12 United States Patent

Anderson

US011848686B2

US 11.848.686 B2
Dec. 19, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

ACCELERATED POLYNOMIAL CODING
SYSTEM AND METHOD

Applicant: STREAMSCALE, INC., Waco, TX

(US)

Inventor: Michael H. Anderson, Udon Thani
(1H)

Assignee: STREAMSCALE, INC., Waco, TX
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 64 days.

Appl. No.: 17/747,828

Filed: May 18, 2022

Prior Publication Data

US 2023/0378979 Al Nov. 23, 2023

Int. CL

HO3M 13/11 (2006.01)

HO3M 13/00 (2006.01)

HO3M 13/03 (2006.01)

HO4L 171812 (2023.01)

HO4L 1/00 (2006.01)

HO3M 13/15 (2006.01)
(Continued)

U.S. CL

CpC HO3M 13/1575 (2013.01); GO6F 9/4881

(2013.01); GO6F 9/5027 (2013.01); GO6F
15/8007 (2013.01); HO3M 13/154 (2013.01);
HO3M 13/6516 (2013.01)

Field of Classification Search
CPC HO3M 13/6516; HO3M 13/154; HO3M
13/1575; GO6F 15/8007; GO6F 9/5027;
GO6F 9/4881

See application file for complete search history.

MisgO
carVal 58, (j eg Mgl
4 V“g‘fé :
Polyli] Poly (2] Pofy[T-1] PolyiT _;‘-52 r5p(S-1)
5*3 5“*‘5;/E 5*8
- }---------------1 i' {
Yy Ly oy
" Wil oy L % $*8 _ %
3% s*3ls 5%8l, 5%
/ E /! % E A
dYaiiMsBy| djoinise -3 diOia | oo
 AIIMSR] {d{aliMSe-1] 131} 44301
~d{S-41iMSB] 0[S -3} IMSB- 1} dis-1i) | dis-13j0) |

(56) References Cited
U.S. PATENT DOCUMENTS
4,633,470 A 12/1986 Welch et al.
7,594,095 B1* 9/2009 Nordquist GOO6F 9/4843
712/22
(Continued)
FOREIGN PATENT DOCUMENTS
CN 113485751 *10/2021 ...l GO6F 9/3887

OTHER PUBLICATTIONS

Anvin, H. Peter, “The mathematics of RAID-6,” (2007), 9 pages.
(Continued)

Primary Examiner — Guy J Lamarre

(74) Attorney, Agent, or Firm — Lewis Roca Rothgerber
Christie LLP

(57) ABSTRACT

A system using accelerated error-correcting code in the
storage and retrieval of data, wherein a single-instruction-
multiple-data (SIMD) processor, SIMD 1nstructions, non-
volatile storage media, and an I/O controller implement a
polynomial coding system including: a data matrix includ-
ing at least one vector and including rows of at least one
block of original data; a check matrix including more than
two rows ol at least one block of check data in the main
memory; and a thread that executes on a SIMD CPU core
and 1including: a parallel multiplier that multiplies the at least
one vector of the data matrix by a single factor; and a parallel
linear feedback shift register (LFSR) sequencer or a parallel
syndrome sequencer configured to order load operations of
the original data into at least one vector register of the SIMD
CPU core and respectively compute the check data or
syndrome data with the parallel multiplier.

33 Claims, 26 Drawing Sheets

1031~ F’méessin-g
' ore

1001 !
Main Memory
1051 —_] Data
Matrix 1031 \
1021~ | 1061 ~_| Check _
\ Matrix
N
1081 —~
4 Thread

US 11,848,686 B2
Page 2

(51) Int. CL
GOGF 15/80
GOGF 9/48
GOGF 9/50

(56)

(2006.01
(2006.01
(2006.01

LN N

References Cited

U.S. PATENT DOCUMENTS

8,683,296 B2 *

9,722,632 B2
2006/0288193 Al*

2009/0154690 Al*
2011/0078415 Al*
2015/0135182 Al*

2019/0102180 Al*

3/2014

8/2017
12/2006

6/2009

3/2011

5/2015

4/2019

Anderson HO3M 13/134
714/763
Anderson
Hsu .coooovvviviininiinnnn, GO6F 9/3017
712/217
WU i, G10L 25/27
379/386
Johnson GO6F 9/3851
718/107
Liland GO6F 9/3885
718/102
Hartcooevviiin, GO6F 11/1044

OTHER PUBLICATIONS

Chien, R. T., “Cyclic Decoding Procedures for Bose-Chaudhuri-
Hocquenghem Codes,” IEEE Transactions on Information Theory

10.4 (1964): 357-363.

Clarke, C. K. P., “Reed-Solomon error correction,” BBC R&D
White Paper WHP031 (2002), 47 pages.

Lim, Raymond S., “A Decoding Procedure for the Reed-Solomon

Codes,” NASA Technical Paper 1286 (1978), 26 pages.
Maddock, Robert, et al. “Surviving Two Disk Failures Introducing
Various RAID 6 Implementations,” Xyratex, Issue 3.0, Oct. 2007,
16 pages.

Plank, James S., “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance 1n RAID-like Systems,” Software—Practice & Expert-

ence, 27(9):995-1012, Sep. 1997.
Plank, James S., et al., “Note: Correction to the 1997 Tutorial on

Reed-Solomon Coding,” Technical Report CS-03-504, University

of Tennessee, Apr. 2003, 6 pages.
Plank, James S., “All About Erasure Codes:—Reed-Solomon Coding—

LDPC Coding,” ICL, Aug. 20, 2004: 2004, 53 pages.

* cited by examiner

1 Ol4

Lolp Tip . [T-gsnip faslp

¥ ¥ ¥

US 11,848,686 B2

Sheet 1 of 26

021 B
- [LiAod {T-11A0d

ng ______ o '
_m R TTTY -

Dec. 19, 2023
X0

001

U.S. Patent
/

(SISIX® 31 J1) 931L1S YS47 1uediiugis
$$9] ‘Jusdelpe o joquwASs yiim 1onpoud
4D SUlpuUOdsa.Liod YOX ‘91e1s HS41 yoes Jo4

¢ Ol S91€3S YS47 patepdn |

sjoquiAs oayd 0LC

US 11,848,686 B2

S|OqUIAS 28y se syonpoud 49

067 —1 9531 WO 598 anjeA |ejwouAjod Jojesauss Suipuodsaliod
JO senjeA 1ndinQ 09¢ yoea Ag anjea Asied Aidiinw 4o

anjea Auie) i

91e3s YS47 3Y1 JO [OqUWIAS
UBDIHIUSIS 1SOW YIIM JOqUIAS B1BP 1XSU YOX

Sheet 2 of 26

SSA

~3sjoquiAs ejep
1ndut JIOIN

0€T

Dec. 19, 2023

01z

00C 7

U.S. Patent

@\

e

s V& Dl

o

&

&2 TOXO OPX0 8LX0 9EX0 JOX0
oo | |

= 00X0 00%0 00%0 00X0 00%0
2 00X0 00X0 00X0 00%0 00X0

Sheet 3 of 26

Dec. 19, 2023

8
%

(0%0)
5T

U.S. Patent

/

4143

N

Ot

OO

OOX0 £EX0 CRX) £5%0 e9x0
10RO 17288 TREY: G X0 HX(
QX0 O0X0 OOX0 QOX0 QOXG

US 11,848,686 B2

{zlp

L1ip L£ip
] 01E

Sheet 4 of 26

Dec. 19, 2023

00

U.S. Patent

Je Dl

jetwouAjod |
101eJ19Us5)

US 11,848,686 B2

lejwouAjod
6L€ ~7| jua.1und 1ndinQg

(T + 2 =) 3 WuawaJou

[LE
|jeilwouAjod ua4ind palepdn

Sheet 5 of 26

SIA |

ON

e

Dec. 19, 2023

LT
jeiwouAjod juaaun) |°

1/€ - (dd) 1omod 15414 + T 01 |_IWOUAjOd 3zijelju|

(1) S|oquuAs 323y2 JO Jaquiny
0LE -7

U.S. Patent

US 11,848,686 B2

Sheet 6 of 26

Dec. 19, 2023

U.S. Patent

de Did

_m_EOC>_OQ 1Ua4iNd an_.mﬁﬂ: —

| |eiwouAjod Indui 8yl JO WU} 93433p JBysiy xouU
jetwouAjod 91 JO JUBID1}20D 3Y] pue D JUBISUOI JO 1nposd ay)
10jel2usn G8¢ - puUE {U1i3]) US.LND 33 JO JUBIDIYR0D 3] _

BIWIOUA0G 1O WINS BYJ YUM WU 1USLIND JO U120 3lepdn

[R:39 JuUs.1ind IndinQ

LWIBY JUSIIND JO JUBIDID0)

feiwouAjod (SWwa] 92439p J13Ysiy 03 Swiid}
jojesousd yge -] 9ai8sp somo| wouy) jetwouAjod Jo W] IXBU 103|185
_nuw“—,m _UQ D B e Wm> ___ 4

W49l juel T — p Jo

N_— ¢|eiwouAjod jo
N _SWR] s|ppiws 210N

98¢

o P e
| (x Ag swa)
r8e e Ajdiinw) [erwouAjod ndui Jo jues aseasdul

Tw__QB_:EV 2 <4 X }JO O Wda] JUelsuod
pue (puedijdiyinw) |eiicuAjod Indu;

08s -7

1¢ DOl " pu3

puesado puodas pue puesado 1541} j0 13npoid 49

m wns 30| Uo paseq 3jqel
L6E < lamod ui uojiedljdiyjnwi ay3 jo 1npoud dnyoo

US 11,848,686 B2

wns 807

puelado puolIas
96¢ <1 j0 Soj pue puesado 3siy Jo 80} Jo wins 49 aNdWoD

.___._____.___._____.___.___..___..___..___..____.__ e
GE PUOIasS JO mo_ pue ﬁcm‘_m_o_o 15414 10 MO__ dn .

Sheet 7 of 26

pueiado | o
- “puetsdo iayye s|

76€ 7| 184310 9yl uinloy

bt

Dec. 19, 2023

ON |

e GOOH _m_)_uw _

~——— . pueiado 13yua s|
T16¢€ - T ——— T

SOA
O UIn3a R
76 -1 OHMoe

o6€ -7

U.S. Patent

O
O
)
O
O
_§:j
O
2
G).
"D.
-
m.
i
o
{0

. -
(D,
D.
2
Reee
L.

1c Ol

US 11,848,686 B2

Sheet 8 of 26

S

Dec. 19, 2023

|8
X

LA O {11104

B3 2A IR

U.S. Patent

15E

1343

Vv Ol 9Th ~ 9]qe1 03 Sa1L1S YS41 parepdn aAes

(S1SIX® M 1) ©181S YS47 Juediusis
$s9] ‘auaoelpe 10 joqUIAS Yiim 1onpoud

___________________________ w_ﬁ._mu. ___________________________ n_..u MC__UCOQWW.:OU mox ampm“.m. .W_mn_..m £Umw LOH_

LTV | paleiauas 1ndinQ

Sty

US 11,848,686 B2

$1oNnpoud 49

anjea |eiwouAjod Jojessuas suipuodsatiod
yoea Ag anjea Asied Ajdiinw 40

viv
anjea Alie)

91215 ¥S41 3yl JO |OqUIAS
€TV -7 1ued|iudis 1soWw YyHm JOqUUAS elep 1xau JYOX

Sheet 9 of 26

SIA

| mm_OQE>m eiep ™
_Indui siolN

Dec. 19, 2023

Cly

|22 7 T
{00XOHT~-2I) TOXO :SjoquiAs ejep 1nduj
o1y -7 _

U.S. Patent

dv ‘Ol 5133151834 1ndino aya ul s3onpoud
31qqIU J9pJo-ySiy pue a|qgiu 1apJo-mo| Suipuodsaliod syl Suieinwindde — SEt
‘$193S18aJ Yd1e40S DU} Ul BIEP 3|gQiU Y3 U0 §4NHSd asn — AldiyInin

US 11,848,686 B2

(s219q1u) e1BP Yd1e4dS
1O 512151834 1n0y 03Ul ($91AQ) R1Ep puLIDdO JO S19151804 OM] SAOW — 31NJXI

vev

$1931518a4 Ind1no Unoj Jead 493151824 Jayjoue ojul s1onpoud 3|qgiu Jap.o
-MO| Y3 10} 1eadal (19151834 QU0 01Ul JOJDB) JUDLIND 3] J0) AJoWal WO CEtr

Sheet 10 of 26

S|jed duIPa323NS U0 AJOWBW WL} SUIPeOo|al PIOAR 0} 2UO|e S191SI8al 3SaY]
AR |IIM Jaldilinwi dnX)ooj |afjeted ay3 ‘sia1si8a4 puesado ojul Alowsw — 7€h
WoJj B1ep pueiado Jo S9IAQ 1Xau peoj — (elep puesado Jad 22uo) ajedald

Dec. 19, 2023

10128] 9UO0 pue 3jgqgiu auo Jo S1onpoud 2jqissod
9T 93 JO SBI4IUS 9G7 SulUIRIUOD BUO YIea ‘Sa|qqiu Japio-ysiy 10} auo |— 1€
‘S3|qQIU 19PJO-MO] 10} BUO ‘Sajgel dnoo] om] pjing — (3wl 3uUo) azijeiiu]

U.S. Patent

VS Ol4

US 11,848,686 B2

< pu3

m (S|JoquWIAS »29yd pue sjoquiAs eiep)

w e1ep pPapoouy

) 9p0d

- €0s leliwouAjod uo paseq sjoquuiAs ¥oayd aindwod)
m X1i1ew eljep ut

10§ 9101S pue S|JoquWAS elep jeulgiio Jndul 9A1939Y

sjoquWiAs elep 1nhdu| .

U.S. Patent

dS Dl

3}1e1s snoinaud
WioJ} ¥S4T 1O 91815 mau a1ndwiod
pue ¥YS47 01Ul Indul mau UIYS

US 11,848,686 B2

(SJOQWIAS Mooyd | 718
pue s|joquAs elep y)
e1Ep POpOIU]

S|OQUIAS ¥oayo 4S47 01 1ndul Mau 91e34d 0} m
STS -7 se a1e1s YS47 |eul) aAesS €ELS 7| anjeA gSIAl 03 JOQUIAS elep 1xau ppy

Sheet 12 of 26

oA

_—Esi0quiks e3P~

ynduj oy
216G - 1Hau N

Dec. 19, 2023

sjoquwAs e1ep |euiSiio Indul aA1909Y

ITS
sjoquwiAs ejep indul)
uels)

015 -7

U.S. Patent

US 11,848,686 B2

Sheet 13 of 26

Dec. 19, 2023

U.S. Patent

JS Dl

pui

e1EP PIISA0IDY

PIOMIPOI PIAIDIAI PUR ‘SBN|eA 10443
65§ ‘SUOIIRJ0| JOJID WOU} BleP PII2A0I3J 9P033(

SanjeA JOJ4l SU011el0| 10444

San|eA SUO11e00)

755 10113 31ejnoaje) £qs 10149 31ejnojed

jelwouAjod uolled0} 1043

scc lellouAjod uoiled0} 10413 91ndwio)

(S) SOWOIPUAS

rec SQWOJPUAS 91e|nd|e)

PRIOMSPOI PIAIDIIY

US 11,848,686 B2

Sheet 14 of 26

Dec. 19, 2023

U.S. Patent

as Oid

SUOI1B0] 40443

J0109A Y290
PUOJES pue 10133A XIa3Yd 1541

8.5 <7| joiusnonb jo Joj Sunndwod |
Aq suoisod Jouid aIndwo) QLS

SON{EA 10414 |

10329A 294D 1541}
W04} SenjeA Jo4ia ainduwio)

LLS

elS

CLS
TLS

0.5 -7

9LG

ON__—""3sj0quwiAs agessawi

2NjeA J0}elauasd
AQ JOID3A MO3YDd pu0Ias Ajdinjnua 495

JOJI9A HI3YD PUOIIS pue JOIIBA
M22Y0 31541} 03 JoqUIAS e1ep 1Xau ppe 45

SOA

INdul 3JOA
7/ G -

INjBA 101eI2U3 pue JOgQUIAS adessal
1S4} JO 10Nnp0oUd 4D UM JO1IDA MIaYD
pUOo23s azijenyul pue joquiAs agdessaw
15414 YIHM JOJOBA HO3D 18414 2Zijeiju]

Jaldiynw azijeniuy

sjoquiAs a8essauwl peo

US 11,848,686 B2

Sheet 15 of 26

Dec. 19, 2023

U.S. Patent

9Dl

SJoquiAs paianoday |

X|11eW Uoiinjos
609 7| yim sjoquiAs 3oayd 0 1onposd Jop andwo)

elep pasess
Xlijew uonnjos JO sjoquiAs 32ayD

__________________ PRy rE.
POAIDI3J 0] SJOqQUWIAS
}22Yod painduwiod ppy

Xii3ew
uoiINjos ANAWO) | g ~

L09 -

s|oquiAs Maayd paindwo)

S|OQWAS e1ep paAldal WOy
SjoquiAs 329yo ainduwio)

S|JOQUIAS
}osyo
SETVEREN

€09

sjoquiAs elep paAiaday

109

009 7

V., Ol

09L

US 11,848,686 B2

SOA |
ONN H... IIIIIIIII 1 Omﬁ .ﬂ.\\ - \m‘m_n__tm\zﬂ_f ™o~ ~ -
_ 023 95N _AI|||I\.........,.. X1J1BIA H a
. - | ON ~~~ gpuowuspuep -~~~
n._m iy -
=
~ XLI1EN
.m opUOWIBPUEBA
7 Ot/ 19N115U0)
2
”ﬂ ¢ 1=5404144 4290 95N
B [E30L SIA _
= 0€L
S10J443
07/ ge|4 pue juno)

PIOMIPOD PoAIDIIY

00L -7

PJOMIPOI SAIDIDY

01L

U.S. Patent

US 11,848,686 B2

Sheet 17 of 26

Dec. 19, 2023

U.S. Patent

d/ "Dl

JINS34d 9AES3Y

.“m_“_m__.umv_ }nsal
15414 Yim 1onpoud
10p duippe Ag

IN|EA BlEP JSA0IDY

NEG/

13,

191SIgal }Nsal 31541 o]
3yepdn 0] 193151834 }nsau
1541} 941 Ul anjeA ayl 01
131sigdaJ eje

SESSENETIEEY
pUOD8S 8yl 91epdn 0}
13351834 }NSaJ PUoIaS 0}
19151994 e1ep Ui elep ppy

0 JO
Jamod suind Ag ua3s518a.
1NsaJ4 pu0aas Ajdizinin

0 JO
Jomod yoeoa pue 193151801
}NSS4 M3U Yoea 10 4€G/

Xii1ew }Nsal 10N4IsuUo))

Xiileiu
UCISIoAU oPUOQULIOPDURA

pue Xjiew ynsal
JO 1onposd 10p ndwio)

Lyegs
€S/

HESL

10323A B1ep
21AQ 9 JO SanjeA paseus

OJUI SOI3Z NSNS

19151831 eyep
e O}ul 3p0olap 0} eiep
PEO| JOIDIA eiep 31AQ
G € Ul SJOQUUIAS |{e 104

“oesL

S19151334 }NsSal 0437

deGL

A4OJI0A '
elep NAQ g Yoea dod | Leyecy

SJ0103A elep 31AqQ 9 Ol |
eiep Sujwodut ajesedag | € 7C/

" éagilienu)
XL
SPUsWI2pUE/

€S &

JL Ol4

m XiJ}ew 3ulpooua
6/, -] }O XiJjeWw UOISIDAUl UO paseq elep JOADIIY

US 11,848,686 B2

elep pasela JO S|OquIAS Yoay)

m U._ngﬂuou _Um\/_wuwm_ EO..C. m_OQ E)m v_Umr_U
LLL <] poaAIadal 01 SJOqUIAS MIaUd paindwod ppy

S|oqUIAS 323y2 paindwo)

Sheet 18 of 26

cr/ 4S47 PaJndijuod ojul elep agessawt YIUs

' San|eA ¥S41 azijeniul pue

€L/ ¥S47 4O sdel aingdijuo)

Dec. 19, 2023

PJOMBPOI PAAISIAL JO SaN|eA

Pasela 01Ul S30JaZ aINUIsSans | ™ 1//

PI0OMIP0O0 PoAIOIIY
0LL -7

U.S. Patent

US 11,848,686 B2

Sheet 19 of 26

Dec. 19, 2023

U.S. Patent

e1ep Yo9yd 2ALIP H03Yd ay] arepdn
0} eiep puesado JoO $31AQ 79 S OAIP 1X2U U0 Jaljdiyjnw dn)ooj |9)jeted Suljjed
‘SOALIP Y2342 9yl JO yoes ysnoiyl dooj :DALP elep 1Xau $sa204d — dooj Jsuuj

doo| Jauul {jed (dooj Jauul
SSOJOE PaAJasald) Alowaw WO} elep puelado JO $91AQ 179 1XSU pPeo| ‘SIALIP
elep Jaylo ayl JO yoes 10} :SIALIP elep Jaylo $59204d — dOoOo| ajppitl PpU0IaS

EIEP 2940 IALIP %3940 I ELIUT O) ElEpP
pueJIado JO S3IAQ 9 S, OALIP BIEP 1S41) UO Jaijdiiinwi dndoo] |ajjeled Suljjed ‘SOALIP
323Yd 3y3 JO yoeo ysnouyl dooj :9ALIP elep 15414 SSa204d — dOO| 9|ppiud 15414

AJowawl Wod) AP
elep 1541} 10} e1ep puesado JO S91AQ {9 1Xau peoj ‘adlils ayl Jo $H00jg 9yl Jo
Yoea wolj) eyep puesado Jo syunyd 91Ag-19 jo dnougd 1xau ssao0ud — doo| 419InQ

elep jo adiils e ssooe sHUNyYd alAg-y9 suipuodsaliod Jo
SANO0JS BAIINIBSUOD J0j elep 323yl 9lelauagd 0} 2iedald — UOIIRIOAU|

ds Sid

G3L

V8L

e8L

(3L

18L

08L

US 11,848,686 B2

Sheet 20 of 26

Dec. 19, 2023

U.S. Patent

elep puetado JO s91AQ §9 S,9A1LP 1P SUIAIAINS 1SJ1) 9Y] UO
paseq elep ooyd Jiayl azijelliul 01 Jaldinw dnyoo] |9)jeled |{ed ‘SaALIP M}Iayd
palie) 9Y] JO Yoea 104 :elep SALIP O3YD pajie) azijelliul — doo| ajppitl puodas

XxV 1ep 2Iayd jeired azijeiiul 01 eyep puesado Jo sa1Ag 19 S,9ALIP
elep SUIAIAINS 1S414 U0 Jatjdiyjnw dnX 00| |9jeded Suljjed ‘SaALIP ¥23Yd SUIAIAINS
2431 JO yoea ysnouayl dooj :DALIP elep SUIAIAINS 1541} SS9204d — dOO| ajppiu 3S414

AJOoWBW WOJ} SAIIP BleP SUIAIAINS 1S4} JOJ BlRp puelado JO s21AqQ 9
}IXoU peoj ‘ejep pueiado jo syunyd 91Ag-{9 JO dnoid 1xau ssadouid — doo| J1aIng

elep JO 9diils e ssoJdoe syunyd a3Ag-19 2|dizjnw 10} eyep yoayd
}SO| 91e43Ua8al pue e1ep |euUIdiio 1SO| 10NJ1SU0I3] 0} 2Jedald — UOI}eIOAU|

1L 'Ol

06L

68L

38L

LBL

98L

US 11,848,686 B2

Sheet 21 of 26

Dec. 19, 2023

U.S. Patent

XXy e1ep 3}oayo jeipied 03 elep Jo s3IAQ 9 J1o]
ppe 01 Jappe |ajjeled Suljjed ‘SOALIP }29Yd SUIAIAINS Y] JO Yyoea ysnoiyl
doo| :XxV - M 23npoid 031 eiep)oayd SuiAIAInS ppe — dooj ajppiw Yiino4

elep puetado JO S31AQ {9 S 2A1IP elep SUIAIAINS 1XBU BY] U0
paseq ejep 329Yd Jiayl alepdn 01 Jaljdiljnwi dn)ooj |3}jeted ||ed ‘SSALIP }I3YD
pajie} 3yl JO Yyoes Joj :e1ep SALIP MI3Yd pajie} aiepdn — dOO| J8UUl PUOISS

XXV Blep 3ooyo |eiyied ajepdn 0] elep puetado JO $31AQ $9 S,9ALIP
e1ep SUIAIAINS 1XaU Uo Jaldizinw dnyooj |ajjeded 3uijjed ‘SOALIP ¥09Yd SUIAIAINS
943 JO yoea ysnouayjl dooj SALP el1ep SUIAIAINS IX9U $SS920.d — d0O0| Jouul 15414

(SdOO} Jauul sSoJoe paAlasaid) Aulowsw wouj elep
pueiado JO S31AQ 9 1XaU pPeo| ‘SaALIP Blep SUIAIAINS J3Yl0 3yl Jo
Uoea JOJ SSALIP Blep SUIAIAINS J2Yl0 SS20.4d — d0oo| ajppiwl piiy|

4/ Ol4

174374

£6.L

oL

16L

98/

US 11,848,686 B2

Sheet 22 of 26

Dec. 19, 2023

U.S. Patent

(padisap JI) elep >oayd pajela2uad AiMmau 3J03S
‘DALIP I3 pajie} yoes 10} — doo| 3|ppiw Yyixis

elep 150} Pa31dNJISU0IAI JO SOIAQ 19 S, OALIP Blep palie) 1xau
o1 U0 paseq eiep yoayd Jayl alepdn o1 Jaijdizjnw dmjooy [sjjeled |jed ‘SIALIP
Moayd pajie) 8yl JO Yoes U0} eiep AP ¥I3Yd pajie} ayepdn — dooj Jauul y1ano4

(paJisap J1) pa403s aq ued Yoiym ‘eyep 1so| S, AP pajie]
IX3U S1ONAISU0I3I SIY3 (4aljdiljnw dnyoo| |ajjeded suisn) Xxyv — M pue ..g Jo
1010} 1X3U JO 10oNnpoud ui duippe Ag A JO MOJ IXau 219jdwiod — dooj Jauul paiy |

XXV — M Blep >oayod jensed 1S0| pue _g Xii3ew uoiln|os JO uoileuiquod
1541} 01 A JO MOJ IXau Sujzijeiyiul Ag Hels (Xxy — M) x ;-g 21ejnojed
‘d00| JoUUl PJIYL YIIM Uoileuiquiod Ul A elep jeuldlio 1soj — dooj ajppiwt Yl

9L Ol

86L

L6L

96L

G6/L

98L

|

00
O
Ll.

I3
X
IS

i
Eals
)

X
o

US 11,848,686 B2

o
2
S
S
en —
ﬂ. 12}1041U00D
-
1211011U00
en \CO_.\CN—\/_
=
2
=
o—
S
-

U.S. Patent

AJowawl
UIBIAl

19]}0J1U02D
Ul
19]j0J3U02
AJOWIDIA

348,686 B2

L}

2

¥ Jr:Jr:Jr:Jr:Jr‘rJr ¥
Pia S Syl iy

xx

US 11

)

X ok kN Nk

dr e e e
L e e e e e

N e

Pl

Sheet 24 of 26

Dec. 19, 2023

U.S. Patent

o
Pl
ity

rxa
Piafialiy
ol
T
Pl
Pl
Pl
e
T
Pty
Pl
Sl
i
Eaa

i

i
L)

o

L)
SN
)

L)

s
L)
i

X ¥
)

i
Ky
P

)

X
ot D 0 Sk ol ok ook o ok ol

:Jr
NN
x Jr*#*#*#*#*#*#:#*Jr*lr*#*#*# oy

i
L)

i a

0801}

XI1BIN
Buipoous] 0.0}

US 11,848,686 B2

0901

Sheet 25 of 26

0€0l XUieN
eled

AJOWB\ UIB

0501

Dec. 19, 2023

810D

buissao0.d

VOl Ol

U.S. Patent

0LOL

0201l

0001

1801

US 11,848,686 B2

Sheet 26 of 26

. €0} XHEN

S e1e(q] 1G01
M Alowan ule

-

=Jlolg

buissao0.d

d0l ©l4

U.S. Patent

L1101

101

1001

US 11,848,686 B2

1

ACCELERATED POLYNOMIAL CODING
SYSTEM AND METHOD

BACKGROUND

1. Field

Aspects of embodiments of the present disclosure are
directed toward systems and methods for polynomial encod-
ing and error recovery using a linear feedback shiit register
(LEFSR) or matrices generated by an LFSR.

2. Description of Related Art

An error-correcting code (ECC) 1s useful for forward
error-correction 1n applications like a redundant array of
independent disks (RAID) or high-speed communication
systems. In a typical error correcting code, data (or original
data) 1s organized 1n stripes, each of which 1s broken up into
N equal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe 1s thus reconstructable by
putting the N data blocks together. However, to handle
situations where one or more of the original N data blocks
gets lost, error correcting codes also encode an additional M
equal-sized blocks (called check blocks or check data) from
the original N data blocks, for some positive integer M.

The N data blocks and the M check blocks are all the same
s1ize. Accordingly, there are a total of N+M equal-sized
blocks after encoding. The N+M blocks may, for example,
be transmitted to a recerver as N+M separate packets, or
written to N+M corresponding storage drives (e.g., hard disk
drives, solid state storage devices, or tlash memory chips).
For ease of description, all N+M blocks after encoding will
be referred to as encoded blocks, though some (for example,
N of them) may contain unencoded portions of the original
data. That 1s, the encoded data refers to the original data
together with the check data.

The M check blocks build redundancy into the system, in
a very ellicient manner, 1n that the original data (as well as
any lost check data) can be reconstructed if any N of the
N+M encoded blocks are received by the recerver, or if any
N of the N+M storage devices are functioning correctly.
Note that such an error correcting code 1s also referred to as
“optimal.”

The above nformation disclosed in this Background
section 1s only for enhancement of understanding of the
present disclosure, and therefore 1t may contain information
that does not form the prior art that 1s already known to a
person of ordinary skill in the art.

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical polynomial coding
system that, for byte-level RAID processing (where each
byte 1s made up of 8 bits), performs well even for values of
N+M as large as 255 drives. Previous art, such as the Intel
ISA-L library, employs a default Vandermonde encoding
matrix that 1s limited to 14 drives or fewer. By contrast,
using an LFSR (or a matrix generated by an LFSR), poly-
nomial codes support both erasure coding and unknown
error decoding, thereby improving both system reliability
and system performance.

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to

10

15

20

25

30

35

40

45

50

55

60

65

2

create larger groups of data drives. For example, systems
with two checks disks are typically limited to group sizes of
or fewer drives for reliability reasons. With a higher check
disk count, larger groups are available, which can lead to
tewer overall components for the same umt of storage and
hence, lower cost.

Aspects ol embodiments of the present disclosure relate to
systems and methods for polynomial encoding and error
recovery using a linear feedback shift register (LFSR) or
matrices generated by an LFSR.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed-
Solomon codes. While known solution matrix algorithms
compute an NxN solution matrix (see, for example, J. S.
Plank, “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance 1n RAID-like Systems,” Software—Practice &
Experience, 27(9):995-1012, September 1997, and I. S.
Plank and Y. Ding, “Note: Correction to the 1997 Tutoral on
Reed-Solomon Coding,” Technical Report CS-03-504, Uni-
versity of Tennessee, April 2003), requiring O(N~) opera-
tions, regardless of the number of failed data drives, aspects
of embodiments of the present invention compute only an
FxF solution matrix, where F 1s the number of failed data
drives. The overhead for computing this FxF solution matrix
is approximately F°/3 multiplication operations and the
same number of addition operations. Not only 1s F=<N, 1n
almost any practical application, the number of failed data
drives F 1s considerably smaller than the number of data
drives N. Accordingly, the fast solution matrix algorithm
according to some embodiments 1s considerably faster than
any known approach for practical values of F and N.

Further aspects are directed to employing a separate
encoding and decoding scheme to achieve superior results.
For encoding, either an LFSR or a matrix generated by an
LFSR generates the redundant symbols. For decoding, a
Vandermonde matrix applied to both the recerved data and
redundant symbols result 1n superior error correction ability.

Further aspects are directed to reducing or minimizing the
number ol constants that must be {fetched from main
memory 1n order to compute either an encoding or decoding
result.

According to one embodiment of the present disclosure,
a system adapted to use accelerated error-correcting code
(ECC) processing to improve the storage and retrieval of
digital data distributed across a plurality of drives, includes:
at least one processor including at least one single-instruc-
tion-multiple-data (SIMD) central processing unit (CPU)
core that executes SIMD 1nstructions and loads original data
from a main memory and stores check data to the main
memory, the SIMD CPU core including at least 16 vector
registers, each of the vector registers storing at least 16
bytes; at least one system drive including at least one
non-volatile storage medium that stores the SIMD 1nstruc-
tions; a plurality of data drives each including at least one
non-volatile storage medium that stores at least one block of
the original data, the at least one block including at least 512
bytes; more than two check drives each including at least
one non-volatile storage medium that stores at least one
block of the check data; and at least one mput/output (I/O)
controller that stores the at least one block of the check data
from the main memory to the check drives, wherein the
processor, the SIMD instructions, the non-volatile storage
media, and the 1/O controller are configured to implement a
polynomial coding system including: a data matrix includ-
ing at least one vector and including a plurality of rows of
at least one block of the original data in the main memory,
cach of the rows being stored on a different one of the data

US 11,848,686 B2

3

drives; a check matrix including more than two rows of the
at least one block of the check data in the main memory,
cach of the rows being stored on a diflerent one of the check
drives; and a thread that executes on the SIMD CPU core
and including: at least one parallel multiplier that multiplies
the at least one vector of the data matrix by a single factor
to compute parallel multiplier results including at least one
vector; and a parallel linear feedback shift register (LFSR)
sequencer wherein the parallel LFSR sequencer orders load
operations of the original data into at least one of the vector
registers and computes the check data with the at least one
parallel multiplier and stores the computed check data from
the vector registers to the main memory.

The processing core may include a plurality of processing,
cores; the thread may include a plurality of threads; and the
polynomial coding system may further include a scheduler
for generating the check data by: dividing the data matrix
into a plurality of data matrices; dividing the check matrix
into a plurality of check matrices; assigning corresponding
ones ol the data matrices and the check matrices to the
threads; and assigning the threads to the processing cores to
concurrently generate portions of the check data correspond-
ing to the check matrices from respective ones of the data
matrices.

The SIMD instructions implementing the at least one
parallel multiplier of the thread may include a GF2PSMULB
istruction.

A primitive polynomial of a Galois field of a Galoss field
multiplication instruction of the processing core may be
different from a primitive polynomial of a Galois field of a
polynomial code of the polynomial coding system, and the
SIMD 1nstructions may include instructions corresponding
to the at least one parallel multiplier include 1nstructions
that, when executed by the processing core, cause the
processing core to implement a parallel lookup Galois field
multiplier.

The 1nstructions that implement the parallel lookup Galois
field multiplier may include a SIMD shuflle instruction.

The LFSR sequencer may be configured to compute T
check symbols of the check data by supplying K data
symbols of the original data to a LFSR configured with T
coellicients supplied to T taps of the LFSR, wherein the T
coellicients are coellicients of a generator polynomaal.

According to one embodiment of the present disclosure,
a system adapted to use accelerated error-correcting code
(ECC) processing to improve the storage and retrieval of
digital data distributed across a plurality of drives, includes:
at least one processor including at least one single-instruc-
tion-multiple-data (SIMD) central processing unit (CPU)
core that executes SIMD instructions and loads received
original data and received check data from a main memory
and computes syndrome data; the SIMD CPU core including
at least 16 vector registers, each of the vector registers
storing at least 16 bytes; at least one system drive including
at least one non-volatile storage medium that stores the
SIMD 1nstructions; a plurality of data drives each including
at least one non-volatile storage medium that stores at least
one block of the received original data, the at least one block
including at least 512 bytes; more than two check drives
cach including at least one non-volatile storage medium that
stores at least one block of the received check data; and at

least one 1nput/output (I/0) controller that reads at least one
block of the received check data from the check drives and

stores the at least one block of the recerved check data to the
main memory, wherein the processor, the SIMD 1nstruc-
tions, the non-volatile storage media and the I/O controller
implement a polynomial coding system, including: a

5

10

15

20

25

30

35

40

45

50

55

60

65

4

received data matrix including at least one vector and
including at least one row of at least one block of the
received original data in the main memory, each row of the
at least one row being stored on a different one of the data
drives; a received check matrix including at least one row of
at least one block of the received check data in the main
memory, each row of the at least one row being stored on a
different one of the check drives; and a thread that executes
on the SIMD CPU core and including: at least one parallel
multiplier that multiplies the at least one vector of the
received original data by a single factor to compute parallel
multiplier results including at least one vector; and a parallel
syndrome sequencer wherein the parallel syndrome
sequencer: orders load operations of the received original
data mto at least one of the vector registers and load
operations of the received check data into at least one of the
vector registers; and computes the syndrome data with the at
least one parallel multiplier.

The at least one processor may include a plurality of
processing cores; the thread may include a plurality of
threads; and the polynomial coding system may further
include a scheduler for generating the syndrome data by:
dividing the received data matrix into a plurality of received
data matrices; dividing the received check matrix nto a
plurality of received check matrices; assigning correspond-
ing ones of the received data matrices and the received check
matrices to the threads; and assigning the threads to the
processing cores to concurrently compute the syndrome data
based on respective ones of the received check matrices and
the received data matrices.

The SIMD instructions implementing the at least one
parallel multiplier of the thread may include a GF2PSMULB
instruction.

A primitive polynomial of a Galois field of a Galois field
multiplication instruction of the SIMD CPU core may be
different from a primitive polynomial of a Galois field of a
polynomial code of the polynomial coding system, and the
SIMD 1structions may include instructions corresponding,
to the at least one parallel multiplier include instructions
that, when executed by the SIMD CPU core, cause the
SIMD CPU core to implement a parallel lookup Galois field
multiplier.

The mstructions that implement the parallel lookup Galois
field multiplier may include a SIMD shutile instruction.

According to one embodiment of the present disclosure,
a method for improving the storage and retrieval of digital
data distributed across a plurality of drives using accelerated
error-correcting code (ECC) processing in a system
includes: at least one processor including at least one
single-nstruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD 1nstructions and loads
original data from a main memory and stores check data to
the main memory, the SIMD CPU core including at least 16
vector registers, each of the vector registers storing at least
16 bytes; at least one system drive including at least one
non-volatile storage medium that stores the SIMD 1nstruc-
tions; a plurality of data drives each including at least one
non-volatile storage medium that stores at least one block of
the original data, the at least one block including at least 512
bytes; more than two check drives each including at least
one non-volatile storage medium that stores at least one
block of the check data; and at least one mput/output (I/O)
controller that stores the at least one block of the check data
from the main memory to the check drnives, the method
including: loading a data matrix including at least one vector
and including a plurality of rows of at least one block of the
original data into the main memory, each of the rows being

US 11,848,686 B2

S

stored on a different one of the data drives; loading a check
matrix including more than two rows of the at least one
block of the check data in the main memory, each of the
rows being stored on a different one of the check drives; and
executing a thread on the SIMD CPU core, the thread
including: at least one parallel multiplier that multiplies the
at least one vector of the data matrix by a single factor to
compute parallel multiplier results including at least one
vector; and a parallel linear feedback shift register (LFSR)
sequencer wherein the parallel LFSR sequencer orders load
operations of the original data into at least one of the vector
registers and computes the check data with the at least one
parallel multiplier and stores the computed check data from
the vector registers to the main memory 1n accordance with
a polynomial code. The at least one processor may include
a plurality of processing cores; the thread may include a
plurality of threads; and the method may further include:
dividing the data matrix mto a plurality of data matrices;
dividing the check matrix into a plurality of check matrices;
assigning, by a scheduler, corresponding ones of the data
matrices and the check matrices to the threads; and assign-
ing, by the scheduler, the threads to the processing cores to
concurrently generate portions of the check data correspond-
ing to the check matrices from respective ones of the data
matrices.

The at least one parallel multiplier of the thread may be
implemented by one or more SIMD instructions including a
GF2PSMULB 1nstruction.

A primitive polynomial of a Galois field of a Galoss field
multiplication instruction of the SIMD CPU core may be
different from a primitive polynomial of a Galois field of the
polynomial code, and the SIMD instructions may include
istructions corresponding to the at least one parallel mul-
tiplier include nstructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to implement a
parallel lookup Galois field multiplier.

The 1nstructions that implement the parallel lookup Galois
field multiplier may include a SIMD shuflle instruction.

The LFSR sequencer may be configured to compute T
check symbols of the check data by supplying K data
symbols of the original data to a LFSR configured with T
coellicients supplied to T taps of the LFSR, wherein the T
coellicients are coellicients of a generator polynomaal.

According to one embodiment of the present disclosure,
a method for improving the storage and retrieval of digital
data distributed across a plurality of drives using accelerated
error-correcting code (ECC) processing in a system
includes: at least one processor including at least one
single-nstruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD 1nstructions and loads
received original data and received check data from a main
memory and computes syndrome data; the SIMD CPU core
including at least 16 vector registers, each of the vector
registers storing at least 16 bytes; at least one system drive
including at least one non-volatile storage medium that
stores the SIMD 1nstructions; a plurality of data drives each
including at least one non-volatile storage medium that
stores at least one block of the received original data, the at
least one block including at least 512 bytes; more than two
check drives each including at least one non-volatile storage
medium that stores at least one block of the received check
data; and at least one mput/output (I/O) controller that reads
at least one block of the received check data from the check
drives and stores the at least one block of the received check
data to the main memory, the method including: loading a
received data matrix including at least one vector and
including at least one row of at least one block of the

10

15

20

25

30

35

40

45

50

55

60

65

6

received original data into the main memory, each row of the
at least one row being stored on a different one of the data
drives; loading a received check matrix including at least
one row of at least one block of the received check data into
the main memory, each row of the at least one row being
stored on a different one of the check drives; and executing
a thread on the SIMD CPU core, the thread including: at
least one parallel multiplier that multiplies the at least one
vector of the received original data by a single factor to
compute parallel multiplier results including at least one
vector; and a parallel syndrome sequencer wherein the
parallel syndrome sequencer: orders load operations of the
received original data 1nto at least one of the vector registers
and load operations of the received check data into at least
one of the vector registers; and computes the syndrome data
with the at least one parallel multiplier in accordance with a
polynomial code.

The at least one processor may include a plurality of
processing cores; the thread may include a plurality of
threads; and the method may further include: dividing the
received data matrix into a plurality of received data matri-
ces; dividing the received check matrix into a plurality of
received check matrices; assigning, by a scheduler, corre-
sponding ones of the recerved data matrices and the received
check matrices to the threads; and assigning, by the sched-
uler, the threads to the processing cores to concurrently
compute the syndrome data based on respective ones of the
received check matrices and the received data matrices.

The SIMD instructions implementing the at least one
parallel multiplier of the thread may include a GF2PSMULB
instruction.

A primitive polynomial of a Galois field of a Galois field
multiplication instruction of the SIMD CPU core may be
different from a primitive polynomial of a Galois field of the
polynomial code, and the SIMD instructions may include
instructions corresponding to the at least one parallel mul-
tiplier include 1nstructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to mmplement a
parallel lookup Galois field multiplier.

The mstructions that implement the parallel lookup Galois
field multiplier may include a SIMD shutile instruction.

According to one embodiment of the present disclosure,
a non-volatile computer readable medium having instruc-
tions stored thereon that, when executed by a processor,
cause the processor to implement accelerated error-correct-
ing code (ECC) processing to improve the storage and
retrieval of digital data distributed across a plurality of
drives 1n a system includes: at least one processor including
at least one single-instruction-multiple-data (SIMD) central
processing unit (CPU) core that executes SIMD 1nstructions
and loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core
including at least 16 vector registers, each of the vector
registers storing at least 16 bytes; at least one system drive
including at least one non-volatile storage medium that
stores the SIMD 1nstructions; a plurality of data drives each
including at least one non-volatile storage medium that
stores at least one block of the original data, the at least one
block including at least 512 bytes; more than two check
drives each including at least one non-volatile storage
medium that stores at least one block of the check data; and
at least one mput/output (I/O) controller that stores the at
least one block of the check data from the main memory to
the check drives, wherein the instructions stored on the
non-volatile computer readable medium, when executed by
the at least one processor, cause the at least one processor to:
load a data matrix including at least one vector and including

US 11,848,686 B2

7

a plurality of rows of at least one block of the original data
into the main memory, each of the rows being stored on a
different one of the data drives; load a check matrix includ-
ing more than two rows of the at least one block of the check
data 1n the main memory, each of the rows being stored on
a different one of the check drives; and execute a thread on
the SIMD CPU core, the thread including: at least one
parallel multiplier that multiplies the at least one vector of
the data matrix by a single factor to compute parallel
multiplier results including at least one vector; and a parallel
linear feedback shiit register (LFSR) sequencer wherein the
parallel LFSR sequencer orders load operations of the
original data into at least one of the vector registers and
computes the check data with the at least one parallel
multiplier and stores the computed check data from the
vector registers to the main memory 1n accordance with a
polynomial code.

The at least one processor may include a plurality of
processing cores; the thread may include a plurality of
threads; and the instructions may further include nstructions
that, When executed by the at least one processor, cause the
at least one processor to: divide the data matrix into a
plurality of data matrices; divide the check matrix mnto a
plurality of check matrices; assign, by a scheduler, corre-
sponding ones of the data matrices and the check matrices to
the threads; and assign, by the scheduler, the threads to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec-
tive ones of the data matrices.

The instructions implementing the at least one parallel
multiplier may include one or more SIMD instructions
including a GF2PSMULB 1nstruction.

A primitive polynomial of a Galois field of a Galois field
multiplication instruction of the SIMD CPU core may be
different from a primitive polynomial of a Galois field of the
polynomial code, and the SIMD structions may include
instructions corresponding to the at least one parallel mul-
tiplier include nstructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to implement a
parallel lookup Galois field multiplier.

The 1nstructions that implement the parallel lookup Galois
field multiplier may include a SIMD shulille istruction.

The 1nstructions that implement the LFSR sequencer may
include instructions to compute T check symbols of the
check data by supplying K data symbols of the original data
to a LFSR configured with T coetlicients Supphed to T taps
of the LFSR, wherein the T coeflicients are coeflicients of a
generator polynomuial.

According to one embodiment of the present disclosure,
a non-volatile computer readable medium having instruc-
tions stored thereon that, when executed by a processor,
cause the processor to implement accelerated error-correct-
ing code (ECC) processing to immprove the storage and
retrieval of digital data distributed across a plurality of
drives 1n a system including: at least one processor including
at least one single-instruction-multiple-data (SIMD) central
processing unit (CPU) core that executes SIMD 1nstructions
and loads received original data and received check data
from a main memory and computes syndrome data; the
SIMD CPU core including at least 16 vector registers, each
of the vector registers storing at least 16 bytes; at least one
system drive including at least one non-volatile storage
medium that stores the SIMD 1nstructions; a plurality of data
drives each including at least one non-volatile storage
medium that stores at least one block of the received original
data, the at least one block including at least 512 bytes; more
than two check drives each including at least one non-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

volatile storage medium that stores at least one block of the
received check data; and at least one mput/output (I/O)

controller that reads at least one block of the received check
data from the check drives and stores the at least one block
of the received check data to the main memory, wherein the
instructions stored on the non-volatile computer readable
medium, when executed by the at least one processor, cause
the at least one processor to: load a received data matrix
including at least one vector and including at least one row
of at least one block of the received original data ito the
main memory, each row of the at least one row being stored
on a different one of the data drives; load a received check
matrix including at least one row of at least one block of the
received check data mto the main memory, each row of the
at least one row being stored on a diflerent one of the check
drives; and execute a thread on the SIMD CPU core, the
thread including: at least one parallel multiplier that multi-
plies the at least one vector of the received original data by
a single factor to compute parallel multiplier results includ-
ing at least one vector; and a parallel syndrome sequencer
wherein the parallel syndrome sequencer: orders load opera-
tions of the received orniginal data into at least one of the
vector registers and load operations of the received check
data into at least one of the vector registers; and computes
the syndrome data with the at least one parallel multiplier in
accordance with a polynomial code.

The at least one processor may include a plurality of
processing cores; the thread may include a plurality of
threads; and the 1nstructions may further include nstructions
that, when executed by the at least one processor, cause the
at least one processor to: divide the received data matrix into
a plurality of received data matrices; divide the received
check matrix into a plurality of recerved check matrices;
assign corresponding ones of the received data matrices and
the received check matrices to the threads; and assign the
threads to the processing cores to concurrently compute the
syndrome data based on respective ones of the received
check matrices and the received data matrices.

The mstructions implementing the at least one parallel
multiplier of the thread may include one or more SIMD
instructions mncluding a GF2PSMULB 1nstruction.

A primitive polynomial of a Galois field of a Galois field
multiplication instruction of the SIMD CPU core may be
different from a primitive polynomial of a Galois field of the
polynomial code, and the SIMD instructions may include
instructions corresponding to the at least one parallel mul-
tiplier include 1instructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to mmplement a
parallel lookup Galois field multiplier.

The mstructions that implement the parallel lookup Galois
field multiplier may include a SIMD shutile instruction.

BRIEF DESCRIPTION OF THE

DRAWINGS

The accompanying drawings, together with the specifi-
cation, 1llustrate exemplary embodiments of the present
invention, and, together with the description, serve to
explain the principles of the present invention.

FIG. 1 1s a block diagram of a linear feedback shift
register configured to compute check symbols according to
one embodiment of the present disclosure.

FIG. 2 1s a flowchart depicting a method for computing
check symbols from an input sequence of data symbols
according to one embodiment of the present disclosure.

FIGS. 3A and 3B are block diagrams depicting a four
stage LFSR configured based on the generator polynomial
X +15x°+54x”+120x+64 and the values stored in the four

US 11,848,686 B2

9

stages of the LFSR after each byte 1s mput to the LFSR
according to one embodiment of the present disclosure.

FIG. 3C 1s a flowchart depicting a method for computing
the tap values according to one embodiment of the present
disclosure.

FIG. 3D i1s a flowchart of a method for multiplying
polynomials according to one embodiment of the present
disclosure.

FIG. 3E 1s a flowchart of a method for GF multiplying
values according to one embodiment of the present disclo-
sure.

FIG. 3F 1s a block diagram of a parallel linear feedback
shift register configured to compute check symbols of mul-
tiple messages in parallel according to one embodiment of
the present disclosure.

FIG. 4A 1s a flowchart depicting a method for generating,
an encoding matrix according to one embodiment of the
present disclosure.

FIG. 4B shows an exemplary method for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. SA 1s a flowchart depicting a method for encoding
data using a polynomial code according to one embodiment
of the present disclosure.

FIG. 5B 1s a flowchart depicting a method for encoding
data using a polynomial code and a LFSR according to one
embodiment of the present disclosure.

FIG. 5C 1s a flowchart depicting a method for decoding
received data using a code according to one embodiment of
the present disclosure.

FIG. 5D 1s a flowchart depicting a method for implement-
ing a parallel syndrome sequencer or parallel Homer
sequencer according to one embodiment of the present
disclosure.

FIG. 6 1s a flowchart depicting a method for recovering
data from a received codeword according to one embodi-
ment of the present disclosure.

FIG. 7A 1s a flowchart depicting a method for selecting a
decoding strategy according to one embodiment of the
present disclosure.

FIG. 7B 1s a flowchart of a method for decoding a
message using a Vandermonde matrix according to one
embodiment of the present disclosure.

FIG. 7C 1s a flowchart of a method for decoding a
message using an iversion matrix according to one embodi-
ment of the present disclosure.

FIG. 7D 1s a flowchart of a method for sequencing the
Parallel Lookup Multiplier to perform the check data gen-
eration according to an embodiment of the present inven-
tion.

FIG. 7E through FIG. 7G show an exemplary method for
sequencing the Parallel Lookup Multiplier to perform the
lost data reconstruction according to an embodiment of the
present mvention.

FIG. 8 illustrates a multi-core architecture system accord-
ing to an embodiment of the present invention.

FIG. 9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.

FIG. 10A illustrates an exemplary system for implement-
ing soitware error-correcting code (ECC) protection or

compression of original data using ECC according to an
embodiment of the present invention.

FIG. 10B 1llustrates an exemplary system for implement-
ing soltware error-correcting code (ECC) protection or

10

15

20

25

30

35

40

45

50

55

60

65

10

compression of original data using ECC data according to an
embodiment of the present invention.

DETAILED DESCRIPTION

In the following detailed description, only certain exem-
plary embodiments of the present invention are shown and
described, by way of illustration. As those skilled 1n the art
would recognize, the mvention may be embodied in many
different forms and should not be construed as being limited
to the embodiments set forth herein. Like reference numerals
designate like elements throughout the specification.

Algebraic block codes are injective mappings that take a
sequence of symbols (e.g., a sequence of K symbols) and
encode the sequence by adding additional symbols (e.g., an
additional T check symbols), 1n a manner defined by alge-
braic relations. The algebraic relations allow the original
sequence ol symbols to be recovered from a subset of any K
symbols from the encoded sequence of K+1 symbols, based
on the T check symbols. Therefore, this encoding provides
protection for the sequence of symbols against data loss of
up to T symbols of the encoded sequence (e.g., the deletion
or corruption of some of the symbols, whether 1n transit
through an unreliable communications systems or at rest in
hardware storage that may be susceptible to data corruption
or hardware failure).

In general, some error correcting code solutions depend
upon two separate mechanisms to recover data: (1) a cyclic
redundancy check (CRC), or similar operation, to determine
the location of erased or erroneous data; and (2) the recovery
of the data at the determined location. To employ this
solution, the data must be read a first time to generate a CRC
value (or other CRC-like value) to determine data correct-
ness and then the data 1s read a second time 1n the process
of recovering the lost data. This “two-pass” method can be
computationally expensive, especially 1 cases i which
there 1s a large amount of data to be processed (and therefore
performance may be limited by wvarious bottlenecks in
communications busses of a computer system).

Some techniques, such as those described 1n U.S. Pat. No.
9,722,632, allow the determination of both data location and
recovery value using existing error correcting codes for
performing the encoding of sequences of symbols. However,
some of these techniques depend upon searching for the
location of data, which may not be computationally reason-
able for large codewords with multiple dispersed errors.

One solution to determiming both the location of data error
(even 11 dispersed 1n a large codeword) and recovering that
data 1s described by Welch and Berlekamp in U.S. Pat. No.
4,633,470, which describes an algebraic encoding can be
produced that uses a generator polynomial that can be
represented as a linear feedback shift register (LFSR). The
algebraic encoding described by U.S. Pat. No. 4,633,470
allows for the correction of erasures and errors and has
additional benefits, described therein, over alternative
encoding schemes such as the common Reed-Solomon
encoding scheme.

However, the technique described 1n U.S. Pat. No. 4,633,
4'70 1s generally believed to be too computationally intensive
(computationally expensive or ineflicient) to apply 1n the
place of existing, comparative error correcting codes. For
example, the recovery of lost data using the technique
described 1n U.S. Pat. No. 4,633,470 involves testing every
value of the Galois Field in a trnial-and-error approach (a
Chien search, see, e.g., Chien, Robert. “Cyclic Decoding
Procedures for Bose-Chaudhuri-Hocquenghem Codes.”

US 11,848,686 B2

11

IEEE Transactions on Information Theory 10.4 (1964):
357-363.) to find the locations of errors.

As such, aspects of embodiments of the present disclosure
relate to codes for encoding and decoding sequences of
symbols that make use of more powertul codes 1spired by 5
the techniques described by Berlekamp using a Linear
Feedback Shift Register (LFSR). This includes implement-
ing encoding behavior similar to that of an LFSR 1n the form
of an encoding matrix within the architecture of modern
coding systems such as Vandermonde, Cauchy, or 10
LaGrange. In addition, codes based on an LFSR according
to various embodiments of the present disclosure are more
poweriul than comparative error correcting codes (such as
the aforementioned Vandermonde, Cauchy, or LaGrange
codes), even at the same “size,” because LFSR-based codes 15
according to some aspects of embodiments are capable of
both locating and correcting errors in a single pass and
because they are capable of correcting both erasures and
unknown errors.

In addition, 1n traditional error correcting code systems, in 20
order to perform multiplications at high speed, tables may be
loaded 1n the SIMD registers (vector registers for storing
data within a vector processor core or SIMD processor core,
where vector registers may be used to store vector operands
of SIMD nstructions and the results computed by the SIMD 25
instructions) corresponding to the constants in the encoding
or decoding table. As the codes get stronger (e.g., with more
data symbols and check symbols), proportionally more
constant tables have to be loaded into the SIMD registers.
For example, for a traditional Reed-Solomon (255, 247) 30
code, the encoding matrix will require 247%8=1,976 entries,
corresponding to 1,976 constant tables. By comparison,
using an LFSR according to some embodiments of the
present disclosure imvolves the use of an encoding or decod-
ing table with only 8 entries that can be loaded into SIMD 35
registers once and used repeatedly to perform the encoding,
or decoding process. As the size of the codewords scale, the
performance benefits of using a LFSR multiplies.

General background regarding Reed-Solomon codes can
be found, for example, in: U.S. Pat. No. 8,683,296 (Ander- 40
son); A Decoding Procedure for the Reed-Solomon Codes,
Raymond S. Lim, NASA Technical Paper 1286 (1978); and
Clarke, C. K. P. “Reed-Solomon Error Correction,” BBC
R&D White Paper WHPO031 (2002), the entire disclosures of
which are incorporated herein by reference. 45

Aspects of various embodiments of the present disclosure
may be implemented by a computing system including one
or more processing circuits and memory. The memory may
store data symbols and check data computed 1n accordance
with embodiments of the present disclosure, in addition to 50
parameters associated with the encoding process and
instructions to control the one or more processing circuits to
perform the encoding of data (e.g., generating check data to
generate a codeword) or decoding of data (e.g., decoding
original data from a codeword that includes one or more 55
errors or erasures). In some embodiments, the processing
circuit 1S a vector processor, €.g., a processing core config-
ured to perform single-instruction-multiple-data (SIMD)
operations on vectors of data in parallel. Some examples of
processing circuits include: a processing core of an x86 60
architecture processor or an ARM architecture processor
supporting SIMD 1nstructions or having an instruction set
architecture (ISA) that provides access to SIMD hardware
within the processing circuit (e.g., on processors supporting,
x86 1nstruction sets, SSE, SSE2, SSE3, SSSE3, SSE4.1, 65
SSE4.2, AVX, AVX2, and AVX-312 and, on processors

supporting ARM 1nstruction sets, Neon and Scalable Vector

12

Extension (SVE)). In some cases, multiple processing cores
are packaged together into a multi-core central processing
umt (CPU) that may share high speed memory (e.g., cache
memory).

In addition, a single computing system (e.g., sharing a
single motherboard or mainboard) may include multiple
CPUs connected to a same internal peripheral bus (e.g.,
Peripheral Component Interconnect Express or PCle). The
term “processor’” will be used herein interchangeably with
processing circuit as described above.

A Reed-Solomon code 1s typically parameterized by (NN,
K), where K 1s the number of symbols 1n the input sequence
of symbols (or input message) and where N 1s the number of
symbols 1n the resulting codeword, which includes the K
symbols of the original message followed by N-K check
symbols. For the sake of convenience, the value N-K will be
referred to herein using the variable T (where K+T=N), that
1s, the codeword of length N includes a K data symbols
followed by T check symbols. Each symbol may be 1 or
more bits long. For the sake of convenience, examples of the
present disclosure will be presented herein where each
symbol 1s 8 bits long (each symbol 1s one byte), but
embodiments of the present disclosure are not limited there
to.

An (N, K) Reed-Solomon code 1s typically constructed
using a code generator polynomial of T factors, the roots of
which are consecutive elements of the Galois field (GF) over
which the code 1s defined. Here, continuing the above

assumption that each symbol 1s 8 bits long, operations
described herein will be performed in the field GF(2°)=GF

(256), where the elements of the field GF(256) range from
0 to 255. As one example, consider the code generator
polynomial x*+15x°+54x°+120x+64. The coeflicients or
constants of this code generator polynomial were obtained
by multiplying out (x+1)(x+2)(x+4)(x+8).

The term “erasure code” 1s contrasted herein with the term
“polynomial code.” Both Frasure Codes and Polynomial
Codes (or more specifically, erasure coding or polynomial
coding systems) are generally regarded as impractical for
values of M larger than 1 (e.g., RAID-5 systems, such as
parity drive systems) or 2 (RAID-6 systems), that 1s, for
more than one or two check drives. For example, see H.
Peter Anvin, “The Mathematics ol RAID-6,” the entire
content ol which 1s incorporated herein by retference, p. 7,
“Thus, 1n 2-disk-degraded mode, performance will be very
slow. However, 1t 1s expected that that will be a rare
occurrence, and that performance will not matter signifi-
cantly 1n that case.” See also Maddock, Robert, et al.
“Surviving Two Disk Failures Introducing Various “RAID
6” Implementations.” at page 6: ““The main difliculty with
this technique i1s that calculating the check codes, and
reconstructing data after failures, 1s quite complex. It
involves polynomials and thus multiplication, and requires
special hardware, or at least a signal processor, to do 1t at

suilicient speed.” In addition, see also Plank, James S. “All
About Erasure Codes—Reed-Solomon Coding—LDPC

Coding.” ICL, August 20 (2004): 2004. at slide 15 (describ-
ing computational complexity of Reed-Solomon decoding):
“Bottom line: When n & m grow, 1t 1s brutally expensive.”
Accordingly, there appears to be a general consensus among
experts 1 the field that erasure coding and polynomial
coding systems are impractical for RAID systems for all but
small values of M (that 1s, small numbers of check drives),
such as 1 or 2.

Modem disk drives, on the other hand, are much less
reliable than those envisioned when RAID was proposed.
This 1s due to their capacity growing out of proportion to

US 11,848,686 B2

13

theirr reliability. Accordingly, systems with only a single
check disk have, for the most part, been discontinued 1n
favor of systems with two check disks.

In terms of reliability, a higher check disk count 1s more
desirable than a lower check disk count. If the count of error
events on different drives 1s larger than the check disk count,
data may be lost and that cannot be reconstructed from the
correctly functioning drives. Error events extend well
beyond the traditional measure of advertised mean time
between failures (MTBEF). A simple, real world example 1s
a service event on a RAID system where the operator
mistakenly replaces the wrong drive or, worse yet, replaces
a good drive with a broken drive. In the absence of any
generally accepted methodology to train, certity, and mea-
sure the effectiveness of service technicians, these types of
events occur at an unknown rate, but certainly occur. A
solution for protecting data 1in the face of multiple error
events 1s to increase the check disk count.

As the count of check disks increases, so does the
processing requirement to encode and decode data. There-
fore, there 1s a continuing need to accelerate this processing.
The previously-noted Plank, Anvin, and Anderson taught
that Erasure Codes for storage systems are optimally com-
posed of an encoding system that produces “parity” as one
term of check data, that 1s, the exclusive-or (XOR) sum of
the original data. The historical wisdom was that this would
accelerate the overall solution because computing parity 1s
faster than computing sums of products (because multipli-
cation 1s more computationally expensive than addition).

However, this approach of including a “parity row”
weakens the ability of the code to correct errors and limits
the ability of the code to efliciently expand to larger con-
figurations. Some of these weaknesses are documented 1n
the public (open source) support ticket (“issues™) history of
Intel’s Intelligent Storage Acceleration Library (ISA-L),
which produced an encoding matrix that failed when slightly
expanded by an unsuspecting customer or user of the library.
In particular, when data 1s encoded using a Vandermonde
matrix and one or more check symbols have failed, then the
resulting Vandermonde matrix may be non-invertible, such
as when certain check symbols (or check drives) are lost 1n
RAID configurations larger than 10 data symbols and 4
check symbols (e.g., with at least 10 data drives and at least
4 check drives). As a result, a Vandermonde matrix cannot
always be used to recover original data that was originally
encoded using a Vandermonde matrix, and this mability to
recover original data may result in permanent loss of that
original data. This permanent loss of original data defeats
the purpose of applying an error correcting code to the
original data.

As the term 1s used herein, 1n a “polynomial code,”
summing the values of the data symbol and the check
symbols of a codeword over the corresponding Galois field
(in the case of no errors or erasures 1n the codeword) results
in a GF sum of zero.

Some approaches to error correcting codes (such as those
described 1n Anvin, H. Peter. “The Mathematics of RAID-
6.” (2007).) relate to computing additional check symbols,
in addition to parity symbols (1n Anvin, the parity symbols
are relerred to as P, and the additional check symbols are
referred to as Q). In particular, the parity symbols are
computed based on GF additions (without GF multiplica-
tion) whereas computing the other check symbols may
require performing GF multiplications in addition to GF
additions.

When the computation of the codeword or check symbols
from 1n mput sequence of data values 1s expressed as an

5

10

15

20

25

30

35

40

45

50

55

60

65

14

encoding matrix, the computation of the parity symbols may
appear as a “parity row”’ within the encoding matrix. Such
codes that include a parity row 1n the encoding matrix
representation of the code may be referred to herein as
“erasure codes.”

In contrast, the term “polynomial code” 1s used herein to
refer to codes 1n which, 1n a codeword without errors or
erasures, the Galois field sum of the check symbols equals
the Galois field sum of the data symbols. That 1s, the overall
GF sum of the data and all the parity symbols combined 1s
zero. A polynomial code only has a parity row 1n the
(degenerate) case of a code with exactly one parity symbol
(e.g., RAID 3, RAID 4, or RAID 5 configurations). How-
ever, when a polynomial code has more than one parity
symbol (or check symbol), its encoding matrix representa-
tion does not have a parity row (e.g., a row of all 1s).

When data 1s encoded using a polynomial code 1n accor-
dance with embodiments of the present disclosure, it will
always be decodable using a Vandermonde matrix across the
whole codeword, so long as no more than T symbols are lost,
whether the lost symbols are original data symbols, check
symbols, or a combination thereof. In addition, the use of a
Vandermonde matrix in decoding allows easy discovery of
the locations of the errors or erasures, even 1if the errors or
erasures occur in the check symbols.

In addition, more x86 recent instruction sets for vector
processors include a Galois Field vector multiply instruction
(GF2PS8MULB) that executes 1n a single processor clock
cycle. As such, the use of Galois Field vector multiply
istructions reduces the computational overhead associated
with computing sums of products, and therefore reduces the
speed benefits from computing check data versus a sum of
products to the point where performance benefits from using
parity are minimal or negligible.

Accordingly, aspects of embodiments of the present dis-
closure relate to the use of polynomial codes for encoding
and decoding data. Some aspects of embodiments relate to
the use of a parallel linear feedback shift register (LFSR)
sequencer to encode the data. Some aspects of embodiments
relate to a parallel syndrome decoder to decode the data. In
various embodiments, a parallel multiplier, adder, thread,
and 1/0 controllers are used to accelerate encoding (e.g.,
using the LFSR sequencer) or to accelerate decoding (e.g.,
using a parallel syndrome decoder). Furthermore, 1n some
embodiments, specialized vector instructions, such as vector
instructions of the Intel® AVX-512 SIMD instruction set are
used to further accelerate the encoding and/or decoding of
data.

FIG. 1 1s a block diagram of a linear feedback shift
register (LFSR) configured to compute check symbols
according to one embodiment of the present disclosure. FIG.
2 1s a tlowchart depicting a method 200 for computing check
symbols from an input sequence of data symbols according
to one embodiment of the present disclosure.

A LFSR 100 as shown 1n FIG. 1 may be implemented, for
example, by a processor and memory, such as where the
memory stores instructions that, when executed by the
processor, cause the processor to perform operations asso-
ciated with the method 200 of FIG. 2. At various times
during performing the method, various data values and
instructions may be stored internally within the processor,
such as within registers (e.g., vector registers) and/or caches
of the processor.

As shown in FIG. 1, the LFSR 100 1s configured to
generate T check values from an mput message (Msg) that
1s supplied to the LFSR 100 one symbol at a time. After the
entire 1nput message (e.g., up to K symbols) has been

US 11,848,686 B2

15

supplied to the LFSR, the final output of the LFSR corre-
sponds to the final values stored in the states 110 of the
LFSR. The states of the LFSR are labeled d|MSB], d[MSB-
11, ..., d[1], d[O], where MSB 1s set to T-1 and refers to
the highest numbered position 1n the LFSR. As seen 1n FIG.
1, the value of each state 110 1s computed based on the
previous state (e.g., the next lower numbered state), and the
highest numbered state 1s referred to as the most significant
byte (MSB) or most significant symbol among the states of
the LFSR.

In operation 210, the processor 1nitializes the states of the
LFSR to 0. For example, the states of the LFSR may be
represented as an array bytes of length T and the initial
values of the array may all be set to 0 (e.g., by storing O
values directly or by setting the value at each location 1n the
LFSR state array to the XOR of the current value with itself).
In operation 230, the processor determines 11 there are more
input data symbols from data symbols to process. It so, then,
in operation 2350, the processor XORs the next data symbol
from the mput message symbols with the value of the most
significant symbol of the LFSR state to compute a carry
value (carVal) (see XOR gate 120 of FIG. 1).

In operation 260, the processor multiplies the carry value
(carVal) by the coefllicient of the generator polynomial
(identified as Poly 1n FIG. 1) corresponding to each position
of the LFSR using a Galois field (GF) multiplier 130 to
generate T GF products. In particular, the GF multiplier 1s
configured to multiply values 1n accordance with the Galois
field of the coding system (e.g. GF(256)).

In operation 270, the processor updates each state 110 of
the LFSR based on the XOR (140) of the computed GF
product and the previous state. For example, as shown in
FIG. 1, the state d[1] 1s computed based on the XOR of the
state of d[0] and the GF product of the carry value (carVal)
and the corresponding coeflicient of the generator polyno-
mial (Poly[T-1]).

The processor continues updating the states 110 of the
LFSR 100 1n this manner until all data symbols of the mnput
message have been consumed. At that point, there are no
more input symbols and the processor proceeds to operation
290 to output the values of the LFSR as the check symbols
computed from the mput data symbols.

As one example of the operation of an LFSR similar to
that shown 1n FIG. 1, consider a four stage LFSR (e.g.,
having four stages 110) that 1s based on the generator
polynomial x*+15x°+54x°+120x+64 noted earlier, where
the coeflicients or constants of the generator polynomial
were obtained by multiplying out (x+1)(x+2)(x+4)(x+8).
Using these constants as the taps 1n a LFSR results 1 the
same “strong”’ coding described in U.S. Pat. No. 4,633,470.
The coefficient of the leading term (here, x*) is always 1
because the coetflicients of the generator polynomial for a
T-stage LFSR are obtained by multiplying out an expression
of the form II._,""+p’, where p is a prime number (in the
example shown above, p=2), such that the highest order term
will be the product of the T x terms that each has a coetlicient
of 1, that is x”. Here, the leading 1 may be thought of as a
carry indicator and 1s not directly used 1n the computation of
cach of the output LFSR states.

FIGS. 3A and 3B are block diagrams depicting a four
stage LFSR configured based on the generator polynomial
X"+15x°+54x°+120x+64 and the values stored in the four
stages of the LFSR after each byte 1s mput to the LFSR
according to one embodiment of the present disclosure.

To understand how an LFSR configured with these con-
stants of the generator polynomial relates to a traditional
encoding matrix, consider the case where the message (or

10

15

20

25

30

35

40

45

50

55

60

65

16

sequence of data symbols Msg) to be encoded 1s a string of
zero bytes, with a trailing °1”° byte (e.g., a sequence of three
symbols, one byte per symbol, 1n hexadecimal: Ox 00 01), as
shown 1n FIG. 3A.

The lower portion of FIG. 3A depicts a table showing the
current input symbol in the far right column and values
stored 1n the states 310 of the LFSR 300 after that input
symbol 1s fed into the LFSR 300.

As shown 1n the first two rows of the table of FIG. 3A,
when supplying this message as input to the LFSR 300, as
long as zeroes are shifted into the LFSR 300, all values of
the states 310 remain at zero. However, when the final “1”
(or 0x01 as shown 1n FIG. 3A) 1s read into the LFSR 300 (as
shown 1n the third line of the table), the taps (or constants of
the generator polynomial) supplied to the multipliers 330 on
the LESR (0Of 36 78 40) appear on the output (e.g., at the
states 310). This will produce the output check values 13, 54,
120 and 64 (or Ox01f 36 78 40 1n hexadecimal, as shown 1n
FIG. 3A).

The mathematical result of this 1s that, given original data
0x00 00 01 and 1ts corresponding check values 0x0f 36 78

40 concatenated 1nto a codeword 0x00 00 01 01 36 78 40, 1f
a recerved codeword has the third symbol lost: 0x00 00 ?7?
Of 36 78 40 (where the lost symbol 1s indicated by ??), and
we know that all the values other than the last symbol are
zero (e.g., 0x00 00 ?77?), then 1t 1s possible to recover the lost
data by diving a check symbol by the corresponding con-
stant of the generator polynomial supplied at its LESR tap.
In this example, given check bytes OxOf 36 78 40, the
missing data symbol at the last position can be recovered by
dividing the first check byte Of by the constant 01, dividing
the second check byte 0x36 by 0x36, dividing the third
check byte 0x78 by 0x78, or dividing the fourth check byte
0x40 by 0x40. This particular example appears trivial
because the erased value 1s 0x01. However, the linearity of
the Galois Field operations performed by the LFSR ensures
that the process works for any value of the last byte of the
message (e.g., any value from 0x01 to Oxil), where diflerent
values of the last byte of the message would generate
different check symbols that would be included i the
codeword, and where the check symbols particular to the
codeword would be divided by the check values that were
computed when the mput message was 0x00 00 O1.

Any of these techniques will recover data correctly in the
cvent that all the message bytes are zero except the last and
the lost or erased data in 1s the last position.

As another example, consider the case where the message
(or sequence of data symbols Msg) to be encoded 1s a string
of zero bytes, followed by a ‘1’ byte, and finally a zero byte
(e.g., a sequence of three symbols, one byte per symbol, 1n
hexadecimal: Ox 00 01 00), as shown 1n FIG. 3B (e.g., where
the data bytes are all zeroes, except for the second-to-last
data byte).

In this case, 1n a manner similar to that shown 1n FIG. 3A,
as long as the input symbol (or byte) has a value o1 0 (0x00),
then the states 310 remain at a value of 0 (0x00). As before,
when the symbol with value 1 (Ox01) 1s read into the LFSR
300, the states are updated to 0x0f 36 78 40 1n hexadecimal,
as shown in the second row of the table in FIG. 3B.
However, 1n contrast to FIG. 3A, there 1s still an additional
symbol to be read from the input (the final 0x00). As a result,
the value of OxOf 1n d[3] (the most significant symbol) 1s
supplied as feedback to the mput, where it 1s XORed with
the final mmput value (0x00) to produce the carry value
(carVal). In this example, because the current input 1s zero,
carVal has the same value as the feedback value from

d[MSB], 0x01). The carry value (carVal) 1s then GF multi-

US 11,848,686 B2

17

plied by the constants of the generator polynomial corre-
sponding to the different states to generate GF products,

which are then XORed with the previous states. This results
in a final state of check values 0x63 57 d2 e7, as shown 1n
the third row of the table in FIG. 3B that would be generated

based on providing an input message that was all zeroes

except for a 1 as the second-to-last symbol (e.g., 0x00 01
00).

Continuing this example, assuming original data symbols
0x00 01 00 and its corresponding check symbols 0x63 57 d2
e’/ were concatenated to form a codeword 0x00 01 00 63 57
d2 €7, and assuming that a received codeword had the
second-to-last message symbol lost: 0x00 77 00 63 57 d2 €7,
then the erased data can be recovered 1n this case by dividing
by the first check byte by 0x63, dividing the second check
byte by dividing the third party byte by d2, or dividing the
fourth check byte by €7. (As noted above, the linearity of the
Galois Field operations performed by the LFSR ensures that
the process works for any value of the last byte of the
message, such as any value from 0x0l to Oxff, where
different values of the last byte of the message would
generate different check symbols that would be included 1n

the codeword but that would be divided by the check values
computed when the mput message was 0x00 01 00.)

Therefore, by entering a ‘1’ (0x01) into the LLFSR, fol-
lowed by K—1 zeroes (0x00) and saving the output of the
LLFSR at each step, a full table of KXT values can be
constructed, where the 1-th row corresponds to the T check
values computed when the value 0x01 1s in the 1-th position
in a sequence of data symbols (Msg).

In addition, due to the linearity of the Galois Field
operations performed, the check value of message data 0x00
01 00 (0x63 57 d2 e7) and check value of message data 0x00
00 01 (0x0f 36 78 40) can be added (GF added or XOR’d)
to produce the check value of message data 0x00 01 01
(0x6¢ 61 aa a7).

As such, the table generated using an LFSR as described
above may be used to compute check values of any 1nput
message (or sequence of data symbols) based on a linear
combination of the rows of the table (e.g., for each data
symbol 1n the imnput message, GF multiplying the value of
the data symbol by the check values 1n a row corresponding
to the position of the data symbol in the input message to
compute check symbols for each position and XORing
together the resulting check symbols or GF products).

In other words, the generated table corresponds to a
traditional encoding matrix. In particular, 1n some embodi-
ments, the processor 1s configured to compute a sequence of
T check symbols can for an input sequence of K data
symbols by performing a matrix multiplication (a dot prod-
uct) between the K data symbols and the KXT table of
values. This resulting sequence of T check symbols 1s
equivalent or the same as the result that would have been
computed as the output of the LFSR by reading the K data
symbols 1nto the LFSR one at a time, but benefits from being
parallelizable and/or vectorizable and therefore the matrix
multiplications performed when computing the check sym-
bols 1s accelerated when 1s performed by a vector processor.
For example, given an input message of the sequence (0, 0,
0, 1) that 1s to be encoded using the RS(8, 4) code with

generating polynomial g:

gxX)=x+ Dx+2Dx+4)(x+3)

= x* 1+ 15x° + 54x% + 120x + 64

10

15

20

25

30

35

40

45

50

35

60

65

18

The polynomial that has the message m coordinates as
coefficients 1s:

m{(x)=0x"+0x*+0x+1=1

The check symbols ¢ are computed by multiplying the
message m by the generating polynomial g:

c(x) = m(d) - g(x)

= 1-x*"+15x° + 54x% + 120x + 64

= x¥ £ 15x° +54x% + 120x + 64

Combining the message m and the coefficients of ¢ (apart
from the highest order coefficient of 1 on x”) results in the
codeword (0, 0, 0, 1, 15, 54, 120, 64).

While FIG. 3A and FIG. 3B show one example of a four
stage LFSR for simplicity of explanation, embodiments of
the present disclosure are not limited thereto, and include the
use of LFSRs with fewer than four stages or more than four
stages. More generally, a T-stage LFSR configured 1n accor-
dance with FIG. 1, for example, 1s used 1n accordance with
embodiments of the present disclosure to compute T check
symbols, where the T-stage LFSR 1s configured with the T
constant values Poly supplied as constant inputs to the taps
of the LFSR (e.g., as the constant inputs to the GF multi-
pliers 130).

As noted above, the LFSR 1s configured with constants
supplied as taps (e.g., as the constant input to the GF
multipliers 130). The values of these taps are set based on
the coefficients of a generator polynomial, and where the
generator polynomial 1s computed by multiplying an initial
polynomial (e.g., 1) by IT._,"" x+o”, (where T is the number
of check symbols or the length of the LFSR and where a 1s
a prime number such as 2).

FIG. 3C 1s a flowchart depicting a method 370 for
computing the tap values according to one embodiment of
the present disclosure based on an input number of check
symbols (T). As shown 1n FIG. 3C, at operation 371, a
processor inifializes a generator polynomial to the value of
1 plus the first power (FP). In some embodiments, the first
power 1s set to 0, such that the polynomuial 1s 1mitialized to
the value of 1. Alternatively, in some embodiments, the first
power 1s set to a non-zero value, such as a. An index variable
k 1s also set to the value of 1. At operation 373, the processor
determines whether k<T. If so, then at operation 375, the
processor multiplies the current polynomial by x+a“ to
compute an updated current polynomial (e.g., as described,
but not limited to, a technique described below with respect
to FIG. 3D), and then, at operation 377 the processor
increments k (e.g., computes a new value of k by adding 1
to the current value of k) and then continues with checking
to see 1f k<T at operation 373. Once the value of k 1s greater
than T, the processor outputs, at operation 379, the current
polynomial as the generator polynomial for the LFSR with
T check symbols (as specified by the input to method 370).
The processor may then configure the T taps of the LFSR
with the coefficients of the generator polynomial (omitting
the coefficient of 1 associated with the highest order term x”
of the polynomial, as noted above).

FIG. 3D is a flowchart of a method 380 for multiplying
polynomials according to one embodiment of the present
disclosure. In particular, FIG. 3D illustrates a method for
multiplying a polynomial by the polynomial x+c, where ¢ 1s
an 1nput argument to the method 380 (e.g., the coefficient of
the first rank or first order term x 1s assumed to be 1 1n this

US 11,848,686 B2

19

method). In various embodiments of the present disclosure,
a polynomial, such as the input polynomial to the method
380 may be represented as an array of bytes, where the first
byte 1s an integer representing the rank (or order) d of the
polynomial (the highest exponent on any indeterminant X in
the polynomial) and the remaining d+1 bytes of the array
represent the coeflicients of the terms of the polynomial
(e.g., from the rank d term x down to the rank O term x°. As
discussed above, the coeflicient of the highest rank term 1s
always 1, and therefore, 1n some embodiments, 1s omitted
from the representation as being implicitly present.

The method shown 1n FIG. 3D multiplies an 1mnput poly-
nomial by x+c by first, at operation 381, multiplying all of
the terms 1n the input polynomial by x. In the particular
example representation, this can be achieved by merely
incrementing the value of the first byte of the array repre-
senting the polynomial, such that each of the coeflicients 1n
the polynomial now represent a higher rank term. For
example, x*+3x+2 multiplied by x is x°+3x°+2x, where the
coellicients are the same.

The remaining operations relate to multiplying the input
coellicient by the input constant ¢ and summing the resulting
coellicients on a per-term basis.

At operation 382, the processor GF multiplies the last
term of the input polynomial by the mput constant term ¢ to
compute the coetlicient of the last term of the output
polynomial. For example, continuing the above example
with the input polynomial x*+3x+2, this is multiplying the
coellicient 2 by c, such that the last term 1s 2c, such that the
current polynomial is x°+3x°+2x+2c.

At operation 383, the processor iterates over the middle
terms of the polynomial and enters the loop 1f there are any
additional middle terms to be processed, where middle terms
refer to all terms of the polynomial other than the two
highest rank terms (rank d and rank d-1) and the Oth rank
term of the polynomial. Continuing the above example of
x> +3x°+2x+2c, the only middle term of this polynomial is
2x (the rank d term is x° and the rank d-1 term is 3x7). At
operation 384, the processor selects the next middle term of
the polynomual, as ordered from lower rank terms to higher
rank terms, and extracts the coeflicient of the selected
current term (e.g., the processor first selects the lower rank
term 2x and then, at the next iteration selects the next higher
rank term 3x°).

At operation 385, the processor updates the coetlicient of
the current term by computing the GF sum of the current
coellicient and the product of the mput constant ¢ and the
coellicient of the next higher rank term of the input poly-
nomial. Continuing the above example of a current polyno-
mial x°+3x°+2x+2c¢ and first selecting term 2x, the coefli-
cient of the current term 1s 2 and the coetlicient of the next
higher term 1s 3. Because this coeflicient was unchanged due
to the multiplication by x at operation 381, this logically
represents the term 3x from the input polynomial x*4+3x+2
by ¢, where multiplying this term by ¢ results 1n 3cx. This
1s the term of the same rank that 1s to be added to the selected
term 2X, and theretfore the coeflicients of these terms are GF
added together in the final output for the rank 1 term:
3cx+2x=(3c+2)x. Alter updating the coeflicient of the cur-
rent term, the process continues with the next iteration of the
loop by determiming, and 383 11 there are more middle terms
and processing any additional middle terms 1n operations
383, 384, and 385. In the above example, there are no
additional middle terms because 3%, as the rank d-1 term
1s not a middle term.

At operation 386, the processor computes the coeflicient
of the rank d-1 term by GF adding c to the coethlicient of this

5

10

15

20

25

30

35

40

45

50

55

60

65

20

term. In the particular example described above, this relates
to computing the product of the highest rank term x* of the
input polynomial x*+3x+2 by c to arrive at cx”, then adding
cx” to the rank d—1 term 3x” to compute an updated rank d-1
term (3+¢)x” of having coeflicient 3+c.

At operation 387, the system outputs this updated gen-
erator polynomial. Completing the above example, that
would be x°+(3+¢)x”+(3c+2)x+2c.

Accordingly, this process of progressively multiplying the
generator polynomial by polynomials of the form x+c,
where the mput constants ¢ are different roots of the gen-
crator polynomial, as described above with respect to FIG.
3C, 1s repeated to compute the coetlicients of the taps of an
LESR.

Appendix 1 shows the tap values for the generator Ox11d
for values of T from 2 to 32, where N=255, K=223, T=32,
primitive polynomial (PP)=29, primitive element (PE)=2,
and first power (FP)=0. Appendix 2 shows the tap values for
the generator b for values of T from 2 to 32, where N=255,
K=223, T=32, primitive polynomial (PP)=27, primitive ele-
ment (PE)=3, and FP=0. Noting that, for the irreducible
polynomial Ox11b, the primitive element 1s 3, whereas the
primitive element for the generator 0x11d 1s 2. This 1s
because 2 1s not a generator of the field 1n Ox11b, but 3 15 a
generator 1n Ox11b. While Appendix 1 and Appendix 2
present examples of tap values for various generator for
values of T from 2 to 32, embodiments of the present
disclosure are not limited thereto and may also be applied,
for example, to values of T greater than 32 as well as
variations such as different choices of generators or diflerent
choices of first powers.

Accordingly, in different embodiments of the present
disclosure, an encoding or decoding process 1s performed by
supplying mput symbols to an LFSR (e.g., imnput data sym-
bols 1n the case of encoding) or by performing a dot product
between the mput symbols and an equivalent encoding
matrix. Some aspects of embodiments of the present disclo-
sure relate to selecting between using an LFSR computation
or dot product computation based on the computational
approach that 1s more eflicient for the circumstances such as
the size of the code, the architecture of the processor used to
perform the computation (e.g., size and number of vector
registers and available instructions for accelerating GF
operations), and the like.

FIG. 3E 15 a flowchart of a method 390 for GF multiplying
values according to one embodiment of the present disclo-
sure. In some embodiments of the present disclosure, GF
multiplication 1s performed using a lookup table. In more
detail, FI1G. 3E illustrates a method for GF multiplying two
input operands (a first operand and a second operand) by
examining log (logarithm) tables. At operation 391, the
method 390 handles the trivial case where either the first
operand or the second operand 1s O (zero) 1n which case the
method returns the value of 0 at operation 392. If neither
operand 1s 0, then at operation 393, the processor handles the
trivial case where either operand (or both operands) 1s equal
to 1. If so, then the processor returns the other operand at
operation 394 (in the case where both operands are equal to
1, then the result 1s also 1).

At operation 395, the processor looks up the log of the
first operand and the log of the second operand, both modulo
255 (1n the specific case described herein of 8-bit operands
and operations in the field GF(256)), where the log tables
mapping values of the operand to log values modulo 255
may be pre-calculated, as described in more detail below. In
operation 396, the processor computes the GF sum of the log
of the first operand and the log of the second operand to

US 11,848,686 B2

21

compute a log sum, and in operation 397, the processor
looks up the product of the multiplication of the first operand
and the second operand 1 a power table based on the log
sum that was computed in operation 396.

The power table 1s a table where each entry, indexed by
1, maps to a generator value raised to the power of 1 modulo
255 (e.g., assuming the field GF(256)). In some embodi-
ments, two (2) 1s used as the generator value when the
primitive polynomial Oxild and three (3) i1s used as the
generator value when the primitive polynomial Ox11b,
where the primitive polynomials are discussed 1n more detail
below. The O-th entry of the table 1s always 1 because any
positive integer raised to the power of 0 1s always 1. To
compute the k-th entry of the power table (up until some
predetermined maximum power), the processor GF multi-
plies the k-1-st entry of the power table by the generator
value. Accordingly, generating the power table requires only
a number of operations on the order of the number of entries
in the power table.

The log table 1s a table that values to their logarithms
using the generator value as the base. In some embodiments,
the log table 1s computed by inverting the power table by
iterating over the entries 1n the power table. For example,
given a counter value k, the processor looks up the value v
in the power table at entry k, then sets the v-th entry 1n the
log table to the counter value k, and performs this for all
counter values (e.g., 0 to the number of entries 1n the power
table minus 1).

The particular examples shown 1n FIG. 1, FIG. 3A, and
FIG. 3B depict supplying a single block of data into an
LFSR to compute a corresponding set of check symbols. (In
some embodiments, a block of data may include, for
example, 64 symbols. However, embodiments of the present
disclosure are not limited thereto.) However, different
blocks of data are independently coded (e.g., the coding of
a given block does not depend on the coded values of any
previous blocks). Accordingly, a vector processor can com-
pute check symbols for multiple blocks of data in parallel
using SIMD instructions.

FIG. 3F 1s a block diagram of a parallel linear feedback
shift register configured to compute check symbols of mul-
tiple messages 1n parallel according to one embodiment of
the present disclosure. In the example shown 1n FIG. 3F, a
parallel LFSR 350 can take up to S different inputs in
parallel, where the S different inputs are labeled 1n FIG. 3F
as Msg0, Msgl, , MsgS. Each mput may include a
different sequence of symbols for which the parallel LFSR
will compute a corresponding set of S different states 351,
where the S different states are shown 1n FIG. 3F as belng
indexed from O to S-1, and the values of the stages within
cach individual state may be indexed, as 1n the LFSR shown
above with respect to FIG. 1, from O to MSB-1. The various

computational components shown 1n the parallel LFSR 350
of FIG. 3F, including the XOR gate 352, the GF multipliers

353, and the GF adders or XOR gates 354 are implemented
using vector operations or SIMD operations of the proces-
sor, where the same 1nstruction 1s applied to multiple dif-
ferent data—in this case, the same operations such as XOR
operations and GF multiply operations are performed 1n
parallel to multiple different messages, thereby generating
updated state values for multiple different LESR stages to be
updated in parallel.

Accordingly, a parallel LFSR, implemented using SIMD
operations of a SIMD processor parallelizes the computation
of LFSR state across multiple input messages at once, while
operating at the same clock rate (or approximately the same
clock rate) as 1n the case of scalar operations (e.g., operating

10

15

20

25

30

35

40

45

50

55

60

65

22

on a single iput message at a time). In various embodiments
of the present disclosure, a parallel LFSR using SIMD
istructions may be used to perform LFSR operations, such
as computing check symbols based on an input sequence of
data symbols, on multiple sequences of mput symbols 1n
parallel.

FIG. 4A 1s a flowchart depicting a method for generating
an encoding matrix according to one embodiment of the
present disclosure. As noted above, the encoding matrix may
have dimensions KxT, where K 1s the length of an input
sequence of data symbols 1 an (N, K) Reed-Solomon code,
and T 1s the number of check symbols (e.g., T+N-K). The
method 410 shown 1n FIG. 4A 1s substantially similar to the
method for computing check values as shown 1 FIG. 3C
with the addition of operation 416 in which the T interme-
diate states of the T-stage LFSR are saved to a table after
cach data symbol 1s read into the LFSR. As noted above, to
generate the encoding matrix or table of check values, the
input sequence of K data symbols are an iitial symbol
having a value of “1” (e.g., an 1nitial byte having a value of
0x01) followed by K-1 symbols each having a value of “0”
(e.g., (K-1){0x00}). The operations 410, 430, 450, 460, and
470 of FIG. 4A respectively correspond to operations 210,
230, 250, 260, and 270 of FIG. 2 and therefore description
thereof will not be repeated 1n detail herein.

As a result, the method 400 generates a table where an 1-th
row of the K rows of the table contains the check values that
would be generated by the LFSR 1n response to an input
sequence of data symbols where all of the values 1n the 1nput
sequence were zeros except for the 1-th symbol 1n the input
sequence, which has a value of 1.

As seen above, according to some embodiments of the
present disclosure, computing a table of check factors using
an LEFSR for particular values of K and T (or, equivalently,
N-K) for a given (N, K) Reed-Solomon code involves
performing many GF multiply operations. In some embodi-
ments, the GF multiplications are accelerated using lookup
tables generated 1n accordance with a primitive polynomial
and primitive element (or generator) associated with the
particular Galois field used by the code (e.g., GF(2%)).

Specialized instruction sets for performing mathematical
operations over Galois fields have been created for modemn
processors to greatly increase the speed at which certain
operations can be performed. This speed increase 1s largely
due to the operations requiring fewer mnstructions to carry

out operations wherein a vector element 1s multiplying the
byte elements of a matrix. One such instruction set 1s the
AVX-512+GFNI “Galois Field New Instructions™ that can
be utilized to perform multiplication of bytes (Galois Field
elements) over GF(2®) represented in polynomial represen-
tation with Rijndael’s reduction polynomial: X" +x"+x°+x+1
(represented by the value 2°+2%+2°42'+1=283 in decimal or
Ox11b 1n hexadecimal). The use of such processor instruc-
tions provides speed increases in applications including
cryptography. In particular the Advanced Encryption Stan-
dard (AES) uses the 0x11b field, which 1s also referred to as
the Riyndael field.

Accordingly, 1n some embodiments implemented on pro-
cessors having instruction sets that include Galois field
operations such as a Galois field multiply (e.g., the
GF2P8MULB nstructions, including scalar and vector vari-
ants, from x86 AVX-512+GFNI or equivalent instructions 1n
other instruction sets), the processor implements the GF
multipliers 130 of an LFSR 100 such as that shown 1n FIG.
1 (or GF multipliers 330 of the example four-stage LFSR

US 11,848,686 B2

23

300 shown 1in FIGS. 3A and 3B) using these Galois field
operations to accelerate the computation of check values

using the LFSR.

In addition, as noted above, some aspects of embodiments
of the present disclosure relate to implementations of encod-
ers and decoders on vector processors, €.g., processors that
include SIMD hardware controlled using SIMD instructions
or vector instructions. For example, various operations per-
formed 1n the process of encoding and decoding data in
accordance with an LFSR as described herein (or an equiva-
lent encoding matrix or decoding matrix) may be performed
using SIMD 1nstructions such that multiple pieces of data
are operated on 1n parallel. For example, check data for
multiple sequences of symbols can be computed concur-
rently in different corresponding portions of SIMD vectors.

As mentioned above, for exemplary purposes and ease of
description, data 1s assumed to be organized 1n 8-bit bytes,
each byte capable of taking on 2°=256 possible values. Such
data can be manipulated i1n byte-size elements using GF
arithmetic for a Galois field of size 2°=256 elements (e.g., in
the field GF(2*)=GF(256)). It should also be noted that the
same mathematical principles apply to any power-oi-two 2P
number of elements, not just 256, as Galois fields can be
constructed for any integral power of a prime number.
Because Galois fields are finite, and because GF operations
never overtlow, all results are the same size as the inputs, for
example, 8 bits.

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This 1s a
very last operation to perform on any current processor. It
can also be performed on multiple bytes concurrently.
Because the addition and subtraction operations take place,
for example, on a byte-level basis, they can be done 1n
parallel by using, for instance, x86 architecture Streaming,
SIMD Extensions (SSE) instructions (SIMD stands for
single mstruction, multiple data, and refers to performing the
same 1nstruction on different pieces of data, possibly con-
currently), such as PXOR (Packed (bitwise) Exclusive OR)
and x86 architecture Advanced Vector Extensions (AVX)
instructions such as AVX, AVX2 and AVX-512.

x86 SIMD instructions can process, for example, 16-byte
vector registers (XMM registers) in the case of SSE 1nstruc-
tions, 32-byte vector registers (YMM registers) in the case
of AVX 1nstructions, and 64-byte vector registers (ZMM
registers) in the case of AVX-512 structions, and are able
to process such vector registers as though they contain 16
separate one-byte operands (or 8 separate two-byte oper-
ands, or four separate four-byte operands, etc.). Accordingly,
SSE instructions can do byte-level processing 16 times
faster than when compared to processing a byte at a time.
Further, there are 16 XMM registers, so dedicating four such
registers for operand storage allows the data to be processed
in 64-byte increments, using the other 12 registers for
temporary storage. That 1s, individual operations can be
performed as four consecutive SSE operations on the four
respective registers (64 bytes), which can often allow such
instructions to be efliciently pipelined and/or concurrently
executed by the processor. In addition, the SSE 1nstructions
allow the same processing to be performed on different such
64-byte increments of data 1n parallel using diflerent cores.
Thus, using four separate cores can potentially speed up this
processing by an additional factor of 4 over using a single
core. Sitmilarly, for example, AVX-512 instructions process
512 bit registers (64-byte registers) and therefore processors
providing hardware supporting AVX-512 instructions enable

10

15

20

25

30

35

40

45

50

55

60

65

24

a 4x speedup over corresponding SSE instructions (which
operate on 16-byte registers versus the 64-byte registers of
AVX-512 1nstructions).

For example, taking the example of SSE instructions, a
parallel adder (Parallel Adder) can be built using vector
registers (e.g., the 16-byte XMM registers and four con-
secutive PXOR 1nstructions. Such parallel processing (that
1s, 64 bytes at a time with only a few machine-level
instructions) for GF arithmetic 1s a significant improvement
over doing the addition one byte at a time. Since the data 1s
organized 1n blocks of any fixed number of bytes, such as
4096 bytes (4 kilobytes, or 4 KB) or 32,768 bytes (32 KB),
a block can be composed of numerous such 64-byte chunks
(c.g., 64 separate 64-byte chunks 1n 4 KB, or 512 chunks 1n
32 KB). Parallel Adders according to embodiments of the
present disclosure are not limited to SSE 1nstructions may be
implemented by corresponding vector istructions 1n other
SIMD 1nstruction sets, such as using 64-byte registers (e.g.,
/MM registers) available 1n processors supporting AVX-
S12.

Multiplication 1n a Galois field 1s not as straightforward.
While much of it 1s bitwise shifts and exclusive OR’s (i.e.,
“additions™) that are very fast operations, the numbers
“wrap” 1n peculiar ways when they are shifted outside of
their normal bounds (because the field has only a finite set
of elements), which can slow down the calculations. This
“wrapping” 1n the GF multiplication can be addressed 1n
many ways. For example, the multiplication can be imple-
mented serially (Serial Multiplier) as a loop iterating over
the bits of one operand while performing the shifts, adds,
and wraps on the other operand. Such processing, however,
takes several machine mstructions per bit for 8 separate bits.
In other words, this technique requires dozens of machine
istructions per byte being multiplied. This 1s 1nefhicient
compared to, for example, the performance of the Parallel
Adder described above.

As another approach, referred to herein as a Serial Lookup
Multiplier, multiplication tables (of all the possible products,
or at least all the non-trivial products) can be pre-computed
and built ahead of time. For example, a table of 256x
256=65,536 bytes can hold all the possible products of the
two different one-byte operands. However, such tables can
force serialized access on what are only byte-level opera-
tions, and not take advantage of wide (concurrent) data paths
available on modern SIMD processors, such as those used to
implement the Parallel Adder above.

In still another approach referred to herein as a Parallel
Multiplier, the GF multiplication 1s performed on multiple
bytes at a time, because the same factor 1n the encoding
matrix 1s multiplied with every element in a data block.
Thus, the same factor can be multiplied with, for example,
64 consecutive data block bytes at a time 1n the case of an
x86 processor supporting SSE instructions (where the par-
ticular number of byte-sized data blocks depends on the size
and number of the vector registers of the processor). This 1s
similar to the Parallel Adder described above, except that
several more operations are used to perform the GF multi-
plication operation. While this can be implemented as a loop
on c¢ach bit of the factor, as described above, only perform-
ing the shifts, adds, and wraps on 64 bytes at a time, 1t can
be more eflicient to process the 256 possible factors as a (C
language) switch statement, with inline code for each of 256
different combinations of two primitive GF operations:
Multiply-by-2 and Add. For example, GF multiplication by
the factor 3 can be implemented by first doing a Multiply-
by-2 followed by an Add. Likewise, GF multiplication by 4
1s just a Multiply-by-2 followed by a Multiply-by-2 while

US 11,848,686 B2

25

multiplication by 6 1s a Multiply-by-2 followed by an Add
and then by another Multiply-by-2.

While this Add 1s identical to the Parallel Adder described
above (e.g., four consecutive PXOR 1nstructions to process
64 separate bytes), Multiply-by-2 1s not as straightiforward.
For example, in SSE, Multiply-by-2 1n GF arithmetic can be
implemented across 64 bytes at a time 1n 4 XMM registers

via 4 consecutive PXOR 1instructions, 4 consecutive
PCMPGTB (Packed Compare for Greater Than) instruc-

tions, 4 consecutive PADDB (Packed Add) instructions, 4
consecutive PAND (Bitwise AND) instructions, and 4 con-
secutive PXOR 1nstructions. Though this takes 20 machine
instructions, the instructions are very fast and results in 64
consecutive bytes of data at a time being multiplied by 2. As
noted above, embodiments of the present disclosure are not
limited to implementation using SSE instructions and may
be implemented using other types of SIMD instructions such
as AVX and AVX-512 instructions.

For 64 bytes of data, assuming a random factor between
0 and 255, the total overhead for the Parallel Multiplier 1s
about 6 calls to multiply-by-2 and about 3.5 calls to add, or
about 6x20+3.5x4=134 machine instructions, or a little over
2 machine instructions per byte of data. While this compares
tavorably with byte-level processing, 1t 1s still possible to
improve on this by building a parallel multiplier with a table
lookup (Parallel Lookup Multiplier) using a SIMD permute
or shutlle nstruction such as the PSHUFB (Packed Shufile
Bytes) mstruction 1 x86 instruction sets, the TBL (Table
vector lookup) instruction 1n an ARM A64 1nstruction set, or
the VPERMXOR for IBM PowerPC architectures and doing
the GF multiplication in 4-bit mbbles (half bytes).

Some SIMD 1nstruction sets include instructions for per-
forming Galois field multiplications. One example 1s the x86
AVX-512 instruction GF2P8MULB or Galois Field Multi-
ply Bytes instruction, which multiplies two vectors of ele-
ments in the field GF(2®) where the field GF(2°) is repre-
sented 1 polynomial representation with the reduction
polynomial x*+x*+x +x+1. As such, in some embodiments,
an appropriate SIMD Galois Field multiplication instruction
of the vector instruction set of the processor 1s used to
perform the Galois field multiplications to implement the
Parallel Multiplier used 1n encoders and decoders according
to various embodiments of the present disclosure.

In some circumstances, the primitive polynomial associ-
ated with the Galois Field instructions of a processor may
not be compatible with the primitive polynomial of the code
used to encode and decode data. For example, the x86
AVX-512 instruction GF2PSMULB uses a polynomial
based on the value 0x11 b. On the other hand, some coding
systems use a diflerent primitive polynomial, such as a
primitive polynomial based on the value Ox11d (the primi-
tive polynomial x®*+x*+x°+x**' represented by the value
2°42%42°+2°+1=285 in decimal which is 0x11d in hexa-
decimal). In such cases, 1t 1s possible that the Galois Field
instructions of the processor will not produce correct results,
and therefore a parallel multiplier based on a primitive
polynomial that matches the primitive polynomial of the
Galois field of the code used to encode and decode data 1s
used instead. Examples of such parallel multipliers include
the parallel multiplier described above and a parallel lookup
Galois field multiplier as described below.

FIG. 4B shows an exemplary method 430 for performing
a parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 4B, 1n step 431, two lookup tables are
built once: one lookup table for the low-order nibbles 1n each
byte, and one lookup table for the high-order nibbles 1n each

10

15

20

25

30

35

40

45

50

55

60

65

26

byte. Each lookup table contains 256 sets (one for each
possible factor) of the 16 possible GF products of that factor
and the 16 possible nibble values. Each lookup table 1s thus
256x16=4096 bytes, which 1s considerably smaller than the
65,536 bytes needed to store a complete one-byte multipli-
cation table. In addition, in the case of SSE instructions,
PSHUEFB does 16 separate table lookups at once, each for
one nibble, so 8 PSHUFB instructions can be used to do all
the table lookups for 64 bytes (128 nibbles). The process
scales when using processor architectures supporting longer
vectors, such as 64 byte registers available 1n x86 processors
supporting AVX-512 (e.g., a VPSHUFB instruction).

Next, in step 432, the Parallel Lookup Multiplier 1is
initialized for the next set of bytes of operand data (such as
original data or surviving original data), such as 64 bytes of
operand data 1n the case of an SSE instruction set or 256
bytes 1n the case of an AVX-312 mstruction set In order to
save loading this data from memory on succeeding calls, the
Parallel Lookup Multiplier dedicates four vector registers
for this data, which are left intact upon exit of the Parallel
Lookup Multiplier. This allows the same data to be called
with different factors (such as processing the same data for
another check drive).

Next 1n step 433, to process these 64 bytes of operand
data, the Parallel Lookup Multiplier can be implemented
with 2 MOVDQA (Move Double Quadword Aligned)
instructions (from memory) to do the two table lookups and
4 MOVDQA 1nstructions (register to register) to imitialize
registers (such as the output registers). These are followed 1n
steps 434 and 435 by two nearly identical sets of 17
register-to-register instructions to carry out the multiplica-
tion 32 bytes at a time. Each such set starts (in step 434) with
S5 more MOVDQA 1nstructions for further initialization,
followed by 2 PSRLW (Packed Shiit Right Logical Word)
istructions to realign the high-order mibbles for PSHUFB,
and 4 PAND 1nstructions to clear the high-order nibbles for
PSHUEFB. That 1s, two registers ol byte operands are con-
verted 1nto four registers of nibble operands. Then, 1n step
435, 4 PSHUFB 1nstructions are used to do the parallel table
lookups, and 2 PXOR 1nstructions to add the results of the
multiplication on the two nibbles to the output registers.

Thus, the Parallel Lookup Multiplier uses 40 machine
instructions to perform the parallel multiplication on 64
separate bytes, which 1s considerably better than the average
134 1nstructions for the Parallel Multiplier above, and only
10 times as many 1nstructions as needed for the Parallel
Adder. While some of the Parallel Lookup Multiplier’s
instructions are more complex than those of the Parallel
Adder, much of this complexity can be concealed through
the pipelined and/or concurrent execution of numerous such
contiguous 1nstructions (accessing different registers) on
modern pipelined processors. For example, in exemplary
implementations, the Parallel Lookup Multiplier has been
timed at about 15 CPU clock cycles per 64 bytes processed
per CPU core (about 0.36 clock cycles per instruction). In
addition, the code footprint 1s practically nonexistent for the
Parallel Lookup Multiplier (40 instructions) compared to
that of the Parallel Multiplier (about 34,300 instructions),
even when factoring the 8 KB needed for the two lookup
tables 1n the Parallel Lookup Multiplier.

In addition, embodiments of the Parallel Lookup Multi-
plier can be passed 64 bytes of operand data (such as the next
64 bytes of surviving original data X to be processed) in four
consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all 1in the same
40 machine 1nstructions) such that the Parallel Lookup
Multiplier can be invoked again on the same 64 bytes of data

US 11,848,686 B2

27

without having to access main memory to reload the data.
Through such a protocol, memory accesses can be mini-
mized (or significantly reduced) for accessing the original
data D during check data generation or the surviving original
data X during lost data reconstruction.

While one example of a Parallel Lookup Multiplier 1s
presented above and with respect to FIG. 4B 1n the context
of an x86 processor with hardware supporting SSE 1nstruc-
tions, embodiments of the present disclosure are not limited
thereto and may also be implemented using other vector
processors having diflerent vector sizes and/or diflerent
numbers of vector registers, therefore possibly resulting in
different levels of parallelism (e.g., different number of bytes
of operand data that can be multiplied 1n parallel), such as
an x86 processor with hardware supporting AVX-2 or AVX-
512 1nstructions.

Some aspects ol embodiments of the present disclosure
relate to generating a codeword using a polynomial code
based on an LFSR or based on a polynomial encoding
matrix.

FIG. SA 1s a flowchart depicting a method 3500 for
encoding data using a polynomial code according to one
embodiment of the present disclosure. As shown 1n FIG. 5A,
at operation 501, a processor recerves mput original data
symbols and stores the data symbols 1n a data matrix.

At operation 503, the processor computes check symbols
based on a polynomial code, such as by using an LFSR to
compute the check symbols or computing a dot product of
the original data symbols with a polynomial encoding
matrix, as described above (e.g., using the encoding matrix
generated with the method 410 shown 1n FIG. 4A). As noted
above, 1n some embodiments, a T-stage LFSR 100 1s used
directly to produce sequence of T check values (or check
symbols) based on an mput sequence of K data values (or
data symbols). Alternatively, 1n some embodiments, the
input sequence of K data values are multiplied by a KxT
polynomial encoding matrix (e.g., generated based on the
technique described above with respect to FIG. 4) to gen-
erate the T check values. The T check values are then
concatenated with the K data values to produce a codeword
(e.g., the K data values followed by the T check values, for
a total of N values or N symbols, where N=K+T).

FIG. 5B 1s a tlowchart depicting a method 510 ifor
encoding data using a polynomial code and a LFSR accord-
ing to one embodiment of the present disclosure. The
method 510 shown 1 FIG. 5B should generate the same
results as the method shown 1n FIG. 5A, but performs the
operations using an explicit LFSR instead of using an
encoding matrix. As described above, a T-stage LFSR may
be configured to compute the T check symbols from a
sequence of K mput data symbols using a set of coeflicients
supplied to the taps of the LFSR (see, e.g., the examples
described above with respect to FIG. 1, FIG. 3A, and FIG.
3B). In some embodiments, the processor explicitly imple-
ments an LFSR, such as by allocating locations 1n memory
to store the values supplied to the taps of the LFSR, the state
of the LFSR, and to perform operations on the input symbols
(e.g., by shifting in the input symbols one at a time) and the
state of the LFSR to compute an updated state of the LFSR,
where the final state of the LFSR after shifting in the K input
data symbols represents the T check symbols.

Referring to FIG. 5B, at operation 511, the processor
starts with the K input original data symbols to be encoded.
At operation 512, the processor iterates over the K 1input data
symbols by determining if there are more input data symbols
to process. If so, then at operation 513, the processor adds
the next data symbol to the most significant value of the

10

15

20

25

30

35

40

45

50

55

60

65

28

LFSR, noting that, a GF addition can be implemented as a
bitwise XOR operation (see, e.g., the carry value fed back
from d[MSB] to the XOR gate 120 or the XOR gate 320 as
shown 1 FIG. 3A and FIG. 3B). At operation 514, the
processor shifts the new 1nput (the XOR of the MSB value
and the data symbol) 1into the LFSR, including multiplying
the values by the coellicients of the generator polynomial fed
into the taps and, for LFSR stages other than the first stage
d[0], adding the computed GF product to the value of the
previous stage. This computes a new state of the LFSR (e.g.,
values stored 1n the stages of the LFSR). The processor then
returns to operation 512 to determine 11 there are more input
data symbols and, i1 so, proceeds with shifting in the next
input data symbol until all K symbols have been fed 1n.

After feeding 1n all K mput data symbols, the state of the
LFSR (the values stored in the stages) correspond to the
computed check symbols, and the processor saves the final
LFSR state as the T check symbols at operation 515. As a
result, the encoded data includes the K input data symbols
and the T check symbols.

The method described with respect to FIG. 5B and shown
with respect to an LFSR such as that shown 1n FIG. 1 can
be performed 1n parallel across multiple sequences of K
input data symbols. In particular, the encoding of any
sequence of K imput data symbols can be performed inde-
pendently (e.g., the encoding of one sequence of K input
data symbols does not depend on values of the encoding of
a different sequence of K mnput data symbols).

In some embodiments of the present disclosure, a Parallel
LFSR Sequencer operates on a SIMD processor (e.g., a
vector processor), for example, 16-byte vector registers
(XMM registers 1n the case of SSE) or 64-byte vector
registers (e.g., i the case of AVX-312). For the sake of
generality, the length of a vector register supported by a
SIMD processor may be referred to herein as a SIMD length
vector register capable of operating on SIMD bytes at a time,
¢.g., where SIMD=16 bytes 1n the case of XMM registers
and SIMD=64 bytes 1n the case of AVX-312 registers).

In this case, because the stages of the LFSR, the input data
symbols, and the check symbols are each one byte 1n size,
a vector processor having SIMD-length vectors can operate
a Parallel LFSR Sequencer that operates on up to SIMD
sequences (e.g., 16 input data sequences 1n the case of SSE
or 64 mput data sequences) in parallel to generate SIMD
different sequences of check data and thereby produce
SIMD codewords in parallel. Therefore, using SIMD regis-
ters multiplies the amount encoding that 1s performed on a
per-clock cycle basis by performing multiple operations
associated with multiple copies of an LFSR within a Parallel
LFSR operating on multiple data streams 1n parallel.

The resulting codewords computed by encoders accord-
ing to various embodiments of the present disclosure,
described above, may then be stored in a data storage system
or transmitted over a communications channel. For example,
the N symbols of the codeword may be spread across
multiple storage drives in a RAID storage system, spread
across multiple flash chips of a flash storage system, stored
in multiple memory chips of a dynamic random access
memory (DRAM) subsystem, or the like. The N symbols of
the codeword may also be stored together on a single device
(e.g., on a single data storage drive). As another example, the
codeword may be transmitted over a communications chan-
nel (e.g., a wired or wireless communications channel), such
as a commumnications bus of a computer system (e.g.,
between a mass storage device and memory, between a
processor and a peripheral, between a graphics processing
unit and a digital display panel, and the like), or a network-

US 11,848,686 B2

29

ing communications channel (e.g., a wired Ethernet connec-
tion, a wireless local area network connection or Wi-Fi, a
wireless cellular network connection, a satellite data con-
nection, and the like).

In various circumstances, when codeword 1s stored and/or
when the codeword 1s transmitted, data corruption may
occur, where one or more symbols of the codeword are
modified (errors) or erased (e.g., unreadable). For example,
cosmic radiation may cause one or more bits of information
stored 1n memory and transient voltage changes, electro-
magnetic interference, and timing errors may cause errors to
appear 1n data while 1n transmission. Accordingly, the check
symbols of the codeword may be used to provide some
amount of protection to the data symbols, wherein the
original data symbols may be recovered even 1n the case of
the loss (e.g., errors or erasures) of up to T symbols of the
K+T symbol codeword.

Some aspects ol embodiments of the present disclosure
relate to recovering data from a recerved codeword using a

code based on an LFSR, where the received codeword has
one or more errors or erasures.

FIG. 53C 1s a flowchart depicting a method 3550 for
decoding received data using a code according to one
embodiment of the present disclosure. As shown 1n FIG. 5C,
a processor receives a codeword, which may include one or
more errors (e.g., mcorrect symbols or erased symbols)
among the data symbols and check symbols of the code-
word. At operation 551, the processor calculates syndromes
S based on the received codeword. The syndromes corre-
spond to the dot product of the whole codeword with the
Vandermonde matrix (or the accelerated version using
Horner’s method). When computing the dot product of the
tull codeword (the data symbols together with the check
symbols) and the Vandermonde matrix, when the check
symbols are correct, the result 1s zero. However, when there
1s an error, the result 1s the syndrome of the error.

At operation 3352, the processor computes an error loca-
tion polynomial based on the syndromes. The processor
calculates the error locations at 553 using the error location
polynomial (e.g., by finding the roots of the error location
polynomial using a Chien search). At operation 554, the
processor calculates the error values based on the syndromes
and the error locator polynomial, and at operation 555, the
processor decodes the recovered data based on the error
locations, error values, and the received codeword to gen-
erate the recovered data.

Details relating to specific techniques for implementing a
decoder are presented in Section 3 of Appendix B.

Some aspects ol embodiments of the present disclosure
relate to methods for calculating syndromes in operation
551, 1n particular using a technique based on Horner’s rule,
and therefore may be referred to herein as a parallel Horner
sequencer or a parallel syndrome sequencer.

In a parallel syndrome sequencer or parallel Horner
sequencer, the processor computes syndromes or Vander-
monde row sums that are used to i1dentity both the location
and value of errors in the received codeword. Instead of
computing a dot product between the received codeword and
a Vandermonde matrix, a parallel syndrome sequencer
according to some embodiments iteratively computes the
syndrome using a method based on Horner’s rule for evalu-
ating polynomials. Generally, the process begins by loading
the first symbol of every row of the data matrix, adding in
the next data element multiplied by that row, and repeating,
until all of the symbols 1n the rows have been added. In this
way, a single value 1s used repeatedly to perform the
multiplication, rather than indexing into a table of precom-

5

10

15

20

25

30

35

40

45

50

55

60

65

30

puted values, as would be required in a system using a
comparative Vandermode matrix.

A parallel syndrome sequencer according to some
embodiments of the present disclosure produces the same
result as computing a Vandermonde dot product over the
whole received codeword, including the check symbols.
However, by using Horner’s method i computing the
syndromes, the processor does not need to store or read a
table to load the Vandermonde values, and therefore com-
putes the same result more quickly than (e.g., with fewer
memory accesses) than a Vandermonde dot product.

The resulting syndrome values computed by the parallel
syndrome sequencer indicates no error (e.g., all of the
syndrome values are zero values) or produces the interme-
diate results (non-zero syndrome values) that are used to
compute the error values, as described above and as
described, for example, 1n Section 3 of Appendix B.

In various embodiments of the present disclosure, the dot
product of the check symbols and the solution matrix 1s
computed using a parallel syndrome decoder or parallel
Horner sequencer. FI1G. 5D 1s a flowchart depicting a method
570 for implementing a parallel syndrome sequencer or
parallel Homer sequencer according to one embodiment of
the present disclosure. As noted above, 1n a manner similar
to that described with respect to a parallel LEFSR encoder, a
parallel syndrome sequencer or parallel Horner sequencer
may be implemented according to various embodiments of
the present disclosure by using vector operations on data
loaded 1nto vector registers (SIMD-length vector registers)
that operate on multiple (SIMD-number) of data streams in
parallel (e.g., decoding a SIMD-number of codewords to
recover original data). Generally, the technique shown in
FIG. 5D proceeds by developing two Vandermonde terms or
syndromes (referred to as a first check vector and a second
check vector in a parallel syndrome sequencer or parallel
Homer sequencer), where the final developed first Vander-
monde term (or {irst check vector) stores the value of the
error data and the second Vandermonde term (or second
check vector), after being divided by the first Vandermonde
term and taking a log, locates the position of the error.

Retferring to FIG. 5D, at operation 571, the processor
loads message symbols (e.g., the received codeword which
includes K data symbols and T check symbols), where the
message symbols may include one or more errors. In the
case of a parallel syndrome sequencer or parallel Homer
sequencer, the loading the message symbols may include
loading the symbols of multiple messages mto a vector
register. At operation 572, the processor initializes a multi-
plier by loading the constant multiplicands into a register,
where the constant multiplicand may be, for example, the
generator value a (where, as noted above for the field Ox11d,
. 1s 2 and for the field Ox11b, o 15 3). In some embodiments,
the processor uses the constant multiplicand multiple times,
such as by multiplying the current value in the result register
by the constant multiplicand during various iterations,
thereby resulting 1n multiplying the result by higher powers
of a (e.g., o.°, o, etc.).

At operation 573, the processor mitializes a first Vander-
monde term the value of the first symbol (or, 1n the case of
a first check vector, mitialized with the first symbol of each
of the messages being decoded in parallel) and 1nitializes a
second Vandermonde term with the GF product of the first
data symbol and the previously loaded constant multipli-
cands. (Likewise, 1n the case of a second check vector, the
vector 1s mitialized with the product of the previously loaded
constant multiplicands with the first symbol of each of the
messages being decoded in parallel.)

US 11,848,686 B2

31

At operation 574, the processor iterates over the remain-
ing input message symbols by determining 1f there are more
input message symbols of the message to handle. If so, then
the processor proceeds with operation 5735 and updates the
first check vector (or first Vandermonde term) by GF adding
the next data symbol to the first check vector (or first
Vandermonde term) and also GF adding the next data
symbol to the second check vector (or second Vandermonde
term). At operation 376, the processor updates the second
check vector (or second Vandermonde term) by multiplying
the term by the previously loaded constant multiplicands.
Because the previously loaded constant multiplicands are
loaded once, before the start of the loop, embodiments of the
present disclosure reduce the number of computational
cycles required during each loop because there 1s no need to
re-load the multiplier table during each loop. These opera-
tions 1n this loop are analogous to a computation using
Horner’s method because, at each iteration, the second
check vector 1s multiplied by a, thereby resulting 1n a
computation that 1s equivalent to evaluating a polynomial
computed by the expansion of the terms of the form x+a”.

After all of the symbols of the message have been
processed, the processor exits the loop and proceeds with
computing the error values from the first check vector 1n
operation 377. As noted above, the first check vector or first
Vandermonde term stores the GF sum of all of the symbols
in the message, which 1s equivalent to computing the check
data for all of the symbols 1n the message. Because it 1s
assumed that a properly coded message will have check
symbols that sum to 0, the values stored in the first check
vector are the values of the errors 1n the messages.

At operation 578, the processor computes the error posi-
tions by dividing the first check vector by the second check
vector, then computing the log of the result, where the
resulting vector stores the locations of the errors in the
messages.

FIG. 6 1s a flowchart depicting a method 600 for recov-
ering data from a received codeword according to one
embodiment of the present disclosure.

Referring to FIG. 6, in operation 601 the processor
separates the recerved codeword into the received data
symbols (e.g., the first K symbols of the N symbol long
codeword) and the received check symbols (e.g., the remain-
ing N-K symbols or T symbols of the received codeword).

In operation 603, the processor computes check symbols
based on the received data symbols, such as by using a
T-stage LFSR (e.g., as shown in FIG. 1) configured with the
generator polynomial of the code used to generate the check
symbols of the received codeword, or by using the polyno-
mial encoding matrix (generated by such an LFSR) to
compute the check symbols again. The received data sym-
bols may include one or more erasures, and therefore zero
values (e.g., 0x00) are substituted for the erased data. This
produces the check symbols of the original data without the
crased data.

In operation 605, the processor adds the computed check
symbols to the received check symbols using Galois field
addition, which produces the check symbols for the erased
data. That 1s, the Galois field addition operation causes the
non-erased data to be “erased” from the received check
symbols, leaving only check symbols corresponding to the
crased data symbols.

In operation 607, the processor computes a solution
matrix by starting with the entries 1 the encoding matrix
that correspond to the F failed positions, which produces an
FxF matrix, then mverting the FxF matrix to produce the
solution matrix.

10

15

20

25

30

35

40

45

50

55

60

65

32

In operation 609, the processor recovers the erased data
by computing a dot product between the check symbols of
the erased data that were computed 1n operation 605 and the
solution matrix computed 1n operation 607 (e.g., generated
by an LFSR using the technique described above with
respect to FIG. 4). Here, the corresponding values of the
polynomial encoding table refers to the row of the polyno-
mial encoding table corresponding to the position of the
erased data within the received codeword.

In some embodiments, a decoding table 1s used to recover
the data from multiple positions. In particular, the decoding
table may be constructed by inverting the polynomial encod-
ing table. The decoding table can then be applied to the
computed check symbols of the erased data (e.g., computed
in operation 6035) and can be used to recover multiple lost
data symbols 1n parallel. This approach also has much lower
latency than a comparative approach based on a Chien
search, and also does not require that the entire field (e.g.,
the entire field of 2° values, in the case of GF(2%)) be tested
to find a solution corresponding to the recovered data.

While FIG. 6, FIG. 5C and FIG. 5D provides examples of
a general process for recovering data from a received
codeword that includes errors or erasures, some aspects of
embodiments of the present disclosure relate to an intelligent
decoder (e.g., implemented by a processor), where the
intelligent decoder applies diflerent strategies for decoding
and/or recovering data based on the particular conditions,
where the different strategies provide improved performance
in specialized cases.

FIG. 7A 1s a flowchart depicting a method for selecting a
decoding strategy according to one embodiment of the
present disclosure. Referring to FI1G. 7A, the processor may
begin with receiving a codeword to be decoded. In operation
720, the processor counts and flags the locations of the errors
in the received codeword. In operation 730, the processor
determines 11 the total number of errors found 1s equal to 1
(e.g., there 1s only a single error among the symbols in the
received codeword). If so, then the processor uses a spe-
cialized decoder to handle the case of decoding a single
error, where the single error decoder 1s referred to herein as
“DecF1.”

Generally, the single error decoder encodes the input
codeword using either a well-formed LFSR or a polynomial
encoding matrix. The single error decoder then decodes at
least two check symbols with the Vandermonde matrix
(which 1s not the same as the polynomial encoding matrix).

Assuming, without loss of generality, that the polynomial
code for the LFSR starts with 2° in embodiments where the
generator is 2 (or, equivalently, 3° in embodiments where the
generator 1s 3), then the first row of the Vandermonde matrix
1s a parity row. Compute parity for all of the symbols of the
codeword (including the check symbols). If the result is
zero, then there 1s no error i the codeword (this 1s not
expected to occur, because it was determined 1n operation
720 that the codeword includes exactly one error). If the
result 11 not zero, and there 1s exactly one error as indicated
above, the result 1s the value of the error. To compute the
location of the error, the single error decoder divides the
second check symbol (computed with the Vandermonde
matrix, not the LFSR) by the first check symbol, then
computes the log base 2 (log,) of the result, such that the
error divides out and the value that remains identifies the
location of the error.

If there 1s more than one error, then 1n operation 740, the
processor constructs a Vandermonde matrix.

Section 2 of Appendix A describes a generalized Vander-
monde matrix having a form where each column of the

US 11,848,686 B2

33
%

matrix 1s composed of an initial vector o raised to a power.
The generalized Vandermonde matrix may be used as the
encoding matrix when certain conditions are met. In par-
tficular, the leftmost column 1s raised to the zeroth power,

resulting 1n a column of ones. The next column 1s the vector

—> . : —
o, raised to the first power (in other words, the vector o

itself), the following column 1s the vector o raised to the

second power, and so on. For example, assuming a 1s a
column vector, the generalized TxXK Vandermonde matrix

V%(o) may be represented as:

'a"f af% aff w‘i{_l
o 1 3 K—1
os s o o 0 51 —2 3
yIR@ =2 2 S g @
h{r{% ar%n ar% af‘?_l
where
-
O 5.
o= .
| T

and where o 1s the 1-th element of the imitialization vector

— . .
o.. The generalized Vandermonde matrix corresponds to the

check factors of the encoding matrix.

As a result, every row of the matrix (the 1-th row) has the
form of a single value (o) raised to successive powers, €.g.,
the 1-th row has the form:

[of, o, o o’ ...]

In some embodiments of the present invention, the ele-

ments O, of the 1nitialization vector o are also defined 1n

terms of a constant factor a raised to a power, e.g.:

— -1
o, =a

such that the initialization vector o may be defined as:

1-1 7 i 0

1 o '8
s ﬂ,z—l {1"1
— _
g=|& | = {1{3 1 — {1(2
Rida {I’T_l ﬂfT_l

For example, when the constant factor a 1s 2, the 1nitial-

L —> .
1zation vector o 18 defined as:

207
ok 2
d=|22|=|4
33 8

In operation 750, the processor determines 1f the con-
structed Vandermonde matrix 1s invertible. If so, then the
process continues with a specialized Vandermonde matrix
decoder, referred to herein as “DecV.”

In more detail, if the data was originally encoded using a
polynomial encoding matrix or an LFSR (e.g., parallel
LFSR combined with a parallel multiplier) as described

10

15

20

25

30

35

40

45

50

35

60

65

34

above, then the constructed Vandermonde matrix will be
invertible, and therefore the data can be decoded using a
Vandermonde matrix decoder 1n operation 760 and
described below with respect to FIG. 7B. However, if the
data was originally encoded using a Vandermonde encoding
matrix, then the constructed Vandermonde matrix 1s not
always 1nvertible, depending on which data 1s missing, and
therefore other approaches must be used instead to perform
the decoding, such as those as described below with respect

to operation 770 and FIG. 7C. Therefore, in some embodi-
ments, operations 750 and 770 are included 1n circumstances
where the data to be decoded may have been originally
encoded using a Vandermonde matrix.

Accordingly, 1n some embodiments, if the data 1s known
to be encoded using a polynomial encoding matrix or an
LLFSR and not encoded using a Vandermonde matrix, then
operations 750 and 770 are omitted entirely (e.g., are
optional, 1n accordance with different embodiments of the
present disclosure, as indicated by the dashed lines 1n FIG.
7A) and the processor continues directly to decoding using

a Vandermonde matrix as described below with respect to
FIG. 7B.

FIG. 7B 1s a flowchart of a method for decoding a
message using a Vandermonde matrix according to one
embodiment of the present disclosure.

After determining that the Vandermonde Matrix 1s invert-
ible at operation 750, at operation 752, the processor sepa-
rates the incoming data 1nto separate 64 byte vectors and, at
operation 753A, iterates through each 64 byte vector.

At operation 753B, the processor zeroes the result a first
result register and a second result register that store the result
of the process, and at operation 753C, the processor loads
the data to decode (the symbols if the current 64 byte data
vector) into a data register. At operation 753D, the processor
substitutes zeroes 1nto the erased values of the 64 byte data
vector.

At operation 753E, the processor adds the data 1n the data
register with the value in the first result register and saves the
sum to the first result register to update the value of the first
result register. Likewise, at operation 753F, the processor
adds the data 1n the data register with the value 1n the second
result register and saves the sum to the second result register
to update the value of the second result register. At operation
753G, the processor multiplies the value of the second result
register by a current power of a. At operation 753H, the
processor loops back to repeat operations 753E through
753F for each corresponding power of a of the decoding
table to construct a result matrix.

At operation 7531, the processor recovers the data value
by computing a dot product of the result matrix and a
Vandermonde inversion matrix. At operation 753J, the pro-
cessor recovers the erased data value by adding the dot
product computed at operation 7531 with the first result
register, then result to memory (e.g. main memory) at
operation 753K.

Referring back to FIG. 7A, if the Vandermonde matrix 1s
not invertible, then 1n operation 760 the processor deter-
mines 1f the number of check symbols 1n the received
codeword (T) 1s among a set of common number of check
symbols. In the particular example shown in FIG. 7A, these
are for the cases of 4, 8, 16, or 32 check symbols, although
embodiments of the present disclosure are not limited
thereto and specialized decoders may be implemented for
different values of T that may be sufficiently frequently
encountered where a specialized decoder may be 1mple-
mented for these cases. If the number of check symbols 1s

US 11,848,686 B2

35

not among the common numbers of check symbols, then a
generic decoder, referred to as “DecG” 1s applied to decode
the codeword.

FIG. 7C 1s a tlowchart of a method 770 for decoding a
message using an mversion matrix according to one embodi-
ment of the present disclosure. A general-purpose decoder as
described herein with respect to FIG. 7C will decode cor-
rectly even 1f the erasure 1s 1n the check symbols. Note that
this approach 1s only needed in cases where the data was
originally encoded using a Vandermonde matrix. In addition,
this approach 1incurs a shightly higher computational
expense. In particular, regenerating the check symbols from
only the data symbol requires fewer operations than regen-
erating the check symbols from ALL of the symbols. There-
fore, from an efliciency point of view, 1f the erasure does not
involve the check symbols, and the check symbols were
encoded with Vandermonde, then there are fewer total
operations than a general purpose polynomial encoder/
Vandermonde decoder. However, using Vandermonde to
encode results 1n the problems described above, such that 1f
particular check symbols are missing, it 1s 1mpossible to
produce the correct symbols to mvert the matrix, 1n which
case this, more computationally expensive approach, is
needed.

Referring to FIC. 7C, at operation 771, the processor
begins with a received codeword includes one or more
crased values at known locations, where the processor
substitutes zeroes (e.g., 0x00 values) at the locations of the
erased values. At operation 773, the processor configures the
taps of an LFSR and initializes the values (state) of the
LFSR accordingly. The taps are determined based on the
coellicients of the generator polynomial that was used to
encode the received codeword, where the coellicients may
be computed using the method described above, for
example, with respect to FIG. 3C and FIG. 3D.

At operation 775, the processor shifts the K symbols of
data portion of the message (with zeroes substituted into the
erased positions) into the configured LFSR one symbol at a
time, where each symbol causes the state of the LFSR (the
values stored in the stages of the LFSR) to be updated. The
final state of the LFSR after shifting in all of the symbols are
the T computed check symbols of the K data symbols of the
message.

At operation 777, the processor adds the T computed
check symbols to the T received check symbols from the
received codeword to compute the check of the erased data.

At operation 779, the processor recovers the erased data
symbols by computing a dot product of the check symbols
of the erased data and the inversion matrix, where the
inversion matrix may be computed by inverting the encod-
ing matrix.

While the method of decoding using an LFSR 1s described
above 1n the context of a decoding a single message,
embodiments of the present disclosure are not limited
thereto and, 1n some techniques, the process 1s implemented
using a parallel LFSR, such as that shown 1n FIG. 3F, where
multiple messages are decoded 1n parallel using a SIMD
processor. For example, multiple messages, based on the
length of the vector registers of the SIMD can be decoded 1n
parallel using SIMD operations.

Some aspects ol embodiments of the present disclosure
relate to the combination of a parallel LFSR sequencer and
a parallel syndrome decoder. As discussed above, a parallel
LFSR sequencer according to some embodiments of the
present disclosure performs the encoding of data (e.g., the
generation of check symbols) from 1nput data without need-
ing to repeatedly fetch an encoding matrix into the registers

10

15

20

25

30

35

40

45

50

55

60

65

36

of the processor because, for example, the encoding matrix
1s represented through repeated GF multiplication by a
generator value, as may be implemented through the use of
the LFSR. In addition, as discussed above, a parallel syn-
drome decoder or parallel Homer decoder according to some
embodiments of the present disclosure similarly does not
need to repeatedly fetch a solution matrix mto the registers
ol the processor because the matrix 1s represented through
repeated GF multiplication of a generator value. As such,
embodiments of the present disclosure enable eflicient
encoding and decoding of data using a processor 1n a manner
that reliably protects encoded data against unknown errors
and allows recovery of erased data.

Further embodiments of the present invention are directed
towards sequencing this parallel multiplication (and other
GF) operations. While the Parallel Lookup Multiplier pro-
cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup
Multiplier should be appropriately sequenced to provide
ellicient processing. One such sequencer (Sequencer 1), for
example, can generate the check data J from the original data
D, and 1s described further with respect to FIG. 7D.

The M check dnives can invoke the Parallel Lookup
Multiplier on each 64-byte chunk, using the appropriate
tactor for the particular combination of data drive and check
drive. One consideration 1s how to handle the data access.
Two possible ways are:

1) “column-by-column,” 1.e., 64 bytes for one data drive,
followed by the next 64 bytes for that data drive, etc.,
and adding the products to the running total 1n memory
(using the Parallel Adder) before moving onto the next
row (data drive); and

2) “row-by-row,” 1.e., 64 bytes for one data drive, fol-
lowed by the corresponding 64 bytes for the next data
drive, etc., and keeping a running total using the
Parallel Adder, then moving onto the next set of 64-byte
chunks.

Column-by-column can be thought of as “constant factor,
varying data,” in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be
thought of as “constant data, varying factor,” 1n that the data
usually remains the same between iterations while the factor
changes with each 1teration.

Another consideration 1s how to handle the check drives.
Two possible ways are:

a) one at a time, 1.e., generate all the check data for one
check drive belore moving onto the next check drive;
and

b) all at once, 1.¢., for each 64-byte chunk of original data,
do all of the processing for each of the check drives
before moving onto the next chunk of original data.

While each of these techniques performs the same basic
operations (e.g., 40 mnstructions for every 64 bytes of data
for each of the N data drives and M check drives, or
SN(M-1)/8 1instructions per byte for the Parallel Lookup
Multiplier), empirical results show that combination (2)(b),
that 1s, row-by-row data access on all of the check drives
between data accesses performs best with the Parallel
Lookup Multiplier. One reason may be that such an

approach appears to mimmize the number of memory
accesses (namely, one) to each chunk of the original data D
to generate the check data J. This embodiment of Sequencer
1 1s described in more detail with reference to FIG. 4.

US 11,848,686 B2

37

FIG. 7D shows an exemplary method 780 for sequencing
the Parallel Lookup Multiplier to perform the check data
generation according to an embodiment of the present
invention.

Referring to FIG. 7D, 1n step 781, the Sequencer 1 1s
called. Sequencer 1 1s called to process multiple 64-byte
chunks of data for each of the blocks across a stripe of data.
For instance, Sequencer 1 could be called to process 512
bytes from each block. If, for example, the block size L 1s
4096 bytes, then 1t would take eight such calls to Sequencer
1 to process the entire stripe. The other such seven calls to
Sequencer 1 could be to different processing cores, for
instance, to carry out the check data generation in parallel.
The number of 64-byte chunks to process at a time could
depend on factors such as cache dimensions, input/output
data structure sizes, etc.

In step 782, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
number of accesses of each data drive’s 64-byte chunk of
data from memory, the data 1s loaded only once and pre-
served across calls to the Parallel Lookup Multiplier. The
first data drive 1s handled specially since the check data has
to be mitialized for each check drive. Using the first data
drive to mitialize the check data saves doing the nitializa-
tion as a separate step followed by updating 1t with the first
data drive’s data.

In step 783, the first middle loop 1s called, 1n which each
of the check drives have their check data imitialized by the
first data drive’s data. In this case, there 1s a corresponding
factor (that varies with each check drive) that needs to be
multiplied with each of the first data drive’s data bytes. This
1s handled by calling the Parallel Lookup Multiplier for each
check drive.

In step 784, the second middle loop 1s called, which
processes the other data drnives’ corresponding 64-byte
chunks of data. As with the first data drive, each of the other
data drives 1s processed separately, loading the respective 64
bytes of data mto four registers (preserved across calls to the
Parallel Lookup Multiplier).

In step 785, the iner loop 1s called for the next data drive.
In the mner loop (as with the first middle loop), each of the
check drives 1s associated with a corresponding factor for
the particular data drive. The factor 1s multiplied with each
of the next data drive’s data bytes using the Parallel Lookup
Multiplier, and the results added to the check drive’s check
data.

Another such sequencer (Sequencer 2) can be used to
reconstruct the lost data from the surviving data (using
Algorithm 2). While the same column-by-column and row-
by-row data access approaches are possible, as well as the
same choices for handling the check drives, Algorithm 2
adds another dimension of complexity because of the four
separate steps and whether to: (1) do the steps completely
serially or (1) do some of the steps concurrently on the same
data. For example, step 1 (surviving check data generation)
and step 4 (lost check data regeneration) can be done
concurrently on the same data to reduce or minimize the
number of surviving original data accesses from memory.

Empirical results show that method (2)(b)(11), that 1s,
row-by-row data access on all of the check drives and for
both surviving check data generation and lost check data
regeneration between data accesses performs best with the
Parallel Lookup Multiplier when reconstructing lost data
using Algorithm 2. Again, this may be due to the apparent
mimmization ol the number of memory accesses (namely,
one) of each chunk of surviving original data X to recon-
struct the lost data and the absence of memory accesses of

10

15

20

25

30

35

40

45

50

55

60

65

38

reconstructed lost original data Y when regenerating the lost
check data. This embodiment of Sequencer 1 1s described 1n
more detail with reference to FIGS. 7E-7G.

FIGS. 7E-7G show an exemplary method 786 ifor
sequencing the Parallel Lookup Multiplier to perform the
lost data reconstruction according to an embodiment of the
present 1nvention.

Referring to FIG. 7E, in step 787, the Sequencer 2 1s
called. Sequencer 2 has many similarities with the embodi-
ment of Sequencer 1 illustrated in FIG. 4. For instance,
Sequencer 2 processes the data drive data 1n 64-byte chunks
like Sequencer 1. Sequencer 2 1s more complex, however, 1n
that only some of the data drive data 1s surviving; the rest has
to be reconstructed. In addition, lost check data needs to be
regenerated. Like Sequencer 1, Sequencer 2 does these
operations in such a way as to minimize memory accesses of
the data drive data (by loading the data once and calling the
Parallel Lookup Multiplier multiple times). Assume for ease
of description that there 1s at least one surviving data drive;
the case of no surviving data drives i1s handled a little
differently, but not significantly different. In addition, recall
from above that the driving formula behind data reconstruc-
tion is Y=B~'x(W-AxX), where Y is the lost original data,
B~' is the solution matrix, W is the surviving check data, A
1s the partial check data encoding matrix (for the surviving
check drives and the surviving data drives), and X 1s the
surviving original data.

In step 788, the outer loop processes the next 64-byte
chunk of data for each of the drives. Like Sequencer 1, the
first surviving data drive 1s again handled specially since the
partial check data AxX has to be mitialized for each sur-
viving check drive.

In step 789, the first middle loop 1s called, in which the
partial check data AxX 1s mitialized for each surviving
check drive based on the first surviving data drive’s 64 bytes
of data. In this case, the Parallel Lookup Multiplier 1s called
for each surviving check drive with the corresponding factor
(from A) for the first surviving data drive.

In step 790, the second middle loop 1s called, in which the
lost check data 1s iitialized for each failed check drive.
Using the same 64 bytes of the first surviving data drive
(preserved across the calls to Parallel Lookup Multiplier 1n
step 789), the Parallel Lookup Multiplier 1s again called, this
time to initialize each of the failed check drive’s check data
to the corresponding component from the first surviving data
drive. This completes the computations involving the {first
surviving data drive’s 64 bytes of data, which were fetched
with one access from main memory and preserved in the
same four registers across steps 789 and 790.

Continuing with FIG. 7F, i step 791, the third middle
loop 1s called, which processes the other surviving data
drives’ corresponding 64-byte chunks of data. As with the
first surviving data drive, each of the other surviving data
drives 1s processed separately, loading the respective 64
bytes of data into four registers (preserved across calls to the
Parallel Lookup Multiplier).

In step 792, the first mner loop 1s called, in which the
partial check data AxX 1s updated for each surviving check
drive based on the next surviving data drive’s 64 bytes of
data. In this case, the Parallel Lookup Multiplier 1s called for
cach surviving check drive with the corresponding factor
(from A) for the next surviving data drive.

In step 793, the second 1nner loop 1s called, 1n which the
lost check data 1s updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier 1n step 792),
the Parallel Lookup Multiplier 1s again called, this time to

US 11,848,686 B2

39

update each of the failed check drive’s check data by the
corresponding component from the next surviving data
drive. This completes the computations involving the next
surviving data drive’s 64 bytes of data, which were fetched
with one access from main memory and preserved in the
same four registers across steps 792 and 793.

Next, 1n step 794, the computation of the partial check
data AxX 1s complete, so the surviving check data W 1s
added to this result (recall that W-AxX 1s equivalent to

W+AxX 1n binary Galois Field arithmetic). This 1s done by
the fourth middle loop, which for each surviving check drive
adds the corresponding 64-byte component ol surviving
check data W to the (surviving) partial check data AxX
(using the Parallel Adder) to produce the (lost) partial check
data W-AxX.

Continuing with FIG. 7, 1n step 795, the fifth middle loop
1s called, which performs the two dimensional matrix mul-
tiplication B~ x(W-AxX) to produce the lost original data
Y. The calculation 1s performed one row at a time, for a total
of F rows, mitializing the row to the first term of the
corresponding linear combination of the solution matrix B~
and the lost partial check data W-AxX (using the Parallel
Lookup Multiplier).

In step 796, the third inner loop 1s called, which completes
the remaining F-1 terms of the corresponding linear com-
bination (using the Parallel Lookup Multiplier on each term)
from the fifth middle loop 1n step 690 and updates the
running calculation (using the Parallel Adder) of the next
row of B™'x(W-AxX). This completes the next row (and
reconstructs the corresponding failed data drive’s lost data)
of lost original data Y, which can then be stored at an
appropriate location.

In step 797, the fourth inner loop is called, 1n which the
lost check data 1s updated for each failed check drive by the
newly reconstructed lost data for the next failed data drive.
Using the same 64 bytes of the next reconstructed lost data
(preserved across calls to the Parallel Lookup Multiplier),
the Parallel Lookup Multiplier 1s called to update each of the
talled check drives’ check data by the corresponding com-
ponent from the next failed data drive. This completes the
computations involving the next failed data drive’s 64 bytes
ol reconstructed data, which were performed as soon as the
data was reconstructed and without being stored and
retrieved from main memory.

Finally, 1n step 798, the sixth middle loop 1s called. The
lost check data has been regenerated, so in this step, the
newly regenerated check data 1s stored at an appropnate
location (1f desired).

Aspects of the present mvention can be also realized 1n
other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 2'°=possible values,
by using similar constructs (scaled accordingly) to those
presented here. Such extensions would be readily apparent
to one of ordinary skill in the art, so their details will be
omitted for brevity of description.

Exemplary techniques and methods for doing the Galois
field manipulation and other mathematics behind RAID
error correcting codes are described in Appendix A, which
contains a paper “Information Dispersal Matrices for RAID
Error Correcting Codes” prepared for the present applica-
tion.

FIG. 8 illustrates a multi-core architecture system 800
having two processor dies 810 (namely, Die 0 and Die 1),
although embodiments of the present disclosure are not
limited thereto and may include more than two processor

dies 810.

10

15

20

25

30

35

40

45

50

55

60

65

40

Retferring to FIG. 8, each die 810 includes four central
processing units (CPUs or cores) 820 each having a local
level 1 (LL1) cache. While FIG. 8 shows embodiments where
each die 810 includes four cores, embodiments of the
present disclosure are not limited thereto, and each die 810
may include two or more cores. In addition, 1 some
embodiments, each die 810 includes only a single core and,
1n some cases, the processor includes only a single core. The
multiple cores within each die 810 may have the same
architecture (a homogeneous computing architecture) or
different architectures (a heterogeneous computing architec-
ture), such as where some cores are designed for low power
and exhibit low performance while other cores are designed
for high performance and exhibit high power consumption.
Each core 820 may have separate functional units, for
example, an x86 execution unit (for traditional instructions
or scalar instructions) and a vector execution unit (for
soltware designed for vector mstruction sets such as SSE or
AVX). An example application of these function units 1s that
the x86 execution unit can be used for the RAID control
logic software while the SSE execution unit can be used for
the GF operation software. Each die 810 also has a level 2
(L2) cache/memory bus interface 830 shared between the
four cores 820. Main memory 840, in turn, 1s shared between
the multiple dies (e.g., two dies) 810, which access the main
memory 840 through corresponding memory controllers
842, which may be integrated into the dies 810 or separate
from the dies 810. The dies 810 and the main memory 840
are connected to the input/output (I/0) controllers 850 that
access external devices such as network interfaces 852 and
data storage drives 854 (e.g., disk drives) or other non-
volatile storage devices via interfaces such as Peripheral
Component Interconnect (PCI). Main memory 840 includes,
for example, the memory between the last-level cache of a
processor and non-volatile storage medium (e.g., HDD,
etc.).

As one example, the system 800 may receive data via
network interface 852 (e.g., over a computer network such
as a local are network and/or the internet), which passes
through I/O controller 850 and may be stored in main
memory 840 (e.g., either after passing through one or more
processor dies 810 or being written directly to main memory
840 using direct memory access or DMA). The received data
may then be processed (e.g., analyzed, modified, tagged,
etc.) based on operations performed by the processor dies
810. The received data and/or a processed version thereof 1s
then encoded and written to the data storage drives 854 in
accordance with embodiments of the present disclosure as
implemented by the one or more processor dies 810. Simi-
larly, data may be read from the data storage drives 854,
stored into main memory 840, and possibly processed by the
processor dies 810 i1n accordance with various program
istructions specific to an application, and transmitted to
other computing devices via the network mterface 852. In
the event of data loss or the failure of one or more data
storage drives 854, the lost data may be recovered using
decoding techniques implemented by the instructions con-
trolling the one or more processor dies 810 as described
herein according to various embodiments of the present
disclosure.

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to
validate and schedule a host request (for example, to load or
store data from disk storage); (2) Command Translation and
Submission, to translate the host request mto multiple disk
requests and to pass the requests to the physical disks; (3)

US 11,848,686 B2

41

Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buflers to
requestor bullers. Note that the final state, Request Comple-
tion, may only be needed for a RAID controller that supports
caching, and can be avoided 1n a cacheless design.
Parallelism 1s achieved in the embodiment of FIG. 8 by
assigning different cores 820 to different tasks. For example,
some of the cores 820 can be “command cores,” that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 840
and the disk drives via the I/O interface 850. Others of the

cores 820 can be “data cores,” and assigned to the GF
operations, that 1s, generating the check data from the
original data, reconstructing the lost data from the surviving
data, etc., including the Parallel Lookup Multiplier and the
sequencers described above. For example, in exemplary
embodiments, a scheduler can be used to divide the original
data D 1nto corresponding portions of each block, which can
then be processed independently by different cores 820 for
applications such as check data generation and lost data
reconstruction.

One of the benefits of this data core/command core
subdivision of processing 1s ensuring that different code waill
be executed 1n different cores 820 (that 1s, command code in
command cores, and data code 1n data cores). Some empiri-
cal results show that the dies 810 perform best when only
one core 820 on each die 810 does the GF operations (i.e.,
Sequencer 1 or Sequencer 2, with corresponding calls to
Parallel Lookup Multiplier) and the other cores 820 do the
I/O operations. This helps localize the Parallel Lookup
Multiplier code and associated data to a single core 820 and
not compete with other cores 820, while allowing the other
cores 820 to keep the data moving between memory 840 and
the disk drives via the I/O interface 850.

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to
achieve the result. This combination can be achieved by

utilizing the mathematical techmques and code optimiza-
tions described elsewhere 1in this application with caretul
placement of the resulting code on specific processing cores.
Embodiments can also be implemented on fewer resources,
such as single-core dies and/or single-die systems, with
decreased parallelism and performance optimization.

The process of subdividing and assigning individual cores
820 and/or dies 810 to inherently parallelizable tasks will
result 1n a performance benefit. For example, on a Linux
system, soltware may be orgamzed nto “threads,” and
threads may be assigned to specific CPUs and memory
systems via the kthread_bind function when the thread 1s
created.

A thread 1s a set of 1nstructions and their associated data
values. For example, in the Linux kernel, a thread 1s repre-
sented as a data structure stored in the main memory, where
the data structure stores information including program
instructions, a pointer to a location 1n memory representing
the stack (e.g., storing data associated with the thread).
These mstructions and data values may be present in physi-
cal processor registers of a core 820 or may be moved to or
from main memory to physical registers, as performed by a
scheduler, which controls the execution of the thread (e.g.,
when each thread 1s executed and which core executes the
thread, 1n the case of a multi-core system, where a core

10

15

20

25

30

35

40

45

50

55

60

65

42

executes a thread by performing the instructions of the
thread and updating of data associated with the thread based
on the istructions).

Different threads can be executed concurrently by the
same processor core and/or 1n parallel across multiple pro-
cessor cores on a same die or spread across multiple dies, as
managed by the scheduler. In addition, some processor cores
support simultanecous multithreading (SMT) (e.g., referred
to as Hyper-Threading Technology in Intel® processors),
where one such physical core appears as multiple virtual
cores that perform operations in parallel. Furthermore,
threads enable multiple cores to perform operations concur-
rently, such as where one thread may execute on a core while
another thread 1s blocked (e.g., while waiting for data to be
loaded via the I/O controller).

Accordingly, an application program, such as a data
encoding system, can create multiple threads to spread
computational work across those multiple threads, which are
assigned to different cores (and/or virtual cores 1n the case
of cores supporting SMT) by a scheduler to make use of a
larger portion of the parallel and concurrent processing
capabilities of computer systems, where the scheduler may
maintain a table of the associations between threads and
assigned cores. Creating separate threads to process the GF
arithmetic allows parallel computations to take place, which
multiplies the performance of the system. For example, 1n
some embodiments, encoding processes and/or decoding
processes, as described above, may be operated 1n a pipe-
lined manner, where the output of an earlier stage 1 a
processing pipeline 1s supplied to a next stage 1n the pro-
cessing pipeline. For example, referring to FIG. 6, supplying
the recetved symbols of the input message (with the errors
set to 0) to a sequencer (e.g., an LFSR or a Homer
sequencer) can be used to generate a first set of results (e.g.,
check symbols) in one stage of the pipeline (e.g., corre-
sponding to operation 603) and the results from the
sequencer may be supplied to another stage of the process-
ing pipeline (e.g., to add the computed check symbols to the
received parity symbols) and that output (e.g., the check
symbols of the erased data) can be supplied to yet another
stage of the pipeline (e.g., to compute the dot product of the
check symbols with a solution matrix, which may include
performing parallel multiplication using a parallel multiplier
according to embodiments of the present disclosure.
Because the different stages of the pipeline can be performed
independently (e.g., there 1s no need to return to the previous
stage of the pipeline), diflerent stages of the pipeline can be
performed by different threads (e.g., each thread having a set
ol instructions corresponding to its stage of the pipeline).
Furthermore, as discussed above, 1n some embodiments the
scheduler distributes these threads among multiple different
processing cores such that the different stages of the pipeline
are performed concurrently or simultaneously, such as
where one thread executing one stage of the pipeline com-
putes check symbols for a first set of data while (e.g.,
concurrently with or simultaneously with) another thread
executing another stage of the pipeline computes recovered
symbols for a second set of data by computing a dot product
of check symbols with a corresponding solution matrix.

Further, creating multiple threads for command process-
ing allows for fully overlapped execution of the command
processing states. One way to accomplish this 1s to number
cach command, then use the arithmetic MOD function (% 1n
C language) to choose a separate thread for each command.
Another technique 1s to subdivide the data processing por-
tion of each command into multiple components, and assign
cach component to a separate thread.

US 11,848,686 B2

43

FIG. 9 shows an exemplary disk drive configuration 900
according to an embodiment of the present invention.

Referring to FIG. 9, nine disks are shown, though this
number can vary in other embodiments. The disks are
divided into four types: data drives 910, check drives 930,
and system drives 940. The eight disks break down as three

data drives 910, fivecheck drives 930, and one system drive
940 1n the embodiment of FIG. 9.

Each of the data drives 910 1s used to hold a portion of
data. The data 1s distributed uniformly across the data drives
910 1n stripes, such as 192 KB stripes. For example, the data
for an application can be broken up into stripes of 192 KB,
and each of the stripes 1n turn broken up into three 64 KB
blocks, each of the three blocks being written to a diflerent

one of the three data drives 910.

Each of the check drives 930 stores the check symbols
computed 1 accordance with embodiments of the present
disclosure. For example, in some embodiments, the T check
symbols associated with a given mput message are distrib-
uted across the T check drives.

With the addition of the check drives 930, eight drives are
used 1 the example RAID system 900 of FIG. 9. Such a
system 900 1s capable of recovering all of the original data
provided any three of these eight drives survive. That is, the
system 900 can withstand a concurrent failure of up to any
five drives and still preserve all of the original data.

The system drive 940 (or system drives) 1s a non-volatile
computer readable medium that stores program instructions
that, when executed by a processor, implements embodi-
ments of the present invention as described above. These
program 1instructions may include SIMD instructions that
control a SIMD CPU code of the processor to perform SIMD
(or vector) operations on mput arguments to implement, for
example, a parallel multiplier, a parallel lookup multiplier, a
parallel LFSR as discussed above. In various embodiments,

the system drive 940 1s connected to the processor via a local
bus such as PCle (e.g., over a PCI Express slot, SATA

Express, or Thunderbolt), NVMe (Non-Volatile Memory
Express), serial ATA (SATA), universal serial bus (USB),
serial attached SCSI (SAS), and the like. In some embodi-
ments, the system drive 940 1s connected to the processor
remotely or via a computer network such as Ethernet and
using a computer network protocol such as Transmission
Control Protocol/Internet Protocol (TCP/IP), where the sys-
tem drive 940 may be network attached storage or other
network accessible data. As some further examples, in
various embodiments the system drive 940 stores computer
instructions in a format suitable for supporting network boot
of a client computer system, in a format suitable for booting
of a virtual machine (e.g., as a virtual disk 1image) managed
by a hypervisor, in a format for starting a user space 1solated
instance or container (e.g., as a container 1mage), or the like.

FIG. 10A illustrates an exemplary system 1000 for imple-
menting software error-correcting code (ECC) protection or
compression of original data using ECC data according to an
embodiment of the present invention.

The system 1000 (for example, a computer or computing,
system) includes a computer processing core 1010 (which
can include a multi-core processor) for executing computer
instructions and accessing data from a main memory 1020
(such as a random access memory), and a non-volatile
storage medium 1030 (such as a disk drive) for storing the
computer instructions. The processing core 1010, the storage
medium 1030, and the computer istructions are configured
to implement the software ECC protection or compression
of the original data using the ECC data.

10

15

20

25

30

35

40

45

50

55

60

65

44

The software ECC protection or compression includes a
data matrix 1050 for holding the original data 1n the main
memory 1020, a check matrix 1060 for holding the ECC
data in the first memory, and an encoding matrix 1070 for
holding Galois Field multiplication factors in the main
memory 1020. The multiplication factors are for encoding
the original data into the ECC data (an example embodiment
of which 1s described 1n detail 1n the Benefit application and
included above). The software ECC protection or compres-
sion also includes a thread 1080 for executing on the
processing core 1010. The thread 1080 includes a Galois
Field multiplier for multiplying entries of the data matrix
1050 by an enfry of the encoding matrix 1070, and a
sequencer for ordering operations through the data matrix
1050 and the encoding matrix 1070 using the Galois Field
multiplier to generate the ECC data (further details of which
are provided 1n the Benefit application and included above).

The Galois Field multiplier may be a parallel multiplier
for concurrently multiplying the entries of the data matrix
1050 by the entry of the encoding matrix 1070 (as described
turther 1 the Benefit application and included above). The
thread 1080 may also include a plurality of threads for
executing on a multi-core processing unit. To this end, the
software ECC protection or compression may further
include a scheduler for generating the ECC data by dividing
the data matrix 1050 into a plurality of data matrices,
dividing the check matrix 1060 into a plurality of check
matrices, assigning corresponding ones of the data matrices
and the check matrices to the threads, and assigning the
threads to the processing cores to concurrently generate
portions of the ECC data corresponding to the check matri-
ces from respective ones of the data matrices. Further details
of the scheduler can be found 1n the Benefit application that
has been included above.

FIG. 10B illustrates an exemplary system 1001 for imple-
menting soltware error-correcting code (ECC) protection or
compression of original data using ECC data according to an
embodiment of the present invention.

The system 1001 (for example, a computer or computing,
system) includes a computer processing core 1011 (which
can include a multi-core processor) for executing computer
instructions and accessing data from a main memory 1021
(such as a random access memory), and a non-volatile
storage medium 1031 (such as a disk drnive) for storing the
computer mstructions. The processing core 1011, the storage
medium 1031, and the computer mstructions are configured
to implement the software ECC protection or compression
of the original data using the ECC data.

The software ECC protection or compression includes a
data matrix 1051 for holding the original data 1in the main
memory 1021, a check matrix 1061 for holding the ECC
data 1n the first memory. In contrast to the embodiment
shown 1n FIG. 10A, the main memory does not store an
encoding matrix for holding Galois Field multiplication
factors 1 the main memory 1020. Instead, in embodiments
using the exemplary system shown in FIG. 10B, the main
memory 1021 stores instructions that implement and con-
figure a linear feedback shiit register (LFSR) or a method
based on Homer’s technique to perform the encoding of the
data values stored 1n the data matrix 1051 to compute the
values of the check matrix 1061. The LFSR, the technique
based on Horner’s technique, and the constants for encoding
the original data into the ECC data are described above and
may be stored in the vector registers. The software ECC
protection or compression also includes a thread 1081 for
executing on the processing core 1011. The thread 1081
includes a Galois Field multiplier for multiplying entries of

US 11,848,686 B2

45

the data matrix 1051 by the coeflicients of the taps of the
LFSR (or coetlicients for applying Horner’s technique), and
a sequencer for ordering operations through the data matrix
1051 and the LFSR (or through Horner’s technique) using
the Galois Field multiplier to generate the ECC data (further
details of which are provided 1n the Benefit application and
included above).

The Galois Field multiplier may be a parallel multiplier
for concurrently multiplying the entries of the data matrix
1051 by the coellicients of the LFSR (as described further
above). The thread 1081 may also include a plurality of
threads for executing on a multi-core processing unit. To this
end, the software ECC protection or compression may
turther include a scheduler for generating the ECC data by
dividing the data matrix 1051 into a plurality of data
matrices, dividing the check matrix 1061 into a plurality of
check matrices, assigning corresponding ones of the data
matrices and the check matrices to the threads, and assigning,
the threads to the processing cores to concurrently generate
portions of the ECC data corresponding to the check matri-
ces from respective ones of the data matrices. Further details
of the scheduler can be found 1n the Benefit application that
has been included above.

Embodiments of the present disclosure using a LFSR and
using a parallel syndrome sequencer do not require access-
ing an encoding matrix stored in main memory during the
encoding or decoding process. Empirical tests using such
embodiments show a substantial performance improvement
over embodiments that access an encoding matrix stored 1n
main memory on the order of approximately 8:1 to 10:1.

In more detail, many processors, including processors in
the x86 family, have wide execution pipelines where a single
CPU core of the processor can execute multiple instructions
at the same time (in parallel). In particular, when the
program 1instructions are ordered in a particular way and
when register usage 1s 1terleaved properly, a CPU core can
execute more than one 1nstruction per clock cycle (some-
times two or more instructions per clock cycle) on a single
core using multiple execution units that exist with a CPU
core.

However, an access to a memory address, even if resolved
in the [L1 cache that 1s closest to the CPU core, takes at least
four clock cycles, resulting at a 400% performance penalty
that may actually be 800% or more because of the lost
opportunity. As such, avoiding accessing data in memory (or
cached 1n the L1 cache) by ensuring that all of the necessary
constants for the operations are loaded into the registers,
such as in the case of an LFSR or parallel syndrome
sequencer according to embodiments of the present disclo-
sure, where all of the necessary constants fit within the
vector registers, provides a performance improvement of
approximately 8:1 to 10:1.

In more detail and as one example, when performing an
encoding process using an LFSR or parallel syndrome
sequencer according to embodiments of the present disclo-
sure, the CPU core accesses the main memory only once to
retrieve the original data and then repeatedly uses constants
that are stored in the vector registers to generate the check
symbols for the original data (or to decode the original data
in the case of decoding). Therelfore, embodiments of the
present disclosure eliminate the memory load instruction
associated with retrieving rows of the encoding matrix (or
the rows of the decoding matrix in the case of decoding
operation). The elimination of these memory load operations
in embodiments of the present disclosure therefore signifi-

10

15

20

25

30

35

40

45

50

55

60

65

46

cantly improves performance at least because the CPU core
does not need to wait several cycles to retrieve constants
from the main memory.

As one specific example, the RS Polynomial Code of
(255, 239) (239 data symbols, 16 check symbols, for a total
of 255 symbols) would have an encoding matrix that 1s 239
members wide and 16 members deep. That 1s, for each of the
239 data values, 16 different values must be loaded from the
encoding matrix in main memory into a register, where each
of these loads requires a 4 cycle delay.

In contrast, using an LFSR to generate 16 check values for
some mmput data symbols mnvolves the use of an LFSR with
16 taps, where each tap 1s supplied with a corresponding
constant. These 16 constants are reused for the entire mes-
sage ol 239 data values, and therefore an LFSR does not
need to mcur a delay (e.g., at least four cycle delay) to
retrieve constants from the main memory (or L1 cache)
because the 16 constants can reside continuously (for
example) 1n 16 of the 32 AVX-512 SIMD registers of the
CPU core. A parallel syndrome sequencer exhibits similar
benelits in that the same constants are reused throughout the
encoding or decoding process. Accordingly, using an LFSR
and/or a parallel syndrome sequencer provides 400% to
800% (or more) performance improvement over a compara-
tive technique using an encoding matrix by avoiding or
omitting or eliminating memory load operations from an
iner loop of the encoding or decoding process.

While the present invention has been described in con-
nection with certain exemplary embodiments, it 1s to be
understood that the invention i1s not limited to the disclosed
embodiments, but, on the contrary, 1s mtended to cover
various modifications and equivalent arrangements included
within the spirit and scope of the appended claims, and

equivalents thereof.

What 1s claimed 1s:

1. A system adapted to use accelerated error-correcting
code (ECC) processing to improve the storage and retrieval
of digital data distributed across a plurality of drives, com-
prising:

at least one processor comprising at least one single-
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and
loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core
comprising at least 16 vector registers, each of the
vector registers storing at least 16 bytes;

at least one system drive comprising at least one non-
volatile storage medium that stores the SIMD 1nstruc-
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one

block of the check data; and

least one mput/output (I/0O) controller that stores the at

least one block of the check data from the main
memory to the check drives,

wherein the processor, the SIMD instructions, the at least
one non-volatile storage medium, and the I/O controller
are configured to implement a polynomial coding sys-
tem comprising;:

a data matrix comprising at least one vector and com-
prising a plurality of rows of at least one block of the
original data 1in the main memory, each of the rows
being stored on a different one of the data drives;

at

US 11,848,686 B2

47

a check matrix comprising more than two rows of the
at least one block of the check data in the main
memory, each of the rows being stored on a different

one of the check drives; and
a thread that executes on the SIMD CPU core and

comprising;:

at least one parallel multiplier that multiplies the at
least one vector of the data matrix by a single
factor to compute parallel multiplier results com-

prising at least one vector; and
a parallel linear feedback shift register (LFSR)

sequencer wherein the parallel LFESR sequencer
orders load operations of the original data into at
least one of the vector registers and computes the
check data with the at least one parallel multiplier
and stores the computed check data from the
vector registers to the main memory.

2. The system of claim 1, wherein:

the processing core comprises a plurality of processing

COres;
the thread comprises a plurality of threads; and
the polynomial coding system further comprises a sched-

uler for generating the check data by:

dividing the data matrix into a plurality of data matri-

ces;

dividing the check matrix into a plurality of check

matrices;

assigning corresponding ones of the data matrices and

the check matrices to the threads; and

assigning the threads to the processing cores to con-

currently generate portions of the check data corre-
sponding to the check matrices from respective ones
of the data matrices.

3. The system of claim 1, wherein the SIMD 1nstructions
implementing the at least one parallel multiplier of the
thread comprise a GF2PSMULB 1nstruction.

4. The system of claim 1, wherein a primitive polynomial
of a Galois field of a Galois field multiplication instruction
of the processing core 1s different from a primitive polyno-
mial of a Galois field of a polynomaial code of the polynomaal
coding system, and

wherein the SIMD 1nstructions comprise instructions cor-

responding to the at least one parallel multiplier com-
prise instructions that, when executed by the processing
core, cause the processing core to implement a parallel
lookup Galois field multiplier.

5. The system of claim 4, wherein the instructions that
implement the parallel lookup Galois field multiplier include
a SIMD shuflle instruction.

6. The system of claim 1, wherein the LFSR sequencer 1s
configured to compute T check symbols of the check data by
supplying K data symbols of the original data to a LFSR
configured with T coeflicients supplied to T taps of the
LFSR, wherein the T coeflicients are coeflicients of a
generator polynomial.

7. A system adapted to use accelerated error-correcting
code (ECC) processing to improve the storage and retrieval
of digital data distributed across a plurality of drives, com-
prising:

at least one processor comprising at least one single-

instruction-multiple-data (SIMD) central processing
umt (CPU) core that executes SIMD instructions and
loads recerved original data and received check data
from a main memory and computes syndrome data; the
SIMD CPU core comprising at least 16 vector registers,
cach of the vector registers storing at least 16 bytes;

10

15

20

25

30

35

40

45

50

55

60

65

48

at least one system drive comprising at least one non-
volatile storage medium that stores the SIMD instruc-
tions;
a plurality of data drnives each comprising at least one
non-volatile storage medium that stores at least one
block of the received original data, the at least one
block comprising at least 512 bytes;
more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the received check data; and
at least one mput/output (I/0) controller that reads at least
one block of the received check data from the check
drives and stores the at least one block of the received
check data to the main memory,
wherein the processor, the SIMD 1instructions, the at least
one non-volatile storage medium and the I/0 controller
implement a polynomial coding system, comprising:
a recerved data matrix comprising at least one vector
and comprising at least one row of at least one block
of the received original data in the main memory,
cach row of the at least one row being stored on a
different one of the data drives;
a recerved check matrix comprising at least one row of
at least one block of the received check data in the
main memory, each row of the at least one row being
stored on a different one of the check drives; and
a thread that executes on the SIMD CPU core and
comprising:
at least one parallel multiplier that multiplies the at
least one vector of the received original data by a
single factor to compute parallel multiplier results
comprising at least one vector; and

a parallel syndrome sequencer wherein the parallel
syndrome sequencer: orders load operations of the
received original data into at least one of the
vector registers and load operations of the
received check data into at least one of the vector
registers; and computes the syndrome data with
the at least one parallel multiplier.

8. The system of claim 7, wherein:

the at least one processor comprises a plurality of pro-
cessing Cores;

the thread comprises a plurality of threads; and

the polynomial coding system further comprises a sched-
uler for generating the syndrome data by:
dividing the received data matrix into a plurality of

received data matrices:

dividing the received check matrix mto a plurality of
recetved check matrices;

assigning corresponding ones ol the received data
matrices and the received check matrices to the
threads; and

assigning the threads to the processing cores to con-
currently compute the syndrome data based on
respective ones of the received check matrices and
the received data matrices.

9. The system of claim 7, wherein the SIMD 1nstructions
implementing the at least one parallel multiplier of the
thread comprise a GF2PSMULB 1nstruction.

10. The system of claim 7, wherein a primitive polyno-
mial of a Galois field of a Galois field multiplication
instruction of the SIMD CPU core 1s different from a
primitive polynomial of a Galois field of a polynomial code
of the polynomial coding system, and

wherein the SIMD instructions comprise mstructions cor-
responding to the at least one parallel multiplier com-
prise instructions that, when executed by the SIMD

US 11,848,686 B2

49

CPU core, cause the SIMD CPU core to implement a
parallel lookup Galois field multiplier.

11. The system of claim 10, wherein the instructions that
implement the parallel lookup Galois field multiplier include
a SIMD shutile 1nstruction.

12. A method for improving the storage and retrieval of
digital data distributed across a plurality of drives using
accelerated error-correcting code (ECC) processing 1n a
system comprising:

at least one processor comprising at least one single-
instruction-multiple-data (SIMD) central processing
umt (CPU) core that executes SIMD instructions and
loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core
comprising at least 16 vector registers, each of the
vector registers storing at least 16 bytes;

at least one system drive comprising at least one non-
volatile storage medium that stores the SIMD 1nstruc-
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one

block of the check data; and

least one mput/output (I/0) controller that stores the at

least one block of the check data from the main
memory to the check drives,

the method comprising:

loading a data matrix comprising at least one vector and
comprising a plurality of rows of at least one block
of the original data into the main memory, each of
the rows being stored on a different one of the data
drives:

loading a check matrix comprising more than two rows
of the at least one block of the check data 1n the main
memory, each of the rows being stored on a different
one of the check drives; and

executing a thread on the SIMD CPU core, the thread
comprising:
at least one parallel multiplier that multiplies the at

least one vector of the data matrix by a single
factor to compute parallel multiplier results com-
prising at least one vector; and
a parallel linear feedback shift register (LFSR)

sequencer wherein the parallel LEFSR sequencer
orders load operations of the original data into at
least one of the vector registers and computes the
check data with the at least one parallel multiplier
and stores the computed check data from the
vector registers to the main memory 1n accordance
with a polynomial code.

13. The method of claim 12, wherein:

the at least one processor comprises a plurality of pro-

cessing cores;

the thread comprises a plurality of threads; and

the method further comprises:

dividing the data matrix into a plurality of data matri-
ces;

dividing the check matrix into a plurality of check
matrices;

assigning, by a scheduler, corresponding ones of the
data matrices and the check matrices to the threads;
and

assigning, by the scheduler, the threads to the process-
ing cores to concurrently generate portions of the

at

5

10

15

20

25

30

35

40

45

50

55

60

65

50

check data corresponding to the check matrices from
respective ones of the data matrices.

14. The method of claim 12, wherein the at least one
parallel multiplier of the thread 1s implemented by one or
more SIMD instructions comprising a GF2PSMULB
instruction.

15. The method of claim 12, wherein a primitive poly-
nomial of a Galois field of a Galois field multiplication
istruction of the SIMD CPU core 1s different from a
primitive polynomial of a Galois field of the polynomial
code, and

wherein the SIMD nstructions comprise mstructions cor-
responding to the at least one parallel multiplier com-
prise instructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to implement a
parallel lookup Galois field multiplier.

16. The method of claim 15, wherein the instructions that
implement the parallel lookup Galois field multiplier include
a SIMD shutiile 1nstruction.

17. The method of claim 12, wherein the LFSR sequencer
1s configured to compute T check symbols of the check data
by supplying K data symbols of the original data to a LFSR
configured with T coeflicients supplied to T taps of the
LFSR, wherein the T coeflicients are coeflicients of a
generator polynomaial.

18. A method for improving the storage and retrieval of
digital data distributed across a plurality of drives using
accelerated error-correcting code (ECC) processing 1n a
system comprising;:

at least one processor comprising at least one single-
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD 1nstructions and
loads recerved original data and received check data
from a main memory and computes syndrome data; the
SIMD CPU core comprising at least 16 vector registers,
cach of the vector registers storing at least 16 bytes;

at least one system drive comprising at least one non-
volatile storage medium that stores the SIMD 1nstruc-
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the received original data, the at least one
block comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the received check data; and

at least one mput/output (I/0) controller that reads at least
one block of the received check data from the check
drives and stores the at least one block of the received
check data to the main memory,

the method comprising:
loading a received data matrix comprising at least one

vector and comprising at least one row of at least one
block of the received original data mto the main
memory, each row of the at least one row being
stored on a different one of the data drives;
loading a received check matrix comprising at least one
row of at least one block of the received check data
into the main memory, each row of the at least one
row being stored on a different one of the check
drives; and
executing a thread on the SIMD CPU core, the thread
comprising;:
at least one parallel multiplier that multiplies the at
least one vector of the received original data by a
single factor to compute parallel multiplier results
comprising at least one vector; and

US 11,848,686 B2

51

a parallel syndrome sequencer wherein the parallel
syndrome sequencer: orders load operations of the
received original data into at least one of the
vector registers and load operations of the
received check data into at least one of the vector
registers; and computes the syndrome data with
the at least one parallel multiplier 1n accordance
with a polynomial code.

19. The method of claim 18, wherein:
the at least one processor comprises a plurality of pro-
cessing cores;
the thread comprises a plurality of threads; and
the method further comprises:
dividing the received data matrix into a plurality of
received data matrices;
dividing the received check matrix into a plurality of
received check matrices;
assigning, by a scheduler, corresponding ones of the
recerved data matrices and the recerved check matri-
ces to the threads; and
assigning, by the scheduler, the threads to the process-
ing cores to concurrently compute the syndrome data

based on respective ones of the received check
matrices and the recerved data matrices.

20. The method of claim 18, wherein the SIMD 1nstruc-
tions implementing the at least one parallel multiplier of the
thread comprise a GF2PSMULB 1nstruction.

21. The method of claim 18, wherein a primitive poly-
nomial of a Galois field of a Galois field multiplication
instruction of the SIMD CPU core 1s different from a
primitive polynomial of a Galois field of the polynomial
code, and

wherein the SIMD instructions comprise mstructions cor-
responding to the at least one parallel multiplier com-
prise instructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to implement a
parallel lookup Galois field multiplier.

22. The method of claim 21, wherein the instructions that
implement the parallel lookup Galois field multiplier include
a SIMD shuflle instruction.

23. A non-volatile computer readable medium having
instructions stored thereon that, when executed by a proces-
sor, cause the processor to implement accelerated error-
correcting code (ECC) processing to improve the storage
and retrieval of digital data distributed across a plurality of
drives 1n a system comprising:

at least one processor comprising at least one single-
instruction-multiple-data (SIMD) central processing
umt (CPU) core that executes SIMD instructions and
loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core
comprising at least 16 vector registers, each of the
vector registers storing at least 16 bytes;

at least one system drive comprising at least one non-
volatile storage medium that stores the SIMD instruc-
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one

block of the check data; and
least one mput/output (I/O) controller that stores the at
least one block of the check data from the main
memory to the check drives,

at

5

10

15

20

25

30

35

40

45

50

55

60

65

52

wherein the mstructions stored on the non-volatile com-
puter readable medium, when executed by the at least
one processor, cause the at least one processor to:
load a data matrix comprising at least one vector and
comprising a plurality of rows of at least one block
of the original data into the main memory, each of
the rows being stored on a different one of the data
drives;
load a check matrix comprising more than two rows of
the at least one block of the check data 1n the main
memory, each of the rows being stored on a different
one of the check drives; and
execute a thread on the SIMD CPU core, the thread
comprising;:
at least one parallel multiplier that multiplies the at
least one vector of the data matrix by a single
factor to compute parallel multiplier results com-
prising at least one vector; and
a parallel limear feedback shift register (LFSR)
sequencer wherein the parallel LESR sequencer
orders load operations of the original data into at
least one of the vector registers and computes the
check data with the at least one parallel multiplier
and stores the computed check data from the
vector registers to the main memory 1n accordance
with a polynomial code.

24. The non-volatile computer readable medium of claim
23, wherein

the at least one processor comprises a plurality of pro-

cessing Cores;

the thread comprises a plurality of threads; and

the instructions further comprise instructions that, when

executed by the at least one processor, cause the at least

one processor to:

divide the data matrix into a plurality of data matrices;

divide the check matrix into a plurality of check
matrices;

assign, by a scheduler, corresponding ones of the data
matrices and the check matrices to the threads; and

assign, by the scheduler, the threads to the processing
cores to concurrently generate portions of the check
data corresponding to the check matrices from
respective ones of the data matrices.

25. The non-volatile computer readable medium of claim
23, wheremn mstructions implementing the at least one
parallel multiplier comprise one or more SIMD 1nstructions
comprising a GF2PSMULB 1nstruction.

26. The non-volatile computer readable medium of claim
23, wherein a primitive polynomial of a Galois field of a
Galois field multiplication instruction of the SIMD CPU
core 1s different from a primitive polynomial of a Galois
field of the polynomial code, and

wherein the SIMD instructions comprise istructions cor-

responding to the at least one parallel multiplier com-
prise instructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to implement a
parallel lookup Galois field multiplier.

277. The non-volatile computer readable medium of claim
26, wherein the instructions that implement the parallel
lookup Galois field multiplier include a SIMD shuflle
istruction.

28. The non-volatile computer readable medium of claim
23, wherein instructions that implement the LFSR sequencer
comprise nstructions to compute T check symbols of the
check data by supplying K data symbols of the original data

US 11,848,686 B2

53

to a LFSR configured with T coetlicients supplied to T taps
of the LESR, wherein the T coeflicients are coeflicients of a
generator polynomuial.

29. A non-volatile computer readable medium having
instructions stored thereon that, when executed by a proces-
sor, cause the processor to implement accelerated error-
correcting code (ECC) processing to improve the storage
and retrieval of digital data distributed across a plurality of
drives 1n a system comprising:

at least one processor comprising at least one single-
instruction-multiple-data (SIMD) central processing
umt (CPU) core that executes SIMD instructions and
loads recerved original data and received check data
from a main memory and computes syndrome data; the
SIMD CPU core comprising at least 16 vector registers,
cach of the vector registers storing at least 16 bytes;

at least one system drive comprising at least one non-
volatile storage medium that stores the SIMD 1nstruc-
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the received original data, the at least one
block comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the received check data; and

at least one mput/output (1/0O) controller that reads at least
one block of the received check data from the check
drives and stores the at least one block of the received
check data to the main memory,

wherein the instructions stored on the non-volatile com-
puter readable medium, when executed by the at least
one processor, cause the at least one processor to:
load a received data matrix comprising at least one

vector and comprising at least one row of at least one
block of the received original data into the main
memory, each row of the at least one row being
stored on a different one of the data drives;
load a received check matrix comprising at least one
row of at least one block of the received check data
into the main memory, each row of the at least one
row being stored on a different one of the check
drives; and
execute a thread on the SIMD CPU core, the thread
comprising:
at least one parallel multiplier that multiplies the at
least one vector of the received original data by a

10

15

20

25

30

35

40

45

54

single factor to compute parallel multiplier results
comprising at least one vector; and

a parallel syndrome sequencer wherein the parallel
syndrome sequencer: orders load operations of the
received original data into at least one of the
vector registers and load operations of the
received check data into at least one of the vector
registers; and computes the syndrome data with
the at least one parallel multiplier 1n accordance
with a polynomial code.

30. The non-volatile computer readable medium of claim
29, wherein:

the at least one processor comprises a plurality of pro-

cessing cores;

the thread comprises a plurality of threads; and

the instructions further comprise instructions that, when

executed by the at least one processor, cause the at least

one processor to:

divide the received data matrix mto a plurality of
recetved data matrices;

divide the received check matrix mnto a plurality of
recetved check matrices;

assign corresponding ones of the received data matrices
and the received check matrices to the threads; and

assign the threads to the processing cores to concur-
rently compute the syndrome data based on respec-
tive ones of the received check matrices and the
received data matrices.

31. The non-volatile computer readable medium of claim
29, wherein the instructions implementing the at least one
parallel multiplier of the thread comprise one or more SIMD
istructions comprising a GF2PSMULB 1nstruction.

32. The non-volatile computer readable medium of claim
29, wheremn a primitive polynomial of a Galois field of a
Galois field multiplication instruction of the SIMD CPU
core 1s different from a primitive polynomial of a Galois
field of the polynomial code, and

wherein the SIMD instructions comprise istructions cor-

responding to the at least one parallel multiplier com-
prise instructions that, when executed by the SIMD
CPU core, cause the SIMD CPU core to implement a
parallel lookup Galois field multiplier.

33. The non-volatile computer readable medium of claim
32, wherein the instructions that implement the parallel
lookup Galois field multiplier include a SIMD shuflle
istruction.

	Front Page
	Drawings
	Specification
	Claims

