Using the ASL Configuration Tool for Surround View calibration and design

U-0644_2298 v2.3

Generating a Surround View with ASL360

How to create a coherent surround view for improving situational awareness using images from wide angle cameras?

Overview:

- How ASL360 does it
- How to install and calibrate cameras on a specific vehicle
- How to design user screens

ASL360 active system components

Configuration Tool (PC)

For system configuration

Connects to ECU via Ethernet

ECU

Wide angle fisheye cameras

1 - 6, typically 4

How ASL360 does it – Camera fisheye correction

- Fisheye correction needed due to compensate:
 - Image curvature resulting from lens characteristics
 - Camera manufacturing tolerances
- Fisheye correction makes straight lines in the real world appear straight
- Each camera is unique and requires a unique correction
- For ASL cameras, fisheye parameters are:
 - Calibrated in the camera factory
 - Embedded in the camera's video output
 - Decoded by the ECU
- Completely handled by ASL360; installer has nothing to do

Video & Embedded data

How ASL360 does it - Perspective correction

- Perspective correction needed due to:
 - Camera mounting tolerances affecting the orientation of the camera
 - No two vehicle installations are exactly the same
- After installation ASL Configuration Tool finds Position & Orientation (Pose) of each camera

How ASL360 does it - Presentation

- ASL360 can present:
 - Coherent surround views
 - Merged camera images (Cameras must be calibrated)
 - Auxiliary views
 - Vehicle & overlay bitmaps, logos, text
 - Multiple screens
- Design created with ASL Configuration Tool
- Design must be downloaded to ECU

ASL Configuration Tool

PC based application

Calibration

- Defines Camera data (Camera Pose)
- Semi-automatic process
- Offline working possible

User Interface Design

- Screen layouts
- Interactive
- Best done offline

Download to ASL360 ECU:

- User Interface Designs
- Camera data

Calibration - overview

Perspective correction:

- Needed due to camera mounting tolerances affecting the orientation of the camera
- Achieved by determining complete and precise camera pose

Camera pose is fully defined by:

- Position: 3 measurements in 3D space
- Orientation: 3 angles defining the direction and rotation of the camera's centre ray

Fractions of degree matter

Even small errors result in mismatch in the surround view where the contribution from adjacent cameras meet

Configuration Tool requires:

- Precise measurement of the position of each camera in vehicle plan view
- Approximate measurement of the height of each camera
- Very approximate orientations for each camera (default values are provided)

Configuration Tool determines precisely for each camera:

- Camera height
- Camera orientation

User Interface Design - overview

Screen layout:

- Surround view
 - Each camera contributes to part of the surround view
 - Size and nature of merges
 - Shape and extent of total view on the ground
 - Planar/Pie-dish projection
- "Virtual camera" views
- Other images:
 - Logos
 - Text
 - Vehicle bitmaps
- Sizing and positioning windows on the screen
- Multiple screens

Dynamic screen selection using vehicle signals:

- Reverse, Indicators, Tacho
- Screen design per vehicle type

Download to ASL360 ECU - overview

Load Design

Load Camera Data

Download design to ECU

Download Camera Data to ECU

Installation specific Camera Data**

** Camera Data unique to a particular installation

Design

Camera Data

Installation – total process for first vehicle

- Survey vehicle, find candidate camera locations
- Install cameras
 - Validate camera images
- Define precise camera positions
 - Measurement frame of reference
- Establish calibration and evaluation area
 - Design calibration grid
 - Typically requires area > 2 m around periphery of vehicle
- Lay out calibration grid
- Locate vehicle on grid
 - Precise location is not necessary
- Perform calibration (Configuration Tool)
 - At vehicle, or
 - Off-line from camera snapshots
- Evaluate calibration
- Design User Interface
- Download design and camera data to ECU

Installation – process for series vehicles

- Survey vehicle, find candidate camera locations
- Install cameras
 - Validate camera images
- Define precise camera positions
 - Measurement frame of reference
- Establish calibration and evaluation area
 - Design calibration grid
 - Typically requires area > 2 m around periphery of vehicle
- Lay out calibration grid
- Locate vehicle on grid
 - Precise location is not necessary
- Perform calibration (Configuration Tool)
 - At vehicle, or
 - Off-line from camera snapshots
- Evaluate calibration
- Design User Interface
- Download design and camera data to ECU

Installation – survey vehicle

- Determine the extent of the ground to be visible in the final surround view
 - The cameras between them must have sight of this ground
- Determine if there are special risk areas
 - Ensure these are covered by view from one camera
- Enough overlap between neighbouring cameras
 - Recommend in excess of 2 m
- Higher the better
 - Minimises "stretching" of vertical objects
- Clear view of ground
 - Avoid positions where a nearby object is in camera's view
- Identify rigid, static structure for camera mounting, which
 - Allows for maintenance
 - Protects from impact damage
 - Minimises exposure to dirt

Installation – install cameras

- Locate on solid structure
- Use suitable fixings
 - Compatible with the nature of the mounting surface
- Use isolation bushes provided
- Cable installation
 - Prevent damage from impact and chaffing
 - Observe the minimum bend radius
 - Allow enough slack so in-line connector can be accessed from outside
 - For long cable runs:
 - extension cables may be joined together
 - custom cable fabricated
- Configuration Tool can show raw images
 - Validate camera location
 - Validate installation

Installation – measurement frame of reference

Axes:

- X axis lies on the vehicle centre line
- Y axis parallel to axles
- Z axis height above ground
- Camera position is the distance from the datum on each axis:
 - X mm, Y mm, Z mm
- Datum is where X = 0, Y = 0, Z = 0
- Datum as shown right:
 - Mid-point between point of contact of front wheels, on the ground
- Choose alternate X, Y datum
 - Easiest direct measurement of relative camera position
 - Easier to measure: less error

Installation – define camera positions

- Measurement frame of reference
 - ASL360 uses the X,Y,Z frame of described
- Measure to the camera's lens
- CAD drawings
 - Convert axes, translate datum
- Position measurement
 - Measurement precision
 - X, Y axis: +- 10 mm
 - Z (height): +- 100 mm
- Orientation
 - For cameras in, or approximately in, standard position and standard orientation (i.e. mounted vertically, as shown right), default rotations are provided

Installation - design calibration grid

Ground – flatter the better

- < 50 mm deviation from flat</p>
- Need not be level.

Lines must:

- Occupy large part of cameras view
- Have no significant height (< 5 mm) painted lines or tape work well
- Be wide enough (50 mm for small vehicles, 100 mm for large vehicles)
- Have sufficient separation: line pairs to be 1500 mm
 2000 mm apart
- Be genuinely straight (deviate by < 10 mm over line length)
- Clearly visible white lines on a dark floor work well; avoid relying on colour contrast
- Be parallel:
 - Lines XA XB XC XD must all be parallel (< 10 mm deviation over line length)
 - Lines YA YB YC YD YE YF must all be parallel (< 10mm deviation over line length)

Ideally:

 YB and YE need to be close to the vehicle, but still visible to front and rear cameras

Installation – lay calibration grid, position vehicle

Lines pairs need not:

- Be at perfect right angles
- Have identical separation distances

Vehicle alignment

- Not necessary to carefully position vehicle, but
- Each camera must see its part of the grid (diagram right)
 - 8 line intersections

Grid also useful for post calibration evaluation

Consistent vehicle position

- In series production useful when assessing the surround view after camera set-up
- Driver's guidelines may be added to grid (diagram right)

Calibration - overview

- After installation ECU does not know exactly where the cameras are pointing
 - Disjointed surround view

- After calibration, ECU knows exactly where the cameras are pointing
 - ECU can apply necessary corrections to make a coherent surround view

Calibration – getting started

Preconditions:

- ASL360SV system correctly installed and functional
- PC configured with static IP address of 192.168.3.1
- ASL360SV ECU connected via Ethernet to PC
- Vehicle correctly positioned on the set-up grid
- ASL360SV system powered
- ASL Configuration Tool started

Calibration – online v. offline

Online

- When Configuration Tool is connected to live ECU
- Live video from ECU available to view in Configuration Tool
- Snapshots of live video may be taken and stored

Offline

- When Configuration Tool is not connected to a live ECU
- Configuration Tool can use previously stored snapshots
- Configuration Tool examples in this presentation generated offline

Calibration – saving snapshots

- Select the folder where the snapshots are to be stored
 - All 4 camera images are stored

Calibration – loading snapshots

- Select the folder where the snapshots are stored
 - All camera images are loaded

Calibration – visualisation

- Useful to see 'before' and 'after'
 - Critically evaluate calibration quality
- Load / create a design to see calibration area
- Design is:
 - Intended for calibration visualisation
 - Not intended for download to ECU
 - (but it could be)

Calibration – load design

- Configuration Design files have "csd" file extension
 - E.g. 0644_3081_1.csd
- Calibration visualisation csd file
 - Assume a csd file has already been prepared for this vehicle
 - Generating design

Calibration – check camera position data

- csd file should hold nominal camera pose values
 - (default camera orientation can be obtained from camera pose defaults.csd - supplied)
- Cameras are numbered (see right)
- Select 'Camera Calibrate' tab
- Ensure camera positions and default orientations are correct

All cameras can be accessed via drop down menu (lower right)

Calibration – load snapshots

Calibration – the task

- Semi-automatic process
 - Exactly the same online or offline
- **User must nominate** intersection points in each camera image
 - User is presented with each camera image in turn
 - User selects 8 points (shown right)
- **Configuration Tool** will compute camera pose to achieve coherent surround view

Calibration – start calibration

- Click 'Camera Calibrate' tab
- Click 'Start' button

Calibration – task recap – first camera

- First camera (1A) is presented
- Task is to mark the 8 intersection points in the order shown above

Holding 'Alt' key will zoom in on the current mouse position

- Holding 'Alt' key, position mouse on first intersection
- Click mouse left button to mark point (+)

- Mark 2nd point
- Note red dotted line connects marked points

Calibration – remaining cameras

Calibration – completion

Calibration – evaluation

- Configuration Tool tests the quality of the calibration
- 3 possible outcomes:

Calibration quality	Warning message	Subsequent actions	
GOOD	None	User to check the surround view.	
ACCEPTABLE	"The camera calibration is complete but the result is poor. Please critically evaluate the surround view and consider re-calibrating. Press Cancel to restart calibration, Press OK to continue."	On pressing OK: The surround view display is updated for review by the operator.	
UNUSABLE	"The camera calibration is complete but the result is unusable (Error #)"	On pressing OK: The display is not updated. The user should attempt to re-calibrate.	

Calibration – evaluation

Factors causing poor calibration results:

- Imprecise 'clicking' on grid intersections
- Some intersections too far from camera
 - Grid lines YB and YE need to be close to the vehicle
- Errors in the stated camera X or Y positions
 - Incorrect sign (e.g. missing sign)
 - Transposed x and y measurements
 - Certain systematic small X or Y errors have a signature effect (next slide)
 - Very small errors may not be detected by Configuration Tool
- Errors in the grid
 - Lines not parallel
 - Lines not straight
 - Ground not flat

Calibration – evaluation

- Signature effect of systematic camera error position
 - Front camera +200 mm on X axis
 - Rear camera +200 mm on X axis
- **Effect:**
 - Detected by Configuration Tool (Poor)
 - Convergence of X lines
 - Slight mismatch of X lines
- Random errors in camera positions have random effect on surround view

Calibration – storage of data

On successful completion

- Save Camera Data (csd file)
 - Suggest file name convention that includes:
 - Vehicle type
 - Vehicle ID (unique to vehicle)
 - Date of calibration
- Save Snapshots of calibration area
 - Suggest directory name convention that includes:
 - Vehicle type
 - Vehicle ID (unique to vehicle)
 - Date taken

Review after the event

With appropriate design file, the calibration conditions can be reviewed with the Configuration tool by loading the snapshots and csd file.

Calibration – download to ECU

- On successful completion
 - Download Camera Data to ECU

- ECU will be rebooted
 - Configuration Tool prompts
 - Hit 'OK'
- ECU now using calibrated cameras
- DO NOT PHYSICALLY MOVE THE CAMERAS
 - Calibration would become invalid

Design – topics

Simple calibration view

- Purpose of the calibration view
- Creating views
- Moving & resizing views
- Assigning views to a surround view
- Shaping windows
- Controlling the surround view area & datum position

Blending

- Showing objects with height
- Blend edge direction
- Blend parameters
 - Width
 - Plateau

Improved surround view with bitmap and simple blending

- Adding vehicle bitmap
- Adding blends
- Adding piedish effect
- Vertical view

- Virtual camera views
- Complex screens
 - E.g. SV + RV + text + overlay
- Multiple screens
 - React to vehicle signals
- Design issues
 - Image resolution
 - Visualising how vertical objects will appear
 - Stretching
 - In blend regions
 - Maximising view of ground for 'non-box-like' vehicles
 - False ground registration when cameras are inboard
 - Display monitor cropping

Design – calibration view

To help evaluate a calibration

- Must extend far enough to completely cover the calibration grid
 - Extent of view can be configured in X and Y axes
- Grid line matching in both X and Y axes can be clearly observed
 - Placement of the transition between cameras can be configured
- Only interested in seeing the grid on the ground
 - No need to be concerned about objects with height (at this stage)

Simple calibration view

- Can be kept for use when calibrating similar vehicles
- Could be used as template for dissimilar vehicles
- Design *could be* downloaded to the ECU
- Is **not** suitable for use as a realistic surround view for improving driver awareness
- Introduces an number of basic operations; useful as an initial design exercise

Design – entering valid camera positions

- Camera positions (in table) are typical of a large road going vehicle
 - Cameras mounted mid side
- Modify these to suit target vehicle
- Camera orientations (in table) are good defaults for normally placed and vertically mounted ASL cameras
 - ASL cameras have inbuilt X=15 degrees
- Data (in table) can be obtained by loading file: camera_pose_defaults.csd

	Camera_1A	Camera_2A	Camera_3	Camera_4
X (mm)	-2000	3000	8000	3000
Y (mm)	0	- 1250	0	1250
Z (mm)	3000	3000	3000	3000
X (°) default	15.0	15.0	15.0	15.0
Z1 (°) default	90.0	180.0	- 90.0	0.0
Z2 (°) default	0.0	0.0	0.0	0.0

Design – creating views – adding a screen

Design – adding camera windows

Design – adding camera windows

Design – Z order (controlling which window is on top)

- Z order:
 - 4 on top of:
 - 3 on top of:
 - 2A on top of:
 - 1A
- Double (left) click to select camera 2A window
 - Red dashed border appears
- Right click gets this dropdown menu:
 - Click 'Top'

- Camera 2A now on top of 3 and 1A, Z order:
 - 4, 2A both on top of:
 - 3, 1A

Design – window groups

- Windows are created by default as surround view windows
 - A 'surround view' can comprise 4, 3,
 2 and even 1 window
- ASL360 design can support several different surround views
 - Different views, coverage etc.
- On creation windows are not assigned to a particular group
 - Necessary to indicate which windows are participating in which surround view – start with Group1

Design – window groups

Assign remaining cameras to Group1

Load snapshots

- Note snapshots could be loaded at any stage
- Notice that images in windows (right):
 - Not recognisable
 - Maybe red

Design – define surround view area size, offset

Define the Surround View area

- SizeX(mm), SizeY(mm)
- This example: 20 m x 10 m
- The Configuration Tool maintains this area when the surround view windows are resize and re-arranged

Calibrate

Or load established calibration (csc)

Design – define surround view area offset

Adjust window sizes

Ensure all grid visible

Define the Surround View offset

- SV datum offset: distance of vehicle datum from surround view centre
- This example: 3m, 0m
- Lateral offsets can be defined
 - Bias view to one side of the vehicle

Design – shaping windows

Window to be shaped must be on top

Select the window

- Window is red dash outlined
- If necessary bring to top: right click 'Top'

Hold down 'shift'

- (Or click icon **M**)
- Square control points appear

Design – shaping windows

- Click & drag control points
- 8 control points per window

Arbitrary shapes can be made

Design – calibration view completed

Calibration view

- Calibration assessment
 - Grid line matching in both X and Y axes can be clearly observed
- View is confined to grid by design
- Can used when calibrating similar vehicles on the same grid
- Template for different vehicles requiring different grid dimensions

NOT a useable surround view

Objects with height on the camera joints not adequately shown

Design – objects with height

Simple 'butted' surround views

- Only show ground level objects
- Above the join line at ground level there is a "blind wedge" standing on its sharp edge

- Any object in this volume will not be seen in the surround view
 - Unacceptable

Design – objects with height

Objects with height at the merge line can be made visible with blending

- Butted join is replaced with a merge zone
 - Contributions from adjacent cameras are overlapped
 - Within the "merge zone" imagery from both cameras is shown
- Effectively raises the "blind wedge" off the ground

Design – blending

Apply blending by:

- Selecting window (double left click)
- Selecting edge in window (shift & right click)
 - Selected edge is shown pink
- Defining blend width
 - □ 0 − 199 pixels

Graded blend (upper blend)

- Defined width with Plateau = 0
- Camera image is linearly faded with adjacent camera

Graded blend with central step (lower blend)

- Aka Plateau blend
- Defined width with defined Plateau
 - □ 0 − 199 pixels
- Plateau parameter defines width of central band of 50% / 50% blend
- Remaining area outside this band is linearly faded

Simple useable surround view

- Vehicle bitmap
- Blended joins

Produce design (upper right)

- Required extent
- Central (black) portion approximately sized according to known vehicle size
- Best to place Front and Rear windows on top (right click 'Top')

Add bitmap (lower right)

- Show window list (Edit/Window List)
- Select screen
- Press "New Picture View"
- Bitmaps: BMP, JPG, PNG
 - PNG supports transparency

- Move and resize bitmap
 - (clockwise from above)

- Using crosshair to align window control points
 - Check View/Cross Hairs

 Crosshair is shown when clicking on window control point

Blends

- Can be applied where two different windows (cameras) overlap
- Must be defined on the uppermost window
- Are a property of an edge (between 2 window control points)

Adding a blend

- First shape the window by moving control points (Shift 'click and drag') – upper right
- Select edge to be blended (Shift, click on edge) lower right
 - Edge is now shown pink

Define blend width

- Use Alpha Blend control
- Width defined in pixels

Blend direction

- At right angles to edge
- At end of edge, the blend direction pivots on the end until it meets the adjacent edge – along which it extends by the defined blend width

Adjusting blending

In example lower right, part of the blend is not on top of a window, and therefore blends onto black

This can be made more obvious by temporarily defining 'Plateau' to be as large as 'Width'

- **Adjust position of control** point on blend edge
 - until blend is entirely within overlap (where it meets edge of vehicle)

- Recommend 75% / 80% of 'Width'
 - Soft edge
 - Large area of 50% / 50% blend helps make vertical objects more conspicuous

- Repeat blending for remaining merges
- Save design!

Design – pie dish effect

- Pie dish is an alternative method of 'projecting' the surround view
- Pie dish effect is useful to:
 - See further away from the vehicle without reducing the scale of the surround view in the immediate vicinity of the vehicle
 - Cameras must be orientated to able to see distant objects/ground
 - Reduce perspective stretching of vertical objects
 - In standard surround views, significant perspective stretching occurs for:
 - Nearby objects with height similar to camera height
 - Distant objects

Pie dish configuration

- Can simply be 'added' to existing surround view
- Describes shape of a giant pie dish within which the vehicle sits

Design – pie dish effect

Standard (planar) surround view

All real world straight lines are straight in the surround view

Extreme example of pie dish

- Vehicle need not be smaller
- All real world straight lines are straight in the surround view in the immediate vicinity of the vehicle
- Away from the vehicle
 - Lines curve allowing more of the real world to be revealed
 - In merge regions, lines on the ground overlap

Design – pie dish effect

Controlling the pie dish shape

- Enable Pie Dish Setup
 - (check box)
- Image lower right:
 - Configuration Tool screen shot with added overlay to indicate the position and shape of the configured pie dish

Design – pie dish effect – controlling the shape

- Define in mm X (long) and Y (short) radii of pie dish base
 - Unequal radii make an elliptical dish
 - Equal radii make a circular dish
- Define the centre of the ellipse
 - Distance in mm from the centre of the displayed surround view
 - Often (but need not be) same as surround view origin
- **Define Slope of dish edge**
 - Defined as %age gradient
- Define in mm radius of bend between flat base and straight side

Design – pie dish effect - bend

With 0 or small Bend

Transition from straight to curved lines is abrupt

With large Bend

- 5000 mm in this case
- Transition from straight to curved lines is smooth

Design – pie dish effect – varying slope

Design – virtual cameras

ASL360 usually used to generate surround view from several cameras

- Merged camera images
- Fisheye corrected
- Corrected for perspective to produce the illusion of viewing the vehicle surroundings from above (bird-eye view)

ASL360 can also provide virtual camera views

- Single camera image from any ASL360 camera
- Fisheye corrected
- Perspective corrected for the physical position of the camera
- As if the view was provided by a normal digicam placed at the position of the ASL360 camera
- Like a normal digicam, the view can be:
 - Pointed
 - 3 angular adjustments
 - Zoomed
- Unlike a normal digicam:
 - Zoom has independent controls
 - Horizontal
 - Vertical
 - Image can be "flipped" to produce mirror images

Design – virtual cameras - creating

Virtual Camera (VC) parameter defaults for Camera 1A (v2.0 and above)

(Note the orientation is the same as camera 1A default orientation: the virtual camera is pointing in the same direction)

Design – virtual cameras – parameter XX

Design – virtual cameras – parameter Z1

Design – virtual cameras – parameter Z2

Design – virtual cameras – HFOV & VFOV

Design – virtual cameras – FlipX, FlipY

- If the Virtual Camera is simulating a rear view mirror
 - Check FlipX to laterally invert the image

User can define how ASL360 responds to inputs

- Change Screens in response to vehicle signals
 - E.g. Reverse engaged, Door open, Indicators, Vehicle speed, etc.
- ASL360 inputs:
 - 4 x Opto-isolated
 - OPTO1, OPTO2, OPTO3, OPTO4
 - 'True' (activated) when a current flows from opto inputs + to -
 - 4 x Non-isolated (but protected)
 - GPIO1, GPIO2, GPIO3, GPIO4
 - Ideal for volt free switches (though can be driven)
 - 'True' (activated) when pulled down to ground
 - GPIO4 can be used to count Tacho pulses
- Available in Configuration Tool v2.4 onwards

Other features:

- 4 x Timers
- Outputs: Camera power, digital output, relay output
- "View loop" (list of screens to display)

Generalised model to describe desired functionality

- Very simple, e.g. show only one screen, or
- Complex, e.g. multiple screens, multiple inputs, multiple timers, complex behaviour

Generalised state model can describe any desired functionality

- Setup editor under ECU/Screen Activation Setup
 - Opens Event Handling table
- **Event Handling table**
 - Describes in tabular form exactly the same information as the state diagram
 - ASL360 looks at each row in order, trying to find a matching transition
 - In some cases, care must be taken to put transitions in the correct order

- Cell content defined by drop down menus (left click to select)
 - Input and state resources can be seen in drop down menus

- Cell content defined by drop down menus (left click to select)
 - State and Action resources can be seen in drop down menus

- Simplest useful case: no interactivity
 - Show a screen when ECU starts up

- Activity can be independent of state
 - Note multiple events can be defined

Respond to external events

- Show Screen2 when OPTO1 goes active, show Screen1 when OPTO1 goes inactive
 - OPTO1 inactive = not(OPTO1)

Respond to external events + use of Guard

- Use Guard to control if Event should be responded to
 - Single or multiple Guards can be defined

Respond to external event + use of timer

- Show Screen2 when OPTO1 becomes active, show Screen1 10 seconds later
- 4 timers are available; duration: 0.1 second to over 100 minutes
- Note multiple actions (here Screen2 and T1 Start) require 2 transitions / rows

Cross reference to row number in Event Handling table

Respond to external event: vehicle speed

- Show Screen2 when speed rises over 30 kph, show Screen5 when speed drops below 20 kph
- Configurable Tacho parameters: Number pulses per km, longest measurement duration allowed, % error allowed
 - Note: only 1 OVERSPEED and 1 UNDERSPEED value allowed

View Loop – a sequence of screens

- View Loop Screens: up to 15 in sequence, each selected by drop down menu
- ViewLoop Reset shows 1st screen in the sequence
- ViewLoop Step shows the next screen in the sequence; at end wraps to start

Cross reference to row number in Event Handling table

View Loop - example useful for demonstrations

- View Loop manually stepped by pushbutton or stepped automatically on timer
- Defaults to manual mode, long press to move to automatic mode, momentary press returns to manual mode.

Cross reference to row number in Event Handling table

- **Built-in default design**
- 8 screens
- Responding to:
 - Reverse gear
 - Door open
 - Indicators (flashing)
 - Speed (via tacho)
- Simple aspects:
 - Starts by showing Screen1
 - **OPTO1** shows Screen2
 - **OPTO2** shows Screen3

- **Built-in default design**
- 8 screens
- Responding to:
 - Reverse gear
 - Door open
 - Indicators (flashing)
 - Speed (via tacho)
- Simple aspects:
 - Starts by showing Screen1
 - **OPTO1** shows Screen2
 - OPTO2 shows Screen3

Caution: if no Event Handling is defined

- ASL360 will not show any user defined screen
 - Disclaimer screen remains visible

Either:

Define required interactivity

or

- Use built-in default design (previous page)
 - With no csd file loaded start 'Screen Activation Setup'
 (Or load csd file created pre v2.4)
 - Built-in default design is automatically loaded