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1 Galois Fields

A field is a set with two special elements (0 and 1) where we can add, subtract, multiply and divide any
two elements, except for division by zero.

Example ∶ R (the real numbers) and C (the complex numbers) are fields.

The previous examples have infinitely many elements. There are also fields with finitely many elements;
they are called Galois fields or finite fields.
Given a Galois field, there exists a prime number p such that for any element a of the field holds

a +⋯ + a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p times

= 0.

This prime p is uniquely determined and called the characteristic of the field. Moreover, there exists a
positive integer n such that the field has pn elements. This motivates us to denote the Galois field as GF (pn).

Example ∶ GF (256) (also written as GF (28)) is a Galois field with 256 elements.

1.1 Understanding GF (256)
1.1.1 Decimal, Binary and Polynomial Representation

The elements in GF (256) can be expressed as numbers in decimal representation, so that GF (256)
contains the elements 0,1,2, . . . ,254,255. However, this representation is not helpful to make operations by
hand; for that it is more useful to use the binary representation.
Any number a from 0 to 255 can be uniquely written as a linear combination of {20,21,22,23,24,25,26,27}
with coefficients ai in {0,1}. That is,

a = a727 + a626 + a525 + a424 + a323 + a222 + a121 + a020. (1)

The binary representation of the decimal a is the vector (a7, a6, a5, a4, a3, a2, a1, a0).

Note: We will frequently specify a particular coordinate as the 0th entry, 1st entry, etc. according to the
following diagram.

(7th, 6th, 5th, 4th, 3rd, 2nd, 1st, 0th)
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Closely related to the binary representation is the polynomial representation of a as a polynomial
with binary coefficients,

a(x) = a7x
7
+ a6x

6
+ a5x

5
+ a4x

4
+ a3x

3
+ a2x

2
+ a1x

1
+ a0.

Example 1: The element 47 can be written as

47 = 0 ⋅ 27 + 0 ⋅ 26 + 1 ⋅ 25 + 0 ⋅ 24 + 1 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20.

The binary representation of 47 is (0,0,1,0,1,1,1,1).

Example 2: The element 220 can be written as

220 = 1 ⋅ 27 + 1 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 1 ⋅ 22 + 0 ⋅ 21 + 0 ⋅ 20.

The binary representation of 220 is (1,1,0,1,1,1,0,0).

Example 3: The element 183 can be written as

183 = 1 ⋅ 27 + 0 ⋅ 26 + 1 ⋅ 25 + 1 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20.

The binary representation of 183 is (1,0,1,1,0,1,1,1).

Conversely, if we have an element written in binary representation (a7, a6, a5, a4, a3, a2, a1, a0), to find the
decimal representation we must evaluate the sum (over the integers) on the right-hand side of equation (1).

Example 1: The binary representation (1,0,0,1,1,0,1,0) corresponds to the decimal 154, since:

1 ⋅ 27 + 0 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 0 ⋅ 20 = 128 + 16 + 8 + 2 = 154.

1.1.2 Addition

The addition in the field GF (256) is not the same as in the natural numbers; for instance 47 + 183 ≠ 230
when seen as elements of GF (256).
If we have elements a and b in GF (256), to obtain a + b we must first find their binary representa-
tions and then add by coordinate; this is, if the binary representations are (a7, a6, a5, a4, a3, a2, a1, a0) and
(b7, b6, b5, b4, b3, b2, b1, b0), then a + b is the element having binary representation

(a7 + b7, a6 + b6, a5 + b5, a4 + b4, a3 + b3, a2 + b2, a1 + b1, a0 + b0).

The addition by coordinate can be done in long addition format and obeys the additive XOR rules:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 0.

Example 1: 1 + 1 = 0 in GF (256).
The binary representation of 1 is (0,0,0,0,0,0,0,1).
The binary representation of 1 + 1 is:

(0 + 0,0 + 0,0 + 0,0 + 0,0 + 0,0 + 0,0 + 0,1 + 1) = (0,0,0,0,0,0,0,0)

This calculation can also be visualized as a long addition:

0 0 0 0 0 0 0 1
+ 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

Caution: This is not the usual binary addition with carry over! Remember: Addition = XOR!

Now convert from binary back to decimal representation:
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0 ⋅ 27 + 0 ⋅ 26 + 0 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 0 ⋅ 20 = 0.

Thus, 1 + 1 = 0 in GF (256).

Example 2: 2 + 1 = 3 in GF (256).
The binary representations of 2 and 1 are (0,0,0,0,0,0,1,0) and (0,0,0,0,0,0,0,1), respectively.
The long addition of 2 + 1 is:

0 0 0 0 0 0 1 0
+ 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

Now convert from binary back to decimal representation:

0 ⋅ 27 + 0 ⋅ 26 + 0 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 2 + 1 = 3.

Thus, 2 + 1 = 3 in GF (256).

Example 3: 4 + 1 = 5 in GF (256).
The binary representations of 4 and 1 are (0,0,0,0,0,1,0,0) and (0,0,0,0,0,0,0,1), respectively.
The long addition of 4 + 1 is:

0 0 0 0 0 1 0 0
+ 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1

Now convert from binary back to decimal representation:

0 ⋅ 27 + 0 ⋅ 26 + 0 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20 = 4 + 1 = 5.

Thus, 4 + 1 = 5 in GF (256).

Example 4: 8 + 1 = 9 in GF (256).
The binary representations of 8 and 1 are (0,0,0,0,1,0,0,0) and (0,0,0,0,0,0,0,1), respectively.
The long addition of 8 + 1 is:

0 0 0 0 1 0 0 0
+ 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1

Now convert from binary back to decimal representation:

0 ⋅ 27 + 0 ⋅ 26 + 0 ⋅ 25 + 0 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20 = 8 + 1 = 9.

Thus, 8 + 1 = 9 in GF (256).

Example 5: 47 + 183 = 152 in GF (256).
The binary representations of 47 and 183 are (0,0,1,0,1,1,1,1) and (1,0,1,1,0,1,1,1), respectively.
The long addition of 47 + 183 is:

0 0 1 0 1 1 1 1
+ 1 0 1 1 0 1 1 1

1 0 0 1 1 0 0 0

Now convert from binary back to decimal representation:

1 ⋅ 27 + 0 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 0 ⋅ 20 = 128 + 16 + 8 = 152.

3



Guide for Reed Solomon Codes

Thus, 47 + 183 = 152 in GF (256).

Example 6: 231 + 183 = 80 in GF (256).
The binary representations of 231 and 183 are (1,1,1,0,0,1,1,1) and (1,0,1,1,0,1,1,1), respectively.
The long addition of 231 + 183 is:

1 1 1 0 0 1 1 1
+ 1 0 1 1 0 1 1 1

0 1 0 1 0 0 0 0

Now convert from binary back to decimal representation:

0 ⋅ 27 + 1 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24 + 0 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 0 ⋅ 20 = 64 + 16 = 80.

Thus, 231 + 183 = 80 in GF (256).

1.1.3 Subtraction

Subtraction in GF (256) is the same as addition, i.e., for any a and b in GF (256) holds a − b = a + b.

1.1.4 Multiplication

The multiplication in GF (256) has primitive polynomial 0x11D; this means, it can be seen as polynomial
multiplication in Z2[x] modulo p(x) = x8 + x4 + x3 + x2 + 1.

The multiplication being modulo p(x) indicates how to multiply an element a in GF (256) by 2. If a has
binary representation (a7, a6, a5, a4, a3, a2, a1, a0), then the coordinates of the binary representation of the
product a ⋅ 2 are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a ⋅ 2)7 = a6

(a ⋅ 2)6 = a5

(a ⋅ 2)5 = a4

(a ⋅ 2)4 = a3 + a7

(a ⋅ 2)3 = a2 + a7

(a ⋅ 2)2 = a1 + a7

(a ⋅ 2)1 = a0

(a ⋅ 2)0 = a7

(2)

Example 1: 171 ⋅ 2 = 75 in GF (256).
The binary representation of 171 is (1,0,1,0,1,0,1,1). By rule (2), the binary representation of 171 ⋅ 2 is:

(0,1,0,1 + 1,0 + 1,1 + 1,1,1) = (0,1,0,0,1,0,1,1)

The decimal representation of the product is 26 + 23 + 2 + 1 = 64 + 8 + 2 + 1 = 75.

Now, to multiply any two elements of GF (256), decompose one of the elements as a sum of powers of two,
then distribute this sum with respect to the product, and use (2) to multiply by 2 as many times as needed.

Example 2: 3 ⋅ 3 = 5 in GF (256).
The binary representation of 3 is (0,0,0,0,0,0,1,1) and 3 = 2 + 1. Then,

3 ⋅ 3 = 3 ⋅ (2 + 1)

= 3 ⋅ 2 + 3 ⋅ 1 by distributivity

= (0,0,0,0,0,0,1,1) ⋅ 2 3 ⋅ 2
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+ (0,0,0,0,0,0,1,1) ⋅ 1 3 ⋅ 1

= (0,0,0,0,0,1,1,0) the 7th entry of (0,0,0,0,0,0,1,1) is zero, so ⋅2 just shifts every entry to the left

+ (0,0,0,0,0,0,1,1)

= (0,0,0,0,0,1,0,1) which in decimal form equals 22 + 1 = 5.

Note: The decomposition into powers of 2 in GF (256) coincides with the decomposition into powers of 2
in the integers. For instance, 171 = 27 + 25 + 23 + 2+ 1 holds in GF (256) as well as over the natural numbers.

Example 3: 171 ⋅ 7 = 118 in GF (256).
The binary representation of 171 is (1,0,1,0,1,0,1,1) and 7 = 4 + 2 + 1 = 22 + 2 + 1. Then,

171 ⋅ 7 = 171 ⋅ (22 + 2 + 1)

= 171 ⋅ 2 ⋅ 2 + 171 ⋅ 2 + 171 ⋅ 1 by distributivity

= (1,0,1,0,1,0,1,1) ⋅ 2 ⋅ 2 171 ⋅ 2 ⋅ 2

+ (1,0,1,0,1,0,1,1) ⋅ 2 171 ⋅ 2

+ (1,0,1,0,1,0,1,1) ⋅ 1 171 ⋅ 1

= (0,1,0,0,1,0,1,1) ⋅ 2 shift to the left and add 1 to the 2nd, 3rd and 4th entry

+ (0,1,0,0,1,0,1,1) shift to the left and add 1 to the 2nd, 3rd and 4th entry

+ (1,0,1,0,1,0,1,1)

= (1,0,0,1,0,1,1,0) the 7th entry of (0,1,0,0,1,0,1,1) is zero, so ⋅2 just shifts every entry to the left

+ (0,1,0,0,1,0,1,1)

+ (1,0,1,0,1,0,1,1)

= (0,1,1,1,0,1,1,0) which in decimal form equals 26 + 25 + 24 + 22 + 2 = 118.

Example 4: 108 ⋅ 32 = 1 in GF (256).
The binary representation of 108 is (0,1,1,0,1,1,0,0) and 32 = 25. Then,

108 ⋅ 32 = 108 ⋅ 25

= (0,1,1,0,1,1,0,0) ⋅ 25

= (1,1,0,1,1,0,0,0) ⋅ 24 the 7th entry of (0,1,1,0,1,1,0,0) is zero, so ⋅2 just shifts every entry to the left

= (1,0,1,0,1,1,0,1) ⋅ 23 shift to the left and add 1 to the 2nd, 3rd and 4th entry

= (0,1,0,0,0,1,1,1) ⋅ 22 shift to the left and add 1 to the 2nd, 3rd and 4th entry

= (1,0,0,0,1,1,1,0) ⋅ 2 shift every entry to the left

= (0,0,0,0,0,0,0,1), shift to the left and add 1 to the 2nd, 3rd and 4th entry

which in decimal form equals 1.

1.1.5 Division

We can reduce the problem of division in GF (256) to the problem of multiplication, since a/b = a ⋅ b−1.
For b−1 we may simply use a table of multiplicative inverses for GF (256).
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b b−1 b b−1 b b−1 b b−1 b b−1

1 1 52 164 103 77 154 189 205 125
2 142 53 195 104 82 155 148 206 168
3 244 54 64 105 141 156 172 207 58
4 71 55 94 106 239 157 9 208 41
5 167 56 80 107 179 158 199 209 113
6 122 57 34 108 32 159 162 210 200
7 186 58 207 109 236 160 28 211 246
8 173 59 169 110 47 161 130 212 249
9 157 60 171 111 50 162 159 213 67
10 221 61 12 112 40 163 198 214 215
11 152 62 21 113 209 164 52 215 214
12 61 63 225 114 17 165 194 216 16
13 170 64 54 115 217 166 70 217 115
14 93 65 95 116 233 167 5 218 118
15 150 66 248 117 251 168 206 219 120
16 216 67 213 118 218 169 59 220 153
17 114 68 146 119 121 170 13 221 10
18 192 69 78 120 219 171 60 222 25
19 88 70 166 121 119 172 156 223 145
20 224 71 4 122 6 173 8 224 20
21 62 72 48 123 187 174 190 225 63
22 76 73 136 124 132 175 183 226 230
23 102 74 43 125 205 176 135 227 240
24 144 75 30 126 254 177 229 228 134
25 222 76 22 127 252 178 238 229 177
26 85 77 103 128 27 179 107 230 226
27 128 78 69 129 84 180 235 231 241
28 160 79 147 130 161 181 242 232 250
29 131 80 56 131 29 182 191 233 116
30 75 81 35 132 124 183 175 234 243
31 42 82 104 133 204 184 197 235 180
32 108 83 140 134 228 185 100 236 109
33 237 84 129 135 176 186 7 237 33
34 57 85 26 136 73 187 123 238 178
35 81 86 37 137 49 188 149 239 106
36 96 87 97 138 39 189 154 240 227
37 86 88 19 139 45 190 174 241 231
38 44 89 193 140 83 191 182 242 181
39 138 90 203 141 105 192 18 243 234
40 112 91 99 142 2 193 89 244 3
41 208 92 151 143 245 194 165 245 143
42 31 93 14 144 24 195 53 246 211
43 74 94 55 145 223 196 101 247 201
44 38 95 65 146 68 197 184 248 66
45 139 96 36 147 79 198 163 249 212
46 51 97 87 148 155 199 158 250 232
47 110 98 202 149 188 200 210 251 117
48 72 99 91 150 15 201 247 252 127
49 137 100 185 151 92 202 98 253 255
50 111 101 196 152 11 203 90 254 126
51 46 102 23 153 220 204 133 255 253

2 Encoding of Reed-Solomon Codes

Imagine that we want to send a message consisting of the vector (mk−1,mk−2, . . . ,m1,m0) with mk−1,
mk−2, . . . ,m1,m0 from GF (256) using the structure of a Reed-Solomon code RS(n, k) with generator poly-
nomial g(x) of degree n − k. This code will encode the message (mk−1,mk−2, . . . ,m1,m0) as a codeword
(cn−1, cn−2, . . . , c1, c0) with cn−1, cn−2, . . . , c1, c0 from GF (256) such that the original message can be recov-
ered as long as there are not more than ⌊n−k

2
⌋ errors during transmission. In other words, the message

(mk−1,mk−2, . . . ,m1,m0) can be recovered as long as at least n − ⌊n−k
2

⌋ = k + ⌈n−k
2

⌉ of the values of the
codeword (cn−1, cn−2, . . . , c1, c0) are transmitted correctly.

For encoding, follow the following steps.
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1. Create the polynomial of degree ≤ k − 1 with the message coordinates mi as coefficients:

m(x) =mk−1xk−1
+mk−2xk−2

+ . . . +m1x +m0

2. Multiply m(x) with the generator polynomial g(x) to obtain the polynomial c(x) = m(x) ⋅ g(x) of
degree ≤ n − 1.

3. Write

c(x) = cn−1xn−1
+ cn−2xn−2

+ . . . + c1x + c0

to read off the coordinates ci of the codeword.

Example 1: We want to encode the message (0,0,0,0) using the RS(8,4) code with generating polynomial

g(x) = (x + 1)(x + 2)(x + 4)(x + 8) = x4
+ 15x3

+ 54x2
+ 120x + 64.

The polynomial that has the message coordinates as coefficients is

m(x) = 0x3
+ 0x2

+ 0x + 0 = 0.

We evaluate

c(x) =m(x) ⋅ g(x) = 0 ⋅ (x4
+ 15x3

+ 54x2
+ 120x + 64) = 0.

This results in the codeword (0,0,0,0,0,0,0,0).

Example 2: We want to encode the message (0,0,0,1) using the RS(8,4) code with generating polynomial

g(x) = (x + 1)(x + 2)(x + 4)(x + 8) = x4
+ 15x3

+ 54x2
+ 120x + 64.

The polynomial that has the message coordinates as coefficients is

m(x) = 0x3
+ 0x2

+ 0x + 1 = 1.

We evaluate

c(x) =m(x) ⋅ g(x) = 1 ⋅ (x4
+ 15x3

+ 54x2
+ 120x + 64) = x4

+ 15x3
+ 54x2

+ 120x + 64.

This results in the codeword (0,0,0,1,15,54,120,64).

Example 3: We want to encode the message (1,2,4,8) using the RS(8,4) code with generating polynomial

g(x) = (x + 1)(x + 2)(x + 4)(x + 8) = x4
+ 15x3

+ 54x2
+ 120x + 64.

The polynomial that has the message coordinates as coefficients is

m(x) = x3
+ 2x2

+ 4x + 8.

We evaluate

c(x) =m(x) ⋅ g(x) = (x3
+ 2x2

+ 4x + 8) ⋅ (x4
+ 15x3

+ 54x2
+ 120x + 64)

= x7
+ (1 ⋅ 15 + 2 ⋅ 1)x6

+ (1 ⋅ 54 + 2 ⋅ 15 + 4 ⋅ 1)x5
+ (1 ⋅ 120 + 2 ⋅ 54 + 4 ⋅ 15 + 8 ⋅ 1)x4

+ (1 ⋅ 64 + 2 ⋅ 120 + 4 ⋅ 54 + 8 ⋅ 15)x3
+ (2 ⋅ 64 + 4 ⋅ 120 + 8 ⋅ 54)x2

+ (4 ⋅ 64 + 8 ⋅ 120)x + 8 ⋅ 64

= x7
+ 13x6

+ 44x5
+ 32x4

+ 16x3
+ 208x2

+ 250x + 58.

This results in the codeword (1,13,44,32,16,208,250,58).
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3 Decoding

3.1 Peterson-Gorenstein-Zierler Algorithm

We want to decode the received n-dimensional vector r. This vector can be written as r = c+ e, where c is a
codeword and e is an error vector. The syndrome vector s = (s1, s2, . . . , s2t) has 2t = n − k coordinates.
Identifying the vector r = (rn−1, . . . , r2, r1, r0) with the polynomial r(x) = rn−1xn−1 + . . . + r2x2 + r1x + r0,
considering an RS(n, k) code where the roots of the generator polynomial g(x) are the consecutive 2t
elements 1,2, . . . ,22t−1, we have s = (s1, s2, . . . , s2t) with

si = r(2i−1) = c(2i−1) + e(2i−1)

and c(2i−1) = 0. Thus, syndromes can be expressed as

si = e(2i−1) =
n−1
∑
j=0

ej(2
i−1

)
j .

Errors occur where ej ≠ 0. Denote the position of the v errors with v ≤ t as 0 ≤ k1, . . . , kv ≤ n−1, and rewrite
the syndrome as

si =
v

∑
j=1

ekj(2
i−1

)
kj =

v

∑
j=1

ekj(2
kj)

i−1
=

v

∑
j=1

Yj(Xj)
i−1

where Xj = 2kj and Yj = ekj . In matrix form, the equation above provides the system

⎛
⎜
⎜
⎜
⎝

X0
1 X0

2 ⋯ X0
v

X1
1 X1

2 ⋯ X1
v

⋮ ⋮ ⋱ ⋮

Xv−1
1 Xv−1

2 ⋯ Xv−1
v

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Y1

Y2

⋮

Yv

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

s1
s2
⋮

sv

⎞
⎟
⎟
⎟
⎠

. (3)

The associated error locator polynomial is

Λ(x) =
v

∏
j=1

(1 −Xjx) = Λvx
v
+Λv−1xv−1

+ . . . +Λ1x +Λ0.

In fact, Λ0 = 1. Then, the k-th syndrome satisfies

kΛk +Λk−1s1 +Λk−2s2 + . . . +Λ1sk−1 = −sk for 1 ≤ k ≤ v

and

Λvsk−v +Λv−1sk−v+1 + . . . +Λ1sk−1 = −sk for v < k ≤ 2t.

The latter equation gives the following system:

M (v)Λ(v) =
⎛
⎜
⎜
⎜
⎝

s1 s2 ⋯ sv
s2 s3 ⋯ sv+1
⋮ ⋮ ⋱ ⋮

sv sv+1 ⋯ s2v−1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Λv

Λv−1
⋮

Λ1

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

−sv+1
−sv+2
⋮

−s2v

⎞
⎟
⎟
⎟
⎠

(4)

If det(M (v)) ≠ 0 then there exists a unique solution vector Λ(v) for the system (4) which is given by

Λ(v) = (M (v)
)
−1 ⎛⎜

⎝

−sv+1
⋮

−s2v

⎞
⎟
⎠

This solution can also be found using row Gaussian elimination.

If we know the 2t syndrome values s1, . . . , s2t and not all of them are zero, we can use the Peterson-Gorenstein-
Zierler algorithm to detect and correct the errors. The algorithm goes as follows:
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1. Assume v = t,

2. Check if M (v) is singular.

� If det(M (v)) = 0, decrement v ← v − 1. If v = 0, finish and signal that errors have occurred which
are not correctable; else return to Step 2.

� If det(M (v)) ≠ 0, then continue. This v value tells us how many errors occurred.

3. Solve the system (4). The result gives the error location polynomial Λ(x).

4. Find the roots of the error location polynomial by exhaustive search. Note that Λ(x) = ∏
v
j=1(1−Xjx),

i.e., Λ(x) must factor into linear factors with its v distinct roots from the list 1,2−1,2−2, . . . ,21−n.
Should such a factorization fail, finish and signal that errors have occurred which are not correctable.

5. Find X1, . . . ,Xv, the reciprocals of the roots found in step 4.

6. Find the error positions ki = log2(2
ki) = log2(Xi).

7. Find the error values Yj = ekj by solving the linear system (3).

8. Get the error polynomial e(x) = ∑
v
j=1 ekjx

kj .

9. Find the codeword polynomial c(x) = r(x) − e(x).

Advice: Under the assumption of low probability of failure during the transmission of the message, make
sure to first verify if all the syndromes are zero, since this will determine if any error has occured. Do not
invert any matrix until you have found the correct number of errors.

Now we will work some examples for this decoder.

3.1.1 Example 1

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(0,0,0,0,0,0,1,1), so that (0,0,0,0,0,0,1,1) was received.
The polynomial associated to the received message is

s(x) = x + 1.

We start with v = 2. The syndromes are

s1 = s(20) = s(1) = 1 + 1 = 0,

s2 = s(21) = s(2) = 2 + 1 = 3,

s3 = s(22) = s(4) = 4 + 1 = 5 and

s4 = s(23) = s(8) = 8 + 1 = 9.

We want to solve the system (4)

(
0 3
3 5

)(
Λ2

Λ1
) = (

5
9
) .

Note that

det(
0 3
3 5

) = 0 ⋅ 5 − 3 ⋅ 3 = 5 ≠ 0.

So the system must have a unique solution. To find it, modify the augmented matrix using Gaussian
reduction algorithm;

9
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(
0 3 5
3 5 9

) Ô⇒ (
3 5 9
0 3 5

) , swap the rows since the first element of the diagonal is zero

Ô⇒ (
1 3 7
0 1 3

) , divide all equations by 3 to obtain ones on the diagonal

Ô⇒ (
1 0 2
0 1 3

) , add 3 times the second row to the first row to obtain the identity matrix

Ô⇒

⎧⎪⎪
⎨
⎪⎪⎩

Λ1 = 3

Λ2 = 2

The error locator polynomial is

Λ(x) = 2x2
+ 3x + 1 = (1 + x)(1 + 2x) = (1 + 20x)(1 + 21x).

Thus, the errors are located at the positions k1 = log2(1) = log2(2
0) = 0 and k2 = log2(2) = log2(2

1) = 1.
To find the error values, solve the system (3)

(
10 20

11 21
)(

Y1

Y2
) = (

0
3
) .

To solve it, modify the augmented matrix using Gaussian reduction algorithm;

(
1 1 0
1 2 3

) Ô⇒ (
1 1 0
0 3 3

) , add the first row to the second row to get zero below the diagonal

Ô⇒ (
1 1 0
0 1 1

) , divide the second row by 3 to obtain ones on the diagonal

Ô⇒ (
1 0 1
0 1 1

) , add the second row to the first row to obtain the identity matrix

Ô⇒

⎧⎪⎪
⎨
⎪⎪⎩

Y1 = 1

Y2 = 1

Thus, the error polynomial is e(x) = x + 1 and the decoding algorithm gives us the polynomial

c(x) = s(x) + e(x) = (x + 1) + (x + 1) = 0.

3.1.2 Example 2

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(1,1,0,0,0,0,0,0), so that (1,1,0,0,0,0,0,0) was received.
The polynomial associated to the received message is

s(x) = x7
+ x6.

We start with v = 2. The syndromes are

s1 = s(20) = s(1) = 1 + 1 = 0,

s2 = s(21) = s(2) = 128 + 64 = 192,

s3 = s(22) = s(4) = 19 + 205 = 222 and

s4 = s(23) = s(8) = 117 + 45 = 88.

We want to solve the system (4)

10
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(
0 192

192 222
)(

Λ2

Λ1
) = (

222
88

) .

Note that

det(
0 192

192 222
) = 0 ⋅ 222 − 192 ⋅ 192 = 222 ≠ 0.

So the system must have a unique solution. To find it, modify the augmented matrix using Gaussian
reduction algorithm;

(
0 192 222

192 222 88
) Ô⇒ (

192 222 88
0 192 222

) , swap the rows since the first element of the diagonal is zero

Ô⇒ (
1 192 89
0 1 192

) , divide all equations by 192 to obtain ones on the diagonal

Ô⇒ (
1 0 135
0 1 192

) , add 192 times the second row to the first row to get the identity matrix

Ô⇒

⎧⎪⎪
⎨
⎪⎪⎩

Λ1 = 192

Λ2 = 135

The error locator polynomial is

Λ(x) = 135x2
+ 192x + 1 = (1 + 128x)(1 + 64x) = (1 + 27x)(1 + 26x).

Thus, the errors are located at the positions k1 = log2(128) = log2(2
7) = 7 and k2 = log2(64) = log2(2

6) = 6.
To find the error values, solve the system (3)

(
1280 640

1281 641
)(

Y1

Y2
) = (

0
192

) .

To solve it, modify the augmented matrix using Gaussian reduction algorithm;

(
1 1 0

128 64 192
) Ô⇒ (

1 1 0
0 192 192

) , add 128 times the first row to the second row to get zero below the diagonal

Ô⇒ (
1 1 0
0 1 1

) , divide the second row by 192 to obtain ones on the diagonal

Ô⇒ (
1 0 1
0 1 1

) , add the second row to the first row to obtain the identity matrix

Ô⇒

⎧⎪⎪
⎨
⎪⎪⎩

Y1 = 1

Y2 = 1

Thus, the error polynomial is e(x) = x7 + x6 and the decoding algorithm gives us the polynomial

c(x) = s(x) + e(x) = (x7
+ x6) + (x7

+ x6) = 0.

3.1.3 Example 3

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(0,0,0,1,1,0,0,0), so that (0,0,0,1,1,0,0,0) was received.
The polynomial associated to the received message is

s(x) = x4
+ x3.

11
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We start with v = 2. The syndromes are

s1 = s(20) = s(1) = 14 + 13 = 1 + 1 = 0,

s2 = s(21) = s(2) = 24 + 23 = 16 + 8 = 24,

s3 = s(22) = s(4) = 44 + 43 = 29 + 64 = 93 and

s4 = s(23) = s(8) = 84 + 83 = 205 + 58 = 247.

We want to solve the system (4)

(
0 24
24 93

)(
Λ2

Λ1
) = (

93
247

) . (5)

Note that

det(
0 24
24 93

) = 0 ⋅ 93 − 24 ⋅ 24 = 93 ≠ 0.

So the system must have a unique solution. To find it, modify the augmented matrix using Gaussian
reduction algorithm;

(
0 24 93
24 93 247

) Ô⇒ (
24 93 247
0 24 93

) , swap the rows since the first element of the diagonal is zero

Ô⇒ (
1 24 128
0 1 24

) , divide all equations by 24 to obtain ones on the diagonal

Ô⇒ (
1 0 128
0 1 24

) , add 24 times the second row to the first row to get the identity matrix

Ô⇒

⎧⎪⎪
⎨
⎪⎪⎩

Λ1 = 24

Λ2 = 128

The error locator polynomial is

Λ(x) = 128x2
+ 24x + 1 = (1 + 8x)(1 + 16x) = (1 + 23x)(1 + 24x).

Thus, the errors are located at the positions k1 = log2(8) = log2(2
3) = 3 and k2 = log2(16) = log2(2

4) = 4.
To find the error values, solve the system (3)

(
80 160

81 161
)(

Y1

Y2
) = (

0
24

) .

To solve it, modify the augmented matrix using Gaussian reduction algorithm;

(
1 1 0
8 16 24

) Ô⇒ (
1 1 0
0 24 24

) , add 8 times the first row to the second row to get zero below the diagonal

Ô⇒ (
1 1 0
0 1 1

) , divide the second row by 24 to obtain ones on the diagonal

Ô⇒ (
1 0 1
0 1 1

) , add the second row to the first row to obtain the identity matrix

Ô⇒

⎧⎪⎪
⎨
⎪⎪⎩

Y1 = 1

Y2 = 1

Thus, the error polynomial is e(x) = x4 + x3 and the decoding algorithm gives us the polynomial

c(x) = s(x) + e(x) = (x4
+ x3) + (x4

+ x3) = 0.
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3.1.4 Example 4

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error
vector (0,0,0,1,0,0,0,0), so that (0,0,0,0,15,54,120,64) was received.
The polynomial associated to the received message is

s(x) = 15x3
+ 54x2

+ 120x + 64.

We start with v = 2. The syndromes are

s1 = s(20) = s(1) = 15 ⋅ 13 + 54 ⋅ 12 + 120 ⋅ 1 + 64 = 15 + 54 + 120 + 64 = 1,

s2 = s(21) = s(2) = 15 ⋅ 23 + 54 ⋅ 22 + 120 ⋅ 2 + 64 = 120 + 216 + 240 + 64 = 16,

s3 = s(22) = s(4) = 15 ⋅ 43 + 54 ⋅ 42 + 120 ⋅ 4 + 64 = 231 + 71 + 253 + 64 = 29 and

s4 = s(23) = s(8) = 15 ⋅ 83 + 54 ⋅ 82 + 120 ⋅ 8 + 64 = 107 + 1 + 231 + 64 = 205.

We want to solve the system (4)

(
1 16
16 29

)(
Λ2

Λ1
) = (

29
205

) .

However, note that

det(
1 16
16 29

) = 1 ⋅ 29 − 16 ⋅ 16 = 0.

So we must decrease v by 1, so that v = 1. This yields the system

1 ⋅Λ1 = 16

which has solution Λ1 = 16. The error locator polynomial is Λ(x) = 1 + 16x, so that X1 = 16 = 24. That is,
the error is located at the position k1 = log2(16) = log2(2

4) = 4.
To find the error values, solve

X0
1 ⋅ Y1 = s1 Ô⇒ 1 ⋅ Y1 = 1 Ô⇒ Y1 = 1.

Thus, the error polynomial is e(x) = x4 and the decoding algorithm proposes that the associated polynomial
is

c(x) = s(x) + e(x) = x4
+ 15x3

+ 54x2
+ 120x + 64.

3.1.5 Example 5

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error
vector (0,0,0,1,1,0,0,0), so that (0,0,0,0,14,54,120,64) was received.
The polynomial associated to the received message is

s(x) = 14x3
+ 54x2

+ 120x + 64.

We start with v = 2. The syndromes are

s1 = s(20) = s(1) = 14 ⋅ 13 + 54 ⋅ 12 + 120 ⋅ 1 + 64 = 14 + 54 + 120 + 64 = 0,

s2 = s(21) = s(2) = 14 ⋅ 23 + 54 ⋅ 22 + 120 ⋅ 2 + 64 = 112 + 216 + 240 + 64 = 24,

s3 = s(22) = s(4) = 14 ⋅ 43 + 54 ⋅ 42 + 120 ⋅ 4 + 64 = 167 + 71 + 253 + 64 = 93 and

s4 = s(23) = s(8) = 14 ⋅ 83 + 54 ⋅ 82 + 120 ⋅ 8 + 64 = 81 + 1 + 231 + 64 = 247.

Note that the syndromes are the same as those in Example 3. So the system (4) is the same as in (5), and
so is its solution. Hence, the error locator polynomial is

13
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Λ(x) = 128x2
+ 24x + 1 = (1 + 23x)(1 + 24x).

Thus, the errors are located at the positions k1 = 3 and k2 = 4.
System (3) is also the same as in Example 3; thus, the error values are Y1 = 1 and Y2 = 1.
The error polynomial is e(x) = x4 + x3 and the decoding algorithm proposes that the associated polynomial
is

c(x) = s(x) + e(x) = (x4
+ x3

) + 14x3
+ 54x2

+ 120x + 64 = x4
+ 15x3

+ 54x2
+ 120x + 64.

3.2 Berlekamp-Massey Algorithm

Recall the system of equations

Λvsk−v +Λv−1sk−v+1 + . . . +Λ1sk−1 = −sk for v < k ≤ 2t,

where the error locator polynomial is

Λ(x) = Λvx
v
+Λv−1xv−1

+ . . . +Λ1x +Λ0

with Λ0 = 1. We want to determine a polynomial Λ(x) of minimal degree v that satisfies all the required
syndrome relations. In particular,

Λvsk−v +Λv−1sk−v+1 + . . . +Λ1sk−1 +Λ0sk = 0 for v < k ≤ 2t.

Given syndromes s1, s2, . . . , s2t, the Berlekamp-Massey algorithm recursively defines field elements d(k), also
called discrepancies, polynomials Λ(k)(x) of degree v(k), and polynomials B(k)(x) for k = 1,2, . . . ,2t.

The algorithm goes as follows:

1. Set v(0) = 0, Λ(0)(x) = 1 and B(0)(x) = 1.

Repeat Steps 2 and 3 for k = 1, . . . ,2t.

2. Set

d(k) =
m

∑
i=0

cisk−i = c0sk + c1sk−1 + . . . + cm−1sk−m+1 + cmsk−m,

where m = v(k−1) and Λ(k−1)(x) = ∑m
i=0 cix

i have been defined in previous steps of the algorithm.

3. Dependent on v(k−1) and d(k) proceed as follows:

� If d(k) = 0, set

v(k) = v(k−1),

Λ(k)(x) = Λ(k−1)(x),

B(k)(x) = xB(k−1)(x).

� If d(k) ≠ 0 and 2v(k−1) ≤ k − 1, set

v(k) = k − v(k−1),

Λ(k)(x) = Λ(k−1)(x) − d(k)xB(k−1)(x),

B(k)(x) = (d(k))−1Λ(k−1)(x).

� If d(k) ≠ 0 and 2v(k−1) > k − 1, set

v(k) = v(k−1),

Λ(k)(x) = Λ(k−1)(x) − d(k)xB(k−1)(x),

B(k)(x) = xB(k−1)(x).
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4. End with Λ(x) = Λ(2t)(x) and v = v(2t).

Now we will repeat the examples provided in the previous section, this time finding the error locator poly-
nomial using the Berlekamp-Massey algorithm.

3.2.1 Example 1

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(0,0,0,0,0,0,1,1), so that (0,0,0,0,0,0,1,1) was received.
The polynomial associated to the message received is

s(x) = x + 1.

The syndromes are

s1 = s(20) = s(1) = 0,

s2 = s(21) = s(2) = 3,

s3 = s(22) = s(4) = 5 and

s4 = s(23) = s(8) = 9.

We start by setting v(0) = 0, Λ(0)(x) = 1 and B(0)(x) = 1. Note that the number of syndromes is 2t = 4, so
that we will iterate over k = 1,2,3,4.
For k = 1, we have m = v(0) = 0 and

d(1) =
0

∑
i=0

cis1−i = c0s1 = 1 ⋅ 0 = 0.

Since d(1) = 0, we set

v(1) = v(0) = 0,

Λ(1)(x) = Λ(0)(x) = 1,

B(1)(x) = xB(0)(x) = x.

For k = 2, we have m = v(1) = 0 and

d(2) =
0

∑
i=0

cis2−i = c0s2 = 1 ⋅ 3 = 3.

Since d(2) ≠ 0 and 2v(1) = 0 ≤ 1 = k − 1, we set

v(2) = 2 − v(1) = 2,

Λ(2)(x) = Λ(1)(x) − d(2)xB(1)(x) = 1 − 3x ⋅ x = 1 + 3x2,

B(2)(x) = (d(2))−1Λ(1)(x) = 3−1 ⋅ 1 = 244.

For k = 3, we have

d(3) =
2

∑
i=0

cis3−i = c0s3 + c1s2 + c2s1 = 1 ⋅ 5 + 0 ⋅ 3 + 3 ⋅ 0 = 5.

Since d(3) ≠ 0 and 2v(2) = 4 > 2 = k − 1, we set

v(3) = v(2) = 2,
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Λ(3)(x) = Λ(2)(x) − d(3)xB(2)(x) = (1 + 3x2
) − 5x ⋅ 244 = (1 + 3x2

) − 3x = 1 + 3x + 3x2,

B(3)(x) = xB(2)(x) = 244x.

For k = 4, set

d(4) =
2

∑
i=0

cis4−i = c0s4 + c1s3 + c2s2 = 1 ⋅ 9 + 3 ⋅ 5 + 3 ⋅ 3 = 3.

Since d(4) ≠ 0 and 2v(3) = 4 > 3 = k − 1, we set

v(4) = v(3) = 2,

Λ(4)(x) = Λ(3)(x) − d(4)xB(3)(x) = (1 + 3x + 3x2
) − 3x ⋅ 244x = (1 + 3x + 3x2

) − x2
= 1 + 3x + 2x2,

B(4)(x) = xB(3)(x) = 244x2.

The algorithm ends and provides the desired error locator polynomial

Λ(x) = Λ(4)(x) = 1 + 3x + 2x2.

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler
Algorithm.

3.2.2 Example 2

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(1,1,0,0,0,0,0,0), so that (1,1,0,0,0,0,0,0) was received.
The polynomial associated to the message received is

s(x) = x7
+ x6.

The syndromes are

s1 = s(20) = s(1) = 0,

s2 = s(21) = s(2) = 192,

s3 = s(22) = s(4) = 222 and

s4 = s(23) = s(8) = 88.

We start by setting v(0) = 0, Λ(0)(x) = 1 and B(0)(x) = 1. Note that the number of syndromes is 2t = 4, so
that we will iterate over k = 1,2,3,4.
For k = 1, we have m = v(0) = 0 and

d(1) =
0

∑
i=0

cis1−i = c0s1 = 1 ⋅ 0 = 0.

Since d(1) = 0, we set

v(1) = v(0) = 0,

Λ(1)(x) = Λ(0)(x) = 1,

B(1)(x) = xB(0)(x) = x.

For k = 2, we have m = v(1) = 0 and

d(2) =
0

∑
i=0

cis2−i = c0s2 = 1 ⋅ 192 = 192.
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Since d(2) ≠ 0 and 2v(1) = 0 ≤ 1 = k − 1, we set

v(2) = 2 − v(1) = 2,

Λ(2)(x) = Λ(1)(x) − d(2)xB(1)(x) = 1 − 192x ⋅ x = 1 + 192x2,

B(2)(x) = (d(2))−1Λ(1)(x) = 192−1 ⋅ 1 = 18.

For k = 3, we have

d(3) =
2

∑
i=0

cis3−i = c0s3 + c1s2 + c2s1 = 1 ⋅ 222 + 0 ⋅ 192 + 192 ⋅ 0 = 222.

Since d(3) ≠ 0 and 2v(2) = 4 > 2 = k − 1, we set

v(3) = v(2) = 2,

Λ(3)(x) = Λ(2)(x) − d(3)xB(2)(x) = (1 + 192x2
) − 222x ⋅ 18 = (1 + 192x2

) − 192x = 1 + 192x + 192x2,

B(3)(x) = xB(2)(x) = 18x.

For k = 4, set

d(4) =
2

∑
i=0

cis4−i = c0s4 + c1s3 + c2s2 = 1 ⋅ 88 + 192 ⋅ 222 + 192 ⋅ 192 = 48.

Since d(4) ≠ 0 and 2v(3) = 4 > 3 = k − 1, we set

v(4) = v(3) = 2,

Λ(4)(x) = Λ(3)(x) − d(4)xB(3)(x) = (1 + 192x + 192x2
) − 48x ⋅ 18x = (1 + 192x + 192x2

) − 71x2
= 1 + 192x + 135x2,

B(4)(x) = xB(3)(x) = 18x2.

The algorithm ends and provides the desired error locator polynomial

Λ(x) = Λ(4)(x) = 1 + 192x + 135x2.

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler
Algorithm.

3.2.3 Example 3

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(0,0,0,1,1,0,0,0), so that (0,0,0,1,1,0,0,0) was received.
The polynomial associated to the received message is

s(x) = x4
+ x3

The syndromes are

s1 = s(20) = s(1) = 0,

s2 = s(21) = s(2) = 24,

s3 = s(22) = s(4) = 93 and

s4 = s(23) = s(8) = 247.

We start by setting v(0) = 0, Λ(0)(x) = 1 and B(0)(x) = 1. Note that the number of syndromes is 2t = 4, so
that we will iterate over k = 1,2,3,4.
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For k = 1, we have m = v(0) = 0 and

d(1) =
0

∑
i=0

cis1−i = c0s1 = 1 ⋅ 0 = 0.

Since d(1) = 0, we set

v(1) = v(0) = 0,

Λ(1)(x) = Λ(0)(x) = 1,

B(1)(x) = xB(0)(x) = x.

For k = 2, we have m = v(1) = 0 and

d(2) =
0

∑
i=0

cis2−i = c0s2 = 1 ⋅ 24 = 24.

Since d(2) ≠ 0 and 2v(1) = 0 ≤ 1 = k − 1, we set

v(2) = 2 − v(1) = 2,

Λ(2)(x) = Λ(1)(x) − d(2)xB(1)(x) = 1 − 24x ⋅ x = 1 + 24x2,

B(2)(x) = (d(2))−1Λ(1)(x) = 24−1 ⋅ 1 = 144.

For k = 3, we have

d(3) =
2

∑
i=0

cis3−i = c0s3 + c1s2 + c2s1 = 1 ⋅ 93 + 0 ⋅ 24 + 24 ⋅ 0 = 93.

Since d(3) ≠ 0 and 2v(2) = 4 > 2 = k − 1, we set

v(3) = v(2) = 2,

Λ(3)(x) = Λ(2)(x) − d(3)xB(2)(x) = (1 + 24x2
) − 93x ⋅ 144 = (1 + 24x2

) − 24x = 1 + 24x + 24x2,

B(3)(x) = xB(2)(x) = 144x.

For k = 4, set

d(4) =
2

∑
i=0

cis4−i = c0s4 + c1s3 + c2s2 = 1 ⋅ 247 + 24 ⋅ 93 + 24 ⋅ 24 = 193.

Since d(4) ≠ 0 and 2v(3) = 4 > 3 = k − 1, we set

v(4) = v(3) = 2,

Λ(4)(x) = Λ(3)(x) − d(4)xB(3)(x) = (1 + 24x + 24x2
) − 193x ⋅ 144x = (1 + 24x + 24x2

) − 152x2
= 1 + 24x + 128x2,

B(4)(x) = xB(3)(x) = 144x2.

The algorithm ends and provides the desired error locator polynomial

Λ(x) = Λ(4)(x) = 1 + 24x + 128x2.

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler
Algorithm.
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3.2.4 Example 4

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error
vector (0,0,0,1,0,0,0,0), so that (0,0,0,0,15,54,120,64) was received.
The polynomial associated to the received message is

s(x) = 15x3
+ 54x2

+ 120x + 64

The syndromes are

s1 = s(20) = s(1) = 1,

s2 = s(21) = s(2) = 16,

s3 = s(22) = s(4) = 29 and

s4 = s(23) = s(8) = 205.

We start by setting v(0) = 0, Λ(0)(x) = 1 and B(0)(x) = 1. Note that the number of syndromes is 2t = 4, so
that we will iterate over k = 1,2,3,4.
For k = 1, we have m = v(0) = 0 and

d(1) =
0

∑
i=0

cis1−i = c0s1 = 1 ⋅ 1 = 1.

Since d(1) ≠ 0 and 2v(0) = 0 ≤ 0 = k − 1, we set

v(1) = 1 − v(0) = 1,

Λ(1)(x) = Λ(0)(x) − d(1)xB(0)(x) = 1 − 1x ⋅ 1 = 1 + x,

B(1)(x) = (d(1))−1Λ(0)(x) = 1−1 ⋅ 1 = 1.

For k = 2, we have m = v(1) = 1 and

d(2) =
1

∑
i=0

cis2−i = c0s2 + c1s1 = 1 ⋅ 16 + 1 ⋅ 1 = 17.

Since d(2) ≠ 0 and 2v(1) = 2 > 1 = k − 1, we set

v(2) = v(1) = 1,

Λ(2)(x) = Λ(1)(x) − d(2)xB(1)(x) = (1 + x) − 17x ⋅ 1 = (1 + x) − 17x = 1 + 16x,

B(2)(x) = xB(1)(x) = x.

For k = 3, we have

d(3) =
1

∑
i=0

cis3−i = c0s3 + c1s2 = 1 ⋅ 29 + 16 ⋅ 16 = 0.

Since d(3) = 0 and 2v(2) = 4 > 2 = k − 1, we set

v(3) = v(2) = 1,

Λ(3)(x) = Λ(2)(x) = 1 + 16x,

B(3)(x) = xB(2)(x) = x ⋅ x = x2.

For k = 4, set
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d(4) =
1

∑
i=0

cis4−i = c0s4 + c1s3 = 1 ⋅ 205 + 16 ⋅ 29 = 0.

Since d(4) = 0, we set

v(4) = v(3) = 1,

Λ(4)(x) = Λ(3)(x) = 1 + 16x,

B(4)(x) = xB(3)(x) = x ⋅ x2
= x3.

The algorithm ends and provides the desired error locator polynomial

Λ(x) = Λ(4)(x) = 1 + 16x.

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler
Algorithm.

3.2.5 Example 5

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error
vector (0,0,0,1,1,0,0,0), so that (0,0,0,0,14,54,120,64) was received.
The polynomial associated to the received message is

s(x) = 14x3
+ 54x2

+ 120x + 64

The syndromes are

s1 = s(20) = s(1) = 0,

s2 = s(21) = s(2) = 24,

s3 = s(22) = s(4) = 93 and

s4 = s(23) = s(8) = 247.

Since these are the same syndromes as in Example 3, the procedure for this algorithm will be identical.
Hence, the error locator polynomial is

Λ(x) = 128x2
+ 24x + 1.

4 Finding Roots of Polynomials

Recall that with both decoding algorithms, to find the error positions, we must find the roots of the error
locator polynomial, this is, solve the equation

Λ(x) =
v

∏
j=1

(1 −Xjx) = Λvx
v
+Λv−1xv−1

+ . . . +Λ1x +Λ0 = 0.

A method to solve this system is Chien Search.

4.1 Chien Search

If we are given a polynomial f(x) = a0+a1x+ . . .+atx
t with coefficients over the Galois field GF (256), Chien

search is an algorithm that helps us with finding the roots of this polynomial. It is faster than just going
through the list 0,1,2, . . . ,255 of all field elements with a simple trial-and-error approach.
It works as a consequence of the following two facts:
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� Any nonzero element in the Galois field GF (256) can be expressed as a power of 2.

� We can write f(2i+1) in terms of summands that appear in the evaluation of f(2i). More precisely,
call gj,i = aj(2

i)j , so that

f(2i) = g0,i + g1,i + . . . + gt,i.

We will obtain two properties of the gj,i:

gj,0 = aj(2
0
)
j
= aj ⋅ 1

j
= aj , and gj,i+1 = aj(2

i+1
)
j
= aj2

(i+1)j
= aj(2

i
)
j
⋅ 2j = gj,i ⋅ 2

j

This leads us to switch to a more efficient order of the operations, by following the steps of Chien search:

1. Create the table

i g0,i g1,i g2,i . . . gt,i f(2i)
0
1
2
⋮

255

2. Fill the i = 0 row of the table using the rule gj,0 = aj .

3. Fill the g0,i column of the table, using the rule g0,i+1 = g0,i ⋅ 2
0 = g0,i. This is, the second column is

identical to g0,0 = a0.

4. Fill the g1,i column of the table, using the rule g1,i+1 = g1,i ⋅ 2
1 = 2 ⋅ g1,i. This is, for each cell, multiply

its value by two to get the value in the cell immediately below.

5. Fill the g2,i column of the table, using the rule g2,i+1 = g2,i ⋅ 2
2 = 4 ⋅ g2,i. This is, for each cell, multiply

its value by four to get the value in the cell immediately below.

6. Continue filling the g0,i, g1,i, . . . , gt,i columns of the table in a similar way than the two previous steps.
The constant factor for the gj,i column is 2j , i.e., gj,i+1 = 2j ⋅ gj,i.

7. Fill the cells of the last column by adding up the g0,i, g1,i, . . . , gt,i columns.

8. Check which rows have a zero in the last column to determine the roots of the polynomial f(x).

4.1.1 Example 1

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(0,0,0,0,0,0,1,1), so that (0,0,0,0,0,0,1,1) was received.
The error locator polynomial is

Λ(x) = 2x2
+ 3x + 1.

Now, we fill the table as follows:

� In the row i = 0 we write the coefficients of Λ(x): 1, 3 and 2.

� Every value in the column g0,i is 1.

� The cells in the column g1,i are filled with twice the value above, so its values are 3, 6, 12, 24, 48, 96,
192, 157, and continue doubling until the row i = 254, where the value is 143.
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� The cells in the column g2,i are filled with four times the value above, so its values are 2, 8, 32, 128,
58, 232, 135, 38, and continue quadrupling until the row i = 254, where the value is 142.

� The last column Λ(x) has the sum of the values in the columns g0,i, g1,i and g2,i. In particular,

Λ(20) = 1 + 3 + 2 = 0 and Λ(2254) = 1 + 143 + 142 = 0
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i 2i g0,i g1,i g2,i Λ(2i)
0 1 1 3 2 0
1 2 1 6 8 15
2 4 1 12 32 45
3 8 1 24 128 153
4 16 1 48 58 11
5 32 1 96 232 137
6 64 1 192 135 70
7 128 1 157 38 186
8 29 1 39 152 190
9 58 1 78 90 21
10 116 1 156 117 232
11 232 1 37 201 237
12 205 1 74 3 72
13 135 1 148 12 153
14 19 1 53 48 4
15 38 1 106 192 171
16 76 1 212 39 242
17 152 1 181 156 40
18 45 1 119 74 60
19 90 1 238 53 218
20 180 1 193 212 20
21 117 1 159 119 233
22 234 1 35 193 227
23 201 1 70 35 100
24 143 1 140 140 1
25 3 1 5 10 14
26 6 1 10 40 35
27 12 1 20 160 181
28 24 1 40 186 147
29 48 1 80 210 131
30 96 1 160 111 206
31 192 1 93 161 253
32 157 1 186 190 5
33 39 1 105 194 170
34 78 1 210 47 252
35 156 1 185 188 4
36 37 1 111 202 164
37 74 1 222 15 208
38 148 1 161 60 156
39 53 1 95 240 174
40 106 1 190 231 88
41 212 1 97 187 219
42 181 1 194 214 21
43 119 1 153 127 231
44 238 1 47 225 207
45 193 1 94 163 252
46 159 1 188 182 11
47 35 1 101 226 134
48 70 1 202 175 100
49 140 1 137 134 14
50 5 1 15 34 44
51 10 1 30 136 151
52 20 1 60 26 39
53 40 1 120 104 17
54 80 1 240 189 76
55 160 1 253 206 50
56 93 1 231 31 249
57 186 1 211 124 174
58 105 1 187 237 87
59 210 1 107 147 249
60 185 1 214 118 161
61 111 1 177 197 117
62 222 1 127 51 77
63 161 1 254 204 51

i 2i g0,i g1,i g2,i Λ(2i)
64 95 1 225 23 247
65 190 1 223 92 130
66 97 1 163 109 207
67 194 1 91 169 243
68 153 1 182 158 41
69 47 1 113 66 50
70 94 1 226 21 246
71 188 1 217 84 140
72 101 1 175 77 227
73 202 1 67 41 107
74 137 1 134 164 35
75 15 1 17 170 186
76 30 1 34 146 177
77 60 1 68 114 55
78 120 1 136 213 92
79 240 1 13 115 127
80 253 1 26 209 202
81 231 1 52 99 86
82 211 1 104 145 248
83 187 1 208 126 175
84 107 1 189 229 89
85 214 1 103 179 213
86 177 1 206 246 57
87 127 1 129 255 127
88 254 1 31 219 197
89 225 1 62 75 116
90 223 1 124 49 76
91 163 1 248 196 61
92 91 1 237 55 219
93 182 1 199 220 26
94 113 1 147 87 197
95 226 1 59 65 123
96 217 1 118 25 110
97 175 1 236 100 137
98 67 1 197 141 73
99 134 1 151 14 152
100 17 1 51 56 10
101 34 1 102 224 135
102 68 1 204 167 106
103 136 1 133 166 34
104 13 1 23 162 180
105 26 1 46 178 157
106 52 1 92 242 175
107 104 1 184 239 86
108 208 1 109 155 247
109 189 1 218 86 141
110 103 1 169 69 237
111 206 1 79 9 71
112 129 1 158 36 187
113 31 1 33 144 176
114 62 1 66 122 57
115 124 1 132 245 112
116 248 1 21 243 231
117 237 1 42 235 192
118 199 1 84 139 222
119 147 1 168 22 191
120 59 1 77 88 20
121 118 1 154 125 230
122 236 1 41 233 193
123 197 1 82 131 208
124 151 1 164 54 147
125 51 1 85 216 140
126 102 1 170 71 236
127 204 1 73 1 73
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i 2i g0,i g1,i g2,i Λ(2i)
128 133 1 146 4 151
129 23 1 57 16 40
130 46 1 114 64 51
131 92 1 228 29 248
132 184 1 213 116 160
133 109 1 183 205 123
134 218 1 115 19 97
135 169 1 230 76 171
136 79 1 209 45 253
137 158 1 191 180 10
138 33 1 99 234 136
139 66 1 198 143 72
140 132 1 145 6 150
141 21 1 63 24 38
142 42 1 126 96 31
143 84 1 252 157 96
144 168 1 229 78 170
145 77 1 215 37 243
146 154 1 179 148 38
147 41 1 123 106 16
148 82 1 246 181 66
149 164 1 241 238 30
150 85 1 255 159 97
151 170 1 227 70 164
152 73 1 219 5 223
153 146 1 171 20 190
154 57 1 75 80 26
155 114 1 150 93 202
156 228 1 49 105 89
157 213 1 98 185 218
158 183 1 196 222 27
159 115 1 149 95 203
160 230 1 55 97 87
161 209 1 110 153 246
162 191 1 220 94 131
163 99 1 165 101 193
164 198 1 87 137 223
165 145 1 174 30 177
166 63 1 65 120 56
167 126 1 130 253 126
168 252 1 25 211 203
169 229 1 50 107 88
170 215 1 100 177 212
171 179 1 200 254 55
172 123 1 141 223 83
173 246 1 7 91 93
174 241 1 14 113 126
175 255 1 28 217 196
176 227 1 56 67 122
177 219 1 112 17 96
178 171 1 224 68 165
179 75 1 221 13 209
180 150 1 167 52 146
181 49 1 83 208 130
182 98 1 166 103 192
183 196 1 81 129 209
184 149 1 162 62 157
185 55 1 89 248 160
186 110 1 178 199 116
187 220 1 121 59 67
188 165 1 242 236 31
189 87 1 249 151 111
190 174 1 239 102 136
191 65 1 195 133 71

i 2i g0,i g1,i g2,i Λ(2i)
192 130 1 155 46 180
193 25 1 43 184 146
194 50 1 86 218 141
195 100 1 172 79 226
196 200 1 69 33 101
197 141 1 138 132 15
198 7 1 9 42 34
199 14 1 18 168 187
200 28 1 36 154 191
201 56 1 72 82 27
202 112 1 144 85 196
203 224 1 61 73 117
204 221 1 122 57 66
205 167 1 244 228 17
206 83 1 245 183 67
207 166 1 247 230 16
208 81 1 243 191 77
209 162 1 251 198 60
210 89 1 235 63 213
211 178 1 203 252 54
212 121 1 139 215 93
213 242 1 11 123 113
214 249 1 22 241 230
215 239 1 44 227 206
216 195 1 88 171 242
217 155 1 176 150 39
218 43 1 125 98 30
219 86 1 250 149 110
220 172 1 233 110 134
221 69 1 207 165 107
222 138 1 131 174 44
223 9 1 27 130 152
224 18 1 54 50 5
225 36 1 108 200 165
226 72 1 216 7 222
227 144 1 173 28 176
228 61 1 71 112 54
229 122 1 142 221 82
230 244 1 1 83 83
231 245 1 2 81 82
232 247 1 4 89 92
233 243 1 8 121 112
234 251 1 16 249 232
235 235 1 32 195 226
236 203 1 64 43 106
237 139 1 128 172 45
238 11 1 29 138 150
239 22 1 58 18 41
240 44 1 116 72 61
241 88 1 232 61 212
242 176 1 205 244 56
243 125 1 135 247 113
244 250 1 19 251 233
245 233 1 38 203 236
246 207 1 76 11 70
247 131 1 152 44 181
248 27 1 45 176 156
249 54 1 90 250 161
250 108 1 180 207 122
251 216 1 117 27 111
252 173 1 234 108 135
253 71 1 201 173 101
254 142 1 143 142 0
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We only have two roots of Λ(x): 1 = 20 = 1−1 and 142 = 2254 = 2−1.
Thus, the error positions are log2(1) = log2(2

0) = 0 and log2(2) = log2(2
1) = 1.

Shortcut: Recall that Λ(x) = 2x2 +3x+1 and note that the binary representation of 3 is (0,0,0,0,0,0,1,1).
This suggests that the error positions are 0 and 1, which is equivalent to the factorization

Λ(x) = (1 + 20x)(1 + 21x).

To confirm this, note that the sum and product of 20 = 1 and 21 = 2 are as follows:

Sum:

0 0 0 0 0 0 1 0 2
+ 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 3

This is, the sum 2 + 1 is Λ1 = 3.

Product:

2 ⋅ 1 = 2, which is Λ2.

Note that checking all the elements of GF (256) for roots consumes a lot of operations, even if we use Chien
search. The following key observations help with finding the error positions faster.

Observation 1: Recall that the error locator polynomial helps us with finding the error positions; so we
only have 8 possible roots of Λ(x):

(20)−1 = 20, (21)−1 = 2254, (22)−1 = 2253, (23)−1 = 2252, (24)−1 = 2251,

(25)−1 = 2250, (26)−1 = 2249, and (27)−1 = 2248.

Observation 2: Consider a polynomial of degree 2, f(x) = (1+ax)(1+bx) = 1+(a+b)x+abx2, over GF (256).
The roots of f are a−1 and b−1.
Now introduce the reciprocal polynomial f∗(x) as follows:

f∗(x) = ab + (a + b)x + x2
= (a + x)(b + x)

That is, we reverse the order of the coefficients. Since a+a = 0 and b+ b = 0, we have that the roots of f∗(x)
are a = (a−1)−1 and b = (b−1)−1.
In conclusion, reversing the order of the coefficients provokes an inversion of the roots. For instance, in
Example 1 we found that 2x2+3x+1 has roots 1 and 142. Then, x2+3x+2 has roots 1−1 = 1 and 142−1 = 2.

Observation 3: From Observation 1, the possible roots for Λ∗(x) are:

20, 21, 22, 23, 24, 25, 26, and 27.

These observations motivate the following procedure for finding the error positions.

� Find the reciprocal error locator polynomial Λ∗(x).

� Apply Chien search to Λ∗(x), but only complete the table for the rows i = 0,1,2,3,4,5,6,7.

Note: The conclusion of Observation 2 also holds for polynomials of degree 1, f(x) = 1 + ax, with the
reciprocal polynomial f∗(x) = a + x; so we can proceed by the method above in the case where the degree of
the error locator polynomial is 1.

The Chien search for reciprocal error locator polynomial Λ∗(x) = x2 + 3x + 2 produces the following chart:
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i 2i g0,i g1,i g2,i Λ∗(2i)
0 1 2 3 1 0
1 2 2 6 4 0
2 4 2 12 16 30
3 8 2 24 64 90
4 16 2 48 29 47
5 32 2 96 116 22
6 64 2 192 205 15
7 128 2 157 19 140

This confirms the errors in the 0th and 1st positions.

4.1.2 Example 2

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(1,1,0,0,0,0,0,0), so that (1,1,0,0,0,0,0,0) was received.
The error locator polynomial is

Λ(x) = 135x2
+ 192x + 1.

The reciprocal error locator polynomial Λ∗(x) is

Λ∗
(x) = x2

+ 192x + 135.

The chart of the left is generated following Chien search for the error locator polynomial Λ(x)

� In the row i = 0 we write the coefficients of Λ(x): 1, 192 and 135.

� In the row i = 248 goes 1, 192 ⋅ 2248 = 192 ⋅ 27 = 143 and 135 ⋅ 4248 = 135 ⋅ 88 = 142.

� Every value in the column g0,i is 1.

� Fill the missing in the column g1,i with twice the value above, so complete with the values 3, 6, 12, 24,
48 and 96.

� Fill the missing in the column g2,i with four times the value above, so complete with the values 2, 8,
32, 128, 58 and 232.

� The last column Λ(2i) has the sum of the values in the columns g0,i, g1,i and g2,i. In particular,

Λ(2248) = 1 + 143 + 142 = 0 and Λ(2249) = 1 + 3 + 2 = 0.

The table of the right is filled by Chien search for the reciprocal error locator polynomial Λ∗(x)

� In the row i = 0 we write the coefficients of Λ∗(x): 135, 192 and 1.

� Every value in the column g0,i is 135.

� The cells in the column g1,i are filled with twice the value above, so its values are 192, 157, 39, 78, 156,
37, 74 and 148.

� The cells in the column g2,i are filled with four times the value above, so its values are 1, 4, 16, 64, 29,
116, 205 and 19.

� The last column Λ∗(2i) has the sum of the values in the columns g0,i, g1,i and g2,i. In particular,

Λ∗
(26) = 135 + 74 + 205 = 0 and Λ∗

(27) = 135 + 148 + 19 = 0.
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i 2i g0,i g1,i g2,i Λ(2i)
0 1 1 192 135 70

248 27 1 143 142 0
249 54 1 3 2 0
250 108 1 6 8 15
251 216 1 12 32 45
252 173 1 24 128 153
253 71 1 48 58 11
254 142 1 96 232 137

i 2i g0,i g1,i g2,i Λ∗(2i)
0 1 135 192 1 70
1 2 135 157 4 30
2 4 135 39 16 176
3 8 135 78 64 137
4 16 135 156 29 6
5 32 135 37 116 178
6 64 135 74 205 0
7 128 135 148 19 0

There are two roots of Λ(x): 54 = 64−1 and 27 = 128−1; and two roots of Λ∗(x), which are 26 = 64 and
27 = 128.
Thus, the error positions are log2(64) = log2(2

6) = 6 and log2(128) = log2(2
7) = 7.

Shortcut: Recall that Λ(x) = 135x2+192x+1 and note that the binary representation of 192 is (1,1,0,0,0,0,0,0).
This suggests that the error positions are 6 and 7, which is equivalent to the factorization

Λ(x) = (1 + 26x)(1 + 27x).

To confirm this, note that the sum and product of 26 = 64 and 27 = 128 are as follows:

Sum:

1 0 0 0 0 0 0 0 128
+ 0 1 0 0 0 0 0 0 64

1 1 0 0 0 0 0 0 192

This is, the sum 128 + 64 is Λ1 = 192.

Product:

128 ⋅ 64 = 128 ⋅ 26

= (1,0,0,0,0,0,0,0) ⋅ 26

= (0,0,0,1,1,1,0,1) ⋅ 25 128 ⋅ 2 = 29

= (0,0,1,1,1,0,1,0) ⋅ 24 29 ⋅ 2 = 58

= (0,1,1,1,0,1,0,0) ⋅ 23 58 ⋅ 2 = 116

= (1,1,1,0,1,0,0,0) ⋅ 22 116 ⋅ 2 = 232

= (1,1,0,0,1,1,0,1) ⋅ 2 232 ⋅ 2 = 205

= (1,0,0,0,0,1,1,1) 205 ⋅ 2 = 135

= 135 = Λ2

4.1.3 Example 3

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector
(0,0,0,1,1,0,0,0), so that (0,0,0,1,1,0,0,0) was received.
The error locator polynomial is

Λ(x) = 128x2
+ 24x + 1

The reciprocal error locator polynomial Λ∗(x) is

Λ∗
(x) = x2

+ 24x + 128.

The chart of the left is generated following Chien search for the error locator polynomial Λ(x)
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� In the row i = 0 we write the coefficients of Λ(x): 1, 24 and 128.

� In the row i = 248 goes 1, 24 ⋅ 2248 = 24 ⋅ 27 = 117 and 128 ⋅ 4248 = 128 ⋅ 88 = 27.

� Every value in the column g0,i is 1.

� Fill the missing in the column g1,i with twice the value above, so complete with the values 234, 201,
143, 3, 6 and 12.

� Fill the missing in the column g2,i with four times the value above, so complete with the values 108,
173, 142, 2, 8 and 32.

� The last column Λ(2i) has the sum of the values in the columns g0,i, g1,i and g2,i. In particular,

Λ(2251) = 1 + 143 + 142 = 0 and Λ(2252) = 1 + 3 + 2 = 0.

The table of the right is filled by Chien search for the reciprocal error locator polynomial Λ∗(x)

� In the row i = 0 we write the coefficients of Λ∗(x): 128, 24 and 1.

� Every value in the column g0,i is 128.

� The cells in the column g1,i are filled with twice the value above, so its values are 24, 48, 96, 192, 157,
39, 78 and 156.

� The cells in the column g2,i are filled with four times the value above, so its values are 1, 4, 16, 64, 29,
116, 205 and 19.

� The last column Λ∗(2i) has the sum of the values in the columns g0,i, g1,i and g2,i. In particular,

Λ∗
(23) = 128 + 192 + 64 = 0 and Λ∗

(24) = 128 + 157 + 29 = 0.

i 2i g0,i g1,i g2,i Λ(2i)
0 1 1 24 128 153

248 27 1 117 27 111
249 54 1 234 108 135
250 108 1 201 173 101
251 216 1 143 142 0
252 173 1 3 2 0
253 71 1 6 8 15
254 142 1 12 32 45

i 2i g0,i g1,i g2,i Λ∗(2i)
0 1 128 24 1 153
1 2 128 48 4 180
2 4 128 96 16 240
3 8 128 192 64 0
4 16 128 157 29 0
5 32 128 39 116 211
6 64 128 78 205 3
7 128 128 156 19 15

There are two roots of Λ(x): 173 = 8−1 and 216 = 16−1; and two roots of Λ∗(x), which are 23 = 8 and 24 = 16.
Thus, the error positions are log2(8) = log2(2

3) = 3 and log2(16) = log2(2
4) = 4.

Shortcut: Recall that Λ(x) = 128x2+24x+1 and note that the binary representation of 24 is (0,0,0,1,1,0,0,0).
This suggests that the error positions are 3 and 4, which is equivalent to the factorization

Λ(x) = (1 + 23x)(1 + 24x).

To confirm this, note that the sum and product of 23 = 8 and 24 = 16 are as follows:

Sum:

0 0 0 1 0 0 0 0 16
+ 0 0 0 0 1 0 0 0 8

0 0 0 1 1 0 0 0 24
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This is, the sum 16 + 8 is Λ1 = 24.

Product:

16 ⋅ 8 = 16 ⋅ 23

= (0,0,0,1,0,0,0,0) ⋅ 23

= (0,0,1,0,0,0,0,0) ⋅ 22 16 ⋅ 2 = 32

= (0,1,0,0,0,0,0,0) ⋅ 2 32 ⋅ 2 = 64

= (1,0,0,0,0,0,0,0) 64 ⋅ 2 = 128

= 128 = Λ2

4.1.4 Example 4

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error
vector (0,0,0,1,0,0,0,0), so that (0,0,0,0,15,54,120,64) was received.
The error locator polynomial is

Λ(x) = 16x + 1.

The reciprocal error locator polynomial Λ∗(x) is

Λ∗
(x) = x + 16.

The chart of the left is generated following Chien search for the error locator polynomial Λ(x)

� In the row i = 0 we write the coefficients of Λ(x): 1 and 16.

� In the row i = 248 goes 1, and 16 ⋅ 2248 = 16 ⋅ 27 = 173.

� Every value in the column g0,i is 1.

� Fill the missing in the column g1,i with twice the value above, so complete with the values 71, 142, 1,
2, 4 and 8.

� The last column Λ(2i) has the sum of the values in the columns g0,i and g1,i. In particular,

Λ(2251) = 1 + 1 = 0.

The table of the right is filled by Chien search for the reciprocal error locator polynomial Λ∗(x)

� In the row i = 0 we write the coefficients of Λ∗(x): 16 and 1.

� Every value in the column g0,i is 16.

� The cells in the column g1,i are filled with twice the value above, so its values are 1, 2, 4, 8, 16, 32, 64
and 128.

� The last column Λ∗(2i) has the sum of the values in the columns g0,i and g1,i. In particular,

Λ∗
(24) = 16 + 16 = 0.
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i 2i g0,i g1,i Λ(2i)
0 1 1 16 17

248 27 1 173 172
249 54 1 71 70
250 108 1 142 143
251 216 1 1 0
252 173 1 2 3
253 71 1 4 5
254 142 1 8 9

i 2i g0,i g1,i Λ∗(2i)
0 1 16 1 17
1 2 16 2 18
2 4 16 4 20
3 8 16 8 24
4 16 16 16 0
5 32 16 32 48
6 64 16 64 70
7 128 16 128 144

There is only one root of Λ(x): 216 = 16−1; and only one root of Λ∗(x), which is 24 = 16.
Thus, the error position is log2(16) = log2(2

4) = 4.

Advice: To find the error positions faster, use Chien search for the reciprocal error locator polynomial. With
this strategy, you can predict the values in the column g2,i, since Λ0 = 1 for any error locator polynomial; so
you don’t need to calculate the values in that column.

5 Finding Error Values

Recall that the error locator polynomial is

Λ(x) =
v

∏
j=1

(1 −Xjx) = Λvx
v
+Λv−1xv−1

+ . . . +Λ1x +Λ0 = 0.

The process of finding the error polynomial e(x) requires finding the roots of Λ(x) to locate the positions of
the errors. Then, we must find the coefficients of e(x) in the found positions. A suitable method is provided
by the Forney Algorithm.

Remark: Recall that we have e(x) = ∑
v
j=1 ekjx

kj with kj = log2(Xj), see Section 3.1.

5.1 Forney Algorithm

For this algorithm, we must introduce some polynomials.

The partial syndromes polynomial ∶

S(x) = s1 + s2x + s3x
2
+ . . . + s2tx

2t−1

The formal derivative of Λ(x) ∶

Λ′
(x) =

∑i odd Λix
i

x
= Λ1 +Λ3x

2
+Λ5x

4 . . .

Caution: Our formula for the derivative applies to GF (256) and differs from the one used in a Basic Calculus
course!

The error evaluator polynomial:

Ω(x) = S(x)Λ(x) mod x2t,

where mod x2t means that any power of x higher or equal than 2t can be replaced by a zero.
Then the error values are:

ekj =
Xj ⋅Ω(X−1

j )

Λ′(X−1
j )

(6)
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5.1.1 Example 1

Last section, we found that there are errors in the 0th and 1st positions. Now we will find the error values.
We have t = 2 and error locator polynomial Λ(x) = 2x2 + 3x + 1 = (1 + 2x)(1 + x).
The syndromes are

s1 = 0, s2 = 3, s3 = 5, and s4 = 9.

The partial syndromes polynomial is:

S(x) = 3x + 5x2
+ 9x3

The formal derivative is:

Λ′
(x) = (2x2

+ 3x + 1)
′
=

3x

x
= 3

The error evaluator polynomial is:

Ω(x) = (3x + 5x2
+ 9x3

)(2x2
+ 3x + 1) mod x4

= (6x3
+ 10x4

+ 18x5
) + (5x2

+ 15x3
+ 27x4

) + (3x + 5x2
+ 9x3

) mod x4

= 18x5
+ (10 + 27)x4

+ (6 + 15 + 9)x3
+ (5 + 5)x2

+ 3x mod x4

= 18x5
+ 17x4

+ 3x mod x4

= 3x

To obtain the error values, we use formula (6) with X1 = 1 and X2 = 2.
For X1 = 1, we have X−1

1 = 1; so,

ek1 =
X1 ⋅Ω(X−1

1 )

Λ′(X−1
1 )

=
1 ⋅Ω(1)

Λ′(1)
=

1 ⋅ (3 ⋅ 1)

3
=

3

3
= 1.

For X2 = 2, we have X−1
2 = 142; so,

ek2 =
X1 ⋅Ω(X−1

1 )

Λ′(X−1
1 )

=
2 ⋅Ω(142)

Λ′(142)
=

2 ⋅ (3 ⋅ 142)

3
=

3

3
= 1.

Thus, the error polynomial is e(x) = x + 1.

5.1.2 Example 2

Last section, we found that there are errors in the 6th and 7th positions. Now we will find the error values.
We have t = 2 and error locator polynomial Λ(x) = 135x2 + 192x + 1 = (1 + 64x)(1 + 128x).
The syndromes are

s1 = 0, s2 = 192, s3 = 222, and s4 = 88.

The partial syndromes polynomial is:

S(x) = 192x + 222x2
+ 88x3

The formal derivative is:

Λ′
(x) = (135x2

+ 192x + 1)
′
=

192x

x
= 192

The error evaluator polynomial is:

Ω(x) = (192x + 222x2
+ 88x3

)(135x2
+ 192x + 1) mod x4
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= (238x3
+ 15x4

+ 142x5
) + (222x2

+ 182x3
+ 152x4

) + (192x + 222x2
+ 88x3

) mod x4

= 142x5
+ (15 + 152)x4

+ (238 + 182 + 88)x3
+ (222 + 222)x2

+ 192x mod x4

= 142x5
+ 151x4

+ 142x mod x4

= 192x

To obtain the error values, we use formula (6) with X1 = 64 and X2 = 128.
For X1 = 64, we have X−1

1 = 54; so,

ek1 =
X1 ⋅Ω(X−1

1 )

Λ′(X−1
1 )

=
64 ⋅Ω(54)

Λ′(54)
=

64 ⋅ (192 ⋅ 54)

192
=

192

192
= 1.

For X2 = 128, we have X−1
2 = 27; so,

ek2 =
X1 ⋅Ω(X−1

1 )

Λ′(X−1
1 )

=
128 ⋅Ω(27)

Λ′(27)
=

128 ⋅ (192 ⋅ 27)

192
=

192

192
= 1.

Thus, the error polynomial is e(x) = x7 + x6.

5.1.3 Example 3

Last section, we found that there are errors in the 3rd and 4th positions. Now we will find the error values.
We have t = 2 and error locator polynomial Λ(x) = 128x2 + 24x + 1 = (1 + 16x)(1 + 8x).
The syndromes are

s1 = 0, s2 = 24, s3 = 93, and s4 = 247.

The partial syndromes polynomial is:

S(x) = 24x + 93x2
+ 247x3

The formal derivative is:

Λ′
(x) = (128x2

+ 24x + 1)
′
=

24x

x
= 24

The error evaluator polynomial is:

Ω(x) = (24x + 93x2
+ 247x3

)(128x2
+ 24x + 1) mod x4

= (156x3
+ 161x4

+ 22x5
) + (93x2

+ 107x3
+ 32x4

) + (24x + 93x2
+ 247x3

) mod x4

= 22x5
+ (161 + 32)x4

+ (156 + 107 + 247)x3
+ (93 + 93)x2

+ 24x mod x4

= 22x5
+ 129x4

+ 24x mod x4

= 24x

To obtain the error values, we use formula (6) with X1 = 8 and X2 = 16.
For X1 = 8, we have X−1

1 = 173; so,

ek1 =
X1 ⋅Ω(X−1

1 )

Λ′(X−1
1 )

=
8 ⋅Ω(173)

Λ′(173)
=

8 ⋅ (24 ⋅ 173)

24
=

24

24
= 1.

For X2 = 16, we have X−1
2 = 216; so,

ek2 =
X1 ⋅Ω(X−1

1 )

Λ′(X−1
1 )

=
16 ⋅Ω(216)

Λ′(216)
=

16 ⋅ (24 ⋅ 216)

24
=

24

24
= 1.

Thus, the error polynomial is e(x) = x4 + x3.
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5.1.4 Example 4

Last section, we found that there is an error in the 4th position. Now we will find the error value.
We have t = 2 and error locator polynomial Λ(x) = 1 + 16x.
The syndromes are

s1 = 1, s2 = 16, s3 = 29, and s4 = 205.

The partial syndromes polynomial is:

S(x) = 1 + 16x + 29x2
+ 205x3

The formal derivative is:

Λ′
(x) = (16x + 1)

′
=

16x

x
= 16

The error evaluator polynomial is:

Ω(x) = (1 + 16x + 29x2
+ 205x3

)(1 + 16x) mod x4

= (1 + 16x + 29x2
+ 205x3

) + (16x + 29x2
+ 205x3

+ 76x4
) mod x4

= 76x4
+ (205 + 205)x3

+ (29 + 29)x2
+ (16 + 16)x + 1 mod x4

= 76x4
+ 1 mod x4

= 1

To obtain the error value, we use formula (6) with X1 = 16. We have X−1
1 = 216; so,

ek1 =
X1 ⋅Ω(X−1

1 )

Λ′(X−1
1 )

=
16 ⋅Ω(216)

Λ′(216)
=

16 ⋅ 1

16
=

16

16
= 1.

Thus, the error polynomial is e(x) = x4.
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