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Abstract
Intravascular optical coherence tomog-

raphy (IV-OCT) is a light-based imag-

ing modality with high resolution,

which employs near-infrared light to

provide tomographic intracoronary images. Morbidity caused by coronary heart

disease is a substantial cause of acute coronary syndrome and sudden cardiac death.

The most common intracoronay complications caused by coronary artery disease

are intimal hyperplasia, calcification, fibrosis, neovascularization and macrophage

accumulation, which require efficient prevention strategies. OCT can provide dis-

criminative information of the intracoronary tissues, which can be used to train a

robust fully automatic tissue characterization model based on deep learning. In this

study, we aimed to design a diagnostic model of coronary artery lesions. Particu-

larly, we trained a random forest using convolutional neural network features to

distinguish between normal and diseased arterial wall structure. Then, based on the

arterial wall structure, fully convolutional network is designed to extract the tissue

layers in normal cases, and pathological tissues regardless of lesion type in patho-

logical cases. Then, the type of the lesions can be characterized with high precision

using our previous model. The results demonstrate the robustness of the model

with the approximate overall accuracy up to 90%.
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1 | INTRODUCTION

Coronary artery disease leads to progression of pathological
formations in arterial wall layers, which may be followed by
acute coronary syndrome. Considering the significant role of
coronary arteries in functionality of cardiac tissues by con-
trolling the blood flow to myocardium, coronary artery dis-
ease is recognized as the main cause of myocardial

Abbreviations: ACS, acute coronary syndrome; CAD, coronary artery
disease; CHD, coronary heart disease; CNN, convolutional neural network;
FCN, fully convolutional network; IV-OCT, intravascular optical coherence
tomography; KD, Kawasaki disease; RF, random forest; ROI, region of
interest.
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infarction and sudden death. The early mechanism, which
leads to acute myocardial infarction is the formation of
intracoronary pathological tissues and vulnerable coronary
plaque rupture. This requires a high resolution imaging
modality to be identified [1]. Catheter-based imaging modal-
ities demonstrate higher resolution to visualize intracoronary
structural information than noninvasive imaging techniques
such as magnetic resonance and computerized tomography.
Intravascular ultrasound is widely used in cardiology to
evaluate coronary artery tissue layers and pathological
formations, but the low pullback speed and limited axial res-
olution of Intravascular Ultrasound (IVUS) (100-150 μm)
restricted its application to evaluate various cases with inti-
mal hyperplasia, and pathological formations. Intracoronary
optical coherence tomography (OCT) is recognized as a fea-
sible and safe imaging technique with higher resolution of
10 to 15 μm than IVUS imaging, which can provide detailed
structural tissue information [2]. Intravascular optical coher-
ence tomography (IV-OCT) is a catheter-based invasive
imaging modality, which employs a bandwidth in the near-
infrared spectrum with central wavelength of approximately
1300 nm. Using such wavelength results in the tissue pene-
tration of 1 to 3 mm. A single fiber-optic in OCT is respon-
sible to emit the light and record the back-scattering of light
from the arterial wall by simultaneous rotation, and pullback
along the arterial wall. OCT works based on interferometry
principal to measure the back-scattered signal since the
direct measurements are impossible due to the high speed of
light. OCT is significantly used in cardiology for diagnostic
assessment of coronary atherosclerosis. As a limitation, light
is strongly attenuated by blood as a result of light absorption
by hemoglobin, and scattering by the red blood cells. There-
fore, blood clearance is required during the imaging process
[3, 4].

1.1 | Significance of the coronary artery lesion
classification

Normal coronary artery has a three-layered structure. The
outermost arterial wall, adventitia, is responsible to protect
the arterial wall from over stretching and serves the mechan-
ical connections with surrounding tissues. Adventitia is rec-
ognized as a signal rich pattern in OCT images. Media is the
second arterial wall layer, which is composed of smooth
muscle cells, elastic lamina and collagen. Media is the most
significant mechanical layer, which is visualized as a signal
poor pattern in OCT images. Intima is the innermost arterial
wall layer in direct contact with blood flow. Intima is com-
posed of endothelial cells and it is recognized as a signal rich
pattern in OCT images [5]. Coronary arteries are responsible
to deliver blood to the cardiac muscle, which supplies the
required amount of oxygen and nutrients to the heart muscle.

Therefore, coronary artery disease can be followed by seri-
ous implications. This can lead to myocardial infarction and
sudden death. In 95% of patients with symptomatic coronary
artery disease and intracoronary pathology, there is a risk of
atherosclerosis. In the remaining 5% of the patients, there is
a huge risk of inflammatory, degenerative or congenital dis-
eases, which are serious cardiac complications [5, 6]. There-
fore, evaluation of intracoronary tissues in acute phase of the
disease is important to prevent myocardial infarction. Man-
ual segmentation of the tissues in coronary artery images is
tedious, time-consuming and particularly error-prone from
one observer to another and interpretation of the OCT
images are highly challenging, even for a trained expert.
Fully automatic method based on recent machine learning
techniques, particularly deep learning, would have signifi-
cant impact on efficient clinical diagnosis of coronary artery
disease as a robust indicator of progression of pathological
formations.

In this study, the experiments were performed on OCT
pullbacks obtained from patients with Kawasaki disease
(KD). KD is an inflammatory disease, which leads to inflam-
mation in the walls of medium-sized arteries throughout the
body. Although a high dose of intravenous immune globulin
infusion reduces the risk of coronary artery complications,
about 5% of treated children, and 15% to 25% of untreated
children suffer a risk of experiencing coronary artery aneu-
rysms or ectasia. Intimal thickening, media disappearance,
lamellar calcification, fibrosis, macrophage and
neovascularization are the most distinguished pathological
features of late coronary artery lesions in KD. In severe
cases, they can lead to myocardial infarction and sudden
death.

1.2 | Related works

Optical coefficient approaches are used for intracoronary tis-
sue characterization in some studies [7–12]. Atherosclerotic
plaque characterization is performed using attenuation and
back-scattering coefficient from intracoronary OCT images
by Schmitt et al [8]. Three different plaque types (fibrosis,
lipid and calcification) are recognized by considering their
attenuation coefficients in the work of Xu et al [9]. Soest
et al [10] classified the plaque into two groups with high and
low attenuation coefficients. This method was not robust to
measure the back-scattering coefficient in the cases with the
lack of intensity calibration. A tissue characterization model
based on quantification of the attenuation coefficients at dif-
ferent penetration depths of intracoronary OCT images is
proposed by Veermeer et al [11]. However, the multi-
scattered signal was not considered in this study. In addition,
the results for uniform-layered phantom do not show a
good consistency [11]. Evaluation of attenuation coefficient,
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back-scattering coefficient and pixel-wise intensity in
intracoronary OCT images is used to characterize various
tissues in the work of Liu et al [12]. Moreover, various
machine learning approaches are used for intracoronary tis-
sue characterization [13–15]. Ughi et al proposed a model to
characterize atherosclerotic plaques using random forest
(RF) as the classifier. Combination of texture features and
attenuation coefficients are used for plaque classification in
intracoronary OCT images [13]. Athanasion et al proposed a
tissue characterization model using RF as the classifier to
discriminate between calcification, lipid and fibrous plaques
[14]. A-line modeling method for plaque characterization is
proposed by Rico-Jimenez et al [15]. However, in the study
of Rico-Jimenez et al the effect of blood was not considered.
Also, A-line analysis cannot be generalized to all challeng-
ing cases since it is intensity-based.

Although optical properties of tissues and texture features
can provide a fair description of tissues, but considering the
challenges of the OCT images, detailed tissue information is
required for better representation and evaluation of various
arterial wall tissues. Other than this limitation, none of the
mentioned studies limited to few lesion types, and there is
no complete tissue characterization system proposed in these
studies, which can start by evaluating the arterial wall struc-
ture, and analyze all the tissues and lesions in details.

Recently, deep learning was widely used in the field of
medical imaging for various applications [16–19]. Con-
volutional neural networks (CNNs) are recognized as the
robust neural network architectures for classification tasks,
where their output deep feature is a feature vector per image
with an associated single class label predicted by the net-
work. Since training a network from scratch requires a lot of
data and considering the limited available data in the field of
medical image analysis, it is efficient to use pre-trained net-
works by fine-tuning and transfer learning. Therefore, using
the same architecture of the pre-trained network, the weights
at each layer are initialized by the weights of the pre-trained
network to start the iterative weight update by layer-wised
fine-tuning to find the optimal parameters for the new appli-
cation [20]. A CNN-based plaque characterization method is
proposed by He et al [21], which results do not show a good
precision of the method to be used by clinicians. In another
study, the performance of a CNN and an artificial neural net-
work is compared to characterize calcification, and lipid vs
other tissues [22]. However, all the pathological tissues and
normal cases were not considered in this study. In these
studies, pre-processing to remove the catheter was per-
formed using Otsu's threshold in the work of He et al. Also,
extraction of the region of interests was performed using
OCT A-lines, which is mostly intensity-based. These
approaches are not reliable to be generalized to all the cases,
specifically challenging cases considering the artifacts of the

imaging system, noise, and challenging cases in terms of dis-
ease complexity. Also, the results show the low precision of
the method to characterize the lesions.

Considering the strength of CNN features to describe var-
ious intracoronary tissues, in our previous studies, we
designed a tissue characterization model to discriminate
between arterial wall tissue layers, intima and media, as well
as pathological formations, specifically calcification,
neovascularization, fibrosis and macrophage accumulation.
The final tissue characterization model was designed using
CNNs as feature extractors from each tissue to train RF as a
classifier. Majority voting approach was used for final classi-
fication decision. The model is highly precise to characterize
various intracoronary tissues [23, 24]. In our previous stud-
ies, the main contribution was to find the features and classi-
fier, which are reliable for intracoronary tissue
characterization using OCT images. Therefore, the perfor-
mance of various classifiers was assessed to design our
model. In our previous study, pre-processing to remove the
surrounding arterial wall tissues was performed on each
frame of the OCT pullbacks by applying active contour and
connected component approaches. In our previous studies,
the OCT pullbacks with normal and diseased arterial wall
structures were determined by expert cardiologist. We did
not discriminate between the normal and diseased arterial
wall structures automatically. To characterize the lesion
types, the lesions were extracted manually using the ground-
truth. Then, the type of lesions was characterized using our
proposed model. In this study, we consider all the limitations
of our previous studies since we aimed for a fully automatic
and complete diagnostic system to analyze the coronary
artery tissues.

1.3 | General limitations of the related works

1. A complete intracoronary tissue characterization model
can be useful for clinicians for early detection of patho-
logical tissues. To our knowledge, as the main limitation
of all the current studies, there is no complete frame-
work, which starts by evaluating the arterial wall struc-
ture to distinguish between normal and diseased arterial
wall structure. Also, all the proposed tissue characteriza-
tion models focused on characterizing a limited number
or specific coronary artery lesions. There is no tissue
characterization model, which can automatically detect
all coronary artery tissue layers, and pathological
lesions.

2. Pre-processing steps are additional computational steps,
which applied in all the proposed methods in related
works to prepare the images for classification task. Also,
designing a pre-processing approach, which can be gen-
eralized to all the cases is very challenging.
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3. In all the existing studies, the region of interests (lesions)
were extracted either manually or during pre-processing
steps in order to train the classification model. To have a
fully automatic tissue characterization model, this step
should be automatic as well.

4. Patch-based classification using CNNs has some limita-
tions: (a) The network should be run for each patch sepa-
rately, which results in redundant feature extraction
process due to the overlapping patches. (b) The patch
size selection is challenging since using small patches,
the network considers a small context because of apply-
ing max-pooling. Using large patches may require more
max-pooling steps, this can reduce the localization accu-
racy. (c) Considering the huge computational time, the
pre-processing steps are required to remove the unneces-
sary tissues and reduce the processing time, which is an
additional step.

Designing an automatic tissue characterization system for
intracoronary OCT images is a challenging task considering
the limited available coronary OCT data, artifacts of the sys-
tem, residual blood and very small size of the artery. In addi-
tion, we have to consider a solution, which is precise with
low computational burden to be useful for clinicians.

1.4 | Contributions

As the main contribution, in this study for the first-time, a
deep learning-based computer-aided diagnostic model pro-
viding clinicians with an operator-independent diagnosis of
coronary artery lesions was developed. This study contrib-
utes to:

1. Automatic evaluation of the arterial wall structure using
deep features: To have a complete tissue characterization
model, as the first step, it is very efficient if the model
can automatically recognize between normal and patho-
logical arterial wall structure.

2. Automatic intracoronary tissue analysis by developing a
VGG-based fully convolutional network (FCN):
According to the results of the previous step, the model
can look for arterial wall layers in the coronary arteries
with normal three-layered structure and lesions in patho-
logical cases.

3. Avoiding the pre-processing steps: First, the pre-
processing steps are additional computational steps and
second, designing a pre-processing approach, which can
be generalized to all the cases is very challenging. This
can decrease the certainty level of the tissue characteriza-
tion model, specifically in diseased coronary arteries.
Considering the artifacts of the imaging system, and the
small size of the arterial wall as well as the limitations of

the traditional approaches. It is more efficient if we can
consider the original images without applying any pre-
processing step to assure that all the details of the tissues
are considered in our analyses.

This work is organized as follows: The proposed method
is explained in Section 2. The results are discussed in
Section 3, and the work is concluded in Section 4.

2 | MATERIALS AND METHODS

Different steps of our tissue characterization model are
shown in the flowchart of Figure 1. The main focus of this
study is to propose a fully automatic intracoronary tissue
characterization model to evaluate coronary artery tissue
layers as well as pathological formations. The proposed
model is designed in the following steps:

1. Evaluating each OCT pullback frame by frame: The
model starts by evaluating the overall structure of the
arterial wall for each frame of the OCT pullback using a
CNN-based approach (Section 2.2).

2. Characterization of different tissues based on the result
of the first step for each frame of the OCT pullback
(Section 2.3):

FIGURE 1 All steps of the proposed tissue characterization
model
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� If the arterial wall structure was recognized as normal
in the first step, the model segments the arterial wall
layers using FCN-based models. Tissue layer segmen-
tation is important because it can assist clinicians in
evaluating the arterial tissue by estimating the thick-
ness of each layer (Section 2.3.2).

� If the arterial wall structure was recognized as dis-
eased, extraction of pathological formations (lesions)
was performed. In pathological cases, the model
looks for all the possible lesions developed in the
arterial wall tissues due to the coronary artery dis-
ease. In this step, a FCN-based approach is used to
extract all the lesions regardless of the lesion type
(Section 2.3.3).

3. Lesion-type characterization: Having all the lesions
extracted, we applied a CNN-based method with a final
decision using majority voting to characterize the lesion
types. This step was proposed in our previous work [24].
Although this step is not the main contribution of the
current study, we discussed the final results of lesion-
type characterization in Section 3 to demonstrate the
final output of the complete intracoronay tissue charac-
terization system. Each step of the work is explained in
details in the following sections

2.1 | Data collection

The experiments are performed on 45 OCT pullbacks
obtained from different patients with KD. Each OCT pull-
back consists of approximately 100 frames of DICOM
images per patient. There are some cases with more than
100 frames per OCT pullback. The total number of frames,
which are used for the experiments are 5040 frames.
Twenty-six OCT pullbacks with the total of 2900 frames are
considered as normal in this study since the three-layered
structure of the arterial wall was preserved in all these
frames. The other 19 OCT pullbacks with the total of 2140
frames are considered as pathological cases with neo-intimal
development and developed lesions. Image acquisition is
performed using FD-OCT (St. Jude Medical Inc., St. Paul,
Minnesota) with the pullback speed of 20 mm/s. The axial
and lateral resolutions of the OCT system are 12 to 15 and
20 to 40 μm, respectively. Permission to conduct this study
on retrospective OCT studies was granted by the institu-
tional review board.

OCT images were labeled by trained operator using cus-
tom software in Matlab. Each annotated image was reviewed
by two cardiologists and if there was any disagreement, a
consensus was reached by reviewing carefully each region
of interest.

2.2 | General evaluation of arterial wall
structure

In this step of the work, we investigated the features that a
CNN learns to train RF as the classifier to discriminate
between normal and diseased frames. Normal structure is
referred to the three-layered structure of the arterial wall
even if the artery is affected by disease, the three-layered
structure is preserved. The diseased arterial wall structure is
referred to the neo-intimal development [25] (Figure 2).

2.2.1 | Pre-trained VGG-19

CNNs are developed on convolutional layers. These layers
are responsible to excite features from the local receptive
field of the input image. Therefore, convolutional layers are
composed of shared weights between the nodes to extract
the similar local attributes in the input channels by sliding
the filters through the input image with defined step size
called stride. The extracted feature map from each con-
volutional layer is the input of the next layer. Using a non-
saturating activation function, Rectified linear unit (ReLU),
that replaces the negative values by zero in the feature map,
which can accelerate the training process [26]. The pooling
or subsampling is used for dimensionality reduction by
keeping the most important information. To evaluate the
arterial wall structure, the general information of the shape
and borders and some details of the texture are enough at
this step. Therefore, a CNN, which can provide us such
information, can be quite useful.

VGG-19 is originally in the category of deep CNNs [27].
Deep networks consist of stacks of convolutional layers with
very small receptive field kernels. The input size of VGG-19

FIGURE 2 Normal structure of coronary artery is shown in (A).
The arterial wall has three-layered structure with intima, media,
adventitia and surrounding tissues. The diseased arterial wall with neo-
intimal development and disappearance of the media layer is shown
in (B)
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is defined as 224 × 224 × 3, which is fixed. Since OCT
images are RGB images, the depth of our input is 3 and we
needed to resize the OCT images with the original size of
352 × 352 × 3 to 224 × 224 × 3. The only pre-processing is
that the mean RGB value was subtracted from each pixel for
each input image. As it is shown in Figure 3, the VGG-19
architecture consists of five stacks of convolutional layers.
Specific number of filters with small receptive field of 3 × 3
are applied in each convolutional layer with convolutional
stride of 1 pixel. Also, 1-pixel padding preserves the spatial
resolution through the convolutional layers. Considering that
the output of each layer is the input of the next layer, for
each convolutional layer the number of parameters is calcu-
lated as number of filters × filter size × input depth
+ number of filters (each filter has a bias). Also, the depth
of each layer output is the number of filters at each con-
volutional layer. Every convolutional layer follows by a
ReLu as the activation function to introduce nonlinearity.
After each stack of convolutional layers, max pooling is
applied for dimensionality reduction. Therefore, there is no
learning parameter defined for pooling layers. Two-by-two-
pixel window with stride of 2 is used for max pooling.
Therefore, in pooling layers, the output is 1 pixel for every
2 × 2-pixels and the windows do not have any overlap since
the stride is defined as 2. As a result, the spatial resolution
divides by 2 in each pooling layer while the depth remains

the same. The original VGG-19 architecture consists of two
fully connected layers (fc6, fc7) with 4096 units and a classi-
fication layer (fc8). We removed the classification layer
since we applied VGG-19 as feature extractor. We extracted
the features from fc7, which is the last fully connected layer
right before the classification layer.

To compare the activations excited by each layer of the
network with the original image, all the activations are pro-
jected to the input pixel space [28]. Using the ReLU func-
tion, the positive activations are used to build the final
feature map. Considering that the ReLU replaces negative
values by zero, the white regions in Figure 4 show the posi-
tive activations. The channels in each layer learn various
activations. The first layers learn and excite the abstract level
information regarding the shape, corners and edges of the
original image, which can effectively capture information
regarding the borders of different layers. Complex invari-
ance by evaluating the texture information is recognized in
deeper layers. This may determine the robustness of deep
features to describe and evaluate the general structural differ-
ences between images to discriminate between normal and
diseased frames in various OCT pullbacks. Figure 4 is the
representation of few activations extracted by VGG-19,
which demonstrates the usefullness of this network as fea-
ture extractor for the first step of the work. The feature vec-
tors for each frame of OCT pullbacks are extracted from

FIGURE 3 The architecture of VGG-19
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layer fc7, which is the fully connected layer right before the
classification layer. These feature vectors are used to
train RF.

2.2.2 | Random forest

RF was developed based on generating an ensemble of trees
[29, 30], which has considerable advantages compared
against other existing classifiers:

1. The random vectors can control the growth of the trees
in the ensemble and this increases the classification
accuracy using RF.

2. RF can perform accurate classification on large datasets.
3. There is a very low risk of over-fitting in using RF com-

pared against other classifiers.
4. In the case of medical images, which are noisy images,

RF is robust to deal with noisy data.

The CART methodology is used to grow the trees to
maximum size without pruning. The accuracy of RF
depends on the strength of each tree (s), and the correlation
between the trees (ρ). The smaller the ρ/s2 ratio results in the
better functioning of RF. In our experiments, the optimal
number of trees is set to 429 by evaluating the performance
of RF using out of bag error rate (Figure 5) for 500 of trees.

Fewer number of trees reduces the computational complex-
ity in training the RF model. The number of randomly
selected predictors (mtry) is set to 7 using grid searching.

2.2.3 | Training and validation

We consider all the frames of the OCT pullbacks obtained
from the total of 45 patients. We resize the images to
224 × 224 × 3, which is the input size of VGG-19. To gen-
eralize the model to all the cases, we extract the features
from each frame of the OCT pullbacks and consider all the
features with associated labels as a single feature matrix.
Then, we split the features into training, validation and test
sets. To ensure that consecutive frames are not selected and
our system is not biased. First, we split randomly 75% of the
feature vectors as the training features, and the remaining
25% of the features as the test features. Then, to create the
validation set, we split the training set into the validation set
by randomly selecting the 25% of the training set and the
remaining 50% built the final training set. RF is trained
using deep features of the training set and it is validated and
tested using validation and test sets, respectively to classify
between normal and diseased arterial wall structures.

To reduce the computational burden, we preformed the
experiments by one random selection of training, validation
and test sets in this step of the work. However, we

FIGURE 4 Visualization of few activations learned by VGG-19 architecture in different layers. Projection of features in pixel space
demonstrate the usefulness of the network to determine the general structure of the arterial wall

FIGURE 5 Out of bag error rate
to find the optimal number of trees of
Random Forest. The error rate remains
almost constant from the tree
number 429

ABDOLMANAFI ET AL. 7 of 16



performed leave-one-out cross-validation to assure that there
is no over-fitting, also to evaluate the performance of the
model in different selections of training, and validation sets.

Therefore, in this step, VGG-19 is used as feature genera-
tor to train RF as the classifier to generally discriminate
between normal and diseased images in each pullback.

2.3 | Tissue analysis

In this step, if the pullback frame was recognized as normal
in the first step, the system looks for segmenting different
arterial wall layers (intima and media), and if the pullback
frame was recognized as diseased in the previous step, in
this pathological cases, the system looks for possible devel-
oped lesions in arterial wall tissues. We used FCN-based
approach in this step for the following reasons: we do not
have the region of interests extracted (the arterial wall layers
in normal cases and the lesions in pathological cases) to feed
them to a CNN and obtain the features to distinguish
between various tissues of coronary artery. Therefore, if we
want to use CNN, we should use it as patch-based classifica-
tion. However, using CNN for patch-based classification has
some important limitations: (a) we should perform patch-
based classification and run the network for each patch in
the image separately. For each patch, we have a single fea-
ture vector and this is computationally very expensive
because in patch-based approaches, the patches overlap and
this results in redundant feature extraction. Pre-processing of
the images to remove unnecessary information from the
images can help the processing time using CNNs, but pre-
processing is an additional step, and there is a risk of losing
important information during the pre-processing as well. On
the other hand, patch size selection is very challenging
because the patch sizes should fit the size of the filters
defined for each layer of the network. For all these reasons,
CNNs are not very useful at this step of the work. To solve
this problem, we found that FCNs are very efficient in this
step because they do not have the limitations of the patch-
based classification using CNNs. The network is trained
end-to-end, pixels-to-pixels to exceed the training process
and it avoids the problem of redundant feature extraction of
multiple overlapped patches. Therefore, there is no need for
pre-processing because the training is fast enough to con-
sider the whole image and make sure that all the information
is considered in our analyses.

2.3.1 | Fully convolutional networks

Generally, the network architecture used for semantic seg-
mentation is composed of an encoder network followed by a
decoder network. The encoder can be a pre-trained network.
The decoder is responsible to project the learning features by

the encoder from the feature space to the pixel space to get
the dense classification. FCNs perform semantic segmenta-
tion by considering the context as well as each pixel locali-
zation in the images. Compared to CNNs, FCNs can take the
image with an arbitrary size as an input, since there is no
fully connected layer involved to restrict the input size.
FCNs are built on locally connected convolution, pooling
and up-sampling layers. The network does not have any
fully connected layer, which considerably reduce the number
of parameters and training time. Considering the local con-
nected layers in the network architecture, the network works
independently from the original image size [31]. In our
experiments, the input size of the network is defined as
177 × 360 × 3 based on our application. The main parts of
the FCNs are down-sampling path to extract the contextual
information and the up-sampling path to recover the pixel
localization.

VGG-based FCN
One of the standard networks, which is used as the basis of
semantic segmentation is VGG architecture. VGG-19 is used
in this study. Using VGG-based FCN, the knowledge is
transferred from VGG-19 to perform semantic segmentation.
The VGG-19 is used as the encoder of the FCN model. Fully
connected layers are converted to fully convolutional layers
using 1 × 1 convolution, which produce the feature map.
Then, the up-sampling is started to convert the feature map
from feature space to pixel space using transposed convolu-
tions. Besides the deconvolutional layers, up-pooling is
required as well. Considering that the max-pooling operation
is noninvertible, the max location switches are recorded dur-
ing max-pooling to approximately reconstruct the data from
the above layer using the recorded positions.

Network configuration
The learning parameters are set by grid searching to find the
optimal parameters at each layer. For transfer learning and
fine-tuning, we initialized the weights of each layer of the
VGG-based FCN by transferring the weights from the pre-
trained VGG-19. The first layers of the network provide the
abstract level information regarding the shapes, borders and
edges, which are general attributes. Therefore, we started
fine-tuning from the last layer of the network and we contin-
ued fine-tuning by changing the learning rates of the last
two layers, last three layers and so on, to reach the best per-
formance of the network on validation set. An extensive
interval of learning rate values is chosen for grid searching
to find the optimal learning parameters at each layer of the
network. The interval of learning rate values is chosen from
zero to two with the step of 0.001. We kept the momentum
and the scheduling rate at 0.9 and 0.95, respectively at each
step of fine-tuning. The learning rates for all the
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convolutional layers are set to 0.01 based on the best perfor-
mance of the network. Other significant factors, which deter-
mine the performance precision of FCNs are the choices of
loss function and optimizer. In both normal and pathological
cases, the arterial wall layers (intima and media) and the
lesions represent a very small fraction of the cross-sectional
coronary artery images, which causes the occurrence of the
class imbalance problem. This results in suboptimal perfor-
mance of the network. To deal with the problem of class
imbalance, we chose Generalized Dice Loss (GDL) as our
objective function [32], which is defined as follows,

GDL=1− 2 ΣlwlΣnrlnplnð Þ= ΣlwlΣnrln + plnð Þ½ � ð1Þ

where w is the weight assigned to each class with label l, n
is the number of image from the total of N images,
r demonstrates the pixel values of the ground-truth assigned
to each label for the image n, and p is the probabilistic deci-
sion map for each class with label l. The weights for each
class label is calculated using the following equation,

wl =1= ΣN
n=1rln

� �2 ð2Þ

The weights demonstrate the contribution of each label in
minimizing the loss function, which is defined as the inverse
of the region size for foreground (the region of interest), and
background (all the other tissues). This makes the model
suitable to deal with the class imbalance problem. We
selected adaptive momentum estimation (Adam) for stochas-
tic optimization, which uses the first order gradients with lit-
tle memory requirement and fast convergence. Figure 6
shows the architecture of VGG-based FCN used in this
study.

2.3.2 | Intima-media detection in normal cases

The experiments are performed on 26 various OCT
pullbacks. All the frames at each pullback represent the
coronary arterial wall with three-layered structure. Two

VGG-based FCNs with the same structure explained in the
previous section are trained in parallel to extract intima and
media layers, respectively. The first VGG-based FCN per-
forms two class segmentation to extract intima layer vs all
other tissues, and the second FCN takes the same frame of
the pullback and simultaneously performs segmentation of
the second layer, media, vs all other tissues. The segmenta-
tion result is combined as the final decision to extract intima
and media layers. The steps of tissue layer detection are
visually shown in Figure 7. The images are categorized in
three sets of training, validation and test sets. The total of
70% of the images are selected to build the training set, 15%
of the images are used for the validation set, and the
remaining 15% of the images are used to build the test set.

2.3.3 | Lesion extraction in pathological cases

The experiments are performed on 19 different OCT
pullbacks with pathological formations, such as calcification,
neovascularization, fibrosis and macrophage accumulation.
The VGG-based FCN with the same architecture shown in
Figure 6 is trained for two class segmentation of pathologi-
cal tissues vs all other arterial wall tissues. Therefore, the
output of the network is the detection of lesions regardless
of the lesion type. The steps of lesion detection are visually
shown in Figure 8. The total of 70% of the images are
selected to build the training set, 15% of the images are used
for the validation set and the remaining 15% of the images
are used to build the test set.

We preformed the experiments by one random selection
of training, validation and test sets at each step. But, leave-
one-out cross-validation was performed by leaving out the
OCT images of one patient for validation and training the
model on the OCT images of the remaining patients at each
step of the experiment. The mean ± SD of the overall accu-
racy for all the experiments are reported at each step. This is
performed to assure that there is no over-fitting concern and
also to evaluate the performance of the model in different
selections of training, and validation sets.

FIGURE 6 The architecture of VGG-based fully convolutional network

ABDOLMANAFI ET AL. 9 of 16



3 | RESULTS AND DISCUSSION

The experiments are performed on the total of
45 intracoronary OCT pullbacks obtained from patients with
KD. The cross-sectional images of the 26 OCT pullbacks are
recognized as the coronary artery segments with three-
layered structure of the arterial wall that we called them nor-
mal structure. The cross-sectional images of the remaining
19 OCT pullbacks are recognized as diseased coronary
artery segments with neo-intimal development and formation
of lesions.

To evaluate the results, at each step of the work, we cal-
culate the confusion matrix as it is shown in Figure 9. Hav-
ing the confusion matrix, we measure the per class accuracy,
sensitivity and specificity as follows,

Accuracy=
TP+ TN

TP+ TN +FP+FN
ð3Þ

Sensitivity=
TP

TP+FN
ð4Þ

Specificity=
TN

TN +FP
ð5Þ

where TP, FP, FN and TN are true positive, false positive,
false negative, and true negative, respectively. Using FCNs,
since it is also efficient to measure the Boundary F1 score
(BF-score) to validate the segmentation results, we calcu-
lated the BF-score as follows,

Precision=
TP

TP+FP
ð6Þ

Sensitivity=
TP

TP+FN
ð7Þ

BFscore=
2×Precision× Sensitivity
Precision+ Sensitivity

ð8Þ

3.1 | General evaluation of the arterial wall
structure

For the first step, RF is trained to evaluate the general struc-
ture of the arterial wall. The classification result is reported
as measured per class accuracy, sensitivity and specificity in
Table 1. The result shows the robustness of CNN features to
detect the general structure of the arterial wall in normal and
affected coronary arteries. The result of leave-one-out cross-
validation to evaluate the general structure of the arterial
wall is shown in details in Figure 10 for each patient that
was left as validation set. The mean ± SD of all the experi-
ments were calculated as the overall accuracy of 0.94

FIGURE 7 Visual representation of the VGG-based fully
convolutional network (FCN) process to segment intima and media
layers

FIGURE 8 Visual representation of the VGG-based fully
convolutional network (FCN) process to detect intracoronary lesions
regardless of the lesion type

FIGURE 9 Confusion matrix structure used to evaluate the
results. Positive refers to the class of interest (the tissue that we wanted
to segment or characterize) and the Negative refers to the rest of the
tissues including the image background
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± 0.05. Using CNN as feature extractor, we have one feature
vector for each frame. We did not consider each OCT pull-
back separately. We considered different frames of different
OCT pullbacks in training, validation and test sets since tis-
sue texture can be different from one patient to another. This
way, RF was trained on the feature vectors extracted from
different frames of various patients. Therefore, the model
can be generalized to all the cases since the training and test
sets are not restricted to a single patient with specific tissue
attributes.

The model starts by evaluating each OCT pullback frame
by frame. The reasons why pre-trained CNN and RF are
used in this step of the work are as follows: (a) It is efficient
to use pre-trained networks considering the fact that training
a network from scratch requires a lot of data and we deal
with the limited available data in the field of medical image
analysis specifically for infants and children. (b) It is more
efficient and computationally less expensive to use CNNs as
feature extractors to train another classifier, when we deal
with the problem of characterization between the region of
interests (normal vs diseased arterial wall structure, where

the whole frame is our region of interest). Using CNNs as
feature extractor avoids retraining the network during fine-
tuning, which requires a considerable amount of time.
(c) Over-fitting concerns in deep fine-tuning the network
and finding proper learning rates for each layer are other
issues of using CNNs as the classifier. There are many pre-
trained CNNs that can be used as feature extractor, but in
this step of the work, we wanted to evaluate each frame gen-
erally to discriminate between normal and pathological arte-
rial wall structure. Since, VGG-19 is a strong network to
perform feature extraction, and we used the architecture of
VGG-19 to build the FCNs in the next steps of the work, to
keep the model consistent in terms of choosing the networks,
VGG-19 is used in this study. Using CNN as feature extrac-
tor, the processing time to extract the features for each frame
is less than 10 seconds, and the training process using RF in
this step of the work takes about 3 minutes, which is
considerably fast.

3.2 | Tissue analysis

3.2.1 | Intima-media detection in normal cases

As the next step, in normal cases, we detect arterial wall
layers (intima and media). Sometimes, the artery is affected
by disease, which results in thickening the arterial wall
layers although the three-layered structure of the arterial wall
is preserved. We reported the mean ± SD of the measured
per class accuracy, specificity and sensitivity as well as the
BF-score of all the test set images in Table 2 for intima, and

TABLE 1 Measured accuracy, sensitivity and specificity to
evaluate general arterial wall structure

Arterial wall structure

Accuracy Specificity Sensitivity

Normal structure 0.95 0.97 0.94

Diseased structure 0.97 0.97 0.97

FIGURE 10 Leave-one-out
cross-validation to evaluate the
general arterial wall structure. The
mean accuracy of the classification is
measured at each iteration to evaluate
the performance of the model

TABLE 2 Measured accuracy, sensitivity, specificity and Boundary F1 score (BF-score) for intima and media detection using FCN model

Arterial wall layers

Accuracy Specificity Sensitivity BF-score

Intima 0.90 ± 0.04 0.86 ± 0.06 0.93 ± 0.03 0.99 ± 0.01

Media 0.87 ± 0.04 0.82 ± 0.05 0.91 ± 0.02 0.99 ± 0.01

Abbreviation: FCN, fully convolutional network.
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media detection. The results of leave-one-out cross-
validation to detect intima and media are shown in details in
Figures 11 and 12, respectively for each patient that was left
as validation set. The mean ± SD of the results of all the
experiments were calculated as the overall accuracy of 0.92
± 0.01 and 0.87 ± 0.01 for intima and media, respectively.
The results demonstrate the good performance of the model
using different selections of training and validation sets. This
result can also overcome the over-fitting concern. Figure 13
is the visual representation of the intima, and media detec-
tion for the frames of three different OCT pullbacks of vari-
ous patients.

3.2.2 | Lesion extraction in pathological cases

In pathological cases, we extract the pathological tissues
regardless of tissue type. In this step, we aimed to extract all
the developed lesions automatically. We reported the mean
± SD of the measured per class accuracy, specificity and
sensitivity as well as the BF-score in Table 3 for extraction
of the lesions. The result of leave-one-out cross-validation to
extract the lesions is shown in Figure 14 for each patient that
was left as validation set. The mean ± SD of the results of
all the experiments were calculated as the overall accuracy
of 0.95 ± 0.02 for all the experiments. The results demon-
strate the good performance of the model using different
selections of training and validation sets as well as

overcoming the over-fitting concern. Figure 15 is the visual
representation of the pathological tissue extraction for the
frames of four different OCT pullbacks of various patients.
The results show a high precision of the model to extract the
lesions, which is the most challenging and significant prob-
lem in coronary arteries affected by disease.

All the lesions, which are extracted in this step of the
work, are fed to the model developed in our previous study
to characterize the type of each lesion and show the results
for our complete tissue characterization framework of
intracoronary OCT images. To characterize the lesion type,
we extracted features from three different CNN networks
(AlexNet, VGG-19 and Inceptionv3). For each set of fea-
tures, we trained RF as the classifier. Then, we used majority
voting for final classification result using all the RF deci-
sions. This approach is explained in details in our previous
study [24]. The final results of lesion type characterization
are reported in Table 4.

Using the FCN-based model, we could avoid the pre-
processing steps that were performed in our previous study.
This can help the model to be less expensive computation-
ally and more accurate since we make sure that there is no
tissue information, which was missed during the pre-
processing steps. In addition, technically, it is very difficult
to train the networks from scratch since we have limited
number of available datasets specifically in infants and chil-
dren population. To overcome this problem, we fine-tuned

FIGURE 11 Leave-one-out
cross-validation for detection of the
first layer of the arterial wall (intima)
in normal cases using VGG-based
fully convolutional network (FCN).
The mean accuracy of the
classification is measured for each
patient to evaluate the performance of
the model

FIGURE 12 Leave-one-out
cross-validation for detection of the
second layer of the arterial wall
(media) in normal cases using VGG-
based fully convolutional network
(FCN). The mean accuracy of the
classification is measured for each
patient to evaluate the performance
of the model
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pre-trained networks. Therefore, instead of starting from
scratch to initialize the weights of each layer, we initialized
the weights of our network with the weights of the pre-
trained network (VGG-19) and fine-tuned the parameters in
each layer to make sure that the model performs accurately
in our application. Then, we investigated the proper loss
function to train our model since we were dealing with the
problem of imbalanced classes during the training consider-
ing that the arterial wall layers and lesions are very small

areas compared against the surrounding tissues and the back-
ground of the image.

In normal cases, two VGG-based FCNs with the same
architecture are trained separately to segment intima vs
other tissues and media vs other tissues, respectively.
Therefore, if the frame was recognized as normal in the
first step of the model, the two VGG-based FCNs work in
parallel to detect intima and media layers in the image.
Training the network is considerably fast, which was

FIGURE 13 Visual representation of the VGG-based fully convolutional network (FCN) results to detect intima and media layers for three
frames of three different patients. From left: the first image is the planar representation of the original optical coherence tomography image, the
second image is the ground-truth, which shows intima with purple label and media with yellow label, the third image is the network result to extract
the tissues (the upper region is intima, and the other one is media), and the fourth image is the overlap of the network results on the original image

TABLE 3 Measured accuracy,
sensitivity, specificity and Boundary F1
score (BF-score) of lesion detection using
FCN model

Pathological cases

Accuracy Specificity Sensitivity BF-score

Pathological tissues 0.96 ± 0.04 0.95 ± 0.05 0.97 ± 0.03 0.96 ± 0.04

Abbreviation: FCN, fully convolutional network.

FIGURE 14 Leave-one-out
cross-validation for lesion extraction
in pathological cases using VGG-
based fully convolutional network
(FCN). The mean accuracy of the
classification is measured for each
patient to evaluate the performance of
the model
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approximately 59 minutes with 354 iteration per epoch and
the total of 35 400 epoch.

In pathological cases, the same FCN architecture was
used, but it was trained to extract the lesions regardless of
lesion type in each frame of the OCT pullback. The network
training time was 41 minutes and 22 seconds. The network
converged in 100 epoch with the total of 4900 iterations
(49 iteration per epoch).

In this study, different factors were considered. First, we
do not have all types of the pathological tissues in all the

frames of each pullback. In some cases, intima is thick-
ened without the development of pathological tissues. In
other cases, we may have one, two or more pathological
tissues developed in the arterial wall layer as a result of
the disease. Second, the number of images, particularly
in pathological cases, are very limited. Therefore, train-
ing a FCN to segment all the tissue types is not possible
since we aimed to propose a model, which is not limited
to a specific type of pathological formations and can be
extended to all pathological lesions. Although we con-
sidered the four most significant coronary artery compli-
cations caused by CAD in this work, but we may extend
the model to other possible lesions. Therefore, it is not
wise to train a single FCN model for each pathological
tissue type separately since it is computationally very
expensive and requires a huge memory. For this reason,
we decided to train a FCN, which can extract all the
pathological tissues without considering the lesion type.
Then, using our proposed tissue characterization model
[24], extracting the CNN features, and training a RF to
distinguish between the tissue types demonstrated a high
precision.

FIGURE 15 Visual representation of the VGG-based fully convolutional network (FCN) results to detect pathological tissues for one frame of
four different patients. From left: the first image is the planar representation of the original optical coherence tomography (OCT) image, the second
image is the ground-truth, which is manual segmentation of the pathological tissues in OCT images, the third image is the network result to extract
the lesions regardless of the tissue type, and the fourth image is the extraction of all the regions, which is detected as pathological tissues from the
original image

TABLE 4 Measured accuracy, sensitivity and specificity to
characterize lesion types

Lesion type

Accuracy Specificity Sensitivity

Calcification 0.90 0.95 0.84

Fibrosis 0.94 0.96 0.94

Macrophage 0.92 0.97 0.89

Neovascularization 0.95 0.97 0.90
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4 | CONCLUSION

In this study, we aimed to propose a fully automatic tissue
characterization model, which can assist clinicians for better
diagnosis of the coronary artery complications caused by
coronary artery disease using OCT images. Our complete
tissue characterization model starts by evaluating the arterial
wall tissue structure for each frame of the pullback to recog-
nize between the normal three-layered structure of the arte-
rial wall and neo-intimal development. Then, in normal
cases, the model can detect the arterial wall layers, and in
pathological cases, all the existing lesions can be extracted
regardless of the lesion type using a FCN model. The
extracted lesions can be categorized based on the lesion type
using CNN features and majority voting on RF decisions.
Our future work will be concentrated on evaluating the dis-
tensibility variations of the arterial wall tissues to assess the
mechanical properties of the arterial wall using
stationary OCT.
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