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Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming
number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves
both genetic and environmental factors. There are many reports of cytokine imbalances in ASD.
These imbalances could have a pathogenic role, or they may be markers of underlying genetic and
environmental influences. Cytokines act primarily as mediators of immunological activity, but
they also have significant interactions with the nervous system. They participate in normal neural
development and function, and inappropriate activity can have a variety of neurological
implications. It is therefore possible that cytokine dysregulation contributes directly to neural
dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection,
disease, and toxic exposures. Therefore, imbalances may represent an immune response to
environmental contributors to ASD. The following review is presented in two main parts. First, we
discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and
focus on their role in the nervous system. Second, we explore several neurotoxic environmental
factors that may be involved in the disorders, and focus on their immunological impacts. This
review represents an emerging model that recognizes the importance of both genetic and
environmental factors in ASD etiology. We propose that the immune system provides critical
clues regarding the nature of the gene by environment interactions that underlie ASD
pathophysiology.
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Introduction
Autism spectrum disorders (ASD) are clinically variable neurodevelopmental disorders that
arise in early childhood. ASD is diagnosed in 1 out of every 88 children in the United States,
and is characterized by stereotypic behaviors and impaired language and communication
(American Psychiatric Association 1994; Lord, Rutter et al. 1994; Prevention 2009; CDC
2012). The biological basis of ASD remains largely elusive. Postmortem investigations have
demonstrated abnormal brain growth, including neuronal overgrowth in some regions
(Courchesne, Mouton et al. 2011), and undergrowth in others (Schumann and Amaral 2006).
Altered ratios of excitatory to inhibitory signaling in the brain may also contribute to ASD
(Fatemi, Halt et al. 2002; Rubenstein and Merzenich 2003; Fatemi, Reutiman et al. 2010;
Yizhar, Fenno et al. 2011). Inheritance analyses have demonstrated a large genetic
component, although a recent twin study suggests that non-genetic environmental factors
also make a substantial contribution (Hallmayer, Cleveland et al. 2011; Ronald and Hoekstra
2011). A multitude of genes have been implicated in autism, but only a few cases can be
traced to specific rare genetic variants, and many of the implicated genes are also found in
typically developing populations (State and Levitt 2011). Collectively, these findings
suggest that autism results from complex interactions between multiple susceptibility genes
and environmental factors.

A growing body of evidence implicates immunological disturbances in ASD. Several of the
genes linked to ASD have critical roles in immune signaling, activation, and regulation
(Torres, Maciulis et al. 2002; Campbell, Sutcliffe et al. 2006; Lee, Zachary et al. 2006;
Torres, Sweeten et al. 2006; Varga, Pastore et al. 2009; Orlova and Crino 2010). Individuals
with autism and their family members (primarily mothers) demonstrate increased
autoimmunity, altered cellular immunity, and skewed expression of soluble mediators like
cytokines (Vargas, Nascimbene et al. 2005; Braunschweig, Ashwood et al. 2008; Li,
Chauhan et al. 2009; Morgan, Chana et al. 2010; Goines, Haapanen et al. 2011; Onore,
Careaga et al. 2011). Cytokine abnormalities in ASD are an important clue for researchers as
they might result from genetic and environmental factors, and may contribute directly to
neurological dysfunction. The following considers the neurological significance of cytokine
dysregulation in ASD, and how environmental factors can modulate the cytokine response.

Cytokines: The common language between the immune and nervous system
The immune system and the nervous system interact extensively. It is therefore not
surprising that immune dysfunction is often noted in neurological disorders. Immune
mediators known as cytokines are key facilitators of cross-systemic communication.
Cytokines are proteins that control the nature, duration, and intensity of an immune
response. They are highly pleiotropic, and can act in an autocrine, paracrine, and/or
endocrine fashions. Immune cells, including dendritic cells, macrophages, neutrophils, T
cells, and B cells, are the primary source of cytokines; though many additional cell types,
including neurons, produce and respond to them. Cytokines share structural similarities and
signaling pathways with neurotrophins and neurologically relevant growth factors. In many
ways, cytokines represent a common language between the immune system and the nervous
system.

Cytokines influence both the development and function of the nervous system. Their
significance varies based on the timing, duration, and intensity of the neuro-immune
interaction. For example, cytokines impact the developing brain differently than the adult
brain; and may be beneficial at one concentration while harmful at another. Cytokines are
involved in normal aspects of neurodevelopment, including progenitor cell differentiation,
cellular localization/migration within the nervous system, and synaptic network formation
(Deverman and Patterson 2009). During infection and illness, cytokines mediate
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neurological changes associated with fever and sickness behavior by signaling directly to the
hypothalamus (Dantzer 2001; Skurlova, Stofkova et al. 2006). Emerging evidence also
implicates cytokines in higher order neurological functions, including cognition and memory
(McAfoose and Baune 2009; Derecki, Cardani et al. 2010). Imbalanced cytokine production,
signaling, and/or regulation can therefore have a wide range of neurological consequences.

Cytokines in ASD
Aberrant expression of cytokines and their signaling intermediaries is often noted in ASD
(Table 1). This is observed in the brain (Vargas, Nascimbene et al. 2005; Grigorenko, Han et
al. 2008; Voineagu, Wang et al. 2011; Ziats and Rennert 2011) peripheral blood (Molloy,
Morrow et al. 2006; Ashwood, Krakowiak et al. 2011) and the gastrointestinal tract
(DeFelice, Ruchelli et al. 2003; Ashwood, Anthony et al. 2004). Cytokine imbalances during
development and/or throughout life could impact neural activity and mediate behavioral
aspects of the disorder. The following considers the significance of several cytokines linked
to ASD.

Interleukin (IL)-1B
IL-1Β is an inflammatory cytokine expressed very early in immune responses (Jiang, Tian et
al. 1997). In tissue, IL-1Β propagates inflammation by activating local immune cells and the
vascular endothelium. Systemically, IL-1Β stimulates IL-6 production and eventually an
acute phase response in the liver. Systemic IL-1Β can cross the blood brain barrier (Banks,
Ortiz et al. 1991) and stimulate its own expression in the hypothalamus, which leads to
neuroendocrine changes associated with fever and sickness behavior (Dantzer 2001;
Skurlova, Stofkova et al. 2006). IL-1Β receptors are structurally related to toll-like receptors
(TLRs), and signaling is achieved through NF-κB and MAP kinase (MAPK) signaling
cascades (O'Neill 2000). IL-1Β belongs to an evolutionarily conserved family of proteins
that function beyond immunity (Barksby, Lea et al. 2007). It shares structural homology
with fibroblast growth factors (Zhang, Cousens et al. 1991), which are critical in embryonic
neurodevelopment, and are implicated in autism and schizophrenia (Tabares-Seisdedos and
Rubenstein 2009; Stevens, Smith et al. 2010).

Genes for IL-1Β, its receptor, and its receptor-associated proteins are associated with
intellectual disability, schizophrenia, and autism (Katila, Hanninen et al. 1999; Piton,
Michaud et al. 2008; Handley, Lian et al. 2010). Children and adults with autism have
increased plasma IL-1Β and skewed cellular IL-1Β responses following stimulation
(Ashwood, Krakowiak et al. 2011; Suzuki, Matsuzaki et al. 2011). Compared to controls,
monocytes from children with ASD produce excessive IL-1Β following LPS exposure
(Jyonouchi, Sun et al. 2001; Enstrom, Onore et al. 2010), and lower levels following
exposure to TLR 9 agonists (Enstrom, Onore et al. 2010). The IL-1 antagonist, IL-1ra, is
also increased among ASD subjects (Suzuki, Matsuzaki et al. 2011). IL-1ra reduces
inflammation by competing for the IL-1Β receptor, and increased levels may represent an
attempt to counteract inflammation in ASD. Postmortem brains from ASD subjects had
normal IL-1Β levels (Li, Chauhan et al. 2009), but given that peripheral IL-1Β can enter the
brain (Banks, Ortiz et al. 1991), increased systemic levels could directly impact neurological
processes.

IL-1Β disruption can have a variety of neurological consequences relevant to autism. The
cytokine and its receptors are found throughout the nervous system during critical
developmental periods (Giulian, Young et al. 1988). IL-1Β induces neural progenitor cell
proliferation in some CNS regions, while inhibiting it in others (de la Mano, Gato et al.
2007). This could contribute to the region-specific overgrowth and undergrowth observed in
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the ASD brain. Excitatory synapse formation is partially mediated by the IL-1 receptor and
receptor-associated proteins (Yoshida, Yasumura et al. 2011).

Altering these proteins can tip the balance between excitatory and inhibitory signaling,
which might underlie neurological features of autism (Rubenstein and Merzenich 2003).
Increased IL-1ra in autism suggests an attempt to counterbalance IL-1Β and may or may not
be beneficial. Following brain injury, IL-1ra upregulation serves a neuroprotective role by
dampening excessive inflammation (Loddick and Rothwell 1996). However, if administered
during critical windows of neurodevelopment, IL-1ra can negatively impact neurogenesis,
brain morphology, memory consolidation, and behavior (Spulber, Oprica et al. 2008;
Spulber, Bartfai et al. 2010; Spulber, Bartfai et al. 2011). This shows that some level of
IL-1B signaling is essential during development. In adulthood, IL-1Β is implicated in CNS
disorders like Alzheimer’s disease and the advancement of amyloid-containing plaques
(Griffin, Sheng et al. 1995). While excessive IL-1B contributes to pathology in some cases,
it may have a protective role in others. For example, IL-1Β limits neuronal damage
following excitotoxic exposures (Strijbos and Rothwell 1995), and mice lacking IL-1Β fail
to undergo remyelination following experimental autoimmune encephalitis (EAE) induction
(Mason, Suzuki et al. 2001). IL-1Β is involved in higher order brain processes and is
induced in the hippocampus during learning processes, and is critical for maintenance of
long-term potentiation (LTP) (Ross, Allan et al. 2003). Both over expression (Barrientos,
Frank et al. 2009) and under expression of IL-1 beta (Goshen, Kreisel et al. 2007;
Labrousse, Costes et al. 2009)are associated with impairments in memory and learning.

In summary, IL-1Β participates in neurological processes, and appears to have a role in both
CNS pathology and healing. Normal, homeostatic levels of IL-1Β and its antagonist IL-1ra
are necessary for proper brain development and function. This “Goldilocks” state is typical
of many cytokines, where too much or too little is not desirable. Alterations in IL-1Β
systems due to genetic mechanisms or environmental exposures may contribute to autism.

Interleukin (IL)-6
IL-6 is an inflammatory cytokine that shares functional properties with IL-1Β. Like IL-1Β,
IL-6 is produced early in immune reactions, although it appears later and persists longer
(Jiang, Tian et al. 1997). IL-6 is best known for stimulating the acute phase response in the
liver, generating fever, and activating lymphocytes. Despite the functional similarities with
IL-1Β, IL-6 differs drastically in terms of structure and signaling properties. It is a member
of the neuropoietic cytokine family, which includes leukemia inhibitory factor (LIF), ciliary
neurotrophic factor (CNTF), and IL-11. These cytokines signal through a gp130 receptor
complex (Ward, Howlett et al. 1994), and activate JAK-STAT (specifically STAT 3) and
MAPK signaling pathways (Heinrich, Behrmann et al. 2003). In addition to their
inflammatory properties, neuropoietic cytokines have a number of well-described roles in
the nervous system, and are intricately involved in neurodevelopment and function (Bauer,
Kerr et al. 2007; McAfoose and Baune 2009). IL-6 and its receptors are expressed at low
levels in the healthy brain (Gadient and Otten 1994; Gadient and Otten 1994) and at higher
levels in a variety of disease states (Huell, Strauss et al. 1995; Hang, Shi et al. 2004).
Peripheral IL-6 can cross the blood brain barrier and influence a variety of processes in the
adult brain (Banks, Kastin et al. 1994).

Prenatal cytokine imbalances may contribute to neurodevelopmental disorders like autism
and schizophrenia through “fetal programming”. Fetal programming is the concept that
maternal factors like inflammation and chronic stress can alter the gestational environment,
skew development, and lead to long term physiological and behavioral consequences
(Patterson 2009; Bilbo 2010). IL-6 readily crosses the placenta and enters fetal tissues,
which is unique among cytokines, and can induce changes in placental physiology and gene
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expression (Zaretsky, Alexander et al. 2004; Aaltonen, Heikkinen et al. 2005; Dahlgren,
Samuelsson et al. 2006; Hsiao and Patterson 2011). Animal models show that IL-6 is
necessary and sufficient to alter neurodevelopmental outcomes, leading to changes in
behavior, cognition, neuropathology, GABA dysregulation, and skewed immune function
among offspring (Samuelsson, Jennische et al. 2006; Smith, Li et al. 2007). Similar effects
are seen with prenatal exposure to infection or the infectious mimic poly I:C (Smith, Li et al.
2007; Malkova, Yu et al. 2012). IL-6 can impact a variety of processes in the developing
brain. IL-6 and its family members regulate self-renewal among neuronal precursors
(Escary, Perreau et al. 1993; Yoshimatsu, Kawaguchi et al. 2006), direct neuronal migration
(Wei, Zou et al. 2011), promote cell survival (Kushima, Hama et al. 1992), and regulate
neurite outgrowth (Ihara, Nakajima et al. 1997). IL-6 exposure during critical windows can
also alter synaptic networks. Chronic IL-6 overexpression reduces expression of glutamate
receptors and L-type calcium channels in culture and in vivo (Vereyken, Bajova et al. 2007),
and increases the ratio of excitatory to inhibitory synapses in cultures of cerebellar granular
cell cultures (Wei, Zou et al. 2011). This is of particular interest in autism, given that
skewed excitatory and inhibitory ratios may be an underlying factor in its pathogenesis.

Despite intriguing evidence from animal models, two recent human studies question whether
gestational IL-6 alone contributes to autism. A retrospective examination of IL-6 in archived
mid-pregnancy maternal serum and amniotic fluid showed that increased levels associated
with developmental disorders, but not autism (Abdallah, Larsen et al. 2011; Goines, Croen
et al. 2011). This suggests that gestational IL-6 might be a marker for neurodevelopmental
diseases, but is insufficient on its own to cause ASD. IL-6 can affect many sequential phases
of neurodevelopment, so the timing of the exposure will largely dictate the neurological
outcome. Therefore, excessive IL-6 during one phase of neurodevelopment could have one
set of consequences, while similar expression during another phase has an entirely different
effect. A longitudinal examination of IL-6 throughout gestation is therefore needed to obtain
a more complete picture of its relevance in neurodevelopmental disorders.

IL-6 can also impact processes in the adult brain, and physiological levels are critical for
homeostasis, cognition, learning, and memory. Physiological levels of IL-6 are critical for
normal CNS function, and both over and under expression leads to neurological problems.
Mice overexpressing IL-6 in the CNS have overt symptoms including tremor, ataxia, and
seizure (Campbell, Abraham et al. 1993), and more subtle alterations in cognition and
avoidance behaviors (Heyser, Masliah et al. 1997). IL-6 is transcribed in the hippocampus
during LTP (Balschun, Wetzel et al. 2004). Overexpression of IL-6 reduces LTP (Bellinger,
Madamba et al. 1995; Li, Katafuchi et al. 1997), whilst under expression increases it and
improves learning and memory (Balschun, Wetzel et al. 2004; Braida, Sacerdote et al.
2004). With regard to social behaviors, mice overexpressing IL-6 are more social than mice
that lack the cytokine, while mice lacking IL-6 demonstrate higher aggression and
emotionality (Alleva, Cirulli et al. 1998; Armario, Hernandez et al. 1998).

Many independent studies show IL-6 dysregulation in individuals with autism. Children and
adults with the disorder have higher circulating IL-6 levels compared to typical controls
(Emanuele, Orsi et al. 2010; Ashwood, Krakowiak et al. 2011). Further, cellular IL-6
production is increased with and without stimulation (Jyonouchi, Sun et al. 2001; Enstrom,
Onore et al. 2010; Malik, Sheikh et al. 2011). Increased IL-6 is also found in postmortem
brain specimens from ASD subjects. Specifically, immunohistochemical analysis of
cerebellar sections showed significantly more IL-6 staining in autism postmortem brain
specimens (Wei, Zou et al. 2011). Two additional analyses of homogenates of the frontal
cortex and anterior cingulate gyrus also showed higher IL-6 levels (Vargas, Nascimbene et
al. 2005; Li, Chauhan et al. 2009). Given the ability of IL-6 to impact processes in the adult
brain, it is conceivable that increased IL-6 in autism could contribute to ongoing aspects of
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the disorder. Alternatively, it might be an epiphenomenon, and represent a biomarker of
infectious or toxic environmental exposures and altered biological homeostasis.

In summary, there is extensive evidence that IL-6 can alter neurodevelopment and function.
While it is unclear whether gestational IL-6 in humans is related to autism, a dysregulation
of IL-6 is observed later in life in individuals with autism. The significance of these findings
is unclear, and may be the result of other genetic and environmental factors in autism. These
possibilities warrant further investigation.

Interleukin (IL)-4
IL-4 is a class I cytokine that activates Jak/Stat (STAT 6), MAPK, and PI3 kinase signaling
cascades (Nelms, Keegan et al. 1999). Immunologically, IL-4 has a variety of interesting
roles, and can 1) induce “alternatively activated” macrophages that promote tissue repair
over inflammation 2) activate basophils and mast cells, 3) promote B-cell isotype switching
towards IgG1 and IgE, 4) participate in immune responses against helminthes by inducing
epithelial cell turnover in the gut, and 5) participate in allergy and asthma-related immune
responses (Kuperman and Schleimer 2008; Byers and Holtzman 2011; Oliphant, Barlow et
al. 2011).

The receptors for IL-4 are expressed in the brain under normal conditions throughout life
(Nolan, Maher et al. 2005). During development, IL-4 promotes oligodendrogenesis among
neuronal progenitor cells, (Butovsky, Ziv et al. 2006), and improves survival in embryonic
hippocampal cultures (Araujo and Cotman 1993). IL-4 influences retinal circuitry by
regulating progenitor cell proliferation and differentiation (da Silva, Campello-Costa et al.
2008). During later phases of neurodevelopment, IL-4 can alter synapse formation;
increasing the proportion of GABAergic synapses in cell culture models (Sholl-Franco,
Marques et al. 2002).

Two recent studies have linked developmental IL-4 exposures to autism, though its role in
pathogenicity versus protection is unclear. Mothers giving birth to a child with autism show
higher levels of IL-4 in mid-pregnancy serum samples (Goines, Croen et al. 2011) and
amniotic fluid (Abdallah, Larsen et al. 2011) compared to controls. IL-4 is not thought to
cross the placenta, and maternal serum and amniotic fluid IL-4 may or may not relate to IL-4
in fetal tissues. Other cytokines were also upregulated in these archived samples, including
IFN-γ, TNF-α, and the anti-inflammatory cytokine IL-10. This raises the question of
whether IL-4 acts alone, or in concert with other cytokines. Increased IL-4 may represent a
regulatory reflex to inflammation along with IL-10. IL-4’s role in pregnancy and fetal health
is unclear. Increased levels during pregnancy have been associated with poor outcomes such
as preterm labor (Dudley, Hunter et al. 1996) but also healthy outcomes such as protection
from preeclampsia (Kronborg, Gjedsted et al. 2011; Rajakumar, Chu et al. 2011). More
subtle neurodevelopmental outcomes have not thoroughly been explored with respect to
gestational IL-4.

In the adult brain, IL-4 largely serves a neuroprotective role, and is associated with higher
order cognitive processes. It is upregulated during CNS inflammation, inducing alternative
activation of glial cells and protecting from apoptosis (Garg, Kipnis et al. 2009; Sholl-
Franco, da Silva et al. 2009; You, Luo et al. 2011). In a mouse model for Alzheimer’s
disease, IL-4 can attenuate disease progression (Kiyota, Okuyama et al. 2010). Following
LPS exposure, IL-4 reduces inflammation and improves memory and LTP in the aged
hippocampus (Nolan, Maher et al. 2005). An elegant study by Derecki et al showed that
IL-4-producing T cells accumulate in the meningeal spaces during cognitive tasks.
Depletion of IL-4 led to an inflammatory phenotype among meningeal myeloid cells, and a
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dramatic decline in cognitive capacity. Remarkably, cognitive deficits in IL-4 deficient mice
could be reversed by reintroducing the cytokine in adulthood (Derecki, Cardani et al. 2010).

Among individuals diagnosed with autism, plasma and CNS IL-4 levels appear to be normal
(Vargas, Nascimbene et al. 2005; Li, Chauhan et al. 2009; Ashwood, Krakowiak et al.
2011). However, IL-4 producing T cells are proportionately higher in children with autism
compared to controls (Gupta, Aggarwal et al. 1998). Given the evidence that meningeal IL-4
producing T cells are critical for normal cognitive function in adulthood, it is possible that
dysregulation in this cell population could contribute to altered behavior throughout life
(Derecki, Cardani et al. 2010).

Collectively, IL-4 serves a variety of neurological roles, and is increased in autism. Its role
during gestation is unclear due to a dearth of in-vivo studies of pregnancy and
neurobehavioral outcomes following developmental IL-4 exposures. The significance of
increased IL-4 producing T cells in subjects with autism is also unclear. Extensive evidence
suggests that IL-4 is neurologically beneficial, so it may be that increased IL-4 in autism
represents an immunological attempt to regulate other detrimental processes, and does not
contribute to the disease itself. Future studies should explore this possibility.

Interferon-gamma (IFN-γ)
Interferon gamma (IFN-γ) is the sole type II interferon. It shares some functional
similarities with type I interferons like IFN-α and IFN-Β but has unique structural features,
receptors, and signaling pathways. IFN-γ is produced primarily by T cells and Natural
Killer (NK) cells during cell-mediated immune responses, and functions largely to activate
macrophages and combat viral infections (Boehm, Klamp et al. 1997; Schroder, Hertzog et
al. 2004). It signals mainly through the JAK/STAT (STAT1), and MAPK cascades (Hu, Roy
et al. 2001; Platanias 2005). IFN-γ and IL-4 counterbalance one another’s activity via TH1/
TH2 interactions, so dysregulation in one cytokine often impacts the other. It is therefore not
surprising that both cytokines are implicated in ASD.

Developmental exposure to IFN-γ has been linked to autism. Mothers of children with
autism have higher serum IFN-γ during the second trimester compared to controls (Goines,
Croen et al. 2011). Like IL-4, IFN-γ does not cross the placenta, and the relationship
between maternal serum levels and fetal exposure to the cytokine is unclear. If the cytokine
is present in fetal tissues, it could interfere with normal neural development and synapse
formation. IFN-γ promotes neuronal differentiation among neural progenitor cells (Barish,
Mansdorf et al. 1991; Jonakait, Wei et al. 1994; Wong, Goldshmit et al. 2004; Butovsky, Ziv
et al. 2006; Zahir, Chen et al. 2009; Leipzig, Xu et al. 2010; Li, Walker et al. 2010),
however, these cells appear to be abnormal and exhibit compromised function and strange
patterns of neuronal marker expression (Walter, Honsek et al. 2011). IFN-γ also impacts
dendritic morphology and synapse formation, leading to long-term changes in cellular
connectivity and communication. Depending on cell culture conditions, IFN-γ either
promotes or inhibits dendrite outgrowth through STAT 1 and MAPK signaling pathways
(Barish, Mansdorf et al. 1991; Kim, Beck et al. 2002; Wong, Goldshmit et al. 2004; Song,
Wang et al. 2005; Andres, Shi et al. 2008). In culture, excessive IFN-γ alters patterns of
excitatory signaling and receptor expression (Vikman, Owe-Larsson et al. 2001), and
animals lacking the cytokine have fewer pre-synaptic terminals (Victorio, Havton et al.
2010). Interestingly, mice overexpressing IFN-γ show increased MHC I in the brain
(Corbin, Kelly et al. 1996). MHC I is critical for T cell and NK cell recognition of self and
foreign entities, and was historically thought to be absent in the CNS. However, recent
studies have demonstrated that it is expressed in the CNS, and has an essential role in
synapse formation and plasticity (Shatz 2009). IFN-γ may therefore induce abnormalities in
synaptic organization by altering MHC I expression. Collectively, these studies show that
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direct exposure to IFN-γ can cause abnormal neurodevelopment, which may explain
features of autism.

If excess IFN-γ is not present in fetal tissues, excessive maternal levels could have an
indirect impact on fetal development. Interestingly, IFN-γ has a variety of critical roles in
pregnancy, and directs aspects of placental development, health, and maintenance (Murphy,
Tayade et al. 2009). Increased gestational IFN-γ is associated with adverse pregnancy
outcomes including recurrent miscarriage (Jenkins, Roberts et al. 2000). Therefore, IFN-γ
might be an indicator of compromised health in pregnancy, which could lead to
neurodevelopmental abnormalities.

Peripheral IFN-γ is up-regulated in a number of neurological disorders including multiple
sclerosis (Martins, Rose et al. 2011) and Down’s syndrome (Torre, Broggini et al. 1995).
Individuals with autism also have increased plasma levels of IFN-γ (Singh 1996), which
correlates with other peripheral inflammatory mediators such as nitric oxide (Sweeten,
Posey et al. 2004). Peripheral immune cells from ASD subjects produce higher basal levels
of IFN-γ but fail to respond further following immunological stimulation (Gupta, Aggarwal
et al. 1998; Croonenberghs, Bosmans et al. 2002; Enstrom, Lit et al. 2009). In addition to
peripheral IFN-γ dysregulation, postmortem brain specimens showed increased levels of
IFN-γ (Li, Chauhan et al. 2009), suggesting IFN-γ may directly impact CNS processes in
autism. In the developed nervous system, IFN-γ is historically associated with
neurodegeneration, although some evidence suggests it may have a beneficial role. IFN-γ
can cross the blood brain barrier at low levels (Pan, Banks et al. 1997), but is barely
detectable in the healthy nervous system (Traugott and Lebon 1988; De Simone, Levi et al.
1998). In the CNS, IFN-γ is up-regulated following infectious exposures (De Simone, Levi
et al. 1998), and in diseases including cerebral palsy (Folkerth, Keefe et al. 2004), multiple
sclerosis (Traugott and Lebon 1988), HIV dementia (Nolting, Lindecke et al. 2009), and
Parkinson’s (Barcia, Ros et al. 2011; Mangano, Litteljohn et al. 2011). High levels are
harmful in cell culture, and cause enhanced glutamate induced neurotoxicity (Mizuno,
Zhang et al. 2008). However, in cell culture and in vivo, low IFN-γ levels reduce oxidative-
stress induced apoptosis through activation of astrocytes (Garg, Kipnis et al. 2009; Victorio,
Havton et al. 2010) and may be neuroprotective in some cases. In a mouse model of
Alzheimer’s disease, overexpressing IFN-γ actually attenuated plaque formation
(Chakrabarty, Ceballos-Diaz et al. 2010), whilst protective roles for IFN-γ have been
suggested during some phases of demyelaniting autoimmune disorders (Kumar and Sercarz
1998). It is therefore difficult to determine whether IFN-γ has a pathogenic role in ASD, or
if it represents a potentially beneficial immune response to damage associated with genetic
and/or environmental influences.

Transforming Growth Factor-beta (TGF-Β)
TGF-Β is a highly pleiotropic cytokine that maintains immune homeostasis, directs
lymphocyte differentiation, and orchestrates aspects of embryonic development. TGF-Β is
largely immunosuppressive; limiting excessive T cell activity and inflammation (Mantel and
Schmidt-Weber 2011). It exists in three isoforms, each with distinct and overlapping roles.
TGF-Β1 is best characterized, and is the founding member of the TGF-Β superfamily of
proteins, which includes growth differentiation factors, bone morphogenic proteins (BMPs),
activins, and inhibins (Kingsley 1994). TGF-Β superfamily signaling occurs largely via
SMAD pathways, though MAPK cascades are also triggered (Yu, Hebert et al. 2002; Shi
and Massague 2003).

TGF-Β superfamily proteins are critical for proper neurodevelopment. For example, BMPs
have an important role in early neural induction and differentiation (Reissmann, Ernsberger
et al. 1996; Bachiller, Klingensmith et al. 2000; Tropepe, Hitoshi et al. 2001). TGF-Β1 is
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involved in neuronal migration, survival, and synapse formation. Mice lacking the cytokine
demonstrate improper CNS development, including a disorganized extracellular matrix,
widespread neuronal degeneration, microgliosis, reduced expression of synaptophysin, and
deficits in both glutamatergic and GABAergic synapses (Brionne, Tesseur et al. 2003;
Heupel, Sargsyan et al. 2008; Vashlishan, Madison et al. 2008). Overexpressing TGF-Β in
vivo also disrupts the extracellular matrix, and leads to seizures, motor incoordination,
hydrocephalus, and behavioral abnormalities (Wyss-Coray, Feng et al. 1995; Depino,
Lucchina et al. 2011). Changes in CNS expression levels of IL-6, Neuroligin 3 and reelin are
also observed with TGF- Β overexpression (Depino, Lucchina et al. 2011), which is
intriguing because many of these proteins are altered in autism (Persico, D'Agruma et al.
2001; Laumonnier, Bonnet-Brilhault et al. 2004; Fatemi, Snow et al. 2005). Interestingly,
CNS overexpression of TGF-Β during development vs. adulthood leads to opposite
behavioral consequences (Depino, Lucchina et al. 2011). Early in life, overexpression led to
decreased social behavior and heightened anxiety/depression behaviors, while
overexpression later in life had the exact opposite effect. This highlights the importance of
timing when considering the neurological consequences of cytokine imbalances.

There is no evidence for TGF-Β dysregulation during gestational development in autism.
This doesn’t negate the possibility that it is involved, as these endpoints are extremely
difficult to measure in vivo. However, there is evidence for TGF-Β dysregulation in
individuals diagnosed with the disorder themselves. Plasma TGF-Β is decreased in children
and adults with ASD (Okada, Hashimoto et al. 2007; Ashwood, Enstrom et al. 2008), and
lower levels of the cytokine correlate with more severe autism behaviors (Ashwood,
Enstrom et al. 2008). The connection between low TGF-Β and behavioral phenotype is
unclear, although this finding lends promise to the goal of developing a simple ASD testing
regime based on biological markers in addition to behavioral symptoms. In contrast to
peripheral TGF-Β in ASD, postmortem brain specimens show increased levels compared to
controls (Vargas, Nascimbene et al. 2005). The reason for this periphery/brain disparity is
unclear. Although, TGF-Β does not cross the blood brain barrier (Kastin, Akerstrom et al.
2003), the cytokine and its receptors are expressed normally throughout the nervous system
(Gomes, Sousa Vde et al. 2005) and it is conceivable that peripheral and brain levels are
independent. In the adult brain, TGF-Β is generally thought to be neuroprotective. CNS
levels spike following injury and infection, and increase with age, HIV dementia, and
Alzheimer’s disease, which leads to protection against disease-related neural degeneration
and apoptosis (Henrich-Noack, Prehn et al. 1994; Krupinski, Kumar et al. 1996; Ruocco,
Nicole et al. 1999; Buckwalter and Wyss-Coray 2004; Doyle, Cekanaviciute et al. 2010).
However, TGF-Β can also contribute to pathogenicity. For example, high levels of the
cytokine cause glial scarring and fibrosis (Moon and Fawcett 2001), and increase disease
susceptibility and severity in a murine model of multiple sclerosis (Wyss-Coray, Borrow et
al. 1997).

Overall, the role of TGF-Β in the nervous system is complex, and varies based on the timing
and context of the interaction. Increased TGF-Β in the brain of ASD subjects might
represent a protective reflex to a disease state, or perhaps contribute to the pathology of the
disease itself. In the periphery, ASD subjects have decreased TGF-Β as well as increased
inflammatory markers (Jyonouchi, Sun et al. 2001; Croonenberghs, Bosmans et al. 2002;
Emanuele, Orsi et al. 2010; Ashwood, Krakowiak et al. 2011; Ashwood, Krakowiak et al.
2011). This suggests a global immune dysregulation in ASD, with an improper balance
between regulation and activation, which could have wide reaching consequences for many
systems in the body.
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Environmental factors in autism and immune dysfunction
There is now general consensus that autism has an environmental component (Pessah 2008;
Hallmayer, Cleveland et al. 2011). For our purposes, the “environment” is a broad term used
to define non-genetic, toxic, infectious, and/or immune factors that may contribute to the
disorder. The hypothesis follows that an ill-timed exposure could cause autism in genetically
susceptible individuals (Figure 1). For example, some genes associated with autism may
cause inappropriate immune responses (Heuer 2011; Onore, Careaga et al. 2011), while
others reduce the capacity to deal appropriately with toxins (D'Amelio, Ricci et al. 2005).
These individuals are more susceptible to environmental influences, which could lead to
ASD.

Environmental toxicants can cause both neural and immune dysfunction. This is likely
mediated through disrupted cell signaling and homeostasis. Many toxicants alter calcium
homeostasis, which can have a variety of consequences for immune development and
function (Limke, Otero-Montanez et al. 2003; Toscano and Guilarte 2005; Savignac,
Mellstrom et al. 2007; Vig and Kinet 2009; Pessah, Cherednichenko et al. 2010; Bhatti,
Bhatti et al. 2011). Toxicants can also disrupt endocrine function, which can have a variety
of immunological consequences (Rivest 2010; De Vito, Incerpi et al. 2011; Schug, Janesick
et al. 2011). The following section considers environmental factors that may be related to
autism, and focuses on their role in the immune system.

Heavy Metals
Heavy metals like lead and mercury are widespread environmental toxins. Developmental
exposure to these compounds is associated with lower IQ, endocrine disruptions, and
behavioral disturbances (Bellinger and Dietrich 1994; Steuerwald, Weihe et al. 2000;
Cordier, Garel et al. 2002; Selevan, Rice et al. 2003; Winneke 2011). Heavy metals also
have immunotoxic properties, leading in some instances to autoantibody production
(Waterman, el-Fawal et al. 1994; Bagenstose, Salgame et al. 1999; Rowley and Monestier
2005) and skewed cytokine profiles (discussed below). Both of these immunological
phenomena are observed in ASD (Enstrom, Van de Water et al. 2009; Onore, Careaga et al.
2011). These features have made them possible, though controversial, candidates in autism.

Heavy Metals: Lead
Lead has a variety of toxic mechanisms, and shares structural features with calcium which
allows it to compete for binding sites (Toscano and Guilarte 2005). In addition to its
neurotoxic activity, lead is highly immunotoxic (Toscano and Guilarte 2005; Mishra 2009).
At high levels, it is immunosuppressive, leading to increased production of regulatory
cytokines and enhanced susceptibility to infection (Valentino, Rapisarda et al. 2007). At
lower levels, lead appears to be immunostimulatory (Flohe, Bruggemann et al. 2002). One
study showed that lead can tip the balance between inflammation and regulation by
increasing expression of IFN-γ and reducing TGF-Β (Goebel, Flohe et al. 2000): a cytokine
profile which has been observed in autism (Singh 1996; Gupta, Aggarwal et al. 1998;
Croonenberghs, Bosmans et al. 2002; Ashwood, Enstrom et al. 2008; Enstrom, Lit et al.
2009; Li, Chauhan et al. 2009). Lead and pro-inflammatory cytokines can function in
concert to alter the nervous system. When coadministered to glial cells, lead and cytokines
such as IL-1Β changed matrix metalloproteinase expression in a manner that was not
observed when either was administered alone (Lahat, Shapiro et al. 2002) and suggests that
immune and environmental factors could act synergistically on tissue remodeling.

There are conflicting reports regarding lead in autism. Higher serum lead levels have been
documented in a few studies (Cohen, Johnson et al. 1976; Shannon and Graef 1996; Filipek,
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Accardo et al. 1999), although more recent studies show no difference between autism and
control populations (Tian, Green et al. 2011; Albizzati, More et al. 2012). Polymorphisms in
ALAD, a gene associated with heavy metal toxicity, have been described in ASD (Rose,
Melnyk et al. 2008) leading, some authors to speculate that children with ASD have higher
lead levels due to a decreased capacity to eliminate lead from the body (Kern, Grannemann
et al. 2007). Others suggest increased frequency of pica (hand-to-mouth behaviors) in ASD
may also alter exposures to lead (Cohen, Johnson et al. 1976; Shannon and Graef 1996).
Despite lead’s well-established neurotoxic and immunotoxic mechanisms, it is currently
debatable whether it contributes to autism.

Heavy Metals: Mercury
Mercury exerts its toxicity broadly throughout the body. It binds a wide range of molecular
groups including thiols, hydroxyls, and carboxyls (Bridges and Zalups 2010), and can
dramatically increase intracellular calcium levels (Sakamoto, Ikegami et al. 1996; Limke,
Otero-Montanez et al. 2003). In the immune system, mercury’s effects depend heavily on
genetic background. For example, certain strains of mice reliably develop anti-nuclear
antibodies after mercury exposure, while others do not (Bagenstose, Salgame et al. 1999;
Rowley and Monestier 2005). Mercury also impacts cytokine profiles; and some strains of
mice strongly up-regulate the TH2 cytokine IL-4 in response to mercury, while other strains
up-regulate TH1 cytokines like IFN-γ (Wu, Turner et al. 2001; Hemdan, Lehmann et al.
2007). In two human mast cell lines, mercury exposure was shown to increase IL-6
production (Kempuraj, Asadi et al. 2010). Further, mercury interferes with cytokine-related
signaling cascades including NF-κB and p38 MAPK (Dieguez-Acuna, Ellis et al. 2001;
Kim, Johnson et al. 2002). Altered cytokine repertoires in response to mercury exposure
may contribute to the development of autoimmunity. Interestingly, IL-4 deficient mice
produce autoantibodies in response to mercury exposure (Bagenstose, Salgame et al. 1998;
Kono, Balomenos et al. 1998), while IFN-γ deficient mice do not (Kono, Balomenos et al.
1998), suggesting that autoantibody production is IFN-γ dependent.

The evidence implicating mercury in autism is somewhat contradictory. Several recent
studies have shown no link between mercury body burdens and autism (Ip, Wong et al.
2004; Hertz-Picciotto, Green et al. 2010; Albizzati, More et al. 2012; Wright, Pearce et al.
2012). However, a reanalysis of data generated by Ip et al showed there was in fact an
association between mercury levels and autism that had been overlooked due to a statistical
error (Desoto and Hitlan 2007). Ethyl mercury is a component in the vaccine preservative
thimerosal, which has received attention in recent years. It has neurotoxic capacities, and
can alter calcium signaling and cytokine production (specifically IL-6) (Goth, Chu et al.
2006). While in vitro studies suggest toxic potential for thimerosal, a large number of
independent epidemiological studies show no link to autism (DeStefano 2007; Miller and
Reynolds 2009; Price, Thompson et al. 2010).

Two recent studies examined the correlation between gene transcription profiles (35,000+
genes) and heavy metal body burdens in children with autism and controls (Stamova, Green
et al. 2011; Tian, Green et al. 2011). Mercury loads correlated with the expression of several
immunologically relevant genes across all study participants. Further, there were some
unique correlations in the autism group for genes involved in antigen presentation and
recognition of self. This suggests that individuals with ASD may have a unique
immunological susceptibility to heavy metals, but the significance of these findings is not
clear. Although genomic expression profiles may suggest correlative changes in autism,
analysis of common polymorphisms associated with mercury transport and excretion,
namely MT1a, DMT1, LAT1, and MTF1, were unable to detect any differences in autism
(Owens, Summar et al. 2011). However, in contrast, a different study showed that
polymorphisms in MTF1 and the heavy metal transport gene (SLC11A3) are associated with
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the ASD(Serajee, Nabi et al. 2004). Additional genetic analyses are needed to rectify these
disparate findings.

Pesticides
Pesticides are fairly non-persistent toxic compounds that are deliberately spread throughout
the environment in mass quantities. While minimizing off-target toxicity is a primary goal in
pesticide development, several products have been banned once their toxic potential in
humans was recognized. Developmental exposure to several types of pesticides, including
organophosphates (OPs), organochlorines (OCs), and pyrethroids, is associated with
neurological dysfunction and an increased risk for ASD (Garry, Harkins et al. 2002; Kamel
and Hoppin 2004; Eskenazi, Marks et al. 2007; Roberts, English et al. 2007; Eskenazi, Huen
et al. 2010; Bouchard, Chevrier et al. 2011). Genetic analyses also suggest that individuals
with ASD may be less capable of excreting pesticides, due to expression of a less-active
variant of the OP-metabolizing enzyme paroxonase (D'Amelio, Ricci et al. 2005; Pasca,
Nemes et al. 2006). In addition to their neurotoxicity, many pesticides impact the immune
system and cytokine production, which may be relevant for ASD (Banerjee, Koner et al.
1996; Li 2007).

Pesticides: Organochlorines
Organochlorine (OC) pesticides are structurally and functionally variable toxic compounds
that include members like hexachlorobenzene, dicofol, and DDT; many of which have been
banned (Crinnion 2009). OCs interferes with calcium signaling, voltage sensitive sodium
channels, and GABA receptors, leading to neuro- and immunotoxicity (Casida 2009;
Crinnion 2009; Heusinkveld and Westerink 2012). Immunologically, these compounds
impact both humoral and cell-mediated processes, and reduce the host response to infectious
challenges (Banerjee, Koner et al. 1996; Reed, Dzon et al. 2004; Nagayama, Tsuji et al.
2007). A handful of studies have explored the impact of OCs on cytokine profiles. DDT
reduced IL-2 production in cell culture by interfering with the transcription factor NF-κB
(Ndebele, Tchounwou et al. 2004). Given the central role of NF-κB in cytokine production
and function, this is likely to have a wide-ranging immunological impact. In contrast, cases
of DDT or lindane poisoning in humans is associated with increased serum levels of IL-2,
IL-4, and TNF-alpha, as well as decreased levels of IFN-γ (Daniel, Huber et al. 2002; Seth,
Ahmad et al. 2005). It is not clear why IL-2 production in response to OCs differs in cell
culture versus in vivo. However, the findings of increased IL-4 and decreased IFN-γ in
humans suggest a TH2 immune bias following OC exposure, which could have downstream
consequences for allergic and asthmatic disorders. Similar immune profiles have been
reported in some studies of autism (Gupta, Aggarwal et al. 1998).

Pesticides: Organophosphates
Organophosphates (OP) are esters of phosphoric acid that were introduced as replacements
for various banned OC pesticides. They act primarily through acetylcholinesterase (AChE)
inhibition, leading to altered cholinergic signaling, parasympathetic and sympathetic
perturbations, seizures, and/or respiratory arrest. OPs can also be toxic in the absence of
AChE inhibition, and may induce higher order neural and cognitive dysfunction (Duysen, Li
et al. 2001; Costa 2006; Pancetti, Olmos et al. 2007). Some OP developmental effects are
more severe in males than females (Levin, Addy et al. 2001; Levin, Timofeeva et al. 2010),
which is intriguing given that autism also has a heavy male bias (Baron-Cohen, Knickmeyer
et al. 2005).

OPs induce a variety of immunological phenomena relevant to autism (Galloway and Handy
2003; Li 2007). In general, OPs appear to induce a prolonged inflammatory state that may
evolve into an adaptive response characterized by up-regulation of both TH1 and TH2
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cytokines. Acute OP intoxication is related to system-wide production of inflammatory
mediators (Hamaguchi, Namera et al. 2006; Roeyen, Chapelle et al. 2008; Anand, Singh et
al. 2009). Within the CNS, acute and chronic exposure to OPs results in increased
inflammatory cytokines including IL-1Β and IL-6 in multiple brain regions (Svensson,
Waara et al. 2001; Henderson, Barr et al. 2002; Williams, Berti et al. 2003; Dhote,
Peinnequin et al. 2007; Dillman, Phillips et al. 2009; Johnson and Kan 2010); similar to
findings in the autism brain (Vargas, Nascimbene et al. 2005; Li, Chauhan et al. 2009). OP
induced inflammation can be long term, re-emerging and persisting long after the initial
exposure (Chapman, Kadar et al. 2006). In primary cultures of human peripheral blood cells
or astrocytes, the OP pesticide chlorpyrifos up-regulates IL-6 and IFN-γ production and the
expression of related genes (Mense, Sengupta et al. 2006). Children born to mothers
working in agriculture had higher production of TH2 cells at 12 and 24 months of age.
(Duramad, Harley et al. 2006; Duramad, Tager et al. 2006). An immunosuppressive
response can also be induced following exposure to various OPs, perhaps as a reflex to the
toxin’s initial inflammatory properties (Williams, Berti et al. 2003; Damodaran, Greenfield
et al. 2006; Dhote, Peinnequin et al. 2007). Collectively, these data suggest that OPs impact
cytokine profiles in the short and long term, increasing inflammatory cytokines, TH1 and
TH2 profiles and compensatory regulatory activity.

Pesticides: Pyrethroids
Pyrethroids are a group of insecticides and repellants derived from natural compounds in the
Chrysanthemum genus of plants. They mediate their toxicity by disrupting calcium
signaling, interfering with voltage sensitive sodium channels, and inducing oxidative stress
(Shafer, Meyer et al. 2005; Soderlund 2012). Exposure to these compounds is associated
with a wide range of neurodevelopmental problems in mammalian models (Shafer, Meyer et
al. 2005; Wolansky and Harrill 2008). Immunological abnormalities are also linked to
pyrethroids. In human peripheral blood mononuclear cells, exposure to several different
pyrethroid compounds suppressed both IFN-γ and IL-4 expression in a time and
concentration dependent manner (Diel, Horr et al. 2003). In a monocytic cell line, various
synthetic pyrethroids and their metabolites reduced expression of immunoregulatory IL-10,
and increased production of more inflammatory cytokines IL-12 and TNF-α (Zhang, Zhao
et al. 2010). In a Xenopus laevis model, application of environmentally relevant
concentrations of various pyrethroids increased IL-1Β expression (Martini, Fernandez et al.
2010). In primary human fetal astrocytes, the pyrethroid pesticide cyfluthrin was found to
have an activating effect, and increased the expression of genes involved in IFN-γ and IL-6
production and signaling (Mense, Sengupta et al. 2006)

Halogenated Aromatic Hydrocarbons
Halogenated aromatic hydrocarbons are toxic compounds that are highly resistant to
degradation. Two examples are polychlorinated biphenyls (PCBs) and polybrominated
diphenyl ethers (PBDEs). PCBs and PBDEs consist of two aromatic rings with various
chlorine (PCBs) or bromine (PBDEs) substitutions. There are over two hundred different
congeners each of PCBs and PBDEs, which differ based on the number and orientation of
halogen substitutions. Toxicity in this class of molecules is congener-specific, and involves
varying degrees of 1) interaction with the Aryl hydrocarbon receptor (Ahr) (Mitchell and
Elferink 2009; Gu, Goodarzi et al. 2012), 2) disruption of endocrine systems (Morse, Groen
et al. 1993; Van Birgelen, Smit et al. 1995; Stoker, Cooper et al. 2005; Kuriyama, Wanner et
al. 2007; Lema, Dickey et al. 2008), and/or 3) interference with calcium homeostasis
through interactions with the ryanodine receptor (Coburn, Curras-Collazo et al. 2008;
Pessah, Lehmler et al. 2009; Pessah, Cherednichenko et al. 2010; Kim, Bose et al. 2011;
Langeveld, Meijer et al. 2012). These toxic mechanisms have both neurological and
immunological significance.
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Children with ASD may be uniquely susceptible to halogenated aromatic hydrocarbons.
Postmortem analysis showed altered ryanodine receptor expression in the brain of autism
subjects compared to controls, which could alter their sensitivity to Ryr-reactive compounds
(Voineagu, Wang et al. 2011). Further, in a mouse model of Rett syndrome, a genetic
disorder that shares features with autism, developmental exposure to PBDE-47 caused
epigenetic, cognitive, and social differences that were not observed in wild type mice (Amir,
Van den Veyver et al. 1999; Woods, Vallero et al. 2012). Finally, children with ASD have
unique immune responses to PBDEs, which is discussed in detail below (Ashwood, Schauer
et al. 2009).

Halogenated Aromatic Hydrocarbons: Polychlorinated Biphenyls (PCBs)
Polychlorinated biphenyls (PCBs) are ubiquitous in the environment and in animal and
human tissues. They were widely used as additives to industrial oils and lubricants until the
late 1970’s when their adverse health effects became apparent. PCB exposure is linked to
adverse pregnancy outcomes and neurobehavioral deficits (Kuratsune, Yoshimura et al.
1971; Rogan, Gladen et al. 1988; Chen and Hsu 1994; Eriksson and Fredriksson 1998;
Howard, Fitzpatrick et al. 2003; Kenet, Froemke et al. 2007; Lein, Yang et al. 2007;
Tsukimori, Tokunaga et al. 2008; Kim, Inan et al. 2009; Boix, Cauli et al. 2010; Kim and
Pessah 2011), as well as immune dysfunction. In studies involving marine animals, murine
models, and humans, PCBs lead to generalized immune suppression, characterized by
diminished cellular immunity and atrophied lymphoid organs (Davis and Safe 1990;
Narayanan, Carter et al. 1998; Fournier, Degas et al. 2000; Shin, Bae et al. 2000; Tan, Li et
al. 2003; Beineke, Siebert et al. 2005; Leijs, Koppe et al. 2009). Cytokine profiles are also
impacted by PCBs. In a murine model, perinatal exposure to a PCB mixture induced
inflammatory cytokine expression (primarily IL-6) in the brain of adult offspring (Hayley,
Mangano et al. 2011). In human blood cells, PCB 52 and PCB 133 induced transcriptional
changes in several cytokine signaling and regulation pathways (Wens, De Boever et al.
2011). This effect was only observed in cells from male donors, suggesting a male-bias for
some PCB effects. Another study showed that PCB 118 enhanced IL-4 producing T-cell
development (Gaspar-Ramirez, Perez-Vazquez et al. 2012), which correlates with findings
in children with ASD and their mothers (Gupta, Aggarwal et al. 1998; Abdallah, Larsen et
al. 2011; Goines, Croen et al. 2011).

PCBs likely exert their immunotoxicity by interfering with immunologically-relevant
signaling pathways. For example, dioxin-like PCBs interfere with Ahr signaling, which is
critical for maintaining a healthy immune balance in the skin and gut (Li, Innocentin et al.
2011; Monteleone, Rizzo et al. 2011). PCBs also disrupt the key cytokine signaling
pathways JAK/STAT and MAPK. Immune cells exposed to PCB 47 and 153 have
compromised function and altered STAT 5 and ERK phosphorylation (Canesi, Ciacci et al.
2003). STAT 5 activation is central for regulatory T cell development (Burchill, Goetz et al.
2003; Adamson, Collins et al. 2009), and activation of this molecule by PCBs might mediate
some of their immunosuppressive effects. Finally, some PCB congeners interfere with
ryanodine receptors, which are expressed widely in the immune system. These receptors are
regulated by cytokines including TGF-Β (Hosoi, Nishizaki et al. 2001; Pessah,
Cherednichenko et al. 2010), and can induce IL-6 production after engangement (Treves,
Vukcevic et al. 2011). In summary, PCBs alter immune function through a variety of
mechanisms that may be relevant to immune profiles observed in autism.

Halogenated Aromatic Hydrocarbons: Polybrominated Diphenyl Ethers (PBDEs)
PBDEs are a group of flame retardants that are the subject of growing concern due to their
structural and functional similarities to PCBs. They are widely dispersed in the environment
and bioaccumulate up the food chain (Johnson-Restrepo and Kannan 2009). Environmental
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PBDE levels have jumped dramatically in the last several decades, and are increasingly
found in human tissues and breast milk (Noren and Meironyte 2000; Darnerud, Eriksen et al.
2001). Of note, this heightened prevalence is concurrent with the apparent rise in ASD
diagnoses (Hertz-Picciotto and Delwiche 2009; Messer 2010). While not linked specifically
to ASD, PBDE exposure is associated with improper neurodevelopment, hormonal
disruptions, and a variety of behavioral, motor, and cognitive issues (Alm, Kultima et al.
2008; He, He et al. 2008; Roze, Meijer et al. 2009; Herbstman, Sjodin et al. 2010;
Kodavanti, Coburn et al. 2010; Schreiber, Gassmann et al. 2010; Dingemans, van den Berg
et al. 2011).

Some evidence shows that PBDEs can impact immune activity. Studies involving marine
and murine models link PBDEs to changes in the immune system, including thymic and
splenic atrophy, increased production of IL-10, lymphocyte depletion, reduced antibody
recall responses, and decreased responses to pathogens (Fowles, Fairbrother et al. 1994;
Thuvander 1999; Beineke, Siebert et al. 2005; Zhou, Chen et al. 2006; Beineke, Siebert et al.
2007; Beineke, Siebert et al. 2007; Lundgren, Darnerud et al. 2009; Watanabe, Shimizu et
al. 2010; Bondy, Lefebvre et al. 2011; Fair, Stavros et al. 2012). There is little data
regarding the impact of PBDEs on cytokine production and signaling, and future studies
should examine these endpoints in more detail. One recent study considered the effect of
BDE-47 on cytokine responses in children with autism and controls. Peripheral blood
mononuclear cells obtained from ASD and typically developing controls were pretreated
with PBDE-47 and stimulated with LPS. Analysis of supernatant cytokines showed that
BDE-47 had a divergent impact on cells from ASD versus typical controls. Among controls,
BDE-47 caused a significant decrease in inflammatory cytokines production (IL-6, IL-12,
GM-CSF, TNF-α), indicating broad immune suppression. In contrast, children with ASD
only down-regulated IL-6 in the presence of BDE-47, and had significantly higher IL-1Β
responses (Ashwood, Schauer et al. 2009). This suggests that BDE-47 can enhance some
aspects of inflammation in ASD. This diagnosis-specific immunotoxic effect suggests that
children with ASD respond differently to PBDEs than typical children. Robust inflammation
in response to such exposures during critical developmental windows could have long term
neurological effects, and may be a possible mechanism in ASD. Future studies should
continue to examine a potential role for PBDEs in immune dysfunction and
neurodevelopmental disorders like autism.

Pathogenic exposures in autism
Early-life infections can skew fetal development, leading to aberrant neural and immune
activity. This is a widely suggested etiological mechanism in schizophrenia, and is
increasingly implicated in autism as well (Patterson 2009). Several infections, including
measles, cytomegalovirus, and rubella during preand perinatal periods have been associated
with autism (Chess 1977; Markowitz 1983; Ivarsson, Bjerre et al. 1990; Sweeten, Posey et
al. 2004; Libbey, Sweeten et al. 2005; Meyer, Feldon et al. 2011). A recent large-scale
epidemiological study showed that infection-related hospitalizations during pregnancy
significantly increased the risk of ASD (Atladottir, Thorsen et al. 2010). Interestingly, the
risk was not associated with any specific type of infection, suggesting that the general
immune mechanism controlling the response to the pathogen rather than the pathogen itself
were involved. This response is likely / guaranteed to include cytokines. Indeed, there is
clinical evidence for altered gestational cytokine milieus in autism (Abdallah, Larsen et al.
2011; Goines, Croen et al. 2011), which could be related to infectious exposures, and may
mediate aspects of the disorder.

As discussed in previous sections, several studies have linked early immune challenges to
long-term changes in behavioral and immune parameters. For example, mice prenatally
exposed to influenza (Fatemi, Earle et al. 2002; Shi, Fatemi et al. 2003), the viral mimic
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Poly I:C (Vuillermot, Weber et al. 2010), or the bacterial component LPS (Romero, Guaza
et al. 2010) demonstrate long term neurological and behavioral abnormalities. This effect is
largely mediated by cytokines like IL-6 and IL-1Β (Samuelsson, Jennische et al. 2006;
Smith, Li et al. 2007; Bilbo, Barrientos et al. 2008). Prenatal infectious exposures can also
impact the developing immune system, and lead to long term immune dysregulation. This
was demonstrated by increased levels of IL-6, IL-2, and TNF-α in adult animals that had
been prenatally exposed to LPS (Romero, Guaza et al. 2010). Another interesting set of
studies showed that an early life infection led to neurological deficits in adulthood that only
became apparent after an immunological stimulation (Bilbo, Biedenkapp et al. 2005; Bilbo,
Levkoff et al. 2005; Bilbo and Schwarz 2009). This suggests that early life infection can
change immune responses later in life, and that this has neurological consequences. The
concept that prenatal infections can impact both brain and immune development is
intriguing, and should be explored further in autism.

Overall, when considering environmental exposures, it is important to take time to consider
that the prevalence rates for ASD have increased dramatically over the last 10–20 years.
These rates continue to increase year-on-year. Arguably concentrations for some compounds
such as lead and chlorinated pesticides have fallen in the population since their removal or
reduction from the environment in the 1970’s. In contrast, levels of PBDEs and Ops have
increased. Although it may be tempting to link compounds as risk factors for ASD based
solely on similar time trends there is a need for more extensive research to begin to
understand whether such temporal relationships are associated with risk for ASD. Future
research should focus on the relationships between environmental exposures and risk for
ASD diagnosis and whether environmental exposures to such compounds as PBDE induce
cytokine responses that could modulate neuronal function in the pediatric population.
Moreover, future research should discern whether children who develop a ASD are more
sensitive to specific environmental exposures using cytokine production as readouts. More
research focused on environmental exposures and ASD is warranted.

Conclusions
Cytokine imbalances are well documented in autism and have many interesting implications.
Cytokines are intricately involved in neurodevelopment and neuronal function, and an ill-
timed cytokine disruption can have long term neurological consequences. Further, cytokine
expression is largely dependent on genetic and environmental influences. Therefore, they
may represent a biomarker for genetic or environmental factors at play in autism. To
illustrate the connection between immunity, genes, the environment, and
neurodevelopmental outcome, consider two scenarios: First, an individual may be
genetically poised to mount an inappropriate immune response to an infectious or toxic
exposure. This individual might respond either too robustly or too weakly to resolve the
threat without collateral damage to the brain and other body systems (including the immune
system). Second, an individual may lack appropriate genetic machinery to excrete toxins;
leading to their accumulation in tissue. This could lead to an amplification of the toxin’s
effects on a variety of body systems, including the brain and immune system. For each child,
an environmental challenge during a critical window of development could have especially
severe consequences, causing abnormal CNS function, altered immune phenotypes, and
perhaps autism. These scenarios represent an emerging global view of autism that considers
a broad contribution of several factors, including genes, the environment, and the immune
system. Cross-disciplinary investigations that consider diverse biological contributions will
be essential to untangle ASD.
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Figure 1. Multifactorial model for ASD etiology involving genes, the environment, and immunity
This model begins with a genetic background that predisposes an individual to respond
inappropriately to environmental influences, like an infection or toxic exposure. An
environmental exposure during a critical period could disrupt development of the nervous
and immune system. This disruption could lead to ASD, as well as the neurological,
behavioral, and immune dysfunctions observed in the disorder.
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Table 1
Cytokines in autism spectrum disorders

A variety of independent clinical studies have linked cytokines to ASD. This table presents detailed findings
for each individual cytokine. Often multiple cytokines were associated with ASD in a single study, which is
noted in parentheses.

Cytokine Findings in autism Reference

IL-1Β

Elevated plasma levels in children with ASD, correlated with regressive onset. (IL-6, IL-8
and IL-12p40 also elevated)

(Ashwood, Krakowiak et al. 2011)

Elevated plasma levels in high functioning children with ASD. (IL-1RA, IL-5, IL-8,
IL-12p70, IL-13, IL-17 and GRO-α also elevated)

(Suzuki, Matsuzaki et al. 2011)

Elevated plasma levels in adults with severe ASD. (IL-6 and endotoxin levels also
elevated)

(Emanuele, Orsi et al. 2010)

Peripheral blood cells from ASD subjects produce higher baseline levels. (Similar trends
for IL-6 and TNF-α)

(Jyonouchi, Sun et al. 2001)

Peripheral blood cells from ASD subjects produce higher levels with TLR2 or TLR4
stimulation, and lower levels with TLR-9 stimulation. (Similar trends for IL-6 and TNFα)

(Enstrom, Onore et al. 2010)

IL-6

Elevated plasma levels in children with ASD, correlated with regressive onset. (IL-1Β,
IL-8, and IL-12p40 also elevated)

(Ashwood, Krakowiak et al. 2011)

Elevated plasma levels in adults with severe autism. (IL-Β and endotoxin levels also
elevated)

(Emanuele, Orsi et al. 2010)

Peripheral blood cells from ASD subjects produce higher baseline levels. (Similar trends
for IL-1Β and TNF-α)

(Jyonouchi, Sun et al. 2001)

Peripheral blood cells from children with ASD produce higher levels with TLR2 or TLR4
stimulation, and lower levels with TLR-9 stimulation. (Similar trends for IL-6 and TNFα

(Enstrom, Onore et al. 2010)

Lymphoblasts from ASD subjects produce more IL-6. (Also TNF-α) (Malik, Sheikh et al. 2011)

Increased IL-6 staining in postmortem cerebellar sections from ASD subjects (Wei, Zou et al. 2011)

Increased IL-6 in postmortem brain specimens (various regions) from ASD subjects. (Also
increased TGF-Β and inflammatory chemokines).

(Vargas, Nascimbene et al. 2005)

Increased IL-6 in postmortem brain tissue from ASD subjects. (Also increased TNF-α,
IFN-γ, GM-CSF, and IL-8)

(Li, Chauhan et al. 2009)

IL-4

Increased IL-4 in mid-gestational serum samples from mothers giving birth to a child with
ASD. (Also IL-5 and IFN-γ)

(Goines, Croen et al. 2011)

Increased IL-4 in amniotic fluid samples from mothers giving birth to a child with ASD
(Also IL-10, TNF-α and TNF-Β)

(Abdallah, Larsen et al. 2011)

Peripheral blood cells from ASD subjects stimulated with PMA-ionomycin were more
likely to be IL-4+ (And less likely to be IFN-γ+)

(Gupta, Aggarwal et al. 1998)

IFN-γ

Increased IFN-γ in mid-gestational serum samples from mothers giving birth to a child
with ASD. (Also IL-4 and IL-5)

(Goines, Croen et al. 2011)

Increased plasma levels in individuals with ASD. (Also IL-12) (Singh 1996)

Peripheral blood cells stimulated with PMA-ionomycin are less likely to be IFN-γ+ (And
more likely to be IL-4+)

(Gupta, Aggarwal et al. 1998)

Unstimulated whole blood from ASD subjects produced significantly more IFN-γ
compared to controls. (Also increased IL-1RA, IL-6, and TNF-α)

(Croonenberghs, Bosmans et al.
2002)

NK cells from children with ASD produced higher IFN-γ under resting conditions, and
lower levels after stimulation. (Also observed with perforin and granzyme B)

(Enstrom, Lit et al. 2009)

Increased IFN-γ in post mortem brain specimens from ASD subjects. (Also increased
TNF-α, IL-6, GM-CSF, and IL-8)

(Li, Chauhan et al. 2009)

TGF-Β
Decreased plasma TGF-Β in children with ASD. Lower levels correlated with more severe
behavioral scores.

(Ashwood, Enstrom et al. 2008)

Neurotoxicol Teratol. Author manuscript; available in PMC 2014 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Goines and Ashwood Page 36

Cytokine Findings in autism Reference

Decreased serum TGF-Β in adults with ASD. (Okada, Hashimoto et al. 2007)

Increased TGF-Β levels in postmortem brain specimens (various regions) from ASD
subjects. (Also IL-6 and inflammatory chemokines)

(Vargas, Nascimbene et al. 2005)
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