Basic Geology

Geology

- The Earth
- Structural geology
- Sedimentary geology
- Petroleum geology
- Reservoir characteristics

Earth Model

Schlumberger Oilfield Services

Crustal Plates

- Plate boundaries
- Relative velocities (cm/yr)

- Continental crust
- Oceanic crust

Schlumberger Oilfield Services

Plate tectonics & mantle convection

Extrusives, Intrusives: model

Classification of rocks

Clastic Sedimentary Environments

ENVIRONMENT	AGENT OF TRANSPORTATION DEPOSITION	SEDIMENTS
Alluvial	Rivers Sa	nd, gravel, mud
Lake	Lake currents, waves Sa	nd, mud
Desert	Wind Sa	nd, dust
Glacial	Ice Sa	nd, gravel, mud
Delta	Rivers & waves, tides Sa	nd, mud
Beach	Waves, tides Sa	nd, gravel
Shallow shelf	Waves, tides Sa	nd, mud
Deep sea	Ocean currents, settling M	ud

Stratigraphic section

Grand Canyon, USA

Geologic Time Scale

•	Epoch	Period	Era	Eon
0.01 1.6 5.3 24 37 57	Recent Pleistocene	Quaternary		
	Pliocene Miocene Oligocene Eocene Paleocene	Tertiary	Cenozoic	Phanerozoic
00	144 208	Cretaceous Jurassic Triassic	Mesozoic	
	245 286 360 408 438 505	Permian Carboniferous Devonian Ordovician Silurian Cambrian	Paleozoic	
	570			Proterozoic
Sch	lumberger			9

Geologic Time Scale - Biostratigraphy

Basic Geology

Geology

- The Earth
- Structural geology
- Sedimentary geology
- Petroleum geology
- Reservoir characteristics

Rock Deformation

Crustal movement causes 2 types of surface deformation

- Folding
- Faulting

Deformational Features

Schlumberger	
Oilfield Services	

Faults & Folds

Folding

Fold Terminology

Fold Terminology

Fold Terminology

Symmetrical folds

Asymmetrical folds

Overturned folds

Anticline

Overturned Folds

Fold Dome

Diapirism

Faulting (normal faults)

Types of Faults

San Andreas Fault, USA

- Transform fault
- Sliding plate boundary

Basic Geology

Geology

- The Earth
- Structural geology
- Sedimentary geology
- Petroleum geology
- Reservoir characteristics

Clastic Sedimentary Environments

ENVIRONMENT	AGENT OF TRANSPORTATIO DEPOSITION	N SEDIMENTS
Alluvial	Rivers	Sand, gravel, mud
Lake	Lake currents, waves	<mark>Sa</mark> nd, mud
Desert	Wind	Sand, dust
Glacial	lce	Sand, gravel, mud
Delta	River + waves, tides	<mark>Sa</mark> nd, mud
Beach	Waves, tides	Sand, gravel
Shallow shelf	Waves, tides	<mark>Sa</mark> nd, mud
Deep sea	Ocean currents, settling	Mud

Schlumberger Oilfield Services

Chemical Sedimentary Environments

ENVIRONMENT	AGENT OF PRECIPITATION	SEDIMENTS
Carbonate (reef, bank, deep sea, etc.)	Shelled organisms, inorganic (precipitation from seawater a	Carbonate sands and muds, reefs
Evaporite	Evaporation of seawater	<mark>Gy</mark> psum, halite
Deep sea	Shelled organisms	Silica sediment
Swamp	Vegetation F	Peat

Sedimentary Environments

Transport & Depositional Environments

Modes of Particle Transport

Flow surface

Marine Deposits

Schlumberger	32
Oilfield Services	

Beach Profile

River Estuary

34

Alluvial Environment

- Rivers
- Fans

Submarine Fan

Turbidity Current

Fan Deposition

Unconsolidated Mass Movements

Schlumberger

Fossil Dunes

- Sediment sorting
- Constant wind force
- Constant wind direction

"Dune" Ripple Formation

Schlumberger

Limestone

- Foraminiferal ooze
- Lagoon

Basin Salt Deposition

Basic Geology

Geology

- The Earth
- Structural geology
- Sedimentary geology
- Petroleum geology
- Reservoir characteristics

(1) Kerogen Chemistry and Maturation

Elements

- Carbon
- Hydrogen
- Nitrogen
- Sulphur
- Oxygen

Compounds

- Paraffins
- Naphthenes
- Aromatics
- Asphaltines

Hydrocarbon Types

- Bitumina
- Crude Oil
- Condensate
- Natural Gas

(1) Kerogen Chemistry and Maturation

- Oil Window
- Geothermal Gradient
- Overpressure

(2) From Source to Reservoir

MIGRATION

- Rock Types
 - Shales 65%
 - Carbonates 21%
 - Marl 12%
 - Coal 2%

- Compaction
- Aquathermal pressure
- Buoyancy
- Hydrodynamic regime

- Rock Types
- Porosity
- Permeability

Schlumberger

(3) Reservoir Traps and Seals

Traps

• OWC, GWC, Spill Point

Structural

- Anticline 75%
- Fault 1%

Stratigraphic

- Unconformity 3%
- Reef 3%

Combination

• Salt diapir 2%

Seals

Shale 65% Salt 33% Carbonate 2% Fault

Schlumberger

Basic Geology

Geology

- The Earth
- Structural geology
- Sedimentary geology
- Petroleum geology
- Reservoir characteristics

The Reservoir

- A reservoir is a porous rock which contains fluids
- The reservoir has porosity and permeability

Sedimentation and Diagenesis

 Grains settle to the bottom of the sedimentary basin

 Increased pressure and temperature causes water to be expelled

• Consolidation occurs to form the rock

Sandstone Thin Section

• Quartz grains bonded by calcite cement

Reservoir Rock Properties

- Porosity to retain fluid AND
- Permeability to allow the fluid to move
- Permeability is a dynamic property which changes during sedimentation

Porosity Definition

• Porosity (ϕ) = fraction of a unit volume occupied by the pores

$$\Phi = \frac{V fluid}{V_{total}} \qquad \qquad \phi \qquad \qquad Fluid \qquad \qquad \\ 1 - \phi \qquad \qquad Matrix \qquad \qquad$$

Porosity

- Porosity depends on grain packing NOT grain size
- Rocks with different grain sizes can have the same percentage porosity

- rhombohedral packing
- pore space = 26 % of total volume

- cubic packing
- pore space = 47 % of total volume

Permeability

- The rate of fluid flow through a reservoir depends on
 - the pressure drop
 - fluid viscosity
 - permeability
- Permeability is a measure of the ease at which a fluid can flow through the reservoir
 - Large grains give high permeability and large flow rate
 - Small grains give low permeability and small flow rate
- Permeability and porosity are related

Darcy's Law of Permeability

$$\boldsymbol{K} = \frac{\boldsymbol{Q}\mu}{\boldsymbol{A}} \bullet \frac{\boldsymbol{L}}{(\boldsymbol{P}_1 - \boldsymbol{P}_2)}$$

K = permeability (measured in Darcies) L = length Q = flow rate P_1, P_2 = pressures A = surface area μ = viscosity

Saturation

 Formation saturation is defined as the fraction of its pore volume occupied by a given fluid

$$saturation = \frac{V_{specific fluid}}{V_{pore space}}$$

• Definitions

Sw = water saturation

So = oil saturation

Sg = gas saturation

Sh = hydrocarbon saturation = So + Sg

Saturation

- Amount of water per unit volume = ϕ Sw
- Amount of hydrocarbon per unit volume = ϕ (1 Sw)

