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A Novel EEG Based Spectral 
Analysis of Persistent Brain 
Function Alteration in Athletes with 
Concussion History
Tamanna T. K. Munia1, Ali Haider   1, Charles Schneider1, Mark Romanick2 & Reza Fazel-Rezai1

The neurocognitive sequelae of a sport-related concussion and its management are poorly defined. 
Detecting deficits are vital in making a decision about the treatment plan as it can persist one year or 
more following a brain injury. The reliability of traditional cognitive assessment tools is debatable, and 
thus attention has turned to assessments based on electroencephalogram (EEG) to evaluate subtle 
post-concussive alterations. In this study, we calculated neurocognitive deficits combining EEG analysis 
with three standard post-concussive assessment tools. Data were collected for all testing modalities 
from 21 adolescent athletes (seven concussive and fourteen healthy) in three different trials. For EEG 
assessment, along with linear frequency-based features, we introduced a set of time-frequency (Hjorth 
Parameters) and nonlinear features (approximate entropy and Hurst exponent) for the first time to 
explore post-concussive deficits. Besides traditional frequency-band analysis, we also presented a new 
individual frequency-based approach for EEG assessment. While EEG analysis exhibited significant 
discrepancies between the groups, none of the cognitive assessment resulted in significant deficits. 
Therefore, the evidence from the study highlights that our proposed EEG analysis and markers are more 
efficient at deciphering post-concussion residual neurocognitive deficits and thus has a potential clinical 
utility of proper concussion assessment and management.

A concussion is a complex pathophysiological procedure which is induced by sudden impulsive biomechan-
ical forces affecting the brain1. In the US alone, sport and physical activity cause nearly 4 million concussions 
each year2,3. It is critical to assess concussion and mild traumatic brain injury (mTBI) with high accuracy to 
avoid anxiety, sensitivity and cognitive biases which appear as post-concussion syndrome. Moreover, insufficient 
follow-up and treatment can put the post-concussive person at the risk of neurobiological depression with anxiety 
resulting in a longer concussion recovery time. Therefore, proper understanding and measuring of concussions 
are essential to treat the psychological factors as a means of effective prevention which, in turn, can lead to a 
rapid post-concussion recovery period. When examining performance metrics related to motor control, it is 
well established that individuals diagnosed with the post-concussion syndrome can show marked impairments 
in reaction times4, visual motor processing5, gait stability6, postural balance7 and dynamic gait analysis8,9. More 
importantly, it is a primary concern for both amateur and professional athletes. Because the symptoms of con-
cussions sometimes go unnoticed or are self-reported and tend to subside within 1–2 weeks10, many athletes fail 
to seek immediate and proper medical care. Furthermore, high school athletes tend to purposely avoid reporting 
their concussions in order to prevent being “benched” during subsequent games11. Though almost all recreational 
participants express their concern about post-concussion syndrome, most competitive athletes keep quiet about 
their minor physical discomforts or even deny considerable pain for the sake of pursuing their career goals. 
Although athletes’ willingness of accepting risks greatly varies with the competition stages, game completion 
levels and types of sports, it’s more likely that many individuals will choose to continue to play with a concussion 
rather than remove themselves from competition12. However, such a decision can pose a risk to their health with 
the potential for repeated head trauma13. Athletes have been shown to suffer from cognitive deficits up to three 
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years after their brain injury incidents, exhibiting lower performance on select neuropsychological tasks when 
compared to an age-matched non-concussed group14.

Evidently, the challenges in concussion assessment have led to the studies exploiting the sensitivity of EEG 
spectral features to mild, moderate, and severe traumatic brain injury over the time span as short as 15 days to 
four years post-concussion.

Researchers have accomplished the quantitative analysis of the EEG signals collected from the concussed sub-
ject to evaluate the post-concussion physical and clinical recovery. Additional studies suggest that the EEG spec-
tral profile varies with acute mTBI due to the change in the cognitive state during the resting stage15,16. In essence, 
the spectral profile of EEG is also altered in acute mTBI and during any anomaly of consciousness. However, 
researchers argue whether mTBI can evoke long-term variations in spectral information. Also, identification of 
any long-term change is sometimes controversially attributed to psychiatric comorbidity such as posttraumatic 
stress disorder (PTSD). So far, long-term neurological changes have remained indistinct. Nevertheless, many 
findings support that brain volume, and white matter can be affected by mTBI17. Likewise, the resting state activa-
tion stage can be sensitive to mTBI. Another study found that EEG measurement was able to predict the return to 
play better than other measurement types18. Notably, one study examined EEG and showed that frequency infor-
mation changes for as long as six months after the mTBI occurrence19. All these findings underscore the fact that 
the power of each frequency component of EEG can reveal significant physiological and clinical findings. Though 
there is a necessity to examine the details of spectral patterns after a mTBI incident, only a relatively small number 
of studies compared the spectral profiles just with a group of frequencies bounded by specific bands.

The goal of the current research is to look into the spectral profiles as a potential measurement tool which 
can expose the long-term cognitive impairment after an analytical study of EEG signals. To test our hypothesis, 
we utilized visual (King-Devick (K-D) Test), postural (Balance Error Scoring System (BESS)) and neurological 
(Immediate Post-Concussion Assessment and Cognitive Testing battery (ImPACT)) tests, along with a novel 
EEG spectral analysis that computes the distinguishing features from each individual component of EEG, as 
well as from the set of conventional frequency bands. We also utilized novel time and nonlinear feature-based 
analysis to evaluate the EEG of injured and healthy athletes that provide unique and complementary measures 
of post-concussion deficiencies. Herein, we report that though postural, visual and neurological tests were una-
ble to detect the deficits associated with a long-term concussion history, the EEG linear and nonlinear feature 
based spectral analysis, both in terms of frequency bands and individual frequencies, were sensitive to highlight 
post-concussion sequelae.

Methods
Participants.  The inclusion criteria for the participants were adolescents high school athletes aged 14–18 
years who were actively participating in football games. Adolescent athletes were emphasized in this study since 
according to CDC report, youths are at increased risk of concussion, and 65% of these concussions occur in chil-
dren between 5 to 18 years of age20. These persons are at a larger risk for traumatic brain injury as their brains are 
still young and developing, and the brain tissues are not as able to recover as rapidly as an adult brain21. The data 
collection was limited to football to align with the highly broadcasted wave of concerns about the sport-related 
brain trauma in National Football League (NFL) stars. Exclusion criteria for the participants included any history 
of intellectual or learning disabilities, neurological or psychotic disorders, or alcohol/substance abuse.

Following the inclusion and exclusion criteria, we were able to collect data from a total of 21 male participants 
who are football athletes from two high schools available in Grand Forks area. The study was performed following 
the experimental protocol approved by the Institutional Review Board (IRB) of the University of North Dakota. 
The data were collected in accordance with the guidelines and regulation established by the protocol. The par-
ticipation was voluntary, and the participants had the right to withdraw any time from the study. Informed and 
written consent for participation was collected from the athletes and also from their parents or legal guardians. 
Each participant had to complete a demographic information form with previous concussion history before data 
collection.

Individuals recruited for this concussion analysis study were assigned to a particular group based on the 
history of concussion. The healthy group consists of 14 subjects (Age 15.86 ± 0.67 years, Height: 1.75 ± 0.09 m, 
Weight: 72.82 ± 10.03 Kg) with no history of concussion while the concussed group has 7 subjects (Age 
15.97 ± 0.74 years, Height: 1.77 ± 0.09 m, Weight: 73.20 ± 12.56 Kg) who suffered from one or multiple previous 
concussions. The concussion was detected by the concussion management team (including athletic trainer and 
team physicians) assigned by the respective schools who was present on the sideline during the athletic contest. 
The concussion management team detected the concussion by following the established criteria suggested by 
American Academy of Neurology Guideline for Management of Sports Concussion22 and state law of North 
Dakota23.

All participants were actively participating in sport and athletes with concussion history made a complete 
return to play within four weeks of injury. All athletes with a history of concussion (12 days to 15 months from 
injury) reported being symptom-free at the time of testing. Control participants were teammates who had never 
suffered a sport or non-sport related brain injury. Concussed participants’ post-concussion status is shown in 
Table 1.

From each subject, the traditional assessment data and EEG signals were collected in three different trials 
with 30-days’ time difference between the trials. The total number of data collection trials for the healthy group 
was multiplied by fourteen (total 42 trials) and for the concussed subject was three multiplied by seven (total 21 
trials).

Postural Data Collection Protocol.  Balance Error Scoring System (BESS).  The BESS is one of the most 
popular tests used to find balance deficit in concussed and fatigued athletes24. Postural stability is measured using 
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three stances, named double leg stance, single leg stance, and tandem stance. Each test is done on two different 
surfaces, first on a firm surface and then on a foam surface. During these stances, athletes’ eyes are closed, and 
their hands are placed on the iliac crests and feet positions are different based on three distinct stances. Each of 
these six subtests is performed for 20 seconds. Deviation from proper stance is referred to an error, and the total 
number of errors during the subtests are counted.

Visual Data Collection Protocol.  King-Devick (K-D) Test.  The K-D test is a test of the visual system and is 
based on measurement of the speed of rapid number naming25. The K-D test is faster than other standardized tests 
like ImPACT, Military Acute Concussion Evaluation (MACE) and the sports concussion assessment tool (SCAT 
3) as it takes just two minutes to complete the testing and thus is more practical in case of sideline application25.  
The K-D test consists of three test cards and the athlete’s need to name the numbers from the cards rapidly with-
out any error. The score for the test is calculated by combining the amount of the three times, in seconds, required 
to read the three cards. The test involves attention, rapid eye movements as well as language operation. These 
three functions may be adversely affected, resulting in a poor K-D test performance. The test purports to measure 
any suboptimal brain functional deficits after a concussion incident, as well as sometimes reflects deficits due to 
sleep deprivation, Parkinson’s disease, hypoxia and multiple sclerosis. In this experiment, we performed the K-D 
test to find out the efficacy of this test to assess suboptimal brain functional deficit due to a concussion after a time 
gap between concussion incident and data collection.

Neuropsychological Data Collection Protocol.  Immediate Post-Concussion Assessment and Cognitive 
Testing (ImPACT).  The ImPACT battery is the most common computerized test that can be used in cognitive 
concussion assessment26. The test battery consists of three different measures: Demographic data, neuropsycho-
logical tests, and the Post-Concussion Symptom Scale (PCSS). The assessment results from these three sections 
are combined to assist in accurate evaluation and management of concussion27. The demographic data section 
mainly consists of all the important sport, medical, and concussion history related information. For the neuropsy-
chological test sections, ImPACT (version 3.0) contains six different neuropsychological tests, and each of these 
tests is intended to target different parts of cognitive functioning comprising attention, verbal and visual memory, 
control, reaction time and processing speed. Combining the results from these six different tests, a set of com-
posite scores are produced containing separate measures named verbal memory, visual memory, motor speed, 
reaction time and impulse control. The detailed description of these tests can be found at26–28. The last section 
named PCSS is also utilized in the ImPACT battery study28. The scale is reported by various sports organizations 
to manage and track post-concussion symptoms26–29. This section has a 21-symptom checklist which mainly asks 
the athlete to specify a rate for each symptom on a scale of one to seven, with zero representing no presence of a 
symptom and six representing a severe symptom. An ImPACT test was performed by all participants during all 
three trials.

EEG Data Collection Protocol.  EEG activities were measured using a 9-lead wireless B-Alert headset30. 
Electrode impedance was kept below 50 kΩ. During data collection, the left mastoid was used as a reference, and 
the right mastoid was used as a ground. The sampling rate for data collection was 256 Hz, and data were acquired 
by placing nine electrodes at F3, F4, Fz, C3, C4, Cz, P3, P4 and POZ locations as shown in Fig. 1.

The data were collected for 5 minutes from all 21 subjects during different trial sessions each under three con-
ditions: vigilant task (VT), eyes open (EO), and eyes closed (EC). During VT condition, the subject was highly 
engaged by choosing between a primary vs. secondary or tertiary task every 1.5 to 3 seconds. During EO con-
dition, the subject goes through a low engagement state by responding to an optical probe every 2 seconds. The 
EC state creates a distraction status, and the subject has to respond to an audio tone every 2 seconds. The same 
procedure was followed at all different trials for all subjects.

EEG Data Analysis.  The EEG data were first high pass filtered above 1 Hz and then low-pass filtered below 
40 Hz, and thus a 1–40 Hz (24 dB/octave) band-pass filter was formed. The first and last 10 s of each 5-min record-
ing during EO, EC, and VT conditions were rejected to eliminate state transitions. The EEG data were then vis-
ually inspected to determine clean EEG data and randomly occurring large amplitude with power ≥ 3 standard 
deviations with respect to the mean value of the clean EEG was removed. Afterward, the stereotypical noise like 
eye movements, eye blinks, muscular activity, line noise, motion related signal, and heart signals was cleaned by 

Concussed 
Participants

Number of 
concussion

Loss of 
consciousness Confusion Amnesia

Post-
concussion 
RTP days

Days from concussion incident to data 
collection

From 
incident 1

From 
incident 2

From 
incident 3

1 2 No Yes Yes 14 263 216 —

2 1 No Yes Yes 21 118 — —

3 1 No No No 7 267 — —

4 3 No Yes Yes 10 462 297 162

5 2 No Yes Yes 25 92 65 —

6 1 No No No 10 127 — —

7 1 No No Yes 15 12 — —

Table 1.  Concussed participants demographic information.
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using well-established Independent Component Analysis procedure of EEGLAB detailed previously31,32. Any 
other nonstereotyped or residual artifact was removed through visual inspection of the raw data.

The clean EEG data was then segmented into 1-second epochs containing 256 data points. Power spectral den-
sity (PSD) was determined by computing Fast Fourier Transformations (FFT) with a 10% Hanning window on 
each segment to determine spectral power (μV2) for 1 to 40 Hz frequency bins of each EEG channels. The PSD of 
the individual bins were then averaged and logged to calculate PSD of conventional EEG frequency bands named 
delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–40 Hz). Although gamma band 
is considered as a pattern of neural oscillation with a frequency between 30 Hz to 100 Hz nowadays, we have used 
30–40 Hz as gamma band in this study since the gamma band was previously defined up to 40 Hz33. Numerous 
studies reported that the gamma band is most apparent at the frequency of 40 Hz34–38. While most gamma oscilla-
tion study emphasized frequencies around 40 Hz, electrocorticographic recordings (ECoG) in patients enduring 
epilepsy have suggested that the functional activation may be more consistently connected with the higher fre-
quencies, typically greater than 60 Hz and may extend up to 200 Hz and beyond39. In our study, the 30 Hz to 40 Hz 
was chosen as gamma band since all the analysis of this study is based on EEG and also the interpretation of the 
earlier EEG based concussion studies suggested that the EEG spectrum contains some characteristic waveforms 
associated with concussion which primarily fall within the frequency band of 1 to 40 Hz15,40–47. Moreover, the use 
of high-frequency gamma band is still controversial as studies showed that the change in the higher frequency 
gamma-component might be a result of the higher amount of artifact from the electromyographic activity48–50.

After calculating the PSD for each channel and bands, overall PSD was calculated by calculating the mean 
PSD across all nine referential channels for both individual frequency bins and five frequency bands. Linear 
and nonlinear features were then extracted from the five frequency bands and also from each of 1 to 40 Hz EEG 
frequency bins.

This innovative analysis achieved a new range of frequencies with significant differences between healthy 
and concussed groups even when the band base analysis was not adequate to reveal the deficits. Moreover, in 
this paper, we present an exploration of the usefulness of several features for use in concussion detection, which 
aims at providing accurate feedback as early as possible. Along with the traditionally used band power estimates, 
we computed some time domain as well as nonlinear features from each EEG frequency band and then again 
computed all the features from each individual frequency bins. The parameters extracted from EEG signal are 
explained as follows.

Linear Features.  Power spectral density analysis was performed to extract the linear features from the signal. The 
extracted features were; (i) average spectral power for five frequency bands and (ii) the spectral power for each of 
the individual frequency from 1 Hz to 40 Hz.

Time domain Feature.  Most popular features used for concussion analysis are EEG band based power spectral 
density. In this paper, we introduce new features for concussion assessment called Time Domain Parameters that 
are also known as Hjorth parameters. The features are inspired by the fact that they have been previously used 
in EEG based experiments like Vidaurre et al. used Hjorth parameters, in their brain-computer interface (BCI) 

Figure 1.  Experimental setup for EEG data collection. (a) Data collection set up for a participant, (b) Map of 9 
Electrodes locations. The locations were plotted using EEGLAB31.
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study51 whereas Cecchin et al. used Hjorth parameters for seizure assessment from raw scalp EEG signals52. The 
parameters introduced by Hjorth53 are three features defined as follows by equation 1 to 3:
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The first parameter, Activity, calculates the alteration of time signal and characterizes the signal power. 
Mobility is computed by calculating the square root of the variance of the first derivative of the signal divided by 
the activity and thus specifies the average frequency or proportion of standard deviation of the spectral power. 
Complexity describes the change in frequency by comparing the Mobility of the first derivative of the signal 
with the signal’s mobility, and for more resemblance between the signals, the value converges to one. These three 
parameters consider the frequency component of the signal itself and thus remain more robust against the errors 
due to overfitting or non-stationarities of the signal52. To reduce the complexity of calculation, these three param-
eters were calculated in a stationary mode of signal separately for each EEG channel of the entire signal. Thus, the 
extracted parameters were three features per channel and, as a whole, a feature vector for each parameter. A total 
of 27 features (3 features for nine channels) were extracted and then averaged for all channels.

Nonlinear Features.  Different nonlinear parameters have been shown significantly useful in the diagnosis of 
neurological disorders. Nonlinear parameters like approximate entropy (ApEn), Hurst exponent, and Correlation 
dimension have been used for automatic diagnosis of seizure onset and reported as a promising approach in dif-
ferentiating normal, pre-ictal and epileptic seizure from EEG signals54.

In the field of cortical neuronal dynamic study, the existence of long-range temporal correlation (LRTC) is 
considered a potential observed phenomenon as it is proven to be gradually reduced with the power-spectrum55. 
The LRTC property of an amplitude-time signal has vital importance as it is found to have a relationship with 
the distributed neural network33. Poil et al. reported the coexistence of LRTC property of amplitude time series 
with neuronal avalanche activity56, and thus recommended a relationship between oscillatory activity detected 
in the EEG and the criticality hypothesis56,57. Using these hypotheses, Shew et al. suggested a possible connection 
between optimal functioning and LRTC in the amplitude of oscillations35. Moreover, the significance of the LRTC 
property has also been proven in numerous clinical studies linking a number of neuronal diseases (including 
schizophrenia58, Alzheimer’s disease59, major depressive disorder60, and epilepsy61) with altered LRTC properties. 
To quantify the degree of change in LRTC property in a signal, the Hurst exponent (H), (explained in a later para-
graph) is measured55. Hurst exponent was used by Holler et al. for the disorder of consciousness studies62 whereas 
Culic et al. reported this property to be important to differentiate epileptic patients63.

Another nonlinear parameter that was calculated was ApEn. ApEn is a widely known mathematical algorithm 
which computes the predictability of time series data by quantifying the regularity and complexity of the signal. 
ApEn quantifies the logarithmic likelihood of the patterns in the signal that remain close on next incremental 
comparisons64.

Values of the ApEn parameter have been reported significantly different between EEGs collected from epilep-
tic seizure patients and normal EEG signals65. Guo et al. present a method based on approximate entropy for clas-
sifying the EEG regarding the existence and absence of seizures using the neural network with 99.85% accuracy66.

Inspired by these publications, we tested the efficacy of these features to distinguish healthy and concussed 
athletes in this study. Approximate entropy (ApEn) and Hurst exponent were extracted as the nonlinear features 
to measure synchrony and complexity of the EEG signal as explained in the following sections.

Approximate Entropy.  ApEn was calculated for each frequency (1 to 40 Hz) and for each of five frequency bands 
of EEG data for all three different conditions in order to find out if there was any relationship between the ran-
domness of EEG data along with a concussion. A lower value of approximate entropy specifies that the EEG data 
is more deterministic whereas a higher value of ApEN determines the data is more random. This feature was 
calculated using the ApEn function provided by Kijoon Lee in the MATLAB central file exchange67. The tolerance 
chosen for ApEn calculation was two standard deviations.

Hurst Exponent.  The Hurst exponent (H) calculates the extent information presented by a signal is related to 
the history of the signal. The value of H varies from 0 to 1; 0 < H < 0.5 indicates the samples in the signals are 
far apart and independent and thus the signal is short-range dependent. However, if 0.5 < H < 1, then the value 
is said to contain LRTC, with higher values of H representing a stronger LRTC property55. The Hurst exponent 
is thus known as the index of long-range dependence68. The value of H was calculated for each channel over the 
entire EEG signal. A total of 9 components for 9 EEG channels were extracted for each signal.

Statistical Analysis.  The deficits between healthy and concussed groups were verified using statistical anal-
ysis, and the measurements were performed without knowledge of groups. The Shapiro-Wilk test was applied 
to ascertain the normality of the data. For normally distributed data, a two-tailed Student t-test, followed by 
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Bonferroni’s post hoc test when applicable was implemented; otherwise, Wilcoxon rank sum test was considered. 
The values in the manuscript are presented as mean ± standard deviation format with statistical significance level 
set at (p = 0.05). The test of significance was performed using the MATLAB Statistical Toolbox69.

Data Availability.  The database generated and/or analyzed during the current study will be available from 
the corresponding author upon request.

Results
BESS Test.  Postural deficits in terms of the BESS associated with concussion showed no significant difference 
between healthy and concussed group. Average sway per second was calculated using a modified Wii balance 
board during the BESS assessment for healthy group (group average sway = 3.28 ± 0.69 cm) and concussed group 
(group average sway = 3.00 ± 0.72 cm). The number of average BESS errors reported by the healthy group were 
thirty compared to thirty-four reported by the concussed group. Though the average sway scores exhibited by 
both groups were quite similar, the concussed group reported more errors than their healthy matched controls. 
The t-test resulted in no significant differences (Average sway: p-value = 0.33, Number of errors: p-value = 0.39) 
between the groups regarding average sway and number of errors.

K-D Test.  K-D test measures the deficiencies of attention and eye movements by capturing the speed of rapid 
number naming. The athletes who sustained concussions required slightly more time to complete the task than 
their peers in the healthy group (by approximately 0.1%), but the deficits did not reach a level of significance 
(Healthy group: 53.20 ± 10.33, Concussed group: 53.74 ± 10.29; p-value = 0.966).

ImPACT Test.  The healthy and concussed groups were not significantly different with regard to age but were 
significantly different based on the number of prior concussions. A two-tailed t-test was performed to evaluate 
the differences in neuropsychological test performance regarding ImPACT battery between the concussed and 
control groups. Table 2 presents the detailed descriptive statistics for verbal and visual memory, processing speed, 
and reaction time composite scores.

Though a number of studies reported the ability of the ImPACT to differentiate healthy and concussed groups, 
our analysis revealed no significant difference in any composite scores between the groups.

Neuronal Deficits in Terms of EEG Band-Power following Concussion.  The EEG analysis was 
conducted to extract the neuronal deficits following a concussion. Athletes in the concussed group exhibited 
an increase in delta and theta bands, and a decrease in alpha, beta and gamma frequencies compared to their 
uninjured peers during all three testing conditions (Table 3). As indicated in Table 3, the difference reached the 
significance level for the increase in delta band and decreased in alpha, beta and gamma frequency bands for all 
three conditions.

Neuronal Deficits in Terms of EEG Individual Frequency Power following Concussion.  This anal-
ysis considered individual EEG frequencies to find gaps between healthy and concussed groups. Figure 2 shows 
the results of both frequency band and individual frequency analysis for three experimental conditions (EO, EC, 
and VT). The dashed black line shows the confidence level of p = 0.05. The solid red lines show the p-value for 
each frequency band (delta, theta, alpha, beta, and gamma bands). The bars in each frequency band show the 
p-value for individual frequencies. To highlight the subject to subject variance for each group, a supplementary 
table with the mean and standard deviation of power of each significant frequency bins for each group is added 
to the manuscript.

The athletes who sustained a concussion had a range of frequencies with a significant difference from the 
healthy group during EO condition (1–3 Hz, 9–10 Hz, 20–24 Hz, 27–30 Hz, and 33–38 Hz) as shown in Fig. 2(a). 
A very similar, but not all range of significance was exhibited during EC condition (1–3 Hz, 9–10 Hz, 15–18 Hz, 
20–24 Hz, 28–30 Hz, and 35–38 Hz) as shown in Fig. 2(b). The significant individual frequencies exhibiting the 
deficits between healthy and concussed groups during VT condition were (1–3 Hz, 6–7 Hz, 9–10 Hz, 19–30 Hz, 
34–38 Hz) and were much consistent with EO condition as shown in Fig. 2(c).

Neuronal Deficits in terms of Nonlinear Features from EEG Individual Frequency following 
Concussion.  In the final analysis, nonlinear features were calculated in order to find out if new features 

Composite Scores

Healthy Group Concussed Group

F value p-ValueMean ± SD Mean ± SD

Verbal Memory Index 89.93 ± 7.87 87.57 ± 9.25 0.58 0.58

Visual Memory Index 86.43 ± 5.37 82.57 ± 7.79 0.25 0.27

Motor Speed Index 40.36 ± 5.81 37.28 ± 5.37 0.75 0.20

Reaction Time Index 0.62 ± 0.09 0.65 ± 0.12 0.38 0.59

Impulse Control Index 5.86 ± 3.21 6.14 ± 2.9 0.86 0.84

Total Symptom Score Index 2.93 ± 2.13 3.14 ± 3.53 0.12 0.88

Table 2.  Group means and standard deviations for ImPACT composite scores of healthy and concussed groups. 
The test of significance was performed with statistical significance level of 0.05.
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extracted from the EEG data can tabulate the deficiencies due to a concussion. The extracted features were 
approximate entropy, activity, mobility, complexity and Hurst exponent features. While calculating these fea-
tures for EEG frequency bands (delta, theta, alpha, beta, and gamma), no significant deficits were found between 
healthy and concussed athletes. But when the analysis was done for individual frequencies instead of frequency 
bands, interesting outcomes were exhibited. A set of individual frequencies was found for each nonlinear feature 
which can reveal significant deficits between healthy and concussed athletes as reported in Fig. 3. As shown in 
Fig. 3(a) for EO condition, the frequencies indicating significant deficits between healthy and concussed groups 
in terms of 2 or more nonlinear features are 1–2 Hz, 8 Hz, 19 Hz, 21 Hz, 23 Hz, 25–26 Hz, 31 Hz, 34 Hz and 37 Hz. 
For EC condition, Fig. 3(b), the range of frequencies with deficits in two or more features was for 1–2 Hz, 13 Hz, 
16 Hz, 34 Hz and 37 Hz, and for VT condition, from Fig. 3(c), the range was 1–2 Hz, 8 Hz, 15–16 Hz, 23 Hz, 26 Hz, 
31 Hz, 34–35 Hz and 37 Hz. The most efficient nonlinear features to reveal deficiency following concussion were 
approximate entropy, activity and Hurst exponent feature.

Discussion
Residual damage to the brain due to concussion can often evade clinical detection. Enhancing ways in which con-
cussion is assessed is pivotal, specifically in susceptible individuals such as adolescent athletes where functional 
deficits can be elusive and seriously underreported. Better assessment is also essential since early identification of 
the signs of a concussion can progress positive outcomes and thus suggests that there is a clear need for an effec-
tive evaluation approach to efficiently assess and quantify high-risk individuals such as athletes who may have 
already sustained a concussion. The current study aims to test the hypothesis that the concussion disrupts the 
normal brain activities of a person. To detect these deficits, we combined the BESS, K-D test, ImPACT, and EEG 
analysis to capture the postural, suboptimal, neurophysiological and neuronal deficits following a concussion.

Evidence from the previous studies29,40,70 shows that the cognitive impairment regarding the BESS is most 
pronounced during the time of injury and 24 hours post injury but appears to resolve by day five after a concus-
sion incident. The balance deficit through the BESS in our research resulted in no significant difference between 
the healthy and concussed group and thus strengthened the already established hypothesis26,40,70 that the postural 
deficits resolve within a brief period post-injury and therefore may suggest that the BESS is not sensitive enough 
to interpret any residual deficits associated with long-term concussion history.

As expected, the K-D test, which is mainly a rapid screen tool and typically used immediately after concussion25,  
was unable to detect any deficits in our study. This can be explained by the fact that the related visual deficits due 
to a concussion were resolved during the several months’ time gap between the concussion incident and data 
collection.

The ImPACT was reported by multiple sports-related concussion studies as a potential tool to detect the 
impaired neurocognitive functioning due to concussion26–28. Also, some studies showed neuropsychological base-
line assessment models like ImPACT could assist the diagnosis of subtle neurocognitive deviations in athletes 
after a concussion incident26,27. Though several studies demonstrated that a history of concussion is associated 
with poorer performance in ImPACT71, the role of concussion history remains a controversial issue, with various 
studies yielding no relationship between concussion history and ImPACT performance28. The results of this man-
uscript suggest that there is no significant effect of a history of concussion associated with performance measured 
by ImPACT, which is understandable, as ImPACT is an immediate post-concussion paradigm, and due to the 
long time gap between concussion incident and data collection, the sensitivity of the test deteriorates with time.

To capture the signature neuronal deficits exhibited by concussed athletes that distinguish them from their 
healthy peers, we evaluated several approaches utilizing a set of linear, time-frequency based features along with 
nonlinear features extracted from EEG signals. In conjunction with band base analysis, this study undertook a 
systematic exploration to find out the deficits within specific frequency bins from 1 to 40 Hz. The system works by 
following four main steps: data acquisition, data preprocessing, feature extraction (power spectral, time domain 
and nonlinear) and statistical analysis (functional deficits detection).

For band base analysis, EEG was divided into traditional frequency bands (delta, theta, alpha, beta, and 
gamma). After normalization, power spectral density analysis revealed a significant difference between healthy 
and concussed athletes. There are several findings of interest. First, the PSD features collected from frequency 
sub-bands played an important role in distinguishing concussed individuals. Discriminative features were 
observed in delta, alpha, beta and gamma frequency bands. A difference was also noted in theta frequency band. 

Condition Participants

Delta (μV2) Theta (μV2) Alpha (μV2) Beta (μV2) Gamma (μV2)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

EO Condition
Healthy 4.33 ± 0.25 3.47 ± 0.33 3.14 ± 0.36 2.48 ± 0.30 1.95 ± 0.15

Concussed 4.81 ± 0.34* 3.67 ± 0.38 2.69 ± 0.25* 2.14 ± 0.18* 1.58 ± 0.21*

EC Condition
Healthy 4.21 ± 0.33 3.43 ± 0.28 3.22 ± 0.23 2.46 ± 0.26 1.92 ± 0.13

Concussed 4.66 ± 0.30* 3.59 ± 0.33 2.85 ± 0.34* 2.13 ± 0.33* 1.50 ± 0.34*

VT Condition
Healthy 4.22 ± 0.24 3.38 ± 0.49 3.09 ± 0.40 2.47 ± 0.27 1.97 ± 0.17

Concussed 4.68 ± 0.45* 3.58 ± 0.34 2.65 ± 0.28* 2.08 ± 0.29* 1.52 ± 0.21*

Table 3.  EEG band power deficits between healthy and concussed group for eyes open (EO); eyes closed (EC) 
and vigilant task (VT) conditions. (*Denotes significant differences between healthy and concussed group at 
statistical significance level of 0.05).
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It should be pointed out that similar frequency bands were targeted in some previous EEG studies of concus-
sion47,72,73. An increase in delta and theta frequency and a decrease in beta frequency were also reported by 
McCrea et al.40 and Slobounov et al.72. The discrimination at reported by different frequency bands can indicate 
significant neuronal dysfunction. According to Demos et al.73, an increase in delta frequency may indicate brain 
injuries, learning problems, or difficulties with cognition. The decrease in alpha band power exhibited through 
the analysis partially overlaps with the results reported by Thatcher et al. in a previously conducted mTBI based 
study where coherence, phase, and power analysis was performed on EEG data collected from 130 participants43. 
The decrease in alpha power exhibited by concussed athletes compared to control peers may be interpreted as a 
reflection of reduced cortical excitability74. A substantial decrease in beta and gamma power was also revealed 
by the analysis. Certain levels of beta waves allow easy focus and involvement in conscious thought and logical 

Figure 2.  P-value vs. frequency plot. A set of individual frequencies from EEG data exhibits power spectral 
density deficits between healthy and concussed athletes. The X-axis in the figure shows the individual 
frequencies and Y-axis shows the level of significance. The color of bars is different based on each frequency 
band, and the level of significance for each EEG frequency band is shown by red lines. The p-value vs. frequency 
is shown during three conditions (a) eyes open (EO) (b) eyes closed (EC), and (c) vigilant task (VT). All the test 
of significance was performed with statistical significance level of 0.05.
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thinking, whereas a decrease in beta waves may point to poor cognition, difficulty in concentration73. Moreover, a 
movement plan based study in terms of reaction time and endpoint error reported that a decrease in beta power is 
correlated with higher end point error75. A study conducted by Kwon et al. demonstrated a reduced gamma power 
by schizophrenia patients and concluded that the deficit might reveal a less effective local neuronal synchroni-
zation to external stimuli in the thalamic sensory oscillations or in the sensory cortex76. A decrease in gamma 
power was also reported to be correlated with lower consciousness in the anesthesia study conducted by Pritchett 
et al.77. Several studies also reported that a decrease in gamma power is frequently related to an increase in the 
low-frequency range (delta frequency band) power78,79 and interpreted to be related to lower neuronal activity of 
the brain region that operates to generate behavior80. All these specific power increases in the slower frequency 
band (delta), combined with the decrease of power in faster frequency bands (alpha, beta, gamma) exhibited by 
concussed athletes may imply that their neurological status is not as sound as their healthy matched peers in the 
control group.

Though a lot of studies revealed significant differences in EEG sub-bands, there is no signature profile to 
indicate increase or decrease of band powers associated with concussion. That’s why the pathophysiology of con-
cussion is considered heterogeneous and not yet completely understood. To reinforce our EEG-based functional 
deficits hypothesis, in an innovative approach, the PSD based analysis for each of the EEG individual frequencies 
was conducted. After analyzing 189 cases, i.e., three different trials in three different conditions (EO, EC, VT) for 
21 subjects as shown in Fig. 2, it was concluded that four ranges of frequencies are more efficient in highlighting 
deficits following a concussion. These ranges are slow delta (1–2 Hz), slow alpha (9–10 Hz), fast beta (20–30 Hz) 
and fast gamma (34–39 Hz). A similar individual frequency-based analysis conducted by us on eyes closed EEG 
collected from a different dataset of 20 healthy and 20 immediate concussed athletes also resulted in a nearly simi-
lar range of frequencies (1–2 Hz of delta band, 8–10 Hz of the alpha band, 24–29 Hz of the beta band and 34–36 Hz 
range within the gamma band)41. To date, no individual frequency based study was conducted for concussion 

Figure 3.  Frequencies with a significant difference in approximate entropy, activity, mobility, complexity and 
Hurst exponent between healthy and concussed athletes for three conditions: (a) eyes open (EO), (b) eyes 
closed (EC), and (c) vigilant task (VT). All the test of significance was performed with statistical significance 
level of 0.05.



www.nature.com/scientificreports/

1 0Scientific REPOrTS | 7: 17221  | DOI:10.1038/s41598-017-17414-x

assessment, and more collaborative research is needed to establish a direct relationship of these frequency bins 
with a concussion. The decrease in alpha band frequency bins exhibited through individual frequency analysis 
partially overlaps with the results reported by Thatcher et al. in a previously conducted mTBI based study43. An 
increase in theta band frequency bins during VT task may be associated with ADHD, depression, hyperactivity, 
impulsivity, and inattentiveness51. The individual frequency-based analysis also revealed significant differences in 
the upper level of beta bands compared to the lower level frequency bins. Oscillatory activity in the beta band was 
previously reported to reflect the presence of inhibition of the process of ongoing motor task81.

Elgendi et al. demonstrated an Alzheimer disease (AD) study and reported that new optimized frequency 
ranges (4–7 Hz, 8–15 Hz, 19–24 Hz) resulted in better classification accuracy than the traditional frequency bands 
for the diagnosis of AD82. Similarly, if we consider the neurological deficits observed in individual frequency bins, 
as well as in the conventional frequency bands as a whole, the most reliable interpretation is that these deficits 
may be a consequence of their injury and can possibly be used as a concussion assessment index to identify the 
concussed athletes at the time of injury or during the post-concussion recovery period.

In the second phase of this study, a set of time-domain and nonlinear features were extracted. These features 
have been proven to be suitable to characterize neurological disorders like epilepsy, attention-deficit/hyperactivity 
disorder (ADHD) and Alzheimer disease in the literature83. It was hypothesized that the time domain and nonlin-
ear feature based study could reveal new aspects and provide more information regarding the complex and cha-
otic nature of the EEG data. As reported by Mohammadi et al.84, quantitative measures of chaos and non-linear 
features are convenient descriptive tools to characterize electrophysiological abnormalities in neuropsychiatric 
disorders that are not evident in linear analysis. To show the effectiveness of these features for a concussion, in 
a similar approach to power analysis, the features were calculated for both frequency bands and individual EEG 
frequencies. Though the concussed athletes exhibit different values for Hjorth time domain parameters and non-
linear parameters like approximate entropy and Hurst exponent, none of the parameters showed a significant 
difference compared to their healthy peers for traditional EEG frequency bands. But, when the analysis was done 
for each frequency, it was noted that significant differences were observed for certain frequencies as shown in 
Fig. 3(a–c).

The observation of significantly different nonlinear features also revealed important notions about concussed 
athletes. The concussed athletes exhibited a decrease in Hjorth complexity and mobility. It has been reported by 
Pezard et al.85 that depressive subjects tend to display lower complexity than controls. Moreover, Hamida et al.86,86 
reported the decreased complexity and mobility are associated with insomniac subjects. Approximate entropy 
quantifies the amount of regularity in data by calculating the upcoming amplitude values of the signal based 
on the knowledge of the preceding amplitude values87. Sohn et al.88 reported a significantly lower approximate 
entropy for a group of ADHD subjects compared to matched controls and hypothesized that the patients might 
not have sufficient levels of cortical activation to reach the requirements of attention-demanding tasks. Following 
their hypothesis, a significant decrease in approximate entropy exhibited by concussed athletes may point out that 
their cortical information processing is altered compared to healthy athletes. Moreover, many pathological dis-
order studies like schizophrenia, posttraumatic stress disorder, panic disorder, and epilepsy reported lower com-
plexity in pathological states compared to healthy subjects89. The notion claimed by the authors is that the lower 
EEG complexity is attributed to the abnormal neural integration in the above-mentioned mental disorders58 and 
thus a lower value of ApEn demonstrated by concussed athletes in our study implies that they may still have some 
irregularity in their neural integration.

Another nonlinear feature with a significant difference was the Hurst exponent. Higher values of Hurst expo-
nent indicate a stronger long-range temporal correlation of amplitude fluctuations of EEG55. In accordance with 
the result reported by Geng et al.90 in their epileptic study, a decreased Hurst exponent exhibited by concussed 
athletes in our study implies that the degree of anti-correlation of concussed athletes is larger than that of healthy 
athletes.

The most efficient frequencies indicating the deficits were found to be 1–3 Hz, 21–24 Hz, 28–30 Hz and 
35–38 Hz. Among the EEG task condition, EO and VT conditions were found to be more efficient in identifying 
hidden deficits due to a concussion. Though conventional band base analysis revealed no significant difference 
between healthy and concussed athletes regarding time domain and nonlinear features, individual frequency 
analysis was efficacious to exhibit these hidden discrepancies. These differences at specific frequencies would 
remain unnoticed if only conventional frequency bands were considered. Ultimately, this study exposed the fact 
that EEG analysis for each frequency is equally as important as conventional bands to evaluate the neurological 
dysfunction following a concussion.

Conclusions
This study suggests that EEG analysis is more sensitive compared to cognitive testing to decipher persistent seque-
lae of sport-related concussion. For the first time, a set of time domain and nonlinear EEG features was utilized in 
addition to the standard frequency band features to highlight neuronal deficits following a concussion. Also, the 
approach of analysis using individual frequencies of EEG was conducted for the first time to study concussion. 
This innovative approach combined with novel features opens a new door to interpret subtle post-concussion 
deficits. While no previous work was done to find the post-concussive deficits in individual frequency level, the 
result demonstrated a new range of frequency which is more successful to reveal the discrepancies. In sum, accu-
mulated evidence from this study suggests that the proposed approach of EEG analysis was successful to identify 
that the athletes with a history of concussive injury still exhibited neurological alterations, despite reporting to be 
symptom-free by standard postural, visual or neurophysiological tests.
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Limitations and Future Work.  Although the current manuscript has several strengths, some limitations 
should be considered. First, the analysis was cross-sectional, and it is always possible that some unmeasured vari-
able may add to the current group alterations. This probability is minimalized, however, as the study groups were 
co-players cautiously matched for weight, height, age, years of education, and sport. Although we repeated the 
experiment in three separate sessions and using three different conditions, the data set is small and was limited 
to male athletes only. As such, the conclusions drawn from the current dataset should be used to guide similar 
studies on larger datasets and other age groups. However, this is an ongoing project, and we are collecting data 
from more participants so that more rigorous quantitative and qualitative analysis can be performed with a larger 
data set consisting of recordings from a large number of subjects in the future. Future work would also include 
applying the proposed methodology for the classification of two classes, namely healthy and concussed, to detect 
and predict the concussion from EEG signals for the normal and abnormal condition. Therefore, our findings 
will engender more comprehensive evaluations towards clinical applicability of concussion assessment for proper 
diagnosis and prevention through accurate RTP decision, as well as managing the treatment and rehabilitation 
efficacy post-concussion.
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