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Abstract 

 

Cognitive function varies substantially and serves as a key predictor of outcome and 

response to intervention in autism spectrum disorder (ASD), yet we know little about the 

neurobiological mechanisms that underlie cognitive function in children with ASD. The 

dynamics of neuronal oscillations in the alpha range (6-12 Hz) are associated with cognition 

in typical development. Peak alpha frequency is also highly sensitive to developmental 

changes in neural networks which underlie cognitive function, and therefore it holds promise 

as a developmentally-sensitive neural marker of cognitive function in ASD. Here, we 

measured peak alpha band frequency under a task-free condition in a heterogeneous sample 

of children with ASD (N=59) and age-matched typically developing (TD) children (N=38). 

At a group level, peak alpha frequency was decreased in ASD compared to TD children. 

Moreover, within the ASD group, peak alpha frequency correlated strongly with non-verbal 

cognition. As peak alpha frequency reflects the integrity of neural networks, our results 

suggest that deviations in network development may underlie cognitive function in 

individuals with ASD. By shedding light on the neurobiological correlates of cognitive 

function in ASD, our findings lay the groundwork for considering peak alpha frequency as a 

useful biomarker of cognitive function within this population which, in turn, will facilitate 

investigations of early markers of cognitive impairment and predictors of outcome in high 

risk infants.  
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Introduction 

Cognitive function contributes to the considerable phenotypic heterogeneity observed 

across the autism spectrum (Fombonne, 1999; Frazier et al., 2014). Intellectual disability (ID) 

commonly co-occurs in autism spectrum disorder (ASD), with prevalence rates reported as 

high as 68% (Yeargin-Allsopp et al., 2003). The degree of cognitive impairment varies 

widely across individuals, ranging from mild to severe (Charman et al., 2011; Rivard et al., 

2015). Above average intelligence is also present in approximately 5% of children with ASD 

(Charman et al., 2011; Rivard, 2015). Despite the vast range in cognitive function that exists 

across the autism spectrum, our understanding of the neurobiology which underlies these 

diverse developmental trajectories remains limited. Enhanced outcomes, such as greater 

levels of adaptive functioning, are seen in those with ASD who have higher cognitive 

function (Gabriels et al 2007; Baghdadli et al., 2012; Farley et al., 2009). Cognitive function 

also predicts response to intervention, with higher pre-treatment cognition (as measured by 

intellectual quotient, or IQ) associated with more substantial gains and acquisition of skills 

during intervention (Ben-Itzchak & Zachor, 2007; Vivanti et al., 2014). Despite the clinical 

relevance of cognitive impairment in ASD, few studies have examined the neural 

underpinnings of cognitive function across the autism spectrum. 

 

Cognitive processes are mediated by large-scale synchronous neuronal activity which, 

due to its oscillatory nature, is well-suited to be studied using techniques such as 

magnetoencephalography (MEG) and electroencephalography (EEG). Using M/EEG, the 

spectral power changes that occur during typical brain development and accompany increases 

in cognitive capabilities have been quantified (Ward, 2003). Alpha oscillations (commonly 

defined as neural activity between 6-12Hz) show a well-defined developmental profile that 

are associated with maturation related increases in cognitive competence. Alpha band activity 
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is particularly relevant as a physiological assay of cognitive function, as the development of 

these oscillations provides an infrastructure for neural communication between increasingly 

distributed brain regions (Fries, 2005; Klimesch et al., 2007). Enhanced neural 

communication underlies the sophisticated cognitive, sensory and motor processes that 

emerge during childhood (Fair et al., 2009; Menon, 2013). Alpha activity reaches maximal 

amplitude when subjects are awake and relaxed with their eyes closed, and it dominates 

spontaneous EEG (recorded under task-free conditions). Spontaneous EEG measures are 

particularly valuable as they can be utilised across a wider range of participants than task-

based paradigms, and reflect the underlying functional architecture of the brain (Northoff et 

al., 2010; Cole et al., 2014). 

 

Previous studies of spontaneous alpha oscillations in ASD have focused on group-

level differences in spectral power, employing samples that vary widely in terms of age and 

cognitive function. This discrepancy, perhaps unsurprisingly, has led to conflicting results, 

with evidence of increased (Cornew et al., 2012; Mathewson et al., 2012; Edgar et al., 2015) 

decreased (Cantor et al., 1986; Chan et al., 2007; Sheikhani et al., 2012) and unaltered alpha 

power (Coben et al., 2008) in ASD, as compared to typically-developing (TD) comparison 

groups. Moreover, measures of alpha power may also be confounded by shifts in the peak 

frequency of alpha oscillations across development (Haegens et al., 2014), highlighting the 

need for a more precise metric of alpha oscillations across the autism spectrum. Peak alpha 

frequency (PAF), the frequency at which oscillations in the alpha range demonstrate maximal 

power, serves as a more developmentally appropriate measure.  PAF shows well-

characterised increases with chronological age during childhood (Somsen et al., 1997; 

Dustman et al., 1999; Stroganova et al., 1999; Chiang et al., 2011; Cragg et al., 2011; 

Miskovic et al., 2015), most likely reflecting the fact that PAF indexes the development of 
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neural networks (Klimesch et al., 2007; Valdés-Hernández et al., 2010). In typical children, 

the development of these networks with age is closely tied to cognitive development. PAF 

also correlates with cognitive function in adults (Klimesch et al., 1993; Richard Clark et al., 

2004; Grandy, Werkle-Bergner, Chicherio, Lövdén, et al., 2013). The limited available 

literature suggests that PAF does not increase with chronological age in children with ASD 

(Edgar et al., 2015). It may therefore be the case that PAF is instead more closely associated 

with developmental, or cognitive function in ASD, which does not consistently map onto 

chronological age in this population.  

 

Here, we investigate alpha oscillations as a potential biomarker of cognitive function 

in ASD using EEG. We asked whether PAF would not only differentiate children with ASD 

from TD children, but also whether PAF relates to cognitive function within ASD. To 

accomplish this goal, we first compared spontaneous EEG power in the alpha range and PAF 

between age-matched cohorts of children with ASD and TD children. We then examined the 

relationship between PAF and both age and cognitive function in each cohort. We 

hypothesised that children with ASD, as a group, would exhibit lower PAF than TD children. 

We also hypothesised that PAF would relate not to chronological age, but to cognitive 

function, in children with ASD.  

 

Method 

Participants 

61 children with ASD were enrolled in the present study. Children with ASD were 

recruited from the community through flyers, as well as through the UCLA Center for 

Autism Research and Treatment (CART) website and ongoing UCLA CART studies. 

Interested parents contacted the researchers via telephone or e-mail. Eligibility criteria 
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included a primary clinical diagnosis of ASD. Exclusionary criteria included other 

neurological abnormalities (including active epilepsy), birth-related complications and 

uncorrected vision or hearing impairment.  

 

The study received ethical approval from the UCLA institutional review board. 

Parents provided informed written consent, in accordance with the declaration of Helsinki. 

Verbal assent was obtained from participants who had sufficient cognitive and language 

capabilities to understand and agree to the study procedures. All children entered the study 

with a prior clinical diagnosis of ASD, made through the California State Regional Center, 

independent clinical psychologists, child psychiatrist, and/or developmental pediatricians.  

Diagnoses were confirmed by UCLA psychologists based on DSM-IV criteria.  

 

Two participants with ASD did not provide data of acceptable quality (determined as 

at least 30 seconds of artifact-free data; McEvoy et al., 2015), resulting in 59 participants 

with ASD undergoing analysis. Five of the participants with ASD had an additional diagnosis 

of attention-deficit/hyperactivity disorder (ADHD), one participant had additional diagnoses 

of obsessive compulsive disorder (OCD), ADHD and depression (based on parent report). At 

the time of the study six participants with ASD were taking medication, which included: anti-

psychotic medication (N=2), medication for ADHD (N=3), and anti-depressants (N=1).  

 

39 age-matched TD children were recruited by contacting the parents of children with 

targeted birthdates. Following an expression of interest, parents were contacted by telephone 

for screening before being admitted into the study. Exclusionary criteria for TD participants 

included a history of neurological abnormalities; birth-related complications; developmental 

delays; need for special services in school; diagnosis of psychiatric conditions; uncorrected 
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vision or hearing impairment; or a first degree relative with an ASD diagnosis. Of the 39 TD 

participants who completed the EEG recording session, one participant did not have at least 

30 seconds of artifact-free EEG data and was excluded from further analyses. No TD children 

were taking medication at the time of the study.  

 

The final groups included 59 children with ASD and 38 TD children. The two groups 

did not differ on age or sex. Verbal and non-verbal IQ (as assessed with standardized tests, 

see section below) were significantly lower in the ASD group, as would be expected when 

representing the full spectrum of cognitive function in ASD.  See table 1 for demographic 

variables.  

 

Assessments 

 Cognitive and language assessments were tailored to the ability and age of the child.  

Standard scores (ratio IQ) were used to facilitate comparison across assessments.  

Assessments included the Mullen Scales of Early Learning (MSEL; Mullen, 1995), the 

Differential Abilities Scale-Second Edition (DAS-II; Elliott, 2007), and the Wechsler 

Preschool and Primary Scale of Intelligence-Third Edition (WPPSI-III; Wechsler, 2002).  

From these measures, ratio IQ scores for non-verbal IQ (NVIQ) and verbal IQ (VIQ) were 

calculated for each child and based on the age-equivalent score and chronological age. Ratio 

IQ scores were used to account for the scores of children who performed outside of the 

standardized norms for their chronological age.  For children who were tested with the 

WPPSI-III or DAS-II, NVIQ and VIQ were calculated from the protocol-specific subscores. 

For children who were administered the MSEL, VIQ was calculated using the average of the 

Receptive Language and Expressive Language subscale scores, and NVIQ was calculated 

using the average of the Visual Reception and Fine Motor subscale scores (Akshoomoff, 
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2006). Studies have demonstrated the convergent validity of the WPPSI-III with other 

cognitive assessments such as the MSEL and the DAS-II, supporting the combination of 

assessments through standard scores (Bishop et al., 2011; Harrison et al., 2016; Hil et al., 

2014).   

 

Paradigm  

Children took part in a spontaneous EEG paradigm that involved displaying bubbles 

on the computer screen while EEG was recorded for two minutes in a dark, sound-attenuated 

room. Due to the young age of the children and the wide range of cognitive and language 

abilities, it was not possible to gather spontaneous data under ‘eyes-closed’ conditions. 

Therefore, consistent with many other studies in developmental populations, we presented the 

passive visual stimulus while recording EEG (Dawson et al., 1995; Stroganova et al., 1999; 

Tierney et al., 2012; McEvoy et al., 2015). Prior studies have supported the fact that reliable 

PAF values can be obtained for eyes-open as well as eyes closed conditions, and that PAF 

obtained under the two are highly correlated (Grandy, Werkle-Bergner, Chicherio, Lövdén, et 

al., 2013; Grandy, Werkle-Bergner, Chicherio, Schmiedek, et al., 2013).  

 

EEG Acquisition and Processing 

Continuous EEG data were recorded using a high density 128-channel HydroCel 

Geodesic Sensor Net (Electrical Geodesics Inc., Eugene, OR). Four electrodes positioned to 

record electrooculogram (EOG) (located below and lateral to the eyes) were removed from 

the net in order to increase comfort. Net Station 4.4.5 software was used to record from a Net 

Amps 300 amplifier, sampled at 500Hz.  Data were filtered on line with a band pass of 0.1 to 

100 Hz and referenced to vertex. Electrode impedances were kept below 100 KΩ. 
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  All offline data processing and analyses were performed using EEGLAB (Delorme & 

Makeig, 2004), and in-house MATLAB scripts. Data were high pass filtered, to remove 

frequencies below 1Hz, and low pass filtered to remove frequencies above 100Hz, using a 

finite impulse response filter implemented in EEGLAB. Continuous data were then visually 

inspected, and noisy channels were removed. Following channel removal, data were 

interpolated to the international 10-20 system 25 channel montage (Jasper, 1958). Sections of 

data which showed electromyogram (EMG) or other non-stereotyped artifacts were then 

removed from the recording.  

 

Independent component analysis (ICA), a statistical blind source separation technique 

(Makeig et al., 1997), was implemented to remove EOG and other stereotyped artifacts from 

the data. After decomposing the data into maximally independent components (IC), the scalp 

topography and time course of each IC was visually inspected. Any IC that represented a 

non-neural source (including EMG, EOG and line noise) was removed from the data. Data 

were then re-referenced to an average of all channels.  

 

The first 38 seconds of cleaned data for each participant were then selected for 

spectral power analysis. Thirty-eight seconds of data represented the minimum amount of 

artifact free data available across participants, and it was deemed an appropriate minimum 

threshold to gain reliable estimates of the characteristics of spontaneous EEG in line with 

previous literature (Gudmundsson et al., 2007). In order to establish the reliability of PAF 

measurements from 38 seconds of data, we compared central PAF measured from the first 

and second 38 seconds of data in participants who had at least 76 seconds of artifact-free data 

(N=60).  Measurements of central PAF obtained from the first 38 seconds of data (M=9.29, 

SD=0.92) did not differ significantly from central PAF obtained from the second 38 seconds 
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of data (M= 9.27, SD= 0.95, t(59)= -0.485, P=0.629). The experimenter was blinded to 

participant details throughout the data cleaning process. 

 

Spectral Power Analysis 

Welch’s method, implemented using 2 second Hamming windows with 50% overlap, 

was used to compute spectral power for six channels (F3, F4, C3, C4, O1 and O2) which 

defined three regions of interest (frontal, central and occipital). The resulting power spectra 
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Peak frequency 

To measure PAF, we first modelled the 1/f trend of the log-transformed power 

spectrum (1-55Hz) using a least-squares method (see figure 1a). The 1/f trend was then 

subtracted from the data (Nikulin & Brismar, 2006; Haegens et al., 2014); see figure 1b). 

This approach facilitates the identification of the spectral peak without bias towards lower 

frequencies within the alpha range (Neto et al., 2015). A robust curve fitting procedure was 

then used to fit a Gaussian curve to the spectra within the alpha range in order to select a 

representative peak (see figure 2). This approach resulted in less ambiguity than simply 

choosing the local maxima, especially in subjects for whom it was difficult to identify the 

local maxima or for whom the data showed two local maxima (double peak). If the robust 

curve-fitting procedure failed, this was taken to represent a lack of modulation in the alpha 

range for that particular region, and the data were omitted from further analysis. Ten 

participants had at least one region omitted from analysis.  Examples of this peak selecting 

procedure in three different participants are shown below.  

 

Results 

A repeated measures ANOVA was first used to determine whether there were any 

differences in alpha power between the two groups. There was no significant effect of group 

(F(1, 96)=2.03, P=0.16), and also no significant group x region interaction effect on alpha 

power (F(2,192)= 0.38, P=0.68). There was a significant effect of region on alpha power 

(F(2,192)=64.52, P<0.001), with central alpha power significantly higher than both frontal 

alpha power (t(97)=-9.85, P<0.001) and occipital alpha power (t(97)=8.20, P<0.001). There 

was no significant difference between occipital and frontal alpha power (t(97)=0.34, P=0.74).  
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A repeated measures ANOVA was also used to determine whether there were any 

differences in PAF between the two groups. Due to missing PAF for at least one region in ten 

participants, these participants were excluded from this portion of the analyses. There was a 

significant effect of group on peak alpha frequency (F(1, 84)=6.41, P=0.01), where PAF 

values were significantly lower in the ASD group compared to the TD group. There was no 

significant group x region interaction effect on peak alpha frequency (F(2,168)= .92, 

P=0.40), implying that group differences existed across scalp regions. There was a significant 

effect of region on PAF (F(2,168)=3.68, P=0.027).  

 

In order to include all possible data and study regional differences, each region was 

investigated separately in the follow-up analyses. PAF was significantly lower in children 

with ASD compared to TD in frontal (t(89)=2.71, P=0.008; see figure 3a) and central regions 

(t(93)=2.50, P=0.014; see figure 3b), and it approached significance for the occipital region 

(t(92)=1.92), P=0.058; see figure 3c). PAF and relative alpha power values are described in 

table 2.  

 

Association between PAF, age and cognitive function 

In order to determine whether there were significant associations between age and 

PAF, and whether this association varied by group, we performed regression analyses for 

frontal, central and occipital PAF separately. Age, group and age x group interaction were 

entered as predictors. Age (P<0.001), group (P = 0.002) and group x age interaction 

(P<0.001) all contributed significantly to a model which significantly predicted frontal PAF 

(F(3, 87)=14.945, P<0.001, R2=0.34). Similarly, age (P<0.001), group (P=0.039) and group x 

age interaction (P=0.002) all contributed significantly to a model which significantly 

predicted central PAF (F(3, 91)=12.14, P<0.001, R2=.286). For occipital PAF, both age 
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(P=0.002) and group x age interaction (P=0.038) contributed significantly to a model which 

significantly predicted occipital PAF (F(3, 90)=8.343, P<0.001, R2 = 0.218). Group did not 

contribute significantly to this model (P=0.172). These regression models demonstrate that 

there are significant effects of age on peak alpha frequency in each region of interest, and that 

these effects differ significantly between the two groups. There was a positive association 

between age and PAF in the TD group, while this association was absent for the ASD group, 

as will be described in more detail in the group-specific analyses. Similar analyses could not 

be performed by simultaneously regressing PAF on both cognitive function and group, since 

both VIQ and NVIQ are significantly lower in the ASD group than TD participants. Hence, 

there was an almost perfect separation of groups based on the cognitive function variables.  

 

To further investigate the association between age and PAF in each group, and to 

examine associations between cognitive function and PAF, we performed regression 

procedures separately in each group. Age, VIQ, and NVIQ were entered as predictors of PAF 

into a forward step-wise regression procedure for TD and ASD separately. This model was 

repeated for PAF in frontal, central and occipital regions.  

 

For all three regions of interest, age was the first and only significant predictor in the 

regression of PAF for TD children (Frontal: R2=0.57, F(1,37)=49.12, P<0.001; Central: 

R2=0.56, F(1,37)=47.9, P<0.001; Occipital: R2=0.41, F(1,37)=25.25, P<0.001; see Figure 4). 

Introduction of VIQ and NVIQ as predictors did not significantly improve the prediction of 

the model, where neither variable had significant correlations with frontal (VIQ: R=0.01, 

P=0.93; NVIQ: R=0.04, P=0.81), central (VIQ: R=0.01, P=0.96; NVIQ: R=0.05, P=0.77), or 

occipital PAF (VIQ: R=-0.80, P=0.63; NVIQ: R= -0.18, P= 0.28).  
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In children with ASD, non-verbal IQ was the first and only predictor in the regression 

of PAF in frontal and central regions (Frontal: R2=0.14, F(1,48)=7.74, P=.000; Central: 

R2=0.11, F(1,52)=5.66, P=0.013; see Figure 5) and the introduction of age and VIQ did not 

significantly improve the prediction of these models for either frontal (age: R=-0.03, P=0.85; 

VIQ: R=0.28, P=0.05) or central PAF (age: R=0.13, P=0.35; VIQ: R=0.26, P=0.06). For the 

occipital region, neither age (R=0.18, P=0.18), VIQ (R=0.10, P=0.46) or NVIQ (R=0.16, 

p=0.26), was a significant predictor of PAF. 

 

Discussion 

Here, we examined PAF and its relationship to chronological age and cognitive 

function in a heterogeneous group of children with ASD, across a wide developmental range. 

PAF was examined in comparison to TD age-matched children and within the autism 

spectrum. Confirming our hypothesis, we found that PAF was decreased in children with 

ASD. Moreover, in ASD, PAF correlated strongly with non-verbal cognitive function, but not 

with chronological age. 

 

The relationship demonstrated here between PAF and age in TD children consistent 

with previous literature (Chiang et al., 2011; Cragg et al., 2011; Dustman et al., 1999; 

Miskovic et al., 2015; Somsen et al., 1997; Stroganova et al., 1999; Thorpe et al., 2016). PAF 

represents one of the key developmental changes in spectral power during childhood (Valdes 

et al., 1990), indexing neural maturation (Segalowitz et al., 2010) and likely represents the 

development of large-scale oscillatory networks during childhood that promote enhanced and 

efficient connectivity (Segalowitz et al., 2010; Rodríguez-Martínez et al., 2017). However, 

the foundation of our understanding of alpha oscillations is based on studies in typical 
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development, where neural maturation and cognitive development map onto chronological 

age.  

 

We found that children with ASD did not show the typical increase in PAF with age 

(see also, Edgar et al., 2015). The absence of a relationship between markers of neural 

maturation and chronological age has previously been reported in studies of both structural 

and functional brain development in ASD. For instance, Courschene and colleagues (2011) 

found that brain volume increases demonstrated in TD children during childhood do not show 

the same trajectory of development in children with ASD (Courschene et al., 2011). In 

addition, typical increases in functional connectivity in the default mode network seen during 

adolescence are reported to be absent in ASD (Washington et al., 2014). Consistent with 

these findings, the results presented here also suggest that, as a group, PAF does not follow a 

typical trajectory with chronological age in children with ASD, based on cross sectional data. 

However, our results highlight that delays in certain neural maturation processes (such as 

those represented by PAF) are more closely associated with cognitive function across the 

autism spectrum than the presence of ASD itself.  

While the link between cognitive function and PAF has been reported previously in 

typical adults (Grandy, Werkle-Bergner, Chicherio, Lövdén, et al., 2013), the present study is 

the first to report that PAF is a robust marker of non-verbal cognitive function in children 

with ASD. Discrepancies between verbal and non-verbal IQ have been noted in children with 

ASD, with many individuals showing higher non-verbal skills, particularly in early childhood 

(Charman et al., 2011; Joseph, Tager-Flusberg & Lord, 2002).  Given the characteristic 

communication impairments in ASD, verbal IQ scores are likely reflective of the language 

deficits that represent core features of ASD (Joseph et al., 2002). Therefore, we posit that 

nonverbal IQ scores may be serve as a more independent estimate of underlying cognitive 
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ability. It is notable that NVIQ accounts for less variability in PAF in the ASD group than 

chronological age does in the control group. We hypothesize that inaccuracy of measurement 

and contribution of other factors are the reason non-verbal IQ does not account for a larger 

proportion of the variance in PAF.  There are many challenges to accurately assessing 

abilities in children with ASD (e.g. difficulty understanding with or complying with 

directions, difficulty adjusting to the testing environment), which may reduce the accuracy of 

their scores (Kasari et al., 2014).  Additionally, although non-verbal IQ is a better overall 

measure for this population than verbal IQ, it is likely that our measure of non-verbal IQ does 

not fully capture the variability in cognitive development that is related to PAF.  

 

The results observed in the current study support the contention that PAF assays 

network development, as cognitive function is linked to both the structural and functional 

aspects of neural networks (Lee et al., 2017). Therefore, the development and integrity of 

neural networks is likely to be reflected in both PAF and cognitive function (Jann et al., 

2012), and it may mediate the relationship between PAF and cognitive function reported here 

in ASD.  

 

Accordingly, network-level brain activity has previously been reported to be atypical 

in ASD (Courchesne & Pierce, 2005; Wass, 2011), likely due to disruptions in white matter 

development, with reports suggesting accelerated development under the age of two in ASD, 

which is then followed by delays throughout childhood (Courchesne, 2004; Courchesne et 

al., 2007). The development of white matter provides the structural basis for the 

communication of neural information in large-scale brain networks, playing an important role 

in the development of both structural and functional connectivity during childhood (Hagmann 

et al., 2010), and is accordingly an early predictor of cognitive function (Lee et al., 2017). 
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PAF has been shown to be related to white matter architecture through diffusion tensor 

imaging (DTI), with increases in PAF are associated with increased white matter (axonal 

growth/myelination) in TD populations (Jann et al., 2012), including the development of 

corticothalamic connections (Valdés-Hernández et al., 2010). In particular, the role of the 

thalamus in resting state alpha oscillations is well documented (e.g. Larson et al., 1998), thus 

supporting the contention that altered PAF in ASD indicates abnormalities in corticothalamic 

projections, which may contribute to previous reports of altered alpha power in this 

population, as well as the atypical relationship between thalamic volume and resting alpha 

power reported in ASD (Edgar et al., 2015). Therefore, measuring PAF using functional 

methods such as EEG offers a means to functionally track the structural processes underlying 

large-scale network development in larger and more heterogeneous samples, and in a way 

that is more feasible than conventional structural imaging techniques such as magnetic 

resonance imaging (MRI) and DTI. Although here we use high-density EEG to collect data, 

we demonstrate that analyzing data from as few as six electrodes can capture PAF across the 

scalp effectively.  

 

Future Directions 

 

This study highlights the promise of PAF as a marker of cognitive function within the 

ASD population. However, there are some areas that require further examination in order to 

determine how PAF can be utilized practically. For instance, PAF could potentially be used 

longitudinally from an early age to highlight children in need of early intervention, and track 

change through intervention. White matter development is regulated not only by underlying 

genetic and neurobiological factors, but also by environment and experience (Als et al., 2004; 

Scholz et al., 2009). PAF may therefore provide a sensitive longitudinal marker of cognitive 
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development which can be modulated through ASD intervention. If this is the case, PAF may 

provide insight into mechanisms of change through intervention (Goldani et al., 2014). In 

addition, it may be that differences in PAF predict cognitive outcomes (Vivanti et al., 2013). 

PAF as a predictor of intervention outcomes, and as a marker of cognitive gains through 

intervention, will be explored in future research.  

 

Limitations 

One limitation of the current study is the lack of additional measures measuring ASD 

symptoms.  While diagnoses were confirmed via psychologist clinical determination, we are 

unable to evaluate whether PAF is related to variability in ASD symptoms.  Given the 

relationship between PAF and neural network development, we would predict that PAF is 

related to cognitive function, and is not specific to ASD symptoms. Future research is needed 

to confirm this hypothesis. 

 

Conclusion 

 Our results support the promise of investigating PAF as an assay of cognitive 

function during development, both typical and atypical. In the context of previous literature, 

the relationship between PAF and cognitive function suggests that network-level dysfunction 

underlies cognitive impairment in ASD.  Therefore, PAF also serves as a useful metric to 

assay the integrity of network-level neural activity, as deviations in this development may 

precede and predict cognitive impairment. The field of neurodevelopmental disorders is in 

tremendous need for biomarkers that inform clinical heterogeneity and facilitate prediction of 

outcomes. Future studies using PAF, a scalable and mechanistically informed physiological 

marker, will examine early development in order to examine changes with intervention and 

predict cognitive outcome in infants at heightened risk for ASD.  
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Figures 

Figure 1. (a) an example power spectra (solid line) with computed 1/f trend (dashed line) (b) 

Power spectra following removal of linear tend.  

 

Figure 2. Example of curve fitting (dashed line) power spectra (dashed line) and how it can 

provide an accurate estimation of spectral peaks for (a) conventional alpha peak and (b) 

participants with double alpha peaks.  

 

Figure 3. Dot plots demonstrating peak alpha frequency (with group mean and SD) for both 

ASD and TD participants in (a) frontal, (b) central and (c) occipital regions.  

 
Figure 4. Scatter plots demonstrating the relationship between age and PAF for ASD (blue) 

and TD (red) participants in (a) frontal, (b) central and (c) occipital regions. 

 

Figure 5. Scatter plots demonstrating the relationship between NVIQ and PAF for ASD 

(blue) and TD (red) participants in (a) frontal, (b) central regions. 
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Table 1. Demographic variables of participants.  

  

ASD 

 

TD 

 

Group Comparison 

Measure M(SD), range or number 

(%) 

M(SD), range or number (%) Student’s t or X2 P value 

Age (months) 69.44(24.12), 25–126 71.56(26.58), 29-146 0.68 

Sex (N females) 13 (22) 13 (33.3) 0.16 

VIQ 68.96(34.35), 12-160 121.12(19.42), 82-168 0.000 

NVIQ 74.67(33.82), 10-145 112.55(12.07), 88-156 0.000 

 
 
 
 
Table 2. Relative alpha power and peak alpha frequency in ASD and TD children.   

 Relative Alpha Power PAF (Hz) 
 Frontal Central Occipital  Frontal Central Occipital 

ASD 
 
Mean 
(SD) 

 
0.14 
(0.05) 

 
0.18 
(0.07) 

 
0.15 
(0.05) 

  
8.72 
(0.92) 

 
8.92 
(0.95) 

 
8.91 
(0.91) 

TD 
 
Mean 
(SD) 

 
0.16 
(0.04) 

 
0.20 
(0.07) 

 
0.16 
(0.05) 

  
9.29 
(1.07) 

 
9.41 
(0.95) 

 
9.27 
(0.91) 

P value  0.086 0.228 0.272  0.008 0.014 0.058 
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