

Updates for Spring 2025

- Expanded Gambler First Nations Partnership for Clean Fuels Bio-Hydrogen/Bio-Carbon/Syngas
- Canadian Engineering Firm Appointed (Hatch.com)
- SCWS-sponsored Government-Industry-Academic Forum to Demonstrate Our NASA SCW System
- UK Memorandum of Understanding for a 30-ton SCWS Facility

WATER SYSTEMS

BIO-HYDROGEN™, BIO-SYNGAS™ & Bio-CARBON

Via Hydrothermal Gasification of Organic Wastes Using Any Water Zero-Carbon, Energy-Efficient, Low Opex

SuperCritical Water Systems

- Zero-carbon, flexible, scalable platform using any water source with multiple applications and end-products
- Profitably transforms low-value materials and waste into high-value commodities:
 - BIO-HYDROGEN, BIO-CARBON & BIO-SYNGAS
 - many other chemicals using advanced catalysis
- Provides its own 100% renewable energy (biocarbon)
- Creates a huge impact on advancing the circular economy

SuperCritical Water Systems (SCWS)

Our Vision

To deploy the world's premier ultra-green hydrogen and biocarbon co-production ZERO-CARBON technology to process virtually ALL solid-liquid-mixed organic wastes and at the cost of grey H₂

Our Mission

To accelerate the worldwide transition to an ESG-focused circular economy through economical, ecological and profitable waste conversion to ZERO-CARBON bio-hydrogen, bio-syngas and bio-carbon.

Net Zero BIO-HYDROGEN Summary

SuperCritical Water Systems (hydrothermal gasification) offers the most efficient, flexible, eco-friendly (no emissions/effluents), profitable, 100% zero-carbon <u>alternative</u> to producing "clean" H_2 via electrolysis (Green H_2), steam-reformed natural gas with CO_2 sequestration (Blue H_2), methane pyrolysis (Turquoise H_2) or "net zero" methods.

Developed over 22 years at leading Canadian universities in collaboration with NASA, our proven SCW-hydrothermal gasification and world-class catalytics profitably extract hydrogen and carbon from ANY organic waste (solid/liquid/mixed) on a small footprint – producing valuable biocarbon instead of undesirable CO₂.

We can produce our own renewable power by using biocarbon to generate all electricity. Our process uses 1/6 of the energy and 1/3 of the water of electrolysis at 50% of the capex. SCW is cheaper, cleaner, and safer than steam reforming and every other commercial scale method we have identified when using waste tires or whole sugar cane as feedstock.

Net Zero BIO-HYDROGEN, BIO-CARBON & BIO-SYNGAS At Lower Cost Than Green, Grey, Blue or Other Hydrogen Production Methods

BIO-HYDROGEN Cheaper Than Blue

H₂ from supercritical water is *ULTRA-GREEN* and carbon neutral/negative:

- Converts any carbonaceous waste to 99.2% pure H₂ and C (pure carbon)
- 30 metric tons per day reactor modules have small footprint and few moving parts
- H₂ produced on-demand or continuously
- Low capex & opex
- Superior mass-energy balance
- Low energy consumption
- Uses far less UNFILTERED water (recycling)
- Uses ANY water sewage, industrial, etc.
- No effluents or emissions
- Project construction/operation within 7-8 months of permitting
- Simple maintenance takes only 10 days/year

ULTRA-GREEN

Bio-H₂ from supercritical water processing of carbon-hydrogen containing waste with low energy use, low water use/total recycling, pure carbon by-product & virtually no effluents or emissions

Market Opportunity: Projected Global Demand for H₂ to 2050

Assumes +2 C temperature increase by 2050

© Statista 2021

SuperCritical Water Systems (SCWS) Company Background

- In 2021 SCWS Inc. was formed as a R&D company to commercialize the technology while retaining multiple university ties and qualifying for grants.
- The Company offers the most efficient, flexible, eco-friendly/zero-carbon, and profitable alternative to electrolysis for green hydrogen production using proven, proprietary super critical water *hydro-thermal gasification* to extract hydrogen and biocarbon from ANY organic wastes (solid/liquid/mixed).
- Company R&D is now headquartered in Thunder Bay, Ontario, to take advantage of our state-of-the-art facilities at the Lakehead University Department of Engineering and Computer Science where Professor Kozinski is Dean of the Faculty.

Near-term SCWS Activities

- We are applying for a Canadian Government FEED grant under the Clean Fuels initiative to cover 75% of the engineering PDP costs for our next-gen 30-mton per day CDU (Commercial Demonstration Unit) currently being engineered by Hatch Engineering (Calgary) based on our 2-mton per day reactor (TRL = 7) and our NASA commercial product (TRL-9).
- Following completion of the engineering work, a second grant application for CDN\$60M to cover 75% of costs will be made to Clean Fuels for a building-operating a 30-tpd CDU to produce biocarbon, H₂ and syngas from waste tires in partnership with *Gambler First Nations* (Manitoba, Canada.
- Our prior experience and advanced modeling predict no issues with scaling the CDU to 30-tpd modules.

SuperCritical Water Systems Leadership Team

Dr Janusz Kozinski
Co-Founder and Chairman of the Board
Dean, Faculty of Engineering, Lakehead University

Paul Roach
Director and Waste Management Expert

Dr Richard C. Newbold, III
Co-Founder, Interim President
and Science Advisor

Joseph R. Mallon, JD

Director and Corporate Counsel (USA)

Dr Mary A. Parenti
SCWS Executive Marketing Consultant

Jim Smutnik, MS (Taxation)
Financial Director and Comptroller

SuperCritical Water Systems Consultants & Scientific Advisory Board

Dr Ben Lashkari
Technology and Climate Expert

Kenneth Hamilton
Biocarbon Agricultural Applications
& Soil Amendment Expert

Jere S. Hull
Project Development and Management

Liz Grieco, JD

Business Development Consultant

SCWS Scientific & Technical Team

Prof. Ajay K. Dalai
Senior Scientist - Catalysis
Distinguished Professor and Canada
Research Chair,
Chemical and Biological Engineering
University of Saskatchewan,
Saskatoon, SK, Canada

Prof. Sonil Nanda
Senior Technologist - Biocarbon
Assistant Professor of
Engineering (Agricultural
Campus)
Dalhousie University, Halifax,
Nova Scotia, Canada

Prof. Baris Yilmaz
Senior Engineering Scientist - Catalysis
Assoc. Prof. of Engineering, Marmara
University (Turkey)
Visiting Associate Professor, Lakehead
University, Faculty of Engineering

SCWS Process Description 1

- Supercritical water (SCW) is water heated to a temperature > 374°C and pressure > 22.1MPa. The ionic product, fluid density, dielectric constant and viscosity of SCW are different from extreme states of the gas phase or liquid phase of water.
- In its supercritical state, water forces the dissolution of every biomass material (including hydrocarbons) into H₂ rich syngas with negligible toxic by-products, no effluents, and ultra-low emissions/ waste residues.
- It uses water from any source (even sewage) and compared to electrolysis, requires a fraction of the water and renewable energy by employing very efficient water and gas recycling processes.

SCWS Process Description 2

- Our 8th generation, 2-mtpd reactor was located at the University of Saskatchewan Engineering Department.
- Our 30-mt Commercial Pilot Unit (CPU) will incorporate the latest advances to generate profits in a tire-to-energy project to produce pure H₂ and biocarbon.
- If pure syngas is desired (H₂-CO), we produce our own pure CO by heating biocarbon or by processing waste plastics in a 3 to 1 ratio of CO to CO₂.
- CO is then membrane-separated from CO₂ and precisely mixed with H₂ to create syngas whilst the CO2 is sold for carbonating beverages.
- Our intellectual property includes trade secrets, a process patent (provisional), and selected component patents.

2-Metric Ton Per Day Reactor USask (2015-2019)

Evolution of our SuperCritical Water Reactor over 20+ Years

2 mton/24 hrs unit

After Two Decades of SCW Scientific Research, Many Peer Journal Publications & Development of Multiple Prototypes, our SCW Reactor is Ready for Commercial Development beginning with a 30-ton commercial pilot unit (30-ton CPU)

16

Competitive Advantages of SCWS vs PEM Electrolysis 1

The SCW Process:

- Has greatly superior mass-energy balance to electrolysis
- Uses 1/6 of the renewable energy needed for electrolysis
 - Powerful exergonic reactions reduce external energy needs
- Uses 1/7 of the water needed for electrolysis
 - Water is recycled
 - Processes ANY water without filtration (sewage-storm-industrial process)
- Can provide its own self-sustaining, 100% renewable energy from produced biocarbon

Competitive Advantages of SCWS vs PEM Electrolysis 2

The SCW Process:

- Along with Hydrogen, co-produces profitable Biocarbon
 - o nanocarbon high grade, suitable for industry or agricultural use
 - o biochar high grade for agricultural use & water filtration
- Has far lower costs of construction-installation
- Allows much faster project completion 1/3 as long as electrolysis
 - o full operation within 7-8 months of permitting
- Lower cost operation/maintenance few moving parts/no membranes or electrodes to replace

Competing Waste to H₂ Conversion Methods comparative H₂ MASS-ENERGY BALANCE SCORES (10 = SCWS Process)

S.NO.	PROCESS	CONVERSION PATHWAYS	
		CHEMICAL	
1	HYDROTHERMAL UPGRADING (HTU)	Biomass feed stock is treated with water at $300-350^{\circ}$ C and $100-180$ bars for 5-20 minutes to remove almost 85% of O_2 in equal parts of CO_2 and H_2O . The final product is a <u>liquid fuel</u> that can be converted into a high quality diesel fuel	4.5 / 10
2	HIGH PRESSURE LIQUEFACTION (HPL)	Solid cellulosic biomass materials or lignin are converted to oil	4.5 / 10
		BIOCHEMICAL	
1	ANAEROBIC DIGESTION	Organic material in the absence of oxygen is converted into $\underline{\text{biogas}}$ (a mixture of CH_4 and CO_2)	2.5 / 10
2	FERMENTATION	Production of <u>ethanol</u> from starchy and cellulosic biomass	1.5 / 10
3	ACID/ENZYMATIC HYDROLYSIS	Lignocellulosic biomass such as wood and grasses are treated with strong acids to convert the biomass to sugars	2.5 / 10
		THERMOCHEMICAL	
1	COMBUSTION	Thermal decomposition of biomass at elevated temperatures in excess amounts of oxygen to produce energy	1.5 / 10
2	GASIFICATION	Decomposition of biomass at high temperatures with a controlled amount of oxygen and/or steam to produce syngas (a mixture of hydrogen and CO)	3.5 / 10
3	PYROLYSIS	Biomass is decomposed at moderate temperatures in the absence of oxygen to produce bio-oil	1.0 / 10

19

SCWS Advantages Over Other Waste to H₂ Gasification Methods

The SCW Process:

- Is far superior in mass-energy balance to any other waste-to-H₂ process
- Is available in cost-effective modules that are sized to process from 3 to 60 metric tons of feedstock per day with very small footprints (1/6 acre for 60-mton unit)
- Yields H₂ gas of 99.2% purity exiting reactor at 1,500 psi/103.4 bar
- Allows reactor modules to operate intermittently, making them practical for filling stations for example
- Prevents corrosion of any part of the reactor:
 - SCWS uses liquid catalysts there are no catalyst deactivation or collection/reuse issues
 - High reaction rates and use of any unfiltered water source (even sewage)
 - Hot gases recycling, powerfully exergonic (energy-producing), enhanced reaction kinetics, and far fewer complex intermediate reactions compared to other super critical or gasification methods
- Has on-line monitoring, a proven safety record, long intervals between maintenance needs
- Yields biocarbon which generates profits and carbon sequestration credits

SCWS Reactor Dimensions, Renewable Energy and Process Flow

CROSS-SECTION

Cyclone

Thermocouple
Thermocouple port

Ceramic Refractory
Refractory Material
Cooling Water Jacket

Principal Components — Reactor Scaled to Accept 20
mtons of Waste Feedstock Per 12-hour Continuous
Batch Cycle = 40 mtons total daily

1.5 m Diameter

Super critical water dissolves virtually all chemical bonds thereby releasing huge exergonic reaction energy that dramatically lowers renewable energy requirements.

Biocarbon produced contains 34MJ/kg of energy minimum. A small percentage can provide climate neutral, renewable energy for ALL reactor electricity needs. No solar or wind required, eliminates energy supply uncertainty!

Summary M-E Balance (30 metric tons of waste tires/day)

Waste Tire Energy Content 54 MJ/kg

Total Energy Content Per Day 300 MW

Carbon Content

1% carbon steel = 0.91 kg 28% carbon black = 2.45 kg

Waste Tire Dewired Shreds by % Weight

- Natural & Synthetic Rubber 41%
- Carbon Black 28%
- Steel 15%
- Fabric-fillers-other 17%

*Other gases include CO, CO_2 , CH_4 and $C_2 - C_4$ hydrocarbons; gas mix optimized for H2 production – some clients might want to offtake some gases for their own use

SCWS Technology Advantages 1

SCWS Technology:

- Uses modular design with modules capable of processing from 3-30 metric tons daily of any/every wet or dry waste feedstock – facility capacity can be increased by adding modules
- Can provide its own renewable energy using a fraction of the biocarbon produced
- Directly produces H₂ without electrolyzer or traditional gasifiers
- Reactor design and construction are robust with few moving parts and great longevity, resulting in the lowest Lifetime Operating Cost (LOC) of any existing technology
- Refractory brick lining will last for a minimum of 5 years while the reactor core minimum life is 25 years

SCWS Technology Advantages 2

SCWS Technology:

- Allows 355 full production days per year
- Our company has deep scientific and engineering resources to ensure continuing R&D, software/firmware updates, 24-7-365 remote performance monitoring/data collection via embedded sensors, worker operational/safety training, on-site maintenance and technical support
- Requires only a small footprint (30 mtpd reactor column is 1.5 meters wide x 5 meters high)
- Provides rigorous quality control of construction, installation & operation

Variety of Feedstock Candidates for Conversion to H₂ and C

- Most plastics, agricultural-forest residues, and other widely available organic & biomass waste feedstocks like railroad ties are suitable to make ultra-green hydrogen and biocarbon.
- The large amounts of pure carbon can be used as biochar for soil amendment, water purification, and many other uses.
- SCW reactors can process any mix of wet-dry waste which can be infinitely varied/mixed.
- Pure H₂ production yields vary from a high of 45% of feedstock weight (waste tires) to 12.5% (wet canola meal and wheat straw).
- All of these feedstocks are plentiful.
- Only feedstocks SCWS cannot process are those with large amounts of chloride (PVC).

Uses for Bio-Carbon from SCWS Gasification of Biomass

(including 100% carbon-neutral, self-powering of SCWS installations)

Area	Applications
Tire Manufacturing	High quality "tunable" carbon black
Agriculture	Soil fertility
	Removal of heavy metals
	Sheltering beneficial soil microorganisms and organic matter
	Preventing soil erosion by forming a complex with plant roots and soil-
	biochar mixture
	Maintains an optimal pH level, water holding capacity, salinity, cation
	exchange capacity in the soil
Environment	Carbon capture
	Wastewater treatment
	Adsorption of particulate matter from flu gases
Fuel	Solid fuel pellets
	Co-firing and co-gasification with coal
Cosmetics	Face masks, toothpastes, soaps
Pharmaceuticals	Adsorption of toxins from digestive tract
Electrical	Material for electrodes, capacitors and conductors
Material	Biocomposite materials, Fillers

Our Technology is Supported by Over 235 Scientific Journal, Peer-reviewed Articles and Books From Our Team

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production

Sonil Nanda ^a, Rachita Rana ^b, Howard N. Hunter ^c, Zhen Fang ^d, Ajay K. Dalai ^b, Janusz A. Kozinski ^{e,*}

- ^a Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
- ^b Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- ^c Department of Chemistry, York University, Toronto, Ontario, Canada
- d College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China
- e Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada

Contents lists available at ScienceDirect

The Journal of Supercritical Fluids

journal homepage: www.elsevier.com/locate/supflu

Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production

Sonil Nanda^a, Sivamohan N. Reddy^b, Howard N. Hunter^c, Dai-Viet N. Vo^d, Janusz A. Kozinski^{e,*}, Iskender Gökalp^f

- ^a Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
- ^b Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- c Department of Chemistry, York University, Toronto, Ontario, Canada
- d Center of Excellence for Green Energy and Environmental Nanomaterials, Nguyễn Tất Thành University, Hồ Chí Minh City, Vietnam
- e Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
- f Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), Orléans, France

CHAPTER 19

Hydrothermal Events Occurring During Gasification in Supercritical Water

SONIL NANDA^a, SIVAMOHAN N. REDDY^b, ZHEN FANG^c, AJAY K. DALAI^d AND JANUSZ A. KOZINSKI*^e

^aDepartment of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada; ^bDepartment of Chemical Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ^cCollege of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; ^dDepartment of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; ^cNew Model in Technology & Engineering (NMiTE), Hereford, Herefordshire, UK *E-mail: janusz.kozinski@nmite.org.uk

4/29/2025

SCWS Has Library of Super Critical Water Real-time Video Evidence of Many Feedstock Conversions

Polystyrene dissolved and catalytically reconstituted as targeted end-product within 100 msecs as minireactor goes from sub- to super-critical conditions

Updates for Spring 2025

- Expanded Gambler First Nations Partnership for Clean Fuels Bio-Hydrogen/Bio-Carbon/Syngas
- Canadian Engineering Firm Appointed (Hatch.com)
- SCWS-sponsored Government-Industry-Academic Forum to Demonstrate Our NASA SCW System
- UK Memorandum of Understanding for a 30-ton SCWS Facility

SUPERCRITICAL WATER SYSTEMS

Dr. Richard C. Newbold, III - President Mobile: +1 267-337-3010 • Email: Richard@supercritical-h2o.com