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Abstract

In this paper, we explore the utility of resting-state EEG measures as potential biomarkers

for the detection and assessment of cognitive decline in mild cognitive impairment (MCI)

and Alzheimer’s disease (AD). Neurophysiological biomarkers of AD derived from EEG and

FDG-PET, once characterized and validated, would expand the set of existing diagnostic

molecular biomarkers of AD pathology with associated biomarkers of disease progression

and neural dysfunction. Since symptoms of AD often begin to appear later in life, successful

identification of EEG-based biomarkers must account for age-related neurophysiological

changes that occur even in healthy individuals. To this end, we collected EEG data from indi-

viduals with AD (n = 26), MCI (n = 53), and cognitively normal healthy controls stratified by

age into three groups: 18–40 (n = 129), 40–60 (n = 62) and 60–90 (= 55) years old. For each

participant, we computed power spectral density at each channel and spectral coherence

between pairs of channels. Compared to age matched controls, in the AD group, we found

increases in both spectral power and coherence at the slower frequencies (Delta, Theta). A

smaller but significant increase in power of slow frequencies was observed for the MCI

group, localized to temporal areas. These effects on slow frequency spectral power

opposed that of normal aging observed by a decrease in the power of slow frequencies in

our control groups. The AD group showed a significant decrease in the spectral power and

coherence in the Alpha band consistent with the same effect in normal aging. However, the

MCI group did not show any significant change in the Alpha band. Overall, Theta to Alpha

ratio (TAR) provided the largest and most significant differences between the AD group and

controls. However, differences in the MCI group remained small and localized. We proposed

a novel method to quantify these small differences between Theta and Alpha bands’ power

using empirically derived distributions of spectral power across the time domain as opposed

to averaging power across time. We defined Power Distribution Distance Measure (PDDM)

as a distance measure between probability distribution functions (pdf) of Theta and Alpha

power. Compared to average TAR, using PDDF enhanced the statistical significance, the

effect size, and the spatial distribution of significant effects in the MCI group. We designed
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classifiers for differentiating individual MCI and AD participants from age-matched controls.

The classification performance measured by the area under ROC curve after cross-valida-

tion were AUC = 0.85 and AUC = 0.6, for AD and MCI classifiers, respectively. Posterior

probability of AD, TAR, and the proposed PDDM measure were all significantly correlated

with MMSE score and neuropsychological tests in the AD group.

Introduction

Worldwide, the prevalence of Alzheimer’s disease (AD) is rapidly increasing [1,2] with no

approved disease modifying treatment [3]. Pathophysiological neural processes underlying the

Alzheimer’s disease are believed to precede the overt presentation of clinical symptoms by

decades [4,5]. Therefore, there is an important need for biomarkers of Alzheimer’s disease to

characterize and monitor both natural progression of the disease and potential therapeutic

interventions. Recent clinical guidelines focus on a “biological rather than syndromal” defini-

tion of AD [6] particularly because AD is likely a gradual accumulation of multiple pathologies

[7]. Therefore, pathological biomarkers of AD are widely used in clinical practice. These bio-

markers include cerebrospinal fluid (CSF) beta amyloid deposition and pathologic tau as well

as imaging methods that identify neurodegeneration such as magnetic resonance imaging

(MRI) and fluorodeoxyglucose (FDG) PET. Such diagnostic biomarkers directly reflect the

pathophysiological basis of AD and hence are essential in diagnosis and characterization of

AD [6,8–10]. However, to better understand the disease progression, both pathology and the

resulting syndromes should be studied. Pathology leads to impaired neural functions, which in

turn leads into clinical syndromes such as cognitive decline/dementia. This is a complicated

process and AD progression in its most common form starts with preclinical asymptomatic

stage into mild cognitive impairment (MCI) and finally overt dementia and severe

impairment. Current standard of clinical practice relies on CSF and imaging biomarkers to

identify the pathological changes in the brain as the cause while using neuropsychological tests

to assess the clinical syndromes as an effect or outcome of the disease. CSF and imaging bio-

markers are expensive and/or invasive and neuropsychological tests are not sensitive to subtle

changes in cognition.

A complimentary approach is using electroencephalography (EEG) to derive neurophysio-

logical measures associated with neural activities that are the basis of cognitive processes (Fig

1). EEG recorded at the scalp can reflect subtle functional changes in the cortex (Nunez et al.

2006). Although EEG and other topographical biomarkers may not be used as definitive diag-

nostic tools, they have been shown to be associated with abnormalities and progression of AD

[11–19]. A growing body of evidence suggests that EEG biomarkers can be used to identify

early stage abnormalities in neuronal function before measurable cortical tissue loss or cogni-

tive decline [12,14,20–24].

Unlike other methods of acquiring candidate AD biomarkers, EEG provides a noninvasive

and relatively inexpensive measure of brain activity with established utility [12,21,25].

Although the use of EEG to study the brain dates back to the 1930’s, the past decade has wit-

nessed a resurgence of interest in EEG [26], likely due to increasing availability of analytical

techniques and computational power for quantifying EEG patterns beyond what is recogniz-

able by visual inspection. EEG can be recorded while subjects are engaged in various cognitive

tasks to identify cognitive processes that may be characteristically perturbed in individuals

with AD or MCI (e.g. [27]). However, the simplest and most common manner of acquiring
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EEG is recording background activity while the subject is in a resting state with their eyes open

(EO) or eyes closed (EC). Analysis of the power spectral density (PSD) is the most common

method of quantifying EEG patterns. According to recent reviews [11,12,14,28], the most com-

monly reported resting-state EEG findings that distinguish participants with AD or MCI from

unimpaired control subjects are diffused slowing of the EEG i.e. increased power in lower fre-

quency bands. Specifically, progression to AD is characterized by increasing Delta and Theta

power accompanied by decreasing Alpha and Beta power [20,29–37]). The ratio of power at

different frequency bands have also been defined as such characterizing EEG biomarkers [38].

Other analysis techniques such as coherence, causality and functional coupling and syn-

chrony across cortical regions have also been used to detect abnormalities in AD [39–43]. Sev-

eral studies reported changes in EEG coherence in AD, specifically reduction in Alpha

coherence [24,25,39,43,44]. EEG biomarkers of AD have also been linked to other biomarkers

including reductions of glucose metabolism in the temporo-parietal regions as measured by

FDG PET [45], cortical and hippocampal atrophy measured with structural MRI, decreased

levels of beta amyloid, and increased levels of phospho-tau and total tau in the CSF [46].

Unlike AD, EEG abnormalities in MCI are smaller and have not been consistently repli-

cated, likely as a result of the heterogeneity of the MCI population [47]. However, there is pre-

liminary evidence from longitudinal studies that the progression from MCI to AD may be

associated with several of these EEG biomarkers [27,47–50]).

Importantly, significant changes in the power spectral characteristics of the resting state

EEG also occur as a result of normal aging [51–53]. These changes have been reported as a pro-

gressive diminution in spectral power at Delta and Theta frequency bands as well as reduction

and slowing of the posterior dominant rhythm in alpha band. Thus, the changes in Delta and

Theta power due to AD are in direct contrast with those associated with healthy aging.

The overall goal of the current study was to identify and validate EEG-derived measures of

cognitive decline caused by AD or MCI. The preliminary findings and a subset of these bio-

markers (based on average power spectral densities across recording sessions) were previously

Fig 1. EEG as a biomarker: While Diagnostic biomarkers of Alzheimer’s disease (left) are linked to pathophysiology, topographical biomarkers (middle)

in general and EEG-biomarkers in particular, can be linked to impaired neural activities that are the basis of impaired cognitive processes.

https://doi.org/10.1371/journal.pone.0244180.g001
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reported in [17] using a smaller subset of participants. The specific purpose and the contribu-

tion of the current manuscript is twofold: (1) to improve sensitivity of EEG-based biomarkers

of AD by introducing EEG measures that better identify mild cognitive impairment (MCI),

and (2) to compare EEG changes due to cognitive decline as opposed to healthy aging by com-

paring similarities and differences between the two in terms of their effect on EEG biomarkers.

Due to nonstationary nature of EEG time series, the most common method to define PSD-

based EEG biomarkers is to quantify EEG patterns at short time intervals (epochs) and to aver-

age the EEG measures across epochs. We hypothesized that EEG abnormalities in MCI are not

only smaller in size but likely less frequent during a recording session. Therefore, we proposed

a novel method based on the statistical distribution of quantified EEG measures across a ses-

sion, i.e. the empirical probability distribution function. We implemented our standard and

modified EEG biomarkers and identified significant differences between cognitively impaired

AD or MCI groups compared to unimpaired controls in different age groups. We validated

the biomarkers by (a) evaluating classification algorithms that separate MCI and AD groups

from age matched controls and (b) identifying the correlation between the proposed EEG bio-

markers and clinical measures of cognitive decline obtained by neuropsychological testing.

We also compared participant groups based on spectral coherence measures and identified the

most significant frequency bands that are affected by normal aging, MCI and AD.

Materials and methods

Participants

Volunteer individuals between the ages of 18–90 were recruited across four sites in the United

Sates as described below. Advanced Brain Monitoring (ABM) in Carlsbad, California, USA;

Advanced Neurobehavioral Health (ANH) in San Diego, California, USA; Massachusetts Gen-

eral Hospital (MGH) in Boston, Massachusetts, USA; and Mayo clinic (MAYO) in Rochester,

Minnesota, USA. Table 1 summarizes the participants’ demographic information. There were

no specific requirements for gender, race, or ethnicity. All participants were selected after the

successful completion of both a screening interview by telephone, and a comprehensive in-

office clinical and personal information questionnaire. Institutional Review Boards (IRB) at

each site approved the study protocol (Advarra CIRBI at ABM and ANH sites, Mass General

Brigham Human Research Committee at MGH site, and Institutional Review Board at Mayo

Clinic at MAYO site). EEG acquisitions were scheduled in the mornings and participants were

instructed to refrain from caffeine before the experiment. The time of the acquisition during

the day is reported in Table 1. All participants provided informed consent. The capacity to pro-

vide consent was implied after the screening interview and it was not formally assessed. Assess-

ment was not needed because only healthy participants or participants with mild cognitive

impairment or mild dementia were recruited for the study. For MCI and AD participants, the

consent procedure was reviewed with the patients’ care partner present.

Healthy controls. Cognitively normal participants in three age groups [between the ages

of 18–39 (HC1, n = 129), 40–60 (HC2, n = 62) and 60–90 (HC3, n = 52)] were recruited by

Advanced Brain Monitoring (ABM) in Carlsbad, California (n = 43) through online ads and

flyers and by Massachusetts General Hospital MGH (n = 12) in Boston, Massachusetts. Partici-

pants in HC1 group were originally recruited for a different study but underwent the same

recruitment and study protocol as other groups.

Individuals with Alzheimer’s disease (AD). Participants in the AD group were recruited

at Advanced Neurobehavioral Health (ANH) study site. AD group were recruited from the

greater San Diego area from either 1) a pool of individuals who enrolled in the Shiley-Marcos

University of California, San Diego (UCSD) Alzheimer’s Disease Research Center (ADRC)
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longitudinal study and agreed to be contacted by outside researchers, or 2) a pool of individu-

als who were treated by community neurologists and indicated interest in research opportuni-

ties. Diagnostic criteria for AD were based on the neuropsychological evaluation as follows: a)

presence of objective cognitive impairment (�1.5 standard deviations) in the memory domain

plus at least one other cognitive domain (i.e., language, visuospatial skills, executive functions,

and/or complex attention and processing speed), b) decline in activities of daily living due to

cognitive impairment, and c) absence of other medical or mental disease that explained the

syndrome. Eligible participants from the ADRC were diagnosed by two senior staff neurolo-

gists based on criteria developed by the National Institute of Neurological and Communicative

Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association

(NINCDS-ADRDA McKhann et al, 1984, and revised in 2011). The ADRC diagnostic proce-

dure has been extensively documented (see, Salmon & Butters, 1992). Briefly, all ADRC volun-

teers received annual evaluations including neurological evaluation and extensive

neuropsychological testing. The ADRC neuropsychological battery included tests of global

abilities [Mini Mental State Examination (MMSE) and Mattis Dementia Rating Scale (DRS)],

verbal and non-verbal memory [California Verbal Learning Test (CVLT), Wechsler Memory

Scale-revised (WMS-R) Logical Memory, and Heaton-modified visual reproduction), language

(Boston Naming Test (BNT), Wechsler Adult Intelligence Scale-revised (WAIS-R) Vocabu-

lary, category and letter fluency), visuospatial skills (cube copy and modified parietal lobe bat-

tery), executive functions (Trails A and B, WAIS-R similarities and arithmetic), and

attentional (WAIS-R digit span) abilities. Community volunteers were diagnosed with AD

according to revised NINCDS-ADRDA and DMS-5 criteria for Major Neurocognitive Disor-

der (i.e., dementia) due to Alzheimer’s disease. Community volunteers underwent a

Table 1. Participant groups and demographic information.

HC1 (18–40) HC2 (40–60) HC3 (60–90) MCI AD

N 129 62 55 53 26

Study Site ABM

(n = 129)

ABM (n = 61) MGH

(n = 1)

ABM (n = 43) MGH

(n = 12)

MGH (n = 19) ANH (n = 27)

MAYO (n = 7)

ANH (n = 26)

Age range 18–38 40–60 61–84 53–88 58–90

Age (mean ± SD) 24.4 ± 4.3 50.9 ± 6.6 68.8 ± 5.7 71.2 ± 7.8 73.5 ± 8.5

% Female 53% 52% 45% 38% 50%

MMSE (mean ± SD) NA 29.8 ± 0.8 29.7 ± 0.6 26.8 ± 2.8 18.58 ± 5.9

MMSE (median) NA 30 30 27 19

Beck Depression Inventory BDI II

(mean ± SD)

6.0±6.8 3±4.6 (n = 59) 2.7±4.0 5.6±5.7 5.0±5.57

BDI II (median) 4 1 (n = 59) 2 4 2.5

Mayo Fluctuation NA 0.52 ± 0.8 0.46 ± 0.7 0.68 ± 0.9 0.8 ± 1.0

Clinical Assessment of Fluctuation %nonzero

(CAF/ODF)

NA 10% (0.06/0.1) 14% (0.05/0.26) 28% (0.95/0.5) 53%

(1.69,1.42)

% with Diabetes 0% 3% 9% 10% 12%

% with Heart Disease 0% 0% 9% 13% 23%

% with High Blood Pressure 0% 18% 42% 28% 31%

Education Level (university/high school) 38%, 98% 43%, 98% � 50%, 96% 58%, 98% 54%, 96%

Handedness %RH/ %LH 94/5 89/8 91/6 73/13 88/12

Pareidolia Test (%correct, %false positive) N/A 100, 0 (n = 59) 99, 0 (n = 55) 96, 3 (n = 48) 84,11 (n = 20)

EEG Acquisition, time of the day (Hours) 10.1±0.8 10.9±1.8 11.3±2.1 11.6±1.6 12±1.2

Missing data note: If less than 98% of the data for each participant group are available, the number of available records is shown in paratheses.

https://doi.org/10.1371/journal.pone.0244180.t001
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comprehensive neuropsychological evaluation by a board-certified clinical neuropsychologist

(JMH) utilizing a battery that included tests of global abilities (DRS), verbal and non-verbal

memory (CVLT-II, WMS-IV Logical Memory, and Rey Complex Figure Test), expressive and

receptive language (Neuropsychological Assessment Battery Naming, Boston Diagnostic

Aphasia Examination Complex Ideation Test, animal and letter fluency), visuospatial skills

(cube copy, clock drawing, interlocking pentagons, WAIS-IV block design, and Judgment of

Line Orientation), executive functions (e.g. Trails A and B, WAIS-IV similarities, an appropri-

ate version of Wisconsin Card Sorting Test), and attentional (WAIS-IV digit span, coding, and

symbol search) abilities.

Individuals with Mild Cognitive Impairment (MCI). Individuals with Mild Cognitive

Impairment (MCI, n = 53) were recruited by Massachusetts General Hospital (MGH, n = 19)

or Advanced Neurobehavioral Health (ANH, n = 27) or Mayo Clinic (MAYO, n = 7).

Volunteer participants at ANH diagnosed with mild cognitive impairment (MCI), amnestic

type, underwent the same recruitment and diagnostic procedures as the AD group (see above).

Diagnosis was based on neuropsychological testing and adhered to DSM-5 criteria for minor

neurocognitive disorder (i.e., MCI). Specifically, diagnosis criteria included: a) presence of

objective cognitive impairment (�1.5 standard deviation (SD)) in the memory domain, b)

absence of decline in activities of daily living, and c) absence of medical or mental disease that

explained the syndrome. Absence of decline in activities of daily living was confirmed by a

knowledgeable informant, typically a spouse or adult child.

Volunteer participants at MGH were drawn from a longitudinal cohort at a major academic

medical center for a study of brain aging and cognition. Participants were recruited through

various sources including the affiliated hospitals and other local advertisements. Participants

were generally neurologically and psychiatrically healthy as determined by a medical screen

and a neurological evaluation and exhibited broadly normal global cognitive functioning at

the time of the assessment (MMSE: 24–30). Diagnosis of MCI was determined through neuro-

psychological evidence following the “comprehensive criteria” proposed in [54] further stan-

dardized to require at least two domains with two or more impaired scores (i.e. 1 standard

deviation below normative mean). Specifically, all the participants were given a comprehensive

neuropsychological evaluation battery containing 14 neuropsychological tests assessing global

cognitive functioning, premorbid intelligence, and four specific cognitive domains. All tests

were scored using standardized norms adjusted for demographic variables including age, sex

and education level. Sixteen standardized performance scores from the ten tests assessing the

four specific cognitive domains were used to make neuropsychological classification. Table 1

summarizes the participants demographic information.

Exclusion criteria. Participants were excluded if they reported any of the following condi-

tions: known neurological or psychiatric disorders, cardiac arrhythmias, heart failure (e.g.

myocardial infarction), epilepsy, HIV+ diagnosis, bipolar disorder, or major depression. Par-

ticipants were not excluded for controlled hypertension, diabetes, high cholesterol, treated

mild to moderate sleep apnea, or mild depression. Medical marijuana use was not a cause for

excluding a participant, however, current usage amounts and frequency of use were docu-

mented. All participants enrolled in the study were asked to disclose all medications that they

were currently on and the last time they took their medication. After arriving to the site,

research technicians explained the study protocol to the participants and addressed any addi-

tional questions. Once participants indicated they had no further questions, they were asked to

sign the IRB approved consent form. Four healthy controls were removed prior to completion

of the study. Removal of three participants was based on one or more of the exclusion criteria,

and one dropped out in the middle of the study.
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Clinical and neuropsychological assessments

All participants across all study sites were administered a clinical and personal information

questionnaire as well as the following tests: Beck Depression Inventory-II (BDI-II), United

Parkinson’s Disease Rating Scale (UPDRS) with Modified Hoehn and Yahr, Mini Mental State

Examination (MMSE), Pareidolia Task-Short Form, Clinical Assessments of Fluctuations [55],

Mayo Fluctuations Scale, a sleep questionnaire, and Neuropsychiatric Inventory questionnaire.

AD and MCI participants were also administered Mattis Dementia Rating Scale-II (DRS-II).

The Wechsler Memory Scale and Hopkins Verbal Learning Test was also administered for

some of participants in the MCI and AD groups. MMSE and Pareidolia test results are shown

in Table 1. DRS-II test results are shown in Table 2 for the MCI and AD group as well as

healthy participants (n = 12) that were recruited at MGH. We reported Clinical Assessments

of Fluctuations (CAF) and One Day Fluctuation (ODF) Assessments scores [55] in Table 1 as

follows. Percentage of participants in each group with nonzero scores in either CAF or ODF

score were reported and the average CAF and ODF for those participants were also reported

separately. Medication information for all participant groups is listed in Table 3.

Table 2. Neuropsychological test results group average ± standard error of the mean for each group are shown.

Neuropsychological test� AD (n = 20) MCI (n = 42) HC3 (n = 12)

DRS-Attention (ATT) 32.7 ± 1.6 36.3 ± 0.3 36.4 ± 0.2

DRS-Memory (MEM) 12.6 ± 1.2 21.5 ± 0.5 23.5 ± 0.4

DRS-Initiation Preservation (IP) 27 ± 2.2 35.2 ± 0.4 36.4 ± 0.4

DRS-Conceptualization (CON) 32.2 ± 2.2 37.1 ± 0.3 38.5 ± 0.2

DRS-Construction (CN) 5.3 ± 0.4 5.8 ± 0.1 6 ± 0

https://doi.org/10.1371/journal.pone.0244180.t002

Table 3. Percentage of participants taking medication.

Medication category HC2 HC3 MCI AD

Cognition-enhancing� - - 24% 54%

Antihypertensives�� (AHT) total 6% 20% 27% 15%

AHT-ACE inhibitor 3% 5% 9% -

AHT-Angiotensin receptor blockers (ARBs) 2% 7% 10% 12%

AHT-Alpha blocker - - 6% 0%

AHT-Beta blocker 3% 5% 9% 8%

AHT-Calcium channel blocker - 4% 7% -

AHT-Diuretics - 7% 11% 12%

Antidepressants 6% 7% 30% 38%

Anti-diabetic 3% 2% 7% -

Anticonvulsant (not for epilepsy) - 7% 2% 8%

Antipsychotic - - - 4%

Benzodiazepines - - 4% 8%

Statin 5% 13% 36% 19%

Sedatives - - 2% 4%

Dopamine Agonist - - - 4%

Hormones 3% 7% 9% 8%

Opioid Narcotics - - 4% -

� AChE Inhibitors (Rivastigmine, Donepezil or Galantamine) or NMDAR antagonist (Memantine).

�� (Angiotensin Receptor blockers (ARBs), ACE Inhibitors, Alpha blockers, Beta blockers, and/or Diuretics).

https://doi.org/10.1371/journal.pone.0244180.t003
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Experimental protocol

EEG and ECG (electrocardiogram) were recorded using STAT™ X24 (Advanced Brain Monitor-

ing, Carlsbad, CA), an FDA-cleared wireless EEG system. Twenty channels of EEG configured in

the standard 10–20 montage were recorded with reference to linked mastoids. One channel of

ECG was recorded with sensors placed on the right and left clavicles. STAT™ X24 EEG uses pas-

sive Ag/AgCl electrodes with flexible circuit cables printed on polyester strips. The sampling rate

was 256 Hz using an amplifier with low and high cutoff frequencies of 0.1 and 100 Hz, respec-

tively. STAT™ X24 acquires high quality EEG without skin abrasion and uses a conductive cream

to ensure good scalp interfaces (Kustomer Kinetics, Arcadia, CA). Technicians were instructed to

keep the electrode impedances at or below 40kOhm [56] as per the manufacturer’s guideline.

EEG recordings were gathered during resting state using a structured testing and acquisi-

tion software platform with 5 minutes of eyes open and 5 minutes of eyes closed. The partici-

pants were seated in a comfortable chair with a laptop computer positioned on the desk

directly in front of them. The laptop screen was situated approximately 65cm away from the

participant’s face. During the eyes open task, participants were instructed to stare directly at a

black fixation cross located in the center of a gray background. During the eyes closed task,

they were instructed to close their eyes while maintaining wakefulness. After completion of the

two resting state sessions, participants performed three event-related potential tasks (ERPs)

that are outside of the scope of this paper.

EEG power spectral analysis

EEG data during each session were imported into MATLAB (version R2017b). Data were

bandpass filtered (1-49Hz) using a zero-phase Hamming windowed sinc FIR filter imple-

mented in EEGLAB software v14.1.2 [57]. Invalid EEG channels with more than 5 seconds of

flat line signal or having a correlation less than 0.4 with surrounding channel locations were

excluded (less than 0.01% of total data were excluded) using clean_rawdata EEGLAB plugin

v0.31. Independent component analysis (ICA) was performed using EEGLAB software [57].

ICLabel toolbox [58] v0.3.1 was used to automatically identify the source of independent com-

ponents. ICLabel employs a classifier that is pretrained by thousands of labeled components

obtained through crowdsourcing. Components classified as having sources other than brain

(e.g. eye blinks, EMG, etc.) were automatically removed.

Power spectral densities (PSD) estimation of the clean EEG data were computed using

LabX EEG processing software (Advanced Brain Monitoring Inc., Carlsbad, California). LabX

uses modified periodogram PSD estimate with 1-second long Kaiser window (b = 6) and 50%

overlap according to the following formula

psd ¼
2jXðf Þj2

fs
ð1Þ

Where fs = 256 is the sampling frequency and |X(f)|2 is the squared spectrum magnitude

computed via Fast Fourier Transform (FFT, N = 256) of the windowed signal at each 1-Hz fre-

quency bin, f, from 1 to 40 Hz. For each one-second non-overlapping epoch of the EEG signal

at each channel, the average PSD of the 3 overlapped windowed signals were computed in a

log-scale as PSD ¼ log
10

psdk� 1þpsdkþpsdkþ1

3

� �
where psdk, k = 1,3,5,7,.. is the power spectral density

estimate for the kth windowed signal. A global PSD power was defined by averaging the PSDs

across all 20 channels first and then converted into log-scale.

Absolute PSD for each 1-second epoch in each frequency bin from 1 to 60 Hz (1 Hz resolu-

tion) and each frequency bandwidth was computed using LabX. PSD in a frequency
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bandwidth is computed by averaging power across the frequency bins within its frequency

range. Pre-defined bandwidths in LabX including Delta (1–3 Hz), Theta (3–7 Hz) and Alpha

(8–13 Hz) were selected for further analysis. The full list of frequency bandwidths in LabX can

be found in the supplementary section Table 1. We further analyzed the data in MATLAB as

follows. Relative PSDs were computed by dividing the absolute PSD in each bin by the sum of

the PSDs in 1–40 Hz frequency bins. Average PSDs at each channel for each participant were

computed by averaging PSD values across epochs. Alpha peak frequency for each participant

was computed by automatically finding the local peak in the average PSD within the frequency

range (6–13 Hz). If more than one local peak was detected, the peak with the largest power was

selected. PSD power at the alpha peak frequency was measured.

Distribution of power across epochs for each frequency band was computed. Group average

PSD measures were computed for AD, MCI and the three healthy control groups. Only eyes-

closed resting state data were selected for further analysis as our previous work (Meghdadi,

2019) and other reports [59] showed that overall, eyes closed EEG data better differentiate

between AD participants and healthy controls.

Analysis of coherence

EEG data were filtered, and artifacts were removed as per the methods in the previous section.

Signals were segmented into 20-second epochs with 50% overlap. For each epoch and for each

pair of EEG channels, the magnitude-square coherence estimate was computed using

MATLAB (mscohere function) for each frequency bin. This function uses Welch’s overlapped

average periodogram with a moving average 2-second Kaiser window and 50% overlap. For

each participant and for each unique pairs of EEG channels, we defined a normalized coher-

ence measure as follows. Normalized coherence was defined by subtracting the average of

coherence values in frequency bins 1 to 40 Hz from the coherence measure in each frequency

bin 1–40 Hz. Pairs of channels were divided into short-range or long-range based on the

Euclidean distance between channel locations on a 2D map similar to the method described in

[60]. Inter-hemispheric and intra-hemispheric long-range coherences were compared across

AD, MCI and HC groups.

Power distribution analysis

EEG biomarkers associated with AD include increased spectral power in lower frequencies,

such as Delta and Theta and decreased power in Alpha band and higher frequencies, compared

to healthy controls (Babiloni et al. 2019). However, the size of these spectral power effects,

when averaged across the entire recording session, can be weak and are not consistently differ-

ent in individuals with MCI, where changes in EEG may not be strong and widespread. Fur-

thermore, it is conceivable that these changes may start with accumulative transient

abnormalities that gradually progress into a consistent background pattern of activity. There-

fore, analysis of the statistical distribution of EEG measures could be important in MCI. In this

paper we proposed a novel method based on characterizing the distribution of EEG power at

the epoch level within a session, rather than averaging power across the entire (5 minute) ses-

sion. The method is fully described below.

For any given channel of EEG, data are divided into (N = 300) non-overlapping 1-second

epochs {e1,. . .eN}. The average power spectral density of an individual epoch (in logarithmic

scale) can be discretized by binning the power into M power bins p1,. . .,pM. Let fB(pk): 1�k�M
be the normalized probability distribution function (PDF) of the EEG power at a given fre-

quency band B i.e. fB(pk) represents the probability of a randomly selected epoch having a PSD

power that falls in the frequency bin pk. Empirically, fB(pk) is estimated by computing the
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proportion of epochs for which the PSD power falls in the frequency bin pk and is called

empirical PDF. Furthermore, let FBðpkÞ ¼
Pk

j¼1
f BðpjÞ be the empirical cumulative distribution

function (CDF) of power in bandwidth B such that FB(p1) = 0 and FB(pM) = 1. F� 1BðuÞ is the

inverse cumulative distribution function where 0<u<1 is the probability space and

F� 1BðFBðpkÞÞ ¼ 1.

We defined the power distribution difference function (PDDF) between any two band-

widths B1 and B2 as the difference between the corresponding inverse cumulative distribution

functions as follows:

PDDFðB1;B2Þ
ðuÞ ¼ F� 1B1ðuÞ � F� 1B2ðuÞ; 0 < u < 1 ð2Þ

Subsequently, a parametric power distribution distance measure (PDDM) between band-

widths B1 and B2 is defined by integrating PDDF over a given window of probabilities [c1 c2]:

PDDMc1 ;c2
ðB1;B2Þ ¼

R c2
c1
PDDFðB1 ;B2Þ

ðuÞdu ð3Þ

Where 0<c1<c2< 1 are parameters that define the probability range of differences. For

example, we define PDDM0.95,1 (here called PDDM95 for short) by selecting c1 = 0.95 and c2 =

1 to define the distance metric based on the right tail (5%) of the power distribution functions.

Example. Fig 2(F) shows an example of EEG power distribution difference function

(PDDF) computed for data recorded at channel T6 from a healthy 71-year-old male partici-

pant during 300 seconds of resting state eyes closed. Empirical PDF and CDF of EEG power in

Fig 2. An example of PDDF for a healthy participant: An example of PDF and CDF functions for Theta (a,b) and Alpha (d,e) bandwidths

plotted for EEG data recorded at channel T6 from a healthy 71 year old male participant (MMSE score = 30). Overall, the participant has

higher Alpha than Theta power. Inverse CDF functions and the PDDF function are shown in (c) and (f), respectively.

https://doi.org/10.1371/journal.pone.0244180.g002
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Theta 3–7 Hz (a,b) and Alpha 8–13 Hz (d,e) are shown. Inverse CDF functions for both band-

widths (Fig 2C) and their differences (PDDF: Fig 2D) are shown. Fig 3 shows the same graphs

for a 74-year-old female with Alzheimer’s disease.

The PDDF functions for participants in each participant group were averaged.

PDDM0.95,1(Theta,Alpha) for each participant at each channel location was computed.

Pattern classification analysis

Linear Discriminant Analysis (LDA) was used to design 2 separate binary classifiers to classify

AD versus HC3 and MCI versus HC3 groups. HC3 was used as the proper age matched con-

trols for AD and MCI participants. Input variables included all relative PSDs averaged across

sessions in all frequency bins and bands recorded at all channels and regions (n = 1530). Prin-

ciple component analysis (PCA) was used as an unsupervised method for feature dimensional-

ity reduction before classification. The first K principle components that account for more

than 98% of the cumulative proportion of explained variance were selected for downstream

analyses with the remaining components rejected. The selected principle components were

used as feature vectors for the supervised binary classifier.

AD (versus HC3) and MCI (versus HC3) classifiers were designed and evaluated using a

bootstrapping technique with random under-sampling as described below. In each iteration of

the bootstrapping, n subjects, where n is the number of participants in the minority class, were

randomly selected from the majority class resulting in a classifier with a balanced data set (i.e.

with equal number of subjects in each class). The classifier was trained and tested using the

Fig 3. An example of PDDF for a participant with AD: An example of PDF and CDF functions for Theta (a,b) and Alpha (d,e) bandwidths

plotted for EEG data recorded at channel T6 from a 74 year old female participant with AD (MMSE score = 18). Overall, the participant has

higher Theta than Alpha power. Inverse CDF functions and the PDDF function are shown in (c) and (f), respectively.

https://doi.org/10.1371/journal.pone.0244180.g003
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new balanced data set for each of the 100 iterations. In each iteration, the classifier was trained

and evaluated using a leave-one-out (LOO) cross validation technique to avoid overfitting.

LOO method consisted of 2n times training and testing, each time leaving one subject out,

training on 2n-1 remaining subjects and testing on the one that was left out. The true positive

rate (TPR), false positive rate (FPR), accuracy (percent correctly classified) and the receiver

operating characteristic (ROC) curve were computed for each of the 100 bootstrapping itera-

tions and averaged across all iterations. Performance of each of the two classifiers was assessed

using overall AUC and accuracy after cross-validation and bootstrapping. The final classifier

was selected by averaging the coefficients in all the 100 iterations to avoid overfitting to the set

of participants used for that iteration. The posterior probabilities of MCI (using the MCI vs

HC3 classifier) and AD (using the AD vs HC3 classifier) were computed for all the partici-

pants. The MCI classifier was also tested on the AD group and the AD classifier was also tested

on the MCI group.

Statistical analysis

Independent two sample t-tests with Satterthwaite approximation (Welch’s t-tests) were used

to identify any significant differences between the groups (HC1, HC2, HC3, MCI, AD) at each

EEG channel for each frequency bands (Delta, Theta, Alpha), and derived EEG measures

(Theta-to-Alpha ratio, PDDM, and coherence). Raw effect sizes were standardized using

Hedges’ g to permit comparisons between the different testing scenarios. Correlation analysis

was employed to test fit of EEG measures with clinical neuropsychological tests commonly

used to assess AD-associated symptomatology, including the Mini-Mental State Examination

(MMSE), the Dementia Rating Scale (DRS-2). All tests were two-tailed. The α criterion for sig-

nificance was set to 0.05. Results were not corrected for multiple comparison unless otherwise

stated. In cases where the results were corrected for multiple comparison, FDR (False Discov-

ery Rate) method of Benjamini-Hochberg procedure was used.

Results

Average power spectral density in normal aging and Alzherimer’s disease

PSDs during resting state eyes closed for each participant at each EEG channel was computed

according to the methods section. The global PSD power (average power across all recording

channels) was also computed for each participant. Group averages of global PSDs versus fre-

quency are plotted in Fig 4 for both absolute (a,b) and relative power (c,d). Overall and consis-

tent with the existing literature, in healthy controls, average power at low frequencies (Delta

and Theta range, 1–7 Hz) are decreasing with age (Fig 4A and 4C) [51–53]. In contrast to this

healthy aging effect, the AD group showed increased power in slow frequencies (Fig 4B and

4D) compared to age matched controls (HC3). The MCI group showed the same trend albeit

smaller in size. The group averages for all frequency bands in each participant group are also

listed in the supplementary section. These results are overall trends and do not account for

regional changes in power measured at different channels. To better understand regional

changes, topographical maps of power spectral densities for each participant group at prede-

fined standard frequency bands as well as the ratio of power in Theta to Alpha bands were

plotted in Figs 5–9. In each figure, channels with significant differences between groups were

marked on the figure and the channel with the smallest p-value (two sample t-test) as well as

the normalized effect size (Hedges G) and t-statistics were reported in Table 4. Topographical

maps of the differences between MCI, AD and age matched HC3 group have been plotted in

Fig 10 for Theta and Alpha band separately.
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In alignment with prior published reports, participants with AD clearly evidenced signifi-

cant increases in the slower frequencies (Delta, Theta) and decreases in the faster frequencies

(Alpha, Beta) in comparison to MCI and healthy controls. It is likely that this combination of

changes in slow and fast frequencies represents an important EEG biomarker of progression

to AD. The frequency of the Alpha peak in the AD group was significantly smaller than both

MCI and HC3 groups (Table 4, Fig 8, and S2 Fig in the supplementary section). It is worth

noting that measured alpha peak frequencies are affected by the frequency resolution of our

methods (1Hz).

The MCI group on average showed a moderate increase in both Delta, Theta and Theta-to-

Alpha ratio which was significant mainly at temporal channels. The MCI group did not show a

significant decrease in Alpha power (Fig 7). The AD group, on average, showed significantly

higher Delta, Theta and Theta-to-Alpha power ratio and significantly lower Alpha power.

PSD distribution analysis

The difference between distribution of power at Theta (3–7 Hz) and Alpha (8–13 Hz) bands

was computed according to Eq 1 in the methods section. Fig 11 shows the proposed difference

function PDDF(Theta,Alpha)(u) averaged across all participant groups plotted for channel T6 as

Fig 4. Overall group average PSDs: Group averages of global (averaged across time and channel locations) absolute (a,b) and relative (c,d) PSDs

for all participant groups. In healthy participants (a,c) older participant groups show lower power at low frequencies (1–7 Hz). In contrast, MCI

and AD groups (b,d) show increased power in low frequencies compared to age matched controls (HC3). At high frequencies (>20 Hz) AD

participants show increased absolute power in the same direction as normal aging albeit with larger effect size.

https://doi.org/10.1371/journal.pone.0244180.g004
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an example. The graph illustrates the finding that, on average, healthy controls have higher

Alpha power than Theta power resulting in a PDDF function with negative values (situated

under the zero baseline) and a negative slope. The MCI group, on average has less negative

Fig 5. Topographical maps of Delta power: Group average topographical maps of Delta power (1–3 Hz) for all participant groups (top) and average group

difference (bottom). Channels with significant differences (p<0.05) are marked with black circles.

https://doi.org/10.1371/journal.pone.0244180.g005

Fig 6. Topographical maps of Theta power: Group average topographical maps of Theta power (3–7 Hz) for all participant groups (top) and average group

difference (bottom). Channels with significant differences (p<0.05) are marked with black circles.

https://doi.org/10.1371/journal.pone.0244180.g006
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PDDF values with smaller slope. The AD group shows a reverse trend with higher Theta

power than Alpha (average PDDF is above the zero baseline). The plots demonstrate that the

difference between MCI and HC3 is greater at the higher probabilities (shown on the x-axis)

Fig 7. Topographical maps of Alpha power: Group average topographical maps of Alpha power (8–13 Hz) for all participant groups (top) and average group

difference (bottom). Channels with significant differences (p<0.05) are marked with black circles.

https://doi.org/10.1371/journal.pone.0244180.g007

Fig 8. Topographical maps of Alpha peak frequency: Group average topographical maps of Alpha peak frequency for all participant groups (top) and average

group difference (bottom). Channels with significant differences (p<0.05) are marked with black circles.

https://doi.org/10.1371/journal.pone.0244180.g008
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supporting our hypothesis that in the MCI group, higher Theta to Alpha ratios may be seen

not throughout the session but starting to emerge in selected epochs. Therefore, the interval

between 0.95 and 1 was selected in an ad hoc manner to compute PDDM according to Eq 2.

Fig 9. Topographical maps of Theta to Alpha ratio (TAR): Group average topographical maps of TAR for all participant groups (top) and average group

differences (bottom). Channels with significant differences (p<0.05) are marked with black circles.

https://doi.org/10.1371/journal.pone.0244180.g009

Table 4. The channel with the most significant differences between participant groups, the corresponding normalized effect sizes hedges-G, t-statistics, and p

value.

G(channel) t(df), p Δ = HC2-HC1 Δ = HC3-HC2 Δ = MCI-HC3 Δ = AD-MCI Δ = AD-HC3

Rel. Delta 1–3 Hz G(C4) = - 0.34 G(T5) = - 0.66 G(T5) = 0.48 G(O2) = 1.0 G(T5) = 1.28

t(189) = -2.1 t(115) = -3.56 t(106) = 2.5 t(77) = 4.23 t(79) = 5.44

p = 0.03 p = 10−3 p = 0.01 p = 10−4 p = 5x10-7

Rel. Theta 3–7 Hz G(C4) = -0.44 G(F3) = -0.49 G(T6) = 0.51 G(O2) = 0.67 G(T6) = 1.02

t(189) = -2.86 t(115) = -2.68 t(106) = 2.68 t(77) = 2.81 t(79) = 4.34

p = 5x10-3 p = 8x10-3 p = 9x10-3 p = 6x10-3 p = 4x10-5

Rel. Alpha 8–13 Hz G(O1) = -0.33 Not Significant Not Significant G(T3) = -1.21 G(T3) = -1.45

t(189) = -2.14 t(77) = - 5.1 t(77) = -6.14

p = 0.03 p = 2x10-6 p = 3x10-8

Alpha Peak Frequency G(O2) = -0.36 G(P4) = -0.66 Not Significant G(T4) = -0.64 G(T6) = -0.9

t(189) = -2.32 t(115) = -3.6 t(73) = -2.6 t(75) = -4.03

p = 0.02 p = 5x10-4 p = 0.01 p = 0.001

TAR 3� 7 Hz
8� 13 Hz

Not Significant G(T3) = -0.52 G(T3) = 0.48 G(T4) = 1.41 G(T4) = 1.59

t(115) = -2.82 t(106) = 2.5 t(77) = 4.81 t(77) = 6.77

p = 6x10-3 p = 0.01 p = 10−5 p = 2x10-9

PDDM0.95 (Theta,Alpha) G(O1) = 0.34 G(T5) = -0.48 G(T3) = 0.79 G(T4) = 1.04 G(T3) = 1.78

t(189) = 2.2 t(115) = -2.6 t(106) = 4.1 t(77) = 4.38 t(79) = 7.56

p = 0.03 p = 0.01 p = 10−4 p = 4x10-5 p = 6x10-11

https://doi.org/10.1371/journal.pone.0244180.t004
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Fig 12 shows the topographical map of PDDM(0.95,1)(Theta,Alpha) for each participant group.

PDDM is significantly higher in the MCI group compared to the age matched HC3, in all

channels except Cz and O2. The channel with the smallest p-value between participant groups

are similarly reported in Table 4. The results show that PDDM provides better discrimination

between MCI and HC3 group (compared to TAR) in that, the effect sizes are larger (G = 0.79

at T3), p-values are smaller (t(106) = 4.1, p = 10−4) and more widespread across the scalp areas

(18 out of 20 channels with p<0.05). However, comparing the AD and MCI groups, PDDM

and TAR are comparable in terms of effect size and significance. This will support the initial

research hypothesis that using PDDM may provide more sensitive measure of cognitive

decline in earlier stages of cognitive decline in MCI where EEG changes may not be otherwise

significant. The results show that most significant differences between the MCI/AD groups

and the age matched controls (HC3) are in temporal channels (T3,T4,T5,T6). We computed

the average EEG measures at temporal sites by averaging each EEG measure across the four

temporal channels (T3,T4,T5,T6) and compared the group means. Fig 13 shows group means

for both TAR and PDDM at temporal sites. The group means of temporal TAR for the HC1,

HC2,HC3, MCI, and AD groups are 1.00, 0.95,0.82,0.94, and 1.37, respectively. These group

means for PDDM95 are -0.13,-0.10,-0.22,-0.02, and 0.26, respectively. We define MCI effect

Fig 10. Topographical maps of the AD and MCI groups compared to controls: Differences between AD and HC3 (a,b) and MCI and HC3 (c,d) in

Theta and Alpha bands. significant differences are marked with black circles.

https://doi.org/10.1371/journal.pone.0244180.g010

PLOS ONE EEG biomarkers of Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0244180 February 5, 2021 17 / 31

https://doi.org/10.1371/journal.pone.0244180.g010
https://doi.org/10.1371/journal.pone.0244180


size as the difference between the MCI group mean and the HC3 group mean and AD effect

size as the difference between the AD group mean and the HC3 group mean. Consequently,

the results show that using TAR, MCI effect size is 22% of the AD effect size while using

PDDM95, MCI effect size is 41% of the AD effect size. Furthermore, the difference between

Fig 11. PDDF(Theta,Alpha) power distribution difference functions: Graphs of group average PDDF functions demonstrating the

difference between Theta and Alpha band power distributions at channel T6 plotted for each participant group. Solid lines represent

group means and shaded areas show standard error of the means.

https://doi.org/10.1371/journal.pone.0244180.g011

Fig 12. Topographical maps of PDDM0.95,1(Theta,Alpha): Group average topographical maps of PDDM for all participant groups (top) and average group differences

(bottom). Channels with significant differences (p<0.05) are marked with black circles.

https://doi.org/10.1371/journal.pone.0244180.g012
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group means of the HC1 and HC3 (aging effect) is 33% of the AD effect size using TAR and

19% of the AD effect size using PDDM95. These results suggest that PDDM95 is more sensi-

tive to cognitive decline and less sensitive to normal aging.

EEG coherence

Normalized coherence for all pairs of channels was computed as described in the methods sec-

tion. Figs 14–16 show group average topographical maps of normalized coherences between

pairs of channels for Delta, Theta and Alpha bands, respectively. The plots are color coded to

Fig 13. Group average TAR and PDDM95 at temporal areas: Group average of TAR (left) and PDDM (right) at temporal areas. Significant differences

between groups were marked with the p-value of a two-sample t-test.

https://doi.org/10.1371/journal.pone.0244180.g013

Fig 14. Topographical maps of Delta coherence: Topographical maps of normalized coherence in Delta band across pairs of channels in each participant groups.

Red (and blue) color represent higher (and lower) coherence compared to average across all frequencies.

https://doi.org/10.1371/journal.pone.0244180.g014
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demonstrate the normalize coherence levels at each frequency bands. Red colors show coher-

ences greater than average and blue colors show less than average coherence. The pairs of

channels with significant difference between groups are shown and the pair of channels with

smallest p-value is named under each plot. The results show that normal aging effect consists

of increased normalized coherence in Delta and Theta bands after 40 years age (HC2) followed

by a decrease after 60 years of age (HC3) as well as decrease in alpha coherence after 40 years

of age (HC2). The AD group showed a clear significant increase in normalized Delta and

Theta coherence and significant decrease in Alpha coherence consistent with PSD results.

These changes in the MCI group (compared to HC3) were only partially observed in limited

Fig 15. Topographical maps of Theta coherence: Topographical maps of normalized coherence in Theta band across pairs of channels in each participant groups.

Red (and blue) color represent higher (and lower) coherence compared to average across all frequencies.

https://doi.org/10.1371/journal.pone.0244180.g015

Fig 16. Topographical maps of Alpha coherence: Topographical maps of normalized coherence in Alpha band across pairs of channels in each participant groups.

Red (and blue) color represent higher (and lower) coherence compared to average across all frequencies.

https://doi.org/10.1371/journal.pone.0244180.g016
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pairs of channels. These data are also in agreement with prior published reports, the majority

reporting decreased in Alpha coherence associated with the progression of dementia

[13,23,43,49,61]. More recent reports also identified an increase in coherence in the Theta

band associated with AD severity [62,63].

Summary of the EEG measures

Table 5 shows a summarized descriptive overview of the findings. The results show that over-

all, PSD based changes in our proposed EEG measures in normal aging are monotonic with

significant changes after 40 or 60 years of age whereas coherence-based measures may show

conflicting trends based on the age group. In the AD group, the measures are generally robust

with widespread and significant changes that oppose the trend of normal aging except for

Alpha power and Alpha power frequency where normal aging and AD effects are aligned with

each other.

For both the AD and MCI groups, the largest effects (compared to the HC3 age matched

controls) were observed using PDDM95 (Table 4: normalized effect sizes 1.78 and 0.79 for

AD-HC3 and MCI-HC3, respectively, both measured at channel T3). All the differences

between the AD and HC3 groups remained significant after FDR correction for multiple com-

parison among the 20 channels. However, the significant differences between MCI and HC3

did not reach the significance level after the correction, except for PDDM95 where all the

channels remained significant after the correction.

Pattern classifiers

The MCI and AD linear classifiers were trained and validated as per the methods section. HC3

was used as the age matched control group. Principle component analysis (PCA) was used for

Table 5. Overall descriptive effects of AD and MCI on EEG measures compared to normal aging.

EEG Measure Normal Aging AD MCI

Relative Delta Power ## Decreasing (mainly significant after 60 years) ""Widespread significant

increase

" Increased, significant only at left temporal area.

Relative Theta Power ## Significant decrease at most channels " Increased power mainly

significant across right

hemisphere channels.

" Increased, and significant only in selected

channels T3,T5,T6, F3

Relative Alpha Power ~~ No significant change after 40 years old ## Significant and widespread

decrease

~~ Not significantly different than controls.

Alpha Peak Frequency # Decreasing with age, only significant at limited

areas (occipital and temporal)

## Significant and widespread

decrease

~~ Not significantly different than controls (except

one channel only)

Theta-to-Alpha Ratio

(TAR)

## Decreasing with age (widespread and significant

after 60 years old)

"" Significant and widespread " Increased and significant only in temporal areas

PDDM(0.95,1)(Theta,

Alpha)

# Decreasing with age after 60 years (significant for

most channels)

"" Significant and widespread

increase

"" Significant increase at most channels.

Norm. Delta

Coherence

"�# Significant increase after 40 years old followed

by significant decrease after 60 years old

"" Significant and widespread

increase.

# Limited localized decrease in the right temporal

and occipital areas

Norm. Theta

Coherence

"�# Significant widespread increase beyond 40

years old followed by significant localized decrease

beyond 60 years old

"" Significant and widespread

increase

Significant decrease mainly across anterior-

posterior areas with significant increase across left

to right temporal areas

Norm. Alpha

Coherence

## Significant and widespread decrease after 40

years old and almost no change after 60 years old

## Significant and widespread

decrease

Significant decrease only in limited areas from

right temporal to left-temporal and left-frontal

## widespread significant decrease, "" widespread significant increase, "�# not a consistent trend, ~~ no significant change, (#) limited (localized) significant decrease,

(#) limited (localized) significant increase.

https://doi.org/10.1371/journal.pone.0244180.t005
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feature reduction. As expected, and due to high correlation between PSD values at different

frequencies and channel locations, PCA resulted in a highly reduced number of features (17

features for the MCI classifier and between 6 to 7 features for the AD classifier). The perfor-

mance of each classifier was evaluated using the area under ROC curve. Fig 17 shows the aver-

age ROC curve of 100 iterations, each obtained using a leave-one-out cross validation method.

The average AUC for the AD and MCI classifiers were 0.85 and 0.6, respectively. Fig 17 also

shows the ROC curves without cross validation tested on the training data and hence demon-

strating the level of overfitting (AUC = 0.92 and AUC = 0.8 for the AD and MCI classifiers

respectively).

The scatter plot of the posterior probabilities in both the MCI and AD classifier is shown in

Fig 18, demonstrating a probability space divided into four quartiles. Overall, HC3 partici-

pants have low probability in both the MCI and AD classifiers (second quartile). Conversely,

the AD participants as a group have high probability of MCI and AD (fourth quartile). The

MCI group are spread out across the probability space in quartiles two to four.

Fig 17. Classifiers performance: ROC curves (plots of true positive versus false positive rates) for the AD and MCI classifiers show the

performance of the classification when the classifier is tested on the training data (solid line) and tested after LOO cross validation (dotted

lines). The area under the curve (AUC) for each classifier shows the performance compared to chancel level (AUC = 0.5).

https://doi.org/10.1371/journal.pone.0244180.g017
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Correlations between EEG biomarkers and clinical and neuropsychological

scores

The correlation between EEG measures and neuropsychological scores in the AD and MCI

groups are presented in this section. MMSE and Mattis DRS-2 scores for each domain were

selected and compared against both TAR and PDDM95 averaged at temporal sites (Table 6).

Temporal channels were selected based on the results of significant differences between the

MCI,AD groups and healthy controls (HC3). Correlations at all channels were computed sepa-

rately and topographical maps of the correlation coefficients were plotted in the supplementary

section (S1 Fig).

Fig 19A shows scatter plots and Pearson’s correlation coefficients between the EEG mea-

sures and MMSE scores for participants in the AD group. Overall probability of AD (com-

puted by the AD classifier) was negatively correlated with MMSE (r(24) = -.44, p = .02). EEG

Fig 18. Classifiers between-group cross validation: The AD and MCI classifiers were tested on both the MCI and AD groups as well as the

age matched HC3. AD probability and MCI probability indicate the posterior probabilities of AD and MCI classifiers, respectively. The

probability space is divided into 4 quartiles where Q2 is the quartile with little or no cognitive decline, Q3 is the quartile with possible mild

cognitive decline and Q4 is the quartile with highest cognitive decline. The hypothetical trajectory of cognitive decline in this probability space is

likely passing through Q2, Q3 and Q4.

https://doi.org/10.1371/journal.pone.0244180.g018
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measures of TAR and PDDM averaged at temporal channels were also negatively correlated

with MMSE (r(24) = -.69, p = 10−5, for TAR) and (r(24) = -.77, p = 10−5, for PDDM95).

The correlation between PDDM95 and MMSE was highest at channels F7 (r(24) = -.77,

p = 3.5x10-6)and lowest at channel O2 (r(24) = -.66, p = 2.7x10-4). These results are consistent

with previous reports [30,36,64,65] reporting the correlation between EEG measures and

MMSE scores in AD. However, there was no significant correlation between EEG measures

and MMSE scores in the MCI group. The correlations between EEG measures and Dementia

Rating Scale (DRS-2) scores are shown in Table 6.

Discussions and conclusions

This study examined the utility of PSD-based resting state EEG biomarkers to assess neuro-

physiological changes associated with cognitive decline in Alzheimer’s disease. Specifically, we

examined two aspects of these EEG biomarkers, (a) their specificity to pathologic cognitive

decline as opposed to normal aging and (b) to propose novel methods for improving the sensi-

tivity of these biomarkers at early stages of the disease observed in individuals with MCI. The

results, with respect to the power spectral analyses, agree with prior publications that reported

individuals with AD exhibit a progressive slowing of EEG. This slowing is characterized by sig-

nificant increases in the power of slower frequencies (1–8 Hz), significant decreases in power

of faster frequencies e.g. Alpha band (8–13 Hz), and significant slowing of the frequency of the

dominant rhythm in the alpha band. Here, we first confirmed these established patterns of

EEG in Theta and Alpha bands (and a combined measure defined by the ratio of power at

these bands) in our AD group. Second, we studied the MCI group with the hypothesis that

they are likely to demonstrate the same patterns with smaller and less significant effects.

Fig 19. Correlations with clinical scores. Scatterplots showing correlations between MMSE score and (a) probability of AD in AD

classifier, (b) TAR at temporal areas, (c) PDDM95 at temporal areas, plotted for all AD participants. PDDM95 has the highest correlation

with MMSE.

https://doi.org/10.1371/journal.pone.0244180.g019

Table 6. Pearson correlation between EEG measures and Neuropsychological tests of MMSE and DRS in the AD group, p-value (p) and 95% confidence intervals

(CI) are reported for each correlation.

AD probability TAR at Temporal Sites PDDM95 at Temporal Sites

MMSE r(24) = -0.44, p = 0.02 CI = [-0.71, -0.07] r(24) = -0.69, p = 10−4 CI = [-0.85, -0.41] r(24) = -0.77, p = 5x10-6 CI = [-0.89, -0.54]

DRS-Initiation Preservation (IP) r(18) = -0.56, p = 0.01 CI = [-0.80, -0.15] r(18) = -0.53, p = 0.015 CI = [-0.79, -0.12] r(18) = -0.57, p = 8x10-3, CI = [-0.81, -0.17]

DRS-Memory (MEM) r(18) = -0.49, p = 0.03 CI = [-0.76, -0.06] r(18) = -0.63, p = 3x10-3 CI = [-0.84–0.26] r(18) = -0.7, p = 6x10-4, CI = [-0.87–0.37]

DRS-Construction (CN) r(18) = -0.45, p = 0.04 CI = [-0.75, -0.015] r(18) = -0.61, p = 4x10-3 CI = [-0.83, -0.23] r(18) = -0.61, p = 4x10-3, CI = [-0.83,-0.24]

DRS-Conceptualization (CON) Not significant r(18) = -0.57, p = 8x10-3 CI = [-0.81,-0.18] r(18) = -0.63, p = 3x10-3 CI = [-0.84, -0.26]

DRS-ATT (Attention) Not significant Not significant Not Significant

https://doi.org/10.1371/journal.pone.0244180.t006
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Our results showed that while the increased power in low frequencies (Delta and Theta)

were indeed observed in the MCI group (albeit much smaller in size), the MCI group did not

show a significant change in Alpha power or alpha peak frequency. These results point to a

pattern of EEG changes that appears to reflect the progression of the disease that starts with

moderate increases in power at the slow frequencies, and only in the later stages of the progres-

sion to AD, decreases at the faster frequencies begin to manifest.

In terms of the spatial patterns of EEG changes, the AD group’s differences in both power

and coherence (compared to controls) in both Theta and Alpha bands were significant across

all areas of the brain. However, for the MCI group, significant differences in Theta band were

limited to right temporal, left temporal and left frontal channels with no significant differences

in Alpha band. Significant differences in Alpha coherence for the MCI group were detected

only at 4 pairs of channels mainly from right temporal to left-temporal and left-frontal areas.

In both the MCI and AD groups, the most significant differences (smallest p-values) compared

to healthy controls appeared in temporal areas.

The above results suggest that EEG changes in AD may start with localized changes in tem-

poral areas that manifest in the Theta band as increases in both power and coherence, while in

the Alpha band only coherence decreases in the same limited areas. These changes may further

progress into large and spatially widespread changes in both power and coherence in Theta

band (increase) and Alpha band (decrease). This hypothesis is also consistent with the observa-

tion that compared to healthy controls, in both the MCI and AD groups, the most significant

differences were observed at temporal areas (channels T3,T4,T5,T6). Moreover, the Theta to

Alpha ratio had significant correlation with MMSE score of general cognitive abilities that

were highest at channel T6. Further research particularly a within-subject analysis in a longitu-

dinal study is needed to confirm this hypothesis that could provide another spatiotemporal

characteristic of disease progression using EEG.

Performing the same analyses for 3 separate groups of cognitively normal individuals in dif-

ferent age ranges, confirmed previous reports showing a progressive decrease in slow wave

power, specifically in Delta and Theta bands, associated with normal aging [51–53]. Therefore,

we concluded that changes in slower frequencies in AD are opposing those of normal aging

and hence are specific to pathologic cognitive decline.

Novel approach to identify subtle EEG abnormalities in MCI

The reported changes in power spectral densities due to AD are well established and signifi-

cant. In our study, these measures also provided insights into possible spatiotemporal distribu-

tion patterns of disease progression. However, these changes are shown to be difficult to detect

in early stages of AD or in individuals with MCI. The EEG abnormalities might be subtle and

limited both in terms of spatial distribution across the scalp and temporal distribution across

recording time. We demonstrated this by the observation that EEG changes in the MCI group

were smaller and localized, compared to the AD group. Therefore, we introduced a novel

method based on the distance between distribution of EEG power (across time) at the Theta

and Alpha bands as opposed to the average of the Theta to Alpha ratio across time. By preserv-

ing the PSD data at the epoch level, this measure remained sensitive to changes in EEG that

may not be consistent across the recording session but rather may happen at isolated time

points. Our proposed measure using this approach did not outperform the standard Theta to

Alpha ratio (TAR) when comparing the AD group to age matched controls. However, for the

MCI group it resulted in significant differences that were more widespread across the scalp,

with larger effect size and smaller p-value.
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Limitations of this study

This study has few limitations as follows. (a) AD and MCI participants in this study were

selected based on clinical neuropsychological diagnosis, without confirmation by neuropatho-

logical diagnostic biomarkers. These diagnostic methods are still the most common standards

of clinical practice with variations in criteria at different clinical sites. This may result in heter-

ogenous study groups with varying degrees of disease progression and underlying pathology.

This is particularly the case for the MCI group, as they may or may not progress into AD based

on their underlying pathology. (b) While we demonstrated the specificity of the proposed EEG

biomarkers to pathologic cognitive decline compared to normal aging, the results do not pro-

vide support for the specificity of these markers in AD compared to other neurodegenerative

disease. For example, AD, Parkinson’s disease dementia (PDD) and Lewi Body dementia (LBD)

may have EEG biomarkers in common. (c) While this study demonstrated the association

between EEG biomarkers and disease progression, the mechanistic relation between the basic

elements in the triad of protein pathologies, synaptic losses/dysfunctions and EEG abnormali-

ties were outside of the scope of this work. (d) This study was focused on group analysis rather

than assessment of disease progression at an individual level. However, for clinical translation

of these methods at an individual level, a high level of sensitivity and specificity is needed for

MCI. In this study, it was not possible to assess these methods at an individual level due to heter-

ogenous nature of the MCI group. However, the high correlation between MMSE score and

EEG measures in the AD group supports their utility even at an individual level in later stages of

AD. Future work to better assess the performance of these methods at an individual level may

include: using more homogenous study groups in terms of disease progression, including clini-

cians’ expert judgment in artifact rejection and data selection before automated quantitative

analysis, and incorporating a more comprehensive approach that includes both EEG and non-

EEG clinical. In applications such assessment of treatment effect in clinical trials for drug dis-

covery, group analysis might be enough to demonstrate the treatment effect.

The rationale for use of EEG in clinical research and clinical trials. There are multiple

approaches toward disease modifying therapeutic intervention in AD clinical trials. Many

drug development efforts target amyloidosis and tauopathy [3] focusing on protein patholo-

gies. Therefore, primary outcome measures may focus on CSF-based pathological biomarkers

along with neuropsychological scores to assess the changes in syndromes.

However there is an alternative/complementary treatment strategy that focuses on synaptic

dysfunction as the biological mechanism that links protein pathologies to disease symptoms

[66–70]. EEG-based biomarkers are more directly correlated with such neural dysfunctions

and might be a better candidate for assessing disease progression. Furthermore, there have

been evidences from animal models in mice, suggesting that neural abnormalities (increased

neural synchrony) may occur even before prominent amyloid plaque deposition [71,72].

Converging lines of evidence [11,26] support the utility of EEG as an early biomarker of dis-

ease progression in AD. EEG biomarkers for AD can be categorized as “topographical bio-

markers” suitable for disease progression while “pathophysiological biomarkers” are used for

diagnosis [10]. Topographical biomarkers such as EEG and FDG-PET are more directly asso-

ciated with neural dysfunctions and can identify regional distribution of AD pathology.

EEG is non-invasive, inexpensive, and relatively simple to implement for large scale clinical

research. The rationale for use of EEG in clinical trials is also strengthened by the finding that

PSDs in EEG have proven remarkably stable within individuals [73–77] particularly during

mental tasks [78]. Therefore, in clinical trials and studies with a within-subject design, EEG

biomarkers such as the ones discussed in this manuscript could be used to detect and monitor

neurophysiological changes that may be associated with treatment or intervention.
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