Guide for Reed Solomon Codes

July 15, 2021

1 Galois Fields

A field is a set with two special elements (0 and 1) where we can add, subtract, multiply and divide any two elements, except for division by zero.

Example : \mathbb{R} (the real numbers) and \mathbb{C} (the complex numbers) are fields.

The previous examples have infinitely many elements. There are also fields with finitely many elements; they are called **Galois fields** or **finite fields**.

Given a Galois field, there exists a prime number p such that for any element a of the field holds

$$\underbrace{a + \dots + a}_{p \text{ times}} = 0$$

This prime p is uniquely determined and called the **characteristic** of the field. Moreover, there exists a positive integer n such that the field has p^n elements. This motivates us to denote the Galois field as $GF(p^n)$.

Example : GF(256) (also written as $GF(2^8)$) is a Galois field with 256 elements.

1.1 Understanding GF(256)

1.1.1 Decimal, Binary and Polynomial Representation

The elements in GF(256) can be expressed as numbers in **decimal representation**, so that GF(256) contains the elements $0, 1, 2, \ldots, 254, 255$. However, this representation is not helpful to make operations by hand; for that it is more useful to use the binary representation.

Any number a from 0 to 255 can be uniquely written as a linear combination of $\{2^0, 2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7\}$ with coefficients a_i in $\{0, 1\}$. That is,

$$a = a_7 2^7 + a_6 2^6 + a_5 2^5 + a_4 2^4 + a_3 2^3 + a_2 2^2 + a_1 2^1 + a_0 2^0.$$
⁽¹⁾

The binary representation of the decimal a is the vector $(a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$.

Note: We will frequently specify a particular coordinate as the 0th entry, 1st entry, etc. according to the following diagram.

Closely related to the **binary representation** is the **polynomial representation** of a as a polynomial with binary coefficients,

$$a(x) = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x^1 + a_0$$

Example 1: The element 47 can be written as

 $47 = 0 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0.$

The binary representation of 47 is (0,0,1,0,1,1,1,1).

Example 2: The element 220 can be written as

$$220 = 1 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0$$

The binary representation of 220 is (1, 1, 0, 1, 1, 1, 0, 0).

Example 3: The element 183 can be written as

$$183 = 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0.$$

The binary representation of 183 is (1,0,1,1,0,1,1,1).

Conversely, if we have an element written in binary representation $(a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$, to find the decimal representation we must evaluate the sum (over the integers) on the right-hand side of equation (1).

Example 1: The binary representation (1, 0, 0, 1, 1, 0, 1, 0) corresponds to the decimal 154, since:

$$1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 128 + 16 + 8 + 2 = 154.$$

1.1.2 Addition

The addition in the field GF(256) is not the same as in the natural numbers; for instance $47 + 183 \neq 230$ when seen as elements of GF(256).

If we have elements a and b in GF(256), to obtain a + b we must first find their binary representations and then add by coordinate; this is, if the binary representations are $(a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$ and $(b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0)$, then a + b is the element having binary representation

$$(a_7 + b_7, a_6 + b_6, a_5 + b_5, a_4 + b_4, a_3 + b_3, a_2 + b_2, a_1 + b_1, a_0 + b_0).$$

The addition by coordinate can be done in long addition format and obeys the additive XOR rules:

$$0 + 0 = 0$$
, $0 + 1 = 1$, $1 + 0 = 1$ and $1 + 1 = 0$.

Example 1: 1 + 1 = 0 in GF(256). The binary representation of 1 is (0, 0, 0, 0, 0, 0, 0, 1).

The binary representation of 1 + 1 is:

$$(0+0, 0+0, 0+0, 0+0, 0+0, 0+0, 0+0, 1+1) = (0, 0, 0, 0, 0, 0, 0, 0)$$

This calculation can also be visualized as a long addition:

Caution: This is not the usual binary addition with carry over! **Remember:** Addition = XOR! Now convert from binary back to decimal representation:

$$0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 0.$$

Thus, 1 + 1 = 0 in GF(256).

Example 2: 2 + 1 = 3 in GF(256).

The binary representations of 2 and 1 are (0,0,0,0,0,0,1,0) and (0,0,0,0,0,0,0,0,1), respectively. The long addition of 2 + 1 is:

	0	0	0	0	0	0	1	0
+	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	1	1

Now convert from binary back to decimal representation:

$$0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 2 + 1 = 3.$$

Thus, 2 + 1 = 3 in GF(256).

Example 3: 4 + 1 = 5 in GF(256).

The binary representations of 4 and 1 are (0,0,0,0,0,1,0,0) and (0,0,0,0,0,0,0,0,1), respectively. The long addition of 4 + 1 is:

	0	0	0	0	0	1	0	0	
+	0	0	0	0	0	0	0	1	
	0	0	0	0	0	1	0	1	

Now convert from binary back to decimal representation:

$$0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 4 + 1 = 5.$$

Thus, 4 + 1 = 5 in GF(256).

Example 4: 8 + 1 = 9 in GF(256).

The binary representations of 8 and 1 are (0,0,0,0,1,0,0,0) and (0,0,0,0,0,0,0,0,1), respectively. The long addition of 8 + 1 is:

Now convert from binary back to decimal representation:

$$0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 1 = 9.$$

Thus, 8 + 1 = 9 in GF(256).

Example 5: 47 + 183 = 152 in GF(256).

The binary representations of 47 and 183 are (0,0,1,0,1,1,1,1) and (1,0,1,1,0,1,1,1), respectively. The long addition of 47 + 183 is:

Now convert from binary back to decimal representation:

 $1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 128 + 16 + 8 = 152.$

Thus, 47 + 183 = 152 in GF(256).

Example 6: 231 + 183 = 80 in GF(256). The binary representations of 231 and 183 are (1, 1, 1, 0, 0, 1, 1, 1) and (1, 0, 1, 1, 0, 1, 1, 1), respectively. The long addition of 231 + 183 is:

Now convert from binary back to decimal representation:

$$0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 64 + 16 = 80$$

Thus, 231 + 183 = 80 in GF(256).

1.1.3 Subtraction

Subtraction in GF(256) is the same as addition, i.e., for any a and b in GF(256) holds a - b = a + b.

1.1.4 Multiplication

The multiplication in GF(256) has primitive polynomial 0x11D; this means, it can be seen as polynomial multiplication in $\mathbb{Z}_2[x]$ modulo $p(x) = x^8 + x^4 + x^3 + x^2 + 1$.

The multiplication being modulo p(x) indicates how to multiply an element a in GF(256) by 2. If a has binary representation $(a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$, then the coordinates of the binary representation of the product $a \cdot 2$ are:

$$\begin{array}{ll} (a \cdot 2)_7 &= a_6 \\ (a \cdot 2)_6 &= a_5 \\ (a \cdot 2)_5 &= a_4 \\ (a \cdot 2)_4 &= a_3 + a_7 \\ (a \cdot 2)_3 &= a_2 + a_7 \\ (a \cdot 2)_2 &= a_1 + a_7 \\ (a \cdot 2)_1 &= a_0 \\ (a \cdot 2)_0 &= a_7 \end{array}$$

$$(2)$$

Example 1: $171 \cdot 2 = 75$ in GF(256).

The binary representation of 171 is (1, 0, 1, 0, 1, 0, 1, 1). By rule (2), the binary representation of $171 \cdot 2$ is:

$$(0, 1, 0, 1 + 1, 0 + 1, 1 + 1, 1, 1) = (0, 1, 0, 0, 1, 0, 1, 1)$$

The decimal representation of the product is $2^6 + 2^3 + 2 + 1 = 64 + 8 + 2 + 1 = 75$.

Now, to multiply any two elements of GF(256), decompose one of the elements as a sum of powers of two, then distribute this sum with respect to the product, and use (2) to multiply by 2 as many times as needed.

Example 2: $3 \cdot 3 = 5$ in *GF*(256).

The binary representation of 3 is (0,0,0,0,0,0,1,1) and 3 = 2 + 1. Then,

$3 \cdot 3 = 3 \cdot (2+1)$	
$= 3 \cdot 2 + 3 \cdot 1$	by distributivity
$= (0, 0, 0, 0, 0, 0, 1, 1) \cdot 2$	$3 \cdot 2$

$+(0,0,0,0,0,0,1,1)\cdot 1$	$3 \cdot 1$
=(0,0,0,0,0,1,1,0)	the 7th entry of $(0, 0, 0, 0, 0, 0, 1, 1)$ is zero, so $\cdot 2$ just shifts every entry to the left
+(0,0,0,0,0,0,1,1)	
=(0,0,0,0,0,1,0,1)	which in decimal form equals $2^2 + 1 = 5$.

Note: The decomposition into powers of 2 in GF(256) coincides with the decomposition into powers of 2 in the integers. For instance, $171 = 2^7 + 2^5 + 2^3 + 2 + 1$ holds in GF(256) as well as over the natural numbers.

Example 3: $171 \cdot 7 = 118$ in GF(256). The binary representation of 171 is (1, 0, 1, 0, 1, 0, 1, 1) and $7 = 4 + 2 + 1 = 2^2 + 2 + 1$. Then,

$171 \cdot 7 = 171 \cdot (2^2 + 2 + 1)$	
$= 171 \cdot 2 \cdot 2 + 171 \cdot 2 + 171 \cdot 1$	by distributivity
$= (1, 0, 1, 0, 1, 0, 1, 1) \cdot 2 \cdot 2$	$171 \cdot 2 \cdot 2$
$+(1,0,1,0,1,0,1,1)\cdot 2$	$171 \cdot 2$
$+(1,0,1,0,1,0,1,1)\cdot 1$	$171 \cdot 1$
$= (0, 1, 0, 0, 1, 0, 1, 1) \cdot 2$	shift to the left and add 1 to the 2nd, 3rd and 4th entry
+(0,1,0,0,1,0,1,1)	shift to the left and add 1 to the 2nd, 3rd and 4th entry
+(1,0,1,0,1,0,1,1)	
=(1,0,0,1,0,1,1,0)	the 7th entry of $(0, 1, 0, 0, 1, 0, 1, 1)$ is zero, so $\cdot 2$ just shifts every entry to the left
+(0,1,0,0,1,0,1,1)	
+(1,0,1,0,1,0,1,1)	
= (0, 1, 1, 1, 0, 1, 1, 0)	which in decimal form equals $2^{6} + 2^{5} + 2^{4} + 2^{2} + 2 = 118$.

Example 4: $108 \cdot 32 = 1$ in GF(256).

The binary representation of 108 is (0, 1, 1, 0, 1, 1, 0, 0) and $32 = 2^5$. Then,

 $\begin{aligned} 108 \cdot 32 &= 108 \cdot 2^5 \\ &= (0, 1, 1, 0, 1, 1, 0, 0) \cdot 2^5 \\ &= (1, 1, 0, 1, 1, 0, 0, 0) \cdot 2^4 & \text{the 7th entry of } (0, 1, 1, 0, 1, 1, 0, 0) \text{ is zero, so } \cdot 2 \text{ just shifts every entry to the left} \\ &= (1, 0, 1, 0, 1, 1, 0, 1) \cdot 2^3 & \text{shift to the left and add 1 to the 2nd, 3rd and 4th entry} \\ &= (0, 1, 0, 0, 0, 1, 1, 1) \cdot 2^2 & \text{shift to the left and add 1 to the 2nd, 3rd and 4th entry} \\ &= (1, 0, 0, 0, 1, 1, 1, 0) \cdot 2 & \text{shift to the left and add 1 to the 2nd, 3rd and 4th entry} \\ &= (0, 0, 0, 0, 0, 0, 0, 1), & \text{shift to the left and add 1 to the 2nd, 3rd and 4th entry} \end{aligned}$

which in decimal form equals 1.

1.1.5 Division

We can reduce the problem of division in GF(256) to the problem of multiplication, since $a/b = a \cdot b^{-1}$. For b^{-1} we may simply use a table of multiplicative inverses for GF(256).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205	125
2 142 53 195 104 82 155 148 2 244 54 255 145 148 155 148	000	
	206	168
3 244 54 64 105 141 156 172	207	58
4 71 55 94 106 239 157 9	208	41
5 167 56 80 107 179 158 199	209	113
6 122 57 34 108 32 159 162	210	200
7 186 58 207 109 236 160 28	211	246
8 173 59 169 110 47 161 130	212	249
9 157 60 171 111 50 162 159	213	67
10 221 61 12 112 40 163 198	214	215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	215	214
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	216	16
13 170 64 54 115 217 166 70	217	115
14 93 65 95 116 233 167 5	218	118
15 150 66 248 117 251 168 206	219	120
16 216 67 213 118 218 169 59	220	153
17 114 68 146 119 121 170 13	221	10
18 192 69 78 120 219 171 60	222	25
19 88 70 166 121 119 172 156	223	145
20 224 71 4 122 6 173 8	224	20
21 62 72 48 123 187 174 190	225	63
22 76 73 136 124 132 175 183	226	230
23 102 74 43 125 205 176 135	227	240
24 144 75 30 126 254 177 229	228	134
25 222 76 22 127 252 178 238	229	177
26 85 77 103 128 27 179 107	230	226
27 128 78 69 129 84 180 235	231	241
28 160 79 147 130 161 181 242	232	250
29 131 80 56 131 29 182 191	233	116
30 75 81 35 132 124 183 175	234	243
31 42 82 104 133 204 184 197	235	180
32 108 83 140 134 228 185 100	236	109
33 237 84 129 135 176 186 7	237	33
34 57 85 26 136 73 187 123	238	178
35 81 86 37 137 49 188 149	239	106
36 96 87 97 138 39 189 154	240	227
37 86 88 19 139 45 190 174	241	231
38 44 89 193 140 83 191 182	242	181
39 138 90 203 141 105 192 18	243	234
40 112 91 99 142 2 193 89	244	3
41 208 92 151 143 245 194 165	245	143
42 31 93 14 144 24 195 53	246	211
43 74 94 55 145 223 196 101	247	201
44 38 95 65 146 68 197 184	248	66
45 139 96 36 147 79 198 163	249	212
46 51 97 87 148 155 199 158	250	232
47 110 98 202 149 188 200 210	251	117
48 72 99 91 150 15 201 247	252	127
	253	255
49 137 100 185 151 92 202 98		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{255}{254}$	$\frac{126}{253}$

2 Encoding of Reed-Solomon Codes

Imagine that we want to send a message consisting of the vector $(m_{k-1}, m_{k-2}, \ldots, m_1, m_0)$ with m_{k-1} , $m_{k-2}, \ldots, m_1, m_0$ from GF(256) using the structure of a Reed-Solomon code RS(n, k) with generator polynomial g(x) of degree n - k. This code will encode the message $(m_{k-1}, m_{k-2}, \ldots, m_1, m_0)$ as a codeword $(c_{n-1}, c_{n-2}, \ldots, c_1, c_0)$ with $c_{n-1}, c_{n-2}, \ldots, c_1, c_0$ from GF(256) such that the original message can be recovered as long as there are not more than $\lfloor \frac{n-k}{2} \rfloor$ errors during transmission. In other words, the message $(m_{k-1}, m_{k-2}, \ldots, m_1, m_0)$ can be recovered as long as at least $n - \lfloor \frac{n-k}{2} \rfloor = k + \lfloor \frac{n-k}{2} \rfloor$ of the values of the codeword $(c_{n-1}, c_{n-2}, \ldots, c_1, c_0)$ are transmitted correctly.

For encoding, follow the following steps.

1. Create the polynomial of degree $\leq k-1$ with the message coordinates m_i as coefficients:

$$m(x) = m_{k-1}x^{k-1} + m_{k-2}x^{k-2} + \ldots + m_1x + m_0$$

2. Multiply m(x) with the generator polynomial g(x) to obtain the polynomial $c(x) = m(x) \cdot g(x)$ of degree $\leq n-1$.

3. Write

$$c(x) = c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \ldots + c_1x + c_0$$

to read off the coordinates c_i of the codeword.

Example 1: We want to encode the message (0,0,0,0) using the RS(8,4) code with generating polynomial

$$g(x) = (x+1)(x+2)(x+4)(x+8) = x^4 + 15x^3 + 54x^2 + 120x + 64.$$

The polynomial that has the message coordinates as coefficients is

$$m(x) = 0x^3 + 0x^2 + 0x + 0 = 0.$$

We evaluate

$$c(x) = m(x) \cdot g(x) = 0 \cdot \left(x^4 + 15x^3 + 54x^2 + 120x + 64\right) = 0.$$

This results in the codeword (0, 0, 0, 0, 0, 0, 0, 0).

Example 2: We want to encode the message (0,0,0,1) using the RS(8,4) code with generating polynomial

$$g(x) = (x+1)(x+2)(x+4)(x+8) = x^4 + 15x^3 + 54x^2 + 120x + 64x^4$$

The polynomial that has the message coordinates as coefficients is

$$m(x) = 0x^3 + 0x^2 + 0x + 1 = 1.$$

We evaluate

$$c(x) = m(x) \cdot g(x) = 1 \cdot \left(x^4 + 15x^3 + 54x^2 + 120x + 64\right) = x^4 + 15x^3 + 54x^2 + 120x + 64$$

This results in the codeword (0, 0, 0, 1, 15, 54, 120, 64).

Example 3: We want to encode the message (1, 2, 4, 8) using the RS(8, 4) code with generating polynomial

$$g(x) = (x+1)(x+2)(x+4)(x+8) = x^4 + 15x^3 + 54x^2 + 120x + 64.$$

The polynomial that has the message coordinates as coefficients is

$$m(x) = x^3 + 2x^2 + 4x + 8$$

We evaluate

$$\begin{aligned} c(x) &= m(x) \cdot g(x) = \left(x^3 + 2x^2 + 4x + 8\right) \cdot \left(x^4 + 15x^3 + 54x^2 + 120x + 64\right) \\ &= x^7 + (1 \cdot 15 + 2 \cdot 1)x^6 + (1 \cdot 54 + 2 \cdot 15 + 4 \cdot 1)x^5 + (1 \cdot 120 + 2 \cdot 54 + 4 \cdot 15 + 8 \cdot 1)x^4 \\ &+ (1 \cdot 64 + 2 \cdot 120 + 4 \cdot 54 + 8 \cdot 15)x^3 + (2 \cdot 64 + 4 \cdot 120 + 8 \cdot 54)x^2 + (4 \cdot 64 + 8 \cdot 120)x + 8 \cdot 64 \\ &= x^7 + 13x^6 + 44x^5 + 32x^4 + 16x^3 + 208x^2 + 250x + 58. \end{aligned}$$

This results in the codeword (1, 13, 44, 32, 16, 208, 250, 58).

3 Decoding

3.1 Peterson-Gorenstein-Zierler Algorithm

We want to decode the received *n*-dimensional vector *r*. This vector can be written as r = c + e, where *c* is a codeword and *e* is an error vector. The syndrome vector $s = (s_1, s_2, \ldots, s_{2t})$ has 2t = n - k coordinates. Identifying the vector $r = (r_{n-1}, \ldots, r_2, r_1, r_0)$ with the polynomial $r(x) = r_{n-1}x^{n-1} + \ldots + r_2x^2 + r_1x + r_0$.

considering an RS(n,k) code where the roots of the generator polynomial g(x) are the consecutive 2t elements $1, 2, \ldots, 2^{2t-1}$, we have $s = (s_1, s_2, \ldots, s_{2t})$ with

$$s_i = r(2^{i-1}) = c(2^{i-1}) + e(2^{i-1})$$

and $c(2^{i-1}) = 0$. Thus, syndromes can be expressed as

$$s_i = e(2^{i-1}) = \sum_{j=0}^{n-1} e_j (2^{i-1})^j.$$

Errors occur where $e_j \neq 0$. Denote the position of the v errors with $v \leq t$ as $0 \leq k_1, \ldots, k_v \leq n-1$, and rewrite the syndrome as

$$s_i = \sum_{j=1}^{v} e_{k_j} (2^{i-1})^{k_j} = \sum_{j=1}^{v} e_{k_j} (2^{k_j})^{i-1} = \sum_{j=1}^{v} Y_j (X_j)^{i-1}$$

where $X_j = 2^{k_j}$ and $Y_j = e_{k_j}$. In matrix form, the equation above provides the system

$$\begin{pmatrix} X_1^0 & X_2^0 & \cdots & X_v^0 \\ X_1^1 & X_2^1 & \cdots & X_v^1 \\ \vdots & \vdots & \ddots & \vdots \\ X_1^{v-1} & X_2^{v-1} & \cdots & X_v^{v-1} \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_v \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_v \end{pmatrix}.$$
(3)

The associated error locator polynomial is

$$\Lambda(x) = \prod_{j=1}^{v} (1 - X_j x) = \Lambda_v x^v + \Lambda_{v-1} x^{v-1} + \ldots + \Lambda_1 x + \Lambda_0.$$

In fact, $\Lambda_0 = 1$. Then, the k-th syndrome satisfies

$$k\Lambda_k + \Lambda_{k-1}s_1 + \Lambda_{k-2}s_2 + \ldots + \Lambda_1s_{k-1} = -s_k \quad \text{for } 1 \le k \le v$$

and

$$\Lambda_v s_{k-v} + \Lambda_{v-1} s_{k-v+1} + \ldots + \Lambda_1 s_{k-1} = -s_k \quad \text{for } v < k \le 2t.$$

The latter equation gives the following system:

$$M^{(v)}\Lambda^{(v)} = \begin{pmatrix} s_1 & s_2 & \cdots & s_v \\ s_2 & s_3 & \cdots & s_{v+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_v & s_{v+1} & \cdots & s_{2v-1} \end{pmatrix} \begin{pmatrix} \Lambda_v \\ \Lambda_{v-1} \\ \vdots \\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} -s_{v+1} \\ -s_{v+2} \\ \vdots \\ -s_{2v} \end{pmatrix}$$
(4)

If det $(M^{(v)}) \neq 0$ then there exists a unique solution vector $\Lambda^{(v)}$ for the system (4) which is given by

$$\Lambda^{(v)} = (M^{(v)})^{-1} \begin{pmatrix} -s_{v+1} \\ \vdots \\ -s_{2v} \end{pmatrix}$$

This solution can also be found using row Gaussian elimination.

If we know the 2t syndrome values s_1, \ldots, s_{2t} and not all of them are zero, we can use the Peterson-Gorenstein-Zierler algorithm to detect and correct the errors. The algorithm goes as follows:

- 1. Assume v = t,
- 2. Check if $M^{(v)}$ is singular.
 - If $det(M^{(v)}) = 0$, decrement $v \leftarrow v 1$. If v = 0, finish and signal that errors have occurred which are not correctable; else return to Step 2.
 - If $det(M^{(v)}) \neq 0$, then continue. This v value tells us how many errors occurred.
- 3. Solve the system (4). The result gives the error location polynomial $\Lambda(x)$.
- 4. Find the roots of the error location polynomial by exhaustive search. Note that $\Lambda(x) = \prod_{j=1}^{v} (1 X_j x)$, i.e., $\Lambda(x)$ must factor into linear factors with its v distinct roots from the list $1, 2^{-1}, 2^{-2}, \ldots, 2^{1-n}$. Should such a factorization fail, finish and signal that errors have occurred which are not correctable.
- 5. Find X_1, \ldots, X_v , the reciprocals of the roots found in step 4.
- 6. Find the error positions $k_i = \log_2(2^{k_i}) = \log_2(X_i)$.
- 7. Find the error values $Y_j = e_{k_j}$ by solving the linear system (3).
- 8. Get the error polynomial $e(x) = \sum_{j=1}^{v} e_{k_j} x^{k_j}$.
- 9. Find the codeword polynomial c(x) = r(x) e(x).

Advice: Under the assumption of low probability of failure during the transmission of the message, make sure to first verify if all the syndromes are zero, since this will determine if any error has occured. Do not invert any matrix until you have found the correct number of errors.

Now we will work some examples for this decoder.

3.1.1 Example 1

Consider that we have sent the codeword (0, 0, 0, 0, 0, 0, 0, 0), but it was transmitted with the error vector (0, 0, 0, 0, 0, 0, 1, 1), so that (0, 0, 0, 0, 0, 0, 1, 1) was received. The polynomial associated to the received message is

The polynomial associated to the received message is

$$s(x) = x + 1.$$

We start with v = 2. The syndromes are

$$s_{1} = s(2^{0}) = s(1) = 1 + 1 = 0,$$

$$s_{2} = s(2^{1}) = s(2) = 2 + 1 = 3,$$

$$s_{3} = s(2^{2}) = s(4) = 4 + 1 = 5 \text{ and }$$

$$s_{4} = s(2^{3}) = s(8) = 8 + 1 = 9.$$

We want to solve the system (4)

$$\begin{pmatrix} 0 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} \Lambda_2 \\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} 5 \\ 9 \end{pmatrix}$$

Note that

$$\det \begin{pmatrix} 0 & 3\\ 3 & 5 \end{pmatrix} = 0 \cdot 5 - 3 \cdot 3 = 5 \neq 0.$$

So the system must have a unique solution. To find it, modify the augmented matrix using Gaussian reduction algorithm;

$$\begin{pmatrix} 0 & 3 & | & 5 \\ 3 & 5 & | & 9 \end{pmatrix} \implies \begin{pmatrix} 3 & 5 & | & 9 \\ 0 & 3 & | & 5 \end{pmatrix}, \text{ swap the rows since the first element of the diagonal is zero}$$
$$\implies \begin{pmatrix} 1 & 3 & | & 7 \\ 0 & 1 & | & 3 \end{pmatrix}, \text{ divide all equations by 3 to obtain ones on the diagonal}$$
$$\implies \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 3 \end{pmatrix}, \text{ add 3 times the second row to the first row to obtain the identity matrix}$$
$$\implies \begin{cases} \Lambda_1 = 3 \\ \Lambda_2 = 2 \end{cases}$$

The error locator polynomial is

$$\Lambda(x) = 2x^{2} + 3x + 1 = (1+x)(1+2x) = (1+2^{0}x)(1+2^{1}x).$$

Thus, the errors are located at the positions $k_1 = \log_2(1) = \log_2(2^0) = 0$ and $k_2 = \log_2(2) = \log_2(2^1) = 1$. To find the error values, solve the system (3)

$$\begin{pmatrix} 1^0 & 2^0 \\ 1^1 & 2^1 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}.$$

To solve it, modify the augmented matrix using Gaussian reduction algorithm;

$$\begin{pmatrix} 1 & 1 & | & 0 \\ 1 & 2 & | & 3 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 3 & | & 3 \end{pmatrix}, \text{ add the first row to the second row to get zero below the diagonal}$$

$$\Longrightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 1 & | & 1 \end{pmatrix}, \text{ divide the second row by 3 to obtain ones on the diagonal}$$

$$\Longrightarrow \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \end{pmatrix}, \text{ add the second row to the first row to obtain the identity matrix}$$

$$\Longrightarrow \begin{cases} Y_1 = 1 \\ Y_2 = 1 \end{cases}$$

Thus, the error polynomial is e(x) = x + 1 and the decoding algorithm gives us the polynomial

$$c(x) = s(x) + e(x) = (x+1) + (x+1) = 0.$$

3.1.2 Example 2

Consider that we have sent the codeword (0, 0, 0, 0, 0, 0, 0, 0), but it was transmitted with the error vector (1, 1, 0, 0, 0, 0, 0), so that (1, 1, 0, 0, 0, 0, 0, 0) was received. The polynomial associated to the received message is

$$s(x) = x^7 + x^6.$$

We start with v = 2. The syndromes are

$$s_1 = s(2^0) = s(1) = 1 + 1 = 0,$$

$$s_2 = s(2^1) = s(2) = 128 + 64 = 192,$$

$$s_3 = s(2^2) = s(4) = 19 + 205 = 222 \text{ and}$$

$$s_4 = s(2^3) = s(8) = 117 + 45 = 88.$$

We want to solve the system (4)

$$\begin{pmatrix} 0 & 192 \\ 192 & 222 \end{pmatrix} \begin{pmatrix} \Lambda_2 \\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} 222 \\ 88 \end{pmatrix}.$$

Note that

$$\det \begin{pmatrix} 0 & 192\\ 192 & 222 \end{pmatrix} = 0 \cdot 222 - 192 \cdot 192 = 222 \neq 0.$$

So the system must have a unique solution. To find it, modify the augmented matrix using Gaussian reduction algorithm;

$$\begin{pmatrix} 0 & 192 & 222 \\ 192 & 222 & 88 \end{pmatrix} \Longrightarrow \begin{pmatrix} 192 & 222 & 88 \\ 0 & 192 & 222 \end{pmatrix}, \text{ swap the rows since the first element of the diagonal is zero} \Longrightarrow \begin{pmatrix} 1 & 192 & 89 \\ 0 & 1 & 192 \end{pmatrix}, \text{ divide all equations by 192 to obtain ones on the diagonal} \Longrightarrow \begin{pmatrix} 1 & 0 & 135 \\ 0 & 1 & 192 \end{pmatrix}, \text{ add 192 times the second row to the first row to get the identity matrix} \\ \\ \Longrightarrow \begin{cases} \Lambda_1 = 192 \\ \Lambda_2 = 135 \end{cases}$$

The error locator polynomial is

$$\Lambda(x) = 135x^2 + 192x + 1 = (1 + 128x)(1 + 64x) = (1 + 2^7x)(1 + 2^6x)$$

Thus, the errors are located at the positions $k_1 = \log_2(128) = \log_2(2^7) = 7$ and $k_2 = \log_2(64) = \log_2(2^6) = 6$. To find the error values, solve the system (3)

$$\begin{pmatrix} 128^0 & 64^0 \\ 128^1 & 64^1 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 192 \end{pmatrix}.$$

To solve it, modify the augmented matrix using Gaussian reduction algorithm;

 $\begin{pmatrix} 1 & 1 & | & 0 \\ 128 & 64 & | & 192 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 192 & | & 192 \end{pmatrix}, \text{ add } 128 \text{ times the first row to the second row to get zero below the diagonal}$ $\Longrightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 1 & | & 1 \end{pmatrix}, \text{ divide the second row by } 192 \text{ to obtain ones on the diagonal}$ $\Longrightarrow \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \end{pmatrix}, \text{ add the second row to the first row to obtain the identity matrix}$ $\Longrightarrow \begin{cases} Y_1 = 1 \\ Y_2 = 1 \end{cases}$

Thus, the error polynomial is $e(x) = x^7 + x^6$ and the decoding algorithm gives us the polynomial

$$c(x) = s(x) + e(x) = (x^{7} + x^{6}) + (x^{7} + x^{6}) = 0.$$

3.1.3 Example 3

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector (0,0,0,1,1,0,0,0), so that (0,0,0,1,1,0,0,0) was received. The polynomial associated to the received message is

$$s(x) = x^4 + x^3.$$

We start with v = 2. The syndromes are

$$s_{1} = s(2^{0}) = s(1) = 1^{4} + 1^{3} = 1 + 1 = 0,$$

$$s_{2} = s(2^{1}) = s(2) = 2^{4} + 2^{3} = 16 + 8 = 24,$$

$$s_{3} = s(2^{2}) = s(4) = 4^{4} + 4^{3} = 29 + 64 = 93 \text{ and}$$

$$s_{4} = s(2^{3}) = s(8) = 8^{4} + 8^{3} = 205 + 58 = 247.$$

We want to solve the system (4)

$$\begin{pmatrix} 0 & 24\\ 24 & 93 \end{pmatrix} \begin{pmatrix} \Lambda_2\\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} 93\\ 247 \end{pmatrix}.$$
 (5)

Note that

$$\det \begin{pmatrix} 0 & 24\\ 24 & 93 \end{pmatrix} = 0 \cdot 93 - 24 \cdot 24 = 93 \neq 0.$$

So the system must have a unique solution. To find it, modify the augmented matrix using Gaussian reduction algorithm;

$$\begin{pmatrix} 0 & 24 & 93 \\ 24 & 93 & 247 \end{pmatrix} \Longrightarrow \begin{pmatrix} 24 & 93 & 247 \\ 0 & 24 & 93 \end{pmatrix},$$
swap the rows since the first element of the diagonal is zero
$$\Longrightarrow \begin{pmatrix} 1 & 24 & 128 \\ 0 & 1 & 24 \end{pmatrix},$$
divide all equations by 24 to obtain ones on the diagonal
$$\Longrightarrow \begin{pmatrix} 1 & 0 & 128 \\ 0 & 1 & 24 \end{pmatrix},$$
add 24 times the second row to the first row to get the identity matrix
$$\Longrightarrow \begin{cases} \Lambda_1 = 24 \\ \Lambda_2 = 128 \end{cases}$$

The error locator polynomial is

$$\Lambda(x) = 128x^2 + 24x + 1 = (1+8x)(1+16x) = (1+2^3x)(1+2^4x).$$

Thus, the errors are located at the positions $k_1 = \log_2(8) = \log_2(2^3) = 3$ and $k_2 = \log_2(16) = \log_2(2^4) = 4$. To find the error values, solve the system (3)

$$\begin{pmatrix} 8^0 & 16^0 \\ 8^1 & 16^1 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 24 \end{pmatrix}.$$

To solve it, modify the augmented matrix using Gaussian reduction algorithm;

$$\begin{pmatrix} 1 & 1 & | & 0 \\ 8 & 16 & | & 24 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 24 & | & 24 \end{pmatrix}, \text{ add 8 times the first row to the second row to get zero below the diagonal}$$

$$\Longrightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 1 & | & 1 \end{pmatrix}, \text{ divide the second row by 24 to obtain ones on the diagonal}$$

$$\Longrightarrow \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \end{pmatrix}, \text{ add the second row to the first row to obtain the identity matrix}$$

$$\Longrightarrow \begin{cases} Y_1 = 1 \\ Y_2 = 1 \end{cases}$$

Thus, the error polynomial is $e(x) = x^4 + x^3$ and the decoding algorithm gives us the polynomial

$$c(x) = s(x) + e(x) = (x^{4} + x^{3}) + (x^{4} + x^{3}) = 0.$$

3.1.4 Example 4

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error vector (0,0,0,1,0,0,0,0), so that (0,0,0,0,15,54,120,64) was received. The polynomial associated to the received message is

$$s(x) = 15x^3 + 54x^2 + 120x + 64.$$

We start with v = 2. The syndromes are

$$s_{1} = s(2^{0}) = s(1) = 15 \cdot 1^{3} + 54 \cdot 1^{2} + 120 \cdot 1 + 64 = 15 + 54 + 120 + 64 = 1,$$

$$s_{2} = s(2^{1}) = s(2) = 15 \cdot 2^{3} + 54 \cdot 2^{2} + 120 \cdot 2 + 64 = 120 + 216 + 240 + 64 = 16,$$

$$s_{3} = s(2^{2}) = s(4) = 15 \cdot 4^{3} + 54 \cdot 4^{2} + 120 \cdot 4 + 64 = 231 + 71 + 253 + 64 = 29 \text{ and}$$

$$s_{4} = s(2^{3}) = s(8) = 15 \cdot 8^{3} + 54 \cdot 8^{2} + 120 \cdot 8 + 64 = 107 + 1 + 231 + 64 = 205.$$

We want to solve the system (4)

$$\begin{pmatrix} 1 & 16\\ 16 & 29 \end{pmatrix} \begin{pmatrix} \Lambda_2\\ \Lambda_1 \end{pmatrix} = \begin{pmatrix} 29\\ 205 \end{pmatrix}.$$

However, note that

$$\det \begin{pmatrix} 1 & 16\\ 16 & 29 \end{pmatrix} = 1 \cdot 29 - 16 \cdot 16 = 0.$$

So we must decrease v by 1, so that v = 1. This yields the system

$$1 \cdot \Lambda_1 = 16$$

which has solution $\Lambda_1 = 16$. The error locator polynomial is $\Lambda(x) = 1 + 16x$, so that $X_1 = 16 = 2^4$. That is, the error is located at the position $k_1 = \log_2(16) = \log_2(2^4) = 4$. To find the error values, solve

$$X_1^0 \cdot Y_1 = s_1 \implies 1 \cdot Y_1 = 1 \implies Y_1 = 1.$$

Thus, the error polynomial is $e(x) = x^4$ and the decoding algorithm proposes that the associated polynomial is

$$c(x) = s(x) + e(x) = x^{4} + 15x^{3} + 54x^{2} + 120x + 64.$$

3.1.5 Example 5

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error vector (0,0,0,1,1,0,0,0), so that (0,0,0,0,14,54,120,64) was received. The polynomial associated to the received message is

$$s(x) = 14x^3 + 54x^2 + 120x + 64$$

We start with v = 2. The syndromes are

$$s_{1} = s(2^{0}) = s(1) = 14 \cdot 1^{3} + 54 \cdot 1^{2} + 120 \cdot 1 + 64 = 14 + 54 + 120 + 64 = 0,$$

$$s_{2} = s(2^{1}) = s(2) = 14 \cdot 2^{3} + 54 \cdot 2^{2} + 120 \cdot 2 + 64 = 112 + 216 + 240 + 64 = 24,$$

$$s_{3} = s(2^{2}) = s(4) = 14 \cdot 4^{3} + 54 \cdot 4^{2} + 120 \cdot 4 + 64 = 167 + 71 + 253 + 64 = 93 \text{ and}$$

$$s_{4} = s(2^{3}) = s(8) = 14 \cdot 8^{3} + 54 \cdot 8^{2} + 120 \cdot 8 + 64 = 81 + 1 + 231 + 64 = 247.$$

Note that the syndromes are the same as those in Example 3. So the system (4) is the same as in (5), and so is its solution. Hence, the error locator polynomial is

$$\Lambda(x) = 128x^2 + 24x + 1 = (1 + 2^3x)(1 + 2^4x).$$

Thus, the errors are located at the positions $k_1 = 3$ and $k_2 = 4$.

System (3) is also the same as in Example 3; thus, the error values are $Y_1 = 1$ and $Y_2 = 1$.

The error polynomial is $e(x) = x^4 + x^3$ and the decoding algorithm proposes that the associated polynomial is

$$c(x) = s(x) + e(x) = (x^4 + x^3) + 14x^3 + 54x^2 + 120x + 64 = x^4 + 15x^3 + 54x^2 + 120x + 64$$

3.2 Berlekamp-Massey Algorithm

Recall the system of equations

$$\Lambda_v s_{k-v} + \Lambda_{v-1} s_{k-v+1} + \ldots + \Lambda_1 s_{k-1} = -s_k \quad \text{for } v < k \le 2t,$$

where the error locator polynomial is

$$\Lambda(x) = \Lambda_v x^v + \Lambda_{v-1} x^{v-1} + \ldots + \Lambda_1 x + \Lambda_0$$

with $\Lambda_0 = 1$. We want to determine a polynomial $\Lambda(x)$ of minimal degree v that satisfies all the required syndrome relations. In particular,

$$\Lambda_v s_{k-v} + \Lambda_{v-1} s_{k-v+1} + \ldots + \Lambda_1 s_{k-1} + \Lambda_0 s_k = 0 \quad \text{for } v < k \le 2t.$$

Given syndromes s_1, s_2, \ldots, s_{2t} , the Berlekamp-Massey algorithm recursively defines field elements $d^{(k)}$, also called **discrepancies**, polynomials $\Lambda^{(k)}(x)$ of degree $v^{(k)}$, and polynomials $B^{(k)}(x)$ for $k = 1, 2, \ldots, 2t$.

The algorithm goes as follows:

- 1. Set $v^{(0)} = 0$, $\Lambda^{(0)}(x) = 1$ and $B^{(0)}(x) = 1$. Repeat Steps 2 and 3 for k = 1, ..., 2t.
- 2. Set

$$d^{(k)} = \sum_{i=0}^{m} c_i s_{k-i} = c_0 s_k + c_1 s_{k-1} + \ldots + c_{m-1} s_{k-m+1} + c_m s_{k-m},$$

where $m = v^{(k-1)}$ and $\Lambda^{(k-1)}(x) = \sum_{i=0}^{m} c_i x^i$ have been defined in previous steps of the algorithm.

- 3. Dependent on $v^{(k-1)}$ and $d^{(k)}$ proceed as follows:
 - If $d^{(k)} = 0$, set

$$v^{(k)} = v^{(k-1)},$$

$$\Lambda^{(k)}(x) = \Lambda^{(k-1)}(x),$$

$$B^{(k)}(x) = xB^{(k-1)}(x).$$

• If $d^{(k)} \neq 0$ and $2v^{(k-1)} \leq k-1$, set

$$v^{(k)} = k - v^{(k-1)},$$

$$\Lambda^{(k)}(x) = \Lambda^{(k-1)}(x) - d^{(k)}xB^{(k-1)}(x),$$

$$B^{(k)}(x) = (d^{(k)})^{-1}\Lambda^{(k-1)}(x).$$

• If $d^{(k)} \neq 0$ and $2v^{(k-1)} > k - 1$, set

$$v^{(k)} = v^{(k-1)},$$

$$\Lambda^{(k)}(x) = \Lambda^{(k-1)}(x) - d^{(k)}xB^{(k-1)}(x),$$

$$B^{(k)}(x) = xB^{(k-1)}(x).$$

4. End with $\Lambda(x) = \Lambda^{(2t)}(x)$ and $v = v^{(2t)}$.

Now we will repeat the examples provided in the previous section, this time finding the error locator polynomial using the Berlekamp-Massey algorithm.

3.2.1 Example 1

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector (0,0,0,0,0,0,1,1), so that (0,0,0,0,0,0,1,1) was received. The polynomial associated to the message received is

$$s(x) = x + 1.$$

The syndromes are

$$s_1 = s(2^0) = s(1) = 0,$$

$$s_2 = s(2^1) = s(2) = 3,$$

$$s_3 = s(2^2) = s(4) = 5 \text{ and }$$

$$s_4 = s(2^3) = s(8) = 9.$$

We start by setting $v^{(0)} = 0$, $\Lambda^{(0)}(x) = 1$ and $B^{(0)}(x) = 1$. Note that the number of syndromes is 2t = 4, so that we will iterate over k = 1, 2, 3, 4.

For k = 1, we have $m = v^{(0)} = 0$ and

$$d^{(1)} = \sum_{i=0}^{0} c_i s_{1-i} = c_0 s_1 = 1 \cdot 0 = 0$$

Since $d^{(1)} = 0$, we set

$$v^{(1)} = v^{(0)} = 0,$$

 $\Lambda^{(1)}(x) = \Lambda^{(0)}(x) = 1,$
 $B^{(1)}(x) = xB^{(0)}(x) = x$

 $\langle 0 \rangle$

(1)

For k = 2, we have $m = v^{(1)} = 0$ and

$$d^{(2)} = \sum_{i=0}^{0} c_i s_{2-i} = c_0 s_2 = 1 \cdot 3 = 3.$$

Since $d^{(2)} \neq 0$ and $2v^{(1)} = 0 \le 1 = k - 1$, we set

$$\begin{aligned} v^{(2)} &= 2 - v^{(1)} = 2, \\ \Lambda^{(2)}(x) &= \Lambda^{(1)}(x) - d^{(2)}xB^{(1)}(x) = 1 - 3x \cdot x = 1 + 3x^2, \\ B^{(2)}(x) &= (d^{(2)})^{-1}\Lambda^{(1)}(x) = 3^{-1} \cdot 1 = 244. \end{aligned}$$

For k = 3, we have

$$d^{(3)} = \sum_{i=0}^{2} c_i s_{3-i} = c_0 s_3 + c_1 s_2 + c_2 s_1 = 1 \cdot 5 + 0 \cdot 3 + 3 \cdot 0 = 5.$$

Since $d^{(3)} \neq 0$ and $2v^{(2)} = 4 > 2 = k - 1$, we set

$$v^{(3)} = v^{(2)} = 2,$$

$$\begin{aligned} \Lambda^{(3)}(x) &= \Lambda^{(2)}(x) - d^{(3)}xB^{(2)}(x) = (1+3x^2) - 5x \cdot 244 = (1+3x^2) - 3x = 1+3x+3x^2, \\ B^{(3)}(x) &= xB^{(2)}(x) = 244x. \end{aligned}$$

For k = 4, set

$$d^{(4)} = \sum_{i=0}^{2} c_i s_{4-i} = c_0 s_4 + c_1 s_3 + c_2 s_2 = 1 \cdot 9 + 3 \cdot 5 + 3 \cdot 3 = 3.$$

Since $d^{(4)} \neq 0$ and $2v^{(3)} = 4 > 3 = k - 1$, we set

$$\begin{aligned} v^{(4)} &= v^{(3)} = 2, \\ \Lambda^{(4)}(x) &= \Lambda^{(3)}(x) - d^{(4)}xB^{(3)}(x) = (1 + 3x + 3x^2) - 3x \cdot 244x = (1 + 3x + 3x^2) - x^2 = 1 + 3x + 2x^2, \\ B^{(4)}(x) &= xB^{(3)}(x) = 244x^2. \end{aligned}$$

The algorithm ends and provides the desired error locator polynomial

$$\Lambda(x) = \Lambda^{(4)}(x) = 1 + 3x + 2x^2$$

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler Algorithm.

3.2.2 Example 2

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector (1,1,0,0,0,0,0,0), so that (1,1,0,0,0,0,0,0) was received. The polynomial associated to the message received is

$$s(x) = x^7 + x^6.$$

The syndromes are

$$s_1 = s(2^0) = s(1) = 0,$$

$$s_2 = s(2^1) = s(2) = 192,$$

$$s_3 = s(2^2) = s(4) = 222 \text{ and }$$

$$s_4 = s(2^3) = s(8) = 88.$$

We start by setting $v^{(0)} = 0$, $\Lambda^{(0)}(x) = 1$ and $B^{(0)}(x) = 1$. Note that the number of syndromes is 2t = 4, so that we will iterate over k = 1, 2, 3, 4. For k = 1, we have $m = v^{(0)} = 0$ and

$$d^{(1)} = \sum_{i=0}^{0} c_i s_{1-i} = c_0 s_1 = 1 \cdot 0 = 0.$$

Since $d^{(1)} = 0$, we set

$$v^{(1)} = v^{(0)} = 0,$$

 $\Lambda^{(1)}(x) = \Lambda^{(0)}(x) = 1,$
 $B^{(1)}(x) = xB^{(0)}(x) = x.$

For k = 2, we have $m = v^{(1)} = 0$ and

$$d^{(2)} = \sum_{i=0}^{0} c_i s_{2-i} = c_0 s_2 = 1 \cdot 192 = 192.$$

Since $d^{(2)} \neq 0$ and $2v^{(1)} = 0 \le 1 = k - 1$, we set

$$v^{(2)} = 2 - v^{(1)} = 2,$$

$$\Lambda^{(2)}(x) = \Lambda^{(1)}(x) - d^{(2)}xB^{(1)}(x) = 1 - 192x \cdot x = 1 + 192x^{2},$$

$$B^{(2)}(x) = (d^{(2)})^{-1}\Lambda^{(1)}(x) = 192^{-1} \cdot 1 = 18.$$

For k = 3, we have

$$d^{(3)} = \sum_{i=0}^{2} c_i s_{3-i} = c_0 s_3 + c_1 s_2 + c_2 s_1 = 1 \cdot 222 + 0 \cdot 192 + 192 \cdot 0 = 222.$$

Since $d^{(3)} \neq 0$ and $2v^{(2)} = 4 > 2 = k - 1$, we set

$$\begin{aligned} v^{(3)} &= v^{(2)} = 2, \\ \Lambda^{(3)}(x) &= \Lambda^{(2)}(x) - d^{(3)}xB^{(2)}(x) = (1 + 192x^2) - 222x \cdot 18 = (1 + 192x^2) - 192x = 1 + 192x + 192x^2, \\ B^{(3)}(x) &= xB^{(2)}(x) = 18x. \end{aligned}$$

For k = 4, set

$$d^{(4)} = \sum_{i=0}^{2} c_i s_{4-i} = c_0 s_4 + c_1 s_3 + c_2 s_2 = 1 \cdot 88 + 192 \cdot 222 + 192 \cdot 192 = 48$$

Since $d^{(4)} \neq 0$ and $2v^{(3)} = 4 > 3 = k - 1$, we set

$$\begin{aligned} v^{(4)} &= v^{(3)} = 2, \\ \Lambda^{(4)}(x) &= \Lambda^{(3)}(x) - d^{(4)}xB^{(3)}(x) = (1 + 192x + 192x^2) - 48x \cdot 18x = (1 + 192x + 192x^2) - 71x^2 = 1 + 192x + 135x^2, \\ B^{(4)}(x) &= xB^{(3)}(x) = 18x^2. \end{aligned}$$

The algorithm ends and provides the desired error locator polynomial

$$\Lambda(x) = \Lambda^{(4)}(x) = 1 + 192x + 135x^2.$$

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler Algorithm.

3.2.3 Example 3

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector (0,0,0,1,1,0,0,0), so that (0,0,0,1,1,0,0,0) was received. The polynomial associated to the received message is

$$s(x) = x^4 + x^3$$

The syndromes are

$$s_1 = s(2^0) = s(1) = 0,$$

 $s_2 = s(2^1) = s(2) = 24,$
 $s_3 = s(2^2) = s(4) = 93$ and
 $s_4 = s(2^3) = s(8) = 247.$

We start by setting $v^{(0)} = 0$, $\Lambda^{(0)}(x) = 1$ and $B^{(0)}(x) = 1$. Note that the number of syndromes is 2t = 4, so that we will iterate over k = 1, 2, 3, 4.

For k = 1, we have $m = v^{(0)} = 0$ and

$$d^{(1)} = \sum_{i=0}^{0} c_i s_{1-i} = c_0 s_1 = 1 \cdot 0 = 0.$$

Since $d^{(1)} = 0$, we set

$$v^{(1)} = v^{(0)} = 0,$$

 $\Lambda^{(1)}(x) = \Lambda^{(0)}(x) = 1,$
 $B^{(1)}(x) = xB^{(0)}(x) = x$

For k = 2, we have $m = v^{(1)} = 0$ and

$$d^{(2)} = \sum_{i=0}^{0} c_i s_{2-i} = c_0 s_2 = 1 \cdot 24 = 24.$$

Since $d^{(2)} \neq 0$ and $2v^{(1)} = 0 \le 1 = k - 1$, we set

$$v^{(2)} = 2 - v^{(1)} = 2,$$

$$\Lambda^{(2)}(x) = \Lambda^{(1)}(x) - d^{(2)}xB^{(1)}(x) = 1 - 24x \cdot x = 1 + 24x^{2},$$

$$B^{(2)}(x) = (d^{(2)})^{-1}\Lambda^{(1)}(x) = 24^{-1} \cdot 1 = 144.$$

For k = 3, we have

$$d^{(3)} = \sum_{i=0}^{2} c_i s_{3-i} = c_0 s_3 + c_1 s_2 + c_2 s_1 = 1 \cdot 93 + 0 \cdot 24 + 24 \cdot 0 = 93$$

Since $d^{(3)} \neq 0$ and $2v^{(2)} = 4 > 2 = k - 1$, we set

$$\begin{aligned} v^{(3)} &= v^{(2)} = 2, \\ \Lambda^{(3)}(x) &= \Lambda^{(2)}(x) - d^{(3)}xB^{(2)}(x) = (1 + 24x^2) - 93x \cdot 144 = (1 + 24x^2) - 24x = 1 + 24x + 24x^2, \\ B^{(3)}(x) &= xB^{(2)}(x) = 144x. \end{aligned}$$

For k = 4, set

$$d^{(4)} = \sum_{i=0}^{2} c_i s_{4-i} = c_0 s_4 + c_1 s_3 + c_2 s_2 = 1 \cdot 247 + 24 \cdot 93 + 24 \cdot 24 = 193$$

Since $d^{(4)} \neq 0$ and $2v^{(3)} = 4 > 3 = k - 1$, we set

 $\begin{aligned} v^{(4)} &= v^{(3)} = 2, \\ \Lambda^{(4)}(x) &= \Lambda^{(3)}(x) - d^{(4)}xB^{(3)}(x) = (1 + 24x + 24x^2) - 193x \cdot 144x = (1 + 24x + 24x^2) - 152x^2 = 1 + 24x + 128x^2, \\ B^{(4)}(x) &= xB^{(3)}(x) = 144x^2. \end{aligned}$

The algorithm ends and provides the desired error locator polynomial

$$\Lambda(x) = \Lambda^{(4)}(x) = 1 + 24x + 128x^2.$$

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler Algorithm.

3.2.4 Example 4

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error vector (0,0,0,1,0,0,0,0), so that (0,0,0,0,15,54,120,64) was received. The polynomial associated to the received message is

$$s(x) = 15x^3 + 54x^2 + 120x + 64$$

The syndromes are

$$s_1 = s(2^0) = s(1) = 1,$$

$$s_2 = s(2^1) = s(2) = 16,$$

$$s_3 = s(2^2) = s(4) = 29 \text{ and }$$

$$s_4 = s(2^3) = s(8) = 205.$$

We start by setting $v^{(0)} = 0$, $\Lambda^{(0)}(x) = 1$ and $B^{(0)}(x) = 1$. Note that the number of syndromes is 2t = 4, so that we will iterate over k = 1, 2, 3, 4. For k = 1, we have $m = v^{(0)} = 0$ and

$$d^{(1)} = \sum_{i=0}^{0} c_i s_{1-i} = c_0 s_1 = 1 \cdot 1 = 1.$$

Since $d^{(1)} \neq 0$ and $2v^{(0)} = 0 \le 0 = k - 1$, we set

$$v^{(1)} = 1 - v^{(0)} = 1,$$

$$\Lambda^{(1)}(x) = \Lambda^{(0)}(x) - d^{(1)}xB^{(0)}(x) = 1 - 1x \cdot 1 = 1 + x,$$

$$B^{(1)}(x) = (d^{(1)})^{-1}\Lambda^{(0)}(x) = 1^{-1} \cdot 1 = 1.$$

For k = 2, we have $m = v^{(1)} = 1$ and

$$d^{(2)} = \sum_{i=0}^{1} c_i s_{2-i} = c_0 s_2 + c_1 s_1 = 1 \cdot 16 + 1 \cdot 1 = 17.$$

Since $d^{(2)} \neq 0$ and $2v^{(1)} = 2 > 1 = k - 1$, we set

$$\begin{aligned} v^{(2)} &= v^{(1)} = 1, \\ \Lambda^{(2)}(x) &= \Lambda^{(1)}(x) - d^{(2)}xB^{(1)}(x) = (1+x) - 17x \cdot 1 = (1+x) - 17x = 1 + 16x, \\ B^{(2)}(x) &= xB^{(1)}(x) = x. \end{aligned}$$

For k = 3, we have

$$d^{(3)} = \sum_{i=0}^{1} c_i s_{3-i} = c_0 s_3 + c_1 s_2 = 1 \cdot 29 + 16 \cdot 16 = 0.$$

Since $d^{(3)} = 0$ and $2v^{(2)} = 4 > 2 = k - 1$, we set

$$v^{(3)} = v^{(2)} = 1,$$

 $\Lambda^{(3)}(x) = \Lambda^{(2)}(x) = 1 + 16x,$
 $B^{(3)}(x) = xB^{(2)}(x) = x \cdot x = x^2.$

For k = 4, set

$$d^{(4)} = \sum_{i=0}^{1} c_i s_{4-i} = c_0 s_4 + c_1 s_3 = 1 \cdot 205 + 16 \cdot 29 = 0.$$

Since $d^{(4)} = 0$, we set

$$v^{(4)} = v^{(3)} = 1,$$

 $\Lambda^{(4)}(x) = \Lambda^{(3)}(x) = 1 + 16x,$
 $B^{(4)}(x) = xB^{(3)}(x) = x \cdot x^2 = x^3$

The algorithm ends and provides the desired error locator polynomial

$$\Lambda(x) = \Lambda^{(4)}(x) = 1 + 16x.$$

This error locator polynomial is handled in the same way as in the end of the Peterson-Gorenstein-Zierler Algorithm.

3.2.5 Example 5

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error vector (0,0,0,1,1,0,0,0), so that (0,0,0,0,14,54,120,64) was received. The polynomial associated to the received message is

$$s(x) = 14x^3 + 54x^2 + 120x + 64$$

The syndromes are

$$s_1 = s(2^0) = s(1) = 0,$$

$$s_2 = s(2^1) = s(2) = 24,$$

$$s_3 = s(2^2) = s(4) = 93 \text{ and }$$

$$s_4 = s(2^3) = s(8) = 247.$$

Since these are the same syndromes as in Example 3, the procedure for this algorithm will be identical. Hence, the error locator polynomial is

$$\Lambda(x) = 128x^2 + 24x + 1.$$

4 Finding Roots of Polynomials

Recall that with both decoding algorithms, to find the error positions, we must find the roots of the error locator polynomial, this is, solve the equation

$$\Lambda(x) = \prod_{j=1}^{v} (1 - X_j x) = \Lambda_v x^v + \Lambda_{v-1} x^{v-1} + \ldots + \Lambda_1 x + \Lambda_0 = 0.$$

A method to solve this system is Chien Search.

4.1 Chien Search

If we are given a polynomial $f(x) = a_0 + a_1 x + \ldots + a_t x^t$ with coefficients over the Galois field GF(256), Chien search is an algorithm that helps us with finding the roots of this polynomial. It is faster than just going through the list $0, 1, 2, \ldots, 255$ of all field elements with a simple trial-and-error approach. It works as a consequence of the following two facts:

- Any nonzero element in the Galois field GF(256) can be expressed as a power of 2.
- We can write $f(2^{i+1})$ in terms of summands that appear in the evaluation of $f(2^i)$. More precisely, call $g_{j,i} = a_j(2^i)^j$, so that

$$f(2^i) = g_{0,i} + g_{1,i} + \ldots + g_{t,i}.$$

We will obtain two properties of the $g_{j,i}$:

$$g_{j,0} = a_j (2^0)^j = a_j \cdot 1^j = a_j$$
, and $g_{j,i+1} = a_j (2^{i+1})^j = a_j 2^{(i+1)j} = a_j (2^i)^j \cdot 2^j = g_{j,i} \cdot 2^j$

This leads us to switch to a more efficient order of the operations, by following the steps of Chien search:

1. Create the table

i	$g_{0,i}$	$g_{1,i}$	$g_{2,i}$	 $g_{t,i}$	$f(2^i)$
0					
1					
2					
:					
255					

- 2. Fill the i = 0 row of the table using the rule $g_{i,0} = a_i$.
- 3. Fill the $g_{0,i}$ column of the table, using the rule $g_{0,i+1} = g_{0,i} \cdot 2^0 = g_{0,i}$. This is, the second column is identical to $g_{0,0} = a_0$.
- 4. Fill the $g_{1,i}$ column of the table, using the rule $g_{1,i+1} = g_{1,i} \cdot 2^1 = 2 \cdot g_{1,i}$. This is, for each cell, multiply its value by two to get the value in the cell immediately below.
- 5. Fill the $g_{2,i}$ column of the table, using the rule $g_{2,i+1} = g_{2,i} \cdot 2^2 = 4 \cdot g_{2,i}$. This is, for each cell, multiply its value by four to get the value in the cell immediately below.
- 6. Continue filling the $g_{0,i}, g_{1,i}, \ldots, g_{t,i}$ columns of the table in a similar way than the two previous steps. The constant factor for the $g_{j,i}$ column is 2^j , i.e., $g_{j,i+1} = 2^j \cdot g_{j,i}$.
- 7. Fill the cells of the last column by adding up the $g_{0,i}, g_{1,i}, \ldots, g_{t,i}$ columns.
- 8. Check which rows have a zero in the last column to determine the roots of the polynomial f(x).

4.1.1 Example 1

Consider that we have sent the codeword (0, 0, 0, 0, 0, 0, 0, 0), but it was transmitted with the error vector (0, 0, 0, 0, 0, 0, 1, 1), so that (0, 0, 0, 0, 0, 0, 1, 1) was received. The error locator polynomial is

$$\Lambda(x) = 2x^2 + 3x + 1.$$

Now, we fill the table as follows:

- In the row i = 0 we write the coefficients of $\Lambda(x)$: 1, 3 and 2.
- Every value in the column $g_{0,i}$ is 1.
- The cells in the column $g_{1,i}$ are filled with twice the value above, so its values are 3, 6, 12, 24, 48, 96, 192, 157, and continue doubling until the row i = 254, where the value is 143.

- The cells in the column $g_{2,i}$ are filled with four times the value above, so its values are 2, 8, 32, 128, 58, 232, 135, 38, and continue quadrupling until the row i = 254, where the value is 142.
- The last column $\Lambda(x)$ has the sum of the values in the columns $g_{0,i}, g_{1,i}$ and $g_{2,i}$. In particular,

 $\Lambda(2^0) = 1 + 3 + 2 = 0$ and $\Lambda(2^{254}) = 1 + 143 + 142 = 0$

i	2^i	$g_{0,i}$	$g_{1,i}$	$g_{2,i}$	$\Lambda(2^i)$
0	1	1	3	2	0
1	2	1	6	8	15
2	4	1	12	32	45
3	8	1	24	128	153
4	16	1	48	58	11
5	32	1	96	232	137
6	64	1	192	135	70
7	128	1	157	38	186
8	29	1	39	152	190
9	58	1	78	90	21
10	116	1	156	117	232
11	232	1	37	201	237
12	205	1	74	3	72
13	135	1	148	12	153
14	100	1	53	48	4
15	38	1	106	192	171
16	76	1	212	39	242
17	152	1	181	156	40
18	45	1	1119	74	40 60
18	45 90	1	238	53	218
$\frac{19}{20}$	90 180	1	238 193	53 212	218
					-
21	117	1	159	119 193	233
22	234	1	35		227
23	201	1	70	35	100
24	143	1	140	140	1
25	3	1	5	10	14
26	6	1	10	40	35
27	12	1	20	160	181
28	24	1	40	186	147
29	48	1	80	210	131
30	96	1	160	111	206
31	192	1	93	161	253
32	157	1	186	190	5
33	39	1	105	194	170
34	78	1	210	47	252
35	156	1	185	188	4
36	37	1	111	202	164
37	74	1	222	15	208
38	148	1	161	60	156
39	53	1	95	240	174
40	106	1	190	231	88
41	212	1	97	187	219
42	181	1	194	214	21
43	119	1	153	127	231
44	238	1	47	225	207
45	193	1	94	163	252
46	159	1	188	182	11
47	35	1	101	226	134
48	70	1	202	175	100
49	140	1	137	134	14
50	5	1	15	34	44
51	10	1	30	136	151
52	20	1	60	26	39
53	40	1	120	104	17
54	80	1	240	189	76
55	160	1	253	206	50
56	93	1	231	31	249
57	186	1	211	124	174
58	105	1	187	237	87
59	210	1	107	147	249
60	185	1	214	147	249 161
61	105	1	177	118	101
62	222	1	127	51	77
62			254	204	
03	161	1	204	204	51

i	2^i	<i>a</i> .	<i>a</i>	<i>a</i>	$\Lambda(2^i)$
64	2 95	$g_{0,i}$	$\frac{g_{1,i}}{225}$	$g_{2,i}$ 23	$\frac{n(2)}{247}$
65	190	1	223	92	130
66	97	1	163	109	207
67	194	1	91	169	243
68	153	1	182	158	41 41
69	47	1	182	158 66	41 50
70	94	1	226	21	246
71	188		217 175	84	140
72	101	1		77	227
73 74	202 137	1	67	41	$\frac{107}{35}$
		1	134	164	
75	15 30	1	17 34	$170 \\ 146$	186
76				-	177
77	60	1	68	114	55
78	120	1	136	213	92
79	240	1	13	115	127
80	253	1	26	209	202
81	231	1	52	99	86
82	211	1	104	145	248
83	187	1	208	126	175
84	107	1	189	229	89
85	214	1	103	179	213
86	177	1	206	246	57
87	127	1	129	255	127
88	254	1	31	219	197
89	225	1	62	75	116
90	223	1	124	49	76
91	163	1	248	196	61
92	91	1	237	55	219
93	182	1	199	220	26
94	113	1	147	87	197
95	226	1	59	65	123
96	217	1	118	25	110
97	175	1	236	100	137
98	67	1	197	141	73
99	134	1	151	14	152
100	17	1	51	56	10
101	34	1	102	224	135
102	68	1	204	167	106
103	136	1	133	166	34
104	13	1	23	162	180
105	26	1	46	178	157
106	52	1	92	242	175
107	104	1	184	239	86
108	208	1	109	155	247
109	189	1	218	86	141
110	103	1	169	69	237
111	206	1	79	9	71
112	129	1	158	36	187
113	31	1	33	144	176
114	62	1	66	122	57
115	124	1	132	245	112
116	248	1	21	243	231
117	237	1	42	235	192
118	199	1	84	139	222
119	147	1	168	22	191
120	59	1	77	88	20
121	118	1	154	125	230
122	236	1	41	233	193
123	197	1	82	131	208
124	151	1	164	54	147
125	51	1	85	216	140
126	102	1	170	71	236
123	204	1	73	1	73

i	2^i	$g_{0,i}$	$g_{1,i}$	$g_{2,i}$	$\Lambda(2^i)$
128	133	1	146	4	151
129	23	1	57	16	40
130	46	1	114	64	51
131	92	1	228	29	248
132	184	1	213	116	160
133	109	1	183	205	123
134	218	1	115	19	97
135	169	1	230	76	171
136	79	1	209	45	253
137	158	1	191	180	10
138	33	1	99	234	136
139	66	1	198	143	72
140	132	1	145	6	150
141	21	1	63	24	38
142	42	1	126	96	31
142	84	1	252	157	96
145	168	1	232	78	170
144	77	1	215	37	243
145	154	1	179		243 38
				148	16
147	41	1	123	106	-
148	82	1	246	181	66
149	164	1	241	238	30
150	85	1	255	159	97
151	170	1	227	70	164
152	73	1	219	5	223
153	146	1	171	20	190
154	57	1	75	80	26
155	114	1	150	93	202
156	228	1	49	105	89
157	213	1	98	185	218
158	183	1	196	222	27
159	115	1	149	95	203
160	230	1	55	97	87
161	209	1	110	153	246
162	191	1	220	94	131
163	99	1	165	101	193
164	198	1	87	137	223
165	145	1	174	30	177
166	63	1	65	120	56
167	126	1	130	253	126
168	252	1	25	211	203
169	229	1	50	107	88
170	215	1	100	177	212
171	179	1	200	254	55
172	123	1	141	223	83
173	246	1	7	91	93
174	240	1	14	113	126
$174 \\ 175$					120
110	255	1	-7×	217	
176	255 227	1	28 56	217 67	
176 177	227	1	56	67	122
177	227 219	1	56 112	67 17	122 96
177 178	227 219 171	1 1 1	56 112 224	67 17 68	122 96 165
$177 \\ 178 \\ 179$	227 219 171 75	1 1 1 1	56 112 224 221	67 17 68 13	122 96 165 209
177 178 179 180	227 219 171 75 150	1 1 1 1 1	56 112 224 221 167		$ \begin{array}{r} 122 \\ 96 \\ 165 \\ 209 \\ 146 \end{array} $
177 178 179 180 181	227 219 171 75 150 49	1 1 1 1 1 1	56 112 224 221 167 83	$ \begin{array}{r} 67 \\ 17 \\ 68 \\ 13 \\ 52 \\ 208 \end{array} $	$ \begin{array}{r} 122 \\ 96 \\ 165 \\ 209 \\ 146 \\ 130 \\ \end{array} $
177 178 179 180 181 182	227 219 171 75 150 49 98	1 1 1 1 1 1 1	56 112 224 221 167 83 166	$ \begin{array}{r} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ \end{array} $	$ \begin{array}{r} 122 \\ 96 \\ 165 \\ 209 \\ 146 \\ 130 \\ 192 \\ \end{array} $
177 178 179 180 181 182 183	227 219 171 75 150 49 98 196	1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81	$ \begin{array}{r} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ \end{array} $	122 96 165 209 146 130 192 209
$ \begin{array}{r} 177 \\ 178 \\ 179 \\ 180 \\ 181 \\ 182 \\ 183 \\ 184 \\ \end{array} $	227 219 171 75 150 49 98 196 149	1 1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81 162	$ \begin{array}{r} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ 62\\ \end{array} $	$ \begin{array}{r} 122\\ 96\\ 165\\ 209\\ 146\\ 130\\ 192\\ 209\\ 157\\ \end{array} $
$ \begin{array}{r} 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 182\\ 183\\ 184\\ 185\\ \end{array} $	227 219 171 75 150 49 98 196 149 55	1 1 1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81 162 89	$\begin{array}{r} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ 62\\ 248\\ \end{array}$	$ \begin{array}{r} 122 \\ 96 \\ 165 \\ 209 \\ 146 \\ 130 \\ 192 \\ 209 \\ 157 \\ 160 \\ \end{array} $
$\begin{array}{r} 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 183\\ 184\\ 185\\ 186\\ \end{array}$	$\begin{array}{c} 227\\ 219\\ 171\\ 75\\ 150\\ 49\\ 98\\ 196\\ 149\\ 55\\ 110\\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81 162 89 178	$\begin{array}{c} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ 62\\ 248\\ 199\\ \end{array}$	$\begin{array}{r} 122\\ 96\\ 165\\ 209\\ 146\\ 130\\ 192\\ 209\\ 157\\ 160\\ 116\\ \end{array}$
$\begin{array}{r} 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 183\\ 184\\ 185\\ 186\\ 187\\ \end{array}$	$\begin{array}{c} 227\\ 219\\ 171\\ 75\\ 150\\ 49\\ 98\\ 196\\ 149\\ 55\\ 110\\ 220\\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81 162 89 178 121	$\begin{array}{c} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ 62\\ 248\\ 199\\ 59\\ \end{array}$	$\begin{array}{r} 122\\ 96\\ 165\\ 209\\ 146\\ 130\\ 192\\ 209\\ 157\\ 160\\ 116\\ 67\\ \end{array}$
$\begin{array}{r} 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 183\\ 184\\ 185\\ 186\\ 187\\ 188\\ \end{array}$	$\begin{array}{c} 227\\ 219\\ 171\\ 75\\ 150\\ 49\\ 98\\ 196\\ 149\\ 55\\ 110\\ 220\\ 165\\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81 162 89 178 121 242	$\begin{array}{c} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ 62\\ 248\\ 199\\ 59\\ 236\\ \end{array}$	$\begin{array}{r} 122\\ 96\\ 165\\ 209\\ 146\\ 130\\ 192\\ 209\\ 157\\ 160\\ 116\\ 67\\ 31\\ \end{array}$
$\begin{array}{r} 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 183\\ 184\\ 185\\ 186\\ 187\\ 188\\ 189\\ \end{array}$	$\begin{array}{c} 227\\ 219\\ 171\\ 75\\ 150\\ 49\\ 98\\ 196\\ 149\\ 55\\ 110\\ 220\\ 165\\ 87\\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81 162 89 178 121 242 249	$\begin{array}{c} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ 62\\ 248\\ 199\\ 59\\ 236\\ 151\\ \end{array}$	$\begin{array}{r} 122\\ 96\\ 165\\ 209\\ 146\\ 130\\ 192\\ 209\\ 157\\ 160\\ 116\\ 67\\ 31\\ 111\\ \end{array}$
$\begin{array}{r} 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 183\\ 184\\ 185\\ 186\\ 187\\ 188\\ \end{array}$	$\begin{array}{c} 227\\ 219\\ 171\\ 75\\ 150\\ 49\\ 98\\ 196\\ 149\\ 55\\ 110\\ 220\\ 165\\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56 112 224 221 167 83 166 81 162 89 178 121 242	$\begin{array}{c} 67\\ 17\\ 68\\ 13\\ 52\\ 208\\ 103\\ 129\\ 62\\ 248\\ 199\\ 59\\ 236\\ \end{array}$	$\begin{array}{r} 122\\ 96\\ 165\\ 209\\ 146\\ 130\\ 192\\ 209\\ 157\\ 160\\ 116\\ 67\\ 31\\ \end{array}$

i	2^i	<i>a</i> o :	$g_{1,i}$	<i>do</i> :	$\Lambda(2^i)$
192	130	$g_{0,i}$	$\frac{91,i}{155}$	$\frac{g_{2,i}}{46}$	180
192	25	1	43	184	146
195	50	1	86	218	140
$194 \\ 195$	100	1	172	79	226
$195 \\ 196$	200	1	69	33	101
			138		
197 198	141	1	138 9	132 42	15 34
	7	_	-		-
199 200	14	1	18	168	187
	28	1	36	154	191
201	56	1	72	82	27
202	112	1	144	85	196
203	224	1	61	73	117
204	221	1	122	57	66
205	167	1	244	228	17
206	83	1	245	183	67
207	166	1	247	230	16
208	81	1	243	191	77
209	162	1	251	198	60
210	89	1	235	63	213
211	178	1	203	252	54
212	121	1	139	215	93
213	242	1	11	123	113
214	249	1	22	241	230
215	239	1	44	227	206
216	195	1	88	171	242
217	155	1	176	150	39
218	43	1	125	98	30
219	86	1	250	149	110
220	172	1	233	110	134
221	69	1	207	165	107
222	138	1	131	174	44
223	9	1	27	130	152
223	18	1	54	50	5
225	36	1	108	200	165
226	72	1	216	7	222
220	144	1	173	28	176
228	61	1	71	112	54
229	122	1	142	221	82
230	244	1	142	83	83
230	244 245	1	2	81	82
$\frac{231}{232}$	245	1	4	89	92
232	247	1	4 8	89 121	92 112
233	243 251				232
-		1	16	249	-
235	235	1	32	195	226
236	203	1	64	43	106
237	139	1	128	172	45
238	11	1	29	138	150
239	22	1	58	18	41
240	44	1	116	72	61
241	88	1	232	61	212
242	176	1	205	244	56
243	125	1	135	247	113
244	250	1	19	251	233
245	233	1	38	203	236
246	207	1	76	11	70
247	131	1	152	44	181
248	27	1	45	176	156
249	54	1	90	250	161
250	108	1	180	207	122
		-1	117	27	111
251	216	1	111		
251 252	216 173	1	234	108	135
252	173	1	234	108	135

We only have two roots of $\Lambda(x)$: $1 = 2^0 = 1^{-1}$ and $142 = 2^{254} = 2^{-1}$. Thus, the error positions are $\log_2(1) = \log_2(2^0) = 0$ and $\log_2(2) = \log_2(2^1) = 1$.

Shortcut: Recall that $\Lambda(x) = 2x^2 + 3x + 1$ and note that the binary representation of 3 is (0, 0, 0, 0, 0, 0, 1, 1). This suggests that the error positions are 0 and 1, which is equivalent to the factorization

$$\Lambda(x) = (1 + 2^0 x)(1 + 2^1 x).$$

To confirm this, note that the sum and product of $2^0 = 1$ and $2^1 = 2$ are as follows:

Sum:

	0	0	0	0	0	0	1	0	2
+	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	0	1	1	3

This is, the sum 2 + 1 is $\Lambda_1 = 3$.

Product:

 $2 \cdot 1 = 2$, which is Λ_2 .

Note that checking all the elements of GF(256) for roots consumes a lot of operations, even if we use Chien search. The following key observations help with finding the error positions faster.

Observation 1: Recall that the error locator polynomial helps us with finding the error positions; so we only have 8 possible roots of $\Lambda(x)$:

 $(2^{0})^{-1} = 2^{0}, \quad (2^{1})^{-1} = 2^{254}, \quad (2^{2})^{-1} = 2^{253}, \quad (2^{3})^{-1} = 2^{252}, \quad (2^{4})^{-1} = 2^{251},$ $(2^{5})^{-1} = 2^{250}, \quad (2^{6})^{-1} = 2^{249}, \text{ and } (2^{7})^{-1} = 2^{248}.$

Observation 2: Consider a polynomial of degree 2, $f(x) = (1+ax)(1+bx) = 1+(a+b)x+abx^2$, over GF(256). The roots of f are a^{-1} and b^{-1} .

Now introduce the *reciprocal polynomial* $f^*(x)$ as follows:

$$f^{*}(x) = ab + (a+b)x + x^{2} = (a+x)(b+x)$$

That is, we reverse the order of the coefficients. Since a + a = 0 and b + b = 0, we have that the roots of $f^*(x)$ are $a = (a^{-1})^{-1}$ and $b = (b^{-1})^{-1}$.

In conclusion, reversing the order of the coefficients provokes an inversion of the roots. For instance, in **Example 1** we found that $2x^2 + 3x + 1$ has roots 1 and 142. Then, $x^2 + 3x + 2$ has roots $1^{-1} = 1$ and $142^{-1} = 2$.

Observation 3: From Observation 1, the possible roots for $\Lambda^*(x)$ are:

 2^0 , 2^1 , 2^2 , 2^3 , 2^4 , 2^5 , 2^6 , and 2^7 .

These observations motivate the following procedure for finding the error positions.

- Find the reciprocal error locator polynomial $\Lambda^*(x)$.
- Apply Chien search to $\Lambda^*(x)$, but only complete the table for the rows i = 0, 1, 2, 3, 4, 5, 6, 7.

Note: The conclusion of **Observation 2** also holds for polynomials of degree 1, f(x) = 1 + ax, with the *reciprocal polynomial* $f^*(x) = a + x$; so we can proceed by the method above in the case where the degree of the error locator polynomial is 1.

The Chien search for reciprocal error locator polynomial $\Lambda^*(x) = x^2 + 3x + 2$ produces the following chart:

i	2^i	$g_{0,i}$	$g_{1,i}$	$g_{2,i}$	$\Lambda^*(2^i)$
0	1	2	3	1	0
1	2	2	6	4	0
2	4	2	12	16	30
3	8	2	24	64	90
4	16	2	48	29	47
5	32	2	96	116	22
6	64	2	192	205	15
7	128	2	157	19	140

This confirms the errors in the 0th and 1st positions.

4.1.2 Example 2

Consider that we have sent the codeword (0, 0, 0, 0, 0, 0, 0, 0), but it was transmitted with the error vector (1, 1, 0, 0, 0, 0, 0), so that (1, 1, 0, 0, 0, 0, 0, 0) was received. The error locator polynomial is

$$\Lambda(x) = 135x^2 + 192x + 1.$$

The reciprocal error locator polynomial $\Lambda^*(x)$ is

$$\Lambda^*(x) = x^2 + 192x + 135.$$

The chart of the left is generated following Chien search for the error locator polynomial $\Lambda(x)$

- In the row i = 0 we write the coefficients of $\Lambda(x)$: 1, 192 and 135.
- In the row i = 248 goes 1, $192 \cdot 2^{248} = 192 \cdot 27 = 143$ and $135 \cdot 4^{248} = 135 \cdot 88 = 142$.
- Every value in the column $g_{0,i}$ is 1.
- Fill the missing in the column $g_{1,i}$ with twice the value above, so complete with the values 3, 6, 12, 24, 48 and 96.
- Fill the missing in the column $g_{2,i}$ with four times the value above, so complete with the values 2, 8, 32, 128, 58 and 232.
- The last column $\Lambda(2^i)$ has the sum of the values in the columns $g_{0,i}, g_{1,i}$ and $g_{2,i}$. In particular,

$$\Lambda(2^{248}) = 1 + 143 + 142 = 0$$
 and $\Lambda(2^{249}) = 1 + 3 + 2 = 0.$

The table of the right is filled by Chien search for the reciprocal error locator polynomial $\Lambda^*(x)$

- In the row i = 0 we write the coefficients of $\Lambda^*(x)$: 135, 192 and 1.
- Every value in the column $g_{0,i}$ is 135.
- The cells in the column $g_{1,i}$ are filled with twice the value above, so its values are 192, 157, 39, 78, 156, 37, 74 and 148.
- The cells in the column $g_{2,i}$ are filled with four times the value above, so its values are 1, 4, 16, 64, 29, 116, 205 and 19.
- The last column $\Lambda^*(2^i)$ has the sum of the values in the columns $g_{0,i}, g_{1,i}$ and $g_{2,i}$. In particular,

 $\Lambda^*(2^6) = 135 + 74 + 205 = 0$ and $\Lambda^*(2^7) = 135 + 148 + 19 = 0.$

i	2^i	$g_{0,i}$	$g_{1,i}$	$g_{2,i}$	$\Lambda(2^i)$
0	1	1	192	135	70
248	27	1	143	142	0
249	54	1	3	2	0
250	108	1	6	8	15
251	216	1	12	32	45
252	173	1	24	128	153
253	71	1	48	58	11
254	142	1	96	232	137

i	2^i	$g_{0,i}$	$g_{1,i}$	$g_{2,i}$	$\Lambda^*(2^i)$
0	1	135	192	1	70
1	2	135	157	4	30
2	4	135	39	16	176
3	8	135	78	64	137
4	16	135	156	29	6
5	32	135	37	116	178
6	64	135	74	205	0
7	128	135	148	19	0

There are two roots of $\Lambda(x)$: 54 = 64⁻¹ and 27 = 128⁻¹; and two roots of $\Lambda^*(x)$, which are 2⁶ = 64 and 2⁷ = 128.

Thus, the error positions are $\log_2(64) = \log_2(2^6) = 6$ and $\log_2(128) = \log_2(2^7) = 7$.

Shortcut: Recall that $\Lambda(x) = 135x^2 + 192x + 1$ and note that the binary representation of 192 is (1, 1, 0, 0, 0, 0, 0, 0). This suggests that the error positions are 6 and 7, which is equivalent to the factorization

$$\Lambda(x) = (1 + 2^6 x)(1 + 2^7 x)$$

To confirm this, note that the sum and product of $2^6 = 64$ and $2^7 = 128$ are as follows:

Sum:

	1	0	0	0	0	0	0	0	128
+	0	1	0	0	0	0	0	0	64
	1	1	0	0	0	0	0	0	192

This is, the sum 128 + 64 is $\Lambda_1 = 192$.

128

Product:

$$\begin{array}{ll} \cdot 64 = 128 \cdot 2^{6} \\ = (1,0,0,0,0,0,0,0) \cdot 2^{6} \\ = (0,0,0,1,1,1,0,1) \cdot 2^{5} \\ = (0,0,1,1,1,0,1,0) \cdot 2^{4} \\ = (0,1,1,1,0,1,0,0) \cdot 2^{3} \\ = (1,1,1,0,1,0,0,0) \cdot 2^{2} \\ = (1,1,0,0,1,1,0,1) \cdot 2 \\ = (1,0,0,0,0,1,1,1) \\ = 135 = \Lambda_{2} \end{array}$$

4.1.3 Example 3

Consider that we have sent the codeword (0,0,0,0,0,0,0,0), but it was transmitted with the error vector (0,0,0,1,1,0,0,0), so that (0,0,0,1,1,0,0,0) was received. The error locator polynomial is

$$\Lambda(x) = 128x^2 + 24x + 1$$

The reciprocal error locator polynomial $\Lambda^*(x)$ is

$$\Lambda^*(x) = x^2 + 24x + 128.$$

The chart of the left is generated following Chien search for the error locator polynomial $\Lambda(x)$

- In the row i = 0 we write the coefficients of $\Lambda(x)$: 1, 24 and 128.
- In the row i = 248 goes 1, $24 \cdot 2^{248} = 24 \cdot 27 = 117$ and $128 \cdot 4^{248} = 128 \cdot 88 = 27$.
- Every value in the column $g_{0,i}$ is 1.
- Fill the missing in the column $g_{1,i}$ with twice the value above, so complete with the values 234, 201, 143, 3, 6 and 12.
- Fill the missing in the column $g_{2,i}$ with four times the value above, so complete with the values 108, 173, 142, 2, 8 and 32.
- The last column $\Lambda(2^i)$ has the sum of the values in the columns $g_{0,i}, g_{1,i}$ and $g_{2,i}$. In particular,

 $\Lambda(2^{251}) = 1 + 143 + 142 = 0$ and $\Lambda(2^{252}) = 1 + 3 + 2 = 0$.

The table of the right is filled by Chien search for the reciprocal error locator polynomial $\Lambda^*(x)$

- In the row i = 0 we write the coefficients of $\Lambda^*(x)$: 128, 24 and 1.
- Every value in the column $g_{0,i}$ is 128.
- The cells in the column $g_{1,i}$ are filled with twice the value above, so its values are 24, 48, 96, 192, 157, 39, 78 and 156.
- The cells in the column $g_{2,i}$ are filled with four times the value above, so its values are 1, 4, 16, 64, 29, 116, 205 and 19.
- The last column $\Lambda^*(2^i)$ has the sum of the values in the columns $g_{0,i}, g_{1,i}$ and $g_{2,i}$. In particular,

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	2^i	$g_{0,i}$	$g_{1,i}$	$g_{2,i}$	$\Lambda(2^i)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	24	128	153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	248	27	1	117	27	111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	249	54	1	234	108	135
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250	108	1	201	173	101
53 71 1 6 8 15 6 6	251	216	1	143	142	0
	252	173	1	3	2	0
$54 ext{ } 142 ext{ } 1 ext{ } 12 ext{ } 32 ext{ } 45 ext{ } 7 ext{ } 12$	253	71	1	6	8	15
	254	142	1	12	32	45

$$\Lambda^*(2^3) = 128 + 192 + 64 = 0$$
 and $\Lambda^*(2^4) = 128 + 157 + 29 = 0$

 $\Lambda^*(2^i)$

153

180

240

0

0

211

3

15

 $g_{2,i}$

4

16

64

29

116

205

19

There are two roots of $\Lambda(x)$: 173 = 8⁻¹ and 216 = 16⁻¹; and two roots of $\Lambda^*(x)$, which are $2^3 = 8$ and $2^4 = 16$. Thus, the error positions are $\log_2(8) = \log_2(2^3) = 3$ and $\log_2(16) = \log_2(2^4) = 4$.

Shortcut: Recall that $\Lambda(x) = 128x^2 + 24x + 1$ and note that the binary representation of 24 is (0, 0, 0, 1, 1, 0, 0, 0). This suggests that the error positions are 3 and 4, which is equivalent to the factorization

$$\Lambda(x) = (1+2^3x)(1+2^4x).$$

To confirm this, note that the sum and product of $2^3 = 8$ and $2^4 = 16$ are as follows:

Sum:

	0	0	0	1	0	0	0	0	16
+	0	0	0	0	1	0	0	0	$\frac{16}{8}$
	0	0	0	1	1	0	0	0	24

This is, the sum 16 + 8 is $\Lambda_1 = 24$.

Product:

$16 \cdot 8 = 16 \cdot 2^3$	
$= (0, 0, 0, 1, 0, 0, 0, 0) \cdot 2^3$	
$= (0, 0, 1, 0, 0, 0, 0, 0) \cdot 2^2$	$16 \cdot 2 = 32$
$= (0, 1, 0, 0, 0, 0, 0, 0) \cdot 2$	$32 \cdot 2 = 64$
=(1,0,0,0,0,0,0,0,0)	$64 \cdot 2 = 128$
$= 128 = \Lambda_2$	

4.1.4 Example 4

Consider that we have sent the codeword (0,0,0,1,15,54,120,64), but it was transmitted with the error vector (0,0,0,1,0,0,0,0), so that (0,0,0,0,15,54,120,64) was received. The error locator polynomial is

$$\Lambda(x) = 16x + 1.$$

The reciprocal error locator polynomial $\Lambda^*(x)$ is

$$\Lambda^*(x) = x + 16$$

The chart of the left is generated following Chien search for the error locator polynomial $\Lambda(x)$

- In the row i = 0 we write the coefficients of $\Lambda(x)$: 1 and 16.
- In the row i = 248 goes 1, and $16 \cdot 2^{248} = 16 \cdot 27 = 173$.
- Every value in the column $g_{0,i}$ is 1.
- Fill the missing in the column $g_{1,i}$ with twice the value above, so complete with the values 71, 142, 1, 2, 4 and 8.
- The last column $\Lambda(2^i)$ has the sum of the values in the columns $g_{0,i}$ and $g_{1,i}$. In particular,

$$\Lambda(2^{251}) = 1 + 1 = 0.$$

The table of the right is filled by Chien search for the reciprocal error locator polynomial $\Lambda^*(x)$

- In the row i = 0 we write the coefficients of $\Lambda^*(x)$: 16 and 1.
- Every value in the column $g_{0,i}$ is 16.
- The cells in the column $g_{1,i}$ are filled with twice the value above, so its values are 1, 2, 4, 8, 16, 32, 64 and 128.
- The last column $\Lambda^*(2^i)$ has the sum of the values in the columns $g_{0,i}$ and $g_{1,i}$. In particular,

$$\Lambda^*(2^4) = 16 + 16 = 0.$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	2^i	$g_{0,i}$	$g_{1,i}$	$\Lambda(2^i)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	16	17
250 108 1 142 143 251 216 1 1 0 252 173 1 2 3 253 71 1 4 5	248	27	1	173	172
251 216 1 1 0 252 173 1 2 3 253 71 1 4 5	249	54	1	71	70
252 173 1 2 3 253 71 1 4 5	250	108	1	142	143
253 71 1 4 5	251	216	1	1	0
	252	173	1	2	3
254 142 1 8 9	253	71	1	4	5
	254	142	1	8	9

i	2^i	$g_{0,i}$	$g_{1,i}$	$\Lambda^*(2^i)$
0	1	16	1	17
1	2	16	2	18
2	4	16	4	20
3	8	16	8	24
4	16	16	16	0
5	32	16	32	48
6	64	16	64	70
7	128	16	128	144

There is only one root of $\Lambda(x)$: 216 = 16⁻¹; and only one root of $\Lambda^*(x)$, which is $2^4 = 16$. Thus, the error position is $\log_2(16) = \log_2(2^4) = 4$.

Advice: To find the error positions faster, use Chien search for the reciprocal error locator polynomial. With this strategy, you can predict the values in the column $g_{2,i}$, since $\Lambda_0 = 1$ for any error locator polynomial; so you don't need to calculate the values in that column.

5 Finding Error Values

Recall that the error locator polynomial is

$$\Lambda(x) = \prod_{j=1}^{v} (1 - X_j x) = \Lambda_v x^v + \Lambda_{v-1} x^{v-1} + \ldots + \Lambda_1 x + \Lambda_0 = 0.$$

The process of finding the error polynomial e(x) requires finding the roots of $\Lambda(x)$ to locate the positions of the errors. Then, we must find the coefficients of e(x) in the found positions. A suitable method is provided by the Forney Algorithm.

Remark: Recall that we have $e(x) = \sum_{j=1}^{v} e_{k_j} x^{k_j}$ with $k_j = \log_2(X_j)$, see Section 3.1.

5.1 Forney Algorithm

For this algorithm, we must introduce some polynomials.

The partial syndromes polynomial:

$$S(x) = s_1 + s_2 x + s_3 x^2 + \ldots + s_{2t} x^{2t-1}$$

The formal derivative of $\Lambda(x)$:

$$\Lambda'(x) = \frac{\sum_{i \text{ odd }} \Lambda_i x^i}{x} = \Lambda_1 + \Lambda_3 x^2 + \Lambda_5 x^4 \dots$$

Caution: Our formula for the derivative applies to GF(256) and differs from the one used in a Basic Calculus course!

The error evaluator polynomial:

$$\Omega(x) = S(x)\Lambda(x) \mod x^{2t},$$

where $\mod x^{2t}$ means that any power of x higher or equal than 2t can be replaced by a zero. Then the error values are:

$$e_{k_j} = \frac{X_j \cdot \Omega(X_j^{-1})}{\Lambda'(X_j^{-1})}$$
(6)

5.1.1 Example 1

Last section, we found that there are errors in the 0th and 1st positions. Now we will find the error values. We have t = 2 and error locator polynomial $\Lambda(x) = 2x^2 + 3x + 1 = (1 + 2x)(1 + x)$. The syndromes are

$$s_1 = 0$$
, $s_2 = 3$, $s_3 = 5$, and $s_4 = 9$.

The partial syndromes polynomial is:

$$S(x) = 3x + 5x^2 + 9x^3$$

The formal derivative is:

$$\Lambda'(x) = (2x^2 + 3x + 1)' = \frac{3x}{x} = 3$$

The error evaluator polynomial is:

$$\Omega(x) = (3x + 5x^2 + 9x^3)(2x^2 + 3x + 1) \mod x^4$$

= $(6x^3 + 10x^4 + 18x^5) + (5x^2 + 15x^3 + 27x^4) + (3x + 5x^2 + 9x^3) \mod x^4$
= $18x^5 + (10 + 27)x^4 + (6 + 15 + 9)x^3 + (5 + 5)x^2 + 3x \mod x^4$
= $18x^5 + 17x^4 + 3x \mod x^4$
= $3x$

To obtain the error values, we use formula (6) with $X_1 = 1$ and $X_2 = 2$. For $X_1 = 1$, we have $X_1^{-1} = 1$; so,

$$e_{k_1} = \frac{X_1 \cdot \Omega(X_1^{-1})}{\Lambda'(X_1^{-1})} = \frac{1 \cdot \Omega(1)}{\Lambda'(1)} = \frac{1 \cdot (3 \cdot 1)}{3} = \frac{3}{3} = 1.$$

For $X_2 = 2$, we have $X_2^{-1} = 142$; so,

$$e_{k_2} = \frac{X_1 \cdot \Omega(X_1^{-1})}{\Lambda'(X_1^{-1})} = \frac{2 \cdot \Omega(142)}{\Lambda'(142)} = \frac{2 \cdot (3 \cdot 142)}{3} = \frac{3}{3} = 1$$

Thus, the error polynomial is e(x) = x + 1.

5.1.2 Example 2

Last section, we found that there are errors in the 6th and 7th positions. Now we will find the error values. We have t = 2 and error locator polynomial $\Lambda(x) = 135x^2 + 192x + 1 = (1 + 64x)(1 + 128x)$. The syndromes are

$$s_1 = 0$$
, $s_2 = 192$, $s_3 = 222$, and $s_4 = 88$.

The partial syndromes polynomial is:

$$S(x) = 192x + 222x^2 + 88x^3$$

The formal derivative is:

$$\Lambda'(x) = \left(135x^2 + 192x + 1\right)' = \frac{192x}{x} = 192$$

The error evaluator polynomial is:

$$\Omega(x) = (192x + 222x^2 + 88x^3)(135x^2 + 192x + 1) \mod x^4$$

$$= (238x^{3} + 15x^{4} + 142x^{5}) + (222x^{2} + 182x^{3} + 152x^{4}) + (192x + 222x^{2} + 88x^{3}) \mod x^{4}$$

= $142x^{5} + (15 + 152)x^{4} + (238 + 182 + 88)x^{3} + (222 + 222)x^{2} + 192x \mod x^{4}$
= $142x^{5} + 151x^{4} + 142x \mod x^{4}$
= $192x$

To obtain the error values, we use formula (6) with $X_1 = 64$ and $X_2 = 128$. For $X_1 = 64$, we have $X_1^{-1} = 54$; so,

$$e_{k_1} = \frac{X_1 \cdot \Omega(X_1^{-1})}{\Lambda'(X_1^{-1})} = \frac{64 \cdot \Omega(54)}{\Lambda'(54)} = \frac{64 \cdot (192 \cdot 54)}{192} = \frac{192}{192} = 1.$$

For $X_2 = 128$, we have $X_2^{-1} = 27$; so,

$$e_{k_2} = \frac{X_1 \cdot \Omega(X_1^{-1})}{\Lambda'(X_1^{-1})} = \frac{128 \cdot \Omega(27)}{\Lambda'(27)} = \frac{128 \cdot (192 \cdot 27)}{192} = \frac{192}{192} = 1$$

Thus, the error polynomial is $e(x) = x^7 + x^6$.

5.1.3 Example 3

Last section, we found that there are errors in the 3rd and 4th positions. Now we will find the error values. We have t = 2 and error locator polynomial $\Lambda(x) = 128x^2 + 24x + 1 = (1 + 16x)(1 + 8x)$. The syndromes are

$$s_1 = 0$$
, $s_2 = 24$, $s_3 = 93$, and $s_4 = 247$

The partial syndromes polynomial is:

$$S(x) = 24x + 93x^2 + 247x^3$$

The formal derivative is:

$$\Lambda'(x) = (128x^2 + 24x + 1)' = \frac{24x}{x} = 24$$

The error evaluator polynomial is:

$$\begin{aligned} \Omega(x) &= (24x + 93x^2 + 247x^3)(128x^2 + 24x + 1) \mod x^4 \\ &= (156x^3 + 161x^4 + 22x^5) + (93x^2 + 107x^3 + 32x^4) + (24x + 93x^2 + 247x^3) \mod x^4 \\ &= 22x^5 + (161 + 32)x^4 + (156 + 107 + 247)x^3 + (93 + 93)x^2 + 24x \mod x^4 \\ &= 22x^5 + 129x^4 + 24x \mod x^4 \\ &= 24x \end{aligned}$$

To obtain the error values, we use formula (6) with $X_1 = 8$ and $X_2 = 16$. For $X_1 = 8$, we have $X_1^{-1} = 173$; so,

$$e_{k_1} = \frac{X_1 \cdot \Omega(X_1^{-1})}{\Lambda'(X_1^{-1})} = \frac{8 \cdot \Omega(173)}{\Lambda'(173)} = \frac{8 \cdot (24 \cdot 173)}{24} = \frac{24}{24} = 1.$$

For $X_2 = 16$, we have $X_2^{-1} = 216$; so,

$$e_{k_2} = \frac{X_1 \cdot \Omega(X_1^{-1})}{\Lambda'(X_1^{-1})} = \frac{16 \cdot \Omega(216)}{\Lambda'(216)} = \frac{16 \cdot (24 \cdot 216)}{24} = \frac{24}{24} = 1.$$

Thus, the error polynomial is $e(x) = x^4 + x^3$.

5.1.4 Example 4

Last section, we found that there is an error in the 4th position. Now we will find the error value. We have t = 2 and error locator polynomial $\Lambda(x) = 1 + 16x$. The syndromes are

$$s_1 = 1$$
, $s_2 = 16$, $s_3 = 29$, and $s_4 = 205$.

The partial syndromes polynomial is:

$$S(x) = 1 + 16x + 29x^2 + 205x^3$$

The formal derivative is:

$$\Lambda'(x) = (16x+1)' = \frac{16x}{x} = 16$$

The error evaluator polynomial is:

$$\Omega(x) = (1 + 16x + 29x^2 + 205x^3)(1 + 16x) \mod x^4$$

= $(1 + 16x + 29x^2 + 205x^3) + (16x + 29x^2 + 205x^3 + 76x^4) \mod x^4$
= $76x^4 + (205 + 205)x^3 + (29 + 29)x^2 + (16 + 16)x + 1 \mod x^4$
= $76x^4 + 1 \mod x^4$
= 1

To obtain the error value, we use formula (6) with $X_1 = 16$. We have $X_1^{-1} = 216$; so,

$$e_{k_1} = \frac{X_1 \cdot \Omega(X_1^{-1})}{\Lambda'(X_1^{-1})} = \frac{16 \cdot \Omega(216)}{\Lambda'(216)} = \frac{16 \cdot 1}{16} = \frac{16}{16} = 1.$$

Thus, the error polynomial is $e(x) = x^4$.