘(E).

5By allowing the nodes to have multiple children.
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The ultrametric distance (DU) is basically a dissimilarity measure be-
tween the tiles/nodes constituting the hierarchy. The more dissimilar two
tiles are, the later they are merged and the higher their ultrametric distance
is. Hence, if we have an arbitrary dissimilarity measure between the tiles,
and merge tiles below a dissimilarity index (DI), taking as the new DU the
maximum among all DU’s below DI, we are able to construct a stratified
hierarchy on which the ultrametric distance is defined. The resulting hierar-
chy (see Figure 12), in this case, is equivalent to a Minimum Spanning Tree
(MST) of the region adjacency graph.

2.5 Attributes and Region Merging

Nice segmentation results have been obtained on nicely behaving seismic
data. However, it is seldom the case that data are well behaved, and fur-
thermore, that the ordering of the objects in the image corresponds to the
semantic objects that we want to extract. A simple example is shown in Fig-
ure 13, where we want to segment a signal into two regions having different
peak spacings (or frequencies). However, due to the uniform amplitudes, a
segmentation of this signal will be determined by the order in which the re-
gions are visited. Thus, the result will inevitably be different from what we
seek.

Generally, segmenting textured images is a challenging task. Starting with
the initial watershed segmentation as leaf nodes, and then constructing the
hierarchy based on the h-minima transform does no longer make sense. The
detail removed by this transform does not necessarily correspond to discrimi-
nating features of the textures. Hence, there is a need for also using attributes
(e.g. texture attributes) in the hierarchy building process.

This is where the stratified hierarchy, with its ultrametric distance comes
into play. If we are able to define a dissimilarity measure based on the at-
tributes of interest, that respects the features of interest, we will be able to
generate a hierarchy. Hence, we now have the means to generate tailor made
hierarchies, and thus segmentations, respecting the important properties of
the data.

As a general rule of thumb, (1) watershedding of the seismic data is used
to generate the initial segmentation, or building blocks, whereafter (2) a dis-
similarity measure between the aggregated attributes within the regions is used
to build the hierarchy.

Seismic Texture Attributes. Subsection 1.2 introduced seismic sequence
stratigraphy as a means of explaining the structure of the subsurface, helping
determine the depositional environments and possible rock type distributions.
Essentially, this process boils down to an analysis of seismic bodies defined by
their internal textures and external shape, often referred to as seismic facies
analysis. This type of analysis is a must in seismic interpretation to locate
potential reservoirs, especially in complex oilfields.
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Fig. 12. Hierarchical representation of a multiscale segmentation.
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Fig. 13. Textured regions provide a challenge when using the h-minima transform
to build the segmentation hierarchy. Seen above is a 1D texture, composed of two
time-frequency disjoint [22] signals with identical amplitudes. In this case the h-
minima transform has no discriminating effect, thus, rendering the order of grouping
(defining the hierarchy) a function of the order in which the regions are considered.
To remedy this, signal and image attributes must also be included in the hierarchy
building process. In the above example, measuring the dissimilarity of peak spacings
would suffice.

The choice of seismic texture attributes for hierarchy building heavily
depends on the data, on what kind of model is being built and on the char-
acteristics of the objects comprising the model. If the objects to be modelled
are outlined by strong reflectors, the traditional h-minima transform may
actually suffice. In other instances, where the reflectors outlining the objects
are vague or non-existing, attributes are needed to guide the segmentation
process.

For further information, extensive overviews of the interplay between seis-
mic facies analysis and seismic texture attributes are given in the chapter [8]
of Carrillat and Vallès.

Attribute Modeling and Dissimilarity Measuring. The initial segmen-
tation generated by the watershed transform consists of a set of connected
regions, with a corresponding region adjacency graph. Each region has a fi-
nite extent, within which attributes may be calculated. As such, each region
contains a set of attributes with some overall behavior. It is not tractable to
keep track of all the individual attribute responses, so some means of overall
attribute behavior is needed.

There are many ways in which we can represent the overall attribute
behavior of the regions. Most popular, however, are the two lower order sta-
tistical moments, mean and variance. Calculating these measures within the
regions is very simple and fast, and when merging regions, it is straightfor-
ward to calculate the mean and variance of the new region based those of the
regions merged.

Using the two lower order statistical moments also allows for simple dis-
similarity calculations, such as the Fisher metric. For any two regions Ri and
Rj , this measure has the form

JF =

(
µRi

− µRj

)2
σ2
Ri

+ σ2
Rj

.
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Evaluating this expression for all edges in the RAG, a valuated graph emerges
on which we build the segmentation hierarchy.

By keeping track of more information, other dissimilarity (distance) mea-
sures may also be applied. Examples are the Bhattacharya and Mahalanobis
metrics.

Intelligent Merging. In order to obtain objects that exhibit geologically
meaningful shapes, a set of constraints must be put on the hierarchy building
process. For instance, a natural assumption when building a model, is that the
objects, at a particular scale, should be roughly the same size. This implies
that it is not wise to merge a very big region with a very small one. An easy,
and effective way to implement such a behavior, is to increase the weights of
those edges that exist between regions of radically different sizes. The same
argument holds for region shape, where an example of a very simple weight
function is the absolute difference of region compactness6.

The edges of a RAG can in general take on values representing any type
of information. As such, the edges may also be valued according to attribute
values existing at the border corresponding to the edge. In seismic model
building, this is of interest for extracting continuous layers. By imposing the
constraint that flow lines (normal to the amplitude gradient field) at the
boundary between merged regions should conform to the flow field within
the two regions, the hierarchy will favor merging of volume primitives along
reflectors, rather than across.

The above mentioned examples goes to show how constraints may be put
on the hierarchy building process in order to tailor make the hierarchies for
specific purposes. In the end, one may want to generate a suite of hierar-
chies, each modeling different aspects of the data set, and combine these for
generating the final model.

Furthermore, there also exist other ways by which to build hierarchies,
where we also take into account properties of the RAG nodes themselves [15].
As such, we can combine both edge and node-based techniques to increase
our flexibility in automating the process.

3 Application: Velocity Model Building

Background. To appreciate the power of the model building approach pre-
sented in this chapter, we here present an application of the new approach for
geometric mapping of salt domes for velocity model building. To understand
why this is a difficult, but import task, we need to understand what a salt
dome is, its properties, how to image it and the problems associated with
that.

6Compactness measures how sphere-like an object is by relating the area of the
object surface to its internal volume. Normalized by 4π, a perfect sphere would give
a value of 1, whereas all other shapes give values less than this.
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What is a salt dome? A salt dome [2, 32] is a teardrop-shaped diapir
of salt that migrates up through the subsurface. Below a certain depth, the
density of salt becomes much less than its surrounding sediments, causing
a buoyancy difference. As the surrounding sediments subside, the salt will
therefore maintain its position in depth causing the salt to push through
the overlying sediments. After some time of upward migration, drops of salt
tend to separate from the main salt and propagate further by themselves (see
Figure 14). Hydrocarbons are commonly found around salt domes because of
the abundance and variety of traps created by the salt movement. That is,
the salt dome bows up sedimentary beds, produces faulting, and affects the
nature of the beds being deposited. Consequently, traps may be produced
over or around the sides of the dome. Also, due to the impermeability of salt,
hydrocarbons may be trapped underneath the salt.

Two examples displaying typical salt dome behavior are depicted in Fig-
ure 15. Here we see bodies having chaotic internal structure (explicitly mea-
sured in Figure 16), and the effect of upward flow causing sedimentary beds
to bend up, fault and terminate against the sides of the salts. On the salt
dome to the right in the figure we also see a clearly defined cap rock overly-
ing the internal chaotic regions of the salt. The figure also serves as a good
example of good and poorly imaged salt domes. The domes are commonly as-
sociated with complex geological structures and velocity fields, thus, making
imaging them a difficult task. Salt has a medium velocity of 4500-5000 m/s,
which is significantly different from typical sediment background velocities
of 2000-4000 m/s. This contrast in velocity causes strong reflections and dis-
places and distorts the events we try to image significantly. In addition to
being a velocity anomaly, salt domes typically have highly irregular bound-
aries. Hence, the path of any acoustic energy entering such a region is highly
unpredictable.

Consequently, high demands must be put on the inversion process to
avoid the images appearing unfocussed (as in the case of the left salt dome
in Figure 15).

To properly image salt domes advanced imaging techniques must be uti-
lized. However, the operations and processing time involved in these types of
techniques have previously rendered their use impractical. As a consequence
of better acquisition equipment and faster computers, salt imaging have be-

Fig. 14. Illustration of the evolution of a salt diapir.
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Fig. 15. Seismic section containing two salt domes. The framed region is shown in
greater detail in Figure 17.

Fig. 16. By measuring the amount of chaosness present in Figure 15 we see how
the highly chaotic areas corresponds to the internal regions of the salt domes.

come more tractable over the last decade. In fact, more and more discoveries
are made in or around salt domes. These structures are often encountered in
offshore West Africa, the Gulf of Mexico, the Red Sea, and the North Sea.

Seismic imaging consists of two main components: stacking and migration.
Stacking is the process of enhancing the signal-to-noise ratio by summing sig-
nals from several angles reflecting at the same point. The process implicitly
assumes that the signal energy comes from reflections at the midpoint be-
tween source and receiver pairs. This assumption is only fulfilled with an earth
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having flat layers and stepwise uniform velocity distributions (i.e., layer-cake
model). As this is usually not the case, migration is needed to redistribute
the assumed midpoint reflection energy to its correct position [3]. By using
a velocity model, the migration process re-focuses the image by taking into
account the true propagation paths of the acoustic energy as defined by the
velocities.

Depending on the complexity of the structural framework and velocity
distribution, migration may take on a number of forms. Post-stack time, pre-
stack time, post-stack depth and pre-stack depth migration are the main
choices, with the latter being the most accurate and sophisticated.

Pre-stack depth migration is used for imaging in areas of high risk, such
as thin reservoirs, structurally complex geological settings and areas having
large lateral velocity gradients.

In order to correct for the velocity anomaly that the salt represents, we
need a correct geometric model of the salt body. However, due to the complex
nature of the body and its boundaries, it is not straightforward to use the
traditional interpretation tools. The question is now, can we use the approach
presented in this chapter to automate or improve on the interpretation of salt
structures?

Salt Body Extraction. Applying the watershed transform directly to the
data set, and building a hierarchy based on the basin depths (equivalent to
the h-minima transform) does in this case not make sense. There is in general
no continuous cap rock that will give us the correct segmentation according
to this approach. However, if we consider Figure 16, we see that there is a
strong evidence of the salt in the measure of chaotic structure. Hence, an
approach might be to use the chaos measure as an attribute, and build the
hierarchy based on this. In testing this approach, the algorithms are run on
the sub-volumes of Figure 15 and 16, shown in Figure 17.

The segmentation hierarchy is built as follows:

• The basic volume primitives are produced by applying the watershed trans-
form directly to the seismic data (Figure 18, top), producing a very detailed
segmentation.

• Using the chaos attribute, each volume primitive calculates the two first
statistical moments, mean and variance, of the attribute values falling in-
side the sub-volumes they cover.

• The edges of the region adjacency graph are valued with the Fisher metric
as the dissimilarity measure.

• A stratified hierarchy is built using the edge weights to determine which
regions to merge. Every time two sub-volumes are merged, the new volume
attributes are calculated, and the associated edge weights updated.

• Using the stratification index, the multiscale segmentations can now be
browsed, as in Figure 18.
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Fig. 17. Additional information must be utilized when segmenting poorly defined
objects. The salt body in this figure (also outlined in Figure 15) cannot be seg-
mented merely using the h-minima transform on the amplitudes. Measuring the
degree of chaosness [24], on the other hand, seems to be a good indicator of salt
(right). Using this extra information enables a more robust segmentation of the salt
body (see Figures 18 and 19).

• Real-time interaction is achieved by keeping the indexes of the original
watershed segmentation and traversing the hierarchy every time a selection
is made, or further subdivision is required. This is really fast, since we only
need to traverse at most log2(N) levels for a tree with N leaf nodes. For
1,000,000 objects this only amounts to twenty levels for a balanced tree!

Interpretation using this framework is very powerful, in that the inter-
preter is able to adjust the level of the hierarchy adaptively, thus tailoring
the size and shape of the model primitives to the information present in the
seismic data. Hence, this framework supports model building using all scales
at the same time.

4 Summary

A new approach towards model building with the promise of significantly
shortening the turnaround time of 3D model building has been presented. By
introducing a unifying framework, efficient representation of models through-
out the lifecycle of a reservoir is enabled, all the way from velocity to simu-
lation models.

The framework is a hierarchical structuring of basic model primitives,
where all levels of resolution are maintained and handled simultaneously and
information is structured according to geological understanding. This enables
the interpreter to work with pre-generated geological objects, rather than
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Fig. 18. Aggregating fine scale model primitives into coarser scale models produces
a hierarchical ordering able to encompass volumetric models of all scales at the same
time. The leaf nodes of this hierarchy, or tree, represent the most detailed model
primitives available. A relation between such a primitive and its position in the
hierarchy is exemplified in the top figure. Models of any size, shape and level of
detail may be generated by choosing the appropriate set of nodes in the hierarchy.
The middle and bottom figure illustrates how regions are grouped/ungrouped when
traversing this hierarchical structure.
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Fig. 19. Instead of working with the objects projected onto image slices (as in
Figure 18), the user may also work with the corresponding segments in 3D. The
hierarchy is used real-time, and is highly interactive. In the case seen here, only
two segments need to be extracted to build a complete model of the salt.

spending time creating them in the first place. Consequently, more time is
spent being creative, gaining a better understanding of the reservoir.

This is in stark contrast to the current model building workflow, where the
user spends a lot of time doing tedious tasks that does not really add value.
Moreover, as more information is gained over the lifecycle of the reservoir, the
models are not necessarily updated due to the amount of model reworking
that needs to be done. Using the framework presented here, new information
is visible across all scales and is directly ready for utilization in all models
once it becomes available. As such, fast model updates are now possible.

Furthermore, the hierarchical framework enables use of new semi- or fully
automatic interpretation schemes and provides real-time user interaction with
large volumes.
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Summary. In this chapter, a simplified method for mapping objects based on the
level set method is introduced. Level set and marching methods are used to map
connected volumes within 3D seismic data. The simpler marching method solves
the stationary problem stated by the level set formulation. The evolution of the
object, from a seed point to the boundary, is described by a differential equation.

1 Introduction

This chapter presents a procedure for mapping connected sets of voxels in
seismic data. These connected sets make up geo-bodies, holding the same
geological characteristics, e.g. impedance, and intrinsic velocity. The request
for algorithms extracting areas and volumes of interest from a larger sized
data set has been the main motivation for this work.

Mapping of objects is a topic within the more general theory of segmen-
tation. Segmentation includes other topics known from pattern recognition
such as classification, clustering, extraction, and more. In addition to pattern
recognition, the procedure is based on work within applied mathematics and
physics. Here we apply the mapping to both 2D and 3D seismic data. In
Figure 1 we see a 2D example of a segmented seismic survey. The data might
often be of a more disrupt and chaotic nature than seen in the example, and
it is not always easy to detect connectivity by visual inspection. An algorithm
would generate decisions of a higher degree of objectivity.

Some earlier segmentation methods are characterized as explicit. This
means the front representing the boundary of the preliminary object is moved
explicitly, point by point. A popular explicit segmentation method is the
active contours, or snake method. As both these names indicate, the front (the
contour) is active in crawling to find the true boundary. The points indicating
the front are updated by a minimization of the energy formulation. More on
theory and applications can be found in [2] and [8].

Experience tells us that the explicitness often leads to numerical instabil-
ity. This can be improved by implicitly moving the front, as will be explained
in the level set formulation in Subsection 2.1. The underlying theory presented
is based on the implicit level set and marching methods, further introduced
in Section 2. The work on level sets was initiated by Sethian and Osher in
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(a) seismic survey (b) segmented section

Fig. 1. The images show a two-dimensional seismic survey from the Barents Sea.
The input data in (a) is of approximate sizes 5 km in each direction; inline (x-
coordinate) and time (y-coordinate). In (b) a segmented area or layering is seen.

1988, [14], for studying moving boundaries in combustion. The fields of to-
day’s applications are various: segmentation of medical images, de-noising
of images, seismology, robotics, and more. In addition the methods are also
applied in computer vision [13], front tracking [9], reservoir simulation [10],
geophysics and biomedicine [12]. Segmentation of medical images and map-
ping of seismic objects are similar operations. The marching methods provide
fast solutions for the stationary case of the moving front problem. The text-
book [18] provides an introduction to the fast marching method, and [11]
gives an introduction to the the group marching method.

What makes the methods of level sets and marching differ from previous
utilized methods, apart from the implicitness, are the equations. The methods
make use of the link between describing the evolution of a moving front
and the computational equations of fluid and gas dynamics [15, 23]. These
equations allow for both stable and accurate solutions.

The outline of this chapter is as follows. Theoretical aspects are discussed
in Section 2, where in particular the level set method and the marching
method are introduced. Finally, Section 3 provides numerical results con-
cerning one selected real-world model problem from seismic data analysis.

2 Level Set and Marching Method

The aim of this chapter is to develop an algorithm for mapping geo-bodies
in spatial and temporal domains. To this end, we use level set and marching
methods for the mapping. The basic steps of the overall procedure are shown
in the flowchart of Figure 2. In this section, we explain two intermediate steps,
concerning the marching method and the level set method, respectively.
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Fig. 2. Flowchart of the suggested procedure for the mapping algorithm, from raw
seismic data to segmented geo-body output. The output result from the marching
method may directly be applied to the different analysis steps in the rightmost
block. Otherwise, it is input to the refining level set method.

A number of pre-processing steps are required for seismic signals to be
transformed from reflected wavelets into a seismic cube [24]. In addition seis-
mic data properties, such as dip, azimuth and continuity [16], are extracted
through computing attribute cubes. All these possible sub-steps are part of
the preprocess, shown in Figure 2.

According to the workflow of Figure 2, a first approximation to the solu-
tion is provided by the marching method, with a monotonically propagating
velocity function. The monotonity is an essential requirement for the march-
ing algorithm. This is because we are recording whether the front passes a
node or not. Hence, a node is only passed once, either by a front growing
outwards (positive velocity), or shrinking inwards (negative velocity).

If the initial approximation from the (faster) marching method is not
satisfactory, then the (slower) level set method is evoked. This gives room
for a more complicated velocity function, and so a refined and more accu-
rate solution is obtained. The output from the level set block is a geo-body,
being available for different interpretation and analysis steps through the
user. These interpretations may, for instance, involve decisions concerning
the quality of the output geo-body for oil reservoir modelling.

The level set method may be viewed as an initial-value formulation, which
requires solving a partial differential equation. The marching method com-
putes the stationary solution of the problem by solving a differential equation.
These equations are based on dynamic theory, and hence improve the stability
of the segmentation solution.

The next two subsections discuss some of the theory concerning the level
set method and the marching method. This is done in reverse order to the
flowchart of Figure 2, because the marching method solves the stationary
case, and so this can be viewed as a special case solved by the level set
method.



250 S.K. Richardsen, T. Randen

2.1 The Level Set Method

The level set method is represented by an implicit algorithm. In practice
implicit means that we do not iterate directly on the nodes defining the
front. We rather define a function from which we can extract information
about the front. When evolving the function, we implicitly move the front.
This implies that, even though the front may be complicated, the function
itself is not necessarily complicated. This is attractive for real-world data
sets, which are often noisy and abrupt.

The Level Set Function. Now let us give an overview over the level set
method, cf. the illustrations in the Figures 3 and 4. Suppose that we start
with one single node, a seed point. This point is the circle shown at the
origin in Figure 3 (a), and the tip of the cone in Figure 4. We need to find
a suitable function containing information about the location of the front
(initially consisting of one node). To this end, it is suitable to define a function
based on a distance measure. At any node outside the front, this function is
given by Ω�(t), for a node inside the front by Ω(t), indicating the distance
to the nearest front node.

But there may be numerical difficulties when calculating differentials near
the zero-valued front. To obtain a monotonic function across the front the
distance function is turned into a signed distance function. Positive sign means
that the interior node lies in the domain Ω(t). For an exterior node, lying
in Ω�(t), its corresponding sign is negative. Note that we have introduced a
time-dependency on the domains. This way one can observe how the interior
of the front Ω(t) expands with time, at the expense of the complementary
domain Ω�(t), see Figures 3 (a), (b), and (c).

Let us give a mathematical definition for the signed distance function,
which we call from now the level set function

φ(x(t), t) =

⎧⎪⎪⎨
⎪⎪⎩

+d(x(t), t) ; x(t) ∈ Ω(t),

0 ; x(t) = γ(t),

−d(x(t), t) ; x(t) ∈ Ω�(t).

(1)

The distance d is computed from every node x, in the computational
domain (Ω

⋃
Ω�), to its nearest node at the front γ;

d(x(t), t) = min (|x(t) − xγ(t)|) for all xγ ∈ γ(t). (2)

The level set function φ(x, t) varies both in the spatial and in the time
domain. The definition in (1) states that at any instant in time t the function
φ(x, t) represents a set of levels. This explains the naming level set method.
Each level has a constant distance value relative to the front γ(t), defining
the zero level,

γ(t) = {x|φ(x, t) = 0} .
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The example in Figures 3 and 4 can thus be described by φ(x, t), and the
slice plane is given by s(t),

φ(x(t), t) = x2 − t = 0 (3)
s(t) = t .

At evolving time, different results are obtained, as the individual iterations
are carried out by applying the slice function s(t). At any time t, a unique
2D solution is obtained, see Figure 3, where the time-dependent front γ(t) is
displayed.

For the purpose of illustration, the situation for three different times,
t = 0, t = 1, t = 2, is displayed in Figure 3 for a simple example, a growing
circle in (3). The displayed level, at each time t, is the level representing the
front γ(t). The other levels would spread out (inwards and outwards) like
rings in water from the mid-node, representing different distance measures.
We decided to use the zero level as front indicator, but any other level would
do as well.

�

�

Ω�(t = 0)
Ω(t = 0)

����
γ(t = 0)���

�

�

Ω�(t = 1) Ω(t = 1)

��
���

�

γ(t = 1)
���

�

�

Ω�(t = 2)
Ω(t = 2)

��
�	

�

�

γ(t = 2)
���

(a) time instant t = 0 (b) time instant t = 1 (c) time instant t = 2

Fig. 3. The front γ(t) is a circle of increasing radius, initially a seed point, shown
in (a). The computational domains Ω and Ω� are changing with time.

The seed point in Figure 4 yields a unit outwards velocity, so that we
observe a circle with increasing radius. For each time t, the spatial variables
of the level set function φ(x, t) define a set of levels, including the front γ.
Moreover, the level set function defines a three-dimensional cone (evolving in
time), built from the time-dependent front γ(t).

The evolution of the front can be described by a partial differential equa-
tion, involving partial derivatives of the level set function (w.r.t. time and
phase). This partial differential equation, termed level set equation, is subject
of the following discussion.

The Level Set Equation. The evolution of the level set function can de-
scribed by a partial differential equation. This differential equation consti-
tutes the relationship between the level set function and a function contain-
ing information on the input data. In order to deduce the equation describing
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Fig. 4. Illustrating how the level set method defines a surface from the evolving
front. The enhanced circle indicates the zero level at a given time, γ(t). The seed
point is the tip of the cone. As time iterates the circle grows; defining the cone
surface.

the level sets’ evolution, we make use of the main characteristic of the level
set function,

φ(x(t), t) = 0.

Differentiation of this equation (with applying the chain rule) leads us
directly to the partial differential equation

φt + x′ · ∇φ = 0.

The derivative of the position vector x indicates the change of the front
nodes. In other words it gives the velocity of the front evolution. The velocity
has an amplitude F and the direction of the outward normal n of the changing
front

x′ = Fn,

n =
∇φ

|∇φ| .

Eventually the partial differential equation, of type Hamilton-Jacobi [20],
for updating the level set function is produced,

φt + F |∇φ| = 0 . (4)

The velocity term F contains the available information on texture and
structure within the image. It informs the algorithm on how the front should
be relocated, in what direction and at what speed. Hence, it will guide the
motion of the front from initial position towards the true boundary.
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Defining a suitable velocity function is important for obtaining a success-
ful result and has to be specified for the particular application. The available
information for making the velocity function is mainly the initial data cube.
Some additional information can be included when available, e.g. geological
horizons or faults. The challenge is to reveal important information for edges
and connectivity, see Subsection 2.3 for further details on this.

Next we see how the level sets fit into the procedure we outlined in Sec-
tion 2, Figure 2.

Steps in the Procedure. The main advantages of the level set method
are the capability to track complex curves and capture topological changes,
see [18]. Still, solving (4) requires an accurate numerical scheme, which is
often computationally expensive. This is why it would be attractive to obtain
a fast approximative solution.

In Figure 5 we present our way of carrying out the segmentation proce-
dure. We have just described what happens in the enhanced box, with the
level set method. The next subsection will present the marching algorithm.
The choice of opposite order of presentation is natural. The marching algo-
rithm computes a stationary solution to the problem, which we previously
solved by using the level set method. Hence this leads to a simpler method,
which is based on the level set theory.

Seismic Data

�

Pre
Processing

� Marching
Method

�
Level
Set

Method

�

�

Different
Steps...

�
Output

Fig. 5. Flowchart of the suggested procedure for performing the mapping algo-
rithm, from raw seismic data to segmented geo-body output. The enhanced box
incorporates a partial differential equation solver.

When adding the extra dimension compared to an explicit method, the
computational cost increases, as exemplified earlier by developing the cone
surface and not just the circular front. To make the algorithm faster, and
because the validity of the partial differential equation is limited, the narrow
band approach might be included [18]. In this approach only a narrow neigh-
borhood of the front γ(t) is updated in the level set function φ(x, t) at each
time iteration.
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Second, the literature [1, 6] points out that for the method’s performance,
the level set function must be kept a distance function at all time. The dis-
tance function gives the value indicating how far a node is from the temporary
object’s front. When applying the narrow band approach, errors are intro-
duced. Hence we need to re-initialize the level set distance function from
time to time. The narrower the band in the narrow band approach is cho-
sen, the more often the updating is performed, but the more frequent the
re-initialization is required. Some algorithms use a marching method as a
re-initialization step. We want to use the marching method for initialization
purposes. The basic idea is to produce a preliminary solution by the march-
ing method, which is discussed next. With well-behaving data, the marching
method can process all the way to the wanted boundary. When the data is
more defiant, the situation changes and the solution will be further elaborated
by the level set method to produce a satisfactory result.

2.2 The Marching Method

The marching method, Figure 6, is designed to find the solution to the map-
ping problem through solving a differential equation in spatial dimensions.
The basic principles are similar to the case of the level set method, and there-
fore we also work with a function containing information about the front,
denoted as γ(t).

Seismic Data

�

Pre
Processing

� Marching
Method

�
Level
Set

Method

�

�

Different
Steps...

�
Output

Fig. 6. Flowchart of the mapping algorithm, from raw seismic data to segmented
geo-body output. The enhanced box incorporates a solver for a spatial differential
equation.

The Stationary Case. The marching method is used to solve the station-
ary case of the level set formulation. When moving from the original level
set formulation to the stationary formulation, we are able to speed up the
computations. The price to pay is that the velocity function F we work with
has to be strictly monotone when solving the simplified scenario.
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This stationary solution is obtained through the differential equation in
(5), called eikonal equation [18]. The eikonal equation contains the spatial
differential of a function T (x), given the velocity function F ,

F |∇T (x)| = 1 , (5)

where the gradient norm in n dimensions is defined as

|∇T (x)| =
√

T 2
x1

+ . . . + T 2
xn

.

We know the velocity function F from the level set theory, and it will be
further elaborated in Subsection 2.3. The only difference from the level set
version is the additional monotonicity requirement.

Let us elaborate a little on the T (x). This is the travel-time function, and
indicates at each node x the time the front has spent on evolving from the
initial seed point to the current node. The time of the moving front at every
node is recorded. This means that only grid nodes swept by the front are
assigned values. The front γ(t) at any instant in time is given by

γ(t) = {x : T (x) = t}. (6)

In Figure 7 we view the concept of the growing circle again, which we
remember from Figures 3 and 4. The front γ(t) is represented at the times
t = 0, t = 1, and t = 2, through (6), where we no longer use the zero level,
but rather the t-level.
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(a) t = 0 (b) t = 1 (c) t = 2 (d) above (e) sideways

Fig. 7. The evolving front γ(t) at different times. It is indicated through the t-level
of the travel-time function and defines a three-dimensional cone.

Sethian makes the concept of travel-time easily understood on his web-
page [17]. Suppose the computational domain divided into cells by a suit-
able grid, see Figure 8. In each of the nodes we place a watch (w). All the
watches are started simultaneously as the seed point is picked. The watches
are stopped when the front passes the particular node. Nodes, which are never
passed by the front, are assigned to travel-time infinity.

In consequence, the velocity function is monotonic, either positive or neg-
ative, so that the front propagates strictly outwards or inwards. In this way
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Fig. 8. The front sweeps the grid. At time equal zero the watches at all nodes
starts, and are stopped as the front passes that node. The watches at the nodes
are indicated with a w encircled, while the black circle in the middle represents the
seed point.

only one value is recorded at each node, and so no information is lost, due to
a second pass of the front.

The evolving front moves according to the velocity function F . It may be
difficult to understand this function, since it represents a motion in a station-
ary data set. In order to get a better insight into the method, let us further
explain the velocity function. If we use a 2D intensity image as input data,
we may interpret the 2D velocity function as a topological map based on the
original data. Imagine moving through the intensity landscape; when changes
are fast, the velocity goes down. Hence, we may be close to a boundary and
want to stop. In areas of little change in intensity the velocity should be con-
stant and relatively high valued, so we easily can move through. This gives
a first idea on the features of the velocity function, a more comprehensive
mathematical discussion on this is provided in Subsection 2.3.

The spatial differentials Txi
included in (5) are approximated by a nearest

neighbor differential scheme. The scheme is shown in Figure 9, for the sake
of simplicity merely in two dimensions, d = 2. From the current source node
(i, j) there are 2d = 4 possible directions for the front to propagate. The
minimum of the travel-time solutions indicates where the front passes first,
and hence the neighbor in this direction is selected as the next source node.

The derivatives are approximated by neighboring differential schemes,
using the information available at the current node (i, j). In (7) the formula
for the computations made in the x1- and x2-direction are shown,

T−
x1

=
T (i, j) − T (i − 1, j)

∆x1
T+

x1
=

T (i + 1, j) − T (i, j)
∆x1

T−
x2

=
T (i, j) − T (i, j − 1)

∆x2
T+

x2
=

T (i, j + 1) − T (i, j)
∆x2

, (7)

where we are using an equidistant Cartesian grid, so that ∆xi = h, for all i.
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Fig. 9. The neighboring computational scheme of travel-time T for approximating
the directional derivatives Tx1 and Tx2 . The grid nodes are indicated by circles, the
dark ones are used in the computation.

The Marching Algorithm. The main motivation for solving the eikonal
equation (rather than regarding the level set scenario) is the availability of
several fast solvers: the celebrated fast marching method [18, 19], based on
Dijkstra’s method [5], is easy to understand. However, we have so far concen-
trated more on the group marching method [11], based on Dial’s algorithm [4].
The reason for working with the group marching is mainly because the work-
load of this method is of the same order as number of grid nodes, (O(N)),
while the fast marching approach takes O(N log2 N). We present a slightly
modified version of the group marching method, which finds a stationary
solution rather quickly.

The marching algorithm mainly takes care of two tasks. Firstly, it updates
the index matrix; whether a node is outside (′0′), at the front (′1′), or inside
(′2′) the object. The other task is to update the travel-time value for the
current node and its neighboring nodes. In addition, we want the algorithm
to do this fast as well. Two important reasons for why a group marching-based
method works fast are:

• Each iteration advances a group of nodes.
• Direction of propagation is incorporated through a travel-time constraint.

One way to speed up the algorithm is advancing more nodes for each itera-
tion. In order to do this, information about the direction of front propagation
is explicitly included. The group marching method selects a group of nodes
from the neighbors of the front. Hence, instead of marching a single node
forward, a whole group is advanced in the direction of evolution. Naturally,
the question on how to choose these nodes arises.

For nodes belonging to the front, hence indexed (′1′), we choose a set of
nodes to be changed into processed nodes (indexed (′2′)), denoted G. The
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decision is made based on the travel-time values. Nodes whose travel-time
value is below a certain threshold are included as inner nodes.

The example in Figure 10 illustrates the performance of marching. Four
different grid images are shown; from iteration step (t) in (a), through an
intermediate step in (b), to iterations (t + 1) and (t + 2) in (c) and (d),
respectively.
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(a) iteration step (t) (b) intermediate step

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(c) iteration step (t + 1) (d) iteration step (t + 2)

Fig. 10. ′∗′ means source. ′×′ means neighbor. ′+′ means group node. The squares
indicate nodes having changed condition from one image to the next. In (a) we see
source nodes and neighbors. The group nodes are sorted out, and indicated, in (b).
New neighbors are included as the group becomes source nodes, in (c). New group
members are again indicated by squares in (c). Yet, another step is shown in (d),
where the front now has moved in the direction of group nodes indicated in (c).

The explanation is based on iterations in Figure 10, executed at some
time into the marching algorithm. Sources and neighboring nodes are la-
belled with ′∗′-es and ′×′-es, respectively. From the set of neighboring nodes
in Figure 10 (a) a group is chosen, utilizing information on the dominant
propagation direction.



Mapping 3D Geo-Bodies 259

Figure 10 (b) indicates the chosen group nodes as ′+′-es wrapped in
squares. The square indicates a change in the status of the node. The follow-
ing iteration step (t+1), shown in Figure 10 (c), displays the group nodes as
new sources. The algorithm chooses yet another group of advancing nodes,
this time the front moves to the left. In Figure 10 (d) these group nodes are
included as sources, and new neighbors are labelled.

The travel-time values are computed according to the eikonal differential
equation in (5), comprising information from the velocity function. The ve-
locity function indicates how the front will evolve in the different directions.
If we follow the front in the dominant propagation direction, we will end up
at nodes where the travel-time values are within a bounded interval. Hence,
the propagation direction is respected by choosing to advance nodes within
a certain travel-time limit. In Figure 9 possible ray-paths in one of the quad-
rants are shown. The wave propagates from node (i, j) into the quadrant,
represented by minimum travel-time, thus closest in time.

First, one marching sweep is performed in reverse order through the ac-
cepted nodes in G to update the travel-times of the corresponding 2D neigh-
bors. Thereafter one forward marching sweep re-computes the travel-times.
Then by using the newly computed information, we find suitable nodes for
G. The double computation of the travel-times improves the stability. The
status indicator changes as the set of group node G is updated. The processed
node (i, j) becomes a source node, labelled (′2′). Those of the neighbors not
already labelled as possible source nodes (′1′), will be labelled now.

The selection of group nodes is taken from a constrained travel-time neigh-
borhood. Hence, instead of just choosing one node to be included, the idea
is to convert all neighboring nodes with a travel-time range below a certain
threshold into inner nodes.

The threshold is set to the minimum of travel-times among the front
nodes, plus an additional term. The limiting value Tmin is the minimum
travel-time among the first neighboring nodes. Then at each iteration the
limit was updated by a certain amount of time, ∆τ , since we have advanced
further away from the initial seed point. This additional term depends on
both the spacing (h), the maximum velocity of the front, and dimension d,
see Figure 11.

∆τ =
h√

d maxx∈γ v

T (x) ≤ Tmin(x) + ∆τ .

Thus the group of nodes G is given by

G = {x ∈ Γ : T (x) ≤ Tmin(x) + ∆τ},

Γ = {x : index(x) = 1},

where index is the operator giving the status of the node.
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Fig. 11. The ∆τ based on half nodes, updates the travel-time limit at every iter-
ation.

2.3 The Velocity Function

The velocity function F is involved in both of the differential equations (4)
and (5). In one sense, the function is the same in the two cases; it contains
the available information from the data-set. This is why the choice of the
velocity function is the salient point of the algorithm. The rate of success for
the overall result depends on a well-defined velocity function.

In general the two velocity functions need not necessarily coincide. For the
level set formulation, the velocity function is adequately defined without con-
straints, whereas the velocity function applied in the stationary formulation
is supposed to be monotonic. The travel-time value, which a node acquires as
the front sweeps by, is retained because the monotonicity prohibits a second
sweep and and so an update of the already computed value.

The velocity function is either defined locally or globally, or it is of com-
posite structure [22]. In either case, we want the front to evolve fast in homo-
geneous areas and to brake down near edges. This leads us to the following
requirements for the velocity function.

• Zero at the boundary.
• High values (fast moving) in areas of little relevant information, hence

without significant edges.

These requirements can be satisfied in various ways. For instance we know
that the gradient operator will indicate edges. Abrupt behavior causes large
gradient values, hence an inverse version of the gradient operator leads to
small values at the boundaries. Using the gradient concerns global behavior,
whereas locally dependent characteristics, such as curvature, may also be
included. Using morphologic theory [7, 21] to define a suitable global velocity
function is another alternative.

To exemplify more clearly the relation between an input intensity image
and its corresponding velocity function image, see Figure 12. A horizontal
line is drawn in the lower plots in order to visualize how the large intensity
changes (boundaries) to the left lead to small velocity values in the right plot.

When defining a velocity function, it is important to recall that in addition
to drive the front towards a boundary, it also acts as a stopping term when the
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(a) input intensity image (b) velocity function image

Fig. 12. The upper figures show the intensity image (a) and the corresponding
velocity image (b). The lower figures show an intersection at a horizontal line. The
changes in intensity lead to small velocity values.

true boundary is reached. For computational reasons, a maximum number
of iterations is given. However, that stopping criterion is only invoked in
very complicated cases. We have included a Canny edge detector [3] in our
velocity function, in order to guarantee a zero velocity at the boundaries. The
output from the edge detector indicates where all possible boundaries can be
found. In addition to the binary edge indicator C(x), our velocity function is
gradient-based,

F (x) =
C(x)

1 + α|∇I(x)| ,

where I is the available data-set and α a shift-parameter shifting the velocity
distribution.

3 Mapping Geo-Bodies from Barents Sea Seismic Data

Let us finally show some numerical results obtained by using the method
explained in this chapter. Recall that the input data determines the velocity
function, and so this relies on the underlying application. In our particular
application, we first specify the procedure and show examples of mapping
bodies within seismic data.

The mapping is initialized by placing a seed point within the body of
interest. As the objects often are large and complicated in seismic data, it is
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often necessary to give more seed points. The multiple seed points are either
given as scattered points at the initialization step or after some iterations.

We have worked on seismic data from the Barents Sea, using both the
seismic data and computed attribute data.

3.1 Two-Dimensional Example

In the 2D case, a cross-section from an azimuth attribute cube [16] can be used
as input data. An attribute is defined as a mathematical operator, or a com-
position of operators, capturing properties from seismic data. The azimuth
attribute has, together with other attributes, such as dip, chaotic texture and
continuity, been successfully applied to mapping carbonate reef structures,
gas chimneys, channels, fans, faults etc.

(a) original cross-section (b) first segmentation

(c) segmented and shrunk object (d) shrunk segmentation

Fig. 13. The original cross-section of the azimuth attribute cube is input to the
mapping procedure. The mapping is first a victim of overgrowth. Subsequently,
shrinking of the mapped object occurs.
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Figure 13 shows some result from the 2D mapping procedure. This ex-
emplifies an overgrowth, which may occur if the stopping criteria set by the
velocity function is not strong enough. We then shrink the mapped area by
limiting the travel-time by a maximum value. The final mapped result is
shown in Figures 13 (c) and (d).

3.2 Three-Dimensional Example

For the 3D example we have used the seismic cube as input data. In this
case, we are mapping a horizontally oriented geo-body. Figure 14 (a) shows a
cross-section of the input seismic cube. The two darker line segments (below
the middle) indicate the extent of the geo-body.

The obtained result is shown in Figure 14 (b). We see how the body
is mapped in the foreground, on the left side we can see the background
extraction.

(a) input seismic (b) segmented seismic

Fig. 14. [Reproduced in colour in Plate 15 on page 432.] From the input seismic a
horizontal geo-body is segmented. The resulting body is seen on the right.
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4 Conclusions and Future Directions

This chapter presents a procedure for mapping geological bodies from seismic
data. Theoretical aspects of the mapping procedure, concerning the level set
method and marching method, are discussed. The overall method is adapted
to applications from seismic data interpretation, where particular attention is
placed on the design of the velocity function. Numerical examples, involving
real-world seismic data taken from Barents Sea, support the utility of our
method.

Altogether, this chapter provides a complementary step in the workflow
for visualization and connectivity study. Moreover, this leads to application
specification for seismic data, developing velocity function enhancing seismic
characteristics and properties.

The tool, presented in this chapter, is intended to be a part of new and
improved workflows for seismic data interpretation. One of motivations is to
automate the steps in order to save manpower and reduce subjectivity.
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Modern Techniques in Seismic Tomography

Alexander A. Boukhgueim

University of Vienna, Department of Mathematics, Austria

Summary. This chapter is focussed on two local inverse kinematic problems of
seismology, concerning reflected rays and refracted rays. Both model problems are
reduced to a sequence of 2D problems, where theoretical and numerical results are
offered. In the case of reflected rays, it is shown how to select a stable problem
of recovering a velocity distribution in a layer, by using travel time measurements
along rays with one reflection on the boundary. This way, a simple inversion al-
gorithm is obtained for the linearized near a constant velocity case. In the case of
refracted rays, a Newton-type algorithm for finding the 3D velocity distribution
from 3D travel time measurements is constructed for the local inverse kinematic
problem. To this end, a sound velocity that increases linearly with depth is cho-
sen as a first approximation. With this particular choice for the linearization, the
underlying problem reduces to a sequence of 2D Radon transforms in discs.

1 Introduction

One-dimensional inversion of travel time data goes back to G. Herglotz [13]
and E. Wiechert [22]. The mathematical background of their works relies on
the inversion formula for Abel’s integral equation which was found by Abel
in 1826. Two and three dimensional inversions of travel time data take their
roots in works of J. Radon (1917) [17] (recovering a function through its in-
tegrals along all straight lines) and P. Funk (1916) [12] (recovering a function
on the unit sphere through its integrals along all great circles). G. E. Backus
(1964) [1] reduced the problem of determining upper mantle heterogeneity
from phase-speed measurements to the Funk problem, where it was discovered
that only the even part of the unknown function could be determined. This
observation is rather obvious, since in the Funk problem every odd function
on a sphere has zero great-circular average data.

In reality, rays are usually neither straight lines nor great circles. More-
over, the arising problems are typically nonlinear, since the rays depend on
the unknown velocity distribution, and so there is high need for suitable
mathematical models. On the one hand, important theoretical steps in this
direction were made in Russia, especially in the Novosibisk school, where
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• M.M. Lavrentiev, V.G. Romanov, and V.G. Vasiliev (1970) [15] considered
the linearized inverse kinematic problem;

• R.G. Mukhometov (1975, 1977) [16] proved global uniqueness results for
2D inverse kinematic problem with full data;

• V.G. Romanov (1979) and R.G. Mukhometov (1979) showed the multidi-
mensional global uniqueness for inverse kinematic problem;

• Yu. E. Anikonov (1978) proved uniqueness in the class of real analytic
functions;

• N.N. Bernstein and M.L. Gerver (1980) [2] derived conditions on distin-
guishability of metrics by hodographs;

• A.L. Bukhgeim (1983) [4] proved necessary and sufficient conditions for the
solvability of the two-dimensional inverse kinematic problem with partial
local data in class of real analytic functions, and

• V. A. Sharafutdinov (1993) [20] studied integral geometry problems of
tensor fields.

On the other hand, this problem was solved in practice by seismologists,
by using real-world data, and this way first images of the Earth’s interior were
obtained by A.M. Dziewonski and others [6, 7, 8, 9, 10, 11, 18, 19, 23, 24].

In this chapter, we consider two local (i.e., in a layer) 3D seismic tomog-
raphy problems. The first case, concerning reflected rays, is considered in the
following Section 2, whereas a second case, being subject of the discussion
in Section 3, is concerning refracted rays. In either case, the arising problem
is reduced to a sequence of 2D problems (i.e., in sections). New theoreti-
cal results are obtained, and illustrative numerical examples are presented,
respectively.

More precise, in Section 2 we show how to select a stable problem of
recovering a velocity distribution in the layer. This is done by using travel
time measurements along rays with one reflection on the boundary. We so
obtain simple inversion algorithms for the linearized near a constant velocity
case. We also consider the case of a dipping reflector.

Moreover, in Section 3 we construct a Newton-type algorithm for finding
the 3D velocity distribution from 3D travel time measurements for the local
inverse kinematic problem. Initially, as a first approximation, we choose a
sound velocity that increases linearly with the depth. This is since it was
shown in [5] that with this choice of linearization our problem reduces to a
sequence of 2D Radon transforms in discs. Our case is much harder, since
we consider solving a nonlinear problem, and therefore we need to solve a
direct 3D problem on each iteration. However, we can show that, in our case,
already the second iteration is often much better than the solution from the
linearized approximation.
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2 Inversion of Travel Time in a Layer

In order to find the most stable three-dimensional (local) inverse kinematic
problem it is appropriate to start from the simpler one-dimensional case. The
following considerations are made along the lines of [21, pp. 102–103]. Let us
consider a ray propagation in a layer of thickness H with a sound velocity V
over a half-space of velocity V ∗ > V , see Figure 1.

Fig. 1. A layer of thickness H with sound velocity V over a half-space with sound
velocity V ∗ > V. All these three quantities (V, V ∗, H) are unknown constants.

This example represents, in a most simplified way, the situation of the
sediments over a rock base or the Earth’s crust over its upper mantle for
small distances, for which a flat Earth approximation is reasonable.

At a receiver point R, at a distance x from the source S, we encounter
three different types of rays:

• direct rays (SR), traveling from S to R with travel time

t1(x) = x/V,

• rays (SBR) reflected on the boundary z = H with travel time

t2(x) =
2(H2 + x2/4)1/2

V
, (1)

• critically refracted rays (SB1B2R) or head waves, i.e., rays with the crit-
ical angle of incidence αc at the contact surface z = H that propagate
horizontally through the half-space and return to the free boundary z = 0
with the same angle αc at travel time

t3(x) =
2H

V cos αc
+

x − 2H tan αc

V ∗ . (2)
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By Snell’s law
sin αc

V
=

sin α′

V ∗ ,

for α′ = π/2, we find sinαc = V/V ∗, and so (2) can be rewritten as

t3(x) =
x

V ∗ +
2H(V ∗2 − V 2)1/2

V V ∗ . (3)

For sufficiently small x we have

t1(x) < t3(x) < t2(x),

and hence we can measure t1, t2, t3 at the point R separately, so that we
obtain V = x/t1, before we find H from equation (1) and V ∗ from (3). This
way, we obtain the three constant parameters V , V ∗, and H from t1, t2, and
t3, which are known for any fixed x.

Now let us turn to a more complicated situation. Suppose that we know
V ∗, H (from the previous model, for example) and wish to find V = V (z) in
a layer, provided that V ′

z > 0 for all z ∈ [0,H].
Then, for direct rays, continuously refracted in the layer, t1(X) reduces

to
t(X) =

∫
Γ (X)

ds

V
=

∫
Γ (X)

nds, (4)

see Figure 2, where n = 1/V is the slowness, and Γ (X) is the ray passing
through the points (0, 0) and (X, 0).

Fig. 2. Illustration of the one dimensional kinematic problem. Direct ray, continu-
ously refracted in the medium with the slowness being the function of the variable z.
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As regards the slowness n(z), Snell’s law takes the form

n(z) sin θ(z) = p,

where the ray parameter p is constant on Γ (X). On the ray Γ , see Figure 2,
we have

dx

ds
= sin θ =

p

n
,

dz

ds
= cos θ = (1 − sin2 θ)1/2 =

(n2 − p2)1/2

n
.

Hence, using the chain rule we find

dx

dz
=

p√
n2(z) − p2

,

dt

dz
=

dt

ds︸︷︷︸
n

ds

dz
=

n2(z)√
n2(z) − p2

.

Moreover, integrating from 0 to the turning point z∗ (w.r.t. z), and taking
into account the symmetry of Γ , we obtain

X(p) = 2p

z∗∫
0

dz√
n2(z) − p2

, (5)

T (p) = 2

z∗∫
0

n2(z)dz√
n2(z) − p2

,

where
T (p) = t(X(p)).

For the ray parameter p, we find

p =
dt

dX
,

see Figure 3. This is due to Snell’s law, since

ds = dX cos
(π

2
− θ0

)
= dX sin θ(0),

and
dt

dX
=

dt

ds︸︷︷︸
n(0)

ds

dX
= n(0) sin θ(0) = p.
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Fig. 3. The angle ψ = π
2
− (θ0 − dθ0) ≈ π

2
− θ0, θ0 = θ(0).

So if we know t(X), then we can find p = t′(X) and hence the inverse
function X = X(p), and T (p) = t(X(p)). For X → 0, θ(0) → π

2 , with using
Snell’s law, we find

dt

dX

∣∣∣∣
X=0

= p0 = n(0) ≥ p.

By using the inverse function z = z(n), we can rewrite (5) as a linear
equation of Abel’s type (note also, that V ′

z > 0 implies n′
z < 0 ∼ z′n < 0), so

that

X(p)
2p

=

p∫
n(0)

z′(n)dn√
n2 − p2

= −
n(0)∫
p

z′(n)dn√
n2 − p2

and hence we obtain (by using Abel’s inversion formula) the solution

z(n) =
1
π

n0∫
n

X(p)dp√
p2 − n2

.

Note that this formula works only locally. However, we can apply it step
by step, in which case it is possible to show that in the absence of a low
velocity zone V ′

z ≤ 0, we can find V (z) in the whole layer [0,H]. This result
was obtained by G. Herglotz [13] and E. Wiechert [22] about hundred years
ago.

An analogous equation for rays reflected on z = H (at least in the lin-
earized near the constant velocity case) contains only the information about
the average velocity V̄ in a layer, since it reduces either to

t2(x) =
2

cos α

H∫
0

dz

V (z)
,
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see Figure 1, or, since cos α = H√
H2+x2/4

, to

t2(x) =
2(H2 + x2/4)1/2

H

H∫
0

dz

V (z)
. (6)

So all we can find from this equation is

1
V̄

=
1
H

H∫
0

dz

V (z)
.

This situation changes dramatically when we go to the two-dimensional
case V = V (x, z), x ∈ R, z ∈ [0,H]. Analog of the equation (4),∫

Γ (x0,x1)

nds = f(x0, x1), n =
1
V

becomes exponentially unstable in terms of the Fourier transform with respect
to a lateral variable x in the linearized case, as this is shown in [15].

At the same time, an analog of the equation (6) is sufficiently stable, at
least in the case when we apply linearization near a constant velocity. Indeed,
suppose that we consider a half-space R

3
+ = {x, z| x ∈ R

2, z ∈ R, z > 0}
(we consider a more general 3D case here, so that this linearization scheme
remains valid for the next section as well). The task is to find the slowness
n(x, z) (here it is more convenient to work in terms of slowness rather than
sound velocity) from the conditions

|∇τ(x, z, x0)|2 = n2(x, z), (7)

τ
∣∣
S

= g(α, β, r), n′
z < 0,

where S = {x, z, x0| z = 0, |x| = |x0| = r}, α, β ∈ [0, 2π), r ∈ [0, ρ], and
where (α, r) and (β, r) are the polar coordinates of the points x and x0,
respectively. Moreover, ∇ is a gradient vector with respect to the variables x
and z. Here we assume that

n(x, z) = n0(z) + u(x, z), |u|  n0, (8)

where n0(z) is known and u(x, z) is an unknown part of the slowness (smaller
in magnitude than n0). In this case,

τ(x, z, x0) = τ0(x, z, x0) + t(x, z, x0), (9)

where the component τ0 of the travel time τ corresponds to the slowness n0:

|∇τ0|2 = n2
0. (10)
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Substituting (8), (9) into (7) and taking into account (10) we get

〈∇τ0 + ∇t,∇τ0 + ∇t〉 = (n0 + u)2,

|∇τ0|2 + 2〈∇τ0,∇t〉 + |∇t|2 = n2
0 + 2n0u + u2,

〈ν0,∇t〉 = u +
1

2n0

(
u2 − |∇t|2

)
, ν0 =

∇τ0

n0
,

where ν0 is a unit vector, tangent to the geodesic Γ that corresponds to the
slowness n0.

The solution of this equation can be found by the method of successive
approximations

〈ν0,∇tk〉 = uk +
1

2n0

(
u2

k−1 − |∇tk−1|2
)
,

tk
∣∣
S

= f(α, β, r), k = 1, 2, . . . ,

where u0 = n0, t0 = τ0, f = g − τ0

∣∣
S

= t
∣∣
S
. So, on each step one needs to

solve a linear problem, that can be written in an integral form as

Puk ≡
∫

Γ (α,β,r)

ukdσ = fk(α, β, r), (11)

where Γ (α, β, r) is a geodesic, that corresponds to the slowness n0(z), and
fk is a given function that can be computed from f , uk−1, and |∇tk−1|, so
that in particular f1 = f .

Fig. 4. An illustration to the two-dimensional kinematic problem on reflected rays.
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So, when we have the decomposition

n = n0(z) + u(x, z)

into known n0 and unknown u(x, z) parts of slowness, after the linearization,
we arrive at the linear integral equation (11),∫

Γ (ξ,η)

uds = f(ξ, η),

which can, for ξ ∈ R and η ≥ 0, be rewritten as

H∫
0

[
u(ξ − ϕ(z, η), z) + u(ξ + ϕ(z, η), z)

]
(1 + ϕ′

z
2)1/2dz = f(ξ, η), (12)

(on using ds =
√

dx2 + dz2 =
√

1 + ϕ′
z
2dz), where Γ0 = Γ+

⋃
Γ− is the

ray reflected on the boundary z = H at a point (ξ,H), see Figure 4, where
Γ± = {x : x = ξ ± ϕ(z, η)}, and where the function ϕ satisfies

ϕ(H, η) = 0, ϕ(0, η) = η, ϕ(z, 0) = 0.

The reflected ray Γ0 corresponds to the velocity V0(z) and hence it is invariant
with respect to the lateral shift (since V0(z) does not depend on x).

Applying now the Fourier transform with respect to X,

f̂(λ, η) =

∞∫
−∞

f(ξ, η)e−iλξdξ,

we find (recall (12) here and assume that u has compact support)

f̂(λ, η) =

∞∫
−∞

e−iλξ

⎧⎨
⎩

H∫
0

[
u(ξ − ϕ, z) + u(ξ + ϕ, z)

]√
1 + ϕ′

z
2dz

⎫⎬
⎭ dξ

= 2

H∫
0

û(λ, z) cos
(
λϕ(z, η)

)√
1 + ϕ′

z
2dz,

since
∞∫

−∞

u(ξ ± ϕ, z)e−iλξdξ =

∞∫
−∞

u(ξ ± ϕ, z)e−iλ(ξ±ϕ)e∓iλϕd(ξ ± ϕ)

= e∓iλϕ(z,η)û(λ, z).
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Therefore, we have

2

H∫
0

cos(λϕ(z, η))
√

1 + ϕ′
z(z, η)2û(λ, z)dz = f̂(λ, η).

For every λ we have an integral equation for finding û(λ, z). In particular, if
V0 = const, then ϕ = η (H−z)

H , (ϕ′
z)

2 =
(

η
H

)2 and so we have

H∫
0

cos
(

λη
(H − z)

H

)
û(λ, z)dz =

f̂

2
(
1 +

(
η
H

)2)1/2
.

If we let H − z = p, and so z = H − p, then we find

0∫
H

cos
(

ληp

H

)
û(λ,H − p)(−dp) =

H∫
0

cos
(

ληp

H

)
û(λ,H − p)dp

=
f̂(λ, η)

2
(
1 +

(
η
H

)2)1/2
. (13)

Fig. 5. An illustration for the reconstruction of three-dimensional heterogeneities
via a series of two-dimensional problems, slice by slice.

This is the cosine Fourier transform of the function ψ(p) := û(λ,H − p)
for fixed λ, and hence using the fast Fourier algorithms we can easily find the
function u. Note that we do not have an exponential instability in this case,
provided that we can measure f(ξ, η) for all ξ ∈ R and all η ≥ 0.

In practice, of course, ξ ∈ [0, L], η ∈ [0, N ] (moreover, ξ, η belong to some
grid) and an exponential instability also emerges, but it is not as bad as in
the first case. If we have the second lateral variable y, which is perpendicular
to the plane (x, z) of Figure 4, then we can recover a three-dimensional finite
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heterogeneity of the type n(x, y, z) = n0(z) + u(x, y, z), slice by slice in the y
dimension, see Figure 5.

Note that this tomography problem (with reflecting boundary) can easily
be generalized to the dipping reflector case, see Figure 6. This merely requires
recalculating the data on the new free boundary which is parallel to the half-
space with velocity V ∗ > V0. The parameters V0,H, θ, V ∗ can be found as in
the first example.

Fig. 6. An example of the dipping reflector case.

In order to find the stable refracted 3D seismic problem (in a layer), which
reduces to a sequence of 2D Radon problems with weight, we need to use a
completely different foliation with nonlinear slides. In the case V0 = m + bz,
we encounter spherical slices, as we will see in the next section.

In the remainder of this section, we show how we can use our results
for recovering also the attenuation, by using the so-called attenuation time.
Comparing the amplitude A of a monochromatic (with the frequency ω) P- or
S-wave at a source point x0 and at a receiver point x1 we can find its ratio
as

A(x1)
A(x0)

= e−ωt∗ ,

and hence we can determine the attenuation time as

t∗ =
∫

Γ (n,x0,x1)

nds

Q
,

where Q is the associated with P-wave or S-wave quality factor [14] which
describes the attenuation of P- or S-waves, respectively. It is known that for
S-waves, the value t∗ is greater than for P-waves, which means that S-waves
attenuate faster than P-waves. If we put
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t∗(x0, x1) =
∫

Γ (n0,x0,x1)

nds

Q
,

as a first approximation, where n0 is constant for the reflected case and where
n0 = (m+ bz)−1 for the refracted case, we can use iterations for determining
the next approximation for the quality factor Q as a function of z and lateral
variables (since we already found the slowness n).

2.1 Numerical Examples

The inversion algorithm for the 2D kinematic problem in a layer is fully
expressed by the formula (13).

Fig. 7. An example of scanning geometry for M = 10, N = 10. The integrals over
the following broken lines have to be measured in order to reconstruct the slowness
in the part of the layer [0, L] × [0, H], where L = 5, and H = 2.5.

In all numerical examples presented in this subsection we let H = 2.5,
L = 5, but the slowness is defined in a broader strip of width 2L = 10,
which allows us to use rays that go beyond the strip which is bounded by the
interval [0, L]. Some of the examples involve reconstruction from noisy data.
Recall that the decomposition n = n0 +u, |u|  n0, yields the decomposition
of the travel time τ = τ0 + t, where |∇τ0|2 = n2

0 and |t|  τ0. The inversion
algorithm uses the small additive t = τ−τ0 of travel time τ for reconstructing
a small additive u = n−n0 of the slowness. So, even if the noise level is small
(compared to the measured travel time τ), it can be comparable in magnitude
with the small additive t, that is used for reconstruction.
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Example 1. Consider a slowness n(x, z), x ∈ R, z ∈ R, given by the function

n(x, z) = n0 + k sin(z),

which depends only on the depth z (see Figure 8 (a), above). Here n0 is a
known constant. Recall that the integral in (6) carries only the information
about the average slowness, and so it is in this case impossible to reconstruct
the slowness distribution that agrees with the numerical results, see Fig-
ure 8 (a), bottom. We managed to reconstruct only the average value of the
slowness. Discretization parameters: the interval [0, L] is split into M = 200
parts and the vertical interval [0,H] into N = 100 parts.

Example 2. Now we add laterally varying perturbations to the function from
the previous example,

n(x, z) = n0 + k
(
sin(z) + sin(x)

)
,

see Figure 8 (b), top. Again, the reconstruction contains only the part de-
pendent on the lateral variable x (see Figure 8 (b), below). Discretization
parameters: the interval [0, L] is split into M = 200 parts and the vertical
interval [0,H] into N = 100 parts.

Example 3. Consider a slowness that has more complicated structure than
merely the sum of vertical and lateral perturbations,

n(x, z) = n0 + k
(
sin(0.016π(x − 0.42)2) sin(0.016πz2)

)
,

see Figure 8 (c), top. The reconstruction (without noise) is shown in the
middle, and the reconstruction from noisy data is shown below. The noise
level is 4% of the measured travel time τ which constitutes 120% of the small
additive t. The L2-norm of the small additive of the slowness u is 15% of
the L2-norm of the background slowness n0. Discretization parameters: the
interval [0, L] is split into M = 200 parts and the vertical interval [0,H] into
N = 200 parts.

Example 4. Consider a slowness given by the formula

n(x, z) = n0 + k
(
sin(3.2πx + sin(0.016πz2)) sin(3.2πz + sin(3.2πx))

)
,

see Figure 8 (d), top. The reconstruction (without noise) is shown in the
middle, and the reconstruction from noisy data is shown below. The noise
level is 3% of the measured travel time τ which constitutes 82% of the small
additive t. The L2-norm of the small additive of the slowness u is 20% of
the L2-norm of the background slowness n0. Discretization parameters: the
interval [0, L] is split into M = 200 parts and the vertical interval [0,H] into
N = 200 parts.
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Example 5. Consider a slowness given by the formula

n(x, z) = n0 + k
(
sin(3.2πx + sin(3.2πz)) + sin(3.2πz + sin(3.2πx))

)
,

see Figure 9 (a), top. The reconstruction (without noise) is shown in the
middle, and the reconstruction from noisy data is shown below. The noise
level is 6% of the measured travel time τ which constitutes 56% of the small
additive t. The L2-norm of the small additive of the slowness u is 50% of
the L2-norm of the background slowness n0. Discretization parameters: the
interval [0, L] is split into M = 200 parts and the vertical interval [0,H] into
N = 200 parts.

Example 6. Consider a slowness given by the formula

n(x, z) = n0 + k
(
sin(0.01(cos(6.4πx) + sin(3.2πz)))

× sin(0.02(cos(6.4πz) + sin(3.2πx)))
)
,

see Figure 9 (c), top, where the reconstruction (without noise) is shown below.
Discretization parameters: the interval [0, L] is split into M = 200 parts and
the vertical interval [0,H] into N = 200 parts.

Example 7. Consider a discontinuous slowness given by the function from
Figure 9 (b), top. The reconstruction (without noise) is shown in the middle,
and the reconstruction from noisy data is shown below. The noise level is 5%
of the measured travel time τ which constitutes 30% of the small additive t.
The L2-norm of the small additive of the slowness u is 24% of the L2-norm of
the background slowness n0. Discretization parameters: the interval [0, L] is
split into M = 400 parts and the vertical interval [0,H] into N = 400 parts.

Example 8. Another discontinuous slowness is given by the function from
Figure 9 (d), top. We consider this example in order to show the resolution
capabilities of the inversion algorithm. The reconstruction (without noise) is
shown at the bottom. Discretization parameters: the interval [0, L] is split
into M = 400 parts and the vertical interval [0,H] into N = 400 parts.

3 Local 3D Seismic Tomography on Refracted Rays

Consider a half-space in 3D and let

x0 = (x0
1, x

0
2) = r(cos α, sin α),

x1 = (x1
1, x

1
2) = r(cos β, sin β),

α, β ∈ [0, 2π), r ∈ (0, ρ], be two arbitrary points on the circle |x| = r in the
(x1, x2)-plane.
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Fig. 8. Illustration for the numerical Examples 1–4. Parts (c) and (d) involve
reconstruction from noisy data.



282 A. A. Boukhgueim

Fig. 9. Illustration for the numerical Examples 5–8. Parts (a) and (b) involve
reconstruction from noisy data.
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Let Γ = Γ (n;α, β, r) = Γ (x0, x1) be a ray, corresponding to the slowness
n(x, z), that passes through the points x0 and x1. We suppose that for any
pair of two points, x0 and x1, satisfying |x0| = |x1| = r, r ∈ (0, ρ], there
exists only one ray Γ (x0, x1) connecting them. Suppose that we know the
travel time

τ(α, β, r) =
∫

Γ (n;α,β,r)

nds := F (n), (14)

and would like to find the slowness n. This is a nonlinear integral equation
and at the first step we reduce it to a sequence of linear equations using the
modified Newton’s method. To this end, note that

F (n + h) − F (n) =
∫

Γ (n+h)

(n + h)ds −
∫

Γ (n)

nds

=
∫

Γ (n+h)

[
(n + h) − n

]
ds +

∫
Γ (n+h)

nds −
∫

Γ (n)

nds

︸ ︷︷ ︸
o(h) by Fermat’s principle

≈
∫

Γ (n)

hds = F ′(n)h,

where we use the abbreviation Γ (n;α, β, r) ≡ Γ (n). Recall that the Fermat
principle states that the travel time along the ray is stationary with respect
to the small perturbations in the ray trajectory. Now we rewrite the equation
(14), F (n) = τ , as

F (n) ≡ F (n0 + u) − F (n0)︸ ︷︷ ︸
≈F ′(n0)u

+F (n0)︸ ︷︷ ︸
τ0

= τ,

so that we have
F ′(n0)u = τ − F (n0) := g(α, β, r) (15)

and
u =

[
F ′(n0)

]−1(
τ − F (n0)

)
.

Note that this is a standard linearization. Now we use the modified Newton
iteration method by

τ = F (n) ≡ F (nk + (n − nk)) − F (nk) + F (nk)

≈ F ′(nk)︸ ︷︷ ︸
≈F ′(n0)

(n − nk) + F (nk) ≈ F ′(n0)(n − nk) + F (nk),

and hence for the next iteration nk+1 := n we have
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nk+1 = nk −
[
F ′(n0)

]−1(
F (nk) − τ

)
.

Our next step is to choose n0 = n0(z) so that the calculation of
[
F ′(n0)

]−1

would lead to the sequence of usual 2D Radon transform inversions in the
discs |x| < r, r ∈ (0, ρ]. In the case n0 = n0(z) it is easy to see that Γ (n0) is
determined by the system of equations

p1 := 〈x, ν〉 − h = 0,

p2 := z − ϕ(|x|, r) = 0,

or p(x, z) = 0 in short, where we let p = (p1, p2). For the linear velocity
V0 = m + bz we have n0 = (m + bz)−1 and

ϕ =

√
r2 +

(m

b

)2

− |x|2 − m

b
.

Since
F ′(n0)u =

∫
Γ (n0;α,β,r)

uds =
∫

|∇p|δ(p)u(x, z)dxdz, (16)

where δ(p) = δ(p1)δ(p2) is a Dirac delta-function concentrated on the curve
p = 0, where we need to calculate ∇pj . Here we used the usual formula∫

δ(p(x))u(x)dx =
∫

p=0

udσ

|∇p| ,

where dσ is a surface element. In general, p(x) =
(
p1(x), p2(x), . . . , pk(x)

)
,

k ≤ n, x ∈ R
n, u ∈ C∞

0 (Rn) and

|∇p| :=
√

det〈∇pi,∇pj〉,

〈·, ·〉 is the scalar product in R
n and ∇pj should be linearly independent.

Next we compute |∇p| by using the identities

∇p1 = (∂xp1, ∂zp1) = (ν, 0),

∇p2 = (∂xp2, ∂zp2) =
(
−ϕ′

|x|(|x|, r)
x

|x| , 1
)

,

〈∇p1,∇p1〉 = |ν|2 = 1,

〈∇p1,∇p2〉 = −ϕ′
|x|(|x|, r)

〈x, ν〉
|x| = −ϕ′

|x|(|x|, r)
h

|x| ,

〈∇p2,∇p2〉 = ϕ′
|x|

2(|x|, r) + 1,

and
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|∇p|2 =
∣∣∣∣ 〈∇p1,∇p1〉 〈∇p1,∇p2〉
〈∇p2,∇p1〉 〈∇p2,∇p2〉

∣∣∣∣
= 1 ×

(
1 + ϕ′

|x|
2
)
− ϕ′

|x|
2 h2

|x|2 = 1 + ϕ′
|x|

2
(

1 − h2

|x|2
)

. (17)

We let

w2(x, h) := 1 + ϕ′
|x|

2
(

1 − h2

|x|2
)

, (18)

and so from (16) we can conclude

F ′(n0)u =
∫

Γ (n0;α,β,r)

udσ

=
∫

|∇p|δ(p)u(x, z)dxdz

=
∫

|∇p|δ(p1)δ(p2)u(x, z)dxdz

=
∫

w(x, h)δ(〈x, ν〉 − h)u(x, ϕ(|x|, r))dx = g(α, β, r), (19)

with g(α, β, r) as defined in (15).
In order to obtain an inversion formula for (19), F ′(n0)u = g, expressed

through the inversion formula of the Radon transform, it is necessary that
the weight w(x, h) allows the factorization

w(x, h) = w1(|x|) × w2(h2). (20)

Lemma. The weight w(x, h), given by formula (18), can be represented as a
factorization (20), if and only if

n0(z) = (m + bz)−1.

A proof of this result can be found in [5].

We are primarily interested in the case of a linear sound velocity, where
n0(z) = (m + bz)−1, b > 0, and

ϕ =

√
r2 +

(m

b

)2

− |x|2 − m

b
,

ϕ′
|x| = − |x|√

r2 +
(

m
b

)2 − |x|2
.
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By (17), we find

|∇p|2 ≡ w(x, h) = 1 + ϕ′
|x|

2
(

1 − h2

|x|2
)

= 1 +
|x|2

r2 +
(

m
b

)2 − |x|2

(
1 − h2

|x|2
)

= 1 +
|x|2

r2 +
(

m
b

)2 − |x|2
− h2

r2 +
(

m
b

)2 − |x|2

=
r2 +

(
m
b

)2 − h2

r2 +
(

m
b

)2 − |x|2
= w2(|x|, h).

So, using (19), the solution u(x, z) is given by the inversion formula

u(x, z) =

√
r2 +

(m

b

)2

− |x|2 ×D−1

⎛
⎝ g√

r2 +
(

m
b

)2 − h2

⎞
⎠ , (21)

where D−1 is the 2D inverse Radon transform. We determine the unknown
function u from the inversion formula (21) in a disc x2

1+x2
2 ≤ r2, thus getting

the sought-for refractive index (or slowness) n1(x, z) = n0(z)+u(x, z) on the
surface of a spherical segment, supported by a circle x2

1 + x2
2 = r2.

3.1 Numerical Examples

We assume that the function that represents a sound velocity is strictly in-
creasing (sound velocity increases with depth). This condition ensures that
geodesics will bend upward on the surface, where measurements are per-
formed. However, the inversion algorithm works even for media where this
requirement is locally violated (like in Example 2, see Figures 13 and 14). This
function should also be reasonable in terms that there are no waveguides and
other singularities. The ideal case is when the sound velocity V is close to
the linear function V0 = m+ bz that increases proportionally with the depth.
In this linear case geodesic lines form arcs of circles, see Figure 10 (a), and
so they cover a spherical segment, see Figure 10 (b), provided that sources
and receivers lie on the circle in the plane {(x, y, z) ∈ R

3 : z = 0}.
Kinematic data are measured as follows. First one chooses a point on the

Earth’s surface {(x, y, z) ∈ R
3 : z = 0} that will be the origin. Then one needs

to introduce a finite set of concentric circles with the center at this origin.
For each circle we introduce a finite set of points on this circle (preferably
equally spaced). In this case, a point can either be a source or a receiver. For
a source point, we measure travel times spent by the signal for traveling from
the source to the receivers, see Figure 10 (a). We repeat this for all possible
source-receiver pairs, see Figure 10 (b). Having kinematic data measured on
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Fig. 10. (a) For the linear sound velocity V0 = m + bz, geodesic lines form arcs of
circles. Here s is a source point and ri are the receiver points. (b) Altogether, the
geodesic lines cover a spherical segment.

Fig. 11. (a) By measuring kinematic data on a number of concentric circles it is
possible to reconstruct the slowness in the whole 3D volume, contained in the most
outer spherical segment. (b) Profile view.

a circle, it is possible to reconstruct the slowness on the spherical segment
(by using the inversion formula (21)), supported by this circle. Performing
kinematic measurements for a number of concentric circles, it is then possible
to cover the whole 3D volume, contained in the most outer spherical segment,
see Figures 11 (a) and (b).

After travel times are measured we use an inversion formula (21) that
reduces our problem to the planar 2D Radon problems in discs. Then we use
algorithms from [3] for inverting it.

In the numerical examples presented in this subsection, the parameters for
linearization are m = 0.6, b = 1.0. So, the underlying domain is bounded by
the spherical segment with the center at the point (0, 0,−m/b) = (0, 0,−0.6)
and the background slowness n0 is given by n0(z) = (m+bz)−1. Figures 12–17
show the small additive u = n − n0 that we seek for and reconstruct. In the
following examples, we show reconstructions from the pure travel times, not
specifically affected by a noise and also from noisy data. Again, even if the
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noise level is small (compared to the measured travel time τ), it can be compa-
rable in magnitude with the small additive t, that is used for reconstruction.
Note also, that even when we do not superimpose any noise, some noise may
be due to the numerical solution of the direct kinematic problem.

Fig. 12. Original small additive of the slowness u, which is the difference between
the original unknown slowness n and the given background slowness n0 = (m+bz)−1,
is shown in a vertical section (a), as well as its reconstructions from the 32 projec-
tions on the first (b) and second (c) iterations. For details, see the numerical Exam-
ple 1. The level of perturbation is 15% of the background slowness n0. 91 spherical
layers are used for reconstructing the slowness in a given 3D volume and 32 fan-
projections are used for reconstructing the slowness on each layer.
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Fig. 13. Original small additive of the slowness u, which is the difference between
the original unknown slowness n and the background slowness n0 = (m + bz)−1, is
shown in a vertical section (a), as well as its reconstruction from the 128 projections
(b) and from the 128 noisy projections, whose (c) noise level is 1%, (d) noise level
is 3%. For details, see the numerical Example 2. The level of perturbation is 5% of
the background slowness n0. Such spatial 3D checkerboard is usually used for testing
the resolution capabilities of the inversion algorithm. 91 spherical layers are used
for reconstructing the slowness in a given 3D volume and 128 fan-projections are
used for reconstructing the slowness on each layer.



290 A. A. Boukhgueim

Fig. 14. Original small additive of the slowness u, which is the difference between
the original unknown slowness n and the background slowness n0 = (m + bz)−1, is
shown in a spherical section (a), as well as its reconstruction from the 128 projec-
tions (b) and from the 128 noisy projections, whose (c) noise level is 1%, (d) noise
level is 3%. For details, see the numerical Example 2. The level of perturbation is
5% of the background slowness n0. Such spatial 3D checkerboard is usually used for
testing the resolution capabilities of the inversion algorithm. 91 spherical layers are
used for reconstructing the slowness in a given 3D volume and 128 fan-projections
are used for reconstructing the slowness on each layer.
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Fig. 15. Original small additive of the slowness u, which is the difference between
the original unknown slowness n and the background slowness n0 = (m + bz)−1, is
shown in a vertical section (a), as well as its reconstruction from the 256 projections
(b) and from the 256 noisy projections, whose (c) noise level is 3%, (d) noise level
is 6%. For details, see the numerical Example 3. The level of perturbation is 24%
of the background slowness n0. 37 spherical layers are used for reconstructing the
slowness in a given 3D volume and 256 fan-projections are used for reconstructing
the slowness on each layer.
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Fig. 16. Original small additive of the slowness u, which is the difference between
the original unknown slowness n and the background slowness n0 = (m + bz)−1, is
shown in a spherical section (a), as well as its reconstruction from the 256 projec-
tions (b) and from the 256 noisy projections, whose (c) noise level is 3%, (d) noise
level is 6%. For details, see the numerical Example 3. The level of perturbation is
24% of the background slowness n0. 37 spherical layers are used for reconstructing
the slowness in a given 3D volume and 256 fan-projections are used for reconstruct-
ing the slowness on each layer.



Seismic Tomography 293

Fig. 17. Original small additive u, which is the difference between the original
unknown slowness n and the given background slowness n0 = (m + bz)−1, is shown
in a vertical (a) and a spherical (c) section, as well as its reconstruction from the 128
projections (b) and (d). Note, that some noise comes from the numerical solution
of the direct kinematic problem for this nontrivial medium. For details, see the
numerical Example 4. The level of perturbation is 5% of the background slowness
n0. 91 spherical layers are used for reconstructing the slowness in a given 3D volume
and 128 fan-projections are used for reconstructing the slowness on each layer.



294 A. A. Boukhgueim

Example 1. Consider a slowness n(x, z), x = (x1, x2) ∈ R
2, z ∈ R given by

the function

n(x, z) =
1 + 0.15 sin(5x1) sin(5x2)

m + bz
,

that represents the background slowness n0 with 15% of laterally varying
perturbations added, see Figure 12. In this example, 91 spherical layers are
used and 32 fan-projections are used for reconstructing the slowness on each
layer. The small additive u = n−n0 is shown above in (a). The reconstruction
on the first iteration is displayed in the middle (b) and the reconstruction on
the second iteration is shown below in (c).

Example 2. Consider a slowness n(x, z), x = (x1, x2) ∈ R
2, z ∈ R given by

the function

n(x, z) =
1 + 0.05 sin(20x1) sin(20x2) sin(20z)

m + bz
,

that represents the background slowness n0 with 5% of perturbations varying
in all three dimensions, see Figure 13 for the vertical section and Figure 14
for the spherical section. This example is used to estimate the resolution
capabilities of the inversion algorithm. In this example, 91 spherical layers
are used and 128 fan-projections are used for reconstructing the slowness
on each layer. Parts (a) of the Figures 13 and 14 show the small additive
u = n − n0, parts (b) show the reconstruction without introducing the noise
in the sinogram. Note that some noise comes from the numerical solution of
the direct kinematic problem. Parts (c) show a reconstruction from the noisy
measurements, the L2-norm of the noise constituted 1% of the L2-norm of
the measured travel time τ = τ0 + t. Note that for the inversion algorithm we
use only the small additive t, |t|  τ. Parts (d) show a reconstruction from
noisy data, where the noise level is 3% of the measured travel times.

Example 3. Consider a slowness n(x, z), x = (x1, x2) ∈ R
2, z ∈ R given by

the function
n(x, z) =

1
m + bz − F1(z)

,

where

F1(z) =

⎧⎨
⎩0.2 exp

(
0.022

(z−0.25)2−0.022

)
exp(1), if |z − 0.25| ≤ 0.02,

0, otherwise.

This example (see Figure 15 for the vertical section and Figure 16 for the
spherical section) simulates a horizontal fault surface (the amplitude of this
discontinuity constitutes approximately 24% of the sound velocity at the
same depth) over the medium with linearly increasing sound velocity. In this
example, 37 spherical layers are used and 256 fan-projections are used for
reconstructing the slowness on each layer. Parts (a) of the Figures 15 and 16
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show the small additive u = n − n0, parts (b) display the reconstruction
without introducing the noise in the sinogram. Note that some noise comes
from the numerical solution of the direct kinematic problem. Parts (c) show
a reconstruction from the noisy measurements, the L2-norm of the noise
constituted 3% of the L2-norm of the measured travel time τ = τ0 + t. Note
that for the inversion algorithm we use only the small additive t, |t|  τ .
Parts (d) display a reconstruction from noisy data, where the noise level is
6% of the measured travel times.

Example 4. Consider a slowness n(x, z), x = (x1, x2) ∈ R
2, z ∈ R given by

the function
n(x, z) =

1
m + bz − F2(z)

,

where

F2(z) =

⎧⎨
⎩

e
25 exp

(
0.042

(F3(x1,x2,z)−0.23)2−0.042

)
if |F3(x1, x2, z) − 0.23| ≤ 1

25 ,

0, otherwise,

and
F3(x1, x2, z) = 0.08 sin(10x1) sin(10x2) + z.

This example (see Figure 17 for the vertical and spherical sections) simu-
lates a bumpy fault surface (the amplitude of this discontinuity constitutes
approximately 5% of the sound velocity at corresponding depths) with com-
plicated shape over the medium with linearly increasing sound velocity. In
this example, 91 spherical segments are used and 128 fan-projections are used
for reconstructing the slowness on each layer. Parts (a) and (c) of Figure 17
show the small additive u = n−n0, parts (b) and (d) show the reconstruction
without introducing the noise in the sinogram.
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Gesellschaft Wiss. Göttingen 4, 415–549.
23. J.H. Woodhouse and A.M. Dziewonski (1984) Mapping the upper mantle:

three-dimensional modeling of Earth structure by inversion of seismic wave-
forms. J. Geophys. Res. 89, 5953–5986.

24. R.L. Woodward and G. Masters (1991) Upper mantle structure from long-
period differential travel times and free oscillation data. Geophys. J. Int. 109,
275–293.



Part III

Reservoir Modelling and Simulation



From 3D Seismic Facies to Reservoir
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Summary. A new seismic to simulation workflow is proposed, where the aim is
the reduction of the overall turn-around time, from seismic data acquisition to
reservoir model building and simulation. To this end, new automated procedures are
established: firstly, for discriminating seismic data into three-dimensional seismic
facies, and secondly, for building a voxel-based reservoir model.

This chapter is divided into three parts. In the first part, automated three-
dimensional seismic facies mapping is discussed, where both the stratigraphic and
the structural framework of the seismic data are reflected. The resulting seismic
facies are then identified with lithologies by calibration against well data.

In the second part, automated voxel grid extraction for reservoirs is explained.
The required input is the voxel size together with the top and bottom horizons
delimiting the reservoir extents. The calibrated three-dimensional seismic facies are
then used to associate each voxel with porosity and permeability values. This last
automated step results in a voxel-based reservoir model.

Finally, in the third part, an application of the new workflow is presented. To
this end, a case study for the Grane field is used. The selected simulation scenario
models a three-phase reservoir life.

1 Three-Dimensional Seismic Facies Model

1.1 Introduction

In this chapter, we propose a new workflow for reservoir model building and
updating. First, we shall review the evolution and current state in quanti-
tative interpretation for reservoir geophysics. We mainly look at the role of
automated interpretation in model building. The new method of automated
interpretation presented here, has the power to help geoscientists perform
interpretation tasks faster and more quantitatively. This quantitative infor-
mation is translated efficiently to the reservoir model. A full workflow from
seismic to simulation is demonstrated on the Grane field using this new quan-
titative interpretation paradigm.

The main idea in this new method is to accelerate the seismic to simulation
process by establishing a new streamlined workflow that brings the seismic
closer to the reservoir model. One of the aims is to involve the geoscientist
at a higher level, allow him/her to spend more time on the analysis, and
less on tedious and repetitive interpretative tasks. In this new approach, the
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interpreter gets involved in powerful post stack image processing methods
that can condense large volumes of data to relatively simple patterns, or
enhance and reveal subtle key features. These patterns and features can be
easily visualized and analysed in their true three-dimensional nature, and
then be selected and calibrated with well data and finally be forwarded to
the reservoir model.

With increasing seismic data volumes, real-time reservoir data and well
data being collected, today’s geoscientists involved with hydrocarbon explo-
ration and reservoir characterization face a need for improved and faster
interpretation in the model building workflows. The interpreter is expected
to comprehend an increasing number of seismic volumes, processed and mi-
grated with different parameters, acoustic impedance data, AVO (amplitude
versus offset) data plus a plethora of attributes for reservoir description. In
addition, multi-sets of time-lapse seismic data come into play for dynamic
reservoir modelling. At the other end, reservoir engineers are expected to run
various scenarios and update the model with soft and hard data as they are
acquired.

1.2 From Attributes to Geology

Starting from post stack seismic volumes in time domain and synthesizing all
relevant information is challenging. It is quite common to overlook some as-
pects of the seismic data because of time constraints in operations. In the first
part of this chapter, we present a procedure for combining this information
into a three-dimensional (3D) geological model using 3D seismic facies classi-
fication [7, 8]. This method enables 3D multi-attribute seismic data analysis,
and uses an interpreter-guided neural network to produce a 3D geological
model of the reservoir. Optimally, the workflow would impose that the seis-
mic volumes, from which the attributes are generated, are converted to the
depth domain prior to the 3D classification. Most methods of 3D seismic
classification are primarily based on the analysis of waveforms bounded be-
tween two mapped horizons, with the results displayed in 2D cross section or
map view [1, 10]. A major disadvantage of this approach is that it collapses
the 3D data onto a single 2D surface for the purposes of display and inter-
pretation. Thus, three-dimensional geological features of different levels/age
identified from within the data volume are superimposed over each other on
a single 2D map/section. Therefore it is difficult to assess their true 3D form,
cross cutting relationships and connectivity, information that is critical to
the understanding of reservoir volume and heterogeneity (Figure 1).

In our approach, the 3D nature of the seismic data is preserved. The anal-
ysis is made using a neural network algorithm producing a 3D classification
output. The value of this approach to 3D seismic texture mapping has al-
ready been demonstrated in the analysis of gas chimneys [25, 34]. Distinct
advantages of the approach are that: (1) it is independent from and requires
no previous horizon interpretation, (2) multiple attributes are simultaneously
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Fig. 1. Grid-based classification between two stratal surfaces or horizons produces
an inaccurate representation of the geological features such as channels distributed
in the volume by collapsing the information onto a grid. Connectivity of drainable
pay zone may be overestimated and heterogeneity misevaluated.

analysed, (3) the technique is independent from the dip of the reflectors, (4)
the automation offers fast turn-around and reproducible results, (5) it pro-
vides a method of uncertainty evaluation, (6) the interpreter can qualitatively
and quantitatively evaluate and edit training data and/or import/remove in-
put data cubes in order to fine-focus results, (7) the results are displayed
as a volume in 3D space so that the true shapes and relationships of the
geobodies (defined later) can be analysed. The latter is considered to be of
fundamental importance since it can provide new geological information mak-
ing for the rapid assessment of geobody volume and connectivity and better
prediction/understanding of the reservoir. (8) The classification cube can be
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translated to a reservoir model. By doing so, the reservoir model conserves
the geometrical primitives given by 3D seismic data. (9) It provides a mean
to evaluate more quickly and quantify risk and uncertainty for well planning
and production scenarios.

Among these seismic attributes, those derived from the complex seismic
trace analysis, developed in [41], have been extensively used in the industry
for reservoir characterisation and monitoring. These attributes are deriva-
tives of the basic seismic measurements, meaning that the use of complex
trace analysis is simply a way to present and analyse a limited amount of
information contained in the seismic trace.

The standard Hilbert transform attributes [41] are given by the complex
trace analysis, and produce the well-known reflection strength (amplitude
of the envelope), instantaneous phase, instantaneous frequency, or appar-
ent polarity. In this approach, the information obtained is time, amplitude,
frequency or attenuation, and is used as an input into industry’s standard
grid-based classification. Additional information can be derived directly from
the reflection amplitude or from summation of amplitude value within inter-
vals. This is the case for composite amplitude, average absolute amplitude,
root-mean-square amplitude, number of zero crossings, and of minima or
maxima.

More recently, numerous case studies have demonstrated the value of wave
shape classification using neural networks. With this method, the seismic
trace is decomposed into components of amplitude and frequency information
such as in VRS (Volume Reflection Spectrum) attributes [39].

Surface derived attributes such as dip, azimuth, curvature, edge and illu-
mination may be included in the classification scheme or used on their own
to address and reveal structural information.

AVO attributes have also widely proven their discrimination power. Com-
bined with classification they help identifying the contribution of offset traces
for lithology, pressure and fluid mapping in definition of static reservoir mod-
els [2], as well as in 4D scenarios and dynamic reservoir models [21]. Static
reservoir models refer to the rock properties of the model (porosity and per-
meability distribution), while dynamic reservoir models refer to the fluid satu-
ration and pressure, and their relative changes over time. Combined attribute
analysis and rock physical models guarantee a successful strategy to calibrate
and understand attribute responses. It allows differentiating pressure, satu-
ration and fluid movements from noise. For reservoir monitoring from seismic
data, attribute analysis and rock physical models provide a mean to address
repeatability issues when analysing repeated surveys in 4D seismic.

As mentioned before, there are a number of limitations due to grid-based
calculation of attributes that are carried into the classification, and thus to
the final interpretation and analysis. By nature, reservoirs are not limited to
layer-cake geology and even when compensated for lateral variation in thick-
ness, grid-based attributes are affected by the seismic response at tuning
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locations, pinch-outs, truncations, etc. Numerous case studies, in particu-
lar 4D analyses, have proven that in such cases, structural features can be
dominating and may perturb detection of the subtle variations in the signal.

Recent research and development efforts have been focused on improv-
ing seismic attribute extraction invariant to or steered by the local orienta-
tion (dip and azimuth) of the reflectors (cf. the chapter [35] of Randen and
Sønneland). This new approach provides a way to honour the stratigraphic
orientation of reflections and has determined a new way to handle reservoir
characterisation and monitoring by the use of volume attributes.

Combining the volume attributes into a simpler model is performed using
3D classification of seismic data [40], which produces a synthesised model
reducing the large data set to a simpler pattern. Using this condensed data,
geologists and interpreters work at a higher level on interpreting the classi-
fication results and use this output as a guide and as a living interpretation
model. It allows analysis and editing of geobodies based on quantitative prop-
erties, such as volume, position, orientation, connectivity and more.

These seismic facies geobodies, whether they are sedimentary, structural,
diagenetic, or fluid related constitute an attempt to identify, isolate and ex-
tract geological/rock physical objects or properties in one single coherent
modelling entity. The system level allows interactive visualization and analy-
sis of these geobodies and their more efficient transfer to the reservoir model.

1.3 Seismic Facies Analysis

The procedure for seismic sequence stratigraphic and facies interpretation
is well established, and is an evolution of the basic principles outlined by
the seminal papers of Payton [31]. In order to clarify our use of terminol-
ogy, we first refer to original definitions of seismic stratigraphy or seismic
sequence analysis. Seismic sequence analysis is the seismic identification and
interpretation of depositional sequences. As defined in [26, 27, 28], a deposi-
tional sequence is “a stratigraphic unit composed of a relatively conformable
succession of genetically related strata and bounded at its top and base by un-
conformities or their correlative conformities”, see Figure 2. From the same
authors, seismic facies analysis corresponds to the description and geolog-
ical interpretation of mappable three-dimensional seismic unit composed of
groups of reflections whose parameters and signal characteristics are relatively
homogeneous and differ from those of surrounding facies units [26, 27, 28].
This particular description of seismic facies refers to the definition of texture
or pattern from signal processing.

In our approach, we consider that reflections of seismic waves within sed-
imentary rock bodies produce an image of their external shape and internal
configuration or texture. The study of these external shapes and internal tex-
tures is also referred to as seismic facies analysis. For further details on this,
we refer to the chapter [37] of Schlaf and Randen. For instance a meandering
channel produces an external shape that can be filled with different seismic
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Fig. 2. Seismic reflection configurations that define conformities and unconformi-
ties (due to Brown and Fischer [6]).

textures or facies (onlap, divergent, mounded, prograded, complex, chaotic
and transparent fills), the same remark applies to carbonate buildups (reefs
and mounds) which present an external shape and various internal seismic
patterns.

1.4 Seismic Texture Attributes

Automated 3D seismic facies mapping must honour the stratigraphic and
structural framework of the seismic data. Similarly to the interpreter’s eye
that follows the local orientation of reflectors and stratigraphy across a seis-
mic section, the texture attributes have to be dip-steered. For details, see
the chapter [35] of Randen and Sønneland. The dip-steering constraint is
achieved by using 3D attributes that follow and capture the seismic pat-
terns. These attributes are referred to as 3D texture attributes, since they
are able to describe the reflector-geometry in a small 3D neighbourhood (local
orientation-guided multitrace attribute). The combination of the 3D texture
attributes, containing orientation and/or continuity information, identifies
the stratigraphic patterns in the seismic data.

3D seismic texture attributes presented in this chapter are subdivided
into two groups. The first includes kinematic texture attributes that capture
the reflector orientation or the reflector continuity information. The second
defines dynamic texture attributes that capture features in the seismic signal
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such as spectral representations or amplitude behaviour. More information
about texture attributes can be found in the chapter [35] of Randen and
Sønneland.

The traditional approach of seismic attribute computation is to extract
attributes along vertical traces, irrespective of any dipping nature of the
reflections. This industry standard clearly implies a risk of introducing arte-
facts, when the stratigraphic pattern is not layer cake and flat. As a more
consistent alternative, seismic texture attributes compensate for the dip and
azimuth or make the attribute extraction invariant to local dip and azimuth.
In addition, they are genuine 3D with no trace bias as opposed to coherency
and semblance attributes. Moreover, these attributes are amplitude-invariant.

A geometrical tensor is used in 3D seismic texture attributes for dip and
azimuth estimation. This local dip and azimuth estimation (local orientation
estimation) approach is based on three steps (see [35, Section 2]):

• Gradient vector estimation.
• Local gradient covariance matrix estimation.
• Principal component analysis. The principal eigenvector represents the nor-

mal to the local reflection dip and azimuth.

Kinematic Texture Attributes. The geometrical tensor is used as an
input to other processes, in particular kinematic texture attributes and some
discontinuity and fault attributes.

The flatness attribute is a measure in three dimensions of the degree to
which local seismic reflections are flat. The flatness is orientation-invariant,
i.e., planar reflections produce the same attribute response, no matter whether
they are dipping or horizontal. This attribute is genuine 3D and amplitude-
invariant.

The Gabor filter bank produces a set of cubes, which show the frequency
characteristics of pseudo-traces orthogonal to the local stratification. The or-
thogonal pseudo-traces are derived using the local dip and azimuth estimate.

The edge enhancement attribute is a measure of the edginess of the seismic
reflections calculated parallel to the local stratification. The edge enhance-
ment attribute enhances spatial discontinuities by measuring changes in the
signal amplitude. The edge enhancement attribute uses the local dip esti-
mate of the reflection layers. The local dip estimate represents a plane, and
by projecting the vector with derivatives, onto this plane, changes that are
nearly perpendicular to the reflector will produce vectors with small mag-
nitude, whereas changes in the direction of the reflector will produce vec-
tors with larger magnitudes. The edge enhancement attribute is genuine 3D,
orientation-invariant, but amplitude-dependent. The latter may be relevant
when the amplitude correlates with the signal quality.

The variance attribute is also used, even if it does not share all char-
acteristics of 3D kinematic texture attributes. This attribute uses the local
variance as a measure of signal unconformity or discontinuity. The variance is
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computed for each sample in small horizontal sub-slices. If the slice is within
an unbroken reflection layer, the amplitude variance will be small, whereas
amplitude changes due to discontinuous horizon will result in a large variance.

Dynamic Texture Attributes. Dynamic texture attributes are generated
from the original seismic cube. The volume reflection spectrum (VRS) at-
tributes realize spectral analysis of the reflectivity response for each seismic
trace [39]. Each trace is characterized in terms of its eigenvalue (spectral
attribute) and the associated eigenvector (orthogonal, polynomial), to ap-
proximate the reflection amplitude along the trace in a least squares sense.
For texture mapping a set of discrete spectral VRS coefficients is combined
into a composite spectral representation.

1.5 Seismic Facies Classification Workflow

The complete classification workflow involves several steps (see Figure 3):
(1) Generation of the seismic texture attribute cubes. (2) Running a clas-
sification in an unsupervised mode (A) and inspection of the results. (3)
Running a supervised classification with user-defined selection of training
points (B), and examination of these points in N-dimensional space to en-
sure adequate clustering and minimal overlap between the training points.
(4) Evaluation of the supervised classification output, using (i) checking the
result in 3D and comparing the results against the seismic/attribute cubes
used and, (ii) the uncertainty analysis of the classification with probabil-
ity cubes. (5) The removal/incorporation of training points/seismic attribute
cubes prior to making a revised classification. (6) Final tuning of the neural
network parameters. (7) Visualization and interpretation of the data and the
analysis of facies associations and structures in 3D space. (8) Finally, the
calibration of the results against well data allows establishing a deterministic
link between seismic facies and lithology.

Steps 5-7 are necessarily iterative and it should be expected that several
modifications to both training data picking and/or selection of input data
(attribute cubes) are required before a satisfactory result is achieved. In order
to speed up the process, the workflow can be first run on a representative sub-
volume. After the training data have been picked, checked and parameters
optimised, the neural network classification can then be run on the full volume
of interest (Figure 3).

3D Neural Network Classification. Neural networks have often been
used to analyse data, and to recognize patterns within data [9]. Automated 3D
mapping of seismic textures through 3D classification [40] allows combining
geometric and signal attributes information into a 3D seismic facies cube. In
the procedure, the three-dimensional classification is done unsupervised as a
first step to identify the natural clustering of the data. This initial step allows
the interpreter to guide the picking of training data and choice of specific
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Fig. 3. [Reproduced in colour in Plate 16 on page 433.] Workflow for seismic facies
mapping using texture attributes and 3D classification based on neural network
algorithm.

features for running supervised classification as a second step (Figure 3). The
supervised classification process allows the interpreter to select training data
on different seismic facies (calibration samples) within the volume of interest.
Once the interpreter is satisfied with the choice of the training points, these
are used to train the artificial neural network. In the supervised classification,
both the inputs and the outputs are provided. The results of the classification
are then output together with probability cubes or confidence measures for
each of the different classes identified, expressed as the distance from the
cluster centre or by the means of validation data (Figure 3).

Training Data Picking. Training data are picked on the original seismic
or on attribute cubes. These training data define calibration samples for
seismic facies (Figure 4) that are picked in the 3D space of the seismic data.
Statistically, a large amount of training data (several hundreds to thousands
of samples) makes the classification more stable than a small number. This
is due to the fact that training data are locally correlated. A large number
of training data will span a larger portion of the class distribution and hence
be more representative.

The training data can be inspected in attribute-space [40], an N-dimensio-
nal space, where N is the number of attributes used in the training. Separated
clusters in attribute-space imply good discrimination between the seismic
stratigraphic patterns that need to be mapped (Figure 5). Potential outliers
in the clusters can be readily identified and quality controlled since there is a
one-to-one correspondence between the training points in attribute-space and
the training points in the seismic cube. Mispicked training data can therefore
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Fig. 4. [Reproduced in colour in Plate 17 on page 433.] Picking of training data
done by digitising portions of seismic patterns on seismic cross-sections. In this
example six seismic facies or textures were defined, and several calibration samples
used for each facies. Training data are picked on different sections within the zone
of interest.

easily be deleted. In some cases, principal component analysis allows a better
selection of the attributes set by avoiding correlated attributes.

Once training data have been picked and checked, the neural network
can be trained and classification be run on a subvolume for evaluation. After
parameter optimization, the classification is run on the full volume of interest.

Facies Analysis and Calibration with Well Data. The interpretation
phase involves analysis of patterns, facies associations and calibration with
well data. The 3D mapping of seismic facies defines a preliminary geologi-
cal/structural model based on seismic patterns that needs to be calibrated.
As different lithologies, sedimentary bodies or structural features may pro-
duce the same seismic pattern, the calibration of the patterns is a significant
step and involves all available knowledge from the reservoir under study. Geo-
physical information (AVO data, amplitude attributes, acoustic impedance),
well data and geological knowledge such as depositional, structural, diage-
netic, or reservoir fluid characteristics, pressure and saturation distribution,
will be incorporated and treated in that step (Figure 6).

Well information is used deterministically to assign a lithology to every
seismic facies of the model. This process can be iterative or hierarchical and
allows, first locally and then more completely, linking seismic facies with
the corresponding lithologies or rock properties, as knowledge is gained. In
the end, seismic facies and geobodies based on texture attributes honour
stratigraphic and structural information and carry lithological and/or fluid
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Fig. 5. [Reproduced in colour in Plate 18 on page 434.] Training data distribution
in attribute space. Each class defines a cluster in the attribute space, where training
data can be checked and edited.

Fig. 6. [Reproduced in colour in Plate 19 on page 434.] Classification of seismic
facies based on texture attributes defines a geological/structural model. Using iter-
ative and hierarchical classification capability, seismic facies can be calibrated and
assigned to lithology and fluids using well data or another set of attributes such as
amplitude-based, or AVO data.
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property information. This detailed structural framework information is used
during the property population of reservoir models.

2 Building a Voxel Model

Once a three-dimensional seismic facies model has been generated and cali-
brated with well data, the next step consists in translating the facies model
more efficiently to the simulation domain. The challenge faced is to minimize
the manual work and to preserve as much as possible the detailed representa-
tion carried by the three-dimensional seismic facies model in order to improve
the seismic to simulation workflow.

It is shown in the following subsections that combining the voxel model
approach, introduced hereafter, together with three-dimensional seismic fa-
cies results fulfil all of the above specifications.

2.1 Definitions

As defined in [20], “a voxel is the cubic unit of volume centered at the integral
grid point. As a unit of volume, the voxel is the three-dimensional counterpart
of the two-dimensional pixel, which represents a unit of area”, see Figure 7.
Volumes with parallelepiped rectangle shape and not only cubes are being
considered.

Fig. 7. Representation of voxels. Left: an elementary voxel. Right: a simple voxel
grid composed of six voxels and divided into three rows (x direction) and two
columns (y direction).

Consequently, a voxel grid is defined as a three-dimensional numerical
mesh composed of voxels. Figure 7 (right) illustrates a simple voxel grid.

A voxel model then defines a voxelized voxel grid, i.e., a voxel grid as-
sociated with numeric values representing some “measurable properties or
independent variables of the real phenomenon or object residing in the unit
volume represented by the voxels” [20]. These properties or variables can be
of different types: sampled data, computed data, simulation results etc.
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2.2 Workflow

Nowadays the reservoir model building workflow is mainly divided into four
steps: (1) definition of the reservoir boundaries (and especially the top and
bottom horizons), (2) building a geologically true structural model (layering,
faults etc.), (3) population of properties (porosity, permeability etc.) by krig-
ing or co-kriging for instance and then (4) upscaling the model in order to
obtain a reservoir model that can be handled by today’s computer capabili-
ties. Many steps in this workflow require manual work, in particular the task
of building the structural model.

The method described here proposes a new approach to automate parts
of the work and so to reduce the manual work. This leads to a speed-up of
the whole seismic to simulation process and so this allows faster and easier
model updating.

The voxel-based workflow can be divided into three main steps:

(1) automated grid and fault extraction, classification of seismic facies;
(2) definition of the reservoir model geometry and its automated extraction;
(3) property voxelization which associates physical property values to each

numerical cell.

Figure 8 summarizes and compares the main steps of the two workflows.

Fig. 8. Workflows. Left: the classical workflow. Right: the voxel model workflow.
The abscissa summarizes the main steps in a chronological order. The ordinate
gives an estimate of the time that each step roughly requires. For each step, black
means the time usually needed and grey the time required in some particular cases.

(1) Automated Grid and Fault Extraction, Seismic Facies Classifi-
cation. The first requirement for building a reservoir model is to determine
its extents and characteristics.
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Horizons are usually seen as interfaces between subsurface layers of rocks
of different properties. Thus reservoirs are discriminated in the depth ex-
tent from seismic cubes by their top and bottom horizons corresponding to
their upper and lower limits, respectively. Horizons are usually manually or
semi-automatically interpreted by analysing seismic data. However, new tools
have recently emerged that allow an automated extraction of horizons from
seismic. These new techniques are based on classification of a set of seismic
waveform attributes along extrema (minima or maxima) in a seismic post
stack cube. For further details on this, we refer to [4, 5].

When analysing seismic data, geoscientists are often able to identify hori-
zons, other than the top and bottom ones, inside the reservoir. Combining
them with available well-log data helps to refine the reservoir description.
That information is then used later when building the reservoir model.

Faults can be of different types: sealing or permeable. These properties
can change through the life of the reservoir. When sealing and intersecting
each other to form a closed geometry, faults divide the reservoir into several
isolated compartments. When permeable, fluids can migrate through these
faults. During the reservoir production life, fault properties can change due
to, for instance, pressure changes on either side of the fault-zone, thereby lead-
ing to different reservoir flow behaviour. This in turn would affect production
scenarios. Therefore, fault systems and fault properties are of great impor-
tance for reservoir simulation studies. As for horizons, mapping of faults from
seismic cubes can be a time-consuming and difficult task. New technologies
have also been established to automate the extraction of faults from seismic,
thereby allowing geoscientists to focus more on the analysis of fault sys-
tems and less on the mapping and editing. For further details on automated
fault extraction, we refer to the chapter [32] of Pedersen, Skov, Randen, and
Sønneland.

The first part of the present chapter describes how three-dimensional seis-
mic facies can help characterizing the reservoir. Other techniques are avail-
able, as described in the chapters [29, 36]. These facies, also called geobodies,
represent some typical geological features, which in turn can be linked to
lithologies, thereby giving a more detailed and better structural description
of the reservoir. The approach adopted here for linking three-dimensional
seismic facies to lithologies is explained later in the property voxelization
step.

(2) Definition of the Reservoir Model Geometry and Automated
Extraction. The next step is to define the volume of interest. It can be
the whole reservoir or just part of it. Vertically, the reservoir is delimited
by the top and bottom horizons defined in the previous step. In the lateral
extents the reservoir can be delimited either by these two horizons, when
they intersect each other, or by faults.

If one is willing to study only a limited zone of the reservoir then the corre-
sponding extents have to be explicitly provided. Altogether these boundaries
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are closing a volume that will be extracted from the previously defined set of
seismic cubes.

It is noteworthy that for reservoir simulation purposes, the focus is set
on the reservoir zone and usually includes neither part of the overburden nor
part of the neighbouring areas in order to devote as many numerical grid cells
to the reservoir simulation study as possible.

Today the numerical simulation grids used are structured. Then, their
total number of cells will correspond to the product of the chosen discretiza-
tions in the inline, crossline and depth directions. Next generation simulators
may use unstructured grids. Numerical methods on unstructured grids are
described in the chapter [19] of Käser and Iske. These techniques would al-
low to reduce the total number of grid cells needed for the simulations and
consequently for reducing the required CPU time.

Reservoir simulators usually handle two different types of grid geometry:
Block-Centred (BC) and Corner-Point (CP), as illustrated in Figure 9. These
geometries have either tetragons in two dimensions or hexahedrons in three
dimensions as grid cell shapes.

Fig. 9. Comparison of Block Centred (BC) and Corner Point (CP) grid geometries.
BC grids (left) are simply formed by cells with parallelepiped shapes only. Cells
forming CP grids (right) can have less restricted shape thereby allowing CP grids
to reproduce most kind of geological structure.

BC geometries need only four parameters for each grid cell to be defined,
namely: the cell size in the X, Y and Z direction (dX, dY, dZ) and the depth
at which its top face is located. For the latter parameter, when all cells are
identical, it is sufficient to only provide the depths at which the top face of
the cells constituting the first layer of the model is situated. These values are
considered as reference depths. For the other layers, the depths are given by
summing the cell size in the Z direction (dZ) to the depth of the above layer.

Because of their simple description, BC grid cells have their upper and
lower faces flat and horizontal while the other faces are all flat and vertical. It
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is then notable that BC grid cells and voxels are alike in shape. Hence voxel
grids can be seen as BC grid geometries.

CP geometries require more parameters to be built. First, the co-ordinate
lines and the corner depths notions must be introduced. The co-ordinate lines
are the edges of each column of cells; they are straight lines but do not need to
be vertical. These lines are defined by providing the X, Y and Z coordinates
of their two end points, located above and below the horizons representing
the reservoir. The cells are then defined by setting their corner depths along
the co-ordinate lines. Hence, each grid cell is defined by four co-ordinate lines
and eight corner depths. Such description allows CP grid cells for having less
restricted shapes compared to BC grid cells. It is then possible to model more
accurately complex geological structures compared to BC geometries. More
details about CP geometries can be found in the chapter [12] of Farmer, or
in the paper [33] by Ponting, or in the book [43].

The second main difference between BC and CP geometries is the cell
connection across fault planes. Figure 10 illustrates this concept for both BC
(left) and CP (right) grid geometries in a two-dimensional case.

Fig. 10. [Reproduced in colour in Plate 20 on page 435.] Cell connection across
fault plane. Left: Block Centred (BC) grid. Right: Corner Point (CP) grid. Colour
scale given by oil saturation values. Fault plane is not taken into account with the
BC grid. Cells are connected according to their grid indices and not their physical
location in space.

Because of its simple description, BC grid geometry uses only grid indices
to calculate transmissibility factors from one cell to the other. It is assumed
that neighbouring cells sharing the same grid indices are connected thereby
allowing fluids to flow from one cell to the other. This is the reason why the
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cells across the fault plane are connected as shown in Figure 10 (left). On
the contrary, CP grid geometry contains enough information to calculate the
overlap between neighbouring cells meaning that only cells physically sharing
an interface are effectively connected. Connections across fault planes are then
correctly modelled as seen in Figure 10 (right).

In order to combine the advantages of both grid geometries, namely the
ease of mesh building (BC) and modelling correctly cell connections across
fault planes (CP), the present method first creates a numerical mesh in a BC
description, before it exports it as a CP grid.

The voxel grid extraction is automated as follows: the inputs are the voxel
size (dX, dY, dZ), the top and bottom horizons. The number of discretization,
in the inline and crossline directions, is given by the ratio of the reservoir
extents in each direction with dX and dY, respectively. In the depth direction,
the biggest vertical distance between the two horizons is calculated first. The
number of discretization in the depth direction will then be the ratio of that
length with dZ.

The top and bottom reservoir horizons are usually not parallel to each
other. The voxel grid will extend typically beyond the reservoir or volume
of interest. Hence, it is necessary to exclude all voxels that are not lying
in between the two horizons from numerical simulations. This is done by
marking them as non-active cells. In practice, these voxels are associated
with zero porosity value.

The voxel size is chosen such that it matches, as closely as possible, the
size of the smallest three-dimensional seismic facies, while keeping the total
number of voxels small enough to allow time-effective numerical simulations.
The output is then a voxel grid in physical coordinates (X, Y, Z) exported
as a CP grid geometry where the co-ordinate lines are all vertical and the
corner depths of the voxels are regularly sampled along these co-ordinate
lines. Figure 11 illustrates the automated geometry extraction.

When the reservoir is made of several isolated compartments, it is nec-
essary to implement the faults delimiting them into the reservoir model. As
mentioned in the previous step, faults are either extracted automatically or
manually interpreted from seismic data and represented as rather smooth
surfaces.

When overlaid on the voxel grid, these surfaces are intersecting the voxels
as it can be seen in Figure 12 (top). One approach to solve this problem
would be to establish a set of rules defining which voxels faces make the best
representation of the fault surface. This approach may although produce a
stair-cased representation of the fault surface in the voxel model. In this
respect, the CP geometry offers a better representation of faults.

To some extent, the voxel model offers some advantages when compared to
standard CP geometry models, where each fault necessitates accurate struc-
tural modelling and individual closure of the volume compartments. This
structural modelling tends to be cumbersome when complex structures, such
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Fig. 11. [Reproduced in colour in Plate 21 on page 435.] Automated voxel grid
extraction. The inputs are: voxel size (dX, dY, dZ), the Top and Bottom horizons
(given in depth) and a reference frame. The output is a voxel grid geometry in
physical coordinates (X, Y, Z).

as overturned surfaces, listric faults, or intersecting faults, are involved (cf. the
chapter [12] of Farmer). It has been shown, in the first part of the present
chapter, that 3D seismic facies based on texture attributes should honour
and capture the local changes and discontinuities in the reflector’s geometry
and carry that information into the seismic facies used as an input to the
voxel model. As already mentioned above, the kinematic texture attributes
and the discontinuity and fault attributes (edge enhancement) use the local
dip and azimuth as geometrical tensor. Optimally, any discontinuity related
to reflectors offset along a fault plane will be implicitly captured in the 3D
facies model as up-thrown/down-thrown facies as illustrated in Figure 12.
By choosing a voxel size matching the scale of the smallest three-dimensional
seismic facies, fault planes would then be implicitly modelled (Figure 12).

For the voxel model in general, faults modelling needs more thorough
investigations especially when complex fault geometries are involved, but
this is a research topic on its own and is beyond the scope of this chapter,
cf. [13, 14, 23, 44].

(3) Property Voxelization. Today commercial simulator software usually
require as input values of porosity and permeability at each grid cell of the
simulation grid. In the classical workflow this is done in the property popula-
tion step. The most common methods used are geostatistical approaches such
as kriging or co-kriging [11], stochastic simulation methods [16], or Bayesian
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Fig. 12. [Reproduced in colour in Plate 22 on page 436.] (A) The facies model
captures implicitly discontinuities related to faults as shown with the distribution
of texture-based seismic facies in three dimensions within the hanging wall and
foot wall of a fault. The voxel grid geometry defined for the reservoir model is
superimposed on the facies model to show how the facies will be associated to the
voxels. The facies being located in the centre of the voxel is used to define the
property of the cell. (B) Distribution of the facies within the voxel grid geometry.

methods [17]. For a description of these different methods, we refer to the
chapter [12] of Farmer.

With the new voxel-based workflow two alternatives are possible: the first
one consists in creating seismically derived porosity and permeability cubes.
That can be done by using the same methods as in classical workflows. Then
the voxelization process will assign porosity and permeability values to all
the voxels making up the voxel grid.

The second alternative uses pre-existing seismically derived property
cubes together with three-dimensional seismic facies. This approach requires
to link porosity and permeability to properties such as velocities, acoustic
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impedance, or volume of clay, etc. This can be done by means of empirical
models, to be found in the literature.

In this case, the seismic facies are used to compensate for the loss in
detailed geological representation inherent to the building of the voxel grid
(Figure 12). As mentioned in the first part of this chapter, three-dimensional
seismic facies and lithologies can be linked by means of well log data such
as gamma-ray, density, resistivity. The voxelization process then assigns, to
the voxel grid, porosity and permeability values from the property cubes
constrained by the seismic facies The latter alternative is used in this chapter.

At this stage, the voxel model does not provide all answers for accurate
modelling of complex structures, neither does the corner-point grid. However,
it offers at least in its nature the possibility to capture discontinuities and
heterogeneities evidenced in the 3D seismic facies classification with no man-
ual interaction. This advantage is significant when compared to classification
maps for instance. Even though these maps can be relatively easily integrated
to reservoir models with modern software, they carry a wrong representation
of the spatial heterogeneity within formations or layers by collapsing 3D in-
formation onto a 2D map.

Finally, the voxel model is flexible and can be tuned to provide the best
representation of the heterogeneity of the reservoir. As mentioned in the au-
tomated geometry extraction step, this is achieved by comparing the size of
the voxel with the size of 3D seismic facies. Yet when more than one type of
3D seismic facies is contained within one single voxel, and when the overall
number of voxels can not be increased, an averaging of the lithological prop-
erties of the 3D seismic facies should be performed during the voxelization
step. Related to the size of the voxel, a potential limitation of the voxel mod-
els would be faced when modelling isolated thin beds or sloping thin layers.
In the current state, this aspect is better handled by corner point grids. More
thorough research is needed to solve these difficulties.

3 Test Case: Grane Field

The general workflow of this new paradigm is now illustrated by a case study
of the Grane field in the Norwegian sector of the North Sea. The seismic
facies are related to lithologies by means of well log data and are then used
to voxelize the grid with rock physical properties. Finally the dynamic part
is covered with streamline simulation.

3.1 Quantitative Interpretation and 3D Seismic Facies Model

The Grane Field is located at the eastern margin of the Viking Graben on
the western flank of the Utsira high. The Grane Field consists of Palaeocene
turbidite sandstones (Heimdal Formation), which originate from the East
Shetland Platform at the West of the field. The deposition and geometry of



From 3D Seismic Facies to Reservoir Simulation 321

the turbidite sand lobes were mostly controlled by the original basin mor-
phology, which forced the sand to deposit along a main N-S axis parallel
to the Utsira High. The Heimdal Formation (Fm.) consists of high-density
turbidite sandstones that were mostly deposited into the deepest part of the
basin. In the Grane Field, the sand lobes of the Heimdal Fm. have undergone
syn- and post-depositional deformation generating a complex geometry.

The main sand body appears to be penetrated from below (Lower Lista
Fm.) by shale streaks potentially associated with faults, slumping or di-
apirism. It is characterised by very irregular top reservoir geometry due to
sand injectites extruded from the main sand body into the overlying shales.
The objective is to build a facies model, using 3D seismic facies classifica-
tion, that captures the complex geometry and lithology variability, and then
to translate efficiently this information to a reservoir voxel model. Due to
heavy oil and limited contrast between sands and shales in the Heimdal Fm.,
seabed multicomponent seismic data were acquired in 2001 over the Grane
field. These seismic data are used for the quantitative interpretation and seis-
mic facies modelling. By the time of analysis, the Grane field was in appraisal
phase. The production started in September 2003.

Seismic multicomponent (4C) data are acquired from the seabed with
ocean-bottom cables containing receivers with three orthogonal geophones,
usually one vertical (PZ) and two horizontal, and a hydrophone. This device
allows recording and sorting of P-wave and S-wave. The P-wave is the elastic
body wave in which particle motion is in the direction of propagation. P-waves
are referred to as compressional wave and acoustic mode (PP) in our case
study. The S-wave is a body wave in which particle motion is perpendicular
to the direction of propagation. S-waves are generated by the incidence of
P-waves on interfaces at other than normal incidence, whereupon they are
referred to as converted waves [38] and converted mode (PS) in our case
study.

The general inversion scheme for reservoir characterisation and delin-
eation from seismic multicomponent data involves the transformation of the
converted shear waves (PS data) to PP time domain. This operation is per-
formed in order to have the multi-component data with the same time ref-
erence for allowing direct comparison and analysis of both PP and PS data.
The transformation of PS data to PP time requires a detailed analysis of the
overburden, and interpretation of correlative reflection events on both data
sets. The next step in the general inversion scheme involves 3D seismic facies
analysis using seismic texture attributes as described earlier.

The multi-component data have been classified into seven types of seismic
facies. These facies include flat parallel continuous high amplitude, flat par-
allel continuous low amplitude, discontinuous low amplitude, discontinuous
high amplitude, dipping continuous, transparent facies and chaotic patterns.
Seismic facies analysis and direct comparison of the acoustic mode (PP) and
the converted mode (PS) show that in parts of the Grane Field the converted
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wave mode (PS) provides an improved image of the reservoir sands. Top
and base reflectors of reservoir sands show new features neither observable
in streamer data nor in the PP data. In particular, potential fluid effects
are identified in the PP data and could mask the depositional or structural
features.

In this case study, well data are used to calibrate seismic facies with
the main reservoir facies (oil saturated sand, water saturated sand, sand
injections, shales and shales streaks). The results of the 3D seismic facies
classification are shown in Figure 13 along a horizon-based slice just above
the bottom of the reservoir sands.

Fig. 13. [Reproduced in colour in Plate 23 on page 437.] Map views of seismic
facies 3D classification 8 ms above the base reservoir from (A) PP data (acoustic
mode), and (B) PS data (converted shear wave mode) viewed in PP time domain.
The dotted lines represent linear deformation features. The white outlines highlight
a potential flat spot on PP data (A) and a tuning effect or diagenesis effect on PS
data (B).
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From the PP data (Figure 13 A), the following features can be identified:

• a widespread high amplitude flat feature is extending on the western part
of the main sand lobe and sparsely visible in the eastern part of the field.

• distinct linear patterns characterized by discontinuous, wavy and prograd-
ing facies are distributed within zones of flat parallel continuous facies.

From the PS data (Figure 13 B), the following features can be identified:

• flat high amplitude response is visible less commonly in the western part
of the main sand lobe compared to the PP data. In fact, in the western
part, the PS data show abundant distribution of discontinuous and wavy
facies.

• a more distinct flat high amplitude response is visible in the eastern part
of the main lobe and in the northeastern lobe than in the PP data seismic
facies classification.

In addition, seismic facies classification of PS data sliced above the top
of the reservoir sands shows an organised distribution of the dipping or pro-
grading facies along the western margin of the main lobe as well as over the
thickest part of the reservoir sands. The dipping seismic facies captures lo-
cal change in reflector geometry at and above the top reservoir sands. Most
of these disturbances at the top of the reservoir are characterised by wing
shaped reflections visible mostly on the western margin of the main lobe.
Locally some V-shaped reflections are visible over the thickest zones of the
sand lobe (Figure 14).

New Interpretation Model. The widespread flat high amplitude feature
visible on the PP data only in the western part of the main lobe coincides
with the detected oil-water contact (OWC) from well data (Figure 15). On
the other hand, the flat high amplitude anomaly coming brighter in the PS
data is located higher up than the regional OWC and corresponds with the
zone where the reservoir sands thin out towards east and can be either in-
terpreted as tuning effect, or due to a change in rock physical properties.
The main elongated element characterised by discontinuous and prograding
facies visible mostly on PP data is interpreted as a shale prone deforma-
tional/depositional element. The crescent features are interpreted as major
slump scars, related to the Utsira High uplifting or sediment instability. These
crescents are marked discontinuities in the base reservoir reflector and prob-
ably filled by shales.

Facies Model and Calibration with Well Data. While the comparison
of PP versus PS seismic image seems to indicate a potential fluid contact in
the western part of the sand lobe fitting the observed OWC at well location,
additional information, such as VP/VS ratio (the ratio of velocities of P-wave
to S-wave, and gives equivalent information as measurements of Poisson’s
ratio), density logs, and porosity logs have confirmed the complexity of the
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Fig. 14. [Reproduced in colour in Plate 24 on page 438.] Distribution of potential
sand injections mapped by the red seismic facies from PS data above the top of the
reservoir (some facies are set to transparent on the display). The injected sands are
mostly visible along the margins of the main sand lobe and locally above it. The
four wells displayed show evidence of injected sands above the main reservoir body.

model. Locally, fluid, diagenesis and difference in the sorting of the sand, or
a combination of effects are still kept as potential causes for the flat features
revealed by the classification.

The most discontinuous seismic facies forming the elongated lineaments at
the base of the reservoir on the PP data (Figure 16) are correlated with shale
prone zones logged along horizontal wells. These shale prone zones are most
likely related to internal deformation and shale injections or shale streaks
intruded from below the reservoir sands, probably from the Lower Lista Fm.

Cross plotting of seismic facies located along horizontal well sections
against log data allowed to diagnose a predominant lithology and sand/shale
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Fig. 15. [Reproduced in colour in Plate 25 on page 439.] Seismic cross-sections
of multicomponent data: PP data (upper section) and PS data in PP time (lower
section).

ratio. Each seismic facies shows a distinct histogram distribution of gamma
ray values (cf. the Appendix, part 1.).

Each of the seismic facies is interpreted individually and is calibrated
against well data to be related to a lithology or rock type. Depending on
the position within the reservoir, one seismic facies may be associated with
different lithologies or rock types. This is due to the non-unique relationship
of the seismic facies with geology. For instance, discontinuous and dipping
seismic facies within the reservoir level do not represent the same lithologies
at top and bottom the reservoir. They are most likely shale prone zones, at
the base and within the main reservoir body, identified as discordant reflec-
tions patterns and stratigraphic anomalies. Discordant reflections and strati-
graphic disturbances, and in particular V-shaped ones, represent potential
sand injectites above the top of the reservoir. This observation allows us to
define a detailed zonation within the reservoir stratigraphy and laterally into
a southern and northern area of the sand lobe.

As a result, the facies model has captured the complex geometry of the
reservoir, including the sand injectites extruded from the main body at the
top into the overburden. Being able to map these sand injections and trans-
late them into the reservoir model is important because they affect the top
reservoir geometry, and might change the connectivity and flow properties in
a production scenario [18]. Similarly, the heterogeneous distribution of the
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Fig. 16. [Reproduced in colour in Plate 26 on page 440.] Stratal slice of the seismic
facies model 8 ms above the base of the Grane reservoir. The dark blue and light
blue facies represent flat continuous seismic facies and are calibrated as sands. The
yellow and red facies represent discontinuous and dipping seismic facies and are
calibrated as shale prone deformation features as indicated by the Gamma Ray log
along a horizontal well.

shale prone zones within the main sand body, confirmed by well data when
available, has been captured in the 3D seismic facies model. All the struc-
tural information and lithologies distribution contained in the facies model
is hence forwarded to the reservoir model, as demonstrated in the next part.

3.2 Property Voxelization of the Grane Voxel Grid

Based on well log data and stratigraphic analysis done by Mangerud [22], the
following observations have been made and used for the property voxeliza-
tion. Analysis of biostratigraphic and sedimentological data coming from the
Grane field reveals that the turbidite sand originated from the East Shetland
Platform located to the west of the field. Sand lobes were gradually deposited
in the Viking Graben from the West-Northwest to the South-Southeast con-
strained by the existing basin floor topography and the western flank of the
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Utsira High [22]. This is illustrated in [22], which points out to the existence
of one main depositional lobe at the well G15 during the biostratigraphic zone
T47 sub. The well G15 is located in the north of the field (Figure 14). In [22],
two younger depositional episodes (T52 sub and T55 sub) at the well G21S,
further to the south of the field, are also identified. In addition to a probable
difference in the sorting of these depositional episodes, diagenesis might have
been superimposed and created additional variability in the sand properties
as illustrated from the Phi/K cross-plots (Figure 17) and histograms (cf. the
Appendix, part 2.) for the wells G15 and G21S.

Fig. 17. Porosity-permeability distribution. Well G15 (left); well G21S (right).

A comparison of the distribution of porosity values for both wells shows
relatively higher values for the well G15, but both are slightly bimodal with
their main mode at 35%. On the other hand, the distribution of permeability
values of both wells are more differentiated; the well G21S shows a wider
range with a clear bimodal distribution with a main mode at 8500 mD and
a secondary mode around 2500 mD. The well G15 is slightly bimodal with a
main mode at 8500 mD and a minor one at 5500 mD. These changes in the
porosity and permeability values for each seismic facies and their respective
position within the field have been taken into account during the property
voxelization step.

Table 1 summarizes the porosity values found for all lithologies according
to their geographical locations. Table 2 summarizes all permeability values.

In order to test the new proposed workflow from seismic to simulation on
the Grane field, it has been decided to use standard rock physical transforms
together with information given by the three-dimensional seismic facies, to
obtain porosity and permeability values required as input for simulation soft-
ware. The challenge faced is to determine how to use the information given
by the three-dimensional seismic facies.

First porosity has been estimated based on one of the relations for sand-
stones established by Gardner [15]:

ρb = 1.66V 0.261
P , (1)

where ρb is the bulk density (in g/cm3) and VP the P-wave velocity (in m/s).
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Table 1. Porosity for the Grane field. From well data information three-dimensional
seismic facies have been linked to lithologies, each of them having typical porosity
values. Some differences have been noticed between the south part and the north
part of the reservoir. Three dimensional seismic facies: (1) Flat continuous high
amplitude, (2) Flat continuous low amplitude, (3) Discontinuous low amplitude, (4)
Discontinuous high amplitude, (5) Transparent, (6) Dipping continuous reflector,
(7) Discontinuous-chaotic. NA: no available values.

Location Seismic Lithology Porosity (%)
facies range 1st mode

1 sand 29-36 34
2 water filled sand 26-33 30
3 shale mixed with sand 1-15 8

South 4 sand 22-38 34
5 shale mixed with sand 1-15 8
6 shale 1-5 3
7 shale 1-5 3

1 sand 29-39 35
2 water filled sand 32-38 35
3 shale mixed with sand 1-15 8

North 4 sand 29-39 35
5 shale mixed with sand 1-15 8
6 shale 1-5 3
7 shale 1-5 3

Table 2. Permeability for the Grane field. From well data information three-
dimensional seismic facies have been linked to lithologies, each of them having
typical permeability values. Some differences have been noticed between the south
part and the north part of the reservoir and between its upper and under part. The
facies and their corresponding lithologies are defined in Table 1.

Location Seismic Permeability (mD) / upperpart Permeability (mD) / underpart
facies range 1st mode range 1st mode

1 1000-14500 8500 1000-14500 2500
2 1000-12000 7000 1000-12000 2000
3 NA NA NA NA

South 4 1000-14000 7000 1000-14000 2000
5 NA NA NA NA
6 0-1 0.5 0-1 0.5
7 0-1 0.5 0-1 0.5

1 1500-13000 8000 1500-13000 5000
2 1500-13000 8000 1500-13000 5000
3 NA NA NA NA

North 4 1500-13000 8000 1500-13000 5000
5 NA NA NA NA
6 0-1 0.5 0-1 0.5
7 0-1 0.5 0-1 0.5
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The acoustic impedance I can be expressed as

I = 1000VP ρb. (2)

The bulk density can be written as a function of porosity ϕ, matrix density
ρM and fluid density ρf :

ρb = (1 − ϕ) ρM + ϕρf (3)

Because of a deliberate choice for simplification and because the reservoir
is rather thin, the use of an empirical relation for sandstone and standard
values for the matrix density and fluid density have been made. These latter
values are 2.65 g/cm3 for the matrix density (corresponding to pure sand)
and 1.00 g/cm3 for the fluid density (corresponding to water).

The acoustic impedance seismic cube is obtained by inversion of seismic
data using the Best Feasible Approximation (BFA) algorithm [42]. Combining
(1) and (2) with (3), the porosity can be expressed as a function of impedance:

ϕ = −0.606

(
1.4947

(
I

1000

)0.207

− 2.65

)
. (4)

Then for each voxel, the results given by (4) are compared with the ex-
pected range of porosity given by the lithologies. When a mismatch is ob-
served (the porosity value obtained with (4) lays outside the expected range),
the porosity value will be constrained by drawing a new value within the ex-
pected range. The porosity ranges given in Table 1 correspond to the minima
and maxima values of porosity distribution for each seismic facies. The first
mode of these ranges correspond to the center of the porosity distribution
cluster. The probability distribution function (pdf) used depends on the rela-
tive position of the first mode within the porosity range. These pdf are either
a Gaussian function (first mode at the center of the range), or a Gamma
function.

Permeability has been calculated by using one relationship, established
by Pape [30], where permeability k is function of porosity only. For shaly
sandstone the relation used is given by

k = 1.013 × 10−3
(
6.2ϕ + 1493ϕ2 + 58 (10ϕ)10

)
. (5)

Similarly to porosity, permeability values have been constrained accord-
ing to the expected range of permeability values obtained from lithologies.
Permeability ranges and first modes corresponding to each seismic facies for
the different geographical locations are given in Table 2.

It is noteworthy that the use of three-dimensional seismic facies informa-
tion during the property voxelization step is not unique. It would have been
possible to use a rock physical transform (such as Han’s relations for shaley
sandstones) giving porosity as a function of P-wave velocity and volume of
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clay (VC) [24]; the calibration of seismic facies with well data enabling the
discrimination of the facies into different lithologies for which ranges of VC
can be estimated (cf. the Appendix, part 1.).

Advantages and Limitations of the Voxel Model. In the Grane case
study, well data indicated a regional OWC (oil water contact) with equal
pressure in all wells as initial conditions. From these observations it is inferred
that there seems to be no or only few barriers and no compartmentalization
of the reservoir sand lobe.

The voxel grid built for the present study is composed of 449,256 voxels
with 98 in the inline direction, 139 in the crossline direction and 33 in the
depth direction. The reservoir itself is represented by 101,014 active voxels.
The size of a single voxel is (50×50×4) meters. This size is chosen according
to the size of the smallest seismic facies, which is typically 2 to 3 times bigger
than the seismic scale of (25 × 12.5 × 4) meters.

Due to the observations and because of the small voxel size chosen, the
inclusion of faults in the reservoir model does not appear as a priority for
this case study. As mentioned earlier and as seen in Figure 12, the detailed
heterogeneities of the reservoir captured with the tree-dimensional seismic
facies are brought forward to the reservoir voxel model thereby implicitly
modelling the discontinuities.

Nonetheless, further thorough research is needed in order to investigate
how accurately these discontinuities are effectively captured and modelled in
the voxel model.

3.3 Simulation Results and Comments

The effect of three-dimensional seismic facies on the voxel model were eval-
uated by using two case studies. On the one hand, a voxel model based on
acoustic impedance only, and on the other hand a voxel model based on both
acoustic impedance and three-dimensional seismic facies were built.

Figure 18 shows porosity at the top of the reservoir obtained for the two
voxel models. The second voxel model (Figure 18 (b)) does not only show a
less scattered representation of the porosity but also that high porosity values
reproduce better the sand lobes.

Figure 19 compares the horizon map of the top reservoir with the porosity
obtained for the second voxel model, at the same location. Here, a fairly good
correspondence between the position of the sand lobes and the high porosity
zones is observed.

The reservoir started producing in September 2003; no production his-
tory was then available to compare with simulation results. For the purpose
of this study, it has been decided to mimic a typical three-phase reservoir
life. First, gas injection at the top of the reservoir pushes the oil towards
the producing wells. Second, after some days of production injection of water
near the bottom of the reservoir is done. The oil is then squeezed between gas
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(a) (b)

Fig. 18. [Reproduced in colour in Plate 27 on page 441.] Comparison of porosity
at the top of the reservoir for the two voxel models. (a) Voxel model based on
acoustic impedance only. (b) Voxel model based on acoustic impedance and three-
dimensional seismic facies results.

(a) (b)

Fig. 19. [Reproduced in colour in Plate 28 on page 441.] (a) Illustration of the top
reservoir horizon (in ms). (b) Porosity distribution along the top of the reservoir for
the voxel model based on acoustic impedance and three-dimensional seismic facies
results.

and water injections and swept towards the producing wells. A total of seven
wells were used: one gas injector, one water injector and five oil-producing
wells. After building the reservoir model, production wells have to be im-
plemented together with injection wells. This step is a time-consuming task.
However, as it comes to this implementation, the classical workflow and the
voxel-based workflow are identical. This is the reason why the corresponding
implementation details are omitted in this chapter.

In order to illustrate the simulation step of the new workflow, a streamline-
based method simulator is used. Its advantages are twofold: the stream-
lines indicate how the fluid is moving inside the reservoir and the required
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CPU time is smaller than conventional simulators based on finite difference
method. Batycky [3] observed that streamline-based method are one to two
order of magnitude faster than finite difference methods for simple cases.

(a) (b)

Fig. 20. [Reproduced in colour in Plate 29 on page 442.] Voxel model based on
acoustic impedance and three-dimensional seismic facies results. (a) Porosity dis-
tribution; (b) initial oil saturation distribution together with the locations of the
wells.

(a) (b)

(c) (d)

Fig. 21. [Reproduced in colour in Plate 30 on page 442.] Voxel model based on
acoustic impedance and three-dimensional seismic facies results. Simulation results
for the oil saturation at day (a) 300, (b) 1800, (c) 3300, and (d) 4800 of the pro-
duction.
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The computer used for simulation is a Sunblade 1000 with two CPUs at
750 MHz and 4 gigabytes memory. About 30 CPU hours were needed to run
a three phases streamline simulation for 4800 production days. Figure 20 (a)
shows a three-dimensional view of the porosity distribution obtained for the
voxel model based on acoustic impedance and three-dimensional seismic fa-
cies results. Figure 20 (b) shows the initial oil saturation together with the
location of the seven wells used for the simulation.

Simulation results at four different time steps are shown in Figure 21. This
simulation illustrates the main steps of a heavy oil reservoir life where the
production strategy is to inject gas first and then squeeze the oil in between
gas injection at the top and water injection at the bottom. Figure 21 (top row)
shows results of the first stage when the reservoir undergoes gas injection only;
at the beginning of the production (a) and before water injection starts (b).
The two pictures in the bottom row of Figure 21 show simulation results when
the reservoir undergoes both water and gas injections. No clear differences
can be made between these two results. This illustrates the stage where new
production strategy should be made in order to enhance the oil recovery.
It could be either increasing wells production and/or injection rates, either
planning new production and/or injection wells.

4 Conclusion and Final Remarks

A new methodology for building reservoir models from seismic data based on
three-dimensional seismic facies has been demonstrated on the Grane field.
This new approach enables a workflow from seismic domain to simulation
domain, by bridging the two close together through the voxelization process.

The workflow specifications were to build a model directly from the seis-
mic data as fast and as easy as possible, such that updating at real time can
be done. This requires developing an automated procedure in order to reduce
the manual (time consuming) work. It has been shown that:

• A three-dimensional seismic facies model could be built from supervised
classification of seismic textures that captures the detailed structural
framework of the reservoir and its complex architecture.

• The seismic facies have been calibrated against well data thereby providing
a link between facies and lithologies or fluids.

• The reservoir grid geometry has been pre-defined in a given number of vox-
els according to seismic facies scale to compensate for the lack of structural
details intrinsic of the voxel grid.

• A property voxelization step allowed to populate the model with rock prop-
erties based on (1) empirical models linking porosity and permeability to
acoustic impedance, or (2) empirical models and additional constraints
given by the calibration of the seismic facies with well data.
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• Finally, after defining the static model, a simulation scenario is run with a
set of producers, gas and water injectors.

The next step would be to go further: from seismic to prediction. This implies
that a 4D history matching is successfully done. The high quality of the
history matching is a prerequisite to assess the reliability of the reservoir
model and therefore its forecasting capability.

This method from seismic to simulation exploiting three-dimensional seis-
mic facies and voxelization process opens new perspectives on reservoir model
building, multiple scenarios realizations and faster or right time model up-
dating.

This new voxel-based workflow accelerates the seismic to simulation pro-
cess. It is aimed at building and/or updating a reservoir voxel model as soon
as new data are acquired and give good enough simulation results in real time
so that drilling engineers or field engineers can take immediate decisions. This
prevents risks, it reduces collateral costs, and it improves benefits. Moreover,
this voxel-based workflow could easily be adapted to the new simulator gen-
eration, working with unstructured mesh, requiring only slight modifications.
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Appendix

1. Gamma Ray histograms and cumulative percentage for well G26 and the respec-
tive seismic facies located along the horizontal section of the well.

2. Permeability histograms and cumulative percentage for well G15 (left) and G21S
(right).
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Summary. In this chapter, an extension of ADER schemes is presented in order
to solve both linear and nonlinear scalar conservation laws on unstructured trian-
gulations. The proposed scheme is conservative and belongs to the class of finite
volume schemes. It combines high order reconstruction techniques with a high or-
der flux evaluation method to update cell average values through fluxes across cell
interfaces. The ADER approach results in an explicit, one-step scheme based on
the solution of generalized Riemann problems across cell interfaces. Moreover, the
triangulation is adaptively modified during the simulation to effectively combine
high order accuracy with locally refined meshes and therefore reduce the compu-
tational costs. The required adaption rules for the refinement and coarsening of
the triangular mesh rely on a customized error indicator. Numerical experiments
confirm the expected orders of accuracy and show the good performance of the
proposed scheme for linear and nonlinear problems. Finally, the adaptive ADER
schemes are applied to a test case from oil industry, which plays an important role
in the modelling of fluid flow in petroleum reservoirs.

1 General Overview

Modern approaches of constructing conservative, very high order numeri-
cal methods for hyperbolic conservation laws are typically based on the Fi-
nite Volume approach combined with essentially non-oscillatory (ENO) or
weighted essentially non-oscillatory (WENO) reconstruction techniques. We
mention, that the Discontinuous Galerkin Finite Element method [8] is a
very attractive alternative and has found many applications within the last
few years. Harten, Engquist, Osher, and Chakravarthy [15] introduced a one-
dimensional cell average version of the original ENO Finite Volume scheme.
Later, Harten and Chakravarthy [14], Abgrall [1], and Sonar [34] extended
the finite volume formulation of ENO schemes to unstructured triangular
meshes. The central idea of ENO schemes is to select the smoothest stencil
out of several possible ones and then reconstruct the solution from cell av-
erages with high order accuracy, e.g. by using high order polynomials. By
constructing such nonlinear schemes, as required by Godunov’s theorem [12],
the growth of spurious oscillations can successfully be avoided. The more ad-
vanced WENO schemes were first suggested by Liu, Osher, and Chan [25] and
Jiang and Shu [19]. Very recently, Friedrich [11] constructed WENO schemes
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on unstructured meshes based on the dual mesh of a triangulation. In the
WENO approach, a set of different possible reconstruction polynomials is
used in order to construct a specific weighted sum of polynomials. In con-
trast to ENO schemes the main advantages of WENO schemes are the better
convergence to steady-state solutions and the increased spacial accuracy, es-
pecially in smooth regions of the solution.

High order accuracy in time is typically achieved through multi-stage
Runge-Kutta methods. However, to retain the monotonicity properties of the
resulting schemes the chosen time discretisation requires to be total variation
diminishing (TVD) as observed by Shu [32] and Shu and Osher [33]. Ruuth
and Spiteri [29] recently showed, that such TVD Runge-Kutta methods have
barriers to the order of time accuracy and consequently to the order of the
entire scheme. Thus, in most practical implementations a third order TVD
Runge-Kutta method is used even for very high order WENO schemes, i.e.,
the spatial order of accuracy is much larger than three.

A new approach introduced by Toro, Millington, and Nejad in [38] and
further developed by Titarev in [36, 39] is the so-called ADER approach,
which is an explicit one-step finite volume scheme of Arbitrary high or-
der using high order DERivatives of piecewise polynomial reconstructions.
In [36, 38, 39] a very high order version of the classical Godunov scheme [12]
is constructed, which leads to an arbitrary high order of accuracy in both
space and time. In fact, ADER schemes can be interpreted as high order gen-
eralizations of the classical Godunov scheme. In the last few years, the use
of ADER schemes has gained considerable popularity in the field of gas and
aerodynamics, e.g. [30, 31], especially for linear advection problems, and cur-
rently constitutes a very active research area [35], also for nonlinear problems,
systems of hyperbolic equations, and advection-reaction equations [41].

2 Introduction

In this chapter, high order WENO schemes on unstructured triangulations
are combined with the ADER approach introduced in [38] to solve scalar,
linear and nonlinear conservation laws of the form

∂u

∂t
+ ∇f(u) = 0 , (1)

where for some domain Ω ⊂ R
2, and a compact time interval I = [0, T ],

T > 0, the function u : I × Ω → R is unknown and f(u) = (f1(u), f2(u))T

denotes the flux tensor. Furthermore, adaptive mesh refinement is included
to balance computational cost and approximation quality. This is important,
in particular, in the vicinity of discontinuities, that typically occur in solu-
tions of hyperbolic problems and can be accurately resolved by locally refined
meshes. Therefore, our aim is to combine the ADER approach with adap-
tive mesh refinement in order to obtain highly accurate results at reasonable
computational costs.
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In general, a high order extension of the classical scheme of Godunov [12]
consists of the three basic operations:

• polynomial reconstruction of the solution from cell average values,
• evaluation of fluxes across interfaces between adjacent cells,
• update (evolution) of cell average values in each cell.

This chapter is arranged by following these main steps. An introduction to
the reconstruction of high order polynomials from cell average values on un-
structured triangulations is given in Section 3. The corresponding WENO re-
construction is addressed and followed by a detailed description of the stencil
selection algorithm. The finite volume formulation of the governing equa-
tion (1) on unstructured triangulations is outlined in Section 4 together with
the presentation of the high order flux evaluation technique using the ADER
approach. The remaining update of the cell average values is discussed in Sec-
tion 5. Finally, the accuracy of the proposed scheme is evaluated in Section 6
and its good performance is confirmed by numerical experiments concerning
reservoir flow simulation in Section 8.

3 Reconstruction of High Order Polynomials

The reconstruction of high order polynomials on unstructured triangulations
is much more difficult than the reconstruction on one-dimensional intervals
or multi-dimensional Cartesian grids. In fact, polynomial reconstruction from
scattered data requires the solution of multi-dimensional interpolation prob-
lems, which typically tend to be ill-conditioned. This problem becomes even
more critical with increasing order of the reconstruction.

To keep the notation short we use multi-indices, i.e., α = (α1, α2) with
αi ∈ {0, 1, 2, ...}, i = 1, 2, and x = (x1, x2) ∈ R

2. Moreover, we let |α| =
α1 + α2 and xα = x(α1,α2) = xα1

1 xα2
2 . In the following, let Pn denote the set

of bivariate polynomials of degree at most n. Note that the set Pn is a vector
space of dimension N(n) = 1

2 (n+1)(n+2), and, for any b ∈ R
2, the functions

{( · − b)α}|α|≤n constitute a basis of Pn. Therefore, any polynomial p ∈ Pn

can uniquely be expressed by a monomial expansion of the form

p(x) =
∑
|α|≤n

aα(x − b)α , (2)

with coefficients aα ∈ R, |α| ≤ n. We remark, that the monomial expansion
is not suitable for practical computations, but often useful for theoretical
purposes.

We assume that the computational domain Ω ⊂ R
2 is discretized by a

conforming triangulation T (cf. [26, Subsection 3.3.1]), given by a set T =
{T�}� of triangles T� ⊂ Ω, � = 1, ...,#T . In the finite volume framework each
(i) triangle, (ii) cell, or (iii) control volume T� carries a cell average value
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ū�(t) =
1

|T�|

∫
T�

u(t, x) dx , (3)

where |T�| is the area of triangle T� and u(t, x) is the solution of (1).
Now, in the reconstruction we consider solving the following problem.
Given the polynomial degree n and cell average values ū�k

, k = 1, ..., N ,
N = dimPn, of the function u on each control volume T�k

, find a polynomial
p ∈ Pn, that satisfies the interpolation conditions

p̄�1 = ū�1 ,
p̄�2 = ū�2 ,
...

...
p̄�N = ū�N .

This problem has a unique solution, iff the Vandermonde matrix

M =
(

( · − b)α
�k

)
1≤k≤N, |α|≤n

(4)

is non-singular. In this case, we call the set S = {T�k
}1≤k≤N of trian-

gles a Pn-unisolvent or admissible stencil. Note that the matrix M may be
ill-conditioned, due to the geometry of the chosen stencil. This is further
supported by Abgrall, who shows in [1], that the condition number of the
above system matrix is O(h−n), where h =

√
|T�| is a measure for the local

mesh width and n the degree of the polynomial space. So for large degree
n and for small mesh width h, the corresponding linear equation system is
ill-conditioned.

As a remedy to this stability problem, Friedrich [11] considered introduc-
ing a scaling factor s = (

√
|T�|)−1 in order to obtain a condition number

independent from h. Therefore, the standard monomial representation (2) is
changed to

p(x) =
∑
|α|≤n

s|α|ãα(x − b)α , (5)

where ãα are the scaled coefficients of p. Now by using the scaled polynomial
expansion (5), the condition number of the corresponding coefficient matrix
does no longer depend on the mesh width h. However, it is still unclear, if
this expansion is sufficient to provide a robust reconstruction procedure for
strongly distorted, unisotropic meshes. For this reason, Abgrall suggests in [1]
to use a polynomial expansion based on barycentric coordinates.

In order to briefly explain this standard stabilization technique, let the
set Sn = {T1, T2, ..., TN}, n ≥ 3, denote an admissible stencil for Pn, n ≥ 1.
Then, there is a substencil S1 ⊂ Sn containing three triangles from Sn, say
{T1, T2, T3}, such that S1 constitutes an admissible stencil for P1. In this
case, there are three unique linear polynomials Λ1, Λ2, Λ3 ∈ P1 satisfying



Reservoir Flow Simulation by Adaptive ADER Schemes 343

Λ̄ij
= δj

i , 1 ≤ i, j ≤ 3, with
3∑

i=1

Λi(x) ≡ 1

These polynomials Λ1, Λ2, Λ3 are said to be the barycentric coordinates of
the sgtencil S1. Now any polynomial p ∈ Pn can uniquely be expressed as a
linear combination of the form

p(x) =
∑
|α|≤n

bαΛα(x), where Λα = Λα1
1 Λα2

2 . (6)

Due to the scale-invariance of the barycentric coordinates Λ1, Λ2, Λ3, the
condition number of the matrix, arising from the expansion (6), is indepen-
dent of the local mesh width h, see [1]. We remark that this observation is
very crucial when working with adaptive mesh refinement, where very small
cells may appear. Indeed, the representation (6) is, due to its robustness,
particularly suited for adaptive mesh refinement, even for strongly distorted
meshes.

An alternative way to overcome stability problems is suggested in [3, 28].
This approach works with an overdetermined system. Instead of using exactly
N neighbouring cells, this works with a slightly larger stencil to enhance the
robustness of the reconstruction. In our computations, we typically use 4
cells for linear, 8 cells for quadratic, and 13 cells for cubic reconstruction. To
obtain a conservative scheme, one needs to satisfy the condition

p̄� = ū� (7)

on any cell T�, where the reconstruction polynomial p is computed.
In this case, a linear least-squares problem with the linear equality con-

straints (7) needs to be solved (cf. [22, Chapter 21]). Finally, we remark that
the entries of the system matrix M in (4) can be computed by using quadra-
ture rules for triangles, that are exact for the desired polynomial degree n. A
detailed list of quadrature rules for triangles is given in [9].

3.1 WENO Reconstruction

During the last decade, WENO methods have extensively been used for one-
dimensional problems, and they have also gained popularity for problems
on multi-dimensional Cartesian grids. The general idea of ENO and WENO
schemes is to chose several stencils Si, i = 1, ..., k, where k denotes the number
of stencils, and to compute the corresponding reconstruction polynomials
pi. The ENO approach selects one least oscillatory polynomial. In contrast,
WENO methods work with a weighted sum

p(x) =
k∑

i=1

ωipi(x) ,
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where the ωi are positive, data-dependent, and normalized weights, such that∑k
i=1 ωi = 1. Originally introduced in [19, 25], the WENO approach was

extended to unstructured meshes in [11, 16]. In order to compute the weights
ωi, we have to clarify how the oscillation of the corresponding polynomial pi

is measured. Numerical tests in [11, 16] have demonstrated, that a suitable
oscillation indicator for a polynomial p on a triangular cell T is given by

Ii =
∑

1≤|α|≤n

∫
T

|T ||α|−1
(
Dαpi(x)

)2

dx , (8)

where Dα = ∂|α|

∂x
α1
1 ∂x

α2
2

is the α-th partial derivative operator with respect to

x1 and x2. The factor |T ||α|−1 eliminates effects due to the local mesh width.
Then, the weights ωi can be calculated through

ωi =
ω̃i∑k
i=1 ω̃i

with ω̃i = (ε + Ii)−r . (9)

Here ε is a small positive number to avoid division by zero. Usually, numerical
results are not very sensitive to the choice of ε. In general, however, larger
values of ε are better suited for smooth problems but may generate small
oscillations near shocks, whereas smaller ε are better suited for discontinuous
problems. In the literature, typically values of ε ∈ [10−6, 10−2] are chosen. In
our computations, we let ε = 10−5. The positive integer r in (9) is a measure
of the sensitivity of the weights with respect to the oscillation indicator of (8).
As r tends to infinity, the WENO scheme behaves like a classical ENO scheme.
On the other hand, if r tends to zero, the oscillation indicator has almost no
effect on the weights, which means that the scheme becomes an oscillatory,
or even unstable scheme. In most applications we find r ∈ [2, 8], and in
our implementation we chose r = 4, which turns out to be large enough to
essentially avoid oscillations near discontinuities, but small enough to improve
upon the classical ENO scheme.

3.2 Stencil Selection

So far, we have assumed to have admissible stencils. However, as shown by
Sonar in [26, Subsection 3.6.1], selecting a small number of admissible sten-
cils on unstructured triangulations is not a trivial task as there is a large
number of possible stencils to choose from. Furthermore, for polynomials of
degree greater than 1 it is unknown, if there is a geometrical property on
unstructured meshes indicating if a chosen stencil is admissible or not.
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However, some essential aspects for selecting a stencil have to be taken
into account:

• the stencils should be local,
• the number of stencils should be small to keep computational cost small,
• in smooth regions it is necessary that the stencil is well-centered with

respect to the cell T� to obtain a good approximation quality,
• in non-smooth regions one-sided stencils have to be selected to avoid in-

terpolation across discontinuities leading to oscillations.

Considering the construction of stencils on unstructured triangulations, it is
convenient to define the neighbourhood of adjacent triangles as introduced
in [34].

Definition 8. Let T be a conforming triangulation. Then for any triangle
T� ∈ T the set

K0
N (T�) = {T ∈ T : T ∩ T� is edge of T� and T �= T�}

is called the von Neumann neighbourhood1 of T� and all triangles T ∈
K0

N (T�) are level-0 von Neumann neighbours of T�.

(a) (b)

Fig. 1. A triangle T (dark shaded) with von Neumann neighbours (light shaded)
of level-0 (a) and extended by von Neumann neighbours of level-1 (b).

An extended von Neumann neighbourhood of level-1 can be constructed
by merging von Neumann neighbourhoods of the original level-0 von Neu-
mann neighbours, i.e.,

K1
N (T�) =

⎛
⎝ ⋃

T∈K0
N (T�)

K0
N (T )

⎞
⎠ \ T� ,

as shown in Figures 1 (a) and (b). This way, we can extend the von Neu-
mann neighbourhoods level by level, until a desired number of cells, i.e., a

1This is a standard term used in the theory of cellular automata.
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desired size of a stencil for the polynomial reconstruction is reached. Note,
that this procedure typically leads to centered stencils as shown in the top
row of Figure 4. In order to construct one-sided stencils in the vicinity of
discontinuous data, we follow the idea of Harten and Chakravarthy in [14]
and use a sectoral search algorithm. Their basic idea is to include only von
Neumann neighbours, whose barycenters lie in specified sectors.

Definition 9. Let T� ∈ T be a triangle with counter-clockwise ordered ver-
tices v1, v2, v3 ∈ R

2 and f11 = v2 − v1, f12 = v3 − v1, f21 = v3 − v2,
f22 = v1 − v2 and f31 = v1 − v3, f32 = v2 − v3 the vector pairs representing
the oriented triangle edges. Then the sets

Fj = {x = vj + γ1fj1 + γ2fj2 : γ1, γ2 ≥ 0} , j = 1, 2, 3,

are called the forward sectors of the triangle T� (see Figure 2).

v2

v1

v2

v3

1

3

v2

v

v3

1

v

v

1

2

3

Fig. 2. The three forward sectors of the triangle T�.

m2

3m 3m

m m1

2

1

m

3m

m2

1m

2

1

3

Fig. 3. The three backward sectors of the triangle T�.

However, our numerical tests have shown, that these three sectors sug-
gested in [14] not always provide stencils with smooth data. Therefore, we
introduce additional sectors in order to cover neighbouring regions of a trian-
gular cell T�, that are not covered by the three forward sectors Fj , j = 1, 2, 3.
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Fig. 4. Example of nine stencils of size 6 constructed by combining successive von
Neumann neighbours and a sectoral search.

Definition 10. Let T� ∈ T be a triangle with m1,m2,m3 ∈ R
2 denoting

the midpoints of the triangle’s edges and b11 = m2 − m1, b12 = m3 − m1,
b21 = m3−m2, b22 = m1−m2 and b31 = m1−m3, b32 = m2−m3 the vector
pairs representing the oriented lines parallel to the triangle edges. Then the
sets

Bj = {x = mj + γ1bj1 + γ2bj2 : γ1, γ2 ≥ 0} , j = 1, 2, 3,

are called the backward sectors of the triangle T� (see Figure 3).

The second and third row in Figure 4 show stencils of size 6 constructed by
successive von Neumann neighbours with barycenters inside the three differ-
ent forward and backward sectors. We remark, that the shape of the selected
stencils strongly depends on the local geometry of the mesh. Especially for
high order reconstruction, as mentioned above, a chosen stencil might turn
out to be non-admissible in the sense, that the resulting reconstruction prob-
lem has no unique solution. In this case, such stencils are detected and ig-
nored. However, we remark, that we never encountered a non-admissible sten-
cil in our computations when we use the approach in [3, 28], where slightly
larger stencils lead to overdetermined systems.
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4 Finite Volume Formulation

Consider a two-dimensional, scalar conservation law of the form (1) with
solution u(t, x). Within the finite volume framework, each discrete value of
the function u is viewed as a cell average ū� over a cell T� . The advantage
of the finite volume approach is, that any kind of mesh can be used, i.e., the
shape of the control volume can be chosen arbitrarily. Here, we work with a
conforming triangulation T with cells T� ∈ T , � = 1, ...,#T , for which the
integral form of the conservation law (1) has the form

d

dt

∫
T

u(t, x) dx +
∫

∂T

F(t, s) · n(s) ds = 0 , (10)

with the outer normal vector n(s) and the flux

F(t, s) =
(

f1(u(t, x(s)))
f2(u(t, x(s)))

)
,

where the boundary ∂T of the triangle T is parameterized by arclength s
(cf. [24, Chapter 23]). Integrating (10) over the time interval [tn, tn+1], where
τ = tn+1− tn is the time step length, and using the definition of cell averages
in (3), we derive a finite volume scheme of the form

ūn+1
� = ūn

� − τ

|T�|

3∑
j=1

F̂n
�,j , (11)

where the numerical flux F̂n
�,j across each cell boundary ∂T�,j , j = 1, 2, 3, of

the cell T� during the time interval [tn, tn+1] is the time-averaged physical
flux given by

F̂n
�,j =

1
τ

∫ tn+1

tn

(∫
∂T�,j

F(tn, s) · n�,j ds

)
dt .

The time integral and the integral along the j-th edge of triangle T� can be
computed exactly by using a suitable Gaussian quadrature rule. Therefore,
the numerical flux can be computed through the weighted sum

F̂n
�,j =

Nt∑
k=1

αk|∂T�,j |
Nx∑
h=1

βhF(u(tGk
, xGh

)) · n�,j , (12)

where αk and βh are the weights of the Gaussian quadrature rule and tGk

and xGh
are the corresponding integration points with respect to time and

space. Nt and Nx are the numbers of integration points. The situation for
a third order approximation using two Gaussian integration points in time
and space is illustrated in Figure 5. It is clear, that in order to evaluate the
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t G1

t G2

G1
x

Gx
2

t n+1

t n

x
t

x1

2

Fig. 5. Example of a third order accurate flux evaluation across a triangle edge
from time tn to tn+1 using two Gaussian integration points in space and time.

flux function F at a particular Gaussian integration point we have to find
the function value u(tGk

, xGh
), the so-called state2 of the solution, at these

points. This is accomplished through the ADER approach, which is extended
to unstructured meshes and discussed in detail in the following subsection.

4.1 Flux Evaluation via ADER

Originally, Toro, Millington, and Nejad introduced a method in [38] termed
ADER to construct arbitrary high order finite volume schemes for scalar,
linear conservation laws utilizing high order derivatives. Just very recently,
these schemes were extended to scalar, nonlinear conservation laws in one
dimension by Titarev and Toro in [36, 39, 41] and were applied to prob-
lems on multi-dimensional, Cartesian grids by Schwartzkopff, Munz and Toro
in [30, 31]. A first attempt to extend ADER schemes for linear conservation
laws from structured grids to unstructured triangulations was taken in a
preliminary, unpublished note by Munz and Schneider [27].

The main ingredients of the proposed ADER scheme are:

• the WENO technique to reconstruct high order polynomials without cre-
ating spurious oscillations;

• the solution of generalized Riemann problems based on
– the time Taylor expansion of the solution,
– the Lax-Wendroff procedure replaces time by space derivatives,
– the solution of conventional, derivative Riemann problems;

• the high order flux evaluation across cell interfaces and updating of cell
averages.

In the following, we discuss in detail the construction of ADER schemes
for linear and nonlinear problems. According to the WENO reconstruction
procedure in Section 3, the solution u(t, x) at the discrete time t = tn is

2State is the common term for the solution of a Riemann problem.
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nx  =0
xn

inp  (x)
outp   (x)

u

Fig. 6. The generalized Riemann problem along the outward pointing unit vector
with reconstructed polynomials pin(x) and pout(x) approximating the solution u.

represented by polynomials p�, � = 1, ...,#T , on each triangular cell T� ∈ T .
In general, these polynomials are different on each cell, leading to a piece-
wise polynomial approximation of u(t, x) with discontinuities across the cell
interfaces. The situation of having two constant functions separated by a
discontinuity is usually called a conventional Riemann problem (RP). The
solution of a RP is a fundamental tool in the development of finite volume
methods and is discussed in many textbooks, e.g. [24, 37]. In general, a RP
is defined by the governing hyperbolic equation together with a particular
initial condition (IC). As mentioned above this IC is usually given by two
constant functions and the solution of the RP can be computed through var-
ious techniques [24, 37]. However, as our functions p�, which are separated
by the cell interfaces, are not necessarily constant, the situation is more diffi-
cult and is called the generalized Riemann problem (GRP). Depending on the
order m of the designed ADER scheme we will call these schemes ADERm
schemes. Therefore, the ADER1 scheme is the classical Godunov scheme [12]
of first order (m=1). We remark, that the degree of the reconstruction poly-
nomials for an ADERm scheme is m − 1. Denoting the corresponding GRP
more precisely, we have to solve a GRPm−1 at the cells interfaces when using
an ADERm scheme3.

In order to apply the ideas in [36, 39], we reduce the multi-dimensional
GRP at the Gaussian integration points xGh

of a cell interface (see Figure 5)
to a one-dimensional GRP oriented perpendicular to the interface, i.e., along
the outer normal n as displayed in Figure 6. The GRP is described by the
governing PDE and the IC of u(t, x) at the local time t = 0 by

PDE:
∂u

∂t
+ ∇f(u) = 0 , (13)

IC: u(0, x) =

⎧⎨
⎩

pin(x) , for xn < 0 ,

pout(x) , for xn > 0 ,

3GRP0 denotes the conventional Riemann Problem (RP) with two constant
functions as initial condition.
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where xn is a local coordinate oriented along the outer normal n with origin
at the Gaussian integration point xGh

. The two polynomials belonging to the
actual cell and the adjacent cell are denoted as pin and pout, respectively.

Recalling equation (12) and Figure 5, we are looking for the solution of
the one-dimensional GRP at a Gaussian integration point tGk

in time, i.e., for
u(t, ·) at an intermediate time t ∈ [tn, tn+1]. Now, one of the central ideas of
the ADER approach is to approximate this solution at m-th order accuracy
at the cell interface xn = 0 via the Taylor series expansion in time around
the initial time t = 0 given through

u(t, 0) ≈ u(0, 0) +
m−1∑
k=1

tk

k!
∂k

∂tk
u(0, 0) . (14)

The time derivatives in (14) can be replaced by space derivatives by apply-
ing the Lax-Wendroff procedure4 in order to make the maximum use of the
information given by the governing PDE in (13).

4.2 The Lax-Wendroff Procedure

Originally, this technique of substituting time by space derivatives using the
governing PDE (13) itself was considered in [23] and goes back to the famous
theorem of Cauchy and Kowalewski more than hundred years ago. We re-
mark that for nonlinear problems this procedure can become quite tedious
in contrast to the linear case, as the number of terms required to express the
time derivatives grows rapidly with the order of the derivative. However, as
shown in [39], these terms are necessary in order to guarantee the desired
order of accuracy of the designed ADERm scheme. To be more precise, let
the characteristic speeds with respect to the space dimensions x1 and x2 be
given by

λ1(u) =
∂f1(u)

∂u
and λ2(u) =

∂f2(u)
∂u

. (15)

Using the notation λ′
i(u) = ∂λi(u)

∂u , λ′′
i (u) = ∂2λi(u)

∂u2 etc., i = 1, 2, and ut = ∂u
∂t ,

utt = ∂2u
∂t2 , ux1 = ∂u

∂x1
, etc., we can write the governing PDE (13) in two

dimensions as
ut + λ1(u)ux1 + λ2(u)ux2 = 0 . (16)

Therefore, to replace the first order time derivative in (14) by space deriva-
tives using the Lax-Wendroff procedure, we simply have to solve (16) for ut

leading to
ut = −λ1(u)ux1 − λ2(u)ux2 . (17)

The higher order time derivatives of u can now be computed successively
by partial differentiation of (17) with respect to t. For example, an ADER4
scheme requires time derivatives up to order three in (14) given by

4Sometimes also referred to as the Cauchy-Kowalewski procedure.
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utt = −λ′
1(u)utux1 − λ1(u)utx1 − λ′

2(u)utux2 − λ2(u)utx2 ,

uttt = −λ′′
1(u)u2

t ux1 − λ′
1(u)

(
uttux1 + 2ututx1

)
− λ1(u)uttx1

−λ′′
2(u)u2

t ux2 − λ′
2(u)

(
uttux2 + 2ututx2

)
− λ2(u)uttx2 .

Note, that the above expressions for the time derivatives include mixed
derivatives with respect to time and space. These can also be expressed by
space derivatives by successively differentiating (17) with respect to x1 and
x2. For example, for the ADER4 scheme we get

utx1 = −λ′
1(u)u2

x1
− λ1(u)ux1x1 − λ′

2(u)ux1ux2 − λ2(u)ux1x2 ,

utx2 = −λ′
1(u)ux1ux2 − λ1(u)ux1x2 − λ′

2(u)u2
x2

− λ2(u)ux2x2 ,

utx1x1 = −λ′′
1(u)u3

x1
− 3λ′

1(u)ux1ux1x1 − λ1(u)ux1x1x1

−λ′′
2(u)u2

x1
ux2 − λ′

2(u)
(
ux1x1ux2 + 2ux1ux1x2

)
− λ2(u)ux1x1x2 ,

utx1x2 = −λ′′
1(u)u2

x1
ux2 − λ′

1(u)
(
ux1x1ux2 + 2ux1ux1x2

)
− λ1(u)ux1x1x2

−λ′′
2(u)ux1u

2
x2

− λ′
2(u)

(
ux1ux2x2 + 2ux2ux1x2

)
− λ2(u)ux1x2x2 ,

utx2x2 = −λ′′
1(u)ux1u

2
x2

− λ′
1(u)

(
ux1ux2x2 + 2ux2ux1x2

)
− λ1(u)ux1x2x2

−λ′′
2(u)u3

x2
− 3λ′

2(u)ux2ux2x2 − λ2(u)ux2x2x2 ,

uttx1 = −λ′′
1(u)utu

2
x1

− λ′
1(u)

(
utux1x1 + 2ux1utx1

)
− λ1(u)utx1x1

−λ′′
2(u)utux1ux2 − λ′

2(u)
(
utx1ux2 + ux1utx2 + utux1x2

)
− λ2(u)utx1x2 ,

uttx2 = −λ′′
1(u)utux1ux2 − λ′

1(u)
(
utx1ux2 + ux1utx2 + utux1x2

)
− λ1(u)utx1x2

−λ′′
2(u)utu

2
x2

− λ′
2(u)

(
utux2x2 + 2ux2utx2

)
− λ2(u)utx2x2 .

The problem remaining is to determine the space derivatives at the quadra-
ture points at the cell interface, i.e., to solve the one-dimensional GRP il-
lustrated in Figure 6. In [39], Toro and Titarev suggest to use the boundary
extrapolated values

u� = lim
x→x−

Gh

pin(x) , (18)

ur = lim
x→x+

Gh

pout(x) , (19)
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which represent the values obtained by evaluating the polynomials recon-
structed inside and outside the actual cell interface at a Gaussian quadrature
point xGh

. We remark, that according to the one-dimensional representation
in Figure 6 the inside and outside of a cell are referred to as left and right,
respectively. Therefore, we obtain a conventional Riemann problem GRP0

with constant functions u� and ur of the form

PDE:
∂u

∂t
+ ∇f(u) = 0 , (20)

IC: u(0, x) =

⎧⎨
⎩

u� for xn < 0,

ur for xn > 0 .
(21)

The solution of the above GRP0 (20),(21) is described in many text books,
e.g. [24, 37], and its solution u∗ is usually called the Godunov state. With
this state u∗ the characteristic speeds in (15) can be evaluated and used
to linearize the governing equation (16). As shown in [38], the linearized
equation (16) also holds for all space derivatives qα = Dαu, |α| ≤ m − 1,
where Dα = ∂|α|

∂x
α1
1 ∂x

α2
2

is the α-th partial derivative operator. Similar to (18)
and (19), boundary extrapolated values for the derivatives can be defined by

qα
� = lim

x→x−
Gh

Dαpin(x)

qα
r = lim

x→x+
Gh

Dαpout(x)

and we can formulate a series of linear conventional Riemann problems of
the form

PDE: =
∂

∂t
qα + λ1(u∗)

∂

∂x1
qα + λ2(u∗)

∂

∂x2
qα = 0 ,

IC: = qα(0, x) =

⎧⎨
⎩

qα
� for xn < 0,

qα
r for xn > 0 .

Since each of these linear Riemann problems has a solution, all terms on
the right hand side of (14) are well-defined. Therefore, the state u(tGk

, xGh
)

can be computed through the expansion (14) for any local integration point
(tGk

, xGh
) in space and time as indicated in Figure 5. Note, that one of the

fundamental ideas of using an ADERm scheme is to solve an GRPm−1 by
solving one RP, which is linear or nonlinear depending on the governing equa-
tion, and a series of linear RPs. The number of these linear RPs is m− 1 for
one-dimensional problems and 1

2m(m + 1)− 1 for two-dimensional problems.
We remark, that the leading term in the computation of the ADER state
in (14) is the classical Godunov state u∗ itself. The remaining terms in (14)
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are the correction terms to enhance the approximation quality. Therefore,
ADER schemes can be interpreted as high order generalizations of the clas-
sical Godunov scheme in [12]. In fact, ADER schemes enable us to evaluate
the flux in (12) with arbitrary high order accuracy by using an arbitrary
high order accurate state u given by (14) at the cell interface. Finally, this
flux is the information we need in order to update the cell average values as
summarized in the following section.

5 Update of Cell Average Values

Recalling the numerical scheme in (11) we see, that given the fluxes across all
cell boundaries, we can update the cell average values ūn+1

� for time t = tn+1

via a one-step explicit scheme. In contrast to multi-stage TVD Runge-Kutta
schemes, typically used in combination with high order WENO techniques
as presented in [16], we do not need the intermediate stages. Therefore, we
can reduce the required computational costs quite significantly, as we have
to go through the reconstruction procedure only once. We remark that in
multi-stage TVD Runge-Kutta schemes one reconstruction step is necessary
for each intermediate stage. Furthermore, Ruuth and Spiteri have just shown
recently in [29], that TVD Runge-Kutta of arbitrary high order cannot be
constructed in a straight forward manner. In contrast, ADER schemes can
be extended to arbitrary high order by simply adding higher order terms
in (14) and therefore the order of accuracy is basically limited by the available
computing power and machine precision.

It is well-known, that explicit time discretization schemes, such as the pro-
posed ADER scheme, have to satisfy rather severe restrictions on the time
step τ due to the Courant-Friedrich-Levy (CFL) condition5. Loosely speak-
ing, disturbances from one cell boundary must not reach another boundary
within one time step. Let ρ� be the radius of the inscribed circle of a triangular
cell T� serving as a measure of its diameter (see Figure 7), and let

λ
(max)
� = max

1≤ j ≤ 3Nx

|λ1,j(u) · n1,j + λ2,j(u) · n2,j |

be the maximum normal characteristic speed appearing at the 3Nx Gaussian
integration points along the cell interfaces. As shown in previous work [36, 38,
39] ADER schemes are stable up to a CFL-number of 1 for structured, Carte-
sian grids. Therefore, we restrict the time step size τ in our computations by
a similar CFL-condition

τ ≤ min
1≤l≤#T

ρ�

λ
(max)
�

,

for unstructured triangulations. This is similar to the idea in [26, Subsec-
tion 3.4.1].

5CFL conditions on TVD Runge-Kutta schemes can even be more severe [29].
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ρ

Fig. 7. The radius ρ of the inscribed circle of a triangular cell together with its Nx =
2 integration points per edge, where the maximum characteristic speed normal to
each edge is evaluated.

6 Performance of ADER schemes

In the last few years, ADER schemes were developed and analysed mainly
for one-dimensional linear and nonlinear problems [36, 38, 39] and ap-
plied to multi-dimensional problems on fixed rectangular Cartesian meshes,
e.g. in [30, 31]. Here we investigate the performance of the proposed ADER
schemes for linear and nonlinear problems on unstructured triangulations by
determining their convergence properties numerically. Furthermore, we con-
sider their efficiency with respect to computational cost depending on the
order of the scheme.

6.1 Experimental Orders of Convergence

In this section, the experimental order of convergence of the proposed ADER
schemes on two-dimensional linear and nonlinear advection problems are de-
termined numerically in order to compare them with the theoretically ex-
pected orders.

Linear Advection. For the linear problem we solve the two-dimensional
equation

ut + ux1 + ux2 = 0 ,

a linear example of the general equation (1) with the initial condition

u0(x) = u(0, x) = sin
(
2π(x1 + x2)

)
on the computational domain Ω = [−0.5, 0.5]× [−0.5, 0.5]. The computations
are carried out for the time interval I = [0, 1]. We remark, that we use periodic
boundary conditions, such that the reference solution ũ(1, x) at the end of the
simulation time t = 1, is identical to the initial condition, i.e., u0(x) ≡ u(1, x).
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(c) (d)

Fig. 8. The sequence of the four regular meshes with their mesh widths (a) A0

(h = 0.125), (b) A1 (h = 0.0625), (c) A2 (h = 0.03125), (d) A3 (h = 0.015625).

In order to study the influence of the mesh irregularity, i.e., the distortion
of the mesh on the accuracy of the numerical results, we compute the solu-
tion on sequences of three different triangular meshes. Mesh A is a regular
mesh obtained by adding the diagonal line in each square (see Figure 8),
mesh B is an irregular mesh (see Figure 9) obtained by slightly distorting
mesh A, and mesh C is a strongly distorted irregular mesh (see Figure 10).
All sequences of the three meshes consist of five successive refinement lev-
els and are constructed by uniformly refining the coarsest mesh, namely by
subdividing each triangular cells into four similar smaller ones. The refine-
ment level of a particular mesh is indicated by subscripts, e.g. A0 denotes
the original mesh A, whereas C3 indicates the third refinement of mesh C.
The first four refinement levels are displayed in Figures 8, 9, and 10. Note,
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(c) (d)

Fig. 9. The sequence of the four slighly irregular meshes with their mesh widths (a)
B0 (h = 0.125), (b) B1 (h = 0.0625), (c) B2 (h = 0.03125), (d) B3 (h = 0.015625).

that only for the regular mesh A the mesh spacing h is representative for the
entire mesh, whereas h can only be a rough indicator of the mesh width for
meshes B and C. However, all meshes consist of the same number of cells in
the corresponding refinement level in order to keep the computational cost
independent of the the mesh irregularity.

All computations are carried out for ADER2, ADER3, and ADER4
schemes, where we use nine stencils as constructed by the WENO reconstruc-
tion procedure of Subsection 3.2 , i.e., three centered stencils, three stencils
in the forward sectors Fj (see Figure 2), and three in the backward sectors
Bj (see Figure 3) as discussed in Subsection 3.2. The stencils consist of 4, 8,
or 13 cells for the ADER2, ADER3, or ADER4 schemes, respectively. The
time step τ is set to τ = 0.025 for the computations on meshes A0 and B0
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(c) (d)

Fig. 10. The sequence of the four strongly irregular meshes with their mesh widths
(a) C0 (h = 0.125), (b) C1 (h = 0.0625), (c) C2 (h = 0.03125), (d) C3 (h =
0.015625).

and to τ = 0.0125 on mesh C0. With successive refinement levels the time
step τ is halved accordingly. We remark, that the errors presented are those
of the cell averages ū of the solution u and the reference solution ũ, which are
computed by a 7-point quadrature rule for triangles (see [9]). Table 1 shows
the results for the approximation errors

Ep(h) = ‖u − ũ‖p ,

for the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞, together with the corresponding
convergence orders kp,
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Table 1. Results for the linear advection obtained by (a) ADER2, (b) ADER3,
and (c) ADER4 schemes on the regular meshes A0 to A4.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 3.1024 · 10−1 − 3.5613 · 10−1 − 5.0293 · 10−1 −
1/16 8.9463 · 10−2 1.79 9.9535 · 10−2 1.84 1.4043 · 10−1 1.84
1/32 2.2632 · 10−2 1.98 2.5127 · 10−2 1.99 3.5492 · 10−2 1.98
1/64 5.6576 · 10−3 2.00 6.2828 · 10−3 2.00 8.8815 · 10−3 2.00
1/128 1.4139 · 10−3 2.00 1.5703 · 10−3 2.00 2.2205 · 10−3 2.00

(a)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 3.4715 · 10−1 − 4.0503 · 10−1 − 5.8055 · 10−1 −
1/16 5.0290 · 10−2 2.79 5.7626 · 10−2 2.81 8.1474 · 10−2 2.83
1/32 6.1105 · 10−3 3.04 6.7352 · 10−3 3.10 9.1247 · 10−3 3.16
1/64 6.1757 · 10−4 3.31 6.8527 · 10−4 3.30 9.5297 · 10−4 3.26
1/128 7.1885 · 10−5 3.10 7.9826 · 10−5 3.10 1.1223 · 10−4 3.09

(b)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.1148 · 10−1 − 1.3002 · 10−1 − 1.9584 · 10−1 −
1/16 3.9053 · 10−3 4.84 4.4563 · 10−3 4.87 8.8605 · 10−3 4.47
1/32 2.2444 · 10−4 4.12 2.4633 · 10−4 4.18 3.4535 · 10−4 4.68
1/64 1.4011 · 10−5 4.00 1.5064 · 10−5 4.03 2.0771 · 10−5 4.06
1/128 8.2222 · 10−7 4.09 9.1268 · 10−7 4.04 1.3338 · 10−6 3.96

(c)

kp =
log

(
Ep(h) /Ep(h/2)

)
log(2)

,

obtained by ADER2, ADER3, and ADER4 schemes on the sequence of regu-
lar meshes A0 to A4. Tables 2 and 3 show the corresponding results obtained
on the sequences of the slighly and strongly irregular meshes B and C.

Note, that the ADER schemes reach the expected orders of convergence
in all norms as well as on all meshes. However, a closer look at the individual
approximation errors shows, that the slightly irregular meshes give the best
results. This is because many of the triangles of the mesh sequence B0 to B4

are closer to being equilateral than in the other cases of meshes A and C.
Indeed, as shown in [4, 20], the shapes of triangular cells play an important
role for the accuracy in the sense that simulation results obtained on triangu-
lar meshes of equilateral triangles are more accurate than those obtained on
other non-equilateral cells. These results are supported by our tests on ADER
schemes. Moreover, it is obvious that even for the strongly distorted mesh C
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Table 2. Results for the linear advection obtained by (a) ADER2, (b) ADER3,
and (c) ADER4 schemes on the slightly irregular meshes B0 to B4.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.1265 · 10−1 − 1.2826 · 10−1 − 2.7656 · 10−1 −
1/16 4.2780 · 10−2 1.40 4.8948 · 10−2 1.39 1.0326 · 10−1 1.42
1/32 1.1288 · 10−2 1.92 1.2915 · 10−2 1.92 2.6589 · 10−2 1.96
1/64 2.6513 · 10−3 2.42 3.0153 · 10−3 2.43 1.1444 · 10−2 1.41
1/128 6.3234 · 10−4 2.13 7.1838 · 10−4 2.14 3.7882 · 10−3 1.65

(a)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.4226 · 10−1 − 1.6078 · 10−1 − 2.7919 · 10−1 −
1/16 1.6160 · 10−2 3.14 1.8617 · 10−2 3.11 3.9276 · 10−2 2.83
1/32 1.5446 · 10−3 3.39 1.8346 · 10−3 3.34 4.2469 · 10−3 3.21
1/64 2.0259 · 10−4 3.40 2.2524 · 10−4 3.51 4.2128 · 10−4 3.87
1/128 2.4139 · 10−5 3.17 2.6835 · 10−5 3.17 5.1008 · 10−5 3.14

(b)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 2.9912 · 10−2 − 3.4907 · 10−2 − 7.2935 · 10−2 −
1/16 1.1801 · 10−3 4.66 1.5787 · 10−3 4.47 5.2470 · 10−3 3.80
1/32 6.9519 · 10−5 4.09 8.9930 · 10−5 4.13 3.2150 · 10−4 4.03
1/64 6.4714 · 10−6 3.97 8.0984 · 10−6 4.03 3.1137 · 10−5 3.91
1/128 4.4070 · 10−7 4.00 5.5669 · 10−7 3.99 2.2974 · 10−6 3.88

(c)

we still get very satisfying results, indicating that the proposed ADER scheme
combined with the discussed WENO reconstruction technique seems to be a
very useful and robust approach applicable to strongly distorted unisotropic
meshes.

Nonlinear Advection. For the nonlinear problem we solve the two-
dimensional inviscid Burgers equation

ut +
(

1
2
u2

)
x1

+
(

1
2
u2

)
x2

= 0 , (22)

a nonlinear example of equation (1), with the initial condition

u0(x) = u(0, x) = 0.3 + 0.7 sin
(
2π(x1 + x2)

)
on the computational domain Ω = [−0.5, 0.5]× [−0.5, 0.5]. The computations
are carried out for the time interval I = [0, 1

4π ], such that no discontinuity has
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Table 3. Results for the linear advection obtained by (a) ADER2, (b) ADER3,
and (c) ADER4 schemes on the strongly irregular meshes C0 to C4.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.3924 · 10−1 − 1.6233 · 10−1 − 3.9986 · 10−1 −
1/16 3.2158 · 10−2 2.11 3.8800 · 10−2 2.06 1.4476 · 10−1 1.47
1/32 6.8809 · 10−3 2.22 8.3858 · 10−3 2.21 3.9424 · 10−2 1.88
1/64 1.6080 · 10−3 2.10 1.9787 · 10−3 2.08 1.0345 · 10−2 1.93
1/128 3.8924 · 10−4 2.05 4.8469 · 10−4 2.03 3.1769 · 10−3 1.70

(a)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 2.7500 · 10−1 − 3.0955 · 10−1 − 4.9177 · 10−1 −
1/16 3.8493 · 10−2 2.84 4.4821 · 10−2 2.79 9.5172 · 10−2 2.37
1/32 4.5424 · 10−3 3.08 5.3011 · 10−3 3.08 1.1456 · 10−2 3.05
1/64 5.2333 · 10−4 3.12 6.0649 · 10−4 3.13 1.2106 · 10−3 3.24
1/128 6.1609 · 10−5 3.09 7.1088 · 10−5 3.09 1.4629 · 10−4 3.05

(b)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.6326 · 10−2 − 7.9679 · 10−2 − 1.5932 · 10−1 −
1/16 3.9170 · 10−3 4.08 5.2793 · 10−3 3.92 1.3527 · 10−2 3.56
1/32 2.0676 · 10−4 4.24 2.7034 · 10−4 4.29 8.8686 · 10−4 3.93
1/64 1.3002 · 10−5 3.99 1.5726 · 10−5 4.10 5.3229 · 10−5 4.06
1/128 7.7907 · 10−7 4.06 9.5160 · 10−7 4.05 3.7559 · 10−6 3.82

(c)

developed yet, i.e., the solution is still smooth at the end of the simulation
time. Again, periodic boundary conditions are used. Note, that this initial
condition leads to a transonic rarefaction.

Then, the same sequences of meshes A, B, and C as shown in Figures 8,
9, and 10 are used as in the linear case. The cell averages of the exact solution
ũ are calculated via the 7-point quadrature rule [9], where the values at each
quadrature point is calculated via Newton’s method.

Analogously to the linear case, Tables 4, 5, and 6 show the errors Ep(h) of
the cell averages at the end of the simulation together with the experimental
orders of convergence kp for the ADER2, ADER3, and ADER4 schemes on
the meshes A0 to A4, B0 to B4, and C0 to C4, respectively. In analogy to
the results for the linear problem the considered ADER schemes achieve the
expected orders of convergence. Only the orders k∞ of the ADER4 scheme
on the strongly distorted mesh sequence C0 to C4 seem not to reach the
expected order of 4 (see Table 6 (c)). We believe that this is due to the
appearance of long and thin triangles, which in turn may lead to reconstruc-
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Table 4. Results for Burgers equation obtained by (a) ADER2, (b) ADER3, and
(c) ADER4 schemes on the regular meshes A0 to A4.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.3523 · 10−2 − 1.5406 · 10−2 − 4.5874 · 10−2 −
1/16 3.4015 · 10−3 1.99 4.2354 · 10−3 1.86 9.9464 · 10−3 2.21
1/32 8.1563 · 10−4 2.06 1.0681 · 10−3 1.99 2.6907 · 10−3 1.89
1/64 1.9851 · 10−4 2.04 2.6442 · 10−4 2.01 6.7492 · 10−4 2.00
1/128 4.8844 · 10−5 2.02 6.5561 · 10−5 2.01 1.6728 · 10−4 2.01

(a)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 2.4460 · 10−2 − 2.6815 · 10−2 − 4.6138 · 10−2 −
1/16 3.2812 · 10−3 2.90 3.9929 · 10−3 2.75 8.3484 · 10−3 2.47
1/32 3.2445 · 10−4 3.34 4.4015 · 10−4 3.18 1.0869 · 10−3 2.94
1/64 3.3403 · 10−5 3.28 4.6285 · 10−5 3.25 1.2003 · 10−4 3.18
1/128 3.9009 · 10−6 3.10 5.4216 · 10−6 3.09 1.4117 · 10−5 3.09

(b)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.4417 · 10−3 − 8.5263 · 10−3 − 2.1361 · 10−2 −
1/16 3.2915 · 10−4 4.29 4.9585 · 10−4 4.10 1.3426 · 10−3 3.99
1/32 2.0740 · 10−5 3.99 3.5896 · 10−5 3.79 1.2353 · 10−4 3.44
1/64 1.6025 · 10−6 3.69 2.6907 · 10−6 3.74 9.0486 · 10−6 3.77
1/128 1.1391 · 10−7 3.81 1.8737 · 10−7 3.84 5.7273 · 10−7 3.98

(c)

tion polynomials of rather poor approximation quality, due to degenerate
one-sided stencils. The stencil construction discussed in Subsection 3.2 uses
a sectoral search of subsequent von Neumann neighbours of increasing levels.
Therefore, a very thin triangular cell with a very small angle leads to a very
narrow sectors Fj and Bj , which in turn results in very elongated stencils
with shapes preferring a particular direction. The resulting reconstruction
of rather low approximation quality then influences the computation of the
fluxes and finally causes errors that appear especially in the ‖ · ‖∞ norm.

This effect, however, was not seen in the linear case. We believe, that in
the linear case, the applied mesh sequences were fine enough to discretise the
smooth solution u to reach the expected convergence orders. In the nonlinear
example, the simulation time T = 1

4π was chosen to keep the solution u
smooth, but steep gradients are present. We think, that these gradients are
not sufficiently well-resolved by the mesh sequence C0 to C4 and therefore,
the expected order is not quite reached. Further mesh refinement should help
to eliminate this effect.
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Table 5. Results for Burgers equation obtained by (a) ADER2, (b) ADER3, and
(c) ADER4 schemes on the regular meshes B0 to B4.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.4816 · 10−2 − 2.1592 · 10−2 − 8.9534 · 10−2 −
1/16 5.0152 · 10−3 1.56 6.8720 · 10−3 1.65 3.2865 · 10−2 1.45
1/32 1.3421 · 10−3 1.90 1.8877 · 10−3 1.86 1.0561 · 10−2 1.64
1/64 3.4067 · 10−4 1.98 4.8618 · 10−4 1.96 2.7014 · 10−3 1.97
1/128 8.3667 · 10−5 2.03 1.2018 · 10−4 2.02 7.0141 · 10−4 1.95

(a)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.2429 · 10−2 − 1.5481 · 10−2 − 4.7784 · 10−2 −
1/16 1.6329 · 10−3 2.93 2.2922 · 10−3 2.76 1.0174 · 10−2 2.23
1/32 1.9838 · 10−4 3.04 3.0528 · 10−4 2.91 2.1328 · 10−3 2.25
1/64 2.7484 · 10−5 3.31 4.0679 · 10−5 3.37 2.8764 · 10−4 3.35
1/128 3.5762 · 10−6 3.04 5.1999 · 10−6 3.06 4.9262 · 10−5 2.63

(b)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 2.9430 · 10−3 − 3.9772 · 10−3 − 1.6612 · 10−2 −
1/16 2.2322 · 10−4 3.72 3.5916 · 10−4 3.47 1.5177 · 10−3 3.45
1/32 1.9599 · 10−5 3.51 3.7513 · 10−5 3.26 2.7872 · 10−4 2.44
1/64 1.7003 · 10−6 4.09 2.9834 · 10−6 4.24 2.9170 · 10−5 3.78
1/128 1.3478 · 10−7 3.78 2.4466 · 10−7 3.72 2.6691 · 10−6 3.56

(c)

6.2 Computational Efficiency

An important consideration, when applying numerical schemes to particular
problems is their computational efficiency, which is a measure of reaching a
desired accuracy in a particular computing time. In general, there are two
possibilities to enhance the accuracy of a given scheme. First, the same scheme
can be used on a finer discretisation, i.e., on smaller cells, or secondly a higher
order version of the scheme can be used. Either possibility leads to an increase
in computation time. Therefore, it is important to investigate which option
provides the desired accuracy in less computational time. In other words the
following question has to be answered: Is it more efficient to use a simple
and fast low-order scheme on fine meshes or to use a more sophisticated and
slower scheme of higher order on rather coarse meshes?

In this subsection, we numerically evaluate the proposed ADER schemes
with respect to computing time and achieved accuracy which should help
to answer the above question. Therefore, we record the CPU time used by
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Table 6. Results for Burgers equation obtained by (a) ADER2, (b) ADER3, and
(c) ADER4 schemes on the regular meshes C0 to C4.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 2.4789 · 10−2 − 3.5598 · 10−2 − 1.2987 · 10−1 −
1/16 8.1998 · 10−3 1.60 1.1486 · 10−2 1.63 6.5593 · 10−2 0.99
1/32 2.2506 · 10−3 1.87 3.2835 · 10−3 1.81 2.7181 · 10−2 1.27
1/64 5.5952 · 10−4 2.01 8.4517 · 10−4 1.96 9.1484 · 10−3 1.57
1/128 1.3480 · 10−4 2.05 2.0520 · 10−4 2.04 2.5284 · 10−3 1.86

(a)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 2.1345 · 10−2 − 2.7487 · 10−2 − 8.6973 · 10−2 −
1/16 3.0335 · 10−3 2.81 4.4508 · 10−3 2.63 1.9878 · 10−2 2.13
1/32 3.8506 · 10−4 2.98 6.4792 · 10−4 2.78 5.4981 · 10−3 1.85
1/64 4.5916 · 10−5 3.07 7.6192 · 10−5 3.09 6.2541 · 10−4 3.14
1/128 5.5909 · 10−6 3.04 9.2328 · 10−6 3.04 8.5906 · 10−5 2.86

(b)

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 5.6973 · 10−3 − 8.1636 · 10−3 − 4.3144 · 10−2 −
1/16 5.1513 · 10−4 3.47 9.2607 · 10−4 3.14 5.0294 · 10−3 3.10
1/32 3.9238 · 10−5 3.71 7.8427 · 10−5 3.56 6.1687 · 10−4 3.03
1/64 2.7966 · 10−6 3.81 6.0176 · 10−6 3.70 5.2142 · 10−5 3.56
1/128 1.8851 · 10−7 3.89 4.4105 · 10−7 3.77 5.6319 · 10−6 3.21

(c)

the different ADER schemes in order to compute the various steps necessary
to complete one time step. As an example we choose the computation of
the solution of the nonlinear advection equation (22) with the four ADER
schemes on the slighly irregular mesh B2 shown in Figure 9 (c), which consists
of 2048 fixed cells. We remark, that all computations have been carried out
with MATLAB 6 Release 13 on a PC (model: IBM 236623G) with processor
type Intel Pentium(R) 4 1600MHz.

Table 7 shows the CPU times in seconds needed to complete the differ-
ent steps of each ADERm scheme, m = 1, ..., 4. Here, ts denotes the time
in CPU seconds required to construct the stencils, tr is the time to com-
pute the reconstruction polynomials, and to is the time required for all other
computations, such as the flux evaluation and the update of cell averages.
Note, that to also includes the Lax-Wendroff procedure described in Subsec-
tion 4.2 to replace the time derivatives by space derivatives. The total time
ttot indicates the required CPU seconds in order to complete one time step.
It is obvious, that with increasing order of accuracy m an ADERm scheme
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Table 7. CPU seconds for the different computational step of ADER schemes.

ADER1 ADER2 ADER3 ADER4

ts 0 0.058 0.208 0.467
tr 0 2.429 2.948 4.001
to 0.426 0.430 0.448 0.481

ttot 0.426 2.917 3.604 4.949

Table 8. Factors indicating the slowdown of ADER schemes.

ADER1 ADER2 ADER3 ADER4

1 6.8 8.5 11.6
1 1.2 1.7

1 1.4

becomes more expensive. Note, that the main contribution to the increasing
total CPU times ttot is caused by ts for the stencil construction and tr for the
reconstruction, whereas the increase in to is almost negligible. Table 8 shows
the factors that indicate the slowdown of an ADER scheme, when increasing
the order of accuracy. The factors represent the ratios of the times ttot nor-
malized to ADER1 (first row), ADER2 (second row), or ADER3 (third row).
For example, we can read from Table 8 that the CPU time for an ADER4
scheme is 11.6 times larger than that of an ADER1 scheme, or 1.7 times
larger than that of an ADER2 scheme, etc. However, due to the higher order
of accuracy, the higher order ADER schemes can be applied to much coarser
meshes, which reduces the computational time as discussed below.

Figure 11 shows, how the approximation error E1(h), obtained by the four
different ADER schemes, decreases with decreasing mesh width h. The plot
also shows, that for ADER schemes of higher order the errors decrease very
rapidly, if the mesh is refined. Recall, that the number N of required mesh
cells for a two-dimensional problem is N ∼ h−2. The time to compute new
cell averages at the next time step depends linearly on N , i.e., ttot ∼ N . To
give an example, let us look at an error of E1(h) = 10−3 in Figure 11, where
the ADER2, ADER3, and ADER4 schemes require h ≈ 0.028, h ≈ 0.055
and h ≈ 0.1 to reach the desired accuracy. Therefore, the ADER2 scheme
needs about (0.1/0.028)2 ≈ 12 times more cells and the ADER3 requires
about (0.1/0.055)2 ≈ 3 times more cells than ADER4. Now, as the CPU
time for one time step for the ADER4 scheme is only 1.7 times larger than
for ADER2 and only 1.4 times larger than for ADER3 (see Table 8), the
ADER4 scheme turns out to be much more efficient. In other words, we have
to combine the results of Figure 11 with those in Table 7 to decide, which
scheme gives the desired accuracy at the lowest overall computational time.
These results are shown in Figure 12. The CPU time is normalized by the
CPU time of the ADER1 scheme on the coarsest mesh B0. Coming back to the
above example of E1 = 10−3, Figure 12 indicates, that the ADER2, ADER3,
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Fig. 11. Accuracy of ADER schemes for different mesh width h, for ADER1 (top),
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and ADER4 schemes require CPU times of about 150, 50, and 20 seconds,
respectively. Note, that extrapolating the results the ADER1 scheme would
require a CPU time larger than 103 to reach the desired error of E1 = 10−3.
We also remark, that for results of low accuracy, i.e., of a rather large error
E1 ≈ 10−2, ADER1, ADER2, and ADER3 require roughly the same CPU
time. There, the saving of mesh cells just balances the additional time used
per time step.

In general, our results in Figure 12 show, that for problems with smooth
solutions higher order schemes are more efficient than low order schemes with
globally refined meshes, especially when highly accurate results are desired.
In order to enhance the accuracy of the proposed ADER schemes even more,
especially for solutions with discontinuities, we combine the ADER schemes
with the ideas of adaptive mesh refinement in order to reduce numerical
smearing. Details of our adaptive mesh strategy are discussed below.

7 Adaption Rules

One important feature of our ADER schemes on unstructured triangulations
is the time dependent adaptive mesh. Adaptivity requires the modification of
the triangulation T during the simulation in order to be able to balance the
two conflicting requirements of good approximation quality and small compu-
tational costs. In fact, for the sake of reducing the computational complexity
we wish to reduce the number of cells, whereas for the sake of good approxi-
mation quality we prefer to use a fine mesh and therefore increase the number
of cells.

We have combined the proposed ADER schemes with the ideas of the
adaption strategy, that has been discussed in previous work [5, 6, 18] and has
proved to be efficient and robust. Here, we briefly review the basic ideas of
the adaption strategy.

7.1 Error Indication

As described in [5, 6] we use a customized error indicator in order to adap-
tively modify the triangulation T . A significance value η� for each cell T� ∈ T
is required to reflect the local approximation quality of the cell average ū�.
These significances η�, � = 1, ...,#T , are used in order to flag single triangles
as to be refined or to be coarsened.

Definition 11. Let η∗ = max1≤�≤#T η�, and let θcrs, θref be two tolerance
values satisfying 0 < θcrs < θref < 1. We say that a cell T ∈ T is to be
refined, iff η� > θref · η∗, and T is to be coarsened, iff η� < θcrs · η∗.

In our numerical experiments, we let θcrs = 0.01 and θref = 0.05 Note that a
cell T cannot be refined and be coarsened at the same time; in fact, it may
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neither be refined nor be coarsened. In order to define the error indicator η�

we first need to specify a set of neighbouring cells for each triangular cell
T ∈ T .

Definition 12. Let T be a conforming triangulation. Then for any triangle
T� ∈ T the set

KM (T�) = {T ∈ T : T ∩ T� is edge of T� or node of T� and T �= T�}

is called Moore neighbourhood6 of T� and all triangles T ∈ KM (T�) are
called Moore neighbours of T�.

An example of a Moore neighbourhood is displayed in Figure 13. Following

Fig. 13. A triangle T (dark shaded) with its Moore neighbours (light shaded).

along the lines of [13], and assuming that each cell average value ū� is assigned
to the barycenter ξ� of cell T�, i.e., ū� ≡ ū(ξ�), the error indicator is then given
by

η� = |ū(ξ�) − s(ξ�)|, (23)

where for the Moore neighbourhood KM (T�) of T� the thin plate spline inter-
polant s ≡ sKM

in (23), satisfying the interpolation conditions s(ξν) = ū(ξν)
for all Tν ∈ KM (T�), is of the form

s =
∑

Tν∈KM

cν‖ · −ξν‖2 log(‖ · −ξν‖) + p .

Here, p is a linear polynomial in two variables and ‖ · ‖ denotes the Eu-
clidean norm. For more details concerning thin plate spline interpolation,
due to Duchon [10], and related interpolation methods, we refer to the recent
tutorial [17].

Hence, the thin plate spline interpolant s in (23) matches current cell
average values of ūν in the Moore neighbourhood of the cell T�, but not at T�

itself, i.e., we have ū(ξ�) �= s(ξ�) in general. Now the error indication η� for
the cell T� is small whenever the reproduction quality of ū� by s around the

6This is a standard term used in the theory of cellular automata.
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cell T� is good. In contrast, a high value of η� typically indicates that ū� is
subject to strong variation locally around T�. Indeed, this observation relies
on available local error estimates for thin plate spline interpolation (see the
corresponding discussion on this in [5, 6]). We remark that the error indicator
allows us to locate discontinuities of the solution u quite effectively. This is
supported by the numerical results in the following Section 8.

7.2 Coarsening and Refinement

We balance the approximation quality and the required computational com-
plexity by inserting new nodes at the barycenter of triangles T ∈ T , whose
error indicator η is large (refinement), whereas we remove nodes from the
triangulation T in regions where η is small (coarsening).

Coarsening. A triangular cell T� ∈ T is coarsened by the removal of its three
vertices (nodes) from the current triangulation T . This is done as follows. If
all triangular cells adjacent to a node (vertex) ξ are flagged as to be coarsened,
then the node ξ is removed from the triangulation T . The triangulation is
then updated by local Delaunay retriangulation.

Refinement. A cell T� ∈ T is refined by the insertion of its barycenter ξ�

into T and a subsequent local Delaunay retriangulation. This means that
the number of nodes in the triangulation T is increased by one, ξ�, and the
triangulation T is updated accordingly.

8 Reservoir Flow Simulation

The exploration and production of hydrocarbon reservoirs is still the most
important technology to develop natural energy sources. Thereby, fluid flow
simulators play a key role in order to help oil companies to make effective use
of expensive data collected through field measurements, data processing and
interpretation. In fact, simulation is one of the few tools available for mod-
elling changes in a reservoir over time. Combined with other measurements
it improves the degree of confidence in the understanding of reservoirs and
heavily influences reservoir management decisions.

A central problem in petroleum reservoir simulation is to model the dis-
placement of one fluid by another within a porous medium. A typical problem
is characterized by the injection of a wetting fluid (e.g. water) into the reser-
voir at a particular location displacing the non-wetting fluid (e.g. oil), which
is extracted or produced at another location. The nature of the front between
the water and the oil is of primary importance and the goal is to withdraw
as much oil as possible before water reaches the production location.

The physical phenomena that govern these enhanced oil recovery pro-
cesses typically have important local properties. Thus, numerical schemes
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used to simulate these effects must be able to resolve such critical local fea-
tures at high accuracy. In addition, in order to be useful for large scale sim-
ulations, a suitable scheme should be efficient and therefore adaptive. The
interaction between the two fluids, water and oil, typically results in a moving
shock front, whose shape and evolution needs to be predicted numerically.
As supported by the numerical results in this section, ADER schemes on
arbitrary triangulations, in combination with adaptive mesh refinement, are
promising tools for such and similar purposes.

8.1 Reservoir Flow Formulation

Some general aspects of the reservoir flow problem and the corresponding
fundamental equations of reservoir flow are reviewed briefly. A detailed dis-
cussion of the governing equations and their derivation from physical con-
straints is given in the textbook [2] of Aziz and Settari. Petroleum reservoirs
consist of hydrocarbons and other chemicals trapped in the pores of a rock.
If the rock permits and if the fluid is sufficiently forced, the fluid can flow
from one location to another within a reservoir. By the injection of additional
fluids and the release of pressure during the production phase the flow rates
and the mixture of chemicals can be controlled by petroleum engineers.

A popular test case is given by the two-phase Buckley-Leverett model [7].
This rather simplified model considers reservoirs containing some mixture
of water and oil, both incompressible fluids. Diffusive effects, such as capil-
lary pressure or the physical mixing of fluids (as a result of flow through a
large number of randomly connected rock pores) are ignored. Furthermore,
gravitational forces are neglected.

Each fluid (phase) is conserved, and so their behaviour is modelled by the
following mass balance equations.
Mass conservation of water:

φ(x)
∂

∂t
uw(t, x) + ∇aw(t, x) = 0 . (24)

Mass conservation of oil:

φ(x)
∂

∂t
uo(t, x) + ∇ao(t, x) = 0 . (25)

Here, the scalar field φ(x) describes the porosity of the rock, the vector fields
aw(t, x) and ao(t, x) are the phase velocities, and uw(t, x) and uo(t, x) are
the saturations of water and oil, respectively. Note, that uw and uo are the
fractions of the pore space, that are filled with water or oil, i.e., 0 ≤ uw,o ≤ 1.
Equations (24) and (25) indicate, that a change of mass for each phase in
a given region of a reservoir is equal to the net flux of the phase across the
boundary of that region. Therefore, the class of finite volume schemes, such
as the proposed ADER schemes, are obviously a natural choice from available
numerical methods to solve such problems.
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By definition, the saturations uw and uo must fulfill the condition

uw(t, x) + uo(t, x) = 1 , (26)

as the pore space is assumed to be entirely filled with a mixture of water and
oil. The phase velocities are determined by Darcy’s law

aw(t, x) = −K(x)
krw(uw)

µw
∇p(t, x) ,

ao(t, x) = −K(x)
kro(uo)

µo
∇p(t, x) ,

where K(x) is the permeability tensor of the porous rock and krw(uw) and
kro(uo) are the relative permeabilities of the water and oil phase. The perme-
ability tensor K(x) of a rock describes its ability to transmit fluids, whereas
the relative permeabilities depend on the actual saturation of the rock of the
according phase. The variables µw and µo denote the viscosities of the two
fluids7 and p(t, x) is the reservoir pressure8. Here, the ratios

Mw(uw) =
krw(uw)

µw
and Mo(uo) =

kro(uo)
µo

are usually termed the phase mobilities, and so the total mobility is given by
M = Mw + Mo. Adding equations (24) and (25) and using the relation (26),
yields

∇ ·
(
aw(t, x) + ao(t, x)

)
= ∇ · a(t, x) = 0 ,

which states that the total fluid velocity a(t, x) is divergence-free. Now, the
phase velocity of water can be expressed as

aw(t, x) = a(t, x) · fw(uw) ,

where fw(uw) is the flux tensor9, given by the ratio

fw(uw) =
Mw(uw)
M(uw)

,

between the phase mobility Mw(uw) and the total mobility M . To further
simplify the notation, we let u = uw and f(u) = fw(uw).

7Permeabilities and viscosities are typically determined by laboratory measure-
ments of core samples.

8The reservoir pressure can be estimated from down-hole measurements in the
field.

9In the field of reservoir simulation and engineering, the flux tensor fw(uw)
usually is called fractional flow of the water phase.



372 M. Käser, A. Iske

Then, the equations describing reservoir fluid flow are given by the
Buckley-Leverett equation

∂

∂t
u + a · ∇f(u) = 0 , (27)

the incompressibility relation

∇ · a(t, x) = 0 , (28)

and Darcy’s law
a(t, x) = −K(x)M(u)∇p(t, x), (29)

where 0 ≤ u ≤ 1 is the water saturation.
In reservoir modelling, the function f : u → f(u) is monotonically

increasing and satisfies 0 ≤ f(u) ≤ 1 for all u ∈ [0, 1]. In the following
applications, all computations are based on the Corey model (cf. [2]) with
quadratic relative permeabilities of the form

krw(u) = u2 , kro(uo) = (1 − u)2.

This yields

M(u) =
u2

µw
+

(1 − u)2

µo

for the total mobility, and so in this case the fractional flow function f is of
the form

f(u) =
u2

u2 + µw

µo
(1 − u)2

, (30)

also often referred to as the Buckley-Leverett flux, and used to model the
displacement of oil by water.

8.2 The Five-Spot Problem

In the following, the computational domain Ω = [−0.5, 0.5]× [−0.5, 0.5] rep-
resents a homogeneous medium, with φ(x) ≡ 1 and K(x) ≡ 1 for all x ∈ Ω.
Furthermore, we assume unitmobility, M(u) ≡ 1 in (29), and keep the reser-
voir pressure constant in time, i.e., p(t, x) = p(x). Therefore, the total velocity
field a(t, x) in (29) has to be computed only once at the beginning of a simula-
tion and is then independent of time, i.e., a(t, x) = a(x). In general, the total
velocity field will change during the simulation as the mobility M(u) depends
on the changes in the saturation u. Substituting equation (29) in (28) yields
a set of elliptic equations, that would have to be solved for the pressure,
which in turn provides an updated total velocity field a(t, x) through (29).
However, as we focus on solving the nonlinear conservation law (27), we
separate the coupled differential equations for saturation and pressure and
neglect the pressure equation. This can be justified by the fact, that for the
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Fig. 14. A model of the five-spot problem with one production well in the center
and four injection wells at the corners.

chosen five-spot problem the pressure changes have rather small effects on
the solution 10. The main idea of using this approximation is to evaluate the
performance of the proposed ADER schemes of Chapter 3 as adaptive un-
structured saturation solvers. We demonstrate how adaptive ADER schemes
cope with velocity fields that typically arise in reservoir simulations.

Now, let us consider the standard test case of the five-spot problem. Here,
one production well P in the center of the computational domain Ω is sur-
rounded by four injection wells Ij , j = 1, ..., 4, located at the corners of the
model as displayed in Figure 14. Assume a thin oil bearing layer trapped
between two sealing layers as shown in Figure 14, which allows us to reduce
the problem to two-dimensions by taking a (x1-x2)-slice of the model at the
depth of the oil bearing layer. The distances between a particular location
x = (x1, x2) in the computational domain Ω and the wells are given by

rIj
(x) =

√
(x1 − x1,Ij

)2 + (x2 − x2,Ij
)2 , j = 1, . . . , 4,

rP (x) =
√

(x1 − x1,P )2 + (x2 − x2,P )2 ,

for the four injection wells Ij and the production well P . Then, we define a
scalar pressure field through

p(x) = log
(
rP (x)

)
−

4∑
j=1

log
(
rIj

(x)
)

.

10Even in sophisticated, full reservoir simulators the pressure field and therefore
the velocity field are recomputed infrequently compared to the saturation.
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Fig. 15. The total velocity field is displayed as streamlines (a) and as velocity
vectors (b) for the five-spot problem. The plots in (c) and (d) show the zoomed
section of the top left quarter.

We then use Darcy’s law (29) and the assumptions discussed above to
compute the total velocity field. To be more precise the components of the
velocity field a(x) = a(x1, x2) = (a1(x1, x2), a2(x1, x2)) are given by

a1(x1, x2) = − x1−x1,P

(x1−x1,P )2+(x2−x2,P )2 +
∑4

j=1

x1−x1,Ij

(x1−x1,Ij
)2+(x2−x2,Ij

)2

a2(x1, x2) = − x2−x2,P

(x1−x1,P )2+(x2−x2,P )2 +
∑4

j=1

x2−x2,Ij

(x1−x1,Ij
)2+(x2−x2,Ij

)2 .
(31)

Figure 15 displays the above velocity field a(x) by showing its streamlines and
the corresponding plots of the vector field. It can be shown by differentiation,
that this velocity field a(x) is divergence-free, as required by equation (28).
Note, that it is not uncommon to have orders of magnitude differences in the
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absolute values of the total velocity a, with high velocities near the wells and
lower velocities in places between the wells.

8.3 Results of ADER Schemes

Here, we solve the Buckley-Leverett equation (27) with the total velocity field
a given in (31) and the fractional flow specified in (30). We set the radius of
the injection wells to R = 0.05 and use the initial condition

u0(x) =

{
1 for ‖x − cj‖ ≤ R, j = 1, . . . , 4,

0 otherwise,

where the points cj ∈ R
2 are the centers of the four injection wells. This way,

we model pure water injection into an initially 100% oil saturated reservoir.
Note, that periodic boundary conditions can be used for this model problem.

In order to see the differences between low and high order ADER schemes,
we first show the color-coded water saturation obtained with an adaptive
ADER1 scheme in Figure 16. The shocks representing the interface between
pure oil and a mixture of oil and water are moving from the corners of the
model reservoir towards its center. This way, oil in the porous medium is
displaced by water, i.e., it is effectively pushed towards the production well.
Before the shocks actually reach the production well at the center11, the
sucking effect of the production well becomes obvious, which is due to the
increasing total velocity resulting from the pressure drop at the production
well.

The underlying adaptive mesh is displayed in Figure 17, which clearly
shows, how the locally refined mesh adaptively captures the shocks. After a
shock has passed a particular location, the mesh is recoarsened, if the error
indicator allows, in order to reduce the computational costs. However, the
mesh behind the shocks remains finer than it was originally, which is due
to the rarefaction following the moving shock, where the saturation of water
slowly increases. In fact, in the zones of the rarefactions in Figure 16 one can
recognize the shapes of some triangular cells emerged from the recoarsening.

Figure 18 shows the results (on the five-spot model problem) obtained
by an adaptive ADER4 scheme. The shocks are resolved sharper in this case
compared to the ADER1 results of Figure 16. Moreover, the rarefaction ap-
pears to be much smoother, there is no structure of an underlying triangular
mesh visible. However, if we look at the corresponding adaptive mesh in Fig-
ure 19, we see that there is even a coarser mesh in the areas of the rarefactions.
In fact, behind the shocks the error indicator allows the recoarsening of the
mesh to its coarsest level. This is due to the increased approximation quality
of the higher order ADER4 scheme, which uses piecewise cubic polynomials
instead of piecewise constant functions to reconstruct the water saturation

11The time, when water arrives at the production well, is called the breakthrough.
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(a) (b)

(c) (d)

(e) (f)

Fig. 16. [Reproduced in colour in Plate 31 on page 443.] Five-spot problem com-
puted with ADER1. Color plots indicating the injection of water during the simu-
lation at six different times, (a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e)
t = t480; and (f) t = t600.
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(e) (f)

Fig. 17. Five-spot problem computed with ADER1. Adaptive triangulation during
the simulation at six different times, (a) t = t0; (b) t = t120; (c) t = t240; (d)
t = t360; (e) t = t480; and (f) t = t600.



378 M. Käser, A. Iske

(a) (b)

(c) (d)

(e) (f)

Fig. 18. [Reproduced in colour in Plate 32 on page 444.] Five-spot problem com-
puted with ADER4. Color plots indicating the injection of water during the simu-
lation at six different times, (a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e)
t = t480; and (f) t = t600.
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(e) (f)

Fig. 19. Five-spot problem computed with ADER4. Adaptive triangulation during
the simulation at six different times, (a) t = t0; (b) t = t120; (c) t = t240; (d)
t = t360;(e) t = t480; and (f) t = t600.
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function u. Therefore, coarser meshes can be used without loosing accuracy.
In Figure 20 the number of cells of the adaptive mesh is plotted versus time
for the four different ADERm schemes, m = 1, ..., 4. Clearly, if the order of
the ADERm scheme is increased, the number of required cells is reduced.
Note, that the reduction in mesh cells going from an ADER1 to an ADER2
scheme is significant, whereas by going to higher order ADER schemes this
reduction is not very remarkable. This is due to the fact, that the shock
is always resolved with a very fine mesh, whereas in the the regions of the
rarefaction wave the error estimator already allows an ADER2 scheme to
recoarsen the mesh almost to its initial state.
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Fig. 20. Number of cells during the simulation for four different ADER schemes:
ADER1 (top), ADER2, ADER3, and ADER4 (bottom).

8.4 Comparison with Reference Solutions

In order to confirm the good performance of the proposed ADER schemes, we
compare their numerical results, on the five-spot problem, with two different
reservoir simulators, whose results we use as reference solutions. The chosen
simulators ECLIPSE and FrontSim are two commercial software packages
used by the majority of reservoir simulation groups in oil industry. We remark,
that these simulators solve the coupled system of the pressure and saturation
equations (29)-(27) and therefore consider the effect of pressure changes due
to changes in saturation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 21. [Reproduced in colour in Plate 33 on page 445.] Five-spot problem com-
puted with ECLIPSE. Color plots indicating the injection of water during the simu-
lation at six different times, (a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e)
t = t480; and (f) t = t600.
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(a) (b)

(c) (d)

(e) (f)

Fig. 22. [Reproduced in colour in Plate 34 on page 446.] Five-spot problem com-
puted with FrontSim. Color plots indicating the injection of water during the simu-
lation at six different times, (a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e)
t = t480; and (f) t = t600.
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Fig. 23. A comparison of saturation profiles obtained by different ADER schemes
together with the reference solutions computed with ECLIPSE and FrontSim.
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This in turn typically causes changes in the total velocity field, but as
confirmed by the following results, these effects can be neglected for the
homogeneous five-spot problem. The reference solutions are both computed
on a two-dimensional Cartesian mesh consisting of 100×100 rectangular cells,
which are fixed throughout the simulation.

Figure 21 shows the water saturation as obtained with the simulator
ECLIPSE. It is obvious, that the moving shocks are much more smeared than
in the case of the ADER schemes. On the other hand, the general behaviour
of the solutions is very similar as well as the jump height of the discontinuity.
The results obtained by the simulator FrontSim are displayed in Figure 22.
Here, the numerical diffusion is very small and the interface at the oil-water
contact is resolved very sharply.

In order to get a better comparison of results of the different ADER
schemes and the reference solutions of ECLIPSE and FrontSim, we look at a
cross section of the water saturation u. Figure 23 shows the water saturation
profile taken at the time step t = t360 along the line x1 ∈ [−0.5, 0.5] cutting
through the computational domain Ω at x2 = 0.45. The plot in Figure 23 (a)
displays an overlay of all saturation profiles obtained by the schemes for
ADERm schemes, m = 1, ..., 4 together with the two reference solutions. In
addition, the theoretical expected jump height of the shock is drawn as dotted
line. We see, that all methods lead to very similar results and the expected
jump at the oil-water contact is more or less reproduced by all schemes. To
see the differences between the chosen methods in more detail, we zoom in
at an area around the left shock as indicated in Figure 23 (a) and show the
magnified plot in Figure 23 (b).

Obviously, the reference solution computed by ECLIPSE is heavily smeared
by numerical diffusion. This is because ECLIPSE is based on a finite volume
scheme of (merely) first order. This is improved by the adaptive ADER1
scheme, which is also of first order, but resolves the shock much better due
to the local mesh refinement in the vicinity of the shock. Increasing the order
of the ADER schemes, the shock becomes sharper (see ADER2, ADER3
and ADER4 in Figure 23(b)). However, the highest resolution of the shock
is obtained by FrontSim, which is based on a front tracking scheme which
is well-known for its small numerical diffusion. Nevertheless, the saturation
profile obtained by ADER4, which belongs to the class of front capturing
schemes, is very close to the good results of FrontSim.

9 Conclusion

We presented an extension of the new ADER schemes on adaptive, unstruc-
tured triangulations in order to solve linear and nonlinear scalar conservation
laws. Originally, the ADER approach based on Arbitrary high order DERiva-
tives was introduced by Toro, Millington and Nejad in [38] for linear problems
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on Cartesian meshes and further expanded by Toro and Titarev to nonlin-
ear problems in [36, 39, 41]. As ADER schemes belong to the class of finite
volume methods, we discuss in detail the reconstruction of high order polyno-
mials from cell average values on unstructured triangular meshes. We apply
the WENO reconstruction technique in order to achieve a high order approx-
imation quality while avoiding spurious oscillations of the solution. To this
end, a customized stencil selection algorithm is introduced that relies on the
idea of a sectoral search. The resulting piecewise polynomial approximation
of the solution provides generalized Riemann problems at the cells interfaces,
which can be solved by reducing them to a series of conventional derivative
Riemann problems. Furthermore, the Lax-Wendroff procedure uses the so-
lutions of these Riemann problems in order to determine high order fluxes
across the cell interfaces and update the cell average values for each time
step.

The performance of the proposed ADER schemes is evaluated with respect
to experimental orders of convergence and their computational efficiency. The
results show, that using higher order ADER schemes, although increasing
the computational costs per time step, finally pay off due to the tremendous
reduction in mesh cells required to reach a desired accuracy. We then optimize
the computational efficiency by combining the high order ADER approach
with the strategy of adaptive mesh refinement. Therefore, the corresponding
error estimator and the customized adaption rules for refining and coarsening
the triangular mesh are explained in detail. Finally, the adaptive ADER
schemes are applied to the nonlinear Buckley-Leverett equation in the form
of the five-spot problem, a well-known model problem in the oil industry
describing two-phase fluid flow in petroleum reservoirs.

Further developments of the proposed ADER schemes are subject to cur-
rent research and may include more elaborate mesh adaption methods, that
work with isotropic refinement strategies or mesh alignment methods where
edges of particular cells are aligned parallel to the orientation of the shock
front. Encouraging results of such mesh alignment approaches are shown
in [21]. Additionally, the coupling of mesh adaptivity with time adaptivity
may be a further issue to use small time steps only in small cells and allow
for larger time steps in larger cells in order to reduce numerical diffusion. The
approach in [40] to increase the accuracy of ADER schemes by using a TVD
flux instead of a first order monotonic flux as a building block for designing
high order ADER schemes also appears very promising and deserves further
investigation.
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Optimal Multivariate Interpolation

Tobias Werther

University of Vienna, Department of Mathematics, Austria

Summary. In this chapter, we are concerned with the problem of multivariate
data interpolation. The main focus lies on the concept of minimizing a quadratic
form which, in practice, emerges from a physical model, subject to the interpolation
constraints. The approach is a natural extension of the one-dimensional polynomial
spline interpolation. Besides giving a basic outline of the mathematical framework,
we design a fast numerical scheme and analyze the performance quality. We finally
show that optimal interpolation is closely related to standard linear stochastic es-
timation methods.

1 Introduction

In many geophysical applications we have a finite data set consisting of a
scalar vector γ = (γ1, . . . , γn)T of observations measured at corresponding
known locations z1, . . . , zN , and we want to find an analytical or discrete
representation of a surface f which interpolates or approximates these sam-
pling values at the given nodes. The finite node set Z = {z1, . . . , zn} contains
points of some prescribed domain Ω ⊂ R

d where d = 1, 2, 3, . . . denotes the
dimension.

In a mathematical setting, the multivariate interpolation problem consists
of seeking a function

f : Ω → R

that satisfies the interpolation condition

f(zj) = γj , j = 1, . . . , n,

or, in short,
f |Z = γ . (1)

Obviously, one can easily draw infinitely many solutions for this problem.
In order to pick out a single one, we argue by following an isotropic physical
model originated from the theory of elasticity.

Consider an ideal thin plate whose thickness can be neglected. If no forces
are acting, the plate is assumed to be flat. Relative to a given coordinate
system, this implies that the flat surface can be represented by a linear poly-
nomial
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f(x) = d0 + d1x1 + d2x2 , x = (x1, x2) ∈ Ω ⊂ R
2 .

If we put point forces to the plate by, for example, attaching lead weights at
the prescribed nodes, the plate will be deformed into a bending surface. The
corresponding physical model is described by the potential energy Ũ of the
deformed plate which is a quadratic homogeneous function of the reciprocal
curvature [16]. If we approximate the reciprocal curvature by derivatives of
second order, we arrive at the mathematical model

−U =
∫ ∣∣∣∣∂2f

∂x2
1

(x)
∣∣∣∣2 + 2

∣∣∣∣ ∂2f

∂x1x2
(x)

∣∣∣∣2 +
∣∣∣∣∂2f

∂x2
2

(x)
∣∣∣∣2dx . (2)

By applying the Hamilton principle of least action [16], it follows that the
surface f satisfies the inhomogeneous biharmonic plate equation

∆2f = w (3)

where w stands for the acting forces and ∆ is the Laplace operator defined
by

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

.

The biharmonic equation (3) constitutes the mathematical model of the
deformation of thin plates. The right-hand side of (3) is a weighted sum∑n

j=1 cj δzj
of point-measures at the given nodes, where the scalar cj denotes

the amplitude of the point-force acting on f at zj . The derivatives are to be
understood in the distributional sense.

From this model, we see that if a fundamental solution of ∆2 is given by
a function φ, i.e.,

∆2φ = δ0

then the function

f(x) =
n∑

j=1

cjφ(x − zj) + p(x) (4)

satisfies equation (3) for any polynomial p(x) = d0 + d1x1 + d2x2 that is in
the nullspace of ∆2, i.e., ∆2p = 0.

It is well known that the continuous function

φ(x) = (x2
1 + x2

2) log(x2
1 + x2

2)
1/2 , x ∈ R

2,

is (up to some constant) a fundamental solution of ∆2 on R
2. The function

f is called thin plate spline interpolant.
The condition ∆2p = 0 implies that whenever p is the possible deformed

surface, all amplitudes cj must vanish which, by hypothesis on the thin plate,
only leaves the flat solution

p(x) = d0 + d1x1 + d2x2 .
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We have now come very close to the solution of a surface exposed to point
forces. In order to find the unknowns c1, . . . , cn and d0, d1, d2, recall that we
originally want the surface to attain the sampling values γ1, . . . , γn at the
corresponding nodes z1, . . . , zn. This requirement combines the forces and
the sampling values through the linear equations

γi =
n∑

j=1

cjφ(zi − zj) + d0 + d1zi1 + d2zi2 , i = 1, . . . , n. (5)

Note that the linear system (5) is under-determined. For covering the
remaining degrees of freedom, we add constraints in terms of moment condi-
tions. The zero moment and the first moments of the amplitudes of the forces
are assumed to vanish, i.e.,

N∑
j=1

cj =
N∑

j=1

cj zj1 =
N∑

j=1

cj zj2 = 0 . (6)

The linear system (5) together with (6) induces a linear system that is
non-singular, see, for example, [9]. Inverting the corresponding matrix yields
explicit coefficients for (4) which, in turn, provide an analytical representation
of the interpolating surface, cf. Figure 1.

Fig. 1. Interpolating thin plate

In one dimension there is the analogue of the bending beam which leads
to cubic splines when applying the same arguments, cf. [1].

The aim of this chapter is to build a rigorous mathematical framework on
the top of this model and to extend the approach to a generalized minimum
curvature principle in the context of multivariate data interpolation.
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2 The Mathematical Model

The mathematical model is valid in any dimension, in particular, for two and
three dimensional data. For a dimension independent notation, it is conve-
nient to use the multi-index notation. A d-tuple of non-negative integers

α = (α1, . . . , αd)

is called a multi-index. We define

• the order of α by |α| = α1 + · · · + αd,
• the monomial of order |α| + 1 by xα = xα1

1 · · ·xαd

d , x ∈ R
d,

• α! = α1! · · ·αd! ,
• the Euclidean norm for x ∈ R

d by |x| =
√

xT x = (x2
1 + · · · + x2

d)
1/2,

• the differential operator Dα = ∂α1

∂x
α1
1

· · · ∂αd

∂x
αd
d

.

We will only consider function spaces that are embedded in the space of
distributions D′ which is defined as the topological dual of D, the space of
all infinitely differentiable functions with compact support, see [11].

Let m be a positive integer. For the mathematical description of the mul-
tivariate interpolation model, we restrict the class of possible signals to the
linear space

Bm =
{

f ∈ D′
∣∣∣ Dαf ∈ L2(Rd), |α| = m

}
(7)

where L2 denotes the space of square integrable functions.
In what follows, we assume

m > d/2 . (8)

Then, the Sobolev Lemma implies that all elements of Bm are continuous
functions on R

d, see [12]. As a consequence, the interpolation problem (1) is
well-defined.

We endow Bm with the semi-inner product

(
f
∣∣ g )

m
=

∑
|α|=m

m!
α!

∫ d

R

Dαf(x)Dαg(x)dx (9)

and the corresponding semi-norm

|f |m =
√(

f
∣∣ f )

m
(10)

with nullspace Pd
m, the linear space of d-variate polynomials of order ≤ m

whose dimension is

Q =
(

m − 1 + d

d

)
.

The optimal solution of the interpolation problem (1) is the function s in
Bm that solves the optimization problem
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min
f |Z=γ

|f |m . (11)

If the node set Z is unisolvent, i.e.,

p ∈ P : p(zi) = 0 , i = 1, . . . , n, =⇒ p = 0 ,

it is known that (11) admits a unique solution, cf. [6].
For an analytical representation of s, we need the notion of a kernel func-

tion. Following [14], there exists a function

φ(x,y) = φ(x − y) , (x,y ∈ R
d) ,

with the property that(
f ,

n∑
i=1

ciφ(x − xi)

)
m

=
n∑

i=1

cif(xi) (12)

for all coefficients c1, . . . , cn and nodes x1, . . . ,xn that satisfy
n∑

i=1

cixα
i = 0 , |α| < m .

Such a function φ is often referred to as kernel or semi-kernel of Bm. Note
the similarity of the last condition with the vanishing moments (6).

The optimal interpolation s is then of the form

s(x) =
n∑

i=1

ciφ(x − zi) + p(x)

where p is a polynomial in Pd
m and the coefficients satisfy

n∑
i=1

cixα
i = 0 , |α| < m . (13)

Both the interpolation constraints and requirement (13) yield a quadratic
system of linear equations which provide the coefficients c1, . . . , cn and the
polynomial p.

Duchon has shown that possible kernel functions are the radial thin plate
splines

φ(x,y) = |x − y|2m−d, if d is odd,

φ(x,y) = |x − y|2m−d log |x − y|, if d is even.

The name thin plate splines refers to the problem of elasticity as discussed
in the introduction. Duchon’s idea to identify these functions is based on the
concept of fundamental solutions of the iterated Laplace operator

(−∆)m .

Indeed, up to a constant, radial thin plate splines are fundamental solutions
of this operator.
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3 A Generalized Model

We now generalize the setting of the previous section in order to cover a wide
range of optimal interpolation which is more flexible for application purposes.

Let Ω be an open and bounded domain in R
d with smooth boundaries.

Let us consider the space

Bm =
{
f ∈ D′(Ω)

∣∣Dαf ∈ L2(Ω), |α| = m
}

.

Again, for m > d/2, Bm is a linear space of continuous functions, and the
interpolation problem (1) is well defined.

For optimal interpolation, we need to specify a semi-norm. Let us consider
piecewise continuous weight functions wα, |α| = m, that are positive and
bounded. The bilinear form(

f
∣∣ g )

m,w
=

∑
|α|=m

∫
Ω

Dαf(x)Dαg(x)wα(x)dx (14)

defines a semi-inner product on Bm with nullspace Pd
m.

Following [14], there exists a function φ on Ω × Ω satisfying the kernel
property (12) with respect to (14). As a consequence, the unique minimal
semi-norm interpolation for a data vector γ and a corresponding unisolvent
node set Z enjoys the representation

s(x) =
n∑

i=1

ciφ(x, zi) + p(x) . (15)

The coefficients and the polynomial can be computed as above.
For numerical simulations, there is, however, a significant drawback of

the analytical representation (15). In general, we can not expect an explicit
closed form of the kernel function φ.

In the sequel, we propose a numerical scheme that approximates the so-
lution s without any a-priori knowledge of the kernel function.

4 A Finite Dimensional Model

A widely used interpolation method for two- and three-dimensional data in
geoscience is the minimum curvature interpolation proposed by Briggs [2].
Briggs’ gridding technique is derived from the discretization of a continuous
model. Replacing integrals by finite sums and derivatives by finite differences
leads to a finite dimensional model whose solution approximates the minimal
semi-norm solution constrained to the interpolation condition. This method
needs to transfer sampling nodes to a regular grid causing some inaccuracy for
the interpolation. Altogether, it is related to the concept of finite difference
methods.
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The approach that we describe in this section, is more in the spirit of finite
elements which are successfully applied in the numerical treatment of elliptic
differential equations, see [3]. Instead of discretizing an infinite dimensional
model, we start with a finite dimensional function space V in which we can
solve the constrained optimization problem exactly.

Let us consider a semi-Hilbert space S of continuous real-valued functions
defined on a bounded domain Ω ⊂ R

d with semi-norm | · |S and associated
nullspace P. The most well-known example of this setting is the homogeneous
Sobolev space Bm with semi-norm |·|m and nullspace Pd

m as introduced above.
Let V be a finite-dimensional subspace of S with P ⊂ V.

Given data consisting of nodes z1, . . . , zn in Ω and corresponding scalar
measurements γ1, . . . , γn, we look for an interpolant of the data which has
minimal semi-norm. We transfer the problem from S to the finite dimensional
semi-Hilbert subspace V.

Let b1, . . . , br be a basis of V, i.e., every function v ∈ V has a unique
expansion

v =
r∑

i=1

ci bi

with c = (c1, . . . , cr)T ∈ R
r. The squared semi-norm of v is simply

|v|2S =
(
v
∣∣ v )S = cT Bc ,

where
(
·
∣∣ · )S denotes the semi-inner product of S, and B is the Gramian

matrix with entries

Bi,j =
(
bi

∣∣ bj

)
S , i, j = 1, . . . , r .

Then, the minimal semi-norm interpolation problem in V turns into an
quadratic optimization problem with linear constraints of the form

min
c∈Rm

Pc=γ

cT Bc , (16)

where P is the n× r matrix with entries Pij = bi(zj) and γ = (γ1, . . . , γn)T .
Assuming P to be surjective, which guarantees that there exists, at least,

one function in V interpolating the given data, we know that (16) has a unique
solution in V as long as Z is unisolvent which is not a strong restriction and
will always be assumed.

The standard approach in optimization theory for solving (16) makes use
of a vector of so-called Lagrange multipliers µ = (µ1, . . . , µr)T , see [5]. In this
way, (16) can be transformed into a system of linear equations of the form(

B P
PT 0

)(
c
µ

)
=
(

0
γ

)
. (17)

Solving (17) yields the coefficient vector c for the minimal semi-norm
interpolant in V of the given data.
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The system (17) provides the computational scheme of the general concept
of solving the minimal semi-norm interpolation problem in finite dimensional
spaces. In practice, numerical stability and low complexity impose require-
ments on the choice of the basic functions b1, . . . , br which, in turn, depends
on the semi-norm. Both, numerical stability and low complexity are often
achieved when the system matrix is sparse. In the following, we will use com-
pactly supported basis functions in order to satisfy the stated requirements.

In practice, a semi-norm has to be specified. Instead of the minimum
curvature principle used by Briggs, we consider the second order homogeneous
Sobolev semi-norm

|g|2 =

⎛
⎝∫

Ω

∑
|α|=2

2
α!

∣∣Dαg(x)
∣∣2dx

⎞
⎠1/2

. (18)

We restrict our attention to d = 1, 2, 3. In this way, we make sure that the
considered functions are continuous. The multi-index notation is convenient
for having only one description covering all three cases.

Let Ω denote the open unit cube in R
d, i.e.,

Ω = (0, 1)d.

Then, the linear space of all function on Ω for which (18) is finite, is a
semi-Hilbert space S with nullspace Pd

2 , the space of d-variate polynomials
of order ≤ 2.

We will use uniform translates of the tensor product of cubic B-splines
that are dilated according to a resolution parameter N . These translates
constitute a basis for a finite dimensional subspace V of S. Since these basis
functions have finite support the Gramian matrix B is sparse. Moreover, due
to fundamental properties of cubic B-splines, Pd

2 is included in V.
In the next section we discuss the bivariate case. The one- and three-

dimensional cases are analogue, though complexity increases with the dimen-
sion.

5 The Bivariate Cubic B-Spline Model

Consider the bivariate homogeneous Sobolev semi-norm

|g|2 =

(∫ 1

0

∫ 1

0

(
∂2g(x, y)

∂x2

)2

+ 2
(

∂2g(x, y)
∂x∂y

)2

+
(

∂2g(x, y)
∂y2

)2

dxdy

)1/2

with a three-dimensional nullspace P2
2 , spanned by the polynomials 1, x, y.

For a resolution parameter N with corresponding lattice constant

h = 1/(N − 1) ,
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Fig. 2. Mesh covering [0, 1]2 with • indicating centers of B-splines (N = 7).

we cover the unit square by a uniform mesh with nodes

xi = (i − 1)h, (i = −2,−1, . . . , N + 2, N + 3) ,

yj = (j − 1)h, (j = −2,−1, . . . , N + 2, N + 3) .

We further consider the tensor product of the centered cubic B-spline

b(x, y) = b(x) b(y) , (19)

where

b(x) =
1
h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x + 2h)3 , x ∈ [−2h, h] ,

h3 + 3h2(x + h) + 3h(x + h)2 − 3(x + h)3 , x ∈ [−h, 0] ,

h3 + 3h2(h − x) + 3h(h − x)2 − 3(h − x)3 , x ∈ [0, h] ,

(2h − x)3 , x ∈ [h, 2h] ,

0 , otherwise .

We define the finite-dimensional space V as the linear span of the basis
functions

bi,j(x, y) = b(x − xi, y − yj) , i, j = 0, . . . , N + 1 ,

with supp(bi,j) = [xi−2, xi+2] × [yj−2, yj+2]. The non-zero part of the ba-
sis functions that lies outside the unit square is not considered. From the
properties of the one-dimensional B-spline basis, it follows that P2

2 ⊂ V.
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Fig. 3. Centered cubic B-spline tensor-product in two dimensions, N = 7.

In the constrained optimization problem (16) we look for a function of
the form

v(x, y) =
N+1∑
i=0

N+1∑
j=0

ci,j bi,j(x, y)

that minimizes |·|s subject to interpolating data γ1, . . . , γn at the correspond-
ing nodes z1 = (x1, y1), . . . , zn = (xn, yn).

For practical purposes, it is convenient to reshuffle the two-dimensional
index into a one-dimensional index in the following way:

(i, j) → k = i + (N + 2)j .

Then, we have

v(x, y) =
N2+2N∑

k=0

ck bk(x, y) .

We also need the backward transformation

k → (ik, jk)

with jk = �k/(N + 2)� and ik = k − (N + 2)jk.
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The entries of the symmetric Gram matrix B of size (N + 2)2 are given
by

Bk,l =
∫ 1

0

∫ 1

0

∂2bk(x, y)
∂x2

∂2bl(x, y)
∂x2

dxdy︸ ︷︷ ︸
=BI

k,l

+ 2
∫ 1

0

∫ 1

0

∂2bk(x, y)
∂x∂y

∂2bl(x, y)
∂x∂y

dxdy︸ ︷︷ ︸
=BII

k,l

+
∫ 1

0

∫ 1

0

∂2bk(x, y)
∂y2

∂2bl(x, y)
∂y2

dxdy︸ ︷︷ ︸
=BIII

k,l

.

Applying the above index transformation and using symmetry properties
of the tensor product, we can simplify BI

k,l according

BI
k,l =

xik+2∫
xik−2

yjk−2∫
yjk+2

∂2bik
(x)bjk

(y)
∂x2

∂2bil
(x)bjl

(y)
∂x2

dxdy

=

(ik+1)h∫
(ik−3)h

(jk+1)h∫
(jk−3)h

bjk
(y)

d2bik
(x)

dx2
bjl

(y)
d2bil

(x)
dx2

dxdy

=

(ik+1)h∫
(ik−3)h

d2bik
(x)

dx2

d2bil
(x)

dx2
dx

(jk+1)h∫
(jk−3)h

bjk
(y)bjl

(y)dy (20)

and likewise BII
k,l and BIII

k,l . It follows that the value vanishes for

|ik − im| > 3 or |jk − jm| > 3 .

Hence, for every basis functions bk(x, y) there are only 49 possible contribu-
tions. Since the setting is shift invariant with respect to the lattice constant h,
we can compute one example and then shift the entries accordingly. Moreover,
the symmetry of the tensor product reduces the number of different cases.
Special attention has to be paid for basis functions near the boundaries.

The integrants in (20) are piecewise polynomials. Therefore, Bk,l can be
computed exactly. Since

|v|2S = cT Bc
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where c is the coefficient vector of the function v with the indexing described
above, the only case where the quadratic form cT Bc vanishes is for those
coefficient vectors that come from bivariate linear polynomials. In fact, we
can easily verify numerically, that the kernel (nullspace) of B has dimension
3 and that the kernel of B consists of bivariate polynomials of order ≤ 2.

The second matrix P = (bk(zl)) is also sparse. When discarding sampling
nodes such that in each cell of the lattice of size h there is at most one node,
it is most likely that the matrix P will be surjective.

Under the assumption that P is surjective, it easily follows that the system
matrix of

Bc + Pµ = 0

PT c = 0
(21)

is non-singular and the constrained optimization problem (16) has a unique
solution.

In order to increase the stability of the matrix of (21) for practical pur-
poses, it is recommended to equalize the magnitude of the entries of both
matrices B and P. If we divide, for example, the matrix B by the factor 105,
the condition number of (17) usually decreases significantly. Note that the
optimization problem remains unchanged.
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Fig. 4. Typical behavior of the condition number of (17) in 2D.

Whenever we want to resolve small features, we have to increase the reso-
lution parameter N . This increases the size of the system matrix (17). Limits
to the resolution are set by the complexity of the system (17) which, in the
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two-dimensional case, is of order O(N2(log N)2) where N is the resolution
parameter. This has been verified numerically, cf. Figure 5.
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Fig. 5. Complexity of (17) in 2D.

In what follows, we compare the bivariate cubic B-spline interpolation
with Duchon’s surface spline interpolation.
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Fig. 6. Cubic B-spline interpolation versus surface spline interpolation.

The following Figure 7 shows the convergence of the relative error between
successive B-spline solutions when increasing the resolution parameter.
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Fig. 7. Convergence of the relative absolute error in 2D.

An explicit convergence proof for Sobolev norms can be found in [15].
Let us fix the sampling nodes and increase the domain Ω. What we observe

is that, similar to the surface spline, the bicubic B-spline interpolant tends
to a linear polynomial.

Fig. 8. Cubic B-spline versus surface spline interpolation in the far-field.

The B-spline model provides a method to compute an approximate of the
minimal semi-norm interpolation on Ω. We emphasize, that in contrast to
the global surface spline solution, no kernel function is explicitly used and
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that unlike Briggs’ method, the B-spline solution is an exact interpolation
and does not involve boundary conditions.

6 Best Linear Unbiased Prediction

Linear models of random fields are represented through the first two moments,
namely the mean and the covariance. The mean function is usually not known
but assumed to be a low dimensional linear parametric model. Suppose that
we have a random field Z(x) of the form

Z(x) =
r∑

i=1

βi mi(x) + ε(x)

where ε(x) is a zero-mean random field with known covariance function Cε,
m1(x), . . . , mr(x) are given real-valued functions, and β = (β1, . . . , βr)T is a
vector of p unknown parameters. Often, the mean is a linear combination of
first order polynomials indicating the trend or drift of the random field.

We observe the data vector

γ = (z(z1), . . . , z(zn))T

for some scalar function z, and wish to predict Z(z0). We may look for the
minimal squared error prediction among all predictors of the form

Z̃(z0) = cT Z + d0,

where Z = (Z(z1), . . . , Z(zn))T , subject to the constraint that the prediction
be unbiased, i.e.,

E
[
Z̃(z0)

]
= E

[
Z(z0)

]
for all β. The unbiasedness constraint is equivalent to

cT Mβ + d0 = mT β

for all β, or
d0 = 0 and MT c = m ,

where M = (mi(zj))T is an n × r matrix and m = (m1(z0), . . . , mr(z0))T .
The goal is then to minimize the mean-squared error

E
[
(Z(z0) − cT Z)2

]
subject to the condition MT c = m(z0). If c solves this constrained minimiza-
tion problem, then cT γ is called a best linear unbiased predictor for Z(z0).

Recall that the mean-squared error is just the mean of the prediction
error plus its variance. Because of the unbiasedness condition the mean of
the prediction vanishes and we obtain
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E
[
(Z(z0) − cT Z)2

]
= C(z0, z0) +

n∑
i=1

n∑
j=1

cicjC(zi, zj) − 2
n∑

i=1

ciC(z0, zi)

= k0 + cT Kc − 2cT k ,

where
k0 = C(z0, z0),

k = (C(z0, z1), . . . , C(z0, zn))T ,

K =
(
C(zi, zj)

)
1≤i,j≤n

.

According to classic optimization techniques, the optimal solution of the
minimization problem subject to the unbiasedness constraint must realize the
minimum of the Lagrange function

L(c1, . . . , cn, µ1, . . . , µr) = E
[
(Z(z0) − cT Z)2

]
− 2µT

(
MT c − m)

where µ = (µ1, . . . , µr)T are the so-called Lagrange multipliers [5]. After
differentiating the Lagrange function L with respect to c1, . . . , cn, µ1, . . . , µr

and equating the result at zero we arrive at the linear system(
K M
MT 0

)(
c
µ

)
=
(

k
m

)
. (22)

If K and M are of full rank, then the system matrix of (22) is invertible, and
we obtain (

c
µ

)
=
(

K M
MT 0

)−1 ( k
m

)
.

Since (
K M
MT 0

)−1

=
(

U V
VT W

)
with

U = K−1 − K−1M(MT K−1M)−1MT K−1 ,

V = K−1M(MT K−1M)−1 ,

W = −(MT K−1M)−1 ,

we have c = Uk + Vm, so that the resulting predictor is

cT Z = kT K−1(Z − Mβ̂) + mT β̂ ,

where β̂ = VT Z is the generalized least square estimator of β, see [13].
If m(x) ≡ 1, so that the mean of the process is assumed to be an unknown

constant, then best linear unbiased prediction is called ordinary kriging. Best
linear unbiased prediction for a more general mean function m is known as
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universal kriging and best linear prediction with the mean assumed to be
zero is a special case of simple kriging.

When Z(x) is Gaussian, then the best linear unbiased prediction has a
Bayesian interpretation, see [7] and [10].

We now turn our attention to the dual formulation of kriging which leads
us to linear equations of the same type as those that arise from interpolation
with radial basic functions such as thin plate splines. Some of the basic ideas
can be found in [4]. The first studies go back to [8].

Recall that the coefficient vector c of the best linear unbiased prediction
at z0 depends obviously on the location z0. Often, one is not only interested
in a single location but in many locations usually forming a regular grid.
It seems that in this case we have to compute a coefficient vector for every
grid node. However, the matrix to invert does not depend on the prediction
nodes but only on the given locations. The dual formulation of kriging is
an elementary transcription of the linear model such that the alternative
coefficients are independent of the nodes of interest.

The estimate z̃(z0) is given by the inner product of the vector c = c(z0)
and the observed data vector γ, i.e.,

z̃(z0) = cT γ .

With the above notation, we obtain

z̃(z0) = γT c

= (γT ,0T )
(

K M
MT 0

)−1( k
m

)

= (vT ,wT )
(

k
m

)
,

where the coefficient vectors v and w are given by(
v
w

)
=
(

K M
MT 0

)−1 (
γ
0

)

or implicitly, (
K M
MT 0

)(
v
w

)
=
(

γ
0

)
. (23)
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Note that this linear system is independent of the node z0. The estimator
z̃(z0) has now the form

z̃(z0) =
n∑

i=1

vi C(z0, zi) +
r∑

j=1

wj mj(z0) .

This is what is referred to as the dual formulation of kriging, see [4]. Instead
of a fixed location z0, any x ∈ Ω can be inserted in the formula and we obtain
the global estimator

z̃(x) =
n∑

i=1

vi C(x, zi) +
p∑

j=1

wj mj(x) . (24)

Similar equations can be obtained when replacing the covariance function by
the variogram, see [4]. Even though this estimator seems purely deterministic
the basic model functions C(x, zi) and mj(x) are derived from a probabilistic
model.

Observing that the only computational challenge is the invertibility of the
system matrix in (23), gives a different viewpoint of the interpolation method.
Indeed, one could ignore the stochastic interpretation and simply look for de-
terministic functions C(x,y) and m1(x), . . . , mr(x) with the proviso that the
system matrix be non-singular. Then, the function z̃(x) interpolates the data
z(z1), . . . , z(zn) at the given nodes z1, . . . , zn. This is the common viewpoint
in radial basic function interpolation such as surface spline interpolation [6].
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Summary. A method for discriminating between different reservoir flow models
using forward modeling and time-lapse seismic is presented. A rock-physical model
is used in order to generate synthetic time-lapse acoustic responses based on flow
model predictions. From the acoustic properties a pull-down caused by modifica-
tions in acoustic velocity is calculated and compared to real measurements. Full
synthetic seismograms are also generated. The method has been applied to the
Sleipner CO2 sequestration project where time-lapse seismic is used to monitor the
injected gas. Different vertical migration processes of the CO2 may explain the ob-
served time-lapse response. In this chapter, this new methodology is used in order
to discriminate between these processes.

1 Introduction

One of the few options for large-scale reduction of anthropogenic CO2 emis-
sions is to sequester CO2 into underground formations. Since September 1996,
Statoil has been applying this technology by injecting about 1 million tons of
CO2 per year into a highly-permeable, highly-porous saline aquifer located
in the Sleipner area in the North Sea at about 1,000 m depth. At the prevail-
ing reservoir condition the CO2 will be a low-viscosity fluid with a density
of about 650 kg/m3. The formation, the Utsira Sand, is homogeneous and
isotropic except for a set of almost horizontal, discontinuous shale layers [5].
The gas is injected near the base of the Utsira Sand which is about 200 m
thick near the injection site.

In order to monitor the CO2, repeated seismic surveys have been acquired.
The first seismic survey was acquired 1994, i.e., before the injection had
started. Repeated 3D surveys took place in 1999 and 2001 after three and five
years of injection, respectively. The seismic showed a clear response due to an
impedance-contrast caused by the injected CO2. As shown in Figure 1, nearly
horizontal reflectors were observed in the repeated seismic. These reflectors
were interpreted as accumulations of CO2 below the different shale layers,
which act as barriers to the vertical migration of the CO2.

A reservoir flow model was developed by Lindeberg et al. [4] in order
to study the dominant flow processes. The predicted CO2 distribution was
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Fig. 1. Inline sections from the 1994 and 1999 seismic, showing reflections caused
by the injected CO2 in the 1999 data. The pull-down is seen on the 1999 seismic
below the CO2.

matched with the seismic in an iterative process. The matching consisted in
predicting the same number of CO2 accumulations and approximately the
same extension of the individual accumulations as observed from the time-
lapse seismic.

In [4], mechanisms for the transport of CO2 through the shale layers
are investigated. These shale layers can either be semi-permeable, leading
to a dispersed flow between the layers, or the layers can be sealing with
localized holes conducting the CO2 in columns. In the first case, more water
will be in contact with the CO2 giving rise to a larger portion of the CO2

being dissolved in the water than in the second case. The question of how
much CO2 is dissolved in water needs essentially to be addressed in order to
predict the long-term fate of the CO2. However, due to tuning effects and
uncertainties in the acoustic properties of the injected CO2, it is a great
challenge to properly invert the time-lapse seismic, and consequently there
are inherent uncertainties in the matching between the seismic and the flow
model.

In this chapter, additional observations are therefore used in order to
distinguish between different possible flow models. The presence of CO2 in-
troduces a reduction in compressional wave velocity, which in turn results in
an increase of travel-time for reflections below the CO2. This pull-down can
be observed and quantified from the time-lapse seismic. A forward model-
ing of acoustic properties is performed from the flow model, and the modeled
pull-down is compared to the observed pull-down. This evaluation will reduce
both the uncertainties associated with the flow model and the uncertainties in
the rock-physical transforms. From the matched flow model and rock-physical
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model, a full synthetic seismic response is calculated and compared to the
real seismic by a consistency-check.

Fig. 2. Cross-sections of the predicted CO2 saturation in 1999, from Model I and
Model II.

2 Methodology

In this section, the flow model and rock-physical model are described. In
addition, the method for generating the synthetic response is outlined and
the way to quantify the pull-down is explained.

Flow models usually exhibit non-unique solutions, i.e., different models
may give rise to the same simulation results. In this case, we have considered
two different versions of the 3D flow model Lindeberg [4], each consisting of
428,400 grid cells. Each model simulates equal numbers and approximately
equal sizes of the high-concentration CO2 accumulations. Transmissibility
multipliers have been used to model the effect of the shale layers. In one
model, hereafter denoted as Model I, the shale layers are semi-permeable,
and in addition the layers contain one or two high-permeable holes. In the
second model, denoted as Model II, the layers are impermeable except for a
higher number of holes in each layer (in total about 300 holes). The position
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of the holes in Model II is stochastically distributed. In each model, the CO2

gets trapped below the shale layers. However, the distribution of CO2 in the
sand between the layers is very different for the two models, as shown in
Figure 2.

Fig. 3. Gassmann-modeled seismic velocity Vp in a CO2-water system as function
of the water saturation Sw. The density of CO2 is 650 kg/m3. The bulk modulus
of the CO2 varies from 0.01 to 0.4 GPa.

Since it is not possible to distinguish between these models solely by con-
sidering the high-concentration accumulations, we exploit a different observa-
tion from the 4D seismic, namely the pull-down. In order to derive pull-down
values from the simulation model, rock-physics modeling is needed. The rock-
physical modeling is based on the Gassmann equation. The input parameters
used have been determined from well log data by [1]. The density of the CO2

under reservoir conditions is about 650 kg/m3. The acoustic velocity is highly
sensitive to variations in the CO2 bulk modulus KCO2 , see Figure 3. Labora-
tory experiments indicate that the value of KCO2 is most likely  0.675 GPa.
In our study, the value of the CO2 bulk modulus is varied according to the
uncertainties in this parameter. There are uncertainties associated with other
parameters in the rock-physical model as well, but the variation of the bulk
modulus has the largest impact on the present results. From Figure 3 it is
seen that when KCO2 is low, even small values of the CO2 saturation lead to
a large drop in the velocity. Consequently, a flow situation with low-saturated
CO2 between the accumulations can lead to a very strong pull-down if KCO2

is low.
From the rock properties and the fluid properties in the flow model, acous-

tic velocities and impedances are calculated for each grid cell and each time
step in the model. The irregular simulation grid is then resampled to a regu-
lar, equidistant Cartesian grid, see [3]. While simulation grids may be tilted,
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the new grid lines in the depth direction are vertical. This grid can then be
converted from depth to travel-time, using the modeled velocities. The effect
of this depth to time conversion is illustrated in Figure 4. Using the acoustic
properties in the regular sampled grid, calculations of the synthetic pull-down
are straightforward. From the impedance, reflectivities can be calculated and
a full synthetic seismogram can be generated from a convolutional model.

1400 Vp(m/s) 2050

Fig. 4. [Reproduced in colour in Plate 35 on page 447.] Model I. P-velocity in
depth and time after a depth-to-time conversion.

There are different ways to measure the pull-down from seismic signals.
One method is to cross-correlate the seismic signals between the seismic sur-
veys, using only the signals from below the injected CO2 [2]. Also, direct
interpretations of seismic horizons below the CO2 can be compared, as indi-
cated in Figure 1. These two methods give the integrated time-delay, caused
by total volume of injected CO2.

3 Results

Maps showing the interpreted pull-down (two-way-time) measured by the
seismic in 1999 and 2001 are shown in Figures 5 and 6. It is shown that the
basic shape of the pull-down is similar for the two measurements, but the
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pull-down has increased and the 3D volume effected by the pull-down has
been extended, due to the additional CO2 injections between 1999 and 2001.
Moreover, Figures 5 and 6 show synthetically generated maps of the pull-
down. In order to incorporate uncertainties associated with the rock-physical
transformations, three different values of KCO2 are used. In order to evaluate
the migration mechanisms of the CO2, data from the two models are used.
Observe from Figures 5 and 6 that neither of the synthetically generated
pull-down-maps captures the exact shape of the map based on real data. The
pull-down of Model II varies quite rapidly laterally in contrast to the real
pull-down. The high-valued peaks of the pull-down of Model II are caused
by the vertical columns of CO2 above the high-permeable holes in the shale
layer. In Model I, the variation of the pull-down smoother, due to the presence
of low CO2-saturated rocks in the region between the shale layers.

Fig. 5. [Reproduced in colour in Plate 36 on page 448.] Comparison between real
and synthetic pull-down using three different values of KCO2 (from the 1999 data).
The pull-down is measured in TWT. The three upper synthetic images are gener-
ated from Model I, whereas the three lower are from Model II.

In order to compare the synthetic and real data, a pull-down volume is
calculated. This volume is the area integral of the pull-down, and hence it
is a quasi-volume with unit m2s. The results are shown in Figure 7 where a
continuous range of KCO2 is used. Based on both the 1999 and 2001 data, it
is seen that for most values of KCO2 the pull-down from Model II is underes-
timated. Only for very low values (< 0.005) of KCO2 the observed pull-down
volume is reproduced.
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Fig. 6. [Reproduced in colour in Plate 37 on page 448.] Comparison between real
and synthetic pull-down from the 2001 data.

Inline sections of synthetic seismograms are given in Figure 8. Even
though there is not an exact match, the seismic from Model I reproduce the
dominant features of the real seismic. In contrast, Model II gives a more noisy
pattern due to the strong lateral variations caused by the vertical columns
of CO2. The strong variations in the seismic from Model II indicate that
more advanced modeling, incorporating diffraction effects, should be used in
generating synthetic seismic from Model II.

4 Discussion and Conclusion

Based on our results, Model II, which transports the CO2 in distinct vertical
columns between the shale layers, give too small pull-down. The CO2 columns
are also strongly reflected in both the pull-down and the synthetic seismic.
This is not observed in the real seismic. The low CO2-saturated rock between
the shale in Model I, on the other hand, give a stronger pull-down. The lateral
variation of the pull-down and the synthetic seismic complies with the real
observations.

We therefore conclude that it is unlikely that the CO2 is solely transported
through a set of distinct holes in the shale layers having the size of the
simulation grid cell (about 30× 30m). Therefore, the shale layers seem to be
either semi-permeable, or they may have a more dense distribution of holes
of a smaller scale than the simulation cells.
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Fig. 7. 1999 and 2001 data. Pull-down volume from Model I (solid dark), Model
II (solid bright) compared to observed values from direct interpretation (solid hor-
izontal) and from cross-correlation (dotted horizontal [1]).

Fig. 8. Seismic difference images from real and synthetic data.
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Plate 1. [Figure 1 on page 3] Seismic section showing one example of a reflection
termination surface or sequence boundary. Reflection termination surfaces are the
boundaries of seismic bodies.

Plate 2. [Figure 13 on page 11] Segmentation of a two-dimensional inline of the
Barents Sea data set into different shapes and textures. This figure shows that a
manual interpretation is challenged when it comes to defining the lateral boundaries
of the mound shape in two dimensions, not mentioning three dimensions.
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Plate 3. [Figure 14 on page 12] Overlay of different colours onto the same inline
as for Figure 13. This represents a vision how a seismic data set should be seg-
mented into shapes and textures. Different colours correspond to different shapes
and textures. Compare Figure 13 for legend.
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(a) (b) (c)

Plate 4. [Figure 3 on page 27] Examples of the dip (b) and azimuth (c) attributes
computed from the seismic cube (a). For the dip cube, increasing dip is here encoded
from green through red to darker red. For the azimuth cube, yellow/green indicates
that the layers are dipping to the right, whereas pink indicate layers dipping to the
left.

(a) (b) (c) (d)

Plate 5. [Figure 4 on page 29] An example of a seismic cube with a chaotic pattern
representing a gas chimney is shown in (a), its dip and azimuth attributes in (b)
and (c) and a chaos texture attribute highlighting the gas migration path in (d).
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Plate 6. [Figure 5 on page 68] Corner pixels detected by the Harris corner detector
for k = 0.2, σ = 2.

(a) (b)

Plate 7. [Figure 6 on page 69] (a) The most significant 100 corner points for
k = 0.2, σ = 5 and (b) for k = 0.04, σ = 4.
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(a) (b)

(c) (d)

(e) (f)

Plate 8. [Figure 7 on page 71] (a) Binary image with corner points, (b) different
labels of each connected component, (c) binary image after small regions have been
thresholded away, (d) final result superimposed on the original image, (e) binary
image after very small regions have been thresholded away, (f) areas of interest.
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(a) Erosion (b) Dilation

(c) Erosion-Erosion (d) Dilation-Dilation

(e) Opening (f) Closing

Plate 9. [Figure 8 on page 72] Several morphological transformations.
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(a) (b)

(c)

Plate 10. [Figure 12 on page 77] (a) Image after thresholding the determinant of
tensor A with TA = 4000, (b) image after thresholding the determinant of tensor B
with TB = 3000, and (c) combination of results (a) and (b) with an AND operator.
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(a) (b)

Plate 11. [Figure 14 on page 79] (a) Final image of chaotic and mixed areas after
connected component analysis with TA = 4000, TB = 3000 and TC = 10, (b)
final image of chaotic and mixed areas after connected component analysis with
TA = 6000, TB = 2000 and TC = 20.
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(a) (b)

(c) (d)

Plate 12. [Figure 16 on page 81] (a),(c) Combination of both determinant and mag-
nitude methods, (b),(d) combination of both determinant and magnitude methods
after connected component analysis and region thresholding.
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(a) (b)

(c) (d)

Plate 13. [Figure 17 on page 82] (a) Histogram of the orientation image averaged
in windows, (b) final thresholded image, (c) areas of interest on the original cross-
section, and (d) areas of interest after connected component analysis.
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(a) (b)

Plate 14. [Figure 19 on page 84] (a) Chaotic region and mounds, (b) faults de-
tected.
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(a) input seismic (b) segmented seismic

Plate 15. [Figure 14 on page 263] From the input seismic a horizontal geo-body is
segmented. The resulting body is seen on the right.
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Plate 16. [Figure 3 on page 309] Workflow for seismic facies mapping using texture
attributes and 3D classification based on neural network algorithm.

Plate 17. [Figure 4 on page 310] Picking of training data done by digitising portions
of seismic patterns on seismic cross-sections. In this example six seismic facies or
textures were defined, and several calibration samples used for each facies. Training
data are picked on different sections within the zone of interest.
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Plate 18. [Figure 5 on page 311] Training data distribution in attribute space. Each
class defines a cluster in the attribute space, where training data can be checked
and edited.

Plate 19. [Figure 6 on page 311] Classification of seismic facies based on texture
attributes defines a geological/structural model. Using iterative and hierarchical
classification capability, seismic facies can be calibrated and assigned to lithology
and fluids using well data or another set of attributes such as amplitude-based, or
AVO data.
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Plate 20. [Figure 10 on page 316] Cell connection across fault plane. Left: Block
Centred (BC) grid. Right: Corner Point (CP) grid. Colour scale given by oil sat-
uration values. Fault plane is not taken into account with the BC grid. Cells are
connected according to their grid indices and not their physical location in space.

Plate 21. [Figure 11 on page 318] Automated voxel grid extraction. The inputs
are: voxel size (dX, dY, dZ), the Top and Bottom horizons (given in depth) and a
reference frame. The output is a voxel grid geometry in physical coordinates (X, Y,
Z).
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Plate 22. [Figure 12 on page 319] (A) The facies model captures implicitly discon-
tinuities related to faults as shown with the distribution of texture-based seismic
facies in three dimensions within the hanging wall and foot wall of a fault. The voxel
grid geometry defined for the reservoir model is superimposed on the facies model
to show how the facies will be associated to the voxels. The facies being located in
the centre of the voxel is used to define the property of the cell. (B) Distribution
of the facies within the voxel grid geometry.
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Plate 23. [Figure 13 on page 322] Map views of seismic facies 3D classification 8
ms above the base reservoir from (A) PP data (acoustic mode), and (B) PS data
(converted shear wave mode) viewed in PP time domain. The dotted lines represent
linear deformation features. The white outlines highlight a potential flat spot on
PP data (A) and a tuning effect or diagenesis effect on PS data (B).
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Plate 24. [Figure 14 on page 324] Distribution of potential sand injections mapped
by the red seismic facies from PS data above the top of the reservoir (some facies
are set to transparent on the display). The injected sands are mostly visible along
the margins of the main sand lobe and locally above it. The four wells displayed
show evidence of injected sands above the main reservoir body.
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Plate 25. [Figure 15 on page 325] Seismic cross-sections of multicomponent data:
PP data (upper section) and PS data in PP time (lower section).
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Plate 26. [Figure 16 on page 326] Stratal slice of the seismic facies model 8 ms
above the base of the Grane reservoir. The dark blue and light blue facies represent
flat continuous seismic facies and are calibrated as sands. The yellow and red facies
represent discontinuous and dipping seismic facies and are calibrated as shale prone
deformation features as indicated by the Gamma Ray log along a horizontal well.
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(a) (b)

Plate 27. [Figure 18 on page 331] Comparison of porosity at the top of the reser-
voir for the two voxel models. (a) Voxel model based on acoustic impedance only.
(b) Voxel model based on acoustic impedance and three-dimensional seismic facies
results.

(a) (b)

Plate 28. [Figure 19 on page 331] (a) Illustration of the top reservoir horizon (in
ms). (b) Porosity distribution along the top of the reservoir for the voxel model
based on acoustic impedance and three-dimensional seismic facies results.



442 Colour Plates

(a) (b)

Plate 29. [Figure 20 on page 332] Voxel model based on acoustic impedance and
three-dimensional seismic facies results. (a) Porosity distribution; (b) initial oil
saturation distribution together with the locations of the wells.

(a) (b)

(c) (d)

Plate 30. [Figure 21 on page 332] Voxel model based on acoustic impedance and
three-dimensional seismic facies results. Simulation results for the oil saturation at
day (a) 300, (b) 1800, (c) 3300, and (d) 4800 of the production.
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(a) (b)

(c) (d)

(e) (f)

Plate 31. [Figure 16 on page 376] Five-spot problem computed with ADER1. Color
plots indicating the injection of water during the simulation at six different times,
(a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e) t = t480; and (f) t = t600.
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(a) (b)

(c) (d)

(e) (f)

Plate 32. [Figure 18 on page 378] Five-spot problem computed with ADER4. Color
plots indicating the injection of water during the simulation at six different times,
(a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e) t = t480; and (f) t = t600.



Colour Plates 445

(a) (b)

(c) (d)

(e) (f)

Plate 33. [Figure 21 on page 381] Five-spot problem computed with ECLIPSE.
Color plots indicating the injection of water during the simulation at six different
times, (a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e) t = t480; and (f)
t = t600.
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(a) (b)

(c) (d)

(e) (f)

Plate 34. [Figure 22 on page 382] Five-spot problem computed with FrontSim.
Color plots indicating the injection of water during the simulation at six different
times, (a) t = t0; (b) t = t120; (c) t = t240; (d) t = t360; (e) t = t480; and (f)
t = t600.
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1400 Vp(m/s) 2050

Plate 35. [Figure 4 on page 413] Model I. P-velocity in depth and time after a
depth-to-time conversion.
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Plate 36. [Figure 5 on page 414] Comparison between real and synthetic pull-
down using three different values of KCO2 (from the 1999 data). The pull-down is
measured in TWT. The three upper synthetic images are generated from Model I,
whereas the three lower are from Model II.

Plate 37. [Figure 6 on page 415] Comparison between real and synthetic pull-down
from the 2001 data.
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ECLIPSE, 380
FrontSim, 380

adaption rules, 367
– coarsening, 369
– refinement, 369
ADER scheme, 339, 349, 354
ant tracking, 107, 109
artificial ant, 107
attenuation, 277
attribute modeling, 235
automatic mapping, 10
azimuth, 24

B-spline, 396
Barents Sea, 10, 261
Bayesian
– analysis, 132
– formulation, 193
– statistics, 161
best unbiased predictor, 403
biharmonic equation, 390
boundary relationships, 4
Briggs method, 141
Buckley-Leverett equation, 127
Burgers equation, 360

cell average value, 341
chaotic area detection, 76
classification algorithm, 92
– supervised, 95
– unsupervised, 96
clustering analysis, 96
conservation law, 340
core data, 168
corner detector
– Harris, 56, 66
– Hessian-based, 59, 70

corner point grid, 180

Darcy’s law, 124, 371
data preconditioning, 225
dilation, 225
dip, 24
– guiding, 44
– histogram, 30
dissimilarity measure, 235
distance function, 250
divergence, 29

effective medium, 189
eikonal equation, 255
electronic pheromone, 109
ENO reconstruction, 343
erosion, 225
external shapes, 4
extrema classification, 92

facies analysis, 310
fast marching method, 256
fault
– analysis, 110
– attribute, 108
– block splitting, 180
– complex, 177
– displacement, 102
– edge, 37
– extraction, 107, 109, 313
– framework, 179
– interpretation, 108
– intersecting, 177
– normal, 175
– reverse, 175
– surface, 36
– system, 112
– thrust, 177
Fermat principle, 283
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filter
– bank, 33
– dip-guided, 43
– Gabor, 33
– Gauss, 42
– low-pass, 42
finite volumes, 348
five-spot problem, 373
flatness, 28
flow model, 411
flux
– numerical, 348
– physical, 348
fractional flow, 126, 371

geo-body, 246
geological modelling, 173
geometry extraction, 98, 107, 313
gradient vector estimation, 25
Grane field, 301, 320
Green’s function, 145, 147, 153
grid generation, 133

hierarchical segmentation, 213
history
– data, 173
– matching, 193, 408
homogenisation, 192
honoured surface, 182
horst structure, 113

image
– local orientation, 77
– structure tensor, 54
inverse kinematic problem, 269
inverse problem, 158
inversion formula, 286

kernel function, 393
kinematic data, 286
kriging, 148, 404

Laplace operator, 390
Lax-Wendroff procedure, 351
layer-parallel smoothing, 225
level set
– equation, 251
– function, 250
– method, 246, 250

marching
– algorithm, 256
– method, 246, 254
maximum probability interpolant, 152
modelling
– forward, 158
– inverse, 158
Monte Carlo, 132, 154, 195
– Gibbs sampler, 156
– Metropolis algorithm, 154
– sequential simulation, 157
morphological filtering, 225
moving point method, 130
multiscale
– model building, 227
– simulation, 132, 191

neighbourhood
– Moore, 368
– von Neumann, 345
neural network classification, 308
Newton iteration, 283

optimal interpolation, 389
oscillation indicator, 344
oversegmentation, 224

polar plot, 113
post-conditioning, 42
pre-conditioning, 42
principal component analysis, 26
production log, 173
property
– modelling, 186
– voxelization, 318, 326
pull-down, 410
– volume, 414

radial basis function, 144, 405
random function, 145
reflected ray, 269
refracted ray, 280
region merging, 233
reservoir simulator, 131
– ECLIPSE, 380
– FrontSim, 380
Riemann problem
– conventional, 350, 353
– generalized, 353
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salt body extraction, 239
scattered data interpolation, 140
sector
– backward, 347
– forward, 346
segmentation, 230
seismic
– acquisition, 167
– analysis, 305
– attribute, 22, 91, 302
– body, 101
– data, 108, 246
– data analysis, 22, 47
– extrema, 90
– facies, 301
– facies analysis, 4, 11, 305
– facies classification, 308
– facies model, 301, 320
– facies types, 14
– horizon, 89, 99
– interpretation, 167, 320
– modeling, 408
– processing, 167
– section, 66
– texture, 3
– texture attribute, 233
– texture attributes, 306
– time-lapse, 408
– tomography, 267
slicing, 184
slowness, 270
smoothing
– layer-orthogonal, 44
– layer-parallel, 43
– low-pass filter, 42
snake method, 247
Snell’s law, 270
spatial statistics, 140
squared difference, 53, 60
stencil selection, 344
stochastic sampling, 154

stratigraphy, 23, 215
– analysis, 215
– coordinate interpretation, 187
– interpretation, 23
– modeling, 215
– texture attribute, 27
streamline method, 129
structure tensor, 47, 52, 60
swarm intelligence, 109

termination, 34
texture, 6
– channel fill, 17
– chaotic, 8
– convergent, 6
– divergent, 6
– mounded, 18, 19
– parallel, 6
– prograding, 7, 16
– subparallel, 6
thin plate spline, 368, 390, 393
thinning, 41
tomography, 267
training data picking, 309
travel time, 255, 269

ultrametric distance, 232
unbiased predictor, 403
upgridding, 189
upscaling, 189

velocity function, 260
velocity model building, 236
voxel model, 312

watershedding, 221
well
– log, 168
– test, 173, 193
WENO reconstruction, 343
workflow, 308, 313
– analysis, 196
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