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Abstract: Although hydrogen gas (H2)-treated soil improves crop biomass, this approach appears
difficult for field application due to the flammability of H2 gas. In this report, we investigated whether
and how H2 applied in hydrogen nanobubble water (HNW) improves the yield and quality of cherry
tomato (Lycopersicon esculentum var. cerasiforme) with and without fertilizers. Two-year-long field
trials showed that compared to corresponding controls, HNW without and with fertilizers improved
the cherry tomato yield per plant by 39.7% and 26.5% in 2021 (Shanghai), respectively, and by 39.4%
and 28.2% in 2023 (Nanjing), respectively. Compared to surface water (SW), HNW increased the
soil available nitrogen (N), phosphorus (P), and potassium (K) consumption regardless of fertilizer
application, which may be attributed to the increased NPK transport-related genes in roots (LeAMT2,
LePT2, LePT5, and SlHKT1,1). Furthermore, HNW-irrigated cherry tomatoes displayed a higher
sugar–acid ratio (8.6%) and lycopene content (22.3%) than SW-irrigated plants without fertilizers.
Importantly, the beneficial effects of HNW without fertilizers on the yield per plant (9.1%), sugar–acid
ratio (31.1%), and volatiles (20.0%) and lycopene contents (54.3%) were stronger than those achieved
using fertilizers alone. In short, this study clearly indicated that HNW-supplied H2 not only exhibited
a fertilization effect on enhancing the tomato yield, but also improved the fruit’s quality with a lower
carbon footprint.

Keywords: cherry tomato; fertilizer; hydrogen; hydrogen nanobubble water; quality; yield

1. Introduction

Cherry tomato (Lycopersicon esculentum var. cerasiforme), a small-fruited variety of
tomato, is a popular and widely cultivated fruit vegetable in the world [1]. Since cherry
tomato is rich in nutrients such as lycopene, vitamins, and minerals, it is favored by
consumers for reducing the risk of various diseases, such as cardiovascular disorders,
hypercholesterolemic and hyperglycemic attributes, and cancer [2]. Although fertilizers
can improve the fruit yield, over-fertilization not only causes water pollution, but also
results in flavor loss [3] and fruit nitrate and nitrite accumulation [4]. In addition, the
large-scale application of fertilizers for crop production increases greenhouse gas emissions
and accelerates global warming [5]. Therefore, it is a modern challenge to improve the
tomato yield and quality in a more fertilizer-efficient and environmentally friendly way.

In the last decade, molecular hydrogen (H2) has been considered as a promising
medical treatment for metabolic, digestive, respiratory, and cardiovascular diseases, neu-
rodegenerative disorders, and cancer [6]. In addition, H2 exhibits a variety of biological
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functions in plants, including alleviating the oxidative damage caused by various abiotic
stresses [7], promoting seed germination and root development [8], and improving the
postharvest preservation of vegetables [9], fruits [10], and flowers [11]. It has been pre-
viously found that H2-exposed soils can promote the biomass of soybean, spring wheat,
barley, and canola, suggesting that H2 has an effect of fertilizer utilization in soils [12,13].
However, H2 applied in a gaseous form for soil treatment is complicated and impractical in
the field due to its low residency and flammable properties at higher concentrations.

Although the application of hydrogen-rich water (HRW) has been found to improve
the yield and prolong the shelf life of daylily buds [14], it has the disadvantages of the
low solubility and short residence time of dissolved H2. Solid H2 storage materials, such
as magnesium hydride (MgH2) [15], ammonia borane (AB) [16], and AB-loaded hollow
mesoporous silica nanoparticles (AB@hMSNs) [17], can improve the effective H2 residency
of conventional HRW, and thus have positive effects on flower senescence, stress responses,
and plant growth regulation. Nevertheless, the potential environmental risk of their by-
products should be considered, especially when they are extensively used in the field.

The nanobubble technology establishes a useful approach to accelerate gas dissolution
and remain its stability in the liquids for longer times [18]. Hydrogen nanobubble water
(HNW) has been reported to reduce the toxicity of copper to Daphnia magna by alleviating
oxidative stress and inhibiting copper accumulation [19]. Moreover, HNW can promote
seed germination and concentrations of bioactive phytochemicals in sprouted black bar-
ley [20]. A solution of HNW was also shown to extend the vase life of cut carnation
flowers [11]. A previous field trial showed that HNW increased the size and quality of rice
grains [21], and enhanced the aroma of strawberries [22].

In this study, two-year and multi-site trials were carried out to investigate whether and
how a preharvest HNW treatment improved the cherry tomato yield and quality (including
sugars, vitamin C, lycopene, phenols, and flavonoids contents), in the absence (especially) or
presence of fertilizers. The changes in available nitrogen (N), phosphorus (P), and potassium
(K) in the soil, and transcriptional profiles of genes associated with tomato nutrition absorption
and quality, were further investigated. The results thus provide a reference for the practical
application of HNW in horticulture for better performance in terms of both yield and quality,
which might open a new window for the low carbon society.

2. Results
2.1. Preharvest Application of HNW Improves Cherry Tomato Yield

As shown in Figure 1A, the irrigation with HNW promoted the growth of tomato
plants in Shanghai (2021). Similar with compound fertilizers, HNW increased the yield
per plant of cherry tomato (Figure 1B). Compared to SW irrigation, the yield per plant
of cherry tomatoes in the treatment of HNW without fertilizers was increased by 39.7%
(p < 0.01). Meanwhile, HNW plus fertilizers treatment showed the obvious effect on cherry
tomato yield, and increased yield per plant by 26.5% in comparison with SW plus fertilizers
(p < 0.01). The yield per plant in the treatment of HNW without fertilizers was even higher
(9.1%, p < 0.05) than that of the SW plus fertilizers treatment.

To further assess the reliability of the yield enhancement achieved using hydrogen-
based irrigation in cherry tomato, we conducted another field trial test in Nanjing (2023).
Consistently, the increase in yield per plant exhibited a similar trend as observed in the
previous results (Figure 1). As shown in Figure 2A, under the conditions with and without
fertilizers, HNW (0.50 ± 0.04 kg plant−1/0.46 ± 0.03 kg plant−1) remarkably resulted in
the increase in the yield per plant by 28.2% (p < 0.01) and 39.4% (p < 0.01), respectively,
compared with SW (0.39 ± 0.04 kg plant−1/0.33 ± 0.05 kg plant−1) in that year. In addition,
the number of fruits per plant in the HNW treatment was also higher than in the SW
treatment regardless of fertilizer use (Figure 2B). For example, compared with the SW
alone and SW plus fertilizers group, HNW remarkably increased the number of fruits
per plant by 39.10% (p < 0.01) and 27.91% (p < 0.01), respectively. Although HNW did
not obviously influence the single fruit’s weight (Figure 2C), the increased numbers of
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fruits per plant might ultimately increase the cherry tomato yield (Figure 2D) by 43.3%
and 28.1% in comparison with SW in the absence or presence of fertilizers, respectively.
Comparatively, we clearly observed that the yield was higher in the HNW-irrigated and no
fertilizer addition group than the SW-irrigated and fertilizer-added group (22.1%, p < 0.05),
which could be partially explained by the obvious increases in yield per plant and number
of fruits per plant compared to the fertilizers group (p < 0.05).
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Figure 1. Hydrogen nanobubble water (HNW)—promoted cherry tomato growth (A) and yield per
plant (B) with/without fertilizers (Shanghai, 2021). Values are mean ± SD of three independent
experiments. The asterisks *, ** indicate significant differences at p < 0.05 and p < 0.01, respectively
(t-test). The different letters indicate significant differences at p < 0.05 (one-way ANOVA; Duncan’s
multiple range tests). SW: surface water; HNW: hydrogen nanobubble water.
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Figure 2. Effects of hydrogen nanobubble water on the yield per plant (A), number of fruits per
plant (B), single fruit weight (C), and yield (D) of cherry tomatoes with/without fertilizers (Nanjing,
2023). Values are mean ± SD of three independent experiments. The asterisks *, ** indicate significant
differences at p < 0.05 and p < 0.01, respectively (t-test). The different letters indicate significant
differences at p < 0.05 (one-way ANOVA; Duncan’s multiple range tests). SW: surface water; HNW:
hydrogen nanobubble water.

2.2. Effects of HNW on the Balance of Sugars and Acids in Cherry Tomatoes

The main factors affecting the flavor of cherry tomatoes are the content and ratio
of sugars and acids, which are critical to their commercial value [23]. In the absence
of fertilizers, HNW treatment significantly increased the soluble sugar content (13.9%,
p < 0.01; Figure 3A), and slightly increased the titratable acid content (4.7%; Figure 3B), thus
causing the sugar–acid ratio to increase (8.6%, p < 0.05; Figure 3C). Comparatively, fertilizer
addition alone had no such effect on the soluble sugar content, but increased the titratable
acid content, resulting in a decreased sugar–acid ratio (−17.1%, p < 0.05; Figure 3C).

When HNW was applied without fertilizers, it clearly also showed the most obvious
effect on increasing the sugar–acid ratio, especially with an increase of 31.1% in comparison
with fertilizers alone (p < 0.01). Meanwhile, HNW impaired the negative effect of fertilizers
on the sugar–acid ratio when it was applied in combination with fertilizers.

Fructose, glucose, and sucrose are the three main soluble sugars in cherry tomatoes [24].
Compared with SW alone, the HNW addition significantly increased the fructose content
(3.1%, p < 0.05), but not that of glucose and sucrose (Figure 3D–F). Fertilizer application
decreased the sucrose content (−16.4%, p < 0.05), while it did not influence the other two
sugars. Therefore, the treatment of HNW without fertilizers had better effects on the
fructose and sucrose content compared with fertilizers alone (p < 0.05). In the presence
of fertilizers, HNW only slightly increased the fructose content. The observations above
indicate that HNW might regulate the balance of sugars and acids in cherry tomato fruits.
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Figure 3. Effects of hydrogen nanobubble water on the contents of soluble sugar (A), titratable acid
(B), sugar–acid ratio (C), fructose (D), glucose (E), and sucrose (F) in cherry tomatoes with/without
fertilizers (Shanghai, 2021). Values are mean ± SD of three independent experiments. The asterisks *,
** indicate significant differences at p < 0.05 and p < 0.01, respectively (t-test). The different letters
indicate significant differences at p < 0.05 (one-way ANOVA; Duncan’s multiple range tests). SW:
surface water; HNW: hydrogen nanobubble water.

2.3. Antioxidant Compounds Accumulation in Response to HNW

Cherry tomatoes contain numerous antioxidant ingredients such as ascorbic acid
(vitamin C), phenols, and flavonoids, thus having antioxidative, anti-inflammatory, and
anti-microbial effects [25]. Among them, lycopene has an outstanding contribution [26].
Further results showed that the application of HNW without fertilizers differentially
increased the accumulation of lycopene (22.3%, p < 0.01; Figure 4A) and total phenols
(8.1%; Figure 4B), except for vitamin C (Figure 4C) and flavonoids (Figure 4D). By contrast,
under our experimental conditions, the application with fertilizers significantly decreased
the lycopene content, and obviously increased the total phenols and flavonoids contents.
Accordingly, in the absence of fertilizers, HNW significantly increased the lycopene content
(54.3%, p < 0.01), but decreased the total flavonoid content (p < 0.01) in comparison with
fertilizer alone. Meanwhile, when HNW was combined with fertilizers, only the flavonoids
content was significantly increased.
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Figure 4. Effects of HNW on the accumulation of lycopene (A), total phenols (B), vitamin C (C), and
flavonoids (D); and the expression level of SlPSY1 (E) and SlPDS (F) in cherry tomatoes with/without
fertilizers (Shanghai, 2021). Values are mean ± SD of three independent experiments. The asterisks *,
** indicate significant differences at p < 0.05 and p < 0.01, respectively (t-test). The different letters
indicate significant differences at p < 0.05 (one-way ANOVA; Duncan’s multiple range tests). SW:
surface water; HNW: hydrogen nanobubble water.

Phytoene synthase (PSY) and phytoene desaturase (PDS) are the key enzymes in
determining the biosynthesis of lycopene [27]. The changes in expression levels of SlPSY1
and SlPDS displayed approximately similar trends compared to the lycopene content after
the application of HNW with/without fertilizers (Figure 4E,F).

2.4. Modulation of the Aromatic Profiles in Cherry Tomatoes Achieved Using HNW

In this experiment, a total of 49 major volatile compounds was identified, including
aldehydes, alcohols, esters, phenols, etc. Among these, the proportion of aldehydes and
alcohols was 77.1% and 12.3%, respectively (Supplementary Table S1). With or without
fertilizers, HNW irrigation increased the content of total volatile compounds by 8.0% and
4.4%, respectively (Figure 5A). The application of fertilizer alone reduced the content of
total volatile compounds (−14.9%) compared with the SW treatment. Accordingly, the
treatment of HNW without fertilizers could neutralize the negative effect of fertilizers alone
on total volatile compounds (20.0%, p < 0.05).
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Figure 5. Effects of HNW on the concentrations of volatile compounds (A), aldehydes (B), alcohols (C),
hexanal (D), E-2-hexenal (E), trans-1,2-Cyclopentanediol (F), and 2,4-Bis(1,1-dimethylethyl)-phenol
(G) in cherry tomatoes with/without fertilizers (Shanghai, 2021). Values are mean ± SD of three
independent experiments. The asterisks *, ** indicate significant differences at p < 0.05 and p < 0.01,
respectively (t-test). The different letters indicate significant differences at p < 0.05 (one-way ANOVA;
Duncan’s multiple range tests). SW: surface water; HNW: hydrogen nanobubble water.

Similarly, HNW irrigation increased the content of aldehydes (by 15.4% and 10.8%,
respectively; Figure 5B), hexanal (by 150.2% and 41.5%, respectively, p < 0.05; Figure 5D),
(E)-2-hexanal (3.0%; Figure 5E), and trans-1,2-cyclopentanediol (26.1%; Figure 5F) both
with (except for (E)-2-hexanal and trans-1,2-cyclopentanediol) and without fertilizers.
The treatment of HNW without fertilizers showed a greater effect than that of fertilizers
alone on aldehydes (p < 0.01), including hexanal (p < 0.05), (E)-2-hexanal (p < 0.05), and
trans-1,2-cyclopentanediol (p < 0.05), respectively. However, the application of fertilizer
alone had a negative effect on the above compounds other than 2,4-bis(1,1-dimethylethyl)-
phenol (increased by 50.3%; Figure 5G) compared with the SW treatment. Meanwhile, no
significant alteration was observed in the changes of alcohols (Figure 5C), and 2,4-bis(1,1-
dimethylethyl)-phenol. We also noticed that in the presence of fertilizers, HNW addition
could significantly increase the hexanal level, but decrease the content of alcohols (p < 0.05).
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2.5. The Absorption of Soil Elements was Influenced by HNW

Before planting, the content of soil available nitrogen (N), phosphorus (P), and potas-
sium (K) in different treatments was basically at the same level (Figure S1). Subsequent
results showed that without fertilizers, the HNW treatment enhanced the decrease in soi
available N, P, and K contents (especially N and P, p < 0.01) in comparison with surface water,
and the above-mentioned effects in soil available NP consumption achieved using HNW were
more pronounced than those treated with fertilizers alone (p < 0.05; Figure 6A–C). Meanwhile,
in the presence of fertilizers, HNW irrigation exhibited similar effects on the reduction in
available N (p < 0.01), P (p < 0.05), and K (p < 0.05) contents.
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Figure 6. Effects of HNW on the absorption of soil available nitrogen (A), phosphorus (B), and potas-
sium (C) and the expression level of LeAMT2 (D), LePT5 (E), LePT2 (F), and SlHKT1,1 (G) in cherry
tomatoes with/without fertilizers (Shanghai, 2021). Values are mean ± SD of three independent
experiments. The asterisks *, ** indicate significant differences at p < 0.05 and p < 0.01, respectively
(t-test). The different letters indicate significant differences at p < 0.05 (one-way ANOVA; Duncan’s
multiple range tests). SW: surface water; HNW: hydrogen nanobubble water.
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The expression levels of the genes involved in plant N, P, and K accumulation in
plants were further investigated (Figure 6D–G). They included a NH4

+ transporter gene
(LeAMT2), two phosphate transporters genes (LePT2 and LePT5), and a potassium trans-
porter (SlHKT1,1) [28,29]. As expected, the changes in transcript levels of the four genes
above were consistent with the reduction in soil available NPK contents. These results
indicated that a preharvest HNW application might positively improve NPK absorption in
cherry tomatoes.

2.6. Principal Component Analysis

A principal component analysis (PCA) was performed to distinguish between the
above-mentioned four treatments. The first two components explained 84.4% of the total
variance (Figure 7A). Meanwhile, the four treatments were clearly separated; the SW and
HNW + F treatments were distinguished on PC 1, while PC 2 discriminated the SW + F and
HNW treatments, indicating that there were distinct differences. As shown in the biplot
(Figure 7B), the quality characters (including sugars, volatiles, titratable acid, total phenols,
flavonoids, vitamin C, and lycopene contents, and lycopene biosynthesis-related gene
expression) were positively correlated with PC 1, whereas the yield per plant, soil NPK
reduction and related gene expression (including LeAMT2, SlHKT1,1, LePT2, and LePT5),
and hexanal were negatively correlated. Moreover, there were further positive correlations
among the quality characters. Similarly, results for the yield showed positive correlations
with the NP absorption and expression of LeAMT2, SlHKT1,1, and LePT2. However, the
yield was negatively correlated with soluble sugars, the sugar–acid ratio, and volatiles
(including alcohols, aldehydes, (E)-2-hexanal, and hexanal) and lycopene contents.Plants 2024, 13, x FOR PEER REVIEW 12 of 21 
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on yield and quality in cherry tomatoes with/without fertilizers (Shanghai, 2021). HNW: hydro-
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3. Discussion

As an environmentally benign gas, H2 plays a major role in promoting plant growth,
and improving crop yield and nutritional quality [30]. Both H2 gas-treated soil and con-
ventional HRW irrigation have been proposed and observed to improve the yield of
crops [12,14]. However, H2 applied in gas form is not practical in the field (e.g., due to its
flammability), and H2 is effective in HRW for less than 6 h [11]. Under our trial conditions,
the residence time of H2 as HNW was approximately 12 h, which was consistent with a
previous study [19], and twice as long as that in HRW (Figure S2).

Although the mechanism of H2 fertilization using its gas in enhancing the plant yield
has yet to be fully understood, it can most probably be attributed to the enhanced growth
of H2-oxidizing bacteria in the soil. These microorganisms may improve the nutrient status
of soil, and enhance the plants growth regulator balance or disease resistance [12,31]. It
was previously reported that H2 exposure can increase soil carbon deposition [32] and
the synthesis of soil enzymes such as catalase, dehydrogenase, and urease [33]. These
results reflected the possibility that H2 improves soil fertility by inducing the metabolic
activity of beneficial bacteria. Therefore, we chose the four greenhouses closely (Figure
S3) and with the same crop rotation (tomato) to avoid differences in climatic, illumination,
and microorganism conditions. Importantly, we tested the nutrition of soil samples, and
the results (Figure S1) showed that the initial soil conditions of the four greenhouses
were similar in terms of the key nutrition, including the available nitrogen, phosphorus,
and potassium.

Two-year field trials clearly showed that HNW improved the yield of greenhouse
cherry tomatoes and that this was more pronounced than when cultured with fertilizers
(Figures 1 and 2). Moreover, an additional effect on the cherry tomato yield was observed
in the presence of HNW plus fertilizers.

NPK are the principal nutrients typically supplied to plants, so the absorption and
utilization efficiency of these elements controls the crop yield [34]. It has been reported
that HNW increased the transcription of the genes related to the absorption of NPK in
rice, including NRT2.3, NiR, ARE1, NLP4, and AKT1 transcripts [21]. In this study, it was
clearly observed that NPK transport-related genes in plants (especially LeAMT2, LePT2,
and SlHKT1,1) were positively correlated with soil NPK reduction and the yield of tomato
fruits (Figure 7B).

It has been reported that the combined application of a microbial consortium and
fertilizer increased the soil available NPK content, and promoted NPK absorption by
sugarcane plants, thereby promoting plant growth and increasing sugarcane and sugar
yields [35]. A previous study showed that a high level of H2-oxidizing bacteria in H2-
treated soil increased the plant biomass and promoted plant growth [31]. Since HNW in
this study was irrigated at the early growth stage of cherry tomatoes, we deduced that the
beneficial roles of HNW in improving soil NPK absorption and the cherry tomato yield
may be partially associated with H2 impacting soil microbes. This hypothesis requires
further investigation on the interaction of plants and microbes in response to H2. Since in
our experimental conditions HNW may differentially increase the expression levels of the
four genes and soil available NPK consumption (Figure 6), we further proposed that these
changes may also be partially responsible for the promotion of the cherry tomato yield in
the absence/presence of fertilizers (Figures 1 and 2).

Sugars, acids, and their ratio are major contributors to fruit taste [23,36]. A high sugar–
acid ratio enhances the desirable sweet perception. A previous study showed that HNW
increased the sugar–acid ratio as a result of the increased sugar content and decreased
titratable acid content in strawberries [22]. In this study, without fertilizer addition, HNW
increased the sugar–acid ratio by increasing the total soluble sugar content (especially of
fructose; Figure 3A,D). A previous study pointed out that nitrogen fertilization affected the
activities of enzymes directly related to acid metabolism in fruit, thereby changing the acid
content [37]. Consistently, the application of fertilizers increased titratable acid content,
thus decreasing the sugar–acid ratio (Figure 3B,C). However, HNW abolished the above
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negative effect of fertilizers by regulating the balance of sugar and acid (Figure 3A–C),
which was consistent with a previous study in strawberry plants [22].

Lycopene, vitamin C, and total phenols and flavonoids are important antioxidants in
fruits and vegetables [25]. A previous study observed that HRW enhanced the tolerance
against UV-B stress, which was associated with the improvement in flavonoids profiles in
alfalfa seedlings [38]. In addition, HRW can also alleviate oxidative damage by increasing
the content of vitamin C, total phenols, and flavonoids, resulting in the prolonged shelf
life of tomatoes [39], daylily buds [14], and lychee [40]. Consistently, our results showed
that HNW alone increased the lycopene content in tomato fruits (Figure 4A). This is
a new finding. HNW’s control of the lycopene increase was further supported by the
up-regulation of SlPSY1 and SlPDS transcripts (Figure 4E,F), two lycopene synthesis
genes [41], and the results of the PCA (Figure 7B). Therefore, it was suggested that the
two genes mentioned above might be the target genes responsible for HNW-triggered
lycopene accumulation.

Although more than 400 volatile compounds have been identified in tomato fruit,
current studies show that the most important compounds of aldehydes, such as hexanal
and (E)-2-hexenal; alcohols, such as trans-1,2-cyclopentanediol; and phenols, such as 2,4-bis
(1,1-dimethylethyl)-phenol, play key roles in the tomato aroma [42]. Aldehydes are the
most dominant, by giving off the ‘fresh green’ odor [43]. A recent study showed that the
contents of total volatile compounds, and aldehydes, such as hexanal and (E)-2-hexenal,
were increased using a preharvest HNW application in strawberries [22]. In this report, we
discovered that HNW also increased the hexanal content in cherry tomatoes with/without
fertilizers (Figure 5D), reflecting the possible common mechanism.

Furthermore, a positive correlation between soluble sugars and volatile compounds
contents in cherry tomatoes (Figure 7B) was consistent with the previous studies on straw-
berries [22,44]. Since the important volatile compounds, such as esters, furanones, and
terpenes, are present in the form of glycosides in cells, and the precursors of those were
sugars [45,46], aromatic volatiles in tomato fruits may be positively associated with sugars.
In addition, sugars and volatile compounds are known to be the important factors influ-
encing sweetness perception [47,48]. Consumer liking was associated with sweetness and
aroma intensity [44]. Therefore, HNW-increased sugars and volatile compounds contents
in cherry tomatoes should be more attractive for consumers.

Under the condition of limited fruit carbohydrates, plants preferentially utilize the
carbohydrates transported into the fruits to form carbon skeletons, which may lead to a
lower fruit quality but a higher yield [49]. Consistently, in this study, a negative correlation
was observed between the yield and quality characters, including soluble sugars, volatile
compounds, and lycopene contents, etc. (Figure 7B). As expected, compound fertilizers
promoted the yield of cherry tomatoes, but undesirably reduced fruit sugars, lycopene, and
volatile contents [50].

Together, as shown in the schematic model summarizing the effects of yield and
quality in response to HNW (Figure 8), it is worth noting that hydrogen fertilization with
HNW may not only improve cherry tomato yield, which was better than grown with
fertilizers alone to some extent, but also partly weaken the negative fertilizer effects on
the sugar–acid ratio, volatile compounds, and lycopene contents. The above effects of
HNW may be attributable to the regulation of plant NPK absorption, carbohydrate, and
secondary metabolism.
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Figure 8. Proposed schematic model of HNW-improved yield and quality in cherry tomatoes.
Compared with surface water plus fertilizers, red arrows (left) indicate the effects achieved using
HNW without fertilizers, and blue arrows (right) indicate the effects achieved using HNW plus
fertilizers. AMT2: ammonium transporter 2; 2,4-Bis: 2,4-Bis(1,1-dimethylethyl)-phenol; HKT1,1:
high-affinity K+ channel transporter; PT2/5: phosphate transporter 2/5; PDS: phytoene desaturase;
PSY: phytoene synthase; Trans-1,2: trans-1,2-cyclopentanediol.

4. Materials and Methods
4.1. Plant Materials and Experimental Design

The field experiment was carried out at the Qingpu Agriculture Base, Shanghai, China
(longitude 121◦01′ E and latitude 31◦02′ N; 2021) and White Horse Agriculture Base, Lishui
District, Nanjing, Jiangsu, China (longitude 119◦17′ E and latitude 31◦58′ N; 2023). The cherry
tomato ‘Jintong’ (Lycopersicon esculentum var. cerasiforme ‘Jintong’) was planted on 21 January
2021 and 7 March 2023, respectively. Considering the fugitiveness of H2, four greenhouses
were used for the experiment, and three plots (each 20 m long and 3 m wide) were randomly
selected as replicates for each treatment per greenhouse (80 m long and 6 m wide). Before
fertilizing, contents of soil available nitrogen (N), phosphorus (P), and potassium (K) in four
greenhouses were basically at the same level (Shanghai, 2021): available nitrogen content
215.8 ± 4.5 mg kg−1; available phosphorus content 410.7 ± 3.7 mg kg−1; available potassium
content 406.4 ± 3.8 mg kg−1 (Figure S1). Furthermore, the number of cherry tomato plants in
one treatment per greenhouse was 1288.

Four treatments were arranged, including (1) irrigation with surface water (SW) and
free of fertilization; (2) irrigation with SW and normal fertilization; (3) irrigation with HNW
and free of fertilization; and (4) irrigation with HNW and normal fertilization.

Fertilizers were applied conventionally in the required treatments. A compound
fertilizer (Nitrophoska®, Stellenbosch, South Africa, 15-15-15, 15% N, 15% P2O5, 15% K2O)
was used as the base fertilizer on 10 December 2020 (Shanghai) and 7 January 2023 (Nanjing)
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without topdressing. The amount of fertilizers applied was 50 kg (15.6 g m−2 for N/P2O5/
K2O) per greenhouse (80 m long and 6 m wide). Furthermore, no pesticides were applied
during the plant growth stages. Flood irrigation with HNW was carried out once on the day
after planting at 10 t h−1 flow rate for 0.5 h per greenhouse for HNW treatment. Meanwhile,
irrigation with the same amount of SW was set as the control. Subsequent field operations
were in accordance with the conventional agricultural managements.

4.2. Preparation of HNW

In this experiment, HNW (with ~300 nm nanobubbles) was prepared with a H2
nanobubbles generator (Air Liquide (China) R&D Co., Ltd., Shanghai, China). The dis-
solved H2 concentration was measured using an ENH-2000 portable dissolved H2 meter
(TRUSTLEX, Osaka, Japan) that was calibrated with gas chromatography. The fresh HNW
contained 1.0 mg L−1 H2, and it remained in HNW for ~12 h (Figure S2).

4.3. Determination of Cherry Tomato Yield

The cherry tomato fruits were harvested once a week from 16 April to 15 June 2021
and from 1 June to 25 July 2023, respectively, when their color changed from green to yellow.
Afterwards, the yield per plant was calculated.

The freshly picked tomatoes were placed in sampling bags during the fruiting stage
and transported back to the laboratory in the dark at room temperature. The yield parame-
ters were analyzed in triplicate, and at least 10 plants/treatment/repeat were used (except
Figure 2D). Among these, we measured the single fruit weight also in triplicate, calculating
the average of 30 tomato fruits/treatment/repeat. For each treatment, ten or twenty fruits
from different plants were mixed and ground using a mill (A11, IKA, Staufen, Germany),
and stored at −80 ◦C. Pooled samples were split into three replicates for the biochemical
and molecular analysis.

4.4. Evaluation of Fructose, Glucose, Sucrose, Titratable Acid, and Soluble Sugar Contents

Following a previous method [51], twenty fruits from four greenhouses with different
treatments were ground using a mill (A11, IKA, Staufen, Germany) and stored at −80 ◦C,
and pooled samples were split into three replicates for the following analysis. Fructose and
glucose contents were detected using a High Performance Liquid Chromatograph (HPLC;
Infinity 1260; Agilent, Santa Clara, CA, USA) with a 250 mm × 4.6 mm ZORBAX column
(Agilent, USA) at 40 ◦C. Elution was used with 75% acetonitrile (v/v), with 20 µL injection
and 1.3 mL min−1 for the flow rate. The amount of sucrose was assayed according to the
Lane–Eynon method [52]. The test solution was titrated with Fehling’s solution, containing
a methylene blue indicator.

The measurement of titratable acid was achieved by the sample being titrated with 0.1 M
NaOH to an end-point pH of 8.2 [53]. The results were expressed as g kg−1 fresh weight.

The content of soluble sugars was determined with anthrone–sulfuric acid colorimetric
method [54]. Firstly, the samples were mixed with 2% (w/v) anthrone regent/concentrated
sulfuric acid (0.5:5, v/v) solution, and then incubated in boiling water for 10 min. After
centrifugation, the absorbance of the supernatant was recorded at 620 nm. The soluble
sugar content was expressed as g kg−1 fresh weight calculated using the standard curve
of sucrose.

4.5. Determination of Lycopene, Vitamin C, Total Phenols, and Flavonoids Contents

Lycopene, vitamin C, total phenols, and flavonoids were averaged from three inde-
pendent samples prepared by pooling 20 individual fruits from different plants for each
treatment. Lycopene was exacted by using mixed solvent extraction method described
previously [55]. The fruit samples (1.0 g) added with the solution of acetone/petroleum
(5:5, v/v) were incubated in a 30 ◦C water bath for 15 min. Afterwards, the absorbance was
determined at 472 nm. The standard curve was obtained by adding different concentrations
of a lycopene standard solution.
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Vitamin C content was detected with the HPLC system (D-2000, Hitachi, Ltd., Tokyo,
Japan). According to the previous method [56], the sample homogenate was extracted with
oxalic acid solution under dark conditions for 10 min. After centrifugation and filtration
with a 0.45 µm water filtration membrane, the test solution was prepared for detection.
Vitamin C content expressed as g kg−1 fresh weight was calculated from the standard curve
of vitamin C.

The content of total phenols was estimated using the Folin–Ciocalteu reagent and the
absorbance was measured at 765 nm [57]. The results were obtained from a standard curve
for gallic acid, expressed as g kg−1 fresh weight.

The flavonoids content was determined using the aluminum chloride colorimetric
method [58,59]. The samples (0.1 g) were dispersed in 1 mL of deionized water, and then
mixed with a solution of 95% alcohol, 10% aluminum chloride hexahydrate, 1 M potassium
acetate, and deionized water (1.5:0.1:0.1:2.8, v/v/v/v).

4.6. Extraction and Analyses of Aromatic Compounds

Headspace solid phase microextraction was used to sample volatiles of tomatoes
according to a previous method [22]. Ten fruits were ground together using a mill (A11,
IKA, Germany). These samples were split into three aliquots and all replicates of 5 g were
processed using following methods. The samples were added with 1 g of sodium chloride,
containing 10 µL of 2-nonanone (internal standard; dilute 5 × 103 times; Macklin, China)
in a 20 mL vial. Volatiles were collected using a 1cm DVB/CAR/PDMS Stable Flex fiber
(50/30 µm; Supelco, PA, USA) in a 50 ◦C water bath for 30 min after a 50 ◦C equilibration
for 15 min. Afterwards, the analysis was performed on a 320-MS gas chromatography-
mass spectrometer (GC-MS, Bruker, Germany) with a BR-5 ms column (30 m × 0.25 mm
ID × 0.25 µm). The program of GC-MS was set according to a previous method [22].
Chromatographic profiles of volatiles were identified using spectral library comparison
(NIST standard library). The relative content of the compound referred to the internal
standard and expressed as mg kg−1 fresh weight.

4.7. Determination of Soil Available Nitrogen (N), Potassium (K), and Phosphorus (P) Contents

Soil samples were collected on 4 January 2021 (before planting) and 8 June 2021
(later stage of fruiting) using the five-point sampling method. The soils were collected at
5–10 cm depth and mixed from 5 points in each treatment. Subsequently, the air-dried
soil samples were filtered through a 2 mm sieve and divided into three replicates for the
following analysis.

Available N content was measured according to the previous methods [60]. The
soil samples were hydrolyzed with ferrous sulfate under alkaline conditions and then
the hydrolyzed and nitrate N were converted to ammonium nitrogen. The diffusion
ammonium nitrogen was absorbed by boric acid solution and titrated with standard acid
to obtain the content of soil available nitrogen.

Available K content was estimated using Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES; Optima 8000, Perkin Elmer, Waltham, MA, USA) mentioned
previously [61]. The soil sample (5 g) was added with 50 mL of ammonium acetate solution
(1 mol/L, pH 7.0). After filtering, the test solution was detected using ICP-OES.

Available P was extracted with the solution of ammonium fluoride–hydrochloric acid and
incubated at 25 ◦C with shaking for 30 min, and finally estimated using ICP-OES. The amounts
of P and K were calculated from standard curves of P and K standard solution, respectively.

4.8. Real-Time Fluorescence Quantitative PCR Analysis

Total RNA was extracted from the fruits and roots of the plants during the fruiting
stage (4 May 2021). Root samples were immediately frozen in liquid nitrogen after they
were taken. The samples were mixed and ground using a mill, and stored at −80 ◦C.
Pooled samples were split into three replicates for the following analysis. The exaction of
total RNA was performed using a TransZol Plant kit (TransGen Biotech, Beijing, China).
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Afterwards, the concentration and purity of RNA were measured using a NanoDrop 2000
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was synthesized
based on the manufacturer’s instructions of HiScript III-RT SuperMix kit (+gDNA wiper)
for qPCR (Vazyme, Nanjing, China). The TransStart® Top Green qPCR SuperMix kit
from TransGen was used for qPCR, which was conducted on a Mastercycler® EP Realplex
Real-time PCR system from Eppendorf. The 18S rRNA and Actin (SlACT) were used as
reference genes. The primer sequences are shown in Supplementary Table S2. Relative
gene expression levels were determined with the 2−∆∆CT method [62].

4.9. Statistical Analysis

The results were analyzed using SPSS 24.0 software to express results a mean ± stan-
dard deviation (SD) for three independent experiments. One-way analysis of variance
(ANOVA), Duncan’s multiple-range test, and t-test were used for data analysis. Differences
were considered significant at * p < 0.05 and ** p < 0.01.

The data were normalized and scaled (sum-based normalization, square-root transfor-
mation, and auto-scaling procedures). Principal component analysis (PCA) was carried out
using MetaboAnalyst 5.0 (https://www.metaboanalyst.ca, accessed on 30 June 2022).

5. Conclusions

The sustained improvement of horticultural yields requires NPK fertilizers, which
could be offset using healthier and cleaner alternatives to maintain fruit consumer quality.
Compared to solid H2 storage materials such as MgH2, AB, and other nanoparticles, HNW
will not bring additional elements. Recently, genetic and molecular evidence showed that
molecular hydrogen not only influenced root organogenesis [63,64], but also increased
nitrogen use efficiency (NUE) by targeting nitrate reductase [65]. Consistently, in this
report, we revealed that the preharvest application of hydrogen fertilization with HNW
exhibited a fertilization effect on the cherry tomato yield and improved its quality, even
to some extent as an alternative for the conventional fertilizers. Moreover, the production
costs of renewable H2 are reducing to USD 0.7–1.6/kg H2 before 2050 on a global scale [66].
Consequently, HNW may provide an easy, affordable, and environment friendly solution
for the reduction in fertilizer use, thus improving agricultural sustainability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13030443/s1, Table S1: Profiles of volatiles in cherry tomatoes
(2021); Table S2: Primers of qPCR used in this study. Figure S1: The contents of available nitrogen,
available phosphorus, and available potassium in soil of four greenhouses before fertilizing (Shanghai,
2021); Figure S2: Changes in H2 content of fresh HRW and HNW; Figure S3: The design and location
information of the four greenhouses (Shanghai, 2021).
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