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PREFACE

This volume is the third within the series of textbooks written by Z.E.Heinemann. The
previous volumes:

• Flow in Porous Media

• Reservoir Fluids

deal with the properties of porous media, the one and two phase flow in reservoir rocks,
phase behavior and thermodynamical properties of oil, gas and brine.

To use this volume it is supposed that the reader has attended the courses mentioned above
or possesses profound knowledge of these topics. All methods discussed in this volume
have practical importance and are used in today work. However, it is not possible to give
a complete overview about the whole range of the classical and modern reservoir
engineering tools. The selection was made under the aspect of transmitting basic
understandings about the reservoir processes, rather to provide recipes.

This volume is followed by the textbooks

• Well Testing

• Basic Reservoir Simulation

• Enhanced Oil Recovery

• Advanced Reservoir Simulation Management

The seven volumes cover the whole area of reservoir engineering normally offered in
graduate university programs worldwide, and is specially used at the MMM University
Leoben.
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Chapter 1 

Introduction

The most important tasks of the reservoir engineer are to estimate the oil and gas reserves
and to forecast the production. This volume describes the classic and fundamental
methods that are applied for these purposes:

• Volumetric computation of reservoir volume

• Material balance calculations

• Estimation of displacement efficiency

• Estimation of sweep efficiency

• Production decline analysis

This volume is based on the textbooks Heinemann: "Fluid Flow in Porous Media" [21.]

(1991) and Heinemann and Weinhardt: "Reservoir Fluids" [20.].

1.1 General Remarks

First some commonly used notions have to be defined:

• PETROLEUM is the common name for all kinds of hydrocarbons existing inside of
the earth, independently of its composition and aggregate stage.

• PETROLEUM IN PLACE is defined as the total quantity of petroleum estimated in a
reservoir:

O.O.I.P. - Original oil in place m3 [bbl]. Used symbol: N

O.G.I.P. - Free gas in a gas cap or in a gas reservoir m3 [cuft]. Used symbol: GF.

• CUMULATIVE PRODUCTION is the accumulated production at a given date. Used
symbols: Np, Gp.

• ULTIMATE RECOVERY is the estimated ultimate production, which is expected
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during the life of the property. Used symbols: Npmax, Gpmax.

• RESERVES are the Ultimate Recovery minus Cumulative Production:

(1.1)

• RECOVERY FACTOR

(1.2)

• ULTIMATE RECOVERY FACTOR

(1.3)

The amount of reserves determines the whole strategy of future activities concerning 

• exploration,
• development and
• production.

Unfortunately, reliable reserve figures are most urgently needed during the early stages of
an exploration project, when only a minimum of information is available. During further
activities (exploration and production), the knowledge concerning the reservoir contents
becomes more and more comprehensive and naturally will reach a maximum at the end
of the reservoir’s life cycle.

Fig.1.1 shows the life cycle of a reservoir, and the range of recovery estimates.

PERIOD AB:

When no well is drilled, any estimate will be supported by the analogous method based
on data from similar pools. In this phase probabilities of the

• presence of a trap,
• presence of oil or gas saturation,
• presence of pay and
• amount of recoverable reservoir contents

have to be estimated. No reserves is a real option.

PERIOD BC:

The field is being discovered and step by step developed. The production rate increases.
The volumetric estimation can be made more and more precise due to the increasing

Npmax Np  or   Gpmax– Gp–

ER
CumulativeProduction

O.O.I.P.
-------------------------------------------------------------

Np

N
------   or       ER

Gp

G
-------===

ERmax
Ultimate Recovery

O.O.I.P.
--------------------------------------------------

Npmax

N
---------------   or       ERmax

Gpmax

G
----------------===
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number of wells available.

PERIOD CD:

The field has been developed and the production rate achieved a maximum. The majority
of possible informations from

• well logs
• core analysis and
• transient well testing

are available. The volumetric estimation can be made more precise when analysing the
reservoir performance. Early simulation studies, called reservoir modeling, make the
calculation of the ultimate recovery possible.

PERIOD DE:

The recovery mechanisms are well known. Material balance calculations and simulation
of the reservoir history provide, in most of the cases, more accurate figures of O.O.I.P.
than the volumetric method. These methods are more suited to compute the reserves than
the volumetric method.

PERIOD EF:

In addition to material balance calculations and simulation studies decline curve analysis
becomes more appropriate.
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Figure 1.1:  Range in estimates of ultimate recovery during the life of a reservoir
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1.2 Classification of Reserves

Reserves are divided into classes. The definition of these classes is not common in all

countries. Here the recommended nomenclature system of MARTINEZ et al.[28.](1983)

published at the 11th World Oil Congress, London, is used.

PROVED RESERVES of petroleum are the estimated quantities, as of a specific date,
which analysis of geological and engineering data demonstrates, with reasonable
certainty, to be recoverable in the future from known reservoirs under the economic and
operational conditions at the same date.

PROVED DEVELOPED RESERVES are those proved reserves that can be expected to be
recovered through existing wells and facilities and by existing operating methods.
Improved recovery reserves can be considered as proved developed reserves only after an
improved recovery project has been installed.

PROVED UNDEVELOPED RESERVES are those proved reserves that are expected to be
recovered from future wells and facilities, including future improved recovery projects
which are anticipated with a high degree of certainty.

UNPROVED RESERVES of petroleum are the estimated quantities, as of a specific date,
which analysis of geological and engineering data indicate might be economically
recoverable from already discovered deposits, with a sufficient degree of certainty to
suggest the likelihood or chance of their existence. Unproved reserves may be further
categorized as PROBABLE RESERVES where there is a likelihood of their existence, or
POSSIBLE RESERVES where there is only a chance of their existence. The estimated
quantities of unproved reserves should take account of the uncertainties as to whether, and
to what extent, such additional reserves may be expected to be recoverable in the future.
The estimates, therefore, may be given as a range.

SPECULATIVE RESERVES of petroleum are the estimated quantities, as at a specific
date, which have not yet been discovered, but which general geological and engineering
judgement suggests may be eventually economically obtainable. Due to the great
uncertainties, they should always be given as a range.
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Chapter 2 

Reserves Calculation by Volumetric 
Methods

2.1 Computation of Oil and Gas in Place

The following formulas are used: 

OOIP - Original oil in place:

(2.1)

OGIP - Free gas in a gas reservoir or in a gas cap:

(2.2)

Solution gas in an oil reservoir:

(2.3)

where

V - reservoir volume [m3]

φ - porosity [-]

Swi - initial water saturation [-]

N
Vφ 1 Swi–( )

Boi
-----------------------------.=

GF

Vφ 1 Swi–( )
Bgi

-----------------------------.=

Gs

Vφ 1 Swi–( )Rsi

Boi
------------------------------------- NRsi,==
7
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The reservoir volume V can be calculated in different ways. Which method is the best
depends on the available data, shape of the reservoir, etc..

2.2 Recovery Factor

Ultimate recovery is influenced by a lot of individual physical realities. It depends on the

• drive mechanism of the reservoir,
• mobility of reservoir fluids,
• permeability and variation of permeability, both vertically and in the area,
• inclination and stratification of the layers,
• strategy and methods of field development and exploitation.

In the exploration and early exploitation stage, only analogous or statistical methods can
be used to estimate the ultimate recovery factor. It is necessary to examine known
reservoirs from the same region.

ARPS et al.[2.] examined a large amount of oil fields with depletion drive and with water
drive. The results were published by the American Petroleum Institute. The formulas are
known as API formulas for estimation of the ultimate recovery factor.

Depletion or gas drive:

(2.4)

Water or gravitation drive:

(2.5)

where  is the initial pressure,  the abandonment pressure, and  the bubble point

pressure. The subscripts i and b denote that the value is valid at or .  The numerical

results of the API examination are summarized in Table 2.1.

Boi - oil formation volume factor (FVF) at initial pressure [m3/sm3]

Bgi - gas formation volume factor at initial pressure [m3/sm3]

Rsi - initial solution (or dissolved) gas oil ratio [sm3/sm3]

ER %( ) 41.815
φ 1 Sw–( )

Bob
-----------------------

 
 
 

×
0.1611

k
µob
-------- 

  0.0979
Sw

0.3722
pb

pa
-----

 
 
  0.1714

=

ER %( ) 54.898
φ 1 Sw–( )

Boi
------------------------ 

  0.0422 k
µoi
-------µwi 

  0.077
Sw

0.1903– pi

pa
-----

 
 
  0.2159–

=

pi pa pb

pi pb
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Table 2.1: API Ultimate Recovery Factor Estimation

2.3 Data Distribution and Probability

The methods for calculation of the reservoir volume, average porosity and permeability
are subjects of reservoir geology and log evaluation. These data are more or less uncertain
and have to be treated as random variables.

Interpretation of even moderately large amounts of data requires statistical methods. A
commonly used method is to gather individual data into groups or classes. This facilitates
interpretation as well as numerical computations. Porosity data are used to demonstrate
this ascertainment. An example of raw data is given in Table 2.2.

Table 2.2: Porosity Sample Data (n=24 values)

Class boundaries, as given in Table 2.3, coincide in terms of the upper boundary of one
class being the same as the lower boundary of the next class. Common convention is to
take the values at the boundary into the higher class. The difference between upper and
lower boundaries is referred to as the class interval. Normally but not necessarily, the class
intervals are equal.

Average porosity can be calculated either from the data in Table 2.2 or in Table 2.3:

(2.6)

Standard
deviation

Sand, Sandstone
min.    mean   max.

Carbonates
min.    mean   max.

Depletion +
Gasdrive

0.229 0.095   0.213   0.460 0.155   0.176   0.207

Water or
Gravitationdrive

0.176 0.131   0.284   0.579 0.090   0.218   0.481

0.165 0.198 0.196 0.185 0.192 0.188

0.187 0.184 0.182 0.205 0.178 0.175

0.192 0.205 0.162 0.162 0.182 0.170

0.184 0.165 0.154 0.179 0.172 0.156

Σx = 4.317

φ

xj
j 1=

n

∑
n

-------------- 4.317
24

------------- 0.1798== =
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(2.7)

It is evident that

(2.8)

Table 2.3: Frequency Distribution

Histograms and frequency polygons are used to show the probability density. Fig. 2.1
shows both of them for the porosity data included in the foregoing tables. The frequency
polygon is drawn through the midpoints of the classes. The areas below the histogram and
the frequency polygon are equal.

The cumulative frequency polygons are shown in Fig. 2.2. Based on this diagram, one can
conclude that 60% of the samples have a porosity less than about 18.5%. Two important
statistical properties of the data group are

the variance

(2.9)

and the standard deviation

(2.10)

Class 
Boundaries

Members
Frequency 

fi

Class Mark
xi

fi.xi

0.15-0.16 0.156, 0.157 2 0.155 0.311

0.16-0.17 0.162, 0.162, 0.165, 0.165 4 0.165 0.660

0.17-0.18 0.170, 0.172, 0.175, 0.178, 0.179 5 0.175 0.875

0.18-0.19 0.181, 0.182, 0.182, 0.184, 0.185, 0.187 7 0.185 1.295

0.19-0.20 0.192, 0.192, 0.196, 0.198 4 0.195 0.780

0.20-0.21 0.205, 0.205 2 0.205 0.410

24 4.330

φ*

fixi
i 1=

n

∑

fi∑
------------------ 4.33

24
---------- 0.1804== =

φ φ*

n ∞→
lim=

σ2 xj x–( )
j 1=
n∑

n
-----------------------------------

2

=

σ
xj x–( )

j 1=
n∑

n
-----------------------------------

2

=
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Figure 2.1:  Histogram for porosity data (Table 2.3)

Figure 2.2:  Cumulative frequency of porosity data (Table 2.3)

For the foregoing example, these are

;     . (2.11)

The local maximum of the probability density is called the modus. If the distribution is
symmetrical, the modus is equal to the mean value.

0.14
Porosity

F
re

q
u

en
cy

R
elative  freq

u
en

cy
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6

8
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0

σ2 φj φ–( )
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2.3.1 Triangular Distribution

In the majority of practical cases, it is not possible to get a reliable histogram or frequency
polygon. One has to be content with estimating the upper, the lower and the modus.

For the data given in Table 2.2 the following estimation would be possible:

, , , . (2.12)

Fig. 2.3 illustrates the triangular distribution of this data. The height of the triangle is
selected in a way so that the surface value becomes 1. The probability that the value (φ)
will be less than the modes (φmod) is

(2.13)

and 1 - p that it will be higher. The cumulative probability can be calculated as follows:

 ,     , (2.14)

 ,     . (2.15)

The variance is

. (2.16)

Fig. 2.4 shows the F-function for the triangular probability distribution in Fig. 2.3. It is
very similar to the diagram in Fig. 2.2. In fact, cumulative relative frequency and
cumulative probability have the same meaning.

φmin 0.150= φmax 0.210= φmod 0.185= φ 0.180=

p
φmod φmin–

φmax φmin–
------------------------------=

F p
φ φmin–

φmax φmin–
-----------------------------

 
 
  2

= φmin φ φmod≤ ≤

F 1 1 p–( )
φmax φ–

φmax φmin–
-----------------------------

 
 
  2

–= φmod φ φmax≤ ≤

σ
φmax φmin–( )2

18
------------------------------------- 1 p 1 p–( )–[ ]=
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Figure 2.3:  Triangular probability distribution

Figure 2.4:  Cumulative probability calculated from Fig. 2.3

2.3.2 Uniform Distribution

An uniform distribution is illustrated in Fig. 2.5. The randomly occurring values are
evenly distributed in the range from minimum to maximum values. The cumulative
probability is defined by:

, . (2.17)

For φ = φmin, F = 0 and for φ = φmax, F = 1.

0.14

Porosity
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ro

b
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The variance is

. (2.18)

Figure 2.5:  Uniform probability distribution

2.3.3 Dependent Distribution

Reservoir data applied for computation purposes of the reservoir are not independent. For

example, the water saturation may be calculated from the ARCHIE[1.] formulas:

(2.19)

(2.20)

thus

(2.21)

where

Rw - the connate water resistivity Ωm [Ωft],

Rt - the formation resistivity Ωm [Ωft],

F - the formation factor,

a, m, n - positive constants.
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It is evident, that Sw increases if φ decreases. Fig. 2.6 shows such a dependence for a
triangular distribution of the connate water saturation.

Figure 2.6:  Use of dependent distribution

2.4 Monte Carlo Simulation Method

Calculate the following formula:

. (2.22)

x and y  are stochastic variables. Their cumulative probabilities between their minimum
and maximum values are known. The task is to determine the probability distribution and
the expected value of z.

The computation is simple, but less suitable for hand calculations than for the computer.
For calculations it is necessary to use a random number generator.

Values entering into Eq. 2.22 are repeatedly selected by random numbers taken from an
appropriate range of values, as it is shown in Fig. 2.7. Within several hundred to several
thousand trials, the number of z values for prefixed classes are counted. The result is a
histogram and the cumulative relative frequency for the z variable.
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Figure 2.7:  Selecting random values from a triangular distribution
(after McCray, 1975)

Example 2.1

Calculating the porosity  and water saturation (Sw) from well logs (after Walstrom et

al.[39.](1967).

The calculation steps are as follows:

1.  Determine φ from the relation:

.

2.  Use the value of   to determine formation factor F from the Archie formula:

.

3. Use the value of  F and randomly chosen values of other quantities to determine Sw 
from the relation
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where

The range of parameter used in this example is given in Table 2.4. Uniform distribution
was assumed for all quantities, except parameters a and ρF, which where assumed to be
constants. The results of the simulation are shown in Fig. 2.8, Fig. 2.9 and  Fig. 2.10, these
reflect the results of several hundred cases, wherein each case was processed through
steps 1, 2 and 3. Here it may be noted that although uniform distribution was assumed for
quantities entering the calculations, the resulting probability densities are not
symmetrical. The functional relationship of the quantities may skew the results.

Table 2.4: Ranges of Parameters Used in a Log-Interpretation Example
(metric units)

ρB - the bulk density kg m-3[1b/cuft],

ρF - the fluid density kg m-3[1b/cuft],

ρMa - the rock matrix density kg m-3[1b/cuft],

Rw - the connate water resistivity Ωm [Ωft],

Rt - the formation resistivity Ωm [Ωft],

F - the formation factor,

a, m, n - positive constants.

Parameter Lower Limit Upper Limit

Rt True resistivity Ωm 19.000 21.000

Rw Connate water resistivity Ωm  0.055  0.075

n Exponent in the ARCHIE equation  1.800  2.200

a Coefficient in the ARCHIE equation  0.620  0.620

m Exponent in the ARCHIE equation  2.000  2.300

ρB Bulk density kg/m3  2.360  2.380

ρMA Rock mineral density kg/m3  2.580  2.630

ρF Reservoir fluid density kg/m3  0.900  0.900
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Table 2.5: Ranges of Parameters Used in a Log-Interpretation Example
(field units)

Figure 2.8:  Calculated porosity (after Walstrom et al. 1967)

Parameter Lower Limit Upper Limit

Rt True resistivity Ωft 62.300 68.900

Rw Connate water resistivity Ωft  0.180  0.246

n Exponent in the ARCHIE equation  1.800  2.200

a Coefficient in the ARCHIE equation  0.620  0.620

m Exponent in the ARCHIE equation 2.000 2.300

ρB Bulk density lb/cu ft   147.300   148.600

ρMA Rock mineral density lb/cu ft 161.000   164.200

ρF Reservoir fluid density lb/cu ft 56.200    56.200
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Figure 2.9:  Formation factor (after Walstrom et al. 1967)

Figure 2.10:  Calculated water saturation (after Walstrom et al. 1967)

Example 2.2

Calculation of oil recovery

The ultimate recovery was estimated by combination of the Eq. 2.1 and Eq. 2.5:

(2.23)

Symmetric triangular distribution was assumed for all the quantities in Eq. 2.23, except
the parameter  which is constant 0.7 cP. The limits are shown in Table 2.6 and Table

2.7.

The ultimate recovery from this reservoir can be characterized with the following figures
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of a Monte Carlo simulation with 5000 trials.

Probability distribution:

Taking for all parameters the most unfavorably and the most favorably the following
realistically figures can be calculated:

Table 2.6: Range of Parameters Used in the Ultimate Recovery Calculation Example 
(metric units)

Expected ultimate recovery: 16,540,000 m3 or 104.03 MMbbl

with standard deviation of: 1,100,000 m3 or 6.91 MMbbl

with more than but less than

99% 13.82 - 19.24.103m3 [86.9 - 121.0 MMbbl]

90% 14.70 - 18.38.106m3 [92.4 - 115.6 MMbbl]

80% 15.08 - 18.00.106m3 [94.8 - 113.2 MMbbl]

Worst case:   Best case:

12.227x106 m3 21.726x106 m3

(76.9x106 bbl) (136.6x106bbl)

Parameter Unit Lower Limit Upper Limit

V Reservoir volume 106m3   285.000 370.00

φ Porosity 0.165   0.19

Sw Initial water saturation 0.220   0.28

Boi Formations volume factor 1.480   1.50

µoi Reservoir oil viscosity cP 2.850   2.95

k Reservoir permeability darcy 0.800   1.50

pi Initial pressure (pi = pb) MPa    22.000  22.50

pa Abandonment pressure MPa    18.000  20.00
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Table 2.7: Range of Parameters Used in the Ultimate Recovery Calculation Example 
(field units)

Figure 2.11:  Ultimate recovery calculation with Monte Carlo simulation

Parameter Unit Lower Limit Upper Limit

V Reservoir volume 105ac ft     2.310     3.000

φ Porosity 0.165     0.190

Sw Initial water saturation 0.220     0.280

Boi Formations volume factor 1.480     1.500

µoi Reservoir oil viscosity cP 2.850     2.950

k Reservoir permeability mD  800.000 1.500

pi Initial pressure (pi = pb) psi 3.190 3.262

pa Abandonment pressure psi 2.610 2.900
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Chapter 3

Material Balance

3.1 Tarner’s Formulation

Fig. 3.1 shows a schematic illustration of an oil reservoir. The rock volume is V and the
porosity φ. Apart from a certain saturation of connate water Swi, the rock is saturated with
hydrocarbons. Thus, the effective reservoir volume is

. (3.1)

The reservoir temperature is defined as T, the initial pressure as pi. The virgin reservoir is
in a state of hydrostatic and thermodynamic equilibrium.

The original oil in place is defined as N in sm3 or stb (stock tank barrels). At reservoir
conditions gas is dissolved in the oil. The amount is expessed by the initial solution GOR

(gas-oil ratio) Rsi sm3/sm3 or scft/stb.

The formation volume of the oil is NBoi. If the reservoir contains the same or a greater
amount of gas than soluble at reservoir conditions (pressure and temperature), the
reservoir is saturated and the surplus gas forms a gas cap. Otherwise, the reservoir is
undersaturated.

Should the gas cap contain an amount of G sm3 or scft gas, then its formation volume will
be GBgi. Usually the volume of the gas cap is expressed in relation to the oil volume:

. (3.2)

Vφ 1 Swi–( ) VP 1 Swi–( )=

GBgi mNBoi=
23
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When regarding surface and formation volumes the following relations can be set up:

Figure 3.1:  The scheme of the material balance of an oil reservoir

The effective pore volume, expressed by the amounts of oil and gas, is:

. (3.3)

After a certain time period, an amount of
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will have been produced. Rp is the cumulative production GOR. As a consequence of
production, the reservoir pressure decreases from pi to p.

Figure 3.2:  Pressure drop and production of a reservoir

Let us now consider the reverse situation. At first pressure drops to p. Thus, the gas cap
expands and gas evolves from the oil. From the aquifer an amount of We water will flow
into the reservoir. The expanded system would have a reservoir volume at pressure p of

. (3.4)

At the same pressure the produced fluids would have a total reservoir volume of

. (3.5)

The effective pore volume corresponding to Eq. 3.1 remains unchanged which
consequently makes the following assertion valid:

[expanded volume] - [initial volume] = [produced volume]

or

Eq. 3.4 - Eq. 3.3 = Eq. 3.5
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After substituting:

(3.6)

From this

. (3.7)

This is the formula of TARNER’s[37.] material balance. If in addition to production, water
is injected at the cumulative amount of WI and/or gas at the cumulative amount of GpI,
then the term (WI + GpIBg) has to be added to the numerator. I indicates how much of the
produced gas was reinjected into the reservoir.

Every specific term in Eq. 3.7 has a certain meaning:

(3.8)

Eq. 3.6 is then divided by Bg

(3.9)
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Eq. 3.9 is divided by its right hand side:

(3.10)

3.2 Drive Indices

Splitting up the left side of Eq. 3.10 leaves three fractions which describe the shares of the
specific drive mechanisms in reference to the whole cumulative production effected by

• the solution gas drive,

• the gas drive and

• the water drive.

These are considered the drive indices. The solution gas drive index (a two phase
expansion of the oil) is defined as

. (3.11)

The gas drive index (expansion of the gas cap) is defined as

. (3.12)

The water drive index (expansion of the aquifer) is defined as

. (3.13)
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The relation between the indices is given by

. (3.14)

Cumulative oil-, gas- and water production (Np, Rp, Wp) are given by production statistics.
The PVT-properties (Bo,Bg,Rs) are determined by laboratory measurement or by
correlations. The volumetric reserve calculation covers the petroleum in place (N, G). The
average reservoir pressure is recorded by regular measurements of static well bottom-hole
pressures. The application of these data enables a sufficient description of the water influx
as a function of time.

3.3 Water Influx

Operating a reservoir over years, the cumulative oil, gas and water production Np(t), Gp(t),
and Wp(t) are naturally known. The reservoir pressure declines and the actual values p(t)
will be determined by  regulare pressure surveys. The fluid properties, as Bo(p), Bg(p) and
Rs(p), are messured in PVT Labs or determined from different types of charts, e.g.: from
Standing correlation. Also the OOIP (N) and the  gas cap factor m can be estimated by
volumetric calculation (see Chapter 3.).

The only quantity in Eq. 3.6, which is entierly unknown, is the water influx We(t). The
Material Balance calculation is the only method which enables to determine it as function
of time. From Eq. 3.6: 

(3.15)

The aquifer is a water bearing formation, hydrodynamically connected to the hydrocarbon
reservoir. Its form, size and permeability can vary greatly. Hydrological reflection could
help to set up hypotheses. However, these can never be verified in detail since no wells
will be drilled to explore an aquifer.

One of the boundaries of the aquifer is the water-oil-contact (WOC). This interior
boundary is usually well known, whereas the exterior boundary is an object of
speculation.

The exterior boundary can be considered closed if the whole amount of water flowing into
the reservoir is due to the expansion of the aquifer. In this case, the aquifer is finite closed.
Faults and layer pinch outs form such boundaries.

Is Ig Iw+ + 1=
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Bg
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 
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The aquifer can be considered a finite open one, if the pressure at the exterior boundary is
constant. A connection to the atmosphere through outcropping or hydrodynamic contact
to a karstic formation are the possibilities to form such boundaries. Fig. 3.4 shows a
schematic illustration of an aquifer.

Figure 3.3:  Cumulative drive indices

Figure 3.4:  Oil reservoir with an aquifer

The cumulative water influx is calculated from the rate:

. (3.16)

Production induces pressure decline at the interior boundary of the aquifer. Let us make a
theoretical consideration. We assume a unique and sudden pressure drop ∆p = pi - p at this
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boundary, where pi is the initial reservoir pressure. The pressure drop will cause water
intrusion into the reservoir. Initially, this is a consequence of the expansion of water and
rock and it is independent of the distance to the exterior boundary and regardless of
whether the boundary is closed or not. The depression zone stretches with time - either
fast or slowly, dependent on permeability - whereby the water influx rate permanently
decreases. This situation is given until the depression radius reaches the exterior
boundary. We call this time interval as transient period.

In case of a closed exterior boundary, water influx decreases rapidly and tends to zero, if
the pressure in the whole aquifer has dropped by ∆p. In this case, the function of the
cumulative water influx We(t) has an asymptotic value (see Fig. 3.5).

Figure 3.5:  Cumulative water influx at a constant reservoir pressure

If there is an aquifer with constant pressure at the exterior boundary, a stabilization of the
influx rate takes place and therefore the function We(t) becomes linear with increasing
time.

If the aquifer is small or the permeability high, the transient period becomes short and can
be neglected. Under this consideration we distinguish between three types of aquifer
models or water influxes: 

1. Semi-steady-state,
2. Steady-state,
3. Non-steady-state:

3.1. Transient
3.2. Pseudo-steady-state.
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pressure drop. That means, the time in which the pressure change took place has no
influence on the intruded water amount, consequently Eq. 3.16 becomes:

. (3.17)

In such a case the aquifer has always a limited size and a closed external boundary. The
coefficient C1 can be expressed by the parameters of the aquifer:

(3.18)

Figure 3.6:  Change in reservoir pressure

3.3.2 Steady-State Water Influx

In case of a constant pressure at the exterior boundary and high aquifer permeability the
transient period can be neglected. This is equivalent to the assumption of incompressible
water inside the aquifer. Thus the water influx rate is proportional to the pressure
difference between the two boundaries:

(3.19)

The cumulative water influx is calculated by integration:

(3.20)

This is the SCHILTHUIS[35.]-formula (1936). The coefficient C2 is calculated by
DARCY’s law with the help of the specific aquifer parameters. In the case of linear
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aquifers (Fig. 3.7)

, (3.21)

where

Figure 3.7:  Idealized aquifers

In the case of radialsymmetric aquifers (Fig. 3.7 B), the coefficient is:

, (3.22)

where replace 2π by 7.08 x 10 -3 for field units to get [bbl/psi d]. There are 

The pressure p(t) in Eq. 3.20 is the pressure at the inner boundary. In most of the practical
cases it will be replaced by the average reservoir pressure, given for discrete time points:
to = 0, t1, t2, ...., tn. Although this pressure can be plotted with a smooth continuous line,
it is more practical to approximate it with a step function or with linear functions as shown
in Fig. 3.6. For Eq. 3.20 both approximations give the same results.

b - width of the aquifer,

h - thickness of the aquifer,

L - length of the aquifer,

k - permeability of the aquifer,

µ - viscosity of the water.

rw - inner radius,

re - outer radius of the aquifer.
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(3.23)

3.3.3 Non-Steady-State Water Influx

Usually the water influx has non-steady-state character. We distinquish between transient
and pseudo-steady state flow regime. Note that both are non-steady state flow. 

The theoretical funded and general applicable method, covering transient,
pseudo-steady-state and steady-state flow as well, was published by van Everdingen and
Hurst[16.](1949). The method was slighly modified by Vogt and Wang[41.](1988), making
it more convenient for computer programming.  The derivation was discussed in the
Volume 1 of this Textbook series (Heinemann, Z.E.: "Fluid Flow in Porous Media",
Chapter 3). We use the Vogt-Wang formulation as our standard method.

Under pseudo steady state conditions the water influx results from the uniform expansion
of the aquifer, which means that the rate of pressure change is equal in the whole aquifer
domain. 

3.3.3.1 Vogt-Wang Aquifer Model

It was assumed that the reservoir area can be approximated by a segment of a circle. The
radius is

, (3.24)

where ω is the arc in radian (= 2π for complete circle) and re is the outer radius of the
aquifer.

The dimensionless outer radius is

. (3.25)
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The dimensionless time is

           (x 0.00634 for field units, t in days). (3.26)

The cumulative water influx at the time tDj is

(3.27)

The  functions are given in Table 3.1 only for an infinite acting radial aquifer. In

case of finite aquifers we refer to the paper of VOGT and WANG[41.](1988).

In radial symmetrical homogeneous case the coefficient C3 can be calculated as

          (x 0.1781 for bbl/psi). (3.28)

Example 3.2 - Example 3.4 demonstrate how the coefficients C1-C3 and the function We(t)
are calculated. 

Usually the aquifer parameters are unknown. It is possible however (as shown in Example
3.1) to determine the water influx of the past with help of the material balance equation.
First it is essential to ascertain the semi-steady-state, steady state or non-steady-state
character of the water influx.

Example 3.1 is continued by Example 3.5. If either C1 nor C2 is a constant but the
coefficient C1 calculated at various times increase steadily whereas C2 continuously
decreases, coefficient C3 can be determined with sufficient accuracy. The dispersion of
the C3-values indicates how appropriate reD and α were chosen. If α is too small, the
function

(3.29)

is not linear, but has an upward curvature. If α is too big, the curvature is directed
downwards. Only numerous repetitions of the calculation using various values of reD

provide a favorable solution.

tD
k

φµwcerw
2

----------------------t αt==

Wej C3

po p1–

tD1
-----------------Q̃ tDj( )

p1 p2–

tD2 tD1–
----------------------

po p1–

tD1
-----------------–

 
 
 

Q̃ tDj tD1–( )...

+
pj 1– pj–

tDj tDj 1––
---------------------------

pj 2– pj 1––

tDj 1– tDj 2––
-----------------------------------–

 
 
 

Q̃ tDj tDj 1––( ) }

+




=

Q̃ tD( )

C3
id ωφhcerw

2
=

We f
∆p
∆tD
--------- 

 ∆∑ Q̃=
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Table 3.1: Dimensionless Functions for an Infinite Radial Aquifer
(Q(tD) after van EVERDINGEN and HURST, 1949)

(  after VOGT and WANG, 1988

tD Q(tD) tD
0.1000E-01 0.1120000E+00 0.1000E-01 0.75225280E-03
0.2500E-01 0.1742500E+00 0.1780E-01 0.18364557E-02
0.5000E-01 0.2780000E+00 0.3160E-01 0.44321290E-02
0.7500E-01 0.3410000E+00 0.5620E-01 0.10722197E-01
0.1000E+00 0.4040000E+00 0.1000E+00 0.26043625E-01
0.2500E+00 0.6890000E+00 0.1780E+00 0.63654354E-01
0.5000E+00 0.1020000E+01 0.3160E+00 0.15612493E+00
0.7500E+00 0.2610000E+01 0.5620E+00 0.38757698E+00
0.1000E+01 0.1569000E+01 0.1000E+01 0.97310597E+00
0.2500E+01 0.5649000E+01 0.1780E+01 0.24730688E+01
0.5000E+01 0.4539000E+01 0.3160E+01 0.63361924E+01
0.7500E+01 0.6028500E+01 0.5620E+01 0.16497206E+02
0.1000E+02 0.7411000E+01 0.1000E+02 0.43576673E+02
0.2500E+02 0.1457300E+02 0.1780E+02 0.11676082E+03
0.5000E+02 0.2485500E+02 0.3160E+02 0.31559709E+03
0.7500E+02 0.3424700E+02 0.5620E+02 0.86662947E+03
0.1000E+03 0.4312900E+02 0.1000E+03 0.24102943E+04
0.2500E+03 0.9108400E+02 0.1780E+03 0.67814908E+04
0.5000E+03 0.1626980E+03 0.3160E+03 0.19176731E+05
0.7500E+03 0.2295150E+03 0.5620E+03 0.54886840E+05
0.1000E+04 0.2935140E+03 0.1000E+04 0.15847778E+06
0.2500E+04 0.6487810E+03 0.1780E+04 0.46108726E+06
0.5000E+04 0.1192198E+04 0.3160E+04 0.13431358E+07
0.7500E+04 0.1706688E+04 0.5620E+04 0.39470205E+07
0.1000E+05 0.2203861E+04 0.1000E+05 0.11665744E+08
0.2500E+05 0.5005726E+04 0.1780E+05 0.34650488E+08
0.5000E+05 0.9363099E+04 0.3160E+05 0.10279585E+09
0.7500E+05 0.1353145E+05 0.5620E+05 0.30704301E+09
0.1000E+06 0.1758628E+05 0.1000E+06 0.92078873E+09
0.2500E+06 0.4066000E+05 0.1780E+06 0.27708710E+10
0.5000E+06 0.7699000E+05 0.3160E+06 0.83166975E+10
0.7500E+06 0.1120000E+06 0.5620E+06 0.25105398E+11
0.1000E+07 0.1462000E+06 0.1000E+07 0.76014114E+11
0.2500E+07 0.3427000E+06 0.1780E+07 0.23075497E+12
0.5000E+07 0.6544000E+06 0.3160E+07 0.69814848E+12
0.7500E+07 0.9562500E+06 0.5620E+07 0.21230343E+13
0.1000E+08 0.1252000E+07 0.1000E+08 0.64719162E+13
0.2500E+08 0.2961000E+07 0.1780E+08 0.19772497E+14
0.5000E+08 0.5689000E+07 0.3160E+08 0.60187517E+14
0.7500E+08 0.8341000E+07 0.5620E+08 0.18414932E+15
0.1000E+09 0.1095000E+08 0.1000E+09 0.56428423E+15

Q̃ tD( )

Q̃ tD( )
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The VAN EVERDINGEN-HURST solution requires the calculation of the sum at every
time tD for every j. This is for limited aquifers not necessary if the early transient period
is over.

3.3.3.2 Fetkovich Aquifer Model

Fetkovich[17.] presented a simplified approach for such cases that utilizes the
pseudo-steady-state aquifer productivity index and an aquifer material balance to
represent a finite compressibility system.

Assuming that the flow obeys DARCY’s law and is at pseudo-steady-state or steady-state,
the generalized rate equation for an aquifer without regarding the geometry can be
written:

. (3.30)

Jw is defined as the productivity index of the aquifer. pwf  is the pressure at the inner radius
and p is the average aquifer pressure. The later value can be calculated from a material
balance for a constant compressibility:

, (3.31)

where W is the water content and ce = cw + cφ  the total compressibility of the aquifer. The
maximum encroachable water at  p = 0  is:

(3.32)

After substituting Eq. 3.32 into Eq. 3.31:

(3.33)

The calculation is reduced to the following steps:

• For a time interval ∆j+1t = tj+1 - tj the constant influx rate would be:

, (3.34)

where pj is the average aquifer pressure for the time tj and pwfj+1 is the average inner
boundary pressure during the period ∆j+1t. 

qw Jw p pwf–( )=

p
We

ceW
----------– pi+=

Wei ceWpi=

p
pi

Wei
---------– We pi+=

qw Jw pj pwfj 1+–( )=
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• The total efflux during the timer interval ∆j+1t would be

(3.35)

• The cumulative efflux to the time ∆j+1t would be:

(3.36)

• The aquifer average pressure for the next time interval:

(3.37)

The efflux of the aquifer is naturally the water influx for the reservoir.

The VAN EVERDINGEN-HURST[16.] method in the original form and in the modified

form by VOGT and WANG[41.] as well uses three parameters: C3, α and reD. The first two
are numerical constants, the third relates to the mathematical assumption of a radial
symmetrical aquifer.

The Fetkovich[17.] method uses only two parameters (Jw and Wei) and no relation was
made to any geometrical form. In spite of that Jw and Wei can be calculated for the radial
symmetric case easily as described in the volume "Fluid Flow in Porous Media":

(3.38)

(3.39)

where f=1 if the circle is in full size. For field units replace 2π by 7.08x10-3 in Eq. 3.38
to get [bbl/psi d]. There Eq. 3.34 - Eq. 3.37 give the exact solution of the time step go to
zero. For practical cases a time step of some months gives results accurate enough.

Example 3.1

An oil reservoir contains N = 3.6 x 106m3[2.264x107bbl] oil. The ratio of the gas-/oil-pore
volume is m = 0.3. The change of the reservoir pressure and the cumulative productions
are given in columns (1)-(5) in Table 3.4 and Table 3.5. Columns (6)-(8) tabulate the
values for Bg, Bo and Rs at the corresponding reservoir pressure. The task is to calculate
water influx.

∆Wej 1+ Wej 1+ Wej– qw∆j 1+ t= =

Wej 1+ Wej ∆Wej 1++ ∆

n 1+

j 1+

∑ Wen= =

pj 1+

pi

Wei
---------Wej 1+ pi+–=

Jw
2πhkf

µ
re

rw
----- 3

4
---–ln

 
 
 

------------------------------=

Wei fπ re
2

r
2

w–( )hcepi=
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Solution

From Eq. 3.6:

The routine of the calculation procedure can be set up as follows (the numbers indicate 
the column numbers):

The results are written in Column (9)

Example 3.2

Figure 3.4 shows an oil reservoir with a semicircular aquifer. The parameters of the
aquifer are

At the time t = 0 reservoir pressure is reduced by 1 MPa [145 psi] and is then kept
constant. The water influx can be considered steady-state. The cumulative water influx
after 3 years is to be calculated.

rw - 1000 m [3280 ft]

re - 5000 m [16400 ft]

h - 7.2 m [23.6 ft]

φ - 0.23

k - 0.0225x10-12 m2 [~ 22.2 mD]

µw - 0.00025 Pas [0.25 cp]

We Np Bo Bg Rp Rs–( )+[ ]

N– Bo Boi– mBoi

Bg

Bgi
-------- 1–

 
 
 

Bg Rsi Rs–( )+ + Wp+

=

9( ) 3( ) 6( ) 7( ) 4( ) 8( )–( )×+[ ]× N
6( ) Boi mBoi 7( ) Bgi 1–⁄( ) 7 Rsi 8( )–( )×+ +–[ ] 5( )+×

–=
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Solution

From Eq. 3.22 for the semicircular aquifer:

In field units:

The cumulative water influx after 1000 days totals

In field units:

Example 3.3

The task is to determine cumulative water influx after a production time of  t = 1000 days
at non-steady-state conditions (Fig. 3.4). During this time the reservoir pressure is reduced
linear by 1 MPa [145 psi]. The aquifer acting infinite.

The parameters of the aquifer are:

A is the area of the aquifer.

A = 14x106 m2 [3459 ac]

h = 7.2 m [23.6 ft]

φ = 0.23

k = 0.225x10-12 m2 [~ 222 mD]

cφ = 6x10-10 Pa-1 [4.13685x10-6 1/psi]

cw = 5x10-10 Pa-1 [3.4473x10-6 1/psi]

µw = 0.25x10-3 Pas [0.25 cP]

C2r
1
2
--- 2πhk

µ
re

rw
-----ln

--------------- π7.2 0.0225 10
12–××

0.25x10
3–

5ln
------------------------------------------------------ 1.265 10

90–
  m

3
Pa

1–
s

1–

C 109.3  m
3

=

×

MPa
1–
d

1–

===

C2r
1
2
--- 7.08 10

3–
23.6 22.2×××

0.25 5ln×
------------------------------------------------------------- 4.6095  bbl psi d⁄==

We C2r∆pt 109.3 1× 1000× 109 10
3×   m

3
= = =

We 4.6095 145 1000 677410  bbl=××=



40 Chapter 3: Material Balance
Solution

The radii of the reservoir are

In field units:

The effective compressibility of the aquifer is

In field units:

According to Eq. 3.26:

In field units:

From Table 3.1, at tD = αt = 34.5 we get:

rw
2A
π

------- 
 

1
2
---

28 10
6×

π
--------------------- 

  2985  m= = =

rw
2 3459× 43560×

π
------------------------------------------ 

 
1
2
---

9794  ft==

ce cw cφ+ 6 5+( ) 10
10–× 1.1 10

9–×   Pa
1–

== =

ce 3.448 10
6–

4.137 10
6–×+× 7.585 10

6–×   1 psi⁄   = =

α k

µφcerw
2

--------------------- 0.225 10
12–×

0.25 10
3–× 0.23× 1.1× 10

9–× 2985
2×

-------------------------------------------------------------------------------------------------

α 0.39924 10
6–

s
1–× 0.0345 d

1–
==

= =

α 6.34 10
3– 222

0.25 10
3–× 0.23× 7.585× 10

6–× 9794
2×

------------------------------------------------------------------------------------------------------- 0.0345 d
1–

=×=

Q̃ tD( ) 380.5562=
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Eq. 3.28, since the reservoir is semicircular

In field units:

From Eq. 3.26:

In field units:

Example 3.4

A reservoir produces three years. Reservoir pressure has decreased from 30 MPa [4350
psi] to 27 MPa [3915 psi]. The data known are tabulated in columns (1)-(3) in Table 3.4
and Table 3.5. The cumulative water influx after 3 years is to be calculated. The
parameters of the aquifer are the same as in Example 3.3.

Solution

Constants α = 0.0345 d-1 and C3 = 51 000 m3 MPa-1 [2233 bbl/psi] were already
calculated in Example 3.3.

The water influx results in

In field units:

C3
id πφhcerw

2 π0.23 7.2× 1.1× 10
9–

2985
2××

C3
id

0.051  m
3
Pa

1–
51000  m

3
MPa

1–
 = =

= =

C3
id

0.17801π 0.23× 23.6× 7.585× 10
6–

9794
2×× 2208  bbl psi⁄==

We C3
id ∆p

tD
-------Q̃ tD( ) 51000 1× 380.5562 34.5 568000=⁄×   m

3
==

We 2208 145× 380.5562 34.5⁄ 3.53246 10
6×=×   bbl=

We C3 ∆j 1+
∆p
∆tD
--------- 

  Q̃ tDn tDj–( )=51000 26.189× 1.3356 10
6×   m

3
=

j 0=

n 1–

∑=

We 2208 379.74× 8.38465 10
6×   bbl= =
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Example 3.5

A water influx equation for the reservoir in Example 3.1 has to be determined. The radius
of the reservoir is ~ 1000 m [3280 ft], the data of the aquifer are:

Solution

First, it is essential to determine whether the water influx is steady-state or
non-steady-state. The procedure is comprised in Table 3.6 and Table 3.7. The coefficients
C1 and C2 are calculated for all tj by using Eq. 3.17 and Eq. 3.23.

Due to the fact that C1 increases and C2 decreases, the water influx can be considered
non-steady-state.

The aquifer is assumed infinite and α is calculated as follows:

In field units:

In Table 3.8 and Table 3.9, the terms

are calculated for the last three time points. The coefficients C3 are calculated in Table 3.6
and Table 3.7 using Eq. 3.26. The values C3 can be regarded with fair accuracy as

constants during the last 60 months. The value C3 = 5300 m3 MPa-1[230 bbl/psi] can be
accepted for prediction purposes.

φ = 0.23

k = 8x10-15 m2 [8 mD]

ce = 1.1x10-9 Pa-1 [7.585x10-6 1/psi]

µw = 0.25x10-3 Pas [0.25 cP]

α k

µφcerw
2

--------------------- 8 10
15–×

0.25 10
3–× 0.23× 1.1× 10

9–× 10
6×

------------------------------------------------------------------------------------------- =

α 1.2648 10
7–
s

1–× 0.0109 d
1–

1 3month
1–⁄≈==

= =

α 6.34 10
3–× 8×

0.23 0.25× 7.585× 10
6–× 3280

2×
------------------------------------------------------------------------------------- 0.0190d

1–
1 3⁄( )month

1–≈==

∆j 1+

j 0=

n 1–

∑ ∆p
∆tD
--------- 

  Q̃ tDn tDj–( ),  n 1 …6,=
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Table 3.2: Calculation of Water Influx into an Oil-Reservoir -
Example 3.1 (metric units)

Table 3.3: Calculation of Water Influx into an Oil-Reservoir -
Example 3.1 (field units)

t
month

p
MPa

Np

103m3
Rp

Wp

103m3
Bo Bg Rs

We

103m3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

  0 23 1.3032* 0.00480* 97.8*   0.0
  6 22  87.8 94.0  0.0 1.2957 0.00502 93.9   5.8
 12 21 183.7 92.0  0.1 1.2879 0.00526 90.0  11.1
 27 20 308.9 89.0  1.1 1.2800 0.00552 86.0  39.5
 48 19 502.8 95.0  3.3 1.2719 0.00581 82.0 166.8
 75 18 693.20 99.0 13.2 1.2636 0.00613 77.9 292.2
108 17 905.0 105.0 21.8 1.2550 0.00649 73.8 468.5

t
month

 p
 psi

Np

103bbl

Rp
scf/bbl

Wp

103/bbl
Bo  Bg

Rs
scf/bbl

We

103/bbl
(1) (2) (3) (4) (5) (6) (7) (8) (9)

  0 3335 1.3032* 0.00480* 549.2   0
  6 3190 552 527 0.0 1.2957 0.00502 527.0 36
 12 3045 1155 516 0.6 1.2879 0.00526 505.0 70
 27 2900 1943 499 6.9 1.2800 0.00552 483.0 248
 48 2755 3162 532 20.7 1.2719 0.00581 460.0 1049
 75 2610 4359 555 82.9 1.2636 0.00613 437.0 1837
108 2465 5691 589 136.9 1.2550 0.00649 414.0 2946
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Table 3.4: Calculation of Water Influx into an Oil-Reservoir -
Example 3.1 (metric units

α = 0.0345
∆tD = const. = 6.3

Table 3.5: Calculation of Water Influx into an Oil-Reservoir -
Example 3.1 (field units)

α = 0.0345
∆tD = const. = 6.3

Date
Reservoir
pressure

MPa

∆p

MPa
t

days
tDj=
αt

tD-tDj=
37.8-tDj

∆p
∆tD

(8)x(9)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

76.7.1 30.0 0.10 37.8 0.0158 0.0158 454.475 7.181
77.1.1 29.8 0.25 183 6.3 31.5 0.0397 0.0239 314.080 7.506
77.7.1 29.5 0.40 365 12.6 25.2 0.0635 0.0238 223.422 5.317
78.1.1 29.0 0.70 548 18.9 18.9 0.1111 0.0476 132.683 6.316
78.7.1 28.1 0.75 730 25.2 12.6 0.1190 0.0079 67.573 0.538
79.1.1 27.5 0.55 913 31.5 6.3 0.0873 -0.0323 20.704 -0.669
79.9.1 27.0 1095 37.8 Σ 26.189

Date
Reservoir
pressure

psi

∆p
psi

t
days

tDj=
αt

tD-tDj=
37.8-tDj

∆p
∆tD

(8)x(9)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

76.7.1 4350.0 14.5 37.8 0.229 0.229 454.475 104.12
77.1.1 4321.0 36.3 183 6.3 31.5 0.576 0.347 314.080 108.84
77.7.1 4277.5 58.0 365 12.6 25.2 0.921 0.345 223.422 77.09
78.1.1 4205.0 101.5 548 18.9 18.9 1.611 0.690 132.683 91.58
78.7.1 4074.0 108.8 730 25.2 12.6 1.725 0.114 67.573 7.8
79.1.1 3987.5 79.8 913 31.5 6.3 1.266 -0.459 20.704 -9.70
79.9.1 3915.0 1095 37.8 Σ 379.74

∆j 1+
∆p

∆tD
---------- 

  Q̃ tDn tDj–( )

∆j 1+
∆p

∆tD
---------- 

  Q̃ tDn tDj–( )
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Table 3.6: Determination of the Aquifer Type (metric units)

N = 3600000 m3

Table 3.7: Determination of the Aquifer Type (field units)

N = 2.26x107 bbl 

No t p We pi-p C1 ∆pj Σ∆p C2 Σ∆j+1 C3

(t-tj)

month MPa 103m3 MPa (3)/(4) MPa (3)/(7) (3)/(9)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

0 0 23.0
1 6 22.0 5.8 1.0 5.8 0.5 3.0 1.93
2 12 21.0 11.1 2.0 5.6 1.0 12.0 0.93
3 27 20.0 39.5 3.0 13.2 1.0 49.5 0.80
4 48 19.0 166.8 4.0 41.7 1.0 123.0 1.36 30.444 5480
5 75 18.0 292.2 5.0 58.5 1.0 244.5 1.19 54.460 5360
6 108 17.0 468.5 6.0 78.1 1.0 426.0 1.10 88.209 5310

No t p We pi-p C1 ∆pj Σ∆p C2 Σ∆j+1 C3

(t-tj)

month psi 103bbl psi (3)/(4) psi (3)/(7) (3)/(9)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

0 3335
1 6 3190 36.5 145 2.52 72.5 435 83.90
2 12 3045 69.8 290 2.42 145.0 1740 40.01
3 27 2900 248.4 435 5.72 145.0 7177 34.60
4 48 2755 1049.0 580 18.09 145.0 17835 58.80 4413 237.6
5 75 2610 1838.0 725 25.38 145.0 35452 51.80 7897 232.6
6 108 2465 2946.0 870 33.88 145.0 61770 47.70 12790 230.5

∆p
∆tD

--------- 
  Q̃

∆p
∆tD

--------- 
  Q̃
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Table 3.8: Calculation of the  Function for

Example 3.5 (field units)

For 6th time point: tDn = 36

For 5th time point: tDn = 25

For 4th time point: tDn = 16

No tD
∆pj

psi
0 0 145 72.5000 72.5000

1 2 145 72.5000 0.0000

2 4 145 29.0000 -43.5000

3 9 145 20.7060 -8.2940

4 16 145 16.1095 -4.5965

5 25 145 13.1805 -2.9290

No tDn-tDj

0 36 414.157 30 026.310

1 34 378.317 0.000

2 32 326.557 -14 205.215

3 27 249.154 -2 066.540

4 21 148.294 -681.645

5 11 96.536 -282.750

Σ 12 790.160

No tDn-tDj

0 25 220.337 15 974.505

1 23 191.521 0.000

2 21 162.704 -7.077.595

3 16 99.872 -828.385

4 9 37.394 -171.825

Σ 7 896.700

No tDn-tDj

0 25 220.337 15 974.505

1 23 191.521 0.000

2 21 162.704 -7.077.595

3 16 99.872 -828.385

4 9 37.394 -171.825

Σ 7 896.700

∆j 1+

∆p

∆tD
---------

 
 
 

Q̃ tD tDj–( )∑

∆p
∆tD

--------- ∆j 1+
∆p
∆tD

--------- 
 

Q̃ tD tDj–( ) ∆j 1+
∆p
∆tD

--------- 
  Q̃

Q̃ tD tDj–( ) ∆j 1+
∆p
∆tD

--------- 
  Q̃

Q̃ tD tDj–( ) ∆j 1+
∆p
∆tD

--------- 
  Q̃
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Table 3.9: Calculation of  Function for

Example 3.5 (metric units)

For 6th time point: tDn = 36

For 5th time point: tDn = 25

For 4th time point: tDn = 16

No tD
∆pj

MPa
0 0 1 0.5000 0.5000

1 2 1 0.5000 0.0000

2 4 1 0.2000 -3.0000

3 9 1 0.1428 -0.0572

4 16 1 0.1111 -0.0317

5 25 1 0.0909 -0.0202

No tDn-tDj

0 36 414.157 207.078

1 34 378.317 0.000

2 32 326.557 -97.967

3 27 249.154 -14.252

4 21 148.294 -4.701

5 11 96.536 -1.950

Σ 88.208

No tDn-tDj

0 25 220.337 110.169

1 23 191.521 0.000

2 21 162.704 -48.811

3 16 99.872 -5.713

4 9 37.394 -1.185

Σ 54.460

No tDn-tDj

0 16 99.872 49.936

1 14 81.107 0.000

2 12 62.342 -18.703

3 7 25.029 -0.793

Σ 30.440
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Q̃ tD tDj–( ) ∆j 1+
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--------- 
  Q̃

Q̃ tD tDj–( ) ∆j 1+
∆p
∆tD

--------- 
  Q̃
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3.4 Finite Difference Material Balance Equation

The time is divided into a finite number of optional intervals. At time j, Eq. 3.9 becomes 

(3.40)

For time j+1

, (3.41)

where

In order to simplify calculations, the water influx is assumed steady-state.
(Calculations are similar, but more complicated for non-steady-state water influx).

According to Fetkovich[17.] equation Eq. 3.35,

, (3.42)

where paj is the avarage aquifer pressure at time j and  

(3.43)

is the average reservoir pressure in a time period (tj, tj+1). Thus, Eq. 3.40 at time j+1 leads
to 

qo - oil production rate m3/d [bbl/d],

qw - water production rate m3/d [bbl/d],

R - the average production GOR.
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(3.44)

From Eq. 3.44 either the production for the time intervall  j,j+1

(3.45)

or the duration

                    (3.46)

can be expressed.

Application of the differential form of MB equation:
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1. Eq. 3.44 is applied for the production forecast ∆j+1 Np, if the reservoir pressure
drops from pj to pj+1 in a time period ∆j+1 t.

2. Eq. 3.46 enables the calculation of the time period ∆j+1 t corresponding to a given
pressure change ∆j+1p and production ∆j+1 Np. 

3. For the third case, where the pressure change in a certain time interval ∆j+1 t at a
given production rate has to determined, a NEWTON- RAPHSON iteration must be
applied to calculate ∆j+1 Np and ∆j+1 t according to ∆j+1p.

Subtraction of Eq. 3.40 from Eq. 3.44 leads to

(3.47)

where

(3.48)

After reordering:

(3.49)

Again, it is possible to split this term into three fractions, each representing one specific
drive index at a production of ∆j+1 Np:
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The solution gas drive index:

(3.50)

The gas drive index:

, (3.51)

The water drive index:

(3.52)

Again

(3.53)

is valid.

In contrast to the indices applied in Eq. 3.11 - Eq. 3.13, which refer to the total cumulative
production, these are only valid for the production in the time interval ∆j+1 t.

3.5 Undersaturated Oil Reservoirs

Up to this point, the compressibility of both the connate water and the reservoir rock has
been neglected due to the compressibility of gas and the two phase compressibility of oil.

In case of an unsaturated reservoir, oil is in single phase state if pressure ranges from
initial pressure pi to bubble point pressure pb. Since the compressibility of water is in its
order of magnitude comparable to that of oil, it has to be taken into consideration also.

is

N Np–( )∆j 1+

Bo

Bg
------ Rs–

 
 
 

NBoi∆j 1+
1

Bg
------ 

 –

Bo

Bg
------ Rs–

 
 
 

j 1+

R+ ∆j 1+ Np

-------------------------------------------------------------------------------------------------------=

ig

mNBoi∆j 1+
1

Bg
------ 

 

Bo

Bg
------ Rs–

 
 
 

j 1+

R+ ∆j 1+ Np

---------------------------------------------------------------------=

iw

We Wp–( )∆j 1+
1

Bg
------ 

  1
Bgj 1+
--------------- Jw paj p–( ) qw–[ ]∆j 1+ t+

Bo

Bg
------ Rs–

 
 
 

j 1+

R+ ∆j 1+ Np

-------------------------------------------------------------------------------------------------------------------------------------=

is ig iw+ + 1=



52 Chapter 3: Material Balance
A simplification can be achieved by introducing an apparent oil compressibility coe

representing all three phases:

. (3.54)

Since , then

. (3.55)

The volume of the reservoir oil at initial pressure pi is

. (3.56)

If the reservoir pressure drops to p as a consequence of the production Np, the volume of
the total reservoir contents taking the water influx into account would be

. (3.57)

Due to the fact that the compressibility of the pore volume is conveyed to the oil, the pore
volume is considered constant as in Chapter 3.1. The difference between the volumes
according Eq. 3.57 and Eq. 3.56 lies in the volume of cumulative production at pressure p:

. (3.58)

Thus,

(3.59)

Substitution of Eq. 3.55 leads to

. (3.60)

Since

, (3.61)

Eq. 3.60 can be written as follows:

. (3.62)

Analogous forms can be set up for Eq. 3.45, Eq. 3.46 and Eq. .

Socoe coSo cwSw cφ+ +=

So 1 Sw–=

coe co cw

Sw

1 Sw–
--------------- cφ

1
1 Sw–
---------------+ +=

Vp 1 Swi–( ) NBoi=

NBoi 1 coe pi p–( )+[ ] We+

NpBo Wp+

NBoicoe pi p–( ) We NpBo Wp+=+

N Boico pi p–( )
Boi cφ Swicw+( ) pi p–( )

1 Swi–
----------------------------------------------------------+ We+ NpBo Wp+=

Bo Boi 1 co pi p–( )+[ ]=

N Bo Boi

Boi cφ Swicw+( ) pi p–( )
1 Swi–

----------------------------------------------------------+– We+ NpBo Wp+=



Chapter 3: Material Balance 53
The equations of material balance for unsaturated reservoirs can be applied solely
between initial and bubble point pressure. In case of pressure being below bubble point
pressure, the equations for saturated reservoirs must be applied.

3.6 Gas Reservoirs

The compressibility of rock and connate water are again neglected. The formation volume
at initial presure pi is defined as

(3.63)

The production Gp effects a drop of the reservoir pressure. The total reservoir content
including the water influx then adds up to

. (3.64)

The difference between Eq. 3.63 and Eq. 3.64 is conditioned by the volume of cumulative
production at pressure pj:

(3.65)

and thus

. (3.66)

The formation volume factor can be calculated from the real gas equation.

             (3.67)

Since C and T (reservoir temperature) are constant, Eq. 3.66 can be written as follows:

(3.68)

If no water influx is present, a gas reservoir is called volumetric. Thus, the second term on
the right side of the equatin vanishes and Eq. 3.68 can be transformed to 

. (3.69)
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A specific property of a volumetric reservoir is that the fraction p/Z is a linear function of
the cumulative production. Therefore, the presence of a water influx is easily observed by
this function not being linear (see Fig. 3.8).

Figure 3.8:  Pressure-drop in a gas reservoir

3.7 Calculation of Original Fluid in Place

The material balance formulas as used in Chapters 3.1, 3.4, 3.5 can be regarded as specific
cases. The general form of the material balance equation is

(3.70)

where WI is the cumulative injected water and GI the cumulative injected gas. Eq. 3.70
includes the material balance equations derivated earlier:

• The compressibility of the pore volume and the connate water can be neglected if the
reservoir contains free gas. Then . Disregarding

gas and water injection means that Eq. 3.70 is identical with Eq. 3.6.

• If the reservoir pressure is above bubble point pressure Rs = Rsi, Rp = Rsi, and GBgi =
0. Therefore, Eq. 3.70 becomes identical with Eq. 3.62.
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• In a gas reservoir, N = 0, Np = 0. Thus Eq. 3.70 is identical with Eq. 3.65.

The water influx can be calculated by the modified VAN EVERDINGEN-HURST
method (see Eq. 3.26):

, (3.71)

where

(3.72)

Further, the following notions are defined:

, (3.73)

, (3.74)

, (3.75)

, (3.76)

. (3.77)

Substituting Eq. 3.71 - Eq. 3.77 into Eq. 3.70 the following simple form is obtained:

. (3.78)

In order to determine the functions ε, η and QF , it is necessary to have knowledge of both
the average reservoir pressure as a function of time and cumulative production. If the
corresponding values are known at n dates, it is possible to set up a system of n linear
equations:

(3.79)

..................................................

Solutions for N, G and C could be obtained by the method of the GAUSS’s normal
equations, whereby Eq. 3.79 is gradually multiplied with the coefficients of the first,
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second and third unknown and than summed up:

(3.80)

where

. (3.81)

3.8 Graphical Evaluation of Material Balance

Let us consider Eq. 3.78:

(3.82)

or with

(3.83)

in the form:

(3.84)

HAVLENA and ODEH[19.] used this equation for graphical evaluation of reservoir
performances.

We investigate several special cases illustrated in Fig. 3.9 and Fig. 3.10.

3.8.1 Reservoirs Without Water Influx: We = 0

a) For an oil reservoirs without a gas cap m = 0 and Eq. 3.84 becomes:

. (3.85)
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Illustrated in the coordinate system εow νs QF, Eq. 3.85 results in a straight line through
the origin of the coordinate system with a slope N. 

b) For an oil reservoir with a gas cap and supposing that m is known and Eq. 3.84 
becomes:

. (3.86)

Illustrated in the coordinate system εow + m(Bo/Bg)i εg νs. QF , Eq. 3.86 appears as a
straight line through the origin of the coordinate system with a slope N.

c) For an oil reservoir with a gas cap of unknown size must one select a value for m. A
diagram is drawn according to the case b). If m is too large, the series of points will
bend downwards and upwards if m is too small. After several attempts, the correct m
will result in a straight line.

d) For a gas reservoir Eq. 3.82 becomes:

. (3.87)

Illustrated in the coordinate system εg νs GpBg, Eq. 3.87 is straight line through the 
origin of the coordinate system with a slope N.

3.8.2 Reservoirs With Water Influx

a) For an oil reservoir without a gas cap: m = 0. Eq. 3.84 can then be written as 

. (3.88)

Illustrated in the coordinate system QF/εow νs. ηm/εow, Eq. 3.88 is a straight line with
a slope C. The intersection of the straight line with the axis of coordinates gives N. 
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Figure 3.9:  Graphical illustration of material balance without water influx (We = 0)

b) For an oil reservoir with a gas cap of known size Eq. 3.84 can be written as

(3.89)

The analogy to case a) is obvious.

c) Gas reservoir Eq. 3.82 can be written in the following form:

. (3.90)

Evaluation is made as in case a).

In order to calculate
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one must estimate the parameters
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correctly. If ηw has a large value, Eq. 3.88 will be a rather flat curve.

Figure 3.10:  Graphical illustration of material balance with balance with water influx 
(We>0)

3.9 Recovery Factor

The ultimate recovery factor is defined as the relation between the ultimate recovery and
the original oil in place, short OOIP:

. (3.93)

The recovery factor can be applied either for the whole or selected parts of the reservoir.
The recovery factor at a specific point is considered equal to that of the displacement
efficiency inferred by the existing oil recovery mechanisms at just this point. If several oil
recovery mechanisms exist in a reservoir, they will result in an overall oil recovery
(various possible combinations of elementary mechanisms are considered extra):

, (3.94)

where Evj is the volumetric efficiency of recovery mechanism j.
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Of course,

. (3.95)

It is customary to split Ev into two factors:

The contribution of recovery mechanism j to the recovery factor is defined by the
multiplication of the following three factors:

. (3.96)

EA - areal sweep efficiency

EI - vertical sweep efficiency.

Evj

j 1=

n

∑ 1=

∆jER EDjEAjEIj=



61
Chapter 4

Displacement Efficiency

4.1 Solution Gas Drive

Imagine a part of the reservoir with 1 m3[bbl] pore volume, an immobile water saturation
Swi and oil saturation Soi = 1 - Swi. The oil is saturated with gas at initial reservoir pressure.

In case of a pressure drop, the fluids will expand and gas will liberate from the oil. The
total fluid volume will increase. Since the pore volume remains constant, surplus fluid
must be displaced. An essential precondition for displacement is the mobility of the phase.
In this case, the immobility of the water is inferred from the constant value of water
saturation (expansion of the water was neglected). The involved gas develops a disperse,
free gas phase consisting of small immobile gas bubbles. The oil is the only phase capable
of flowing out of the regarded volume. A further pressure drop enlarges the number and
size of the gas bubbles. The bubbles start to connect themselves and consequently develop
continuous channels. The gas begins to move, more and more gas rather than oil will flow
out. Pressure drops rapidly and as a result only oil with lost interior energy will remain.

4.1.1 MUSKAT’s (1945) Equation of Solution Gas 
Drive

A pressure below the bubble point pb is assumed. Water, oil and gas saturations represent
the reservoir fluid volumes:

(4.1)

An unit pore volume at this pressure contains  sm3[stb] stock tank oil and 

So Sg Sw+ + 1=

So Bo⁄
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(4.2)

gas. The first term in this formula is the amount of dissolved, the second term the amount

of free gas. As pressure drops from pi to p, Qo sm3[stb] oil and Qg sm3[scf] gas are
produced from this volume unit. Further pressure drops of a differently small dp cause an
increase of production by dQo and dQg. Naturally these terms must coincide with the
changes of the oil and gas contents:

(4.3)

and

            (4.4)

The momentary GOR results in:

. (4.5)

Eq. 4.5 demands a reduction of saturation both of oil and gas in such a way that the
equation for the GOR is fulfilled when regarding the present saturations. 

A combination of Eq. 4.3, Eq. 4.4 and Eq. 4.5 thus leads to

(4.6)
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Thus  can be defined as

(4.7)

This is a nonlinear first order differential equation. The oil saturation at pressure p is
calculated by integration from pi to p. 

The following functions are introduced:

,

(4.8)

,

.

These are the MUSKAT functions and are given either graphically (Fig. 4.1) or in tables,
but never analytically. Therefore integration can only be carried out numerically. The
finite difference form of Eq. 4.7 is defined as

(4.9)

and the cumulative amount of produced oil as

. (4.10)
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Figure 4.1:  MUSKAT’s function: λ and η

The method of MUSKAT is advantageous if a greater number of calculations are to be
executed, whereby the effects of various factors on the solution gas drive are to be
analysed. The fluid and rock characteristics remain unchanged. The functions ,

, ,  are calculated only once. The corresponding values are obtained

from the given curves.

Nevertheless there are various methods to solve Eq. 4.7 or Eq. 4.9. Several authors have
analysed the effects of various factors influencing the progress of expansion and recovery.

MUSKAT and TAYLOR[32.](1946) using Eq. 4.7, analysed the influence of 

Recovery as a function of the oil viscosity µo in case of solution gas drive is illustrated in
Fig. 4.3. Essential for production planning of a volumetric reservoir is the calculation of
the pressure decrease p(Np), the gas -oil ratio R(Np) and the production index J(Np), each
as a function of the cumulative oil production Np. In case the initial production rates of
each well are known, Np may be calculated with the help of the productivity index as a
function of time.

µo - viscosity

pi - initial pressure

Rsi - solution gas-oil ratio

krg/kro - relative permeability ratio, see Fig. 4.2

Swi - connate water saturation
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Figure 4.2:  The relative gas and oil permeabilities and their relation as a function of the 
oil saturation

Figure 4.3:  Pressure and gas oil ratio histories of solution gas-drive reservoirs producing 
oil of different viscosities (after MUSKAT and TAYLOR, 1946)
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4.1.2 Calculation of the Solution Gas Drive According 
to PIRSON

The task is again the calculation of the pressure drop and GOR as a function of the

cumulative produced oil. The equations will be written for N m3 O.O.I.P..

Fluid saturation equation:

. (4.11)

GOR equation:

. (4.12)

PIRSON[33.](1958) applied the material balance form in its difference form which is
advantageous because it converges and the number of numerical operations is minimal.

Since only the solution gas drive is acting the drive index is = 1 can be set in Eq. 3.53 and
the production increase can be calculated as follows:

(4.13)

where

.                                                                                                              

j or j + 1 refer to two subsequent dates.

Further, the production capacity is defined by the productivity index:

(4.14)
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Ji = J(pi) is the productivity index at initial reservoir pressure. The change of the
productivity index during recovery may be calculated with the help of the two phase
DARCY-equation:

. (4.15)

In order to avoid cumulative errors, it is advisable to check this method using the finite
form of the material balance equation. For this, the following formula is applied:

(4.16)

Fig. 4.4 shows the characteristic functions p(Np), R(Np) and J(Np) of a solution gas drive
reservoir with initial pressure pi = pb.

Figure 4.4:  Pressure, production index and GOR as a function of the production Np/N 
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4.2 Frontal Displacement

Due to pressure drop in the oil zone of the reservoir, the aquifer and gas cap expand,
whereby the oil is displaced front-like by gas and water. This front is considered solely a
transition zone between the displaced and displacing phase. Its size is very small in
relation to the reservoir.

Not only natural depletion, but also artificial methods such as gas and water injection
perform frontal displacement. Gas injection wells are situated inside the gas cap, water
injection wells at the exterior boundary of the reservoir. If reservoirs have a minor
thickness and inclination, the displacing phase can also be injected inside the oil zone.
However, direction of flow and distribution of saturation are in this case much more
complicated. 

In modern reservoir engineering, these processes are calculated with numerical solutions
of very complicated systems of differential equations. But this does not imply that
analytical solutions of more simple and idealized models are superfluous. An essential
aspect of these models is the possibility to make universal assertions and to have a quick
overall picture of the considered case.

This chapter analyses several idealized models in order to describe frontal displacement.

4.2.1 BUCKLEY-LEVERETT Theory

This theory proves that displacement can proceed as a front and provides a clear
description of how phase mobility and gravity influence this procedure. The calculation
of front saturation and average saturation behind the front are additional aspects
underlining the importance of this theory.

The BUCKLEY-LEVERETT[4.](1942) theory has proven successful for solutions of
more complicated problems such as condensation gas drive, CO2 gas drive or polymer
flooding.

Explanations considering this theory were already given in the volume "Fluid Flow in

Porous Media" (HEINEMANN[21.](1995)). Therefore it is only necessary to recall the
most important aspects.

BUCKLEY and LEVERETT[4.](1942) assumed that:

1. the two fluids are non-compressible and immiscible,

2. the porous medium is homogeneous,

3. the displacement is one dimensional and stable,
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4. the filtration can be described by the multiphase DARCY-law,

5. the capillary force is neglectable.

The equations for a one dimensional two phase filtration are

, (4.17)

, (4.18)

where α is the inclination of the direction of displacement. Phase 1 is the displacing phase,
and can either be water or gas. Phase 2 is the displaced phase: oil or gas.

The difference between the two phase pressures p1 and p2 is regarded as the capillary
pressure:

. (4.19)

This is neglected according to condition (5). Therefore,

. (4.20)

Let

(4.21)

be the overall filtration velocity, which is according to condition (1) independent of x.

The portion of the displacing phase f1 referring to the overall flow is calculated with the
help of Eq. 4.17 and Eq. 4.18.

Therefore

(4.22)

or

. (4.23)
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The function f1 depends - due to the relative permeabilities - on the saturation S1. Fig. 4.6
shows this function at a constant displacement velocity.

In the volume "Fluid Flow in porous Media" (HEINEMANN[21.](1995)) it was shown
that every saturation value moves with the constant velocity:

. (4.24)

This term is only a function of u and Si. Thus, it is only necessary to know the initial
saturation distribution and the displacement velocity in order to calculate the saturation
distribution during the whole displacing process. This discontinuity is regarded as the
front of displacement.

Fig. 4.5 illustrates the displacement process. The initial saturation can be zero (for
example in case of a gas displacement) or it can be so small that fluid 1 becomes immobile
(S1i < S1c, S1c is defined as the critical saturation). Otherwise it is large enough to be
mobile.

Two periods are to be distinguished. The first period lasts until the front has reached L.
This is regarded as the breakthrough. The front saturation S1F can be determined
graphically with the fi-curve as shown in Fig. 4.7 The procedure is as follows:

Figure 4.5:  Illustration of the displacing process according to Buckley and Leverett

First a tangent is drawn from point S1i to the curve. The tangential point indicates directly
the front saturation and the fraction value of the front. In case the initial saturation (S1i) is
higher than the critical saturation (S1c), the tangent is drawn from this initial value
situated on the fractional flow curve to the curve itself.
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Evidently the front saturation (S’1F) will be smaller than before. The same is valid for the
average saturation behind the front (S’1F < S1F). Thus, the efficiency of the frontal
displacement is smaller for S1i > S1c than for S1i < S1c.

The average values of saturation behind the front (S1F < S1F) remain constant during the
progression of the front until breakthrough is achieved.

On the right hand side of Fig. 4.7 a part of the fractional flow curve is drawn in
magnification. The part of the curve between f1F and f1 = 1 describes the displacement
conditions after breakthrough.

The proportion of the displacing phase f1L increases continuously at the exit of the
medium. Saturation at x = L is S1L and average saturation is S1L. The last value is the
intersection on the f = 1 lines with the tangent drawn from the point f1L(S1L).

Eq. 4.24 enables the calculation of the date of breakthrough:

. (4.25)

Figure 4.6:  The fractional flow curve and its derivative

The displacing efficiency at and after breakthrough is defined as

. (4.26)
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4.2.2 Oil Displacement by Water

Fig. 4.8 left shows the relative permeability curves of a highly water wet and highly oil
wet sandstone. Corresponding to this diagram is Fig. 4.9 right, which displays the
fractional flow curves at the same viscosity ratio and horizontal displacement.

In case of a given relative permeability function, the viscosity ratio has a deciding
influence on the fractional flow curve and therefore on displacement efficiency. Fig. 4.9
was calculated on the basis of Fig. 4.8. The influence of gravity is considered as an
advantage if the displacing phase is the heavier one and displacement progresses from
bottom to top, or if it is the lighter phase and displacement progresses from top to bottom.

The value fw describes the fraction of water in the overall flow at reservoir conditions. The
notion qo and qw are defined as the oil and water production in reference to the volume at
surface conditions, therefore:

. (4.27)

Figure 4.7:  The fractional flow curve and graphical method of determining the front 
saturation and the average saturation behind the front.
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Figure 4.8:  Influence of the wettability on relative permeability and fractional curves

Figure 4.9:  The influence of the viscosity on the fractional flow curve

In production statistics, the notions water cut (WC) or water oil ratio (WOR) are applied
to describe water production

, (4.28)

. (4.29)

0
0

0.2 0.4 0.6 0.8 1.0
Sw Sw

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

kr

kro

STRONG
OIL-WET

OIL-WET

µo = 1.2 cP
µ
∆ρ

w = 0.8 cP
 = 0

STRONG
WATER-WET

WATER-WET

kro

krw

krw

0.2

0.4

0.6

0.8

1.0

fw

0

A) RELATIVE PERMEABILITY
    CURVES

B) FRACTION  FLOW
    CURVES

0
0

0.2 0.4 0.6 0.8 1.0

Sw Sw

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

fw

0.2

0.4

0.6

0.8

1.0

fw

0

A) Oil-wetted B) Water-wetted

= 10  5  2  1µw

µo = 10  5  2  1µw

µo

WC
qw

qw qo+
------------------=

WOR
qw

qo
------=



74 Chapter 4: Displacement Efficiency
From Eq. 4.27 and Eq. 4.29:

(4.30)

4.2.3 Influence of Free Gas Saturation on Water 
Displacement

Often water displacement takes place when a gas saturation has developed as a
consequence of solution gas drive or gas displacement. Gas is mobile if Sg > Sgc. Now the
relative permeabilities are a function of two variables:

,       ,       . (4.31)

These are illustrated by a triangular diagram (Fig. 4.10). Fig. 4.11 shows a schematic
illustration of the displacing process. The first section shows the existence of two mobile
phases: oil and gas. The connate water is immobile and the free gas is displaced by the
accumulating oil. Due to the fact that gas has a greater mobility than oil, the remaining
gas saturation behind the front will be practically immobile. The gas saturation is also
diminished by pressure increase effecting compression and solution in the oil.

A three phase displacement can only be calculated numerically. An approximation is
possible by applying the two phase flow equations because there are only two mobile

phases present at a specific section. The BUCKLEY-LEVERETT[4.](1942) solution is
satisfactory for the calculation of the oil-gas and water-oil front saturations and material
balance can be used to calculate the extension of the oil bank.

According to laboratory experiments, the gas saturation in an oil bank (Sgt) depends on
the initial gas saturation (Sgi). Fig. 4.12 shows a summary of several results achieved by

CRAIG[8.](1971).

4.2.3.1 The Residual Oil Saturation

The residual oil saturation is defined by the relative permeability function. This is the non-
reducible oil saturation achieved during a steady-state-measurement of relative
permeability at an increasing water saturation (imbibition).

Therefore, this saturation does not coincide with the oil saturation after displacement by
water since it depends on several other parameters such as velocity of displacement, oil
viscosity, capillary pressure function, injected pore volume.

Fig. 4.13 demonstrates the effects of gas saturation on oil saturation after a complete water
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flooding in the case of water wet reservoir rock. This free gas saturation can have a
beneficial effect on the displacing efficiency (assuming that no other factors oppose).

In case of an oil wet reservoir, no specific associations between initial gas saturation and
oil saturation after a water flooding are detectable. The influence depends on pore
structure, viscosity ratio, injected amount of water and displacing velocity.

The presence of gas diminishes the mobility of water and thereby can be considered
beneficial for displacement. This facts results, as shown in Fig. 4.14, in a smaller amount
of water needed.
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Figure 4.10:  Three-phase relative permeability functions
(from Petroleum Production Handbook, Vol. 11, 1962)
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Figure 4.11:  Water displacement at free gas saturation

Figure 4.12:  Correlation between initial gas saturation and residual gas saturation
(after CRAIG, 1971)
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Figure 4.13:  Influence of initial gas saturation on the efficiency of water displacement 
(after CRAIG, 1971)

4.2.4 Displacement by Gas

By assuming that the phases are incompressible and the gas will not dissolve in oil, the

BUCKLEY-LEVERETT[4.](1942) theory can be applied for frontal gas displacement.
This is the case when displacement occurs at constant pressure with very small
depression.

The critical gas saturation at which the gas becomes immobile lies between 0 and 0.12.
Fig. 4.15 shows for the same relative permeability functions for different fractional flow

curves. µg is assumed 2 x 10-5 Pas [0.02 cP] and ρo - ρg = 700 kg/m3 [43.71 lbm/cuft].

Diagram b) displays the influence of the oil viscosity in case of horizontal displacement
and diagram c) the influence of gravity. At low velocities, gas displacement in a vertical
direction can also achieve favorable results also with viscous oils.

The influence of the displacement velocity is illustrated in diagram d).

The BUCKLEY-LEVERETT[4.](1942) theory may be applied for calculation of the
displacement caused by the expanding gas cap or better by a gas injection into the gas cap.
In these cases, one can assume that the gas does not condensate in the oil (i.e. it does not
dissolve). Gas injection into the oil zone is sometimes associated (i.e. it does not dissolve).
Gas injection into the oil zone is sometimes associated with a pressure higher than a
reservoir pressure, which means that gas dissolved in the oil enlarges the volume and
diminishes the viscosity of the oil. This process is called condensation gas drive. Fig. 4.16
shows a linear gas displacement at constant connate water saturation Swi. At the front, the
gas saturation is Sgf which increases at x = 0 to the value Sgmax = 1 - Swi - Sor.
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Figure 4.14:  Relation between residual gas saturation and oil saturation in case of water 
flooding (after KYTE et al, 1956)
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Figure 4.15:  Illustration of gas displacement when using the BUCKLEY-LEVERETT 
theory

Figure 4.16:  Distribution of saturation in case of condensation gas drive
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(4.32)

qg is the gas injection rate, A the surface and Rs - Rsi the increase of dissolved gas. The

distance xf or x(Sg) are calculated according to the BUCKLEY-LEVERETT[4.](1942)
theory from Eq. 4.25:

(4.33)

and

(4.34)

xf and x(Sg) are inserted into Eq. 4.32:

(4.35)

or

, (4.36)

where

, (4.37)

. (4.38)

Comparison of Eq. 4.35 with the common BUCKLEY-LEVERETT[4.](1942) equation for
Sgi = 0 leads to

. (4.39)

qgt
Aφ
Bg
------- Sgf xf x Sg( ) Sg

          +Aφ
Rs Rsi–( )

Bo
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∫–

d
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∫+=

xf wf t
ut
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Bgqgt

Aφ
-------------- f ’gf= = =

x Sg( )
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--------------f ’gf=
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This proves that the condensation gas drive can be designed graphically by coordinate
transformation (see Fig. 4.17). The tangent to the fg curve is drawn from the point (-b,a),
left from the origin.

Figure 4.17:  Graphical determination of the front saturation
by condensation gas drive

Example 4.1

A linear water displacement is to be calculated. The following reservoir parameters are
available:

Length m[ft] L 500 [1640]

Width m[ft] b 200 [656.2]

Thickness m[ft] h 10 [32.8]

Inclination [Grad] a 60

Porosity [-] f 0.20

Initial water saturation [-] Swi 0.27

Permeability m2[md] k 5.0x10-13 [506.6]

Oil:

Formation volume factor Boi [-] Boi 1.22

Viscosity Pas [cP] µo 2x10-3 [2]

Density kgm-3[lbm/cuft] ρo 700 [43.69]

Water:

Formation volume factor Bwi [-] Bwi 1.01

Viscosity Pas [cP] µw 0.7x10-3 [0.7]

SgF

SgF

1.0

1.00

a

b

fg

Sg
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Solution

The reservoir contains

In field units:

The fractional flow curve is calculated with Eq. 4.24 in columns (4) and (5) in Table 4.1.

Table 4.1: Calculation of the Fractional Flow Curve

Fig. 4.18 shows the fw-curve. The tangent drawn from Swi to the fw-curve enables the

determination of the front saturation: .

Density kgm-3[lbm/cuft] ρw 980 [61.17]

Filtration velocity ms-1[ft/s] u 1.16x10-6 [3.805x10-6]

Relative permeability [-] kr (see Tab.3.3.1)

Sw
(1)

krw
(2)

kro
(3) (4)

fw
(5)

0.27 0.0000 1.000 0.0000 0.0000

0.35 0.0013 0.560 0.0066 0.0047

0.40 0.0050 0.440 0.0314 0.0244

0.45 0.0130 0.330 0.1012 0.0841

0.50 0.0250 0.235 0.2331 0.2050

0.55 0.0500 0.165 0.4640 0.4248

0.60 0.0800 0.115 0.6653 0.6261

0.65 0.1200 0.070 0.8304 0.8006

0.70 0.1650 0.045 0.9129 0.8918

0.75 0.2200 0.023 0.9647 0.9533

0.82 0.3100 0.000 1.0000 1.0000

L b h φ 1 Swi–( )⋅ ⋅ ⋅
Boi

------------------------------------------------ 119670 m
3
OOIP=

7758 1640× 656.2× 32.8× 1 43560⁄( )× 0.2 1 0.27–( )××
1.22

------------------------------------------------------------------------------------------------------------------------------------------------

7.5233
5×10 bbl  OOIP=

=

SwF 0.65, SwF 0.74==
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At breakthrough, the oil recovery (now identical with the displacement efficiency) is
calculated using Eq. 4.27:

The displacement efficiency is

(4.40)

I is defined as the produced (or injected) pore volume. It is obvious that

. (4.41)

Until breakthrough,  and therefore

. (4.42)

The function ED(I) is linear. After breakthrough, one must proceed as follows:

1. Values for Swf < Sw1 < Sw2 < ... are assumed at regular distances.

2. At every specific  Swj the corresponding EDj is determined from Eq. 4.40.

3. A tangent is drawn from the middle of the considered interval (Swj, Swj+1) to the 
fw-curve. The tangent points are the fwj+1 values.

4. From the finite form of Eq. 4.41 ∆I is obtained:

(4.43)

and

(4.44)

Calculations (1) - (4) are demonstrated in Table 4.2. Results are displayed in Fig. 4.19.

Column 4( ) 1

1
µw
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--------

kro

µo
-------+

--------------------------=

Column 5( ) 1
kkro ρw ρo–( )g αsin

µou
--------------------------------------------------– 4( )×=

ED

SwF Swi–

1 Swi–
------------------------ 0.74 0.27–

1 0.27–
--------------------------- 0.644= = =

dED

1 fw–

Swi
--------------dI=

fw 0≡

EDd

Id

1 Swi–
-----------------=

∆j 1+ ED EDj 1+ EDj–
1 fwj 1+–
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-----------------------∆j 1+ I= =

I Id ∆j 1+

j 0=

m

∑ I+=



Chapter 4: Displacement Efficiency 85
Table 4.2: Calculation of the Recovery Curve

Figure 4.18:  Fractional flow curve to Example 4.1

Sw Fw ED ∆ED ∆I I

0.74 0.810 0.6438 0.0000 0.0000 0.4700

0.75 0.815 0.6575 0.0137 0.0541 0.5241

0.76 0.860 0.6712 0.0137 0.0714 0.5955

0.77 0.890 0.6849 0.0137 0.0909 0.6864

0.78 0.910 0.6986 0.0137 0.1111 0.7975

0.79 0.932 0.7123 0.0137 0.1471 0.9446

0.80 0.952 0.7260 0.0137 0.2084 1.1530

0.81 0.970 0.7397 0.0137 0.3334 1.4863

0.82 0.980 0.7534 0.0137 0.5000 1.9864

0
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Figure 4.19:  Oil recovery curve according to Example 4.1
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Chapter 5 

Sweep Efficiency

5.1 Mobility Ratio

In the theory of piston like displacement, it is assumed that ahead of the front only the
displaced fluid - for example the oil - is flowing and the oil saturation is presumed as

, where Swi is the initial immobile water saturation. 

Behind the front, the displacing fluid is flowing - for example water - and the water
saturation is , where Sor is the immobile residual oil saturation. Further, the

mobility ratio is defined as

(5.1)

where

The mobility ratio is essential for determining the characteristics of the displacement.

• If   then the displaced fluid - the oil - is more mobile than the displacing

fluid. This is beneficial for the displacement.

• If  then the reverse situation is given.

The above definition is valid in a waterflooding in which there is no saturation gradient
behind the waterflood front and consequently there is no ambiguity about the value of

λw,λo - are the water and oil mobilities

krwM - is the relative permeability of the water behind the front

kroM - is the relative permeability of the oil before the front

Soi 1 Swi–=

Sw 1 Sor–=

Mow

λw

λo
------

krwM

µw
------------

kroM

µo
------------⁄= =

Mow 1≤

Mow 1>
87
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displacing phase relative permeability. In case of a saturation gradient, the displacing
phase mobility is defined at the average displacing fluid saturation - e.g. water saturation

 - in the displaced pore volume of the reservoir. This definition has been proved by

CRAIG et al.[7.](1955).

5.2 Stability of Displacement

The theory of BUCKLEY-LEVERETT[4.](1942) presumes that the displacing front

proceeds in an uniform way. ENGELBERTS and KLINKENBERG[15.](1951) observed
that in most cases so-called viscous fingers proceed ahead of the front. If the front catches
up with the fingers then the displacing front can be regarded as stable, in the reverse case
as unstable. In Fig. 5.1 illustrated cases the capillary force is zero and the fluid densities
are equal. In case a) the Mobility Ratio M = 1. As it can be seen, the front is stable and
the majority of the oil is displaced before breakthrough. In case b) M = 80. Early
breakthrough and low displacement efficiency is manifested due to the viscous fingering.

Another aspect is that the capillary force and gravity can have a favorable effect on the
stability of the front. Fig. 5.2 shows a displacement of oil from bottom to top by the
heavier water which is the wetting fluid. Capillary forces tend to widen the finger and
gravity tends to segregate the phases vertically. Both effects can be considered to be
independent of the displacement velocity.

The tendency to instability increases with rising displacement velocity. If displacement
proceeds slowly enough, time remains for the stabilization of the front through capillary
forces and gravity. Reasons for the development of such a finger can be caused by local
irregularities of the porous medium. The width of the finger depends directly on the
extension of this inhomogeneity. If a porous medium is macroscopically considered
homogeneous, this appearance will result in a flattening of the saturation profile.

If the development of the finger is due to a macroscopically detectable change of
properties (in most cases the permeability) then the whole problem can be regarded as the
movement of a front progressing in a stratified medium. Reservoirs are more or less
stratified, which infers that viscous fingering is due to heterogeneity.

Sw
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Figure 5.1:  Linear water displacement demonstrated by a transparent three dimensional 
model (VAN MEURS 1957)

Figure 5.2:  Capillary forces and gravity influence the development of a viscous 
fingering
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5.3 Displacement in Dipping Layers

5.3.1 Position of the Displacing Front

Fig. 5.3 shows a non-horizontal layer in which the displaced and displacing fluid are in

static equilibrium. In case ρw>ρo, the heavier displacing fluid is below and the interface

will be horizontal, that means vertical to the vector of gravity . It is assumed

that displacement is piston-like. Before the front only the displaced fluid with a mobility

of  is flowing and behind the front only the displacing fluid with a mobility of

.

 

Figure 5.3:  Initial position of the water-oil contact (a) and possible changes during 
displacement (b)(c)

In volume "Fluid Flow in Porous Media", based on the results of DIETZ[12.](1953), it was
proven that in this case the front is perpendiculare (orthogonal) to the vector :

. (5.2)

This position is pseudo-steady-state and stable, if

. (5.3)

If the displacement velocity increases, the front will become steeper (see Fig. 5.4). 
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Figure 5.4:  Position of the interface at opportune relation
of mobilities 

In case

, (5.4)

the front will flatten with the increase of front velocity. If the velocity surpasses a certain
critical value, then no more frontal displacement is possible. The displacing fluid
underruns the displaced one.

Figure 5.5:  Position of the interface at an unfavorable mobility ratio 

This critical velocity can be calculated easily since the  is perpendicular to the axis of

symmetry of the layer and the scalar product with  becomes zero (see Fig. 5.5).
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, (5.5)

where uc is the critical velocity.

If the displacement velocity exceeds the critical value, then the displacement is called
supercritical displacement. 

The critical velocity is a theoretical issue and has no practical importance. If M > 1 then
in real field cases uc < 1 m/year. No field can be operated with under this condition. In
case of  M > 1 the displacement process will be always supercritical.

5.3.2 Vertical Saturation Distribution

In case of an one-dimensional linear displacement by a wetting fluid, the capillary force
effects an extension of the saturation profile. Nevertheless, this profile can be
approximated by a discontinuity, because the extension is not significant. The real shape
of the saturation profile can be calculated by numerical methods only which can take
capillary forces into consideration too. Capillary forces play an important role in dipping
layers. Fig. 5.6 shows a supercritical displacement of oil by water in a water-wet reservoir.
Then considering a particle at the fluid-fluid interface, capillary forces are effective in the

direction perpendicular to the interface and gravity in direction of .

Analysis of the components of these forces in the direction of displacement and
perpendicular to this direction shows the importance of considering these forces. If the
front velocity ranges between 0.1 - 0.3 m/d [0.3 - 1 ft/d] there will be enough time to
achive the equilibrium between the capillary and gravity forces (at least a nearby
equilibrium). On the left hand side of Fig. 5.7 the capillary pressure curve of the reservoir
and the relative permeability curves are displayed.

The reading from the permeability curves is made nomogram-like following the doted
line. The layer thickness h is messured vertical (apparent thickness) and not perpendicular
to the layer (which is the true thickness).

The hydrostatic pressure difference between the top and the bottom of the layer is
determined by the density of the wetting fluid (water). This pressure difference is
considered in balance with the difference of the capillary pressures.

uc

k ρw ρo–( )g αsin

µw

krwM
------------

µo

kroM
------------–

------------------------------------------–
kkrwM ρw ρo–( )g αsin

µw 1 Mow–( )
-------------------------------------------------------–= =

i3
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Figure 5.6:  Influence of capillary forces and gravity on
a supercritical displacement

At a thickness h, the difference in capillary pressure is

. (5.6)

When regarding a specific section of the left hand diagram, the vertical distribution of
saturation and the relative permeabilities  can be determined. It is then simple to calculate
the average saturation and relative permeabilities:

, (5.7)

, (5.8)

. (5.9)
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Figure 5.7:  Calculation scheme of relative permeabilities for vertical equilibrium

By moving the distance h along the vertical axis, more corresponding values are obtained.

Calculation of an average capillary pressure would be of no use. Thus, the capillary

pressure at the top is referred to the saturation . The resulting notions are:

    (5.10)

The notions in Eq.  are all functions of h.

Fig. 5.8 and Fig. 5.9 show the  and kr-functions determined by Fig. 5.7 for

 and h = 1, 5, 10, 15, 20 and 25 m [3.28, 16.4,

32.8, 49.2, 65.6 and 82.0 ft]. The integrals Eq. 5.7 - Eq. 5.9 transform the two dimensional

displacement into a one dimensional linear problem, which allows the application of the

BUCKLEY-LEVERETT[4.](1942) theory. The fractional flow curve is now calculated by

the pseudo-relative permeability functions.
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Figure 5.8:  Pseudo-capillary pressure curves

Figure 5.9:  Pseudo-relative permeability curves
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5.4 Displacement in Stratified Reservoirs

The following sections refer to water flooding, but are valid for all other kinds of
displacement (water-gas, gas-oil) too.

5.4.1 Vertical Permeability Distribution

A hydrocarbon formation is rarely homogeneous in a vertical direction. Layers composed
of various minerals and different petrophysical properties are positioned above and
another. Often impermeable interbedding with thicknesses ranging from several mm to
several meters exist and thus prevent vertical cross flow between the layers.

The influence of stratification on displacing processes not only depends on the parameters
of the various layers, but also on the mobility ratio (M) and the difference in density of
the fluids (∆ρ).

Experience has proven that the vertical distribution of permeability is often log-normal

(see LAW[27.](1944)). This means that the number of sample representing equally large
intervals will be regarded as a function of log k. When drawing this function, a GAUSS
distribution is obtained and the curve of distribution results in a straight line on probability
diagram sheet (see Fig. 5.10). The spread of the permeability is characterized by the
variation coefficient

.

 is the standard deviation and x the expected value. In case of a normal distribution, the

x-values are at a percentage of 15.9% smaller than  and at a percentage of 84.1%

larger than .

The last mentioned value is usually defined as  and therefore

.

Since x = log k,

. (5.11)

V
σ
x
---=

σ
x σ–

x σ+

xσ

V
x xσ–

x
--------------=

V
klog klog( )σ–

klog
-----------------------------------=
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Figure 5.10:  Log-normal distribution of permeability

Though it is not correct, the logarithm is often neglected in practice:

. (5.12)

MILLER and LENTZ[30.](1947) divided the reservoir into n non-equally thick layers,
ordered them by decreasing permeability and plotted the cumulative permeability
capacity as a function of the cumulative storage capacity:

. (5.13)

Fig. 5.11 shows such a function. The step function may be approximated by a continuous
curve.

SCHMALZ and RAHME (1950) proposed the introduction of the so called LORENZ
coefficient in order to characterize the heterogeneity:

(5.14)

The LORENZ coefficient ranges from 0 to 1. If it is zero, the layer is considered
homogeneous. In case of a log-normal distribution the correlation between the variation
coefficient and the LORENZ coefficient is shown in Fig. 5.12 In addition, the expected
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values is identical with the geometrical average of the permeabilities when distributed
log-normal.

Figure 5.11:  Distribution of the conductivity as a function
of storage capacity

. (5.15)

WARREN and PRICE[40.](1961) proved the validity of this equation experimentally.

Figure 5.12:  Correlation between the variation coefficient
and LORENZ-coefficient
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5.4.2 DYKSTRA-PARSONS Method

DYKSTRA (1949) and PARSONS (1951) assumed that a reservoir with the thickness H
consist of n layers:

(5.16)

Further, they assumed that

• the individual layers are homogeneous,

• all properties of the layers except permeability are the same,

• no cross flow between layers exists,

• displacement is piston like.

The individual layers are separated so no crossflow can occur. Therefore the sequence of
the layers has no influence on the displacement and can be numbered according to
decreasing permeability (Fig. 5.13).

Figure 5.13:  Stratified reservoir model

The displaceable amount of oil in layer j with a thickness of hj is

. (5.17)

H hj

j 1=

n

∑=

L

h

1

k

i

e

Lφhj 1 Sw– Sor–( )
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The front velocity in a homogeneous layer is, at a mobility ratio  even at unchanged

pressure drop ∆p, not constant. If , the front velocity increases continuously, if

 it will decrease. This was already derivated in "Fluid Flow in Porous Media".

Based on these results, the position of the front in case of a linear displacement can be
calculated as follows:

, (5.18)

and the flow velocity is

, (5.19)

where

,

.

In a stratified reservoir, water breaks through in layer j at time tj. Then x = L and k = kj.
Eq. 5.18 thus leads to

, (5.20)

and finally to

. (5.21)

Inserting Eq. 5.23 into Eq. 5.20 for all layers i > j (> kj+1 >...) the position of the front is

. (5.22)

This term can also be considered as sweep efficiency of layer i at time tj. Layers  are
completely swept out. The total sweep efficiency of the n layers is
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. (5.23)

The water production at the time tj will be calculated as the fractional value:

. (5.24)

Because xf = L for all  so from Eq. 5.21

(5.25)

and after inserting Eq. 5.24 in Eq. 5.21

(5.26)

Inserting Eq. 5.26 and Eq. 5.27 into Eq. 5.25 we get:

. (5.27)

During displacement, constant ∆p was assumed. According to the different mobility of the
phases, the water injection rate changes. Injectivity just as productivity is defined by the
injectivity index:

. (5.28)
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(5.29)

is defined as the conductivity. Jo is the injectivity at time t = 0 when xf = 0 for all layers.

Taken into consideration that the injection rate for a unit width of the layer i is 

(5.30)

and inserting Eq. 5.21and Eq. 5.24 in Eq. 5.27 we get the following expression:

(5.31)

The change of conductivity with time is illustrated in Fig. 5.14.

Figure 5.14:  Injectivity vs. injected volume
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5.4.3 JOHNSON Correlation

With help of a series of diagrams for a normal distribution of permeability, JOHNSON

simplified the DYKSTRA-PARSONS calculation. In diagrams Fig. 5.15 - Fig. 5.19, the

recovery factor ER as a function of the Mobility Ratio and the Variation coefficient is

plotted (Eq. 5.12). Usual values of the residual oil saturation, according to given mobility

ratios were already taken into account.

These curves enable the determination of the values . The factor a is given.

Example 5.1 shows the application of JOHNSON’s method.

Example 5.1

The following data are given:

Determine the water displacement efficiency as a function of water-oil ratio.

Figure 5.15:  JOHNSON’s (1956) correlation, WOR = 1

Variation coefficient V = 0.3

Mobility Ratio M = 2.6

Swi = 0.3
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Figure 5.16:  JOHNSON’s (1956) correlation, WOR = 5

Figure 5.17:  JOHNSON’s (1956) correlation, WOR = 25
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Figure 5.18:  JOHNSON’s (1956) correlation, WOR = 100

Solution

The values  will be read from Fig. 5.15 to Fig. 5.18.

Table 5.1: Calculation of Recovery Factor by Johnson’s Method

The calculation is summarized in Table 5.1 and the results are illustrated in Fig. 5.19.

WOR a ER

1 1.00 0.23 0.33

5 0.72 0.33 0.42

25 0.52 0.41 0.49

100 0.40 0.46 0.52
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Figure 5.19:  Solution after application of the
JOHNSON’s (1956) correlation.

5.4.4 Communicating Layers

In the absence of impermeable interbedding, a cross flow will exist between the layers of
different permeabilities.

Let us imagine that a displacement proceeds isolated in a two layer formation up to a

certain time and can therefore be calculated with the DYKSTRA-PARSONS[13.](1951)
method. The positions of the front and distributions of pressure are shown in Fig. 5.20.
Then the isolation is removed and fluid can flow between the layers due to differences in
pressure. The direction of flow is given by the sign of the pressure difference.

Fig. 5.20 A) shows the case where M < 1, which means the mobility of the water is lower
than that of oil. In the first part of the layer, the displacing fluid will proceed from the more
permeable layer to the less permeable layer. In the second part, however, the displaced
fluid (oil) will flow in reverse direction. The reverse situation is the case if M > 1. The
idealized example illustrates the influence of the viscouos forces on the displacement
efficiency.

• If the Mobility Ratio M > 1 than one part of the displacement fluid, injected in the
higher permeable layer, invides the lower one and displace a part of the oil from the
lower permeable layer into the higher one. This phenomenon accelerate the
displacement front in the lower permeable layer and show down in the highr one.
Therefore, the transition zone between the displacing and displaced fluid becomes
smaller (the distance between the fronts) as in the isolated case.

• If M > 1 than the injected water tends to flow from the lower permeable layer into the
higher one. The difference between the front velocities is larger in comparison to the
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isolated case.

The cross flow depends on the permeability in a vertical direction (in most cases smaller
than in an horizontal direction due to sedimentation and compaction), on the capillary
force and on gravity.

If the layer thickness is rather small and vertical permeability large enough, then vertical
equilibrium - caused by capillary forces and gravity - may be assumed. Therefore,
methods used in Chapter 5.3.2 may also be applied here. The average saturation and the
relative permeabilities are

, (5.32)

, (5.33)

. (5.34)

Sw

φ z( )Sw z( ) zd
0

H

∫

φ z( )
0

H

∫ dz

-------------------------------------

φj

j 1=

n

∑ hjSwj

φj

j 1=

n

∑ hj

----------------------------= =

krw Sw( )
k z( )krw z( ) zd

0

H

∫

k z( )
0

H

∫ dz

---------------------------------------

hjkjkrwj Sw( )

j 1=

n

∑

hj

j 1=

n

∑ kj

------------------------------------------= =

kro Sw( )
k z( )kro z( ) zd

0

H

∫

k z( )
0

H

∫ dz

--------------------------------------

hjkjkroj Sw( )

j 1=

n

∑

hj

j 1=

n

∑ kj

-----------------------------------------= =



108 Chapter 5: Sweep Efficiency
Figure 5.20:  Water displacement in communicating layers

Calculations are again made according to the BUCKLEY-LEVERETT[4.](1942) theory,
whereby the capillary force is neglected.

Example 5.2

The reservoir consists of three layers. The capillary pressure functions given in Fig. 5.1
are different in the particular layers but the relative permeability curves are the same for
every layer. These curves are plotted with a staggered line in Fig. 5.23a. The layers have
the following properties:

Reservoir fluids characteristics:
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Figure 5.21:  Stratified reservoir with vertical communication

The water displacement will be calculated for two cases:

1. Permeability decreases with the depth from layer to layer  (sequence 1-2-3)

2. Permeability increases (sequence 3-2-1).

The vertical distributions of water saturation are for the two cases different (see Fig. 5.22).

Such distributions can be constructed from the capillary pressure curves. At first arbitrary

value of capillary pressure   is chosen for the top of the layer. In Fig. 5.21, this

corresponds to the height of h+. From this point, the individual layer thickness is

measured upwards in the right sequences. The sections with the Pc curves give the

saturation distribution and the average saturations  for the individual

layers and the whole thickness  as well. The pseudo-relative permeability curves can

be calculated on the basis of the saturation distributions using Eq. 5.33 and Eq. 5.34. The

fractional flow curves can be calculated in the usual way. Table 5.2 gives the results of

these calculation. Fig. 5.23 shows the fractional flow curves, and the displacement curves.

In case of sequences 1-2-3, . In case of 3-2-1, .
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Figure 5.22:  Vertical saturation distribution depending
on the sequence of layers

Figure 5.23:  Displacement in heterogeneous reservoirs at increasing
and decreasing permeability
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5.4.5 Numerical Calculation of Water Flooding in 
Linear Stratified Layers

Numerical methods enable the solution of the multiphase flow equations for
heterogeneous systems withoud simplifications.

In Volume 5 "Numerical Reservoir Simulation", these methods are described in detail.

BERRUIN and MORSE[3.](1978) calculated at 328 m [1000 ft] long linear displacement
with the help of a two dimensional, two phase (oil-water) fully implicit model. It consisted
of 5 layers, each 3 m [10 ft] thick and with equal porosity. Vertical and horizontal
permeabilities were the same. The variation coefficient is V = 0.85.

The reservoir data are the following:   

The permeability distributions are given in Table 5.3. In case 1, permeability decreases
downwards. Without crossflow, oil recovery results in 0.56 at a WOR = 100.

All calculations considering crossflow gave better results. A decrease in displacing
velocity effects an increase of oil recovery. At speeds of 1.2 m/d [4 ft/d] oil recovery
comes to a value of 0.65. In case 2, permeability increases downwards. The most
favorable oil recovery is obtained with isolated layers. Decreasing displacement velocity
has an unfavorable effect on oil recovery. At a displacement velocity of 0.025 m/d [0.08
ft/d] oil recovery is only 0.2.

Porosity = 0.20

Length = 305 [1000] m [ft]

Height = 15.24 [50] m [ft]

Bright = 0.3048 [1] m [ft]

Bo = 1.0

Bw = 1.0

ρo = 710 [44.32] kg/m3 [lbm/ft]

ρw = 1000 [62.42] kg/m3 [lbm/ft3]

µo = 0.005 [5] Pas [cP]

µw = 0.001 [1] Pas [cP]

M = 0.5

kv/kh = 1.0
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Table 5.2: Pseudo Permeability - and Fractional Flow Curve for Example 5.3

Table 5.3: Permeability Variation for Berruin and Morse Example

Sequence of Layers 1-2-3

0.00 0.750 0.340 0.000 1.000

0.05 0.704 0.276 0.049 0.965

0.10 0.588 0.152 0.232 0.766

0.15 0.486 0.081 0.420 0.491

0.20 0.355 0.032 0.591 0.211

0.25 0.369 0.013 0.692 0.086

0.30 0.253 0.008 0.756 0.052

Sequence of Layers 3-2-1

0.00 0.750 0.340 0.000 1.000

0.05 0.704 0.330 0.013 0.992

0.10 0.604 0.295 0.081 0.947

0.15 0.512 0.242 0.205 0.855

0.20 0.372 0.117 0.457 0.562

0.25 0.269 0.013 0.692 0.086

0.30 0.253 0.008 0.752 0.052

Sequence of Layer Case 1 Case 1

1 1500.0 20.3

2 480.0 61.0

3 160.0 160.0

4 61.0 480.0

5 20.3 1500.0

P
+

c
Sw krw Sw( ) kro Sw( ) fw Sw( )

P
+

c
Sw krw Sw( ) kro Sw( ) fw Sw( )
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Table 5.4: Displacement Velocities and Pressure Gradients for Berruin and Morse 
Example (metric units)

Table 5.5: Displacement Velocities and Pressure Gradients for Berruin and Morse 
Example (field units)

Displacement
Velocity

m/d

Horizontal Average
Pressure Gradient

MPa/m

Force of Gravity

M/Pa

0.025 0.00009 0.003

0.120 0.00043 0.003

1.200 0.00500 0.003

2.400 0.01000 0.003

9.700 0.04300 0.003

38.700 0.15720 0.003

Displacement
Velocity

ft/d

Horizontal Average
Pressure Gradient

psi/ft

Force of Gravity

psi/ft

0.082 0.004 0.13

0.394 0.019 0.13

3.937 0.221 0.13

7.874 0.470 0.13

31.820 1.910 0.13

126.970 6.950 0.13
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Figure 5.24:  Water flooding in a stratified reservoir after
BERRUIN and MORSE, 1978

Figure 5.25:  The position of the saturation profil Sw = 55 at various amounts of injected 
pore volume and displacement velocities after BERRUIN and MORSE, 1978
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5.4.6 Areal Sweep Efficiency

Displacing mechanisms are not uniform in all sections of the reservoir due to 

• the irregular distribution of displacing media and energy,

• anisotropy and heterogeneity in horizontal direction,

• punctiform production and injection (well pattern).

The areal sweep efficiency shows which part of the total reservoir area was flooded due
to a certain displacing mechanism. Fig. 5.26 illustrates a regular well system with both
production and injection wells. Due to symmetry, the determination of the sweep
efficiency of the whole flooded area is possible based on a single pattern. The areal sweep
efficiency is defined as

. (5.35)

Figure 5.26:  Definition of the areal sweep efficiency

A displacement is split by the breakthrough into two periods. The areal sweep efficiency
increases further after breakthrough, but the extension of the flooded area proceeds more
slowly since a certain amount of displacing medium is directly produced.

The term areal sweep efficiency is not only used for injection, but also for natural water
influx and frontal gas displacement. In the following discussion only secondary
recoveries (water flooding) are examined since the geometry of well pattern makes this
easier. Fig. 5.27 shows several different well systems, whereby the relation of production
and injections wells varies.

Two cases are to be distinguished: normal and inverted well pattern. In a normal well
pattern, the production well is regarded as the center of the flooded area. In an inverted
well pattern, the injection well is considered the center. In case of a five spot system both
arrangements are the same. Fig. 5.28 shows the areal sweep efficiency at breakthrough as
a function of the well distance. Unit mobilities ratio is assumed.
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A
------ swept out area

total area
---------------------------------------==
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Fig. 5.29 shows the influence of the mobility ratio at d/a = 1. Correlations of the areal
sweep efficiency with geometry, mobility ratio and injected quantity can be analysed with
the help of mathematical, physical and analogous models. Due to the fact that all methods
show errors, the results spread, but within acceptable limits.

Fig. 5.30 illustrates the areal sweep efficiency as a function of the fractional flow value
f1. (f1 though has no relation to the BUCKLEY-LEVERETT theory since piston like
displacement was assumed).

Figure 5.27:  Well pattern for areal flooding (after CRAIG, 1971)

Figure 5.28:  Areal sweep efficiency at a linear pattern and uniform mobility ratios at 
breakthrough (after CRAIG, 1971).
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Figure 5.29:  Areal sweep efficiency with a shifted linear pattern at breakthrough,
d/a = 1 (after CRAIG, 1971).

Experiments by CAUDLE and WITTE[6.](1959) were conducted with miscible fluids for
a five point, porous and permeable model. The swept out area was determined with the
help of X-rays. f1 indicates how much displacing fluid was produced.

Fig. 5.31 shows the areal sweep efficiency as a function of the relations between injected
(VI) and displaceable volume (VD). The displaceable volume is defined as

(5.36)

The conductivity defined by Eq. 5.29 as a function of  is displayed in Fig. 5.31.

Example 5.3

Following data are given for a five-spot system:

Injection rate qw = 500 m3/d [3145 bbl/d].

A = m2 [61.77 ac] µo = Pas [5 cP]

h = 10 m2 [32.8 ft] µw =

φ = 0.2 = 0.63

Soi = 0.7 = 0.21

Sof = 0.4 Bo = 1.25

Sor = 0.3 Bw = 1
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Figure 5.30:  Areal sweep efficiency of a five point system and the mobility ratio as a 
function of the fractional value (after CAUDLE and WITTE, 1959).

Figure 5.31:  Areal sweep efficiency of a five-spot system as a function of the injected 
pore volume (after CAUDLE and WITTE, 1959)
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The task is to calculate the time of breakthrough and the oil recovery after injection of 1
pore volume water.

Solution

The mobility ratio:

At breakthrough the areal sweep efficiency results in Ea = 0.6 (see Fig. 5.30).

Produced oil:

In field units:

 

Injected water until breakthrough:

In field units:

Time of breakthrough:

In field units:

Porevolume:

M
krwµo

kroµw
--------------- 0.21 5× 10

3–×

0.63 0.8× 10
3–×

------------------------------------------ 2.08== =

Np

Ahφ Soi Sor–( )
Bo

------------------------------------- 2.5 10
5× 10× 0.2 0.7 0.3–( ) 0.6××

1.25
---------------------------------------------------------------------------------------- 96000 m

3
= = =

Np
7758 61.77× 32.85× 0.2 0.7 0.3–( ) 0.6××

1.25
--------------------------------------------------------------------------------------------------------- 603576 bbl= =

Wi

NpBo

Bw
------------- 96000 1.25×

1
------------------------------- 120000 m

3
= = =

Wi
603576 1.25×

1
---------------------------------- 754470 bbl= =

td
Wi

Qw
------- 120000

500
------------------ 240 d= = =

td
754470
3145

------------------ 240 d= =
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In field units:

Displaceable volume:

In field units:

From Fig. 5.31, EA = 0.96.

Then oil recovery results in

.

Remark: At breakthrough, it would be more appropriate to use the average oil saturation
behind the front instead of the residual oil saturation. At a proceeding water cut, oil
saturation in the flooded area converges to the residual oil saturation.

Example 5.4

The depression at breakthrough and after injection of 1 PV water is to be calculated with
the values of Example 4.4.

At the initial time t = 0 (begin of injection) ∆po = 6 MPa [870 psi].

Vp Ahφ 2.5 10
5

10 0.2××× 0.5 10
6
 m

3×= = =

Vp 61.77 32.8× 0.2× 405.21 ac ft= =

VD Vp Soi Sor–( ) 0.5 10
6× 0.4× 0.2 10

6×  m
3

= = =

Vp VD⁄ 0.5 10
6×

0.2 10
6×

---------------------- 2.5= =

VD 405.21 0.7 0.3–( ) 7758×× 1.257 10
6×  bbl= =

Vp VD⁄ 405.21

1.257 10
6× 1 7725⁄×

----------------------------------------------------- 2.5= =

E EDEA

Soi Sor–

Soi
---------------------EA

0.7 0.3–
0.7

--------------------- 0.96× 0.55= = = =



Chapter 5: Sweep Efficiency 121
Solution

From Fig. 5.31:

Similar diagrams as in Fig. 5.28 - Fig. 5.31 were set up for various other well systems and
can be used as a first approximation.

For more precise calculations, numerical methods as in Chapter 5 are to be applied.

Figure 5.32:  Conductance ratio γ as a function of mobility ratio and pattern area sweep 
efficiency for five-spot pattern (after CAUDLE and WITTE, 1959)

EA 0.60= γ 1.45= ∆p ∆po γ⁄ 4.1 MPa 594.5 psi[ ]= =
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Chapter 6 

Decline Curve Analysis

Decline curve analysis is an empirical method which applies oil production versus time
plots to extrapolate an estimation of the future rates of production for a well. This method
is not based on physical principles and so it can only be used as long as the mechanical
conditions of the well (completion, production method etc.) and the drive forces in the
reservoir are unchanged. Ignoring this limitation very often leads to failure.

The nominal decline rate D is defined as

(6.1)

Three types of declines are commonly applied:

• Exponential (or constant percentage) decline,

• Hyperbolic decline

• Harmonic decline.

6.1 Exponential Decline

This method is based on the assumption that the decline rate D is constant throughout
time. Integration of Eq. 6.1 leads to the rate time relationship:

(6.2)

(6.3)

thus

D

dq
dt
------

q
------–

d qln
dt

-----------–= =

D td
ti

t

∫– qlnd
qoi

qo

∫=

D– t ti–( ) qoln qoiln–=
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(6.4)

By using a decimal logarithm instead of ln, Eq. 6.3 can be written as

 (6.5)

The cumulative production can be calculated easily:

(6.6)

and so

(6.7)

The time interval is

(6.8)

Now log qo vs.t and/or qo vs. Qo can be plotted.

Despite the Eq. 6.5 and Eq. 6.7, both are straight lines with a slope of 0.434 D and D
respectively. The remaining time to abondonment or until an economic limit of production
rate (qoa) is reached, is calculated from Eq. 6.5:

(6.9)

The reserve at the time ti is

(6.10)

Figure 6.1:  Exponential decline plot
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6.2 Hyperbolic Decline

This method is based on the assumption that the decline rate D is proportional to the nth

power of the rate qo:

(6.11)

where b and n are constant. The initial value of the decline rate is

(6.12)

and so Eq. 6.11 can be written in the following form:

(6.13)

After integration of Eq. 6.13,

(6.14)

(6.15)

or

(6.16)

The cumulative production can be calculated in the following way:

(6.17)

The hyperbolic decline curve is not as simply plotted as the exponential or the harmonic
one. The best way is to use a computer for curve fitting.
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6.3 Harmonic Decline

The harmonic decline is a special case of the hyperbolic one. Eq. 6.16 for n = 1 is 

(6.18)

The cumulative production can be calculated as

(6.19)

After substitution of Eq. 6.18 into Eq. 6.19,

(6.20)

or

(6.21)

Figure 6.2:  Harmonic decline plot

Now log qo vs. Qo is plotted. In spite of Eq. 6.21, the harmonic decline curve is a straight
line in the considered coordinates with a slope of

. (6.22)

b is the constant in Eq. 6.11.

qo qoi 1 Di t ti–( )+[ ] 1–
qoi 1 Di∆t+[ ] 1–

==

Qo ∆t( ) qoti

t

∫ dt
qoi

1 Di t ti–( )+
-------------------------------

ti

t

∫ dt
qoi

Di
------- 1 D t ti–( )+[ ]ln== =

Qo ∆t( ) 2.3027
qoi

Di
-------

qoi

qo
-------log=

qolog 0.434
Di

qoi
-------Qo ∆t( )– qoilog+=

Slope = -0.434D /qi oi

Q

lg
q

O

0.434Di qoi⁄ 0.434b=



127
Chapter 7

References

1. Archi, G.E.: "The Electrical Resistivity Logs as an Aid in Determining Some 
Reservoir Characteristics", Trans.,AIME (1942), 146, 54-61.

2. Arps, J.J., Brons, F., van Everdingen, A.F., Buchwald, R.W. and Schmidt, A.E.: "A 
Statistical Study of Recovery Efficiency", Bull., 14D API (1967).

3. Berruin, N.A. and Morse, R.A.: "Effect of Flooding Rate and Permeability ordering 
on Waterflooding Stratified Reservoir", SPE paper 7158 (1978).

4. Buckley, S.E and Leverett, M.C: "Mechanism of Fluid Displacement in Sands", 
Am. Inst. Min. Metall. Eng., Trans.,AIME,  V. 146, (1942), 107-111.

5. Carter, R.D. and Tracey, G.W.: "An Improved Method for Calculating Water 
Influx", Trans., AIME, 219, (1960), 415-417.

6. Caudle, B.H. and Witte, M.D.: "Production Potential Changes During Sweep-Out 
in a Five-Spot System", J. Pet. Eng., (Dec.1959), 446-8, Trans., AIME, 216, (1959).

7. Craig, F.F., Jr., Geffen, T.M. and Morse, R.A.: "Oil Recovery Performance of 
Pattern Gas of Water Injection Operations from Model Tests", Trans., AIME, 204, 
(1955), 7-15.

8. Craig, F.F., Jr.: "The Reservoir Engineering Aspects of Waterflooding", Monograph 
Voume 3 of the Henry L. Doherty Series, New York/Dallas (1971), 135 p.

9. Craft, B.C.: "Applied Petroleum Reservoir Engineering", Prentice-Hall, Inc., 
Englewood Cliffs, N.J. (1959), 126, 206, 224.

10. McCray, A.W.: "Petroleum Evaluations and Economic Decisions", Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey (1975).

11. Darcy, H.: "Les Fontaines Publiques de la Ville de Dijon", Victor Dalmont, Paris.

12. Dietz, D.N.: "A Theoretical Approach to the Problem of Encroaching By-Passing 
Edge Water", Akad. van Wetenschappen, Amsterdam, Proc. B56 (1953), 83-92.

13. Dykstra, H. and Parsons, R.L.: "The Prediction of Waterflood Performance with 
Variation in Permeability Profile", Prod. Monthly (1950), 15, 9-12.

14. Earlougher, R.C., Jr.: "Advances in Well Test Analysis", Monographs Series, SPE, 
127



128 Chapter 7: References
(1977); Trans., AIME 5, Dallas.

15. Engelberts, W.F. and Klinkenberg, L.J.: "Laboratory Experiments on the 
Displacement of Oil by Water from Packs of Granular Material", Proc. Third World 
Pet. Cong., The Hague (1951), Sec. II, 544.

16. Van Everdingen, A.F. and Hurst, W.: "The Application of the Laplace 
Transformations to Flow Problems in Reservoirs", Trans., AIME, 186, (1949), 
305-324.

17. Fetkovich, M.J.: "A Simplified Approach to Water Influx Calculations - Finite 
Aquifer Systems", J.Pet.Tech. (July 1971), 814-818.

18. Frick, T.C.: "Petroleum Production Handbook", McGraw-Hill Book Cx o. Inc., 
New York (1962), II.Chapt. 32, 5-22.

19. Havlena, D. and Odeh, A.S.: "The Material Balance as an Equation of a Straight 
Line", J.Pet.Tech., (Aug. 1963), 896-900; Trans., AIME, 228, (1963).

20. Heinemann, Z.E. and Weinhardt, B.: "Reservoir Fluids," Textbook, Leoben (2001).

21. Heinemann, Z.E.: "Flow in Porous Media", Textbook, Leoben (1988), 161 pp.

22. Heinemann, Z.E.: "Well Testing",  Textbook, Leoben (1991).

23. Holmgren, C.R. and Morse, R.A.: "Effect of Free Gas Saturation on Oil Recovery 
by Waterflooding", Trans., AIME, 192, (1951), 135-140.

24. Hurst, W.: "Water Influx into a Reservoir and its Application to the Equation of 
Volumetric Balance", Trans., AIME, 151, (1943), 57-72.

25. Jonhnston, C.E. Jr.: "Prediction of Oil Recovery by Water Flood - A Simplified 
Graphical Treatment of the Dykstra-Parsons Method", Trans., AIME, 207, (1956), 
345-346.

26. Kyte, J.R., Stanclift, R.J. Jr., Stephan, S.C., Jr. and Rappaport, L.A.: "Mechanism of 
Water Flooding in The Presence of Free Gas", Trans., AIME, 207, (1956), 215-221.

27. Law, J.: "Statistical Approach to the Intersitial Heterogeneity of Sand Reservoirs", 
Trans., AIME, 155, (1944), 202-222.

28. Martinez, A.R. at al.: "Classification and Nomenclature System for Petroleum and 
Petroleum Reserves", Proc. of the 11th World Petr. Congress, Vol. 2, (1983) John 
WILEY & Sons, Chichester, 325-39.

29. Matthews, C.S. and Russel, D.G.: "Pressure Buildup and Flow Tests in Wells", 
Monograph Series, SPE (1967) 1.

30. Miller, M.G. and Lentz, M.R.: "Performance of Bodcaw Reservoir Performance 
under Cycling Operation Compared to Field Data", Drilling  Prod. Pract., API 
(1947), 128-49.

31. Van Meurs, F.: "The Use of Transparent Three-Dimensional Models for Studying 
the Mechanism of Flow Processes in Oil Reservoirs", Trans., AIME (1957), 210, 
295-301.



Chapter 7: References 129
32. Muskat, M. and Taylor, M.O.: "Effect of Reservoir Fluid and Rock Characteristics 
on Production Histories of Gas-drive Reservoirs", Trans., AIME (1946), 165, 
78-93.

33. Pirson, S.J.: "Elements of Oil Reservoir Engineering", 2nd ed., McGraw-Hill Book 
Co., Inc. New York (1958), 608p.

34. Prats, M.: "The Breakthrough Sweep Efficiency of a Staggered Line Drive", Trans., 
AIME, 207, (1956), 361-362.

35. Schilthuis, R.J.: "Active Oil and Rerservoir Engergy", Trans., AIME, 118, (1936), 
33-52.

36. Stiles, W.E.: "Use of Permeability Distribution in Water Flood Calculations", 
Trans., AIME, 186, (1949), 9-13.

37. Tarner, J.: "Oil Weekly", (June 12, 1944).

38. Tracy, G.W.: "Simplified Form of the Material Balance Equation", Trans., AIME, 
204, (1955), 243-8.

39. Walstrom, J.E., Mueller, T.D. and McFarlane: "Evaluation Uncertainty in 
Engineering Calculations", J. Pet. Tech. (Dec. 1967), 1595.

40. Warren, J.E. and Price, H.S.: "Flow in Heterogeneous Porous Media", Proc. Pet. 
Eng. J. (1961), 153-169.

41. Vogt, J.P. and Wang, B.: "Accurate Formulas for Calculating the Water Influx 
Superposition Integral", paper SPE 17066 presented 1987 at the Eastern Regional 
Meeting, Pittsburgh, Pennsylvania, Oct. 21-23.



130 Chapter 7: References


	Introduction 3
	Reserves Calculation by Volumetric Methods 9
	Material Balance 25
	Displacement Efficiency 63
	Sweep Efficiency 89
	Decline Curve Analysis 125
	References
	1.1 General Remarks
	1.2 Classification of Reserves
	2.1 Computation of Oil and Gas in Place
	2.2 Recovery Factor
	2.3 Data Distribution and Probability
	2.3.1 Triangular Distribution
	2.3.2 Uniform Distribution
	2.3.3 Dependent Distribution

	2.4 Monte Carlo Simulation Method
	3.1 Tarner’s Formulation
	3.2 Drive Indices
	3.3 Water Influx
	3.3.1 Semi-Steady-State Water Influx
	3.3.2 Steady-State Water Influx
	3.3.3 Non-Steady-State Water Influx
	3.3.3.1 Vogt-Wang Aquifer Model
	3.3.3.2 Fetkovich Aquifer Model


	3.4 Finite Difference Material Balance Equation
	3.5 Undersaturated Oil Reservoirs
	3.6 Gas Reservoirs
	3.7 Calculation of Original Fluid in Place
	3.8 Graphical Evaluation of Material Balance
	3.8.1 Reservoirs Without Water Influx: We = 0
	3.8.2 Reservoirs With Water Influx

	3.9 Recovery Factor
	4.1 Solution Gas Drive
	4.1.1 MUSKAT’s (1945) Equation of Solution Gas Drive
	4.1.2 Calculation of the Solution Gas Drive According to PIRSON

	4.2 Frontal Displacement
	4.2.1 BUCKLEY-LEVERETT Theory
	4.2.2 Oil Displacement by Water
	4.2.3 Influence of Free Gas Saturation on Water Displacement
	4.2.3.1 The Residual Oil Saturation

	4.2.4 Displacement by Gas

	5.1 Mobility Ratio
	5.2 Stability of Displacement
	5.3 Displacement in Dipping Layers
	5.3.1 Position of the Displacing Front
	5.3.2 Vertical Saturation Distribution

	5.4 Displacement in Stratified Reservoirs
	5.4.1 Vertical Permeability Distribution
	5.4.2 DYKSTRA-PARSONS Method
	5.4.3 JOHNSON Correlation
	5.4.4 Communicating Layers
	5.4.5 Numerical Calculation of Water Flooding in Linear Stratified Layers
	5.4.6 Areal Sweep Efficiency

	6.1 Exponential Decline
	6.2 Hyperbolic Decline
	6.3 Harmonic Decline

