

Whitepaper

1.	Introduction	6-8
	Climate Credit: A New Paradigm	6
	Three Foundational Pillars	7
	Concrete and Certified Use Cases	7 – 8
	An Ambitious Roadmap	8
	A Triple Impact: Environmental, Economic, and Societal	8
2.	Context & Current Limitations	8 – 10
	2.1. The Genesis of Carbon Markets	8 – 9
	2.2. The Current State of Carbon Markets	9
	a) The Compliance Markets	9
	b) The Voluntary Markets (Voluntary Carbon Markets – VCM)	9
	2.3. The Structural Limitations of Existing Mechanisms	9 – 10
	2.4. Case Study: The CO2bit Experience	10
	2.5. Conclusion of the Context	10
3.	The Climate Credit Concept	11 – 13
	3.1. A Conceptual Breakthrough: The Temporal Chiasmus	11
	3.2. The Limits of a System Based Solely on Carbon	11
	3.3. The Foundational Principles of the Climate Credit	11
	a) Inclusiveness	11
	b) Transparency	12
	c) Liquidity & Accessibility	12
	d) Strategic Complementarity	12
	3.4. How Does CCLX Work in Practice?	12
	3.5. The Climate Credit as an Institutional Catalyst	12 – 13
	3.6. Conclusion of the Concept	13
4.	Technology & Use Case: CBSI	13 - 15
	4.1. The Global Challenge of Waste Management	13
	4.2. Presentation of the CBSI Technology	14
	a) Operating Principle	14
	b) Generated Outputs	14
	c) Yield & Efficiency	14
	4.3. Observed Results	14
	4.4. Validation and Certifications	15
	4.5. Strategic Positioning within the Climate Credit Ecosystem	15
	4.6. Conclusion of Section 4	15
5.	Ecosystem & Governance	16 - 18
	5.1. A Hybrid and Credible Governance Model	16
	5.2. Roles and Responsibilities	16

	a) The Foundation	16
	b) The Advisory DAO	16
	c) Public and Private Actors	16
	5.3. Control and Security Mechanisms	17
	5.4. Alignment with Regulators	17
	5.5. An Open and Inclusive Ecosystem	17
	5.6. Conclusion of the Section	18
6.	Tokenomics & Economic Mechanisms	18 – 22
	6.1. Guiding Principles	18
	6.2. Supply and Issuance	18
	6.3. Token Allocation	19 – 20
	6.4. Swap CO2bit → CCLX (75:1)	20
	6.5. Valuation and Utility Mechanisms	21 – 22
	6.6. Preservation of Scarcity	22
	6.7. Strategic Comparison with CO2bit	23
	6.8. Conclusion of the Tokenomics	23
7.	The Climate Credit Platform	23 - 25
	7.1. Vision: A Global Hub for Green Projects	23
	7.2. Key Features	24
	a) Project Onboarding & Aggregation	24
	b) Al Scoring & Labelling	24
	c) Real-Time Monitoring, Reporting & Verification (MRV)	24
	d) Traceability & Tokenization	24
	e) Universal Accessibility	24
	7.3. Role of Stakeholders on the Platform	25
	7.4. Technical Roadmap of the Platform	25
	Phase 1 – MVP (2026)	25
	Phase 2 – Expansion (2027)	25
	Phase 3 – Internationalization (2028–2029)	25
	Phase 4 – Global Standard (2030)	25
	7.5. Conclusion of the Section	25
8.	Legal Framework & Compliance	26 - 27
	8.1. Guiding Principles	26
	8.2. European Framework: MiCA & AMF	26
	a) MiCA (Markets in Crypto-Assets) – European Union	26
	b) AMF (French Financial Markets Authority – France)	26

	8.3. International standards: FATF & SEC	26
	a) FATF (Financial Action Task Force)	26
	b) SEC (Securities and Exchange Commission – United States)	26
	8.4. KYC/AML & sanctions	27
	8.5. Internal governance & audit	27
	8.6. GDPR & data protection	27
	8.7. Section conclusion	27
9.	Risk matrix & contingency management	28
	9.1. Risk matrix (excerpt)	28
	9.2. Conclusion of the section	28
10.	Roadmap & Deployment	28 - 31
	10.1. Roadmap principles	28
	10.2. Key milestones 2025–2030	29
	Phase 0 – Preparation (Q4 2025)	29
	Phase 1 – Initial launch (2026)	29
	Phase 2 – MVP platform deployment (2027)	29
	Phase 3 – International expansion (2028–2029)	30
	Phase 4 – Global standard (2030)	30
	10.3. Key success factors	30
	10.4. Roadmap conclusion	31
11.	Expected impact	31 - 33
	11.1. Environmental impact	31
	a) Significant waste reduction	31
	b) Clean energy production	31
	c) CO₂ sequestration and valorization	31
	d) Contribution to international goals	31
	11.2. Economic impact	32
	a) Creation of a new liquid ESG asset	32
	b) Mobilization of private capital	32
	c) Development of industrial sectors	32
	d) Competitive advantage for France and Europe	32
	11.3. Societal impact	32
	a) Citizen participation	32
	b) Transparency and trust	32
	c) Reduction of North-South inequalities	33
	d) Political and institutional legitimacy	33
	11.4. Key performance indicators (KPIs)	33
	11.5. Conclusion of the section	33

12.	Conclusion & Call to Action	33 - 34
	12.1. General conclusion	34 – 34
	12.2. Why act now?	34
	12.3. Call to action	34

1. Introduction

Climate change is today acknowledged as the most urgent and pressing challenge of the 21st century. Natural catastrophes are becoming more intense, agricultural and energy systems are under unprecedented pressure, and the socio-economic costs linked to inaction already exceed several hundreds of billions of euros every year. The latest report from the IPCC confirms it clearly: the window of opportunity to keep global warming under 1.5°C is closing very quickly.

In the face of this emergency, financial mechanisms have been developed in order to channel capital towards the ecological transition, foremost among them being the carbon markets. These markets, which currently represent more than 850 billion US dollars per year for the regulated part and close to 2 billion US dollars for the voluntary part, have helped create a price signal and introduce a logic of climate responsibility into the global economy.

However, these mechanisms, despite their usefulness, show three major weaknesses:

- 1. They are based on an ex post logic compensating after emissions have already been produced.
- 2. They suffer from a lack of transparency and credibility, especially in the voluntary markets, which have been affected by several greenwashing scandals.
- 3. They do not mobilize sufficient levels of financing: according to the International Energy Agency (IEA), 4 trillion US dollars of investments are needed every year by 2030 in order to reach climate

Climate Credit: A New Paradigm

Climate Credit offers an innovative and complementary response.

Where carbon credits aim to offset an ecological debt from the past, climate credits channel capital directly into projects that generate positive impact for the future.

This reversal of logic—from retroactive to proactive—marks a strategic breakthrough.

- Carbon credits restore the balance after the fact.
- Climate credits build the ecological capital of tomorrow.

The two mechanisms are not in opposition: they complement each other like two sides of the same coin.

Three Foundational Pillars

Climate Credit is built on a robust architecture, structured around three core pillars:

1. A rare and liquid digital asset

- 200 million CCLX tokens issued, fixed supply.
- A 75:1 swap mechanism with CO2bit, designed to give new life to an existing asset already distributed across 37 countries.

2. A hybrid governance model

- A foundation ensuring regulatory compliance (MiCA, AMF, FATF, SEC) and proper fund management.
- A consultative DAO, allowing investors and citizens to express their preferences and provide a democratic counterbalance to strategic decisions.
- Multisignature controls and external audits to ensure security and transparency.

3. A global platform

- As a true technology hub, the Climate Credit platform hosts, evaluates, and tracks the financed ecological projects.
- By integrating blockchain oracles and IoT sensors, it provides a real-time Monitoring, Reporting & Verification (MRV) system, ensuring data reliability.
- Accessible to all stakeholders: governments, companies, financial institutions, and citizens.

Certified and concrete use cases

Climate Credit is not an abstract promise. It is designed to finance high-impact projects capable of fundamentally transforming our response to the climate crisis.

A flagship example is the CBSI technology (Industrial Biosynthetic Compound), a patented process for the full valorization of urban waste, which enables:

- The production of a biosynthetic compound made 100% from solid urban waste.
- The generation of green electricity through controlled, emission-free combustion.
- The creation of wood from the ashes generated by the process, reusable in the construction sector.

Developed by the IFMA Center, CBSI technology embodies the mission of Climate Credit: to support scalable solutions capable of transforming waste into clean energy.

By financing this type of project, Climate Credit maximizes its chances of making a real contribution to solving the climate crisis.

Unlike current mechanisms that offset emissions after they have been produced, Climate Credit channels capital toward transformative solutions that can:

- reduce waste at the source,
- produce green energy and high-value recycled materials,
- sequester CO₂ in a verifiable way while generating lasting economic and social impact.

These features make it a concrete example of the type of projects Climate Credit aims to support: credible, certified innovations capable of generating triple impact—ecological, economic, and societal.

An ambitious roadmap

- 2026: Deployment of the smart contract and first CO₂bit → CCLX swaps.
- 2027: Launch of the MVP platform and financing of the first projects.
- 2028–29: International adoption, cross-chain integration, and partnerships with over 60 countries.
- 2030: Recognition of Climate Credit as the global standard for climate financing, complementing carbon credits.

A triple impact: ecological, economic, societal

- **Ecological**: full treatment of urban waste, green electricity production via CBSI, industrial biosynthetic wood (IBW), and measurable CO₂ sequestration.
- **Economic**: creation of a credible, liquid ESG asset attractive to both institutional and retail investors, and a driver of green job creation.
- **Societal**: democratization of climate finance, citizen participation through the DAO, and strengthening of energy sovereignty.

In summary: Climate Credit is far more than just a crypto project. It is a financial and political infrastructure designed to align innovation, compliance, and measurable impact.

It represents a unique opportunity for France to position itself as a global leader in climate finance—and for investors to directly contribute to the creation of a transparent, universal green market.

2. Context & Current Limitations

2.1 The Genesis of Carbon Markets

The idea of putting a price on greenhouse gas (GHG) emissions dates back to the 1990s. The Kyoto Protocol (1997) marked the first structured international attempt, introducing three mechanisms:

- 1. The cap-and-trade system: each industrialized country is assigned an emissions cap.
- 2. The Clean Development Mechanism (CDM): allows the financing of emission reduction projects in developing countries in exchange for credits.
- 3. Joint Implementation (JI): a similar mechanism applied between industrialized countries.

This logic introduced the concept of the carbon credit: a unit representing one ton of CO₂ avoided, sequestered, or reduced.

But from the outset, the system was burdened by bureaucratic complexity, high certification costs, and a strong dependence on state involvement.

In 2015, the Paris Agreement reinforced the momentum by setting a clear objective: to limit global warming to well below 2°C, and ideally to 1.5°C. Each country defines its own Nationally Determined Contribution (NDC).

However, the Agreement does not establish a single, binding market mechanism, leaving the responsibility to individual states. The result is a patchwork of heterogeneous and poorly coordinated

2.2 The current state of carbon markets

Today, two types of markets can be distinguished:

a) Compliance markets

- Most advanced example: EU ETS (European Union Emissions Trading Scheme).
- Estimated value in 2023: around USD 850 billion.
- How it works: quotas are imposed on major industries (energy, steel, cement, aviation).
 Companies must purchase credits if they exceed their emission caps.
- Advantage: robust, transparent, and regulated system.
- Limitation: only covers a fraction of the global economy and remains inaccessible to citizens and SMEs.

b) Voluntary Carbon Markets (VCM)

- Estimated volume in 2023: around USD 2 billion.
- Open to companies or individuals wishing to voluntarily offset their emissions.
- Issue: a large share of credits do not correspond to actual emission reductions. Several
 investigations (e.g. The Guardian, 2023) revealed that over 80% of credits certified by
 certain standards had no tangible climate impact.
- Consequence: loss of trust, perception of greenwashing, and price volatility.

2.3 The Structural Limitations of Existing Mechanisms

Despite their role, carbon markets have four major limitations:

- 1. A retroactive (ex post) logic
 - Carbon credits offset emissions that have already been produced.
 - This creates a perception of "buying a clean conscience" rather than a real incentive to transform the economy.

2. Persistent lack of transparency

- Complex certification processes, opaque methodologies, and risks of fraud.
- Difficult for investors, governments, or citizens to verify the quality of projects.

3. A fragmented market

- Multiplicity of standards (Verra, Gold Standard, Climate Action Reserve, etc.).
- Lack of a unified global framework → inefficiency and loss of trust.

4. Critical underfunding

- Need: USD 4 trillion per year by 2030 (IEA).
- Reality: less than USD 1 trillion mobilized.
- Conclusion: the climate finance gap is colossal.

2.4 Case Study: The CO2bit Experience

The CO₂bit project was a pioneer in climate-focused digital assets, but in 2017, the context was not yet conducive to this type of innovation.

Several external factors limited its full expansion:

- Regulatory framework was still nonexistent, hindering adoption by institutional players.
- Lack of measurement and certification (MRV) infrastructure, making it difficult to properly value impact.
- Limited access to public climate programs, which concentrated available funding.
- Blockchain technology was still emerging, limiting the scalability and interoperability of projects.

Despite an unfavorable context, CO₂bit laid the groundwork that Climate Credit is now bringing to life.

2.5 Conclusion of the Context

Current carbon markets have established a precedent and a framework, but they are not enough.

They are:

- retroactive (ex post),
- · fragmented and opaque,
- unable to mobilize the capital needed for the transition

Hence the need for a new paradigm: Climate Credit, designed to overcome these limitations and complement carbon markets.

3. The Climate Credit Concept

3.1 A Conceptual Breakthrough: The Temporal Chiasmus

Climate Credit is based on a central idea—simple to express, yet revolutionary in its implications:

- Carbon Credit = Past compensates for an ecological footprint already generated.
- **Climate Credit = Future** ———— finances today the projects that will have a measurable impact tomorrow.

This temporal distinction creates a genuine strategic chiasmus.

- Carbon looks back to make amends.
- The climate looks forward to build.

By combining these two approaches, we achieve a more complete and credible system: carbon credits take on the debt of the past, while climate credits create capital for the future.

This is not opposition, but a structuring complementarity, like a coin with two inseparable sides.

3.2 The limits of a system based solely on carbon

A system based solely on ex post offsetting carries three risks:

- 1. A perception of greenwashing: companies purchase an offset certificate after polluting, without fundamentally changing their behavior.
- 2. Economic inertia: the funded projects are not always structuring or transformative, but merely compensatory.
- 3. A temporal asymmetry: while the climate crisis demands immediate and forward-looking actions, carbon merely settles past accounts.

Climate Credit addresses these critiques by embedding a proactive approach from the outset.

3.3 The founding principles of The Climate Credit

Climate Credit is built around four fundamental pillars:

a) Inclusivity

Unlike carbon markets, which are primarily reserved for large industries, Climate Credit is open to all stakeholders:

- States and institutions: integration into their climate accounts, green bonds, and national strategies.
- Companies: ESG alignment, CSR, access to a traceable and verifiable asset.
- Citizens: democratized participation through DAOs, token purchases, and direct project funding.

b) Transparency

Each climate credit is recorded on-chain, with real-time tracking.

Funded projects are documented through Monitoring, Reporting & Verification (MRV) mechanisms based on IoT, oracles, and independent audits.

Result: full traceability, eliminating doubts about the actual impact.

c) Liquidity & Accessibility

CCLX is a rare and liquid digital token, with a fixed supply (200M) and robust economic mechanisms (vesting, staking, buy & burn).

- Accessible with just a few clicks on regulated platforms.
- Usable in institutional wallets as an ESG asset.
- Integrable into corporate financial statements.

d) Strategic Complementarity

Climate Credit does not aim to replace the carbon market, but to complement it.

- Carbon = repair past ecological debt
- Climate = invest future ecological capital. Together, the two mechanisms create a complete, balanced, and credible ecosystem.

3.4 How does CCLX work in practice?

- 1. Issuance: 200 million CCLX are issued, with a fixed supply and strict vesting.
- 2. Swap: 75:1 ratio with CO2bit, providing continuity and integrating an existing base across 37 countries.
- 3. Project selection: projects submitted via the platform \rightarrow Al scoring \rightarrow independent audits \rightarrow validation.
- 4. Financing: allocation of funds via CCLX → projects → production of measurable impact.
- 5. Monitoring & reporting: real-time MRV → data available on-chain.
- 6. Valuation: generated revenues (e.g., CBSI) feed a buy & burn mechanism, enhancing the

3.5 The Climate Credit as an institutional catalyst

Climate Credit aims to become:

- A complementary standard recognized by institutions, alongside the carbon market.
- An institutional ESG asset: traceable, rare, credible.



 A vehicle for massive capital mobilization, democratizing access and including the private sector.

In this sense, it is not merely a crypto project, but a financial and political infrastructure, built around hybrid governance and strict regulatory compliance.

3.6 Conclusion of the Concept

Climate Credit embodies a new financial paradigm:

By relying on a clear architecture, hybrid governance, and concrete use cases, Climate Credit positions itself as the next major step in climate finance, complementary to carbon credit and essential to fill the financing gap of the ecological transition.

4. Technology & Use Case: CBSI

4.1 The global challenge of waste management

Waste management is one of the most critical environmental challenges of the 21st century:

- 2 billion tonnes of municipal solid waste are generated each year worldwide, with at least 33% not managed in an environmentally sound manner (World Bank, 2022).
- Traditional solutions have structural limitations:
 - Landfills: major sources of methane (CH₄), a greenhouse gas 84 times more potent than CO₂ over 20 years.
 - Incineration: reduces volume but generates toxic fumes, polluting residues, and consumes large amounts of energy.
 - Anaerobic digestion / composting: useful but limited in efficiency and in the types of waste that can be processed.

The global demand is clear: a technology that can efficiently process waste while producing clean energy outputs and valorized residues.

4.2 Presentation of the CBSI Technology

CBSI technology represents a breakthrough innovation in the comprehensive management of urban solid waste. It transforms previously polluting streams into clean and valorized energy resources.

- Conversion of waste into a biosynthetic compound (CBSI).
- Controlled combustion of CBSI to produce green electricity.
- Valorization of ash into industrial biosynthetic wood (IBW).

b) Generated Outputs

1. Biosynthetic Compound (CBSI)

- Main product, derived from waste processing.
- Used as a clean fuel for the generation of green electricity.

2. Green electricity

- Continuous and local production of renewable energy.
- Feeds the grid while reducing dependence on fossil fuels.

3. Industrial Biosynthetic Wood (IBW)

- Stable solid residue, derived from ash.
 Zero leaching, zero toxicity.
- Reusable in the construction sector (concrete, roads, composite materials).

c) Yield & Efficiency

- Near-total destruction of collected municipal waste.
- The technology is self-financing and generates electricity.
- Transformation of waste into energy and useful materials, supporting a true circular economy.

4.3 Observed Results

Projections from the IFMA Green Energy project (Brazil) show:

- 689,000 tonnes of waste processed over 35 years.
- 1.3 million carbon credits generated and certifiable.
- 425,000 MWh of green electricity produced and fed into the grid.
- 41,600 tonnes of IBW (industrial biosynthetic wood) valorized in construction.

4.4 Validation and Certifications

CBSI technology is supported and validated by leading institutions:

- IFMA (Brazil): Federal Institute of Education, Science, and Technology of Maranhão.
 - Officially established by CONSUP resolution No. 28/2024.
 - Academic and technical supervision by a multidisciplinary team of researchers.
- COP30 (Belém, 2025): project included in Brazil's climate commitments.
 - International showcase of ESG compliance and contribution to the UN SDGs.
- Government of Maranhão: institutional support within the framework of the Waste Policy.
 - Validation of compliance with environmental and public health standards.

4.5 Strategic Positioning within the Climate Credit Ecosystem

The choice of CBSI as the first flagship use case of Climate Credit is based on several reasons:

- 1. Direct ecological impact
 - Drastic waste reduction
 - Green electricity production from CBSI.
 - Valorization of ash into useful materials (IBW) → circular economy.
- 2. Credibility & Proof of Concept
 - Institutional technology supported by IFMA (Brazil).
 - Official support from the Government of Maranhão and integration into climate commitments.
- 3. Global Scalability
 - Replicable model in emerging countries (municipal waste management).
 - Applicability in developed countries (energy valorization and circular economy).
- 4. Alignment with Climate Credit
 - Concrete example of a project funded by Climate Credits.
 - Generate a measurable report (tonnes processed, carbon credits, MWh produced).
 - Strengthen the credibility of the Climate Credit with regulators and ESG investors.

4.6 Conclusion of Section 4

The CBSI technology perfectly illustrates the mission of the Climate Credit: directing funding toward transformative, measurable, and certified projects.

It embodies:

- Environmental efficiency (waste → green energy, significant reduction of CO₂ and CH₄).
- Scientific and institutional credibility (IFMA, Government of Maranhão, COP30).
- Economic and social impact (valorization of by-products, local green jobs, circular economy).

Using CBSI as a reference example, the Climate Credit demonstrates the type of transformative projects it can support: not just a financial asset, but a tangible instrument for ecological and social transition.

5. Ecosystem & Governance

5.1 A hybrid and credible governance model

The Climate Credit is based on a hybrid governance architecture, which combines:

- A foundation: ensuring legal compliance, adherence to financial regulations (MiCA, AMF, FATF, SEC), and transparent fund management.
- A consultative DAO: enabling participation from citizens, private investors, and institutional actors, thereby integrating a democratic and transparent dimension into decision-making.

This duality offers the best of both worlds:

- Institutional strength (foundation, financial audits, regulatory compliance).
- Participatory flexibility (DAO, token holder voting, citizen engagement).

5.2 Roles and Responsibilities

a) The Foundation

- Official issuer of the CCLX token.
- Responsible for regulatory compliance (PSAN registration in France via partners, MiCA adherence in Europe, FATF/KYC/AML alignment).
- Oversees the selection of projects funded by the Climate Credit.
- Ensures transparent fund management and adherence to planned allocations.
- Commissioning of external audits (financial and technical).

b) The Advisory DAO

- Composed of CCLX token holders (weighted according to defined criteria).
- Can submit and vote on strategic proposals (selection of priority projects, investment directions, partnerships).
- Decisions are advisory, with the foundation retaining executive authority to ensure compliance and continuity.
- Operates through secure and audited smart contracts.

c) Public and private actors

- States and local authorities: integration of climate credits into their carbon accounts and green financing.
- Companies: access to a liquid and traceable ESG asset, serving as a CSR reporting tool.
- Citizens and NGOs: opportunity to directly fund ecological projects and participate in governance.
- Institutional investors: access to a credible asset backed by tangible, audited projects.

5.3 Control and Security Mechanisms

The governance of the Climate Credit relies on a set of mechanisms designed to ensure security, compliance, and transparency:

1. Multisignature Controls

• Major transactions (fund allocations, buy & burn, project additions) require multiple signatures (foundation members + independent auditors).

2. Regular External Audits

- Smart contracts: audited by reputable firms (e.g., CertiK, Hacken).
- Finance: annual audits conducted by Big Four firms or independent auditors.
- Funded projects: ecological performance audits (ENEA, TÜV, etc.).

3. Emergency Pause Mechanisms

 Integration of "Pausable" functions in smart contracts, allowing temporary suspension of operations in case of a vulnerability or attack.

4. GDPR Compliance & Data Protection

- All collected data (platform, MRV) is pseudonymized.
- Appointment of a DPO (Data Protection Officer) within the foundation.

5.4 Alignment with Regulators

The Climate Credit aligns with applicable regulations:

- MiCA (European Union): registered as a digital asset, complying with transparency and disclosure requirements.
- AMF (France): distribution through authorized PSANs, risk documentation, compliance with solicitation rules.
- FATF (International): full integration of KYC/AML standards and sanctions.
 SEC (USA): compliance for potential sales to U.S. investors (Reg D, Reg S exemptions).

This regulatory alignment is crucial to prevent bottlenecks and ensure institutional adoption.

5.5 An Open and Inclusive Ecosystem

The Climate Credit model is not limited to an elite group of institutional investors.

It is an inclusive ecosystem that enables:

- States to strengthen their climate credibility.
- Companies to green their ESG reporting with a traceable tool.
- Citizens to fund green projects with full transparency.
- Investors to allocate their capital into a rare and credible asset with potential for appreciation.

5.6 Conclusion of the Section

The governance of the Climate Credit is based on a unique balance: institutional rigor + citizen participation.

This hybrid model enables:

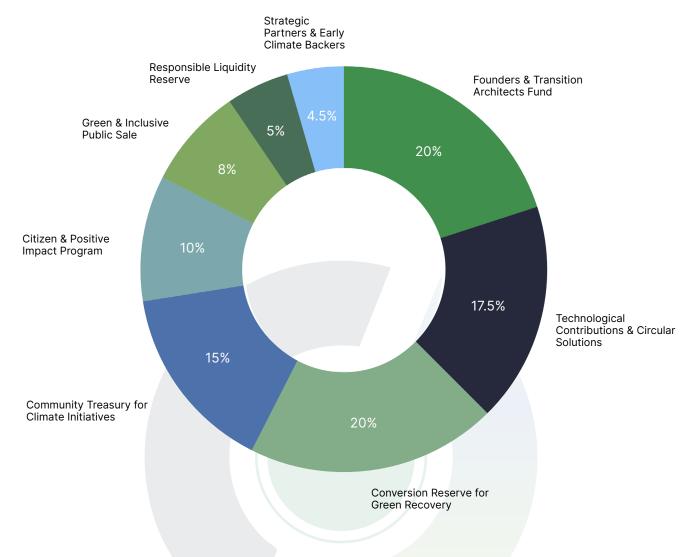
- Ensure regulatory compliance and credibility with regulators.
- Provide maximum transparency to investors.
- Foster democratic engagement through the DAO.

In summary, the Climate Credit does more than offer a financial asset. It builds a global, inclusive, secure, and compliant ecosystem, capable of becoming a worldwide benchmark in climate finance.

6. Tokenomics & Economic Mechanisms

6.1 Guiding Principles

The economic structure of the CCLX token is based on three fundamental principles:


- 1. Scarcity: fixed supply, no possibility of monetary inflation.
- 2. Incentive Alignment: vesting, staking, and burn mechanisms designed to align investors, developers, and beneficiaries.
- 3. Real Utility: each CCLX token represents the capacity to fund ecological projects, with traceability and measurable impact.

6.2 Supply and Issuance

- Total Supply: 200 million CCLX tokens.
- Type: ERC-20 (Ethereum, UUPS upgradeable proxy for scalability).
- Issuance: one-time, non-inflationary.
- Standard: compatible with institutional wallets, regulated exchanges, and future integrations (cross-chain).
- Smart Contrat (CCLX): 0×3F3AFD91b7fe805B9733041B8975dbE07979a516

6.3 Token Allocation

Graphic Key

Category	%	CCLX Quantity	Role & Environmental Impact	
Founders & Transition Architects Fund	20%	40 000 000	Strategic allocation for founders and the executive team. Subject to a 90-day cliff, then 10% quarterly vesting. Objective: drive the long-term vision and ensure the ecological credibility of the project by preventing early selling pressure.	
Technological Contributions & Circular Solutions	s 17.5%	35 000 000	Recognition of contributions of concrete innovations, such as low-residue eco-incinerators, artificial intelligence for project monitoring, and carbon reporting. These assets are granted in direct exchange for technologies deployed in service of the ecological transition.	

Category		%	CCLX Quantity	Role & Environmental Impact	
•	Conversion Reserve for Green Recovery	20%	40 000 000	Allocated to CO2bit Technologies. Exchangeable with states at a ratio of 1 CCLX = 75 CO2bit. Objective: restore the value of historical CO2bit and revive its central role in financing climate projects.	
	Community Treasury for Climate Initiatives	15%	30 000 000	Green reserve managed by the consultative DAO, intended to fund environmental projects voted on by the community. Objective: enable direct and transparent citizen involvement in guiding climate credits.	
•	Citizen & Positive Impact Program	10%	20 000 000	Incentives for citizens and the Web3 community through staking, airdrops, and educational programs. Objective: engage civil society and create a virtuous cycle of climate action.	
	Green & Inclusive Public Sale	8%	16 000 000	Public sale open to the Web3 community and impact investors, ensuring CCLX accessibility to the widest audience and democratizing climate investment.	
•	Responsible Liquidity Reserve	5%	10 000 000	Reserve dedicated to market stabilization (CEX/DEX). It ensures smooth trading and protects CCLX from excessive volatility, strengthening its credibility with institutional investors.	
	Strategic Partners & Early Climate Backers	4.5%	9 000 000	Allocation reserved for early institutional partners and investors committed to ESG standards. Objective: recognize their pioneering role in financing the ecological transition and developing the Climate Credit.	

6.4 CO₂bit → CCLX Swap (75:1)

To leverage the existing CO₂bit base, a swap mechanism has been implemented:

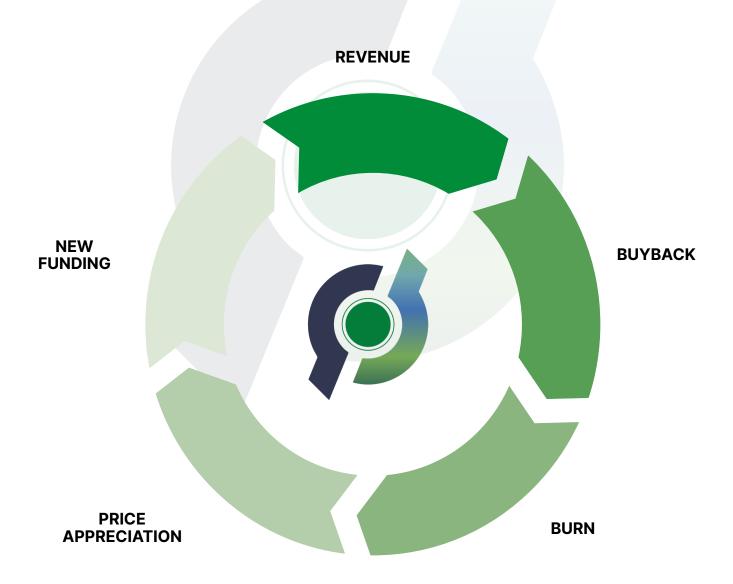
- Ratio: 75 CO₂bit = 1 CCLX.
- Objective:
 - Give a second life to an asset distributed across 37 countries.
 - Immediately integrate an existing community into the Climate Credit project.
 - Strengthen institutional credibility through market continuity.
- Process:
 - CO2bit holders send their tokens to a burn smart contract.
 - They automatically receive their CCLX at the defined ratio.

Our Impact AI technology is used for the swap between CCLX and CO₂bit, ensuring interoperability of impact data. The 75:1 swap fits within this framework: it allows migration to CCLX without loss of traceability or continuity in MRV reporting.

6.5 Valuation and Utility Mechanisms

CCLX is not a mere speculative token. It incorporates several concrete utilities:

1. Access to Projects


- CCLX tokens serve as an "entry ticket" to fund ecological projects through the platform.
- Investors receive detailed MRV reporting on the impact of their CCLX.

2. ESG-Linked Staking

- Holders can stake their CCLX to earn a yield.
- Condition: their tokens must be allocated to ESG-verified projects.
- Effect: alignment between yield generation and ecological impact.

3. Buy & Burn

The "Buy & Burn" mechanism is the cornerstone of CCLX sustainability. It directly links the economic performance of ecological projects to the token's value, creating measurable scarcity correlated with real revenues.

4 Examples:

1. Polluters with approved projects

• 100% of received funds are fully allocated to financing the company's own project.

The company receives 100% CCLX, of which:

- 50% are burned.
- 50% are retained on the company's balance sheet (10% unlocked every 90 days).
- **Objective:** record carbon reduction while retaining asset value.

3. Funded Projects

- 50% of net revenues are reinvested in buyback & burn.
- **Objective:** create upward pressure correlated with real performance.

2. Polluters without their own project

- 25% of the funds are used for market buyback and burn.
- 75% of the received funds are allocated to projects selected by the CCLX/CO2Bit team.

The company receives and retains 100% of CCLX, recorded as an asset on its balance sheet (10% unlocked every 90 days).

• Objective: indirect participation in the

4. CEX/DEX Sales

- 25% for buyback & burn, 75% for funding new projects.
- **Objective:** integrate retail investors into the impact cycle.

This mechanism creates a self-regulating balance between market demand and available supply: the more the CCLX ecosystem performs, the lower the supply, and the higher the token's value tends to rise. Unlike purely speculative models, CCLX valuation is directly driven by measurable flows: each profitable project increases scarcity, each scarcity supports value, and each value increase funds new projects.

4. Governance (Consultative DAO)

- CCLX holders participate in advisory votes (project selection, strategic priorities).
- Enables democratic participation in climate finance.

6.6 Preservation of Scarcity

To ensure stable and growing value, several safeguards are integrated:

- Fixed supply: 200M, never increased.
- Strict vesting to prevent early dumping.
- Buy & burn fueled by actual project revenues.
- Time-limited staking rewards (maximum 10 years) to prevent artificial inflation.

6.7 Strategic Comparison with CO2bit

Element	Funded Projects	Economic Model	Transparency	Adoption	Real Impact
CO2Bit	Governmental Only	Low, no incentives	Limited	Small Community	Low / Non- measurable
CCLX	Public & Private Projects	Vesting, ESG Staking, Buy &	On-chain MRV + Independent Audits	CO2bit Swap + Global Launch	Measurable, Certified (IFMA, COP30)

6.8 Conclusion of the Tokenomics

The CCLX tokenomics is designed to:

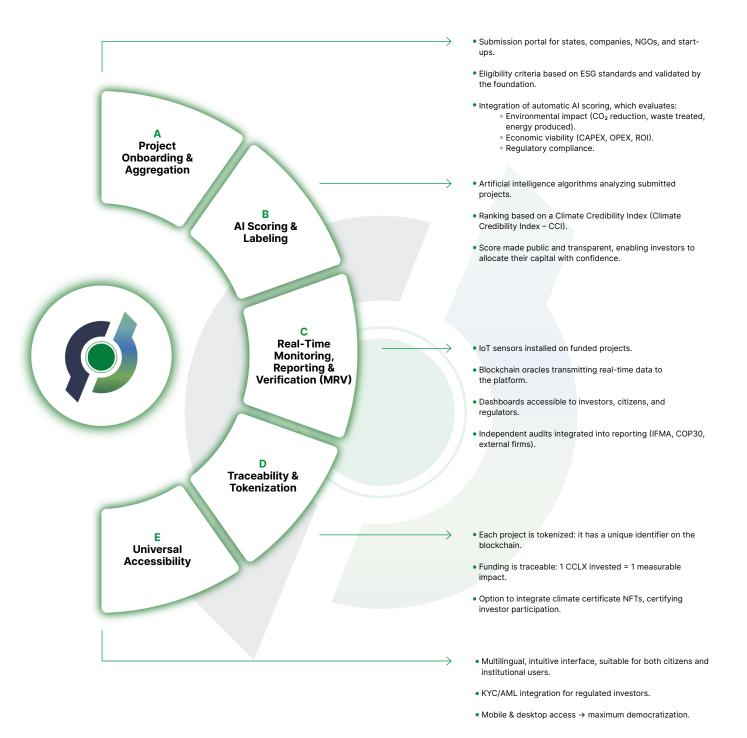
- Align investors, founders, and beneficiaries.
- Preserve the asset's scarcity and credibility.
- Create a direct link between the token's value and real ecological impact.

By combining fixed supply, CO2bit swap, ESG staking, and buy & burn, CCLX positions itself as a unique asset: simultaneously financial, technological, and ecological.

7. The Climate Credit Platform

7.1 Vision: a global hub for green projects

The Climate Credit Platform is designed as a global infrastructure dedicated to financing and monitoring ecological projects.


Its ambition is to become the "Bloomberg of Climate": a unique space where states, companies, investors, and citizens converge, with complete transparency.

- Main objective: channel capital toward impact projects while ensuring precise and measurable tracking of results.
- Positioning: an institutional complement to the carbon market, focused on proactive financing for the future (climate credit).
- Added value: combining scientific credibility (audits, certifications) with technological traceability (blockchain, oracles, IoT).

7.2 Key Features

The Climate Credit Platform offers a set of key features to ensure credibility, efficiency, and inclusivity:

Impact Al

Impact AI combines satellite data, a multi-criteria grid aligned with UN SDGs, continuous monitoring, independent third-party audits, and on-chain recording.

→ Guarantee: measurable and verified climate impact, publicly traceable.

7.3 Roles of Stakeholder on the Platform

- States & Local Authorities: submit transition projects (waste, renewable energy, agriculture).
- Companies: fund ESG-aligned projects and integrate results into their CSR reporting.
- Institutional Investors: receive detailed reporting with audited data.
- Citizens: participate on a small scale by directly funding projects (democratizing climate finance).

7.4 Technical Roadmap of the Platform

The technical roadmap includes several phases:

Phase 1 - MVP (2026)

- Deployment of the platform's first version.
- Features: project onboarding, simplified AI scoring, basic tracking via manual reporting + pilot oracles.
- Integration of CO₂bit → CCLX swap.

Phase 2 - Expansion (2027)

- Launch of full Al scoring and real-time MRV modules.
- Integration of the first flagship use cases (including CBSI-type projects).
- Development of partnerships with 10+ pilot countries.

Phase 3 - Internationalization (2028-2029)

- Cross-chain integration (Ethereum, Polygon, potentially a dedicated climate chain).
- Massive IoT deployment on funded projects.
- Expansion to 60 partner countries.
- Launch of an on-chain secondary market to trade climate certificates (NFTs).

Phase 4 - Global Standard (2030)

- Recognition of the Climate Credit as a complementary standard to carbon credits.
- Institutional adoption (banks, sovereign funds, public organizations).
- Integration with regulators to become a global reference platform.

7.5 Conclusion of the Section

The Climate Credit Platform is not just a showcase: it is the central infrastructure that ensures the project's credibility, transparency, and scalability.

It enables:

- Ensure project reliability through Al scoring and audits.
- Reassure investors with real-time MRV.
- Democratize climate finance by making the process accessible to everyone.

8. Legal Framework & Compliance

8.1 Guiding Principles

The success of the Climate Credit relies on its institutional credibility.

This entails robust legal governance, strict compliance with international regulations, and full transparency in fund management.

Three imperatives guide this approach:

- 1. Regulatory compliance (MiCA, AMF, SEC, FATF).
- 2. Security & traceability (audits, multisig, on-chain MRV).
- 3. Data protection & ethics (GDPR, minimization, pseudonymization).

8.2 European Framework: MiCA & AMF

a) MiCA (Markets in Crypto-Assets) - European Union

- Gradual implementation 2024–2025.
- Regulates issuers and service providers of crypto-assets (PSAN/CASP).
- CCLX is issued by a foundation but distributed in Europe through authorized partners.
- Required transparency: detailed white paper (purpose, risks, allocation).

b) AMF (French Financial Markets Authority)

- In France, any digital asset distributed to the public must go through a registered PSAN.
- CCLX will operate through PSAN partners for distribution.
- Commitment to provide clear and non-misleading documentation.
- Compliance with solicitation rules and investor information requirements.

8.3 International Standards: FATF & SEC

a) FATF (Financial Action Task Force)

CCLX aligns with KYC/AML/CFT standards:

- Investor verification.
- Sanctions & PEP (Politically Exposed Persons) screening.
- Geofencing if necessary (exclusion of high-risk jurisdictions).

b) SEC (Security and Exchange Commission)

If CCLX is distributed to U.S. investors, it must comply with:

- Reg D (Private Placement): sale to accredited investors.
- Reg S: sales outside the U.S.
- Position: a U.S. public offering is not planned in the initial phase → compliance ensured.

8.4 KYC/AML & Sanctions

- Strategic & institutional investors: KYC mandatory.
- Retail investors: simplified KYC, but mandatory above a certain threshold.
- Sanctions: real-time screening to prevent any breaches of international lists.
- On-chain traceability: all CCLX flows are recorded and audited.

8.5 Internal Governance & Audits

Compliance is reinforced through internal mechanisms:

- 1. Multisignature for all major transactions (fund allocations, buy & burn, project additions).
- 2. Annual external audits:
 - Financial (independent firm, e.g., Big Four).
 - Technical (smart contracts → specialized firms: CertiK, Hacken).
 - Environmental (project audits → IFMA, COP30, etc.).
- Compliance committee within the foundation, including legal, financial, and climate experts.

8.6 GDPR & Data Protection

The Climate Credit integrates data protection from the design stage:

- Minimization: only data necessary for KYC is retained.
- Pseudonymization: data recorded on-chain anonymously.
- GDPR Officer (DPO): appointed by the foundation.
- Compliance with European laws (GDPR) and Swiss data protection legislation.

8.7 Section Conclusion

The legal and regulatory framework of the Climate Credit is designed to ensure:

- Institutional legitimacy (MiCA, AMF, PSAN).
- International compliance (FATF, SEC).
- Maximum security (audits, multisig, MRV).
- Data and investor protection (GDPR).

9. Risk Matrix & Contingency Management

9.1 Risk Matrix

Category	Primary Risk	Gross Level	Key Mitigation	Residual Level
Technological	Smart contract vulnerabilities	High	Audits + Multisig + Pause	Low
Regulatory	MiCA/SEC Changes	Medium	Foundation + Legal Firms	Low-Medium
Marché	Token Volatility	High	Vesting + Burn + ESG Staking	Medium
Execution	Roadmap Delays	Medium	Phased Roadmap + Governance	Low-Medium
Reputational	Perceived Greenwashing	High	On-chain MRV + IFMA/COP30	Low

9.2 Conclusion of the section

The Climate Credit anticipates key risks (technical, regulatory, market, execution, reputational) and implements robust solutions to address them.

This approach demonstrates that the project is designed to last, rather than being a mere opportunistic initiative.

10. Roadmap & Deployment

10.1 Roadmap Principles

The Climate Credit roadmap is designed around three principles:

- Pragmatism: each phase must deliver measurable value.
- Gradualism: progressive scaling to mitigate risks.
- Credibility: realistic milestones, validated by available resources and partnerships.

10.2 Key Milestones 2025-2030

Phase 0

Preparation (Q4 2025)

- Foundation structuring (bylaws, compliance committee).
- Selection of legal partners and independent auditors (top international firm and specialized smart contract firms).
- Initiation of PSAN registration process for distribution in France.

Initial Launch (2026)

Phase 1

- Deployment of the CCLX smart contract (ERC-20, 200M supply).
- Implementation of CO2bit → CCLX swap (75:1).
- Creation of the first liquidity pool on regulated platforms.
- Onboarding of the first pilot projects (e.g., CBSI) begins.
- Establishment of the consultative DAO.
- Activation of institutional partners, including the Francophone Employers' Group (50 countries).

Concrete Deliverables 2026:

- Operational and liquid token.
- Effective CO2bit swap.
- Hybrid governance activated.
- Institutional network activated.

Phase 2

MVP Platform Deployement (2027)

- Launch of the MVP version of the Climate Credit platform.
- Included Features:
 - Project Onboarding
 - Simplified Al Scoring
 - Basic MRV (Monitoring, Reporting & Verification) with pilot oracles.
- Selection and funding of 10–15 pilot projects.
- First public impact reports (waste processed, CO₂ captured, hydrogen produced).
- Strategic partnerships with 10 pilot countries.

Deliverables 2027:

- Functional platform.
- First projects funded and monitored.
- Verified impact reports.

International Expansion (2028–2029)

Phase 3

- Platform Expansion:
 - Advanced Al Scoring
 - Real-time MRV with deployed IoT sensors.
 - Automated Public Reporting
- Cross-chain integration (Ethereum, Polygon, other L2s, climate sidechain).
- Establishment of an on-chain secondary market for climate certificates.
- Expansion to 60 partner countries (Europe, Africa, Latin America, Asia).

Deliverables 2028-2029:

- Full platform, real-time MRV.
- Multi-continental adoption.
- Functional secondary market.

Phase 4

Global Standard (2030)

- Institutional recognition of the Climate Credit as a complementary standard to carbon credits.
- Integration into the carbon accounts of states and multinational companies.
- Partnerships with central banks, sovereign funds, and major financial institutions.
- Consolidation of the global governance of the Climate Credit.

Deliverables 2030:

- Global adoption.
- CCLX recognized as an institutional climate asset.
- Global, standardized, and regulated platform.

10.3 Key Success Factors

- Strategic partnerships: states, financial institutions, NGOs, private companies.
- Regulatory Compliance: MiCA, AMF, FATF, SEC
- Proven Technology: audited smart contracts, on-chain MRV, IoT.

10.4 Roadmap Conclusion

The Climate Credit roadmap is ambitious yet realistic:

- Each phase delivers measurable value (token → platform → adoption → standardization).
- It provides a clear 2025–2030 trajectory, reassuring investors and legitimizing the project with public institutions.
- Ultimately, the Climate Credit aims to become a global pillar of climate finance, complementing the carbon market.

11. Expected Impact

The Climate Credit is not just a financial tool or a blockchain project.

Its ambition is to generate systemic impact, measurable across three levels: ecological, economic, and societal.

11.1 Environmental Impact

a) Significant waste reduction

- Through CBSI-type projects funded by the Climate Credit, the system can contribute to waste processing.
- Large volumes of municipal, plastic, and industrial waste.
- Objective: destroy millions of tons of waste per year by 2030.
- Effect: reduction of pollution from traditional landfills and incineration.

b) Clean Energy Production

- Potential generation of green electricity from processed waste.
- Direct contribution to European and global energy transition targets.
- Gradual substitution of fossil fuels.

c) CO₂ Sequestration and Valorization

- Measurable CO₂ reduction and sequestration through CBSI/IBW processes.
- Valorization of by-products in agri-food, construction, and industrial sectors.
- Objective: net sequestration of tens of millions of tons of CO₂ by 2030.

d) Contribution to International Goals

- Alignment with the Paris Agreement.
- Complement to carbon markets: offset the past AND finance the future.
- Positioning as a new category of climate asset.

11.2 Economic Impact

a) Creation of a new liquid ESG asset

- The Climate Credit is designed as a traceable, scarce, and credible financial instrument.
- Potential to become a global benchmark for climate assets, complementing carbon credits.

b) Mobilization of Private Capital

- Objective: attract billions of USD in private financing for the climate transition.
- Mechanisms (ESG staking, buy & burn, CO2bit swap) ensure sustainable value creation.
- Leverage effect: each euro invested generates measurable ecological impact.

c) Development of Industrial Sectors

- Support for the global dissemination of technologies such as CBSI and other ecological innovations.
- Creation of local value chains around green electricity, waste management, and circular construction.
- Stimulation of the green economy → creation of tens of thousands of jobs.

d) Competitive Advantage for France and Europe

- Strategic positioning as pioneers of proactive climate finance.
- Opportunity to export a financial and technological standard on a global scale.

11.3 Societal Impact

a) Citizen Participation

- The Climate Credit is accessible to states and institutions, as well as to citizens.
- Through the consultative DAO, everyone can contribute to governance.
- Effect: democratization of climate finance.

b) Transparency and Trust

- Real-time MRV, public reporting, independent audits.
- Citizens and NGOs can directly verify the impact of funding.
- End of greenwashing suspicion: emphasis on measurement and proof.

c) Reduction of North-South Inequalities

- The Climate Credit platform will finance projects in emerging countries, often the most affected by the climate crisis.
- Example: CBSI-type facilities in Africa to process waste and produce green electricity and locally recycled materials.
- Effect: contribution to a fairer and more inclusive development.

d) Political and Institutional Legitimacy

- Alignment with European public policies (Green Deal, Fit for 55).
- Potential adoption by supranational organizations (UN, World Bank).

11.4 Key Performance Indicators (KPIs)

To measure the impact of the Climate Credit, specific indicators will be tracked:

- Tons of waste destroyed (target: >10 Mt/year by 2030).
- Tons of CO₂ captured and valorized (target: >50 Mt/year by 2030).
- MWh of green electricity produced (target: >10,000 MWh/year by 2030).
- Number of partner countries (target: 60 by 2029).
- Amounts raised via CCLX (target: several billion USD by 2030).
- Number of green jobs created (target: 50,000+ direct and indirect jobs).

11.5 Conclusion of the selection

The impact of the Climate Credit is measured across three levels:

- Ecological: waste destruction, green electricity production, CO₂ sequestration.
- Economic: creation of a global ESG asset, mobilization of capital, development of green industries.
- Societal: citizen inclusion, transparency, climate justice.

12. Conclusion & Call to Action

12.1 General Conclusion

The Climate Credit represents an innovative response to the limitations of existing carbon markets.

It stands out through:

- a proactive approach (financing the future rather than merely offsetting the past),
- une architecture robuste (token rare et liquide, gouvernance hybride, plateforme technologique mondiale),
- concrete use cases (notably CBSI technology, certified and scalable),
- and strict compliance with international regulatory frameworks (MiCA, AMF, FATF, GDPR).

Beyond a digital asset, the Climate Credit represents a financial and political infrastructure, designed to complement the carbon market and serve as a global pillar of climate finance.

12.2 Why Act Now?

Climate change allows no time for delay.

- Each year of delay in the transition translates into billions of additional tons of CO₂.
- Every month without action results in increased costs for states, companies, and citizens.
- The technologies exist, but lack funding.

The Climate Credit addresses this urgency by providing a credible, measurable, and accessible mechanism to immediately mobilize capital for ecological projects.

12.3 Call to Action

1. To Public Decision-Makers

We invite French and European institutions to recognize the Climate Credit as a strategic complementary tool to carbon markets. Political support is essential to establish it as an international standard.

2. To Institutional and Private Investors

We call on financial actors to join the project today. CCLX offers a dual return: financial (a rare and liquid ESG asset) and ecological (measurable and certified impact).

3. To Citizens and NGOs

The Climate Credit platform paves the way for the democratization of climate finance. Through consultative governance and on-chain transparency, everyone can participate in the ecological transition.

We are at a turning point.

The Climate Credit has established a new large-scale international strategic alliance: The Global Partnership Forum (GPF): over one million companies, 60 business organizations, and more than 50 engaged countries — including Brazil, the Philippines, and Nigeria.

Together, through cooperation rather than confrontation, we can genuinely meet the challenges of our time.

« There are debts that can be offset.

There are futures that must be financed. »

H. RHIMI

